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Whether building a relational, Object-relational (OR), or Object-oriented (OO) 
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This book presents a simple thesis: that you can design any kind of database with standard object-oriented design 
techniques. As with most things, the devil is in the details, and with database design, the details often wag the dog. 

That's Not the Way We Do Things Here 
The book discusses relational, object-relational (OR), and object-oriented (OO) databases. It does not, however, 
provide a comparative backdrop of all the database design and information modeling methods in existence. The 
thesis, again, is that you can pretty much dispose of most of these methods in favor of using standard 00 design—
whatever that might be. If you're looking for information on the right way to do IDEF1X designs, or how to use 
SSADM diagramming, or how to develop good designs in Oracle's Designer/2000, check out the Bibliography for the 
competition to this book. 
I've adopted the Unified Modeling Language (UML) and its modeling methods for two reasons. First, it's an approved 
standard of the Object Management Group (OMG). Second, it's the culmination of years of effort by three very smart 
object modelers, who have come together to unify their disparate methods into a single, very capable notation 
standard. See Chapter 7 for details on the UML. Nevertheless, you may want to use some other object modeling 
method. You owe it to yourself to become familiar with the UML concepts, not least because they are a union of 
virtually all object-oriented method concepts that I've seen in practice. By learning UML, you learn object-oriented 
design concepts systematically. You can then transform the UML notation and its application in this book into 
whatever object-oriented notation and method you want to use. 

This book is not a database theory book; it's a database practice book. Unlike some authors [Codd 1990; Date and 
Darwen 1998], I am not engaged in presenting a completely new way to look at databases, nor am I presenting an 
academic thesis. This book is about using current technologies to build valuable software systems productively. I 
stress the adapting of current technologies to object-oriented design, not the replacement of them by object-oriented 
technologies. 
Finally, you will notice this book tends to use examples from the Oracle database management system. I have spent 
virtually my entire working life with Oracle, though I've used other databases from Sybase to Informix to SQL Server, 
and I use examples from all of those DBMS products. The concepts in this book are quite general. You can translate 
any Oracle example into an equivalent from any other DBMS, at least as far as the relational schema goes. Once 
you move into the realm of the object-relational DBMS or the object-oriented DBMS, however, you will find that your 
specific product determines much of what you can do (see Chapters 12 and 13 for details). My point: Don't be fooled 
into thinking the techniques in this book are any different if you use Informix or MS Access. Design is the point of this 
book, not implementation. As with UML, if you understand the concepts, you can translate the details into your 
chosen technology with little trouble. If you have specific questions about applying the techniques in practice, please 
feel free to drop me a line at <muller@computer.org>, and I'll do my best to work out the issues with you. 

 
Data Warehousing 
Aficionados of database theory will soon realize there is a big topic missing from this book: data warehousing, data 
marts, and star schemas. One has to draw the line somewhere in an effort of this size, and my publisher and I 
decided not to include the issues with data warehousing to make the scope of the book manageable. 
Briefly, a key concept in data warehousing is the dimension, a set of information attributes related to the basic 
objects in the warehouse. In classic data analysis, for example, you often structure your data into multidimensional 
tables, with the cells being the intersection of the various dimensions or categories. These tables become the basis 
for analysis of variance and other statistical modeling techniques. One important organization for dimensions is the 
star schema, in which the dimension tables surround a fact table (the object) in a star configuration of one-to-many 
relationships. This configuration lets a data analyst look at the facts in the database (the basic objects) from the 
different dimensional perspectives. 

In a classic OO design, the star schema is a pattern of interrelated objects that come together in a central object of 
some kind. The central object does not own the other objects; rather, it relates them to one another in a 
multidimensional framework. You implement a star schema in a relational database as a set of one-to-many tables, 
in an object-relational database as a set of object references, and in an object-oriented database as an object with 
dimensional accessors and attributes that refer to other objects. 

 
Web Enhancement 
If you're intersted in learning more about database management, here are some of the prominent 
relational, object-relational, and object-oreinted products. Go to the Web sites to find the status of the 
current product and any trial downloads they might have.  

Tool  Company  Web Site  

Preface 
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Rational Rose 
98  

Rational 
Software  

www.rational.com  

Object Team  Cayenne 
Software  

www.cool.sterling.com  

Oracle 
Designer 
Object 
Extension  

Oracle Corp.  www.oracle.com  

ObjectStore 
PSE Pro for 
Jave  

Object Design  www.odi.com  

POET Object 
Database 
System  

POET Software  www.poet.com  

Jasmine  Computer 
Associates  

www.cai.com  

Objectivity  Objectivity, 
Inc.  

www.objectivity.com  

Versant ODBMS  Versant Corp.  www.versant.com  
Personal 
Oracle8  

Oracle Corp.  www.oracle.com  

Personal 
Oracle7  

Oracle Corp.  www.oracle.com  

Informix 
Universal 
Data Option  

Informix 
Software, Inc.  

www.informix.com  

Informix 
Dynamic 
Server, 
Personal 
Edition  

Informix 
Software, Inc.  

www.informix.com  

Informix SE  Imformix 
Software, Inc.  

www.informix.com  

Sybase 
Adaptive 
Server  

Sybase, Inc.  www.sybase.com  

Sybase 
Adaptive 
Server 
Anywhere  

Sybase, Inc.  www.sybase.com  

SQL Server 7  Microsoft 
Corp.  

www.microsoft.com  

DB2 Universal 
Database  

IBM Corp.  www.ibm.com  

 
Chapter 1: The Database Life Cycle 
For mine own part, I could be well content 

To entertain the lagend of my life 

With quiet hours. 
Shakespeare, Henry IV Part 1, V.i.23 

Overview 
Databases, like every kind of software object, go through a life stressed with change. This chapter introduces you to 
the life cycle of databases. While database design is but one step in this life cycle, understanding the whole is 
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definitely relevant to understanding the part. You will also find that, like honor and taxes, design pops up in the most 
unlikely places. 
The life cycle of a database is really many smaller cycles, like most lives. Successful database design does not 
lumber along in a straight line, Godzilla-like, crushing everything in its path. Particularly when you start using OO 
techniques in design, database design is an iterative, incremental process. Each increment produces a working 
database; each iteration goes from modeling to design to construction and back again in whatever order makes 
sense. Database design, like all system design, uses a leveling process [Hohmann 1997]. Leveling is the cognitive 
equivalent of water finding its own level. When the situation changes, you move to the part of the life cycle that suits 
your needs at the moment. Sometimes that means you are building the physical structures; at other times, you are 
modeling and designing new structures. 

Note 

  

Beware of terminological confusion here. I've found it expedient to define my terms as I go, as 
there are so many different ways of describing the same thing. In particular, be aware of my 
use of the terms "logical" and "physical." Often, CASE vendors and others use the term 
"physical" design to distinguish the relational schema design from the entity-relationship data 
model. I call the latter process modeling and the former process logical or conceptual design, 
following the ANSI architectural standards that Chapter 2 discusses. Physical design is the 
process of setting up the physical schema, the collection of access paths and storage 
structures of the database. This is completely distinct from setting up the relational schema, 
though often you use similar data definition language statements in both processes. Focus on 
the actual purpose behind the work, not on arbitrary divisions of the work into these 
categories. You should also realize that these terminological distinctions are purely cultural in 
nature; learning them is a part of your socialization into the particular design culture in which 
you will work. You will need to map the actual work into your particular culture's language to 
communicate effectively with the locals. 

 
Information Requirements Analysis 
Databases begin with people and their needs. As you design your database, your concern should be for the needs of 
database users. The end user is the ultimate consumer of the software, the person staring at the computer screen 
while your queries iterate through the thousands or millions of objects in your system. The system user is the direct 
consumer of your database, which he or she uses in building the system the end user uses. The system user is the 
programmer who uses SQL or OQL or any other language to access the database to deliver the goods to the end 
user. 

Both the end user and the system user have specific needs that you must know about before you can design your 
database. Requirements are needs that you must translate into some kind of structure in your database design. 
Information requirements merge almost indistinguishably into the requirements for the larger system of which the 
database is a part. 
In a database-centric system, the data requirements are critical. For example, if the whole point of your system is to 
provide a persistent collection of informational objects for searching and access, you must spend a good deal of time 
understanding information requirements. The more usual system is one where the database supports the ongoing 
use of the system rather than forming a key part of its purpose. With such a database, you spend more of your time 
on requirements that go beyond the simple needs of the database. Using standard OO use cases and the other 
accouterments of OO analysis, you develop the requirements that lead to your information needs. Chapters 3 and 4 
go into detail on these techniques, which permit you to resolve the ambiguities in the end users' views of the 
database. They also permit you to recognize the needs of the system users of your data as you recognize the things 
that the database will need to do. End users need objects that reflect their world; system users need structures that 
permit them to do their jobs effectively and productively. 

One class of system user is more important than the rest: the reuser. The true benefit of OO system design is in the 
ability of the system user to change the use of your database. You should always design it as though there is 
someone looking over your shoulder who will be adding something new after you finish—maybe new database 
structures, connecting to other databases, or new systems that use your database. The key to understanding reuse 
is the combination of reuse potential and reuse certification. 
Reuse potential is the degree to which a system user will be able to reuse the database in a given situation [Muller 
1998]. Reuse potential measures the inherent reusability of the system, the reusability of the system in a specific 
domain, and the reusability of the system in an organization. As you design, you must look at each of these 
components of reuse potential to create an optimally reusable database. 
Reuse certification, on the other hand, tells the system user what to expect from your database. Certifying the 
reusability of your database consists of telling system users what the level of risk is in reusing the database, what the 
functions of the database are, and who takes responsibility for the system. 
Chapter 9 goes into detail on reuse potential and certification for databases. 
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Data Modeling 
Given the users' needs, you now must formally model the problem. Data modeling serves several purposes. It helps 
you to organize your thinking about the data, clarifying its meaning and practical application. It helps you to 
communicate both the needs and how you intend to meet them. It provides a platform from which you can proceed to 
design and construction with some assurance of success. 

Data modeling is the first step in database design. It provides the link between the users' needs and the software 
solution that meets them. It is the initial abstraction that hides the complexity of the system. The data model reduces 
complexity to a level that the designer can grasp and manipulate. As databases and data structures grow ever more 
numerous and complex, data modeling takes on more and more importance. Its contribution comes from its ability to 
reveal the essence of the system out of the obscurity of the physical and conceptual structures on the one hand and 
the multiplicity of uses on the other. 
Most database data modeling currently uses some variant of entity-relationship (ER) modeling [Teorey 1999]. Such 
models focus on the things and the links between things (entities and relationships). Most database design tools are 
ER modeling tools. You can't write a book about database design without talking about ER modeling; Chapter 6 does 
that in this book to provide a context for Chapter 7, which proposes a change in thinking. 
The next chapter (Chapter 2) proposes the idea that system architecture and database design are one and the 
same. ER modeling is not particularly appropriate for modeling system architecture. How can you resolve the 
contradiction? You either use ER modeling as a piece of the puzzle under the assumption that database design is a 
puzzle, or you integrate your modeling into a unified structure that designs systems, not puzzles. 
Chapter 7 introduces the basics of the UML, a modeling notation that provides tools for modeling every aspect of a 
software system from requirements to implementation. Object modeling with the UML takes the place of ER 
modeling in modern database design, or at least that's what this book proposes. 

Object modeling uses standard OO concepts of data hiding and inheritance to model the system. Part of that model 
covers the data needs of the system. As you develop the structure of classes and objects, you model the data your 
system provides to its users to meet their needs. 

But object modeling is about far more than modeling the static structure of a system. Object modeling covers the 
dynamic behavior of the system as well. Inheritance reflects the data structure of the system, but it also reflects the 
division of labor through behavioral inheritance and polymorphism. This dynamic character has at least two major 
effects on database design. First, the structure of the system reflects behavioral needs as well as data structure 
differences. This focus on behavior often yields a different understanding of the mapping of the design to the real 
world that would not be obvious from a more static data model. Second, with the increasing integration of behavior 
into the database through rules, triggers, stored procedures, and active objects, static methods often fail to capture a 
vital part of the database design. How does an ER model reflect a business rule that goes beyond the simple 
referential integrity foreign key constraint, for example? 

Chapters 8 to 10 step back from object modeling to integrate models into a useful whole from the perspective of the 
user. Relating the design to requirements is a critical aspect of database design because it clarifies the reasons 
behind your design decisions. It also highlights the places where different parts of the system conflict, perhaps 
because of conflicting user expectations for the system. A key part of data modeling is the resolution of such conflicts 
at the highest level of the model. 

The modeling process is just the start of design. Once you have a model, the next step is to relate the model back to 
needs, then to move forward to adding the structures that support both reuse and system functions. 

 
Database Design and Optimization 
When does design start? Design starts at whatever point in the process that you begin thinking about how things 
relate to one another. You iterate from modeling to design seamlessly. Adding a new entity or class is modeling; 
deciding how that entity or class relates to other ones is design. 

Where does design start? Usually, design starts somewhere else. That is, when you start designing, you are almost 
always taking structures from somebody else's work, whether it's requirements analysis, a legacy database, a prior 
system's architecture, or whatever. The quality, or value, of the genetic material that forms the basis of your design 
can often determine its success. As with anything else, however, how you proceed can have as much impact on the 
ultimate result of your project. 
You may, for example, start with a legacy system designed for a relational database that you must transform into an 
OO database. That legacy system may not even be in third normal form (see Chapter 11), or it may be the result of 
six committees over a 20-year period (like the U.S. tax code, for example). While having a decent starting system 
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helps, where you wind up depends at least as much on how you get there as on where you start. Chapter 10 gives 
you some hints on how to proceed from different starting points and also discusses the cultural context in which your 
design happens. Organizational culture may impact design more than technology. 
The nitty-gritty part of design comes when you transform your data model into a schema. Often, CASE tools provide 
a way to generate a relational schema directly from your data model. Until those tools catch up with current realities, 
however, they won't be of much help unless you are doing standard ER modeling and producing standard relational 
schemas. There are no tools of which I'm aware that produce OO or OR models from OO designs, for example. 
Chapters 11, 12, and 13 show how to produce relational, OR, and OO designs, respectively, from the OO data 
model. While this transformation uses variations on the standard algorithm for generating schemas from models, it 
differs subtly in the three different cases. As well, there are some tricks of the trade that you can use to improve your 
schemas during the transformation process. 

Build bridges before you, and don't let them burn down behind you after you've crossed. Because database design is 
iterative and incremental, you cannot afford to let your model lapse. If your data model gets out of synch with your 
schema, you will find it more and more difficult to return to the early part of design. Again, CASE tools can help if 
they contain reverse-engineering tools for generating models from schemas, but again those tools won't support 
much of the techniques in this book. Also, since the OO model supports more than just simple schema definition, 
lack of maintenance of the model will spill over into the general system design, not just database design. 
At some point, your design crosses from logical design to physical design. This book covers only logical design, 
leaving physical design to a future book. Physical design is also an iterative process, not a rigid sequence of steps. 
As you develop your physical schema, you will realize that certain aspects of your logical design affect the physical 
design in negative ways and need revision. Changes to the logical design as you iterate through requirements and 
modeling also require Changes to physical design. For example, many database designers optimize performance by 
denormalizing their logical design. Denormalization is the process of combining tables or objects to promote faster 
access, usually through avoiding data joins. You trade off better performance for the need to do more work to 
maintain integrity, as data may appear in more than one place in the database. Because it has negative effects on 
your design, you need to consider denormalizing in an iterative process driven by requirements rather than as a 
standard operating procedure. Chapter 11 discusses denormalization in some detail. 

Physical design mainly consists of building the access paths and storage structures in the physical model of the 
database. For example, in a relational database, you create indexes on sets of columns, you decide whether to use 
B*-trees, hash indexes, or bitmaps, or you decide whether to prejoin tables in clusters. In an OO database, you might 
decide to cluster certain objects together or index particular partitions of object extents. In an OR database, you 
might install optional storage management or access path modules for extended data types, configuring them for 
your particular situation, or you might partition a table across several disk drives. Going beyond this simple 
configuration of the physical schema, you might distribute the database over several servers, implement replication 
strategies, or build security systems to control access. 

As you move from logical to physical design, your emphasis changes from modeling the real world to improving the 
system's performance—database optimization and tuning. Most aspects of physical design have a direct impact on 
how your database performs. In particular, you must take into consideration at this point how end users will access 
the data. The need to know about end user access means that you must do some physical design while 
incrementally designing and building the systems that use the database. It's not a bad idea to have some 
brainstorming sessions to predict the future of the system as well. Particularly if you are designing mission-critical 
decision support data warehouses or instantresponse online transaction processing systems, you must have a clear 
idea of the performance requirements before finalizing your physical design. Also, if you are designing physical 
models using advanced software/hardware combinations such as symmetric multiprocessing (SMP), massively 
parallel processing (MPP), or clustered processors, physical design is critical to tuning your database. 

Tip 

  

You can benefit from the Internet in many ways as a database designer. There are many 
different Usenet newsgroups under the comp.databases interest group, such as 
comp.databases .oracle.server. There are several Web sites that specialize in vendorspecific 
tips and tricks; use a Web search engine to search for such sites. There are also mailing lists 
(email that gets sent to you automatically with discussion threads about a specific topic) such 
as the data modeling mail list. These lists may be more or less useful depending on the level of 
activity on the list server, which can vary from nothing for months to hundreds of messages in a 
week. You can usually find out about lists through the Usenet newsgroups relating to your 
specific subject area. Finally, consider joining any user groups in your subject area such as the 
Oracle Developer Tools User Group (www.odtug.com); they usually have conferences, 
maintain web sites, and have mailing lists for their members. 

Your design is not complete until you consider risks to your database and the risk management methods you can 
use to mitigate or avoid them. Risk is the potential for an occurrence that will result in negative consequences. Risk 
is a probability that you can estimate with data or with subjective opinion. In the database area, risks include such 
things as disasters, hardware failures, software failures and defects, accidental data corruption, and deliberate 
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attacks on the data or server. To deal with risk, you first determine your tolerance for risk. You then manage risk to 
keep it within your tolerance. For example, if you can tolerate a few hours of downtime every so often, you don't 
need to take advantage of the many fault-tolerant features of modern DBMS products. If you don't care about minor 
data problems, you can avoid the huge programming effort to catch problems at every level of data entry and 
modification. Your risk management methods should reflect your tolerance for risk instead of being magical rituals 
you perform to keep your culture safe from the database gods (see Chapter 10 on some of the more shamanistic 
cultural influences on database design). Somewhere in this process, you need to start considering that most direct of 
risk management techniques, testing. 

 
Database Quality, Reviews, and Testing 
Database quality comes from three sources: requirements, design, and construction. Requirements and design 
quality use review techniques, while construction uses testing. Chapter 5 covers requirements and database testing, 
and the various design chapters cover the issues you should raise in design reviews. Testing the database comes in 
three forms: testing content, testing structure, and testing behavior. Database test plans use test models that reflect 
these components: the content model, the structural model, and the design model. 

Content is what database people usually call "data quality." When building a database, you have many alternative 
ways to get data into the database. Many databases come with prepackaged content, such as databases of images 
and text for the Internet, search-oriented databases, or parts of databases populated with data to reflect options 
and/or choices in a software product. You must develop a model that describes what the assumptions and rules are 
for this data. Part of this model comes from your data model, but no current modeling technique is completely 
adequate to describe all the semantics and pragmatics of database content. Good content test plans cover the full 
range of content, not just the data model's limited view of it. 

The data model provides part of the structure for the database, and the physical schema provides the rest. You need 
to verify that the database actually constructed contains the structures that the data model calls out. You must also 
verify that the database contains the physical structures (indexes, clusters, extended data types, object containers, 
character sets, security grants and roles, and so on) that your physical design specifies. Stress, performance, and 
configuration tests come into play here as well. There are several testing tools on the market that help you in testing 
the physical capabilities of the database, though most are for relational databases only. 

The behavioral model comes from your design's specification of behavior related to persistent objects. You usually 
implement such behavior in stored procedures, triggers or rules, or server-based object methods. You use the usual 
procedural test modeling techniques, such as data flow modeling or state-transition modeling, to specify the test 
model. You then build test suites of test scripts to cover those models to your acceptable level of risk. To some 
extent, this overlaps with your standard object and integration testing, but often the testing techniques are different, 
involving exercise of program units outside your main code base. 

Both structural and behavioral testing require a test bed of data in the database. Most developers seem to believe 
that "real" data is all the test bed you need. Unfortunately, just as with code testing, "real" data only covers a small 
portion of the possibilities, and it doesn't do so particularly systematically. Using your test models, you need to 
develop consistent, systematic collections of data that cover all the possibilities you need to test. This often requires 
several test beds, as the requirements result in conflicting data in the same structures. Creating a test bed is not a 
simple, straightforward loading of real-world data. 

Your test development proceeds in parallel with your database design and construction, just as with all other types of 
software. You should think of your testing effort in the same way as your development effort. Use the same iterative 
and incremental design efforts, with reviews, that you use in development, and test your tests. 
Testing results in a clear understanding of the risks of using your database. That in turn leads to the ability to 
communicate that risk to others who want to use it: certification. 

 
Database Certification 
It's very rare to find a certified database. That's a pity, because the need for such a thing is tremendous. I've 
encountered time and again users of database-centric systems wanting to reuse the database or its design. They are 
usually not able to do so, either because they have no way to figure out how it works or because the vendor of the 
software refuses to permit access to it out of fear of "corruption." 

This kind of thing is a special case of a more general problem: the lack of reusability in software. One of the stated 
advantages of OO technology is increased productivity through reuse [Muller 1998]. The reality is that reuse is hard, 
and few projects do it well. The key to reuse comes in two pieces: design for reuse and reuse certification. 
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This whole book is about design for reuse. All the techniques I present have an aspect of making software and 
databases more reusable. A previous section in this chapter, "Information Requirements Analysis," briefly discussed 
the nature of reuse potential, and Chapter 9 goes into detail on both reuse potential and certification. 

Certification has three parts: risk, function, and responsibility. Your reviewing and testing efforts provide data you can 
use to assess the risk of reusing the database and its design. The absence of risk certification leads to the reflexive 
reaction of most developers that the product should allow no one other than them to use the database. On the other 
hand, the lack of risk analysis can mislead maintainers into thinking that changes are easy or that they will have little 
impact on existing systems. The functional part of the certification consists of clear documentation for the conceptual 
and physical schemas and a clear statement of the intended goals of the database. Without understanding how it 
functions, no one will be able to reuse the database. Finally, a clear statement of who owns and is responsible for 
the maintenance of the database permits others to reuse it with little or no worries about the future. Without it, users 
may find it difficult to justify reusing "as is" code and design—and data. This can seriously inhibit maintenance and 
enhancement of the database, where most reuse occurs. 

 
Database Maintenance and Enhancement 
This book spends little time on it, but maintenance and enhancement are the final stage of the database life cycle. 
Once you've built the database, you're done, right? Not quite. 
You often begin the design process with a database in place, either as a legacy system or by inheriting the design 
from a previous version of the system. Often, database design is in thrall to the logic of maintenance and 
enhancement. Over the years, I've heard more plaintive comments from designers on this subject than any other. 
The inertia of the existing system drives designers crazy. You are ready to do your best work on interesting 
problems, and someone has constrained your creativity by actually building a system that you must now modify. 
Chapter 10 goes into detail on how to best adapt your design talents to these situations. 

Again, database design is an iterative, incremental process. The incremental nature does not cease with delivery of 
the first live database, only when the database ceases to exist. In the course of things, a database goes through 
many changes, never really settling down into quiet hours at the lag-end of life. The next few chapters return to the 
first part of the life cycle, the birth of the database as a response to user needs. 

 
Chapter 2: System Architecture and Design 
Works of art, in my opinion, are the only objects in the material universe to possess internal order, and that is why, 
though I don't believe that only art matters, I do believe in Art for Art's Sake. 
E. M Forster, Art for Art's Sake  

Overview 
Is there a difference between the verbs "to design" and "to architect"? Many people think that "to architect" is one of 
those bastard words that become verbs by way of misguided efforts to activate nouns. Not so, in this case: the verb 
"to architect" has a long and distinguished history reaching back to the sixteenth century. But is there a difference? 

In the modern world of databases, often it seems there is little difference in theory but much difference in practice. 
Database administrators and data architects "design" databases and systems, and application developers "architect" 
the systems that use them. You can easily distinguish the tools of database design from the tools of system 
architecture. 
The main thesis of this book is that there is no difference. Designing a database using the methods in this book 
merges indistinguishably with architecting the overall system of which the database is a part. Architecture is 
multidimensional, but these dimensions interact as a complex system rather than being completely separate and 
distinct. Database design, like most architecture, is art, not science. 
That art pursues a very practical goal: to make information available to clients of the software system. Databases 
have been around since Sumerians and Egyptians first began using cuneiform and hieroglyphics to record accounts 
in a form that could be preserved and reexamined on demand [Diamond 1997]. That's the essence of a database: a 
reasonably permanent and accessible storage mechanism for information. Designing databases before the computer 
age came upon us was literally an art, as examination of museum-quality Sumerian, Egyptian, Mayan, and Chinese 
writings will demonstrate. The computer gave us something more: the database management system, software that 
makes the database come alive in the hands of the client. Rather than a clay tablet or dusty wall, the database has 
become an abstract collection of bits organized around data structures, operations, and constraints. The design of 
these software systems encompassing both data and its use is the subject of this book. 
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System architecture, the first dimension of database design, is the architectural abstraction you use to model your 
system as a whole: applications, servers, databases, and everything else that is part of the system. System 
architecture for database systems has followed a tortuous path in the last three decades. Early hierarchical and flat-
file databases have developed into networked collections of pointers to relations to objects—and mixtures of all of 
these together. These data models all fit within a more slowly evolving model of database system architecture. 
Architectures have moved from simple internal models to the CODASYL DBTG (Conference on Data Systems 
Languages Data Base Task Group) network model of the late 1960s [CODASYL DBTG 1971] through the three-
schema ANSI/SPARC (American National Standards Institute/Standards Planning and Requirements Committee) 
architecture of the 1970s [ANSI 1975] to the multitier client/server and distributed-object models of the 1980s and 
1990s. And we have by no means achieved the end of history in database architecture, though what lies beyond 
objects hides in the mists of the future. 
The data architecture, the architectural abstraction you use to model your persistent data, provides the second 
dimension to database design. Although there are other kinds of database management systems, this book focuses 
on the three most popular types: relational (RDBMS), object-relational (ORDBMS), and object-oriented (OODBMS). 
The data architecture provides not only the structures (tables, classes, types, and so on) that you use to design the 
database but also the language for expressing both behavior and business rules or constraints. 

Modern database design not only reflects the underlying system architecture you choose, it derives its essence from 
your architectural choices. Making architectural decisions is as much a part of a database designer's life as drawing 
entities and relationships or navigating the complexities of SQL, the standardized relational database language. 
Thus, this book begins with architecture before getting to the issue at hand—design. 

 
System Architectures 
A system architecture is an abstract structure of the objects and relationships that make up a system. Database 
system architectures reveal the objects that make up a data-centric software system. Such objects include 
applications components and their views of data, the database layers (often called the server architecture), and the 
middleware (software that connects clients to servers, adding value as needed) that establishes connections 
between the application and the database. Each architecture contains such objects and the relationships between 
them. Architectural differences often center in such relationships. 

Studying the history and theory of system architecture pays large rewards to the database designer. In the course of 
this book, I introduce the architectural features that have influenced my own design practice. By the end of this 
chapter, you will be able to recognize the basic architectural elements in your own design efforts. You can further 
hone your design sense by pursuing more detailed studies of system architecture in other sources. 

The Three-Schema Architecture 
The most influential early effort to create a standard system architecture was the ANSI/SPARC architecture [ANSI 
1975; Date 1977]. ANSI/SPARC divided database-centric systems into three models: the internal, conceptual, and 
external, as Figure 2-1 shows. A schema is a description of the model (a metamodel). Each schema has structures 
and relationships that reflect its role. The goal was to make the three schemas independent of one another. The 
architecture results in systems resistant to changes to physical or conceptual structures. Instead of having to rebuild 
your entire system for every change to a storage structure, you would just change the structure without affecting the 
systems that used it. This concept, data independence, was critical to the early years of database management and 
design, and it is still critical today. It underlies everything that database designers do. 

For example, consider what an accounting system would be like without data independence. Every time an 
application developer wanted to access the general ledger, he or she would need to program the code to access the 
data on disk, specifying the disk sectors and hardware storage formats, looking for and using indexes, adapting to 
"optimal" storage structures that are different for each kind of data element, coding the logic and navigational access 
to subset the data, and coding the sorting routines to order it (again using the indexes and intermediate storage 
facilities if the data could not fit entirely in memory. Now a database engineer comes along and redoes the whole 
mess. That leaves the application programmer the Herculean task of reworking the whole accounting system to 
handle the new structures. Without the layers of encapsulation and independence that a database management 
system provides, programming for large databases would be impossible. 

Note 

  

Lack of data independence is at least one reason for the existence of the Year 2000 problem. 
Programs would store dates in files using two-byte storage representation and would 
propagate that throughout the code, then use tricky coding techniques based onthe storage 
representation to achieve wonders of optimized programming (and completely 
unmaintainable programs).  
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Figure 2-1: The ANSI/SPARC Architecture  

The conceptual model represents the information in the database. The structures of this schema are the structures, 
operations, and constraints of the data model you are using. In a relational database, for example, the conceptual 
schema contains the tables and integrity constraints as well as the SQL query language. In an object-oriented 
database, it contains the classes that make up the persistent data, including the data structures and methods of the 
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classes. In an objectrelational database, it contains the relational structures as well as the extended type or class 
definitions, including the class or type methods that represent object behavior. The database management system 
provides a query and data manipulation language, such as the SELECT, INSERT, UPDATE, and DELETE 
statements of SQL. 
The internal model has the structure of storage and retrieval. It represents the "real" structure of the database, 
including indexes, storage representations, field orders, character sets, and so on. The internal schema supports the 
conceptual schema by implementing the high-level conceptual structures in lower-level storage structures. It supplies 
additional structures such as indexes to manage access to the data. The mapping between the conceptual and 
internal models insulates the conceptual model from any changes in storage. New indexes, changed storage 
structures, or differing storage orders of fields do not affect the higherlevel models. This is the concept of physical 
data independence. Usually, database management systems extend the data definition language to enable database 
administrators to manage the internal model and schema. 
The external model is really a series of views of the different applications or users that use the data. Each user maps 
its data to the data in the conceptual schema. The view might use only a portion of the total data model. This 
mapping shows you how different applications will make use of the data. Programming languages generally provide 
the management tools for managing the external model and its schema. For example, the facilities in C++ for 
building class structures and allocating memory at runtime give you the basis for your C++ external models. 

This three-level schema greatly influences database design. Dividing the conceptual from the internal schema 
separates machine and operating system dependencies from the abstract model of the data. This separation frees 
you from worrying about access paths, file structures, or physical optimization when you are designing your logical 
data model. Separating the conceptual schema from the external schemas establishes the many-to-one relationship 
between them. No application need access all of the data in the database. The conceptual schema, on the other 
hand, logically supports all the different applications and their datarelated needs. 

For example, say Holmes PLC (Sherlock Holmes's investigative agency, a running example throughout this book) 
was designing its database back in 1965, probably with the intention of writing a COBOL system from scratch using 
standard access path technology such as ISAM (Indexed Sequential Access Method, a very old programming 
interface for indexed file lookup). The first pass would build an application that accessed hierarchically structured 
files, with each query procedure needing to decide which primary or secondary index to use to retrieve the file data. 
The next pass, adding another application, would need to decide whether the original files and their access methods 
were adequate or would need extension, and the original program would need modification to accommodate the 
changes. At some point, the changes might prove dramatically incompatible, requiring a complete rewrite of all the 
existing applications. Shall I drag in Year 2000 problems due to conflicting storage designs for dates? 

In 1998, Holmes PLC would design a conceptual data model after doing a thorough analysis of the systems it will 
support. Data architects would build that conceptual model in a database management system using the appropriate 
data model. Eventually, the database administrator would take over and structure the internal model, adding indexes 
where appropriate, clustering and partitioning the data, and so on. That optimization would not end with the first 
system but would continue throughout the long process of adding systems to the business. Depending on the design 
quality of the conceptual schema, you would need no changes to the existing systems to add a new one. In no case 
would changes in the internal design require changes. 
Data independence comes from the fundamental design concept of coupling, the degree of interdependence 
between modules in a system [Yourdon and Constantine 1979; Fenton and Pfleeger 1997]. By separating the three 
models and their schemas, the ANSI/SPARC architecture changes the degree of coupling from the highest level of 
coupling (content coupling) to a much lower level of coupling (data coupling through parameters). Thus, by using this 
architecture, you achieve a better system design by reducing the overall coupling in your system. 

Despite its age and venerability, this way of looking at the world still has major value in today's design methods. As a 
consultant in the database world, I have seen over and over the tendency to throw away all the advantages of this 
architecture. An example is a company I worked with that made a highly sophisticated layout tool for manufacturing 
plants. A performance analysis seemed to indicate that the problem lay in inefficient database queries. The 
(inexperienced) database programmer decided to store the data in flat files instead to speed up access. The result: a 
system that tied its fundamental data structures directly into physical file storage. Should the application change 
slightly, or should the data files grow beyond their current size, the company would have to completely redo their 
data access subroutines to accommodate new file data structures. 

Note 

  

As a sidelight, the problem here was using a relational database for a situation that required 
navigational access. Replacing the relational design with an object-oriented design was a 
better solution. The engineers in this small company had no exposure to OO technology and 
barely any to relational database technology. This lack of knowledge made it very difficult for 
them to understand the trade-offs they were making. 
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The Multitier Architectures 
The 1980s saw the availability of personal computers and ever-smaller server machines and the local-area networks 
that connected them. These technologies made it possible to distribute computing over several machines rather than 
doing it all on one big mainframe or minicomputer. Initially, this architecture took the form of client/server computing, 
where a database server supported several client machines. This evolved into the distributed client/server 
architecture, where several servers taken together made up the distributed database. 
In the early 1990s, this architecture evolved even further with the concept of application partitioning, a refinement of 
the basic client/server approach. Along with the database server, you could run part of the application on the client 
and another part on an application server that several clients could share. One popular form of this architecture is the 
transaction processing (TP) monitor architecture, in which a middleware server handles transaction management. 
The database server treats the TP monitor as its client, and the TP monitor in turn serves its clients. Other kinds of 
middleware emerged to provide various kinds of application support, and this architecture became known as the 
three-tier architecture. 

In the later 1990s, this architecture again transformed itself through the availability of thin-client Internet browsers, 
distributed-object middleware, and other technology. This made it possible to move even more processing out of the 
client onto servers. It now became possible to distribute objects around multiple machines, leading to a multitier, 
distributed-object architecture. 

These multitier system architectures have extensive ramifications for system and network hardware as well as 
software [Berson 1992]. Even so, this book focuses primarily on the softer aspects of the architectures. The critical 
impact of system architecture on design comes from the system software architecture, which is what the rest of this 
section discusses. 

Database Servers: Client/Server Architectures 
The client/server architecture [Berson 1992] structures your system into two parts: the software running on the server 
responds to requests from multiple clients running another part of the software. The primary goal of client/server 
architecture is to reduce the amount of data that travels across the network. With a standard file server, when you 
access a file, you copy the entire file over the network to the system that requested access to it. The client/server 
architecture lets you structure both the request and the response through the server software that lets the server 
respond with only the data you need. Figure 2-2 illustrates the classic client/server system, with the database 
management system as server and the database application as client. 

In reality, you can break down the software architecture into layers and distribute the layers in different ways. One 
approach breaks the software into three parts, for example: presentation, business processing, and data 
management [Berson 1992]. The X-Windows system, for example, is a pure presentation layer client/server system. 
The X terminal is a client-based software system that runs the presentation software and makes requests to the 
server that is running the business processing. This lets you run a program on a server and interact with it on a 
"smart terminal" running X. The X terminal software is what makes the terminal smart. 

A more recent example is the World Wide Web browser, which connects to a network and handles presentation of 
data that it demands from a Web server. The Web server acts as a client of the database server, which may or may 
not be running on the same hardware box. The user interacts with the Web browser, which submits requests to the 
Web server in whatever programming or scripting language is set up on the server. The Web server then connects to 
the database and submits SQL, makes remote procedure calls (RPCs), or does whatever else is required to request 
a database service, and the database server responds with database 
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Figure 2-2: The Client/Server Architecture  

actions and/or data. The Web server then displays the results through the Web browser (Figure 2-3). 
The Web architecture illustrates the distribution of the business processing between the client and server. Usually, 
you want to do this when you have certain elements of the business processing that are database intensive and 
other parts that are not. By placing the database-intensive parts on the database server, you reduce the network 
traffic and get the benefits of encapsulating the databaserelated code in one place. Such benefits might include 
greater database security, higher-level client interfaces that are easier to maintain, and cohesive subsystem designs 
on the server side. Although the Web represents one approach to such distribution of processing, it isn't the only way 
to do it. This approach leads inevitably to the transaction processing monitor architecture previously mentioned, in 
which the TP monitor software is in the middle between the database and the client. If the TP monitor and the 
database are running on the same server, you have a client/server architecture. If they are on separate servers, you 
have a multitier architecture, as Figure 2-4 illustrates. Application partitioning is the process of breaking up your 
application code into modules that run on different clients and servers. 

The Distributed Database Architecture 
Simultaneously with the development of relational databases comes the development of distributed databases, data 
spread across a geographically dispersed network connected through communication links [Date 1983; Ullman 
1988]. Figure 2-5illustrates an example distributed database architecture with two servers, three databases, several 
clients, and a number of local databases on the clients. The tables with arrows show a replication arrangement, with 
the tables existing on multiple servers that keep them synchronized automatically. 
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Figure 2-3: A Web-Based Client/Server System  

 
Figure 2-4: Application Partitioning in a Client/Server System  

Note 

  

Data warehouses often encapsulate a distributed database architecture, especially if you 
construct them by referring to, copying, and/or aggregating data from multiple databases into 
the warehouse. Snapshots, for example, let you take data from a table and copy it to another 
server for use there; the original table changes, but the snapshot doesn't. Although this book 
does not go into the design issues for data warehousing, the distributed database 
architecture and its impact on design covers a good deal of the issues surrounding data 
warehouse design. 
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There are three operational elements in a distributed database: transparency, transaction management, and 
optimization. 
Distributed database transparency is the degree to which a database operation appears to be running on a single, 
unified database from the perspective of the user of the database. In a fully transparent system, the application sees 
only the standard data model and interfaces, with no need to know where things are really happening. It never has to 
do anything special to access a table, commit a transaction, or connect. For example, if a query accesses data on 
several servers, the query manager must break the query apart into a query for each server, then combine the 
results (see the optimization discussion below).The application submits a single SQL statement, but multiple ones 
actually execute on the servers. Another aspect of transparency is fragmentation, the distribution of data in a table 
over multiple locations (another word for this is partitioning). Most distributed systems achieve a reasonable level of 
transparency down to the database administration level. Then they abandon transparency to make it easier on the 
poor DBA who needs to manage the underlying complexity of the distribution of data and behavior. One wrinkle in 
the transparency issue is the heterogeneous distributed database, a database comprising different database 
management system software running on the different servers. 

 
Figure 2.5: A distributed Database Architecture  

Note 

  

Database fragmentation is unrelated to file fragmentation, the condition that occurs in file 
systems such as DOS or NTFS when the segments that comprise files become randomly 
distributed around the disk instead of clustered together. Defragmenting your disk drive on a 
weekly basis is a good idea for improving performance; defragmenting your database is not, 
just the reverse. 

Distributed database transaction management differs from single-database transaction management because of the 
possibility that a part of the database will become unavailable during a commit process, leading to an incomplete 
transaction commit. Distributed databases thus require an extended transaction management process capable of 
guaranteeing the completion of the commit or a full rollback of the transaction. There are many strategies for doing 
this [Date 1983; Elmagarmid 1991; Gray and Reuter 1993; Papadimitriou 1986]. The two most popular strategies are 
the two-phase commit and distributed optimistic concurrency. 
Two-phase commit breaks the regular commit process into two parts [Date 1983; Gray and Reuter 1993; Ullman 
1988]. First, the distributed servers communicate with one another until all have expressed readiness to commit their 
portion of the transaction. Then each commits and informs the rest of success or failure. If all servers commit, then 
the transaction completes successfully; otherwise, the system rolls back the changes on all servers. There are many 
practical details involved in administering this kind of system, including things like recovering lost servers and other 
administrivia. 
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Optimistic concurrency takes the opposite approach [Ullman 1988; Kung and Robinson 1981]. Instead of trying to 
ensure that everything is correct as the transaction proceeds, either through locking or timestamp management, 
optimistic methods let you do anything to anything, then check for conflicts when you commit. Using some rule for 
conflict resolution, such as timestamp comparison or transaction priorities, the optimistic approach avoids deadlock 
situations and permits high concurrency, especially in read-only situations. Oracle7 and Oracle8 both have a version 
of optimistic concurrency called read consistency, which lets readers access a consistent database regardless of 
changes made since they read the data. 

Distributed database optimization is the process of optimizing queries that are executing on separate servers. This 
requires extended cost-based optimization that understands where data is, where operations can take place, and 
what the true costs of distribution are [Ullman 1989]. In the case where the query manager breaks a query into parts, 
for example, to execute on separate servers, it must optimize the queries both for execution on their respective 
servers and for transmission and receipt over the network. Current technology isn't terrific here, and there is a good 
way to go in making automatic optimization effective. The result: your design must take optimization requirements 
into account, especially at the physical level. 

The key impact of distributed transaction management on design is that you must take the capabilities of the 
language you are designing for into account when planning your transaction logic and data location. Transparency 
affects this a good deal; the less the application needs to know about what is happening on the server, the better. If 
the application transaction logic is transparent, your application need not concern itself with design issues relating to 
transaction management. Almost certainly, however, your logical and physical database design will need to take 
distributed transactions into account. 

For example, you may know that network traffic over a certain link is going to be much slower than over other links. 
You can benchmark applications using a cost-benefit approach to decide whether local access to the data outweighs 
the remote access needs. A case in point is the table that contains a union of local data from several localities. Each 
locality benefits from having the table on the local site. Other localities benefit from having remotely generated data 
on their site. Especially if all links are not equal, you must decide which server is best for all. You can also take more 
sophisticated approaches to the problem. You can build separate tables, offloading the design problem to the 
application language that has to recombine them. You can replicate data, offloading the design problem to the 
database administrator and vendor developers. You can use table partitioning, offloading the design problem to 
Oracle8, the only database to support this feature, and hence making the solution not portable to other database 
managers. The impact of optimization on design is thus direct and immediate, and pretty hairy if your database is 
complex. 

Holmes PLC, for example, is using Oracle7 and Oracle8 to manage certain distributed database transactions. Both 
systems fully implement the distributed two-phase commit protocol in a relatively transparent manner on both the 
client and the server. There are two impact points: where the physical design must accommodate transparency 
requirements and the administrative interface. Oracle implements distributed servers through a linking strategy, with 
the link object in one schema referring to a remote database connection string. The result is that when you refer to a 
table on a remote server, you must specify the link name to find the table. If you need to make the reference 
transparent, you can take one of at least three approaches. You can set up a synonym that encapsulates the link 
name, making it either public or private to a particular user or Oracle role. Alternatively, you can replicate the table, 
enabling "local" transaction management with hidden costs on the back end because of the reconciliation of the 
replicas. Or, you can set up stored procedures and triggers that encapsulate the link references, with the costs 
migrating to procedure maintenance on the various servers. 

As you can tell from the example, distributed database architectures have a major impact on design, particularly at 
the physical level. It is critical to understand that impact if you choose to distribute your databases. 

Objects Everywhere: The Multitier Distributed-Object Architecture 
As OO technology grew in popularity, the concept of distributing those objects came to the fore. If you could partition 
applications into pieces running on different servers, why not break apart OO applications into separately running 
objects on those servers? The Object Management Group defined a reference object model and a slew of standard 
models for the Common Object Request Broker Architecture (CORBA) [Soley 1992; Siegel 1996]. Competing with 
this industry standard is the Distributed Common Object Model (DCOM) and various database access tools such as 
Remote Data Objects (RDO), Data Access Objects (DAO), Object Linking and Embedding Data Base (OLE DB), 
Active Data Objects (ADO), and ODBCDirect [Baans 1997; Lassesen 1995], part of the ActiveX architecture from 
Microsoft and the Open Group, a similar standard for distributing objects on servers around a network [Chappell 
1996; Grimes 1997; Lee 1997]. This model is migrating toward the new Microsoft COM+ or COM 3 model [Vaughan-
Nichols 1997]. Whatever the pros and cons of the different reference architectures [Mowbray and Zahavi 1995, pp. 
135-149], these models affect database design the same way: they allow you to hide the database access within 
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objects, then place those objects on servers rather than in the client application. That application then gets data from 
the objects on demand over the network. Figure 2-6 shows a typical distributed-object architecture using CORBA. 

Warning 

  

This area of software technology is definitely not for the dyslexic, as a casual scan over 
the last few pages will tell you. Microsoft in particular has contributed a tremendously 
confusing array of technologies and their acronyms to the mash in the last couple of 
years. Want to get into Microsoft data access? Choose between MFC, DAO, RDO, ADO, 
or good old ODBC, or use all of them at once. I'm forced to give my opinion: I think 
Microsoft is making it much more difficult than necessary to develop database 
applications with all this nonsense. Between the confusion caused by the variety of 
technologies and the way using those technologies locksyou into a single vendor's 
muddled thinking about the issues of database application development, you are caught 
between the devil and the deep blue sea. 

 
Figure 2-6: A Simple Distributed-Object Architecture Using CORBA  

In a very real sense, as Figure 2-6 illustrates by putting them at the same level, the distributed-object architecture 
makes the database and its contents a peer of the application objects. The database becomes just another object 
communicating through the distributed network. This object transparency has a subtle influence on database design. 
Often there is a tendency to drive system design either by letting the database lead or by letting the application lead. 
In a distributed-object system, no component leads all the time. When you think about the database as a cooperating 
component rather than as the fundamental basis for your system or as a persistent data store appendage, you begin 
to see different ways of using and getting to the data. Instead of using a single DBMS and its servers, you can 
combine multiple DBMS products, even combining an object-oriented database system with a relational one if that 
makes sense. Instead of seeing a series of application data models that map to the conceptual model, as in the 
ANSI/SPARC architecture, you see a series of object models mapping to a series of conceptual models through 
distributed networks. 

Note 

  

Some advocates of the OODBMS would have you believe that the OO technology's main 
benefit is to make the database disappear. To be frank, that's horse hockey. Under certain 
circumstances and for special cases, you may not care whether an object is in memory or in 
the database. If you look at code that does not use a database and code that does, you will 
see massive differences between the two, whatever technology you're using. The database 
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never disappears. I find it much more useful to regard the database as a peer object with 
which my code has to work rather than as an invisible slave robot toiling away under the 
covers  

For example, in an application I worked on, I had a requirement for a tree structure (a series of parents and children, 
sort of like a genealogical tree). The original designers of the relational database I was using had represented this 
structure in the database as a table of parent-child pairs. One column of the table was the parent, the other column 
was one of the children of that parent, so each row represented a link between two tree elements. The client would 
specify a root or entry point into the tree, and the application then would build the tree based on navigating from that 
root based on the parent-child links. 

If you designed using the application-leading approach, you would figure out a way to store the tree in the database. 
For example, this might mean special tables for each tree, or even binary large objects to hold the in-memory tree for 
quick retrieval. If you designed using a database-centric approach, you would simply retrieve the link table into 
memory and build the tree from it using a graph-building algorithm. Alternatively, you could use special database 
tools such as the Oracle CONNECT BY clause to retrieve the data in tree form. 

Designing from the distributed-object viewpoint, I built a subsystem in the database that queried raw information from 
the database. This subsystem combined several queries into a comprehensive basis for further analysis. The object 
on the client then queried this data using an ORDER BY and a WHERE clause to get just the information it required 
in the format it needed. This approach represents a cooperative, distributed-object approach to designing the system 
rather than an approach that started with the database or the application as the primary force behind the design. 

Another application I worked on had two databases, one a repository of images and the other a standard relational 
database describing them. The application used a standard three-tier client/server model with two separate database 
servers, one for the document management system and one for the relational database, and much code on the client 
and server for moving data around to get it into the right place. Using a distributed-object architecture would have 
allowed a much more flexible arrangement. The database servers could have presented themselves as object 
caches accessible from any authenticated client. This architectural style would have allowed the designers to build 
object servers for moving data between the two databases and their many clients. 
The OMG Object Management Architecture (OMA) [Soley 1992; Siegel 1996] serves as a standard example of the 
kind of software objects you will find in distributed-object architectures, as Figure 2-7 shows. The Open Group 
Architectural Framework [Open Group 1997] contains other examples in a framework for building such architectures. 
The CORBAservices layer provides the infrastructure for the building blocks of the architecture, giving you all the 
tools you need to create and manage objects. Lifecycle services handle creation, movement, copying, and garbage 
collection. Naming services handle the management of unique object names around the network (a key service that 
has been a bottleneck for network services for years under thenom de guerre of directory services). Persistence 
services provide permanent or transient storage for objects, including the objects that CORBA uses to manage 
application objects. 

The Object Request Broker (ORB) layer provides the basic communication facilities for dispatching messages, 
marshaling data across heterogeneous machine architectures, object activation, exception handling, and security. It 
also integrates basic network communications through a TCP/IP protocol implementation or a Distributed Computing 
Environment (DCE) layer. 

The CORBAfacilities layer provides business objects both horizontal and vertical. Horizontal facilities provide objects 
for managing specific kinds of application behaviors, such as the user interface, browsing, printing, email, compound 
documents, systems management, and so on. Vertical facilities provide solutionsfor particular kinds of industrial 
applications (financial, health care, manufacturing, and so on). 
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Figure 2-7: The Object Management Group's Object Management Architecture  

The Application Objects layer consists of the collections of objects in individual applications that use the CORBA 
software bus to communicate with the CORBAfacilities and CORBAservices. This can be as minimal as providing a 
graphical user interface for a facility or as major as developing a whole range of interacting objects for a specific site. 

Where does the database fit in all this? Wherever it wants to, like the proverbial 500-pound gorilla. Databases fit in 
the persistence CORBAservice; these will usually be object-oriented databases such as POET, ObjectStore, or 
Versant/ DB. It can also be a horizontal CORBAfacility providing storage for a particular kind of management facility, 
or a vertical facility offering persistent storage of financial or manufacturing data. It can even be an application object, 
such as a local database for traveling systems or a database of local data of one sort or another. These objects work 
through the Object Adapters of the ORB layer, such as the Basic Object Adapter or the Object Oriented Database 
Adapter [Siegel 1996; Cattell and Barry 1997]. These components activate and deactivate the database and its 
objects, map object references, and control security through the OMG security facilities. Again, these are all peer 
objects in the architecture communicating with one another through the ORB. 
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As an example, consider the image and fact database that Holmes PLC manages, the commonplace book system. 
This database contains images and text relating to criminals, information sources, and any other object that might be 
of interest in pursuing consulting detective work around the world. Although Holmes PLC could build this database 
entirely within an object-relational or object-oriented DBMS (and some of the examples in this book use such 
implementations as examples), a distributed-object architecture gives Holmes PLC a great deal of flexibility in 
organizing its data for security and performance on its servers around the world. It allows them to combine the 
specialized document management system that contains photographs and document images with an object-oriented 
database of fingerprint and DNA data. It allows the inclusion of a relational database containing information about a 
complex configuration of objects from people to places to events (trials, prison status, and so on). 

System Architecture Summary 
System architecture at the highest level provides the context for database design. That context is as varied as the 
systems that make it up. In this section, I've tried to present the architectures that have the most impact on database 
design through a direct influence on the nature and location of the database: 

 The three-schema architecture contributes the concept of data independence, separating the 
conceptual from the physical and the application views. Data independence is the principle on 
which modern database design rests. 

 The client/server architecture contributes the partitioning of the application into client and server 
portions, some of which reside on the server or even in the database. This can affect both the 
conceptual and physical schemas, which must take the partitioning into account for best security, 
availability, and performance. 

 The distributed database architecture directly impacts the physical layout of the database through 
fragmentation and concurrency requirements. 

 The distributed-object architecture affects all levels of database design by raising (or lowering, 
depending on your perspective) the status of the database to that of a peer of the application. 
Treating databases, and potentially several different databases, as communicating objects requires 
a different strategy for laying out the data. Design benefits from decreased coupling of the database 
structures, coming full circle back to the concept of data independence. 

 
Data Architectures 
System architecture sets the stage for the designer; data architecture provides the scenery and the lines that the 
designer delivers on stage. There are three major data architectures that are current contenders for the attentions of 
database designers: relational, object-relational, and object-oriented data models. The choice between these models 
colors every aspect of your system architecture: 

 The data access language 
 The structure and mapping of your application-database interface 
 The layout of your conceptual design 
 The layout of your internal design 

It's really impossible to overstate the effect of your data architecture choice on your system. It is not, however, 
impossible to isolate the effects. One hypothesis, which has many advocates in the computer science community, 
asserts that your objective should be to align your system architecture and tools with your data model: the 
impendance mismatch hypothesis. If your data architecture is out of step with your system architecture, you will be 
much less productive because you will constantly have to layer and interface the two. For example, you might use a 
distributed-object architecture for your application but a relational database. 

The reality is somewhat different. With adequate design and careful system structuring, you can hide almost 
anything, including the kitchen sink. A current example is the Java Data Base Connectivity (JDBC) standard for 
accessing databases from the Java language. JDBC is a set of Java classes that provide an object-oriented version 
of the ODBC standard, originally designed for use through the C language. JDBC presents a solid, OO design face 
to the Java world. Underneath, it can take several different forms. The original approach was to write an interface 
layer to ODBC drivers, thus hiding the underlying functional nature of the database interface. For performance 
reasons, a more direct approach evolved, replacing the ODBC driver with native JDBC drivers. Thus, at the level of 
the programming interface, all was copacetic. Unfortunately, the basic function of JDBC is to retrieve relational data 
in relational result sets, not to handle objects. Thus, there is still an impedance mismatch between the fully OO Java 
application and the relational data it uses. 

Personally, I don't find this problem that serious. Writing a JDBC applet isn't that hard, and the extra design needed 
to develop the methods for handling the relational data doesn't take that much serious design or programming effort. 
The key to database programming productivity is the ability of the development language to express what you want. I 
find it more difficult to deal with constantly writing new wrinkles of tree-building code in C++ and Java than to use 
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Oracle's CONNECT BY extension to standard SQL. On the other hand, if your tree has cycles in it (where a child 
connects back to its parent at some level), CONNECT BY just doesn't work. Some people I've talked to hate the 
need to "bind" SQL to their programs through repetitive mapping calls to ODBC or other APIs. On the other hand, 
using JSQL or other embedded SQL precompiler standards for hiding such mapping through a simple reference 
syntax eliminates this problem without eliminating the benefits of using high-level SQL instead of low-level Java or 
C++ to query the database. As with most things, fitting your tools to your needs leads to different solutions in 
different contexts. 

The rest of this section introduces the three major paradigms of data architecture. My intent is to summarize the 
basic structures in each data architecture that form a part of your design tool kit. Later chapters relate specific design 
issues to specific parts of these data architectures. 

Relational Databases 
The relational data model comes from the seminal paper by Edgar Codd published in 1972 [Codd 1972]. Codd's 
main insight was to use the concept of mathematical relations to model data. A relation is a table of rows and 
columns. Figure 2-8 shows a simple relational layout in which multiple tables relate to one another by mapping data 
values between the tables, and such mappings are themselves relations. Referential integrity is the collection of 
constraints that ensure that the mappings between tables are correct at the end of a transaction. Normalization is the 
process of establishing an optimal table structure based on the internal data dependencies (details in Chapter 11). 
A relation is a table of columns and rows. The relation (also called a table) is a finite subset of the Cartesian product 
of a set of domains, each of which is a set of values [Ullman 1988]. Each attribute of the relation (also called a 
column) corresponds to a domain (the type of the column). The relation is thus a set of tuples (also called rows). You 
can also see a relation's rows as mapping attribute names to values in the domains of the attributes [Codd 1970]. 
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Figure 2-8: A Relational Schema: The Holmes PLC Criminal Network Database  

For example, the Criminal Organization table in Figure 2-8 has five columns: 
 OrganizationName: The name of the organization (a character string) 
 LegalStatus: The current legal status of the organization, a subdomain of strings including "Legally 

Defined", "On Trial", "Alleged", "Unknown" 
 Stability: How stable the organization is, a subdomain of strings including "Highly Stable", 

"Moderately Stable", "Unstable" 
 InvestigativePriority: The level of investigative focus at Holmes PLC on the organization, a 

subdomain of strings including "Intense", "Ongoing", "Watch","On Hold" 
 ProsecutionStatus: The current status of the organization with respect to criminal prosecution 

strategies for fighting the organization, a subdomain of strings including "History", "On the Ropes", 
"Getting There", "Little Progress", "No Progress" 

Most of the characteristics of a criminal organization are in its relationships to other tables, such as the roles that 
people play in the organization and the various addresses out of which the organization operates. These are 
separate tables, OrganizationAddress and Role, with the OrganizationName identifying the organization in both 
tables. By mapping the tables through OrganizationName, you can get information from all the tables together in a 
single query. 
You can constrain each column in many ways, including making it contain unique values for each row in the relation 
(a unique, primary key, or candidate key constraint); making it a subset of the total domain (a domain constraint), as 
for the subdomains in the CriminalOrganization table; or constraining the domain as a set of values in rows in 
another relation (a foreign key constraint), such as the constraint on the OrganizationName in the 
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OrganizationAddress table, which must appear in the Organization table. You can also constrain several attributes 
together, such as a primary key consisting of several attributes (AddressID and OrganizationName, for example) or a 
conditional constraint between two or more attributes. You can even express relationships between rows as logical 
constraints, though most RDBMS products and SQL do not have any way to do this. Another term you often hear for 
all these types of constraints is "business rules," presumably on the strength of the constraints' ability to express the 
policies and underlying workings of a business. 

These simple structures and constraints don't really address the major issues of database construction, 
maintenance, and use. For that, you need a set of operations on the structures. Because of the mathematical 
underpinnings of relational theory, logic supplies the operations through relational algebra and relational calculus, 
mathematical models of the way you access the data in relations [Date 1977; Ullman 1988]. Some vendors have 
tried to sell such languages; most have failed in one way or another in the marketplace. Instead, a simpler and 
easier-to-understand language has worked its way into the popular consciousness: SQL. 

The SQL language starts with defining the domains for columns and literals [ANSI 1992]: 
 Character, varying character, and national varying character (strings) 
 Numeric, decimal, integer, smallint 
 Float, real, double 
 Date, time, timestamp 
 Interval (an interval of time, either year-month or day-hour) 

You create tables with columns and constraints with the CREATE TABLE statement, change such definitions with 
ALTER TABLE, and remove tables with DROP TABLE. Table names are unique within a schema (database, user, or 
any number of other boundary concepts in different systems). 

The most extensive part of the SQL language is the query and data manipulation language. The SELECT statement 
queries data from tables with the following clauses: 

 SELECT: Lists the output expressions or "projection" of the query 
 FROM: Specifies the input tables and optionally the join conditions on those tables 
 WHERE: Specifies the subset of the input based on a form of the first-order predicate calculus and 

also contains join conditions if they're not in the FROM clause 
 GROUP BYand HAVING: Specify an aggregation of the output rows and a selection condition on the 

aggregate output row 
 ORDER BY: Specifies the order of the output rows 

You can also combine several such statements into a single query using the set operations UNION, DIFFERENCE, 
and INTERSECT. 

There are three data manipulation operations: 
 INSERT: Adds rows to a table 
 UPDATE: Updates columns in rows in a table 
 DELETE: Removes rows from a table 

The ANS/ISO standard for relational databases focuses on the "programming language" for manipulating the data, 
SQL [ANSI 1992]. While SQL is a hugely popular language and one that I recommend without reservation, it is not 
without flaws when you consider the theoretical issues of the relational model. The series of articles and books by 
Date and Codd provide a thorough critique of the limitations of SQL [Date 1986; Codd 1990]. Any database designer 
needs to know these issues to make the best of the technology, though it does not necessarily impact database 
design all that much. When the language presents features that benefit from a design choice, almost invariably it is 
because SQL either does not provide some feature (a function over strings, say, or the transitive closure operator for 
querying parts explosions) or actually gets in the way of doing something (no way of dropping columns, no ability to 
retrieve lists of values in GROUP BY queries, and so on). These limitations can force your hand in designing tables 
to accommodate your applications' needs and requirements. 

The version of SQL that most large RDBMS vendors provide conforms to the Entry level of the SQL-92 standard 
[ANSI 1992]. Without question, this level of SQL as a dialect is seriously flawed as a practical tool for dealing with 
databases. Everyone uses it, but everyone would be a lot better off if the big RDBMS vendors would implement the 
full SQL-92 standard. The full language has much better join syntax, lets you use SELECTS in many different places 
instead of just the few that the simpler standard allows, and integrates a very comprehensive approach to transaction 
management, session management, and national character sets. 

The critical design impact of SQL is its ability to express queries and manipulate data. Every RDBMS has a different 
dialect of SQL. For example, Oracle's CONNECT BY clause is unique in the RDBMS world in providing the ability to 
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query a transitive closure over a parent-child link table (the parts explosion query). Sybase has interesting 
aggregation functions for data warehousing such as CUBE that Oracle does not. Oracle alone supports the ability to 
use a nested select with an IN operator that compares more than one return value: 
WHERE (col1, col2) IN (SELECT x, y FROM TABLE1 WHERE z = 3) 

Not all dialect differences have a big impact on design, but structural ones like this do. 

Because SQL unifies the query language with the language for controlling the schema and its use, SQL also directly 
affects physical database design, again through its abilities to express the structures and constraints on such design. 
The physical design of a database depends quite a lot on which RDBMS you use. For example, Oracle constructs its 
world around a set of users, each of which owns a schema of tables, views, and other Oracle objects. Sybase 
Adaptive Server and Microsoft SQL Server, on the other hand, have the concept of a database, a separate area of 
storage for tables, and users are quasi-independent of the database schema. SQL Server's transaction processing 
system locks pages rather than rows, with various exceptions, features, and advantages. Oracle locks rows rather 
than pages. You design your database differently because, for SQL Server, you can run into concurrency deadlocks 
much more easily than in Oracle. Oracle has the concept of read consistency, in which a user reading data from a 
table continues to see the data in unchanged form no matter whether other users have changed it. On updating the 
data, the original user can get a message indicating that the underlying data has changed and that they must query it 
again to change it. The other major RDBMSs don't have this concept, though they have other concepts that Oracle 
does not. Again, this leads to interesting design decisions. As a final example, each RDBMS supports a different set 
of physical storage access methods ranging from standard B*-tree index schemes to hash indexes to bitmap indexes 
to indexed join clusters. 

There's also the issue of national language character sets and how each system implements them. There is an ANSI 
standard [ANSI 1992] for representing different character sets that no vendor implements, and each vendor's way of 
doing national character sets is totally different from the others. Taking advantage of the special features of a given 
RDBMS can directly affect your design. 

Object-Oriented Databases 
The object-oriented data model for object-oriented database management does not really exist in a formal sense, 
although several authors have proposed such models. The structure of this model comes from 00 programming, with 
the concepts of inheritance, encapsulation and abstraction, and polymorphism structuring the data. 

The driving force behind object-oriented databases has been the impedance mismatch hypothesis mentioned in the 
section above on the distributed-object architecture. As 00 programming languages became more popular, it seemed 
to make sense to provide integrated database environments that simultaneously made 00 data persistent and 
provided all the transaction processing, multipleuser access, and data integrity features of modern database 
managers. Again, the problem the designers of these databases saw was that application programmers who needed 
to use persistent data had to convert from 00 thinking to SQL thinking to use relational databases. Specifically, 00 
systems and SQL systems use different type systems, requiring designers to translate between the two. Instead, 00 
databases remove the need to translate by directly supporting the programming models of the popular 00 
programming languages as data models for the database. 

There are two ways of making objects persistent in the mainstream ODBMS community. The market leader, 
ObjectStore by Object Design Inc., uses a storage model. This approach designates an object as using persistent 
storage. In C++, this means adding a "persist" storage specifier to accompany the other storage specifiers of volatile, 
static, and automatic. The downside to this approach is that it requires precompilation of the program, since it 
changes the actual programming language by adding the persistent specifier. You precompile the program and then 
run it through a standard C++ compiler. POET adds a "persistent" keyword in front of the "class" keyword, again 
using a precompiler. The other vendors use an inheritance approach, with persistent classes inheriting from a root 
persistence class of some kind. The downside of this is to make persistence a feature of the type hierarchy, meaning 
you can't have a class produce both in-memory objects and persistent objects (which, somehow, you always want to 
do). 

It is not possible to describe the 00 data model without running into one or another controversy over features or the 
lack thereof. This section will describe certain features that are generally common to 00 databases, but each system 
implements a model largely different from all others. The best place to start is the ODMG object model from the 
ODMG standard for object databases [Cattell and Barry 1997; ODMG 1998] and its bindings to C++, Smalltalk, and 
Java. This is the only real ODBMS standard in existence; the ODBMS community has not yet proposed any formal 
standards through ANSI, IEEE, or ISO. 
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The Object Model specifies the constructs that are supported by an ODBMS: 
 The basic modeling primitives are the object and the literal. Each object has a unique identifier. A 

literal has no identifier. 
 Objects and literals can be categorized by their types. All elements of a given type have a common 

range of states (i.e., the same set of properties) and common behavior (i.e., the same set of defined 
operations). An object is sometimes referred to as an instance of its type. 

 The state of an object is defined by the values it carries for a set of properties. These properties can 
be attributes of the object itself or relationships between the object and one or more other objects. 
Typically the values of an object's properties can change over time. 

 The behavior of an object is defined by the set of operations that can be executed on or by the 
object. Operations may have a list of input and output parameters, each with a specified type. Each 
operation may also return a typed result. 

 A database stores objects, enabling them to be shared by multiple users and applications. A 
database is based on a schema that is defined in ODL and contains instances of the types defined 
by its schema. 

The ODMG Object Model specified what is meant by objects, literals, types, operations, properties, attributes, 
relationships, and so forth. An application developer uses the construct of the ODMG Object Model to construct the 
object model for the application. The application's object model specifies particular types, such as Document, Author, 
Publisher, and Chapter, and the operations and properties of each of these types. The application's object model is 
the database's (logical) schema [Cattell and Barry 1997, pp. 11—12]. 
This summary statement touches on all the parts of the object model. As with most things, the devil is in the details. 
Figure 2-9 shows a simplified UML model of the Criminal Network database, the 00 equivalent of the relational 
database in Figure 2-8. 

Note   Chapter 7 introduces the UML notation in detail and contains references to the literature on 
UML  

Without desiring to either incite controversy or go into gory detail comparing vendor feature sets, a designer needs to 
understand several basic ODMG concepts that apply across the board to most ODBMS products: the structure of 
object types, inheritance, object life cycles, the standard collection class hierarchy, relationships, and operation 
structure [Cattell and Barry 1997]. Understanding these concepts will give you a minimal basis for deciding whether 
your problem is better solved by an OODBMS, an RDBMS, or an ORDBMS. 
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Figure 2-9: An OO Schema: The Holmes PLC Criminal Network Database  

Objects and Type Structure 
Every object in an 00 database has a type, and each type has an internal and an external definition. The external 
definition, also called a specification, consists of the operations, properties or attributes, and exceptions that users of 
the object can access. The internal definition, also called an implementation or body, contains the details of the 
operations and anything else required by the object that is not visible to the user of the object. ODMG 2.0 defines an 
interface as "a specification that defines only the abstract behavior of an object type" [Cattell and Barry 1997, p. 12]. 
A class is "a specification that defines the abstract behavior and abstract state of an object type." A literal 
specification defines only the abstract state of a literal type. Figure 2-9 shows a series of class specifications with 
operations and properties. The CriminalOrganization class, for example, has five properties (the same as the 
columns in the relational table) and several operations. 
An operation is the abstract behavior of the object. The implementation of the operation is a method defined in a 
specific programming language. For example, the AddRole operation handles adding a person in a role to an 
organization. The implementation of this operation in C++ might implement the operation through calling an insert() 
function attached to a set<> or map<> template containing the set of roles. Similarly, the property is an abstract state 
of the object, and its implementation is a representation based on the language binding (a C++ enum or class type, 
for example, for the LegalStatus property). Literal implementations also map to specific language constructs. The key 
to understanding the ODMG Object Definition Language (ODL) is to understand that it represents the specification, 
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not the implementation, of an object. The language bindings specify how to implement the ODL abstractions in 
specific 00 languages. This separation makes the 00 database specification independent of the languages that 
implement it. 

ODMG defines the following literal types: 
 Long and unsigned long 
 Short and unsigned short 
 Float and double 
 Boolean 
 Octet (an eight-bit quantity) 
 Character 
 String 
 Enum (an enumeration or finite set of distinct values) 

Beyond these types, there are four structured types: 
 Date, time, timestamp 
 Interval 

Finally, ODMG lets you define any structure of these types using a struct format much like that of the C language. 

Because much of the work in 00 databases has to do with collections of objects, ODMG also provides a class 
hierarchy of collection classes for use with methods and relationships (see the following section, "Relationships and 
Collections," for details). 

Inheritance 
Inheritance has many names: subtype-supertype relationship, is-a relationship, or generalization-specialization 
relationship are the most common. The idea is to express the relationship between types as a specialization of the 
type. Each subtype inherits the operations and properties of its supertypes and adds more operations and properties 
to its own definition. A cup of coffee is a kind of beverage. 
For example, the commonplace book system contains a subsystem relating to identification documents for people. 
Each person can have any number of identification documents (including those for aliases and so on). There are 
many different kinds of identity documents, and the 00 schema therefore needs to represent this data with an 
inheritance hierarchy. One design appears in Figure 2-10. 
The abstract class IdentificationDocument represents any document and has an internal object identifier and the 
relationship to the Person class. An abstract class is a class that has no objects, or instances, because it represents 
a generalization of the real object classes. 

In this particular approach, there are four subclasses of Identification Document: 
 ExpiringID: An ID document that has an expiration date 
 LawEnforcementID: An ID document that identifies a law enforcement officer 
 SocialSecurityCard: A U.S. social security card 
 BirthCertificate: A birth certificate issued by some jurisdiction 

All but the social security card have their own subclasses; Figure 2-10 shows only those for ExpiringID for illustrative 
purposes. ExpiringID inherits the relationship to Person from IdentificationDocument along with any operations you 
might choose to add to the class. It adds the expiration date, the issue date, and the issuing jurisdiction, as all 
expiring cards have a jurisdiction that enforces the expiration of the card. The Driver's License subclass adds the 
license number to expiration date, issue date, and issuing jurisdiction; the Passport adds the passport number; and 
the NationalIdentityCard adds card number and issuing country, which presumably contains the issuing jurisdiction. 
Each subclass thus inherits the primary characteristics of all identification documents, plus the characteristics of the 
expiring document subclass. A passport, for example, belongs to a person through the relationship it inherits through 
the Identification Document superclass. 
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Figure 2-10: An Inheritance Example: Identification Documents  

Note 

  

The example here focuses primarily on inheriting state, but inheritance in 00 design often 
focuses primarily on inheriting behavior. Often, 00 design deals primarily with interfaces, not 
with classes, so you don't even see the state variables. Since this book is proposing to use 00 
methods for designing databases, you will see a much stronger focus on class and abstract 
state than you might in a classical 00 design. 

Object Life Cycles 

The easiest way to see the life cycle of an object is to examine the interface of the ObjectFactory and Object classes 
in ODMG [Cattell and Barry 1997, p. 17]: 
interface ObjectFactory { 
  Object      new(); 
}; 
Interface Object { 
  enum       Lock_Type{read, write, upgrade} 
  exception  LockNotGranted{} 
  void       lock(in Lock_Type mode) raises (LockNotGranted); 
  boolean    try_lock(in Lock_Type mode); 
  boolean    same_as(in Object anObject); 
  Object     copy(); 
  void       delete(); 
}; 
The new() operator creates an object. Each object has a unique identifier, or object id (OID). As the object goes 
through its life, you can lock it or try to lock it, you can compare it to other objects for identity based on the OID, or 
you can copy the object to create a new object with the same property values. At the end of its life, you delete the 
object with the delete() operation. An object may be either transient (managed by the programming language runtime 
system) or persistent (managed by the ODBMS). ODMG specifies that the object lifetime (transient or persistent) is 
independent of its type. 
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Relationships and Collections 
A relationship maps objects to other objects. The ODMG standard specifies binary relationships between two types, 
and these may have the standard multiplicities one-to-one, one-to-many, or many-to-many. 
Relationships in this release of the Object Model are not named and are not "first class." A relationship is not itself an 
object and does not have an object identifier. A relationship is defined implicitly by declaration of traversal paths that 
enable applications to use the logical connections between the objects participating in the relationship. Traversal 
paths are declared in pairs, one for each direction of traversal of the binary relationship. [Cattell and Barry 1997, p. 
36] 

For example, a CriminalOrganization has a one-to-many relationship to objects of the Role class: a role pertains to a 
single criminal organization, which in turn has at least one and possibly many roles. In ODL, this becomes the 
following traversal path in CriminalOrganization: 
relationship set<Role> has_roles  inverse Role::pertains_to; 

In practice, the ODBMS manages a relationship as a set of links through internal OIDs, much as network databases 
did in the days of yore. The ODBMS takes care of referential integrity by updating the links when the status of 
objects changes. The goal is to eliminate the possibility of attempting to refer to an object that doesn't exist through a 
link. 
If you have a situation where you want to refer to a single object in one direction only, you can declare an attribute or 
property of the type to which you want to refer instead of defining an explicit relationship with an inverse. This 
situation does not correspond to a full relationship to the ODMG standard and does not guarantee referential 
integrity, leading to the presence of dangling references (the database equivalent of invalid pointers). 

You operate on relationships through standard relationship operations. This translates into operations to form or drop 
a relationship, adding a single object, or to add or remove additional objects from the relationship. The to-many side 
of a relationship corresponds to one of several standard collection classes: 

 Set<>: An unordered collection of objects or literals with no duplicates allowed 
 Bag<>: An unordered collection of objects or literals that may contain duplicates 
 List<>: An ordered collection of objects or literals 
 Array<>: A dynamically sized, ordered collection of objects or literals accessible by position 
 Dictionary<>: An unordered sequence of key-value pairs (associations) with no duplicate keys 

You use these collection objects through standard interfaces (insert, remove, is_empty, and so on). When you want 
to move through the collection, you get an Iterator object with the create_iterator or create_bidirectional_iterator 
operations. These iterators support a standard set of operations for traversal (next_position, previous_position, 
get_element, at_end, at_beginning). For example, to do something with the people associated with a criminal 
organization, you would first retrieve an iterator to the organization's roles. In a loop, you would then retrieve the 
people through the role's current relationship to Person. 

It is impossible to overstate the importance of collections and iterators in an 00 database. Although there is a query 
language (OQL) as well, most 00 code retrieves data through relationships by navigating with iterators rather than by 
querying sets of data as in a relational database. Even the query language retrieves collections of objects that you 
must then iterate through. Also, most OODBMS products started out with no query language, and there is still not all 
that much interest in querying (as opposed to navigating) in the OODBMS application community. 

Operations 
The ODMG standard adopts the OMG CORBA standard for operations and supports overloading of operations. You 
overload an operation when you create an operation in a class with the same name and signature (combination of 
parameter types) as an operation in another class. Some OO languages permit overloading to occur between any 
classes, as in Smalltalk. Others restrict overloading to the subclass-superclass relationship, with an operation in the 
subclass overloading only an operation with the same name and signature in a superclass. 
The ODMG standard also supports exceptions and exception handling following the C++, or termination, model of 
exception handling. There is a hierarchy of Exception objects that you subclass to create your own exceptions. The 
rules for exception handling are complex: 

1. The programmer declares an exception handler within scope s capable of handling exceptions 
of type t. 

2. An operation within a contained scope sn may "raise" an exception of type t. 
3. The exception is "caught" by the most immediately containing scope that has an exception 

handler. The call stack is automatically unwound by the run-time system out to the level of the 
handler. Memory is freed for all objects allocated in intervening stack frames. Any transactions 
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begun within a nested scope, that is, unwound by the run-time system in the process of 
searching up the stack for an exception handler, are aborted. 

4. When control reaches the handler, the handler may either decide that it can handle the 
exception or pass it on (reraise it) to a containing handler [Cattel and Barry 1997, p. 40]. 

Object-Relational Databases 
The object-relational data model is in even worse shape than the 00 data model. Being a hybrid, the data model 
takes the relational model and extends it with certain object-oriented concepts. Which ones depend on the particular 
vendor or sage (I won't say oracle) you choose. There is an ISO standard, SQL3, that is staggering toward adoption, 
but it has not yet had a large impact on vendors' systems [ISO 1997; Melton 1998]. 

Note 

  

C. J. Date, one of the most famous proponents of the relational model, has penned a 
manifesto with his collaborator Hugh Darwen on the ideas relating to the integration of object 
and relational technologies [Date and Darwen 1998]. The version of the OR data model I 
present here is very different. Anyone seriously considering using an OR data model, or more 
practically an ORDBMS, should read Date's book. It is by turns infuriating, illuminating, and 
aggravating. Infuriating, because Date and Darwen bring a caustic and arrogant sense of 
British humour to the book, which trashes virtually every aspect of the OR world. Illuminating, 
because they work through some serious problems with OR "theory," if you can call it that, 
from a relational instead of 00 perspective. Aggravating, because there is very little chance of 
the ORDBMS vendors learning anything from the book, to their and our loss. I do not present 
the detailed manifesto here because I don't believe the system they demand delivers the 
benefits of object-oriented integration with relational technology and because I seriously 
doubt that system will ever become a working ORDBMS. 

Depending on the vendor you choose, the database system more or less resembles an object-oriented system. It 
also presents a relational face to the world, theoretically giving you the best of both worlds. Figure 2-11 shows this 
hybrid nature as the combination of the OO and relational structures from Figure 2-8 and 2-9. The tables have 
corresponding object types, and the relationships are sets or collections of objects. The issues that these data 
models introduce are so new that vendors have only begun to resolve them, and most of the current solutions are ad 
hoc in nature. Time will show how well the object-relational model matures. 
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Figure 2-11: An OR Schema: The Holmes PLC Criminal Network Database  

In the meantime, you can work with the framework that Michael Stonebraker introduced in his 1999 book on 
ORDBMS technology. That book suggests the following features to define a true ORDBMS [Stonebraker 1999, p. 
268]: 

1. Base type extension 
a. Dynamic linking of user-defined functions 
b. Client or server activation of user-defined functions 
c. Integration of user-defined functions with middleware application systems 
d. Secure user-defined functions 
e. Callback in user-defined functions 
f. User-defined access methods 
g. Arbitrary-length data types 
h. Open storage manager 

2. Complex objects 
a. Type constructors 

 set of 
 record of 
 reference 

b. User-defined functions 
 dynamic linking 
 client or server activation 
 securer user-defined functions 
 callback 

c. Arbitrary-length complex data types 
d. SQL support 

3. Inheritance 
a. Data and function inheritance 
b. Overloading 
c. Inheritance of types, not tables 
d. Multiple inheritance 

4. Rule system 
a. Events and actions are retrieves as well as updates 
b. Integration of rules with inheritance and type extension 
c. Rich execution semantics for rules 
d. No infinite loops 

Note 

  

While this definition provides a good basis for academic wrangling over truth and beauty, it 
probably is neither a necessary nor a sufficient definition of the data model from the 
perspective of the practicing data architect. Certainly it doesn't cover all the issues that 
interest me, and it smacks of the same logic that led to the Ten-Year War over the true 
character of the "object." It is counterproductive, I believe, to treat a list of features as a 
definition. Until there is a formal, mathematical model that extends the relational model with 
whatever constructs are appropriate, I choose to leave truth to the academic communities' 
debates. It's also important to note that these features reflect Stonebraker's interest in illustra, 
the product he designed based on his work in the ORDBMS arena, since acquired by 
Informix and shipped as the Informix Dynamic Server with Universal Data Option. 

In the following sections, I will cover the basics of these features. Where useful, I will illustrate the abstraction with 
the implementation in one or more commercial ORDBMS products, including Oracle8 with its Objects Option, DB2 
Universal Database [Chamberlin 1998], and Informix with its optional Dynamic Server (also known as Illustra) 
[Stonebraker and Brown 1999]. 

Types and Inheritance 
The relational data architecture contains types through reference to the domains of columns. The ANSI standard 
limits types to very primitive ones: NUMERIC, CHARACTER, TIMESTAMP, RAW, GRAPHIC, DATE, TIME, and 
INTERVAL. There are also subtypes (INTEGER, VARYING CHARACTER, LONG RAW), which are restrictions on 
the more general types. These are the base types of the data model. 
An OR data model adds extended or user-defined types to the base types of the relational model. There are three 
variations on extended types: 

 Subtypes or distinct data types 
 Record data types 
 Encapsulated data types 
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Subtypes A subtype is a base type with a specific restriction. Standard SQL supports a combination of size and 
logical restrictions. For example, you can use the NUMERIC type but limit the numbers with a precision of 11 and a 
scale of 2 to represent monetary amounts up to $999,999,999.99. You could also include a CHECK constraint that 
limited the value to something between 0 and 999,999,999.99, making it a nonnegative monetary amount. However, 
you can put these restrictions only on a column definition. You can't create them separately. An OR model lets you 
create and name a separate type with the restrictions. 

DB2 UDB, for example, has this statement: 
CREATE DISTINCT TYPE <name> AS <type declaration> WITH COMPARISONS 

This syntax lets you name the type declaration. The system then treats the new type as a completely separate 
(distinct) type from its underlying base type, which can greatly aid you in finding errors in your SQL code. Distinct 
types are part of the SQL3 standard. The WITH COMPARISONS clause, in the best tradition of IBM, does nothing. It 
is there to remind you that the type supports the relational operators such as + and <, and all base types but BLOBs 
require it. Informix has a similar CREATE DISTINCT TYPE statement but doesn't have the WITH COMPARISONS. 
Both systems let you cast values to a type to tell the system that you mean the value to be of the specified type. DB2 
has a CAST function to do this, while Informix uses a :: on the literal: 82::fahrenheit, for example, casts the number 
82 to the type "fahrenheit." Both systems let you create conversion functions that casting operators use to convert 
values from type to type as appropriate. Oracle8, on the other hand, does not have any concept of subtype. 
Record Data Types A record data type (or a structured type in the ISO SQL3 standard) is a table definition, perhaps 
accompanied by methods or functions. Once you define the type, you can then create objects of the type, or you can 
define tables of such objects. OR systems do not typically have any access control over the members of the record, 
so programs can access the data attributes of the object directly. I therefore distinguish these types from 
encapsulated data types, which conceal the data behind a firewall of methods or functions. 

Note 
  

SQL3 defines the type so that each attribute generates observer and mutator functions 
(functions that get and set the attribute values). The standard thus rigorously supports full 
encapsulation, yet exposes the underlying attributes directly, something similar to having 
one's cake and eating it. 

Oracle8 contains record data types as the primary way of declaring the structure of objects in the system. The 
CREATE TYPE AS OBJECT statement lets you define the attributes and methods of the type. DB2 has no concept 
of record type. Informix Dynamic Server offers the row type for defining the attributes (CREATE ROW TYPE with a 
syntax similar to CREATE TABLE), but no methods. You can, however, create user-defined routines that take 
objects of any type and act as methods. To a certain extent, this means that Oracle8 object types resemble the 
encapsulated types in the next section, except for your being able to access all the data attributes of the object 
directly. 
Encapsulated Data Types and BLOBs The real fun in OR systems begins when you add encapsulated data 
types—types that hide their implementation completely. Informix provides what it calls DataBlades (perhaps on the 
metaphor of razor blades snapping into razors); Oracle8 has Network Computing Architecture (NCA) data cartridges. 
These technologies let you extend the base type system with new types and the behaviors you associate with them. 
The Informix spatial data blade, for example, provides a comprehensive way of dealing with spatial and geographic 
information. It lets you store data and query it in natural ways rather than forcing you to create relational structures. 
The Oracle8 Spatial Data Cartridge performs similar functions, though with interesting design limitations (see 
Chapter 12 for some details). Not only do these extension modules let you represent data and behavior, they also 
provide indexing and other accessmethod-related tools that integrate with the DBMS optimizer [Stonebraker 1999, 
pp. 117—149]. 
A critical piece of the puzzle for encapsulated data types is the constructor, a function that acts as a factory to build 
an object. Informix, for example, provides the row() function and cast operator to construct an instance of a row type 
in an INSERT statement. For example, when you use a row type "triplet" to declare a three-integer column in a table, 
you use "row(1, 2, 3)::triplet" as the value in the VALUES clause to cast the integers into a row type. In Oracle8, you 
create types with constructor methods having the same name as the type and a set of parameters. You then use that 
method as the value: triplet(1, 2, 3), for example. Oracle8 also supports methods to enable comparison through 
standard indexing. 

OR systems also provide extensive support for LOBs, or large objects. These are encapsulated types in the sense 
that their internal structure is completely inaccessible to SQL. You typically retrieve the LOB in a program, then 
convert its contents into an object of some kind. Both the conversion and the behavior associated with the new 
object are in your client program, though, not in the database. Oracle8 provides the BLOB, CLOB, NCLOB, and bfile 
types. A BLOB is a binary string with any structure you want. The CLOB and NCLOB are character objects for 
storing very large text objects. The CLOB contains single-byte characters, while the NCLOB contains multibyte 
characters. The bfile is a reference to a BLOB in an external file; bfile functions let you manipulate the file in the 
usual ways but through SQL instead of program statements. Informix Dynamic Server also provides BLOBs and 
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CLOBs. DB2 V2 provides BLOBs, CLOBs, and DBCLOBs (binary, single-byte, and multibyte characters, 
respectively). V2 also provides file references to let you read and write LOBs from and to files. 

Inheritance Inheritance in OR systems comes with a couple of twists compared to the inheritance in OODBMSs. 
The first twist is a negative one: Oracle8 and DB2 V2 do not support any kind of inheritance. Oracle8 may acquire 
some form of inheritance in future releases, but the first release has none. Informix Dynamic Server provides 
inheritance and introduces the second twist: inheritance of types and of tables. Stonebraker's definition calls for 
inheritance of types, not tables; by this he seems to mean that inheritance based only on types isn't good enough, 
since his book details the table inheritance mechanism as well. Type inheritance is just like 00 inheritance applied to 
row types. You inherit both the data structure and the use of any user-defined functions that take the row type as an 
argument. You can overload functions for inheriting types, and Dynamic Server will execute the appropriate function 
on the appropriate data. 

The twist comes when you reflect on the structure of data in the system. In an OODBMS, the extension of a type is 
the set of all objects of the type. You usually have ways to iterate through all of these objects. In an ORDBMS, 
however, data is in tables. You use types in two ways in these systems. You can either declare a table of a type, 
giving the table the type structure, or you declare a column in the table of the type, giving the column the type 
structure. You can therefore declare multiple tables of a single type, partitioning the type extension. In current 
systems, there is no way other than a UNION to operate over the type extension as a whole. 

Inheritance of the usual sort works with types and type extensions. To accommodate the needs of tables, Informix 
extends the concept to table inheritance based on type inheritance. When you create a table of a subtype, you can 
create it under a table of the supertype. This two-step inheritance lets you build separate data hierarchies using the 
same type hierarchies. It also permits the ORDBMS to query over the subtypes. 
Figure 2-10 in the OODBMS section above shows the inheritance hierarchy of identification documents. Using 
Informix Dynamic Server, you would declare row types for IdentificationDocument, Expiring Document, Passport, 
and so on, to represent the type hierarchy. You could then declare a table for each of these types that corresponds 
to a concrete object. In this case, IdentificationDocument, Expiring Document, and LawEnforcementID are abstract 
classes and don't require tables, while the rest are concrete and do. You could partition any of these classes by 
creating multiple tables to hold the data (US Passport, UK Passport, and so on). 
Because of its clear distinction between abstract and concrete structures, this hierarchy has no need to declare table 
inheritance. Consider a hierarchy of Roles as a counterexample. Figure 2-9 shows the Role as a class representing 
a connection between a Person and a CriminalOrganization. You could create a class hierarchy representing the 
different kinds of roles (Boss, Lieutenant, Soldier, Counselor, Associate, for example), and you could leave Role as a 
kind of generic association. You would create a Role table as well as a table for each of its subtypes. In this case, 
you would create the tables using the UNDER clause to establish the type hierarchy. When you queried the Role 
table, you would actually scan not just that table but also all of its subtype tables. If you used a function in the query, 
SQL would apply the correct overloaded function to the actual row based on its real type (dynamic binding and 
polymorphism). You can use the ONLY qualifier in the FROM clause to restrict the query to a single table instead of 
ranging over all the subtype tables. 

ORDBMS products are inconsistent in their use of inheritance. The one that does offer the feature does so with 
some twists on the OODBMS concept of inheritance. These twists have a definite effect on database design through 
effects on your conceptual and physical schemas. But the impact of the OR data architecture does not end with 
types. They offer multiple structuring opportunities through complex objects and collections as well. 

Complex Objects and Collections 
The OR data architectures all offer complex objects of various sorts: 

 Nested tables: Tables with columns that are defined with multiple components as tables 
themselves 

 Typed columns: Tables with columns of a user-defined type 
 References: Tables with columns that refer to objects in other tables 
 Collections: Tables with columns that are collections of objects, such as sets or variable-length 

arrays 
Note 

  

Those exposed to some of the issues in mathematical modeling of data structures will 
recognize the difficulties in the above categorization. For example, you can model nested 
tables using types, or you can see them as a special kind of collection (a set of records, for 
example). This again points up the difficulty of characterizing a model that has no formal 
basis. From the perspective of practical design, the above categories reflect the different 
choices you must make between product features in the target DBMS. 
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Oracle8's new table structure features rely heavily on nested structures. You first create a table type, which defines a 
type as a table of objects of a user-defined type: 
CREATE TYPE <table type> ASTABLE OF <user-defined type> 

A nested table is a column of a table declared to be of a table type. For example, you could store a table of aliases 
within the Person table if you used the following definitions: 
CREATE TYPE ALIAS_TYPE (…); 
CREATE TYPE ALIAS AS TABLE OF ALIAS_TYPE; 
CREATE TABLE Person ( 
  PersonID NUMBER PRIMARY KEY, 
  Name VARCHAR2(100) NOT NULL, 
  Aliases ALIAS) 

The Informix Dynamic Server, on the other hand, relies exclusively on types to represent complex objects. You 
create a user-defined type, then declare a table using the type for the type of a column in the table. Informix has no 
ability to store tables in columns, but it does support sets of user-defined types, which comes down to the same 
thing. 
Both Oracle8 and Informix Dynamic Server provide references to types, with certain practical differences. A 
reference, in this context, is a persistent pointer to an object stored outside the table. References use an 
encapsulated OID to refer to the object it identifies. References often take the place of foreign key relationships in 
OR architectures. You can combine them with types to reduce the complexity of queries dramatically. Both Oracle8 
and Informix provide a navigational syntax for using references in SQL expressions known as the dot notation. For 
example, in the relational model of Figure 2-8, there is a foreign key relationship between CriminalOrganization and 
Address through the OrganizationAddress relationship table. To query the postal codes of an organization, you might 
use this standard SQL: 
SELECT a.PostalCode 
  FROM CriminalOrganization o, OrganizationAddress oa, Address a 
 WHERE o.OrganizationID = oa.OrganizationID AND 
      oa.AddressID = a.AddressID 

To get the same information from an ORDBMS, you might have represented the address relationship as a set of 
references to addresses, which are a separate type. To query these, you would use this SQL in Informix: 
SELECT deref(*).PostalCode 
  FROM (SELECT Addresses 
          FROM CriminalOrganization) 

The SELECT in the FROM clause returns a set of object references of type Address, and you dereference this set 
and navigate to the PostalCode attribute of the type in the main SELECT clause expression. 

Oracle8 works from a position much closer to the relational model, as it does not support this kind of set retrieval. 
Instead, you can retrieve the address references and dereference them in the context of an object view and its type. 
An object view is a view you define with the CREATE VIEW statement to be a view of objects of a certain type. This 
lets you encapsulate a query of indefinite complexity that builds the objects. In this case, for example, you might 
build a view of criminal organization address objects that includes the name of the organization and a VARRAY of 
addresses for each organization. You would then typically select an object into a PL/SQL data structure and use the 
standard dot notation to access the postal code element of the individual members of the VARRAY. 

The Oracle8 VARRAY is a varying length array of objects of a single type, including references to objects. The 
varying array has enjoyed on-again, off-again popularity in various products and approaches to data structure 
representation. It provides a basic ability to structure data in a sequentially ordered list. Informix Dynamic Server 
provides the more exact SET, MULTISET, and LIST collections. A SET is a collection of unique elements with no 
order. A MULTISET is a collection of elements with no order and duplicate values allowed. A LIST is a collection of 
elements with sequential ordering and duplicate values allowed. You can access the LIST elements using an integer 
index. The LIST and the VARRAY are similar in character, though different in implementation. 
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DB2 V2 comes out on the short end for this category of features. It offers neither the ability to create complex types 
nor any kind of collection. This ORDBMS relies entirely on lobs and externally defined functions that operate on 
them. 

Rules 
A rule is the combination of event detection (ON EVENT x) and handling (DO action). When the database server 
detects an event (usually an INSERT, UPDATE, or DELETE but also possibly a SELECT), it fires an action. The 
combination of event-action pairs is the rule [Stonebraker 1999, pp. 101—111]. Most database managers call rules 
triggers. 

While rules are interesting, I don't believe they really form part of the essential, differentiating basis for an ORDBMS. 
Most RDBMSs and some OODBMSs also have triggers, and the extensions that Stonebraker enumerates do not 
relate to the OO features of the DBMS. It would be nice if the SQL3 standard finally deals with triggers and/or rules in 
a solid way so that you can develop portable triggers. You can't do this today. The result is that many shops avoid 
triggers because they would prevent moving to a different DBMS, should that become necessary for economic or 
technical reasons. That means you must implement business rules in application server or client code rather than in 
the database where they belong. 

Decisions 
The object-relational model makes a big impact on application design. The relational features of the model let you 
migrate your legacy relational designs to the new data model, insofar as that model supports the full relational data 
model. To make full use of the data model, however, leads you down at least two additional paths. 

First, you can choose to use multiple-valued data types in your relational tables through nested tables or typed 
attributes. For certain purposes, such as rapid application development tools that can take advantage of these 
features, this may be very useful. For the general case, however, I believe you should avoid these features unless 
you have some compelling rationale for using them. The internal implementations of these features are still primitive, 
and things like query optimization, indexes, levels of nesting, and query logic are still problematic. More importantly, 
using these features leads to an inordinate level of design complexity. The nearest thing I've found to it is the use of 
nested classes in C++. The only real reason to nest classes in C+ + is to encapsulate a helper class within the class 
it helps, protecting it from the vicious outside world. Similarly, declaring a nested table or a collection object works to 
hide the complexity of the data within the confines of the table column, and you can't reuse it outside that table. In 
place of these features, you should create separate tables for each kind of object and use references to link a table 
to those objects. 

Second, you can use the object-oriented features (inheritance, methods, and object references) to construct a 
schema that maps well to an object-oriented conceptual design. The interaction with the relational features of the 
data model provide a bridge to relational operations (such as the ability to use SQL effectively with the database). 
The OO features give you the cohesion and encapsulation you need in good OO designs. 

 
Summary 
This introductory chapter has laid out the context within which you design databases using OO methods. Part of the 
context is system architecture, which contributes heavily to the physical design of your database. Another part of the 
context is data architecture, which contributes heavily to the conceptual design and to the choices you make in 
designing applications that use the database. 

The rest of this chapter introduced you to the three major kinds of database management systems: RDBMSs, 
ORDBMSs, and OODBMSs. These sections gave you an overview of how these systems provide you with their data 
storage services and introduced some of the basic design issues that apply in each system. 

Given this context, the rest of the book goes into detail on the problems and solutions you will encounter during the 
typical orderly design process. Remember, though, that order comes from art—the art of design. 

 
Chapter 3: Gathering Requirements 
Ours is a world where people don't know what they want and are willing to go through hell to get it. 

Don Marquis 
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Overview 
Requirements hell is that particular circle of the Inferno where Sisyphus is pushing the rock up a hill, only to see it roll 
down again. Often misinterpreted, this myth has roots in reality. Sisyphus has actually reached the top of the hill 
many times; it's just that he keeps asking whether he's done, with the unfortunate result of being made to start over. 

Perhaps the answer to getting requirements right is not to ask. On the other hand, I suspect the answer is that you 
just have to keep going, rolling that requirements rock uphill. This chapter lays out the terrain so that at least you 
won't slip and roll back down. 

The needs of the user are, or at least should be, the starting point for designing a database. Ambiguity and its 
resolution in clearly stated and validated requirements are the platform on which you proceed to design. Prioritizing 
the requirements lets you develop a meaningful project plan, deferring lower-priority items to later projects. Finally, 
understanding the scope of your requirements lets you understand what kind of database architecture you need. 
This chapter covers the basics of gathering data requirements as exemplified by the Holmes PLC commonplace 
book system. 

 
Ambiguity and Persistence 
Gathering requirements is a part of every software project, and the techniques apply whether your system 
is database-centric or uses no database at all. This section summarizes some general advice regarding 
requirements and specializes it for database-related ones. 

Ambiguity 
Ambiguity can make life interesting. Unless you enjoy the back-and-forth of angry users and 
programmers, however, your goal in gathering requirements is to reduce ambiguity to the point where 
you can deliver a useful database design that does what people want. 

As an example, consider the commonplace book. This was a collection of reference materials that 
Sherlock Holmes constructed to supplement his prodigious memory for facts. Some of the relevant 
Holmes quotations illustrate the basic requirements. 

This passage summarizes the nature of the commonplace book: 

"Kindly look her up in my index, Doctor," murmured Holmes without opening his eyes. For many 
years he had adopted a system of docketing all paragraphs concerning men and things, so that it 
was difficult to name a subject or a person on which he could not at once furnish information. In 
this case I found her biography sandwiched in between that of a Hebrew rabbi and that of a staff-
commander who had written a monograph upon the deep-sea fishes. 

"Let me see," said Holmes. "Hum! Born in New Jersey in the year 1858. Contralto—hum! La 
Scala, hum! Prima donna Imperial Opera of Warsaw—yes! Retired from operatic stage—ha! 
Living in London—quite so! Your Majesty, as I understand, became entangled with this young 
person, wrote her some compromising letters, and is now desirous of getting those letters back." 
[SCAN] 

Not every attempt to find information is successful: 

My friend had listened with amused surprise to this long speech, which was poured forth with 
extraordinary vigour and earnestness, every point being driven home by the slapping of a brawny 
hand upon the speaker's knee. When our visitor was silent Holmes stretched out his hand and 
took down letter "S" of his commonplace book. For once he dug in vain into that mine of varied 
information. 

"There is Arthur H. Staunton, the rising young forger," said he, "and there was Henry Staunton, 
whom I helped to hang, but Godfrey Staunton is a new name to me." 

It was our visitor's turn to look surprised. [MISS] 

The following passage illustrates the biographical entries of people and their relationship to criminal 
organizations. 
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"Just give me down my index of biographies from the shelf." 

He turned over the pages lazily, leaning back in his chair and blowing great clouds from his cigar. 

"My collection of M's is a fine one," said he. "Moriarty himself is enough to make any letter 
illustrious, and here is Morgan the poisoner, and Merridew of abominable memory, and Mathews, 
who knocked out my left canine in the waiting-room at Charing Cross, and finally, here is our 
friend of tonight." 

He handed over the book, and I read: 
Moran, Sebastian, Colonel. Unemployed. Formerly 1st Bangalore Pioneers. Born London, 1840. 
Son of Sir Augustus Moran, C.B., once British Minister to Persia. Educated Eton and Oxford. 
Served inJowaki Campaign, Afghan Campaign, Charasiab (dispatches), Sherpur, and Cabul. 
Author of Heavy Game of the Western Himalayas (1881), Three Months in the Jungle (1884). 
Address: Conduit Street. Clubs: The Anglo-Indian, the Tankerville, the Bagatelle Card Club. On 
the margin was written, in Holmes's precise hand: 

The second most dangerous man in London. {EMPT] 

Here is an example of the practical use of the commonplace book in criminal investigating: 

We both sat in silence for some little time after listening to this extraordinary narrative. Then 
Sherlock Holmes pulled down from the shelf one of the ponderous commonplace books in which 
he placed his cuttings. 

"Here is an advertisement which will interest you," said he. "It appeared in all the papers about a 
year ago. Listen to this: 

"Lost on the 9th inst., Mr. Jeremiah Hayling, aged twenty-six, a hydraulic engineer. Left his 
lodging at ten o'clock at night, and has not been heard of since. Was dressed in—" 

etc. etc. Ha! That represents the last time that the colonel needed to have his machine 
overhauled, I fancy. [ENGR] 

And here is another example, showing the way Holmes added marginal notes to the original item: 

Our visitor had no sooner waddled out of the room—no other verb can describe Mrs. Merrilow's 
method of progression—than Sherlock Holmes threw himself with fierce energy upon the pile of 
commonplace books in the corner. For a few minutes there was a constant swish of the leaves, 
and then with a grunt of satisfaction he came upon what he sought. So excited was he that he did 
not rise, but sat upon the floor like some strange Buddha, with crossed legs, the huge books all 
round him, and one open upon his knees. 

"The case worried me at the time, Watson. Here are my marginal notes to prove it. I confess that 
I could make nothing of it. And yet I was convinced that the coroner was wrong. Have you no 
recollection of the Abbas Parva tragedy?" 

"None, Holmes." 

"And yet you were with me then. But certainly my own impression was very superficial. For there 
was nothing to go by, and none of the parties had engaged my services. Perhaps you would care 
to read the papers?" [VEIL] 

Holmes also uses the commonplace book to track cases that parallel ones in which a client engages 
his interest: 

"Quite an interesting study, that maiden," he observed. "I found her more interesting than her little 
problem, which, by the way, is a rather trite one. You will find parallel cases, if you consult my 
index, in Andover in '77, and there was something of the sort at The Hague last year. Old as is 
the idea, however, there were one or two details which were new to me. But the maiden herself 
was most instructive." [IDEN] 

This use verges on another kind of reference, the casebook: 
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"The whole course of events," said Holmes, "from the point of view of the man who called himself 
Stapleton, was simple and direct, although to us, who had no means in the beginning of knowing 
the motives of his actions and could only learn part of the facts, it all appeared exceedingly 
complex. I have had the advantage of two conversations with Mrs. Stapleton, and the case has 
now been so entirely cleared up that I am not aware that there is anything which has remained a 
secret to us. You will find a few notes upon the matter under the heading B in my indexed list of 
cases. {HOUN] 

Certain limitations of the commonplace book medium clearly limited the ways in which Holmes 
ordered his cases: 

"Matilda Briggs was not the name of a young woman, Watson," said Holmes in a reminiscent 
voice. "It was a ship which is associated with the giant rat of Sumatra, a story for which the world 
is not yet prepared. But what do we know about vampires? Does it come within our purview 
either? Anything is better than stagnation, but really we seem to have been switched on to a 
Grimms' fairy tale. Make a long arm, Watson, and see what V has to say." 

I leaned back and took down the great index volume to which he referred. Holmes balanced it on 
his knee, and his eyes moved slowly and lovingly over the record of old cases, mixed with the 
accumulated information of a lifetime. 
"Voyage of the Gloria Scott," he read. "That was a bad business. I have some recollection that 
you made a record of it, Watson, though I was unable to congratulate you upon the result. Victor 
Lynch, the forger. Venomous lizard or gila. Remarkable case, that! Vittoria, the circus belle. 
Vanderbilt and the Yeggman. Vipers. Vigor, the Hammersmith wonder. Hullo! Hullo! Good old 
index. You can't beat it. Listen to this, Watson. Vampirism in Hungary. And again, Vampires in 
Transylvania." He turned over the pages with eagerness, but after a short intent perusal he threw 
down the great book with a snarl of disappointment. 

"Rubbish, Watson, rubbish! What have we to do with walking corpses who can only be held in 
their grave by stakes driven through their hearts? It's pure lunacy." [SUSS] 

These quotations show how Holmes constructed his commonplace books: 

He took down the great book in which, day by day, he filed the agony columns of the various 
London journals. "Dear me!" said he, turning over the pages, "what a chorus of groans, cries, and 
bleatings! What a rag-bag of singular happenings! But surely the most valuable hunting-ground 
that ever was given to a student of the unusual! This person is alone and cannot be approached 
by letter without a breach of that absolute secrecy which is desired. How is any news or any 
message to reach him from without? Obviously by advertisement through a newspaper. There 
seems no other way, and fortunately we need concern ourselves with the one paper only. 
[REDC] 

One winter's night, as we sat together by the fire, I ventured to suggest to him that, as he had 
finished pasting extracts into his commonplace book, he might employ the next two hours in 
making our room a little more habitable. [MUSG] 

The first day Holmes had spent in cross-indexing his huge book of references. [BRUC] 

As evening drew in, the storm grew louder and louder, and the wind cried and sobbed like a child 
in the chimney. Sherlock Holmes sat moodily at one side of the fireplace cross-indexing his 
records of crime,… [FIVE] 

These passages from the Holmes canon illustrate both the painstaking nature of Holmes's approach 
to detection and the nature of ambiguity in requirements gathering. Holmes, despite his best efforts, 
was unable to conceive of his commonplace book system in unambiguous terms. "Voyage of the 
Gloria Scott," for example, as an entry in volume "V" seems a bit mysterious. 

Ambiguity is a state in which you find multiple, conflicting interpretations of a text or situation. You 
create ambiguity when you state the requirements for your system or database that someone might 
interpret in different ways. Gause and Weinberg cite three specific kinds of ambiguity that are 
important for requirements gathering [Gause and Weinberg 1989]: 

 Missing Requirements: Needs that are a key part of resolving the differences in 
interpretation 

 Ambiguous words: Words in the requirement that are capable of multiple interpretations 
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 Introduced elements: Words you put in the mouth of the stakeholder 

In designing the commonplace book system, we have perhaps a bit less access to Holmes than we 
would ordinarily like, given his busy schedule and general terseness. This situation is certain to lead to 
missing requirements and introduced elements. With some persistence, we can work out the details. 

For example, in the quotations above, the system seems to require several types of fact: 
 Biographical facts: Facts relating to the history of individual people 
 Case history: Facts relating to the history of criminal cases from Holmes's work and cases 

of interest from around the world 
 Encyclopedia articles: Facts relating to things of interest to the consulting detective 

(vampires, for example, or gilas) 
 Classified advertisements: The agony columns where people advertise for lost family 

members or place communications to others 
 Periodical articles: Text from newspapers and magazines that contributes interesting facts 

relating to people, places, and events of interest to the consulting detective 

With a little thought, you can see that there might be many more sources of information that are 
critical to the investigator. Did Holmes exclude these for a reason, or did they simply not come up in 
the conversation? What about Web articles? How about government data? What about information 
about corporations, limited partnerships, and other business entities? Television infomercials (relating 
to consumer fraud, for example, possibly on a large scale)? 

Also, we have to infer from the quotations that the information in the commonplace book is not 
random or universal. But it seems difficult to make the direct claim that the book contains only those 
bits of fact that relate to things of interest to the detective. This is ambiguous both because the terms 
are ambiguous (what is of interest?) and because we are putting words in Holmes's mouth. How can 
we resolve these questions? 

Observing and Asking the Right Questions 
In a word: exploration. You need to explore the requirements to clarify, as much as possible, what 
problem you need to solve [Gause and Weinberg 1989]. The first question is a simple one: Can a 
solution for the problem exist? That is, if you've stated the problem correctly, is there in fact a way to 
solve it? 

What is the essential problem that the commonplace book system solves? In the work of a consulting 
private detective, it is critical to reason about a situation from a basis in factual data, both about the 
situation and about the context of that situation. In the quotations, Holmes uses his written 
commonplace book to get the facts he needs to interpret events and situations. The problem 
statement thus might be the following: 

 Holmes PLC needs a way to make facts relevant to their consulting detective practice 
available to the consulting private detective. 

This statement gives you the flavor of the problem, but it hasn't enough detail to state a solution. In 
this case, however, we're starting with a norm: an existing solution. With this kind of starting point, you 
want to refine your problem definition using the existing system as a guide. In the process, you identify 
the limitations of that system and perhaps the underlying problems that system tries to address. 
The next step in the exploration is to ask context-free questions, usually beginning with the familiar 
pronouns who, what, why, when, where, and how. Process questions ask about the nature of the 
design process, product questions ask about the nature of the design product, and metaquestions ask 
questions about the questions. For example, here are some issues you might raise in the first set of 
questions about the commonplace book: 

 The client for the commonplace book is the consulting private detective at Holmes PLC. 
This system is proprietary and is part of the intellectual property of Holmes PLC. 

 The value of this system to the client is at least 20 million pounds sterling over a five-year 
period in increased revenues. These revenues come from better identification of revenue 
opportunities and better results of investigations, leading to increased marketability of 
detective services. 

 There is increasing pressure for an automated solution to this problem from the clients, 
who want faster access to better information than the current system provides. There 
have been too many Godfrey Stauntons of late. 

 The content of the system ranges from critical information about criminals and criminal 
events to "nice-to-have" information about vampires and vipers. Critical information 
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includes biographical data about criminals and relevant people and organizations, case 
histories from Holmes PLC and police files, and agony column entries (though this fine old 
paper-based institution for advertising for assistance is now being superseded by Web/ 
Internet chat rooms). 

 Not all information must be available immediately. Recent information is more important, 
and you can add historical information as time permits. Biographical information needs to 
be present in the first release for all criminals known to the agency. Information in the 
current paper-based system is more important than other information. 

 The clients would like to have the existing paper system accessible through computer 
searching within a year. The old system must continue to exist until the new system is up 
and running with equivalent information. 

 Information is more important than time, in this case. It would be better to have more 
complete information than to get the system running in a year. 

 The information addresses the detectives' need for factual information about criminals and 
others involved in cases. These facts provide the basis for deductive and inductive 
detective work; without them, you cannot reason effectively. The computer system solves 
the problem of accessing a huge quantity of information quickly. It also solves the problem 
of crossindexing the information for access by concept. A potential for conflict exists here 
because the cognitive maps of different clients differ greatly: Holmes might have an 
interest in "Voyages," while Watson might want to look for "Gloria Scott." 

 Data quality is vital. The wrong information is not just worthless, it actually impedes 
deductive and inductive thought. That means that data validation tools are an essential 
component of the system, as are processes for accomplishing validation. It also means 
that the database must be secure from damage, either through accident or malicious 
intent. 

 Security during system access not only is important for data validity, it also ensures that 
the client maintains confidentiality and secrecy during ongoing investigations. Subjects of 
investigations should not be able to determine whether the system has information about 
them or whether clients are accessing such information. 

 The most important problem with this system is a combination of invasion of privacy and 
intellectual property issues. Much of the material from which Holmes PLC gathers 
information is public. As time goes on, Holmes PLC will increasingly use information 
gathered from individual informants, police agencies, and other private organizations. This 
could cause problems with privacy laws and regulations, particularly wiretapping and 
electronic eavesdropping laws in varying jurisdictions around the world. Also, material 
gathered from public sources may be subject to copyright or other intellectual property 
restrictions. 

Given all this, you might wonder where the ambiguity is. Each and every statement above has 
ambiguity; the question is whether there is enough ambiguity to raise the risk of doing the wrong thing 
to the intolerable level. For example, one requirement says that completeness is vital, even at the 
expense of getting the system done in a year. You could not proceed with the requirement in this 
form. Take it apart. What does "complete" mean? It could mean many things depending on the set of 
data in question. For example, for criminal biographies, complete might mean all police records 
relating to a person, or it could mean police records, newspaper accounts, informer reports, and any 
number of other sources of information. And just when is informer reporting "complete"? These are 
the kinds of questions you must resolve by going back to the clients, posing situations, and probing 
into the meaning more deeply. You would presumably come out of this process with an understanding 
of how to assess the adequacy of information about a subject, potentially with some kind of metric 
indicating how adequate the information is, or a reliability metric for informers. This kind of metadata 
metric conveys real information to the client about how much they can rely on the data in the 
database. It is a capital mistake to theorize ahead of your data, and knowing what your data really is 
becomes vital to judging the relevance of your theories. 

Persisting 
Persisting here means two things: keep rolling that rock, and figure out what the requirements mean 
for your persistent data. 

You can spend your entire life gathering requirements rather than developing systems. Although 
endless acquisition of knowledge is useful, unless someone pays you for just that, at some point you 
need to start developing your software. Knowing when to persist in gathering and interpreting 
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requirements and when to move on comes from experience. You can use sophisticated metrics to 
judge the adequacy of your requirements, or you can use your intuition. Both require a good deal of 
experience, either to gather benchmark data or to develop your feelings to the point of being able to 
judge that you've done enough. It's important to probe to the level of ambiguity resolution that suits the 
needs of the project. 

Persistence also extends to the data itself. Since this is a book on database design, it focuses on the 
requirements for such design. The last section listed various requirements for the system as a whole. 
Running through all those requirements are hidden assumptions about persistent data. Examining a 
few of the requirements shows you what this means. 

 The client for the commonplace book is the consulting private detective at Holmes PLC. 
This system is proprietary and is part of the intellectual property of Holmes PLC. 

Nothing much related to databases here. 
 The value of this system to the client is at least 20 million pounds sterling over a five-year 

period in increased revenues. These revenues come from better identification of revenue 
opportunities and better results of investigations, leading to increased marketability of 
detective services. 

Nor here. 
 There is increasing pressure for an automated solution to this problem from the clients, 

who want faster access to better information than the current system provides. There 
have been too many Godfrey Stauntons of late. 

Here the first assumption appears about the underlying technology. "Faster access to better 
information" implies the storage of that information and the existence of access paths to it. The only 
qualifier is "faster," which could mean anything. In this case, "faster" refers to the current paper-based 
system. Pushing down on the requirement would probably elicit some details such as the need for 
access from mobile locations, the need for immediate response over a wide-area network, and the 
distribution of the data to Holmes PLC locations around the world. "Faster" then becomes relative to 
the current system, in which detectives need to call into a central office to get information, which 
researchers look up in paper-based file storage. The term "better" probably refers to the later 
requirement about "complete" data, meaning that not only must we move the database into electronic 
form but we must improve its content. 

 The content of the system ranges from critical information about criminals and criminal 
events to "nice-to-have" information about vampires and vipers. Critical information 
includes biographical data about criminals and relevant people and organizations, case 
histories from Holmes PLC and police files, and agony column entries. 

Here is some specific data that must persist: biographical and police information about criminals. 
There is also information about relevant other people, information about organizations (criminal, 
corporate, nonprofit, and so on), case history data, and media publications that reflect potential 
criminal or "interesting" activity. 

 Not all information must be available immediately. Recent information is more important, 
and you can add historical information as time permits. Biographical information needs to 
be present in the first release for all criminals known to the agency. Information in the 
current paper-based system is more important than other information. 

This requirement is similiar to the "faster access" one the came previously. 
 The clients would like to have the existing paper system accessible through computer 

searching within a year. The old system must continue to exist until the new system is up 
and running with equivalent information.  

This requirement helps us prioritize the data requirements. See the next section for details. 
 Information is more important than time, in this case. It would be better to have more 

complete information than to get the system running in a year. 

These are broad requirements relating to data content. The last section discussed the huge degree of 
ambiguity in this requirement, so it will need quite a bit of probing to refine it into something useful. It 
is, however, a critical requirement for the persistent data. "Complete" in this sense certainly applies to 
the persistent data, not to the software that accesses it. You should realize, however, that this 
requirement is unusual; time is often as or more important than completeness of information. 
Sometimes it's better to have incomplete data now than complete data on Tuesday, after the alleged 
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felon has been acquitted by a jury for lack of evidence. This database focuses on a longer-term 
perspective, which is vital to understanding how to structure the application and database. 

 The information addresses the detectives' need for factual information about criminals and 
others involved in cases. These facts provide the basis for deductive and inductive 
detective work; without them, you cannot reason effectively. The computer system solves 
the problem of accessing a huge quantity of information quickly. It also solves the problem 
of cross-indexing the information for access by concept. A potential for conflict exists here 
because the cognitive maps of different clients differ greatly: Holmes might have an 
interest in "Voyages," while Watson might want to look for "Gloria Scott."  

Here we have two elements that relate to persistent data: access methods and second-order data. 
The "huge quantity" implies that there will be terabytes of data, which requires special database 
management software, extensive hardware analysis, and specific requirements for access paths such 
as indexing, clustering, and partitioning. These will all be part of the physical database design. As 
well, "cross-indexing" requires data about the data—data that describes the data in ways that permit 
rapid access to the data you want to see. There are several different ways to organize second-order 
data. You can rely on text searching, which is not particularly good at finding relevant information. You 
can develop a keyword system, which is quite labor intensive but pays dividends in access speed: this 
is what Holmes did with his paper-based "indexes." You can use a simple enumerative scheme such 
as the Dewey decimal system that libraries use, or you can develop more elaborate systems using 
facets, dimensions of the problem domain, in various combinations. This is the classic style of data 
warehousing, for example. Probing a bit may elicit requirements in this case for extensible indexing, 
letting the client add facets or classifications to the scheme as needed rather than relying on a static 
representation. 

 Data quality is vital. The wrong information is not just worthless, it actually impedes 
deductive and inductive thought. That means that data validation tools are an essential 
component of the system, as are processes for accomplishing validation. It also means 
that the database must be secure from damage, either through accident or malicious 
intent. 

This one definitely impacts persistent data. It means a number of things. First, you must have some 
way to tell whether conflicting information is part of the reality your database represents or is simply 
wrong. People disagree, for example, in their recollection of events and things. This is not a data 
quality problem but an information issue. You need not concern yourself with anything but data 
quality. Second, you must establish a process for data entry and validation. Third, you must err on the 
side of caution in establishing enforcement of referential integrity constraints and other business rules. 
Fourth, you must defer to the database in such enforcement. Fifth, you must impose security on the 
persistent data. You must protect the data going in and coming out. 

 Security during system access not only is important for data validity, it also ensures that 
the client maintains confidentiality and secrecy during ongoing investigations. Subjects of 
investigations should not be able to determine whether the system has information about 
them or whether clients are accessing such information. 

While you might think this requirement affects the software rather than the persistent data, it can affect 
the data also. For example, if you want the greater security of a mandatory access security scheme, 
you need to associate security labels with the data at all levels of the system, including the database 
and operating system. This quickly narrows down your technology choices, as there aren't many 
operating systems and database managers that support this level of security. It also has implications 
for authentication and access to the persistent data, which overlaps with the previous requirement 
relating to data integrity. Also, espionage is now easier than ever with Internet access to data. Holmes 
PLC depends upon the confidentiality of its trade secrets and other types of intellectual property in the 
database. Security at the database level protects those secrets from access through other 
mechanisms than applications. 

 The most important problem with this system is a combination of invasion of privacy and 
intellectual property issues. Much of the material from which Holmes PLC gathers 
information is public. As time goes on, Holmes PLC will increasingly use information 
gathered from individual informants, police agencies, and other private organizations. This 
could cause problems with privacy laws and regulations, particularly wiretapping and 
electronic eavesdropping laws in varying jurisdictions around the world. Also, material 
gathered from public sources may be subject to copyright or other intellectual property 
restrictions. 

The major implication of this requirement is a need to store licenses and permissions relating to 
proprietary and restricted data. This is another kind of second-order data. This also relates back to the 



 - 46 -

security requirement, as keeping intellectual property secure is often required, as is privacy of data 
applying to individuals. 

 
Getting Your Priorities Straight 
Collecting the requirements is not the end of your work. Not every requirement is as important as every other 
requirement. The next task is to prioritize the requirements by understanding them, by relating them to one another, 
and by categorizing them. This is an iterative process that often requires deeper analysis through use cases, the 
subject of the next chapter. Until you get a reasonable level of detail, you may have a hard time figuring out what the 
real priorities are and which things depend on which other things. As you get into design, you will often find that there 
are technology dependencies that you must take into account as well, forcing you to revisit your priorities once again. 
Once you have your basic requirements, though, you can make a start on creating a framework for system and 
database development. 

Understanding Requirements 
Just because you have a list of what people expect from your system does not mean that you understand the 
requirements. The logic of failure dictates that every system resists the efforts of human beings to change it. The first 
thing you must do is to step back from your hunting and gathering efforts and think about them. And think, not just 
about the requirements you've gathered, but also about the ones you haven't, and about their side effects. Get 
people involved in this effort who both understand the domain and who have extensive experience with solving 
problems in that domain. Get training in problem solving. Consider the following recommendations from cognitive 
psychology [Dörner 1996]: 

 State goals clearly 
 Understand where you must compromise between conflicting goals 
 Establish priorities, then change them when needed 
 Model the system, including side effects and long-term changes 
 Understand how much data you need, and get it 
 Don't be excessively abstract 
 Don't reduce everything to a nutshell, a single cause or fact 
 Listen to others when they tell you you're going down the wrong path 
 Apply methods when useful, and avoid them when they get in the way 
 Study your history and apply the lessons you lean to the new system 
 Think in terms of systems, not in terms of simple requirements 

The more you do this, and the more you lean from your mistakes, the better you will be at gathering requirements. 

Categorizing Requirements 
At the most fundamental level, you can categorize requirements into operational objectives, object properties, rules, 
and preferences. 

Operational Objectives 
Operational objectives express the purpose behind the system and the approach you intend to take to achieve that 
purpose. Goals, functions, behaviors, operations, all are synonymous with operational objectives. Objectives are the 
most important kind of requirement because they express the underlying meaning behind the system, the why of 
what you are doing [Muller 1998]. 

For example, consider the following requirement from the last section: 
 The content of the system ranges from critical information about criminals and criminal events to 

"nice-to-have" information about vampires and vipers. Critical information includes biographical 
data about criminals and relevant people and organizations, case histories from Holmes PLC and 
police files, and agony column entries. 

This requirement expresses several overlapping operational objectives of the commonplace book system related to 
information needs: 

 To give detectives the information they need to conduct their work through an appropriate 
computer interface to a database 

 To provide information about known criminals through biographical and case history data 
 To provide information about people of interest to detectives in their work through biographical 

data and personal advertising in various media 
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 To provide information about criminal cases of interest through case history data from Holmes 
PLC and police investigations and through news items from various media 

 To provide information about facts of use in criminal investigations through encyclopedia entries 
(vampires and vipers) 

 To enable quick and easy integration of up-to-date information through flexible interface 
technology that links the system to other similar systems owned by the police and media sources 
for much of the information required by clients 

These requirements express a purpose (to do something) and a way of achieving that purpose (through data or 
behavior). Some of these objectives relate to the user of the system, such as the above objectives. Other objectives 
may be hidden from the user, existing only to enable some other objective or to make the system more flexible or 
easier to use. In this case, the dog that didn't bark in the nighttime (the clue that told Holmes that the abduction of 
Silver Blaze was an inside job [SILV]) is the interfacing requirement. The system needs to have a flexible data 
interface that lets Holmes easily integrate new information into the database. The detective doesn't really care how 
the information gets into the system, just that it is available when needed. 

Object Properties 
As you develop the data requirements for the system, you begin to see the objects (entities, tables, classes, and so 
on) that will exist in the system. As you think about them, you start to see their properties. object properties are the 
second category of requirement, and probably the most important to the database designer. Properties can be table 
columns, object attributes, or class data members. 

For example, a key object in the information requirement in the last section is the case history. You can immediately 
think of certain basic properties of this object: 

 An identifier for the case 
 A set of jurisdictions with interest in the case 
 A set of people associated with the case in various roles (criminal, accessory, investigator, 

criminalist, medical examiner, witness, victim, judge, juror, and so on) 
 A set of evidentiary facts (look up the Nicole Simpson murder case to see the minutiae that can 

result) 
 The value of the property involved in the case 
 The agency expenditure for the case 

These are classic data elements. Not all object properties relate directly to database elements, of course: reliability, 
usability, nontoxicity are all object properties that apply to the software system in the large. Mostly, good object 
properties are very specific: the system must be available 24 hours a day, or the information should reflect all known 
information related to death or injury, or the system response must be two seconds or less for any given piece of 
information. Much ambiguity lies concealed in object properties: puzzle it out. 

Rules 
Rules are conditional requirements on object properties. For the value of a property to be acceptable, it must satisfy 
the condition. 

Most referential integrity constraints come under this category of requirement. For example, if a case history refers to 
a particular criminal under a specific alias, both criminal and alias must exist in the database. 

Timing rules also come under this category. For example, you may have an operational objective that the system 
must respond within two seconds of a request for information. That translates into a rule that all information in the 
database must have access characteristics that will permit retrieval in two seconds or less. 

A third category of rule is a quality rule. You can specify tolerances for error that become part of your requirements. 
For example, if you store DNA evidence, the error in identifying the individual person must be less than .0001, 
meaning that the results are statistically significant with a probability value of 0.9999. These kinds of rules establish 
tolerances or boundaries beyond which the data cannot go. 

Think a bit before you create a rule. Rules have a tendency to become laws, particularly in a software project with a 
deadline. Be reasonably sure that your rule is necessary before imposing it on your project. You may have to live 
with it for a long time. 

Preferences 
A preference is a condition on an object property that expresses a preferred state. For example, a detective would 
prefer to know the criminal behind every crime. Realistically, you must have unsolved case histories in the system—
case histories that have no criminals. Requiring a case history to relate to a criminal is not possible. However, you 
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can express a preference that case histories have a criminal with a requirement that the information source make 
every effort to specify this information. Alternatively, you can qualify "suspects" or something similar with some sort 
of probability value to permit detectives to proceed. You can also use initial values or default values—values that the 
database assigns if you don't specify anything—to represent preferences. 

Usually, preferences take the form of "as much as possible" or "optimal" or "on balance" or something similar. You 
need to understand the difference between rules and preferences. A rule says "must" or "will" or "shall." It's a matter 
of integrity versus a matter of desire (as are so many other aspects of life). 

Relating Requirements 
Requirements are not isolated pearls of wisdom that exist independently of one another. The next step in 
understanding requirements is to treat them as a system, relating them to one another. The synergistic combination 
of requirements often can change the nature of your approach to design. 

With data requirements, you usually express relationships directly through data models that contain the objects and 
their relationships. The later design chapters show you how to do this in detail. Briefly, more general requirements 
have more general relationships. 

For example, storing a case history related to a criminal requires relating a criminal to some kind of event. The 
criminal is in a way a property of the event. The existence of the criminal as a separate object makes him or her an 
object in the system relating to other objects such as crimes. 

More generally, the commonplace book system relates case histories by analogy. That is, some cases are "like" 
other cases. Detectives would like (love, actually) to retrieve all cases that are like the one they are investigating. 
This is a hard problem and unlikely to make it into the serious objectives for the commonplace book. Still, there are 
relationships between cases that require additional rules in the database. For example, a consistent classification 
language for crimes could express a good deal of the similarity between crimes, including motive, means, and 
opportunity. It is actually quite difficult to express this in a database format [Muller 1982], but you could give it a shot. 

It is important to understand how requirements cluster. The connections you can establish between requirements will 
usually tell you how your system architecture can organize its subsystems. If a particular set of requirements relate 
to one another strongly but are relatively unconnected to other requirements, you have a subsystem candidate. On 
the other hand, if you intuitively feel that several requirements belong together but you haven't found any relationship 
between them, think harder. You've missed something. 

In the commonplace book system, for example, the case history is a central requirement. You can link a case history 
to criminals, crime and other events, people, organizations, and investigations. Vampires, on the other hand, link to 
very little. The former objects are the heart of the subsystem relating to the main purpose of the commonplace book: 
to record information about past events and people to help in resolving current investigations. Case histories pull 
together all the different strands into a single whole. The vampire encyclopedia entry, however, is almost a random 
bit of information that happened to be of interest in a single case. That item, and items like it, probably belongs in a 
separate encyclopedia subsystem outside the scope of the case history subsystem. 

There is also a close internal relationship between people, criminals, and organizations. These requirements 
probably belong in a subsystem as well, showing that systems can contain other systems, or can overlap with them. 
The criminal organization, for example, maps certain kinds of people, such as Colonel Sebastian Moran, to 
organizations and to case histories and events. The criminal organization of which Moran was a part was a key 
target of Holmes's investigative efforts. This suggests it deserves a separate data subsystem to track the complex 
web of relationships between people, organizations, and events. This system overlaps with the biographical system 
and with the case history system as well as with the event system. You can see the stirring of the architectural 
dragon, even at the early requirement stage. 

Relationships such as these are the domain of the analyst. Often, part of a system such as this will include data 
mining, statistical analysis, and other such tools to as the analyst in identifying and quantifying relationships. 

The increasing impact of your understanding of the requirements on the scope and direction of your project leads 
naturally into the next topic: prioritizing what you've understood. 

Prioritizing Requirements 
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Requirements come in many guises. Some are vital to the project; others are fluff. Unfortunately, you have to go 
through a lot of fluff to train your mind to distinguish between fluff and the real thing. One aspect of this is the 
relativity of priorities. They depend on the nature of the people involved with the project. This configuration of beliefs 
and attitudes can change radically from project to project. In many ways, you must look at priorities as completely 
fresh in each project. Each of the different types of requirement has a different set of priorities. 

You prioritize operational objectives by their contribution to the basic mission of the system. If system success 
requires successful achievement of the objective, the objective is critical. If you can skip the objective with only minor 
problems, it's marginal. If the objective is unrelated to the mission, it is a bad requirement. 

You prioritize object properties into similar categories: must have, want, and ignore. A "must have" property is one 
without which the system will not achieve its mission. A "want" is something that is nice to have. An "ignore" is 
something that might be useful but either probably isn't or isn't worth the cost of building it. 

You prioritize rules and preferences by their nature. Rules apply to must-have situations. If you've expressed a rule, 
you have to build it. Preferences, on the other hand, come in shades of gray, not in black and white. Defining 
"possible" and "optimal" is one of the hardest things to do in requirements gathering, though necessary. 

 
Deciding the Style of Database 
At this point in the project life cycle, you should be getting an image in your mind of the technology you expect to 
use. You've already begun to see subsystems, you've begun to identify data model elements, and your technical 
intuition is probably stirring. You may be wrong in your expectations, but it's a good idea to at least draw a line in the 
sand at this point. If nothing else, you'll see who thinks you're wrong and why. Feedback is the essence of good 
design. 
There are several basic styles of databse that apply to radically different situations. An OLTP database (online 
transaction processing) is one that supports many small transactions, usually on a very large database. For example, 
creating an entry for a new identification document or entering a new criminal into a criminal organization is a small 
transaction repeated many tiems in parallel. A data warehouse is a database that supports ad hoc queries on a very 
large database. You could see the historical features of the commonplace book as a data warehouse.A data mart is 
a data warehous on a small scale, perhaps at a departmental level in an enterprise. A local biographical or 
geographical database fits this bill, for example. Then there are specialty databases such as multimedia databases, 
CAD databases, geographical information systems (GIS), and statistical databases. GIS systems, for example, could 
provide a means for representing location data for crimes, addresses, and other geographical information in the 
commonplace book (see Chapter 12 for an example of this use). Then there are the databases for the rest of us. 

You will find these categories fit only the most generic or the most specific of problems. Holmes PLC, for example, 
certainly is not an OLTP system. You could see it as a data warehouse, but the style of analysis that data 
warehouses and data marts represent is not the kind of use that Holmes PLC expects to have. The data model is 
generally more complex than a simple star topology expressing dimensions. Perhaps the best way to think about the 
Holmes PLC database is as a multimedia search database, but with emphasis on classification by facet rather than 
on text-based searching. 

You should also be seeing the relationships that will lead you to choose a given type of data model (relational, 
object-relational, or object-oriented). If your system will involve navigational access through complex OO software 
written in C++ or Java, you should be looking at OODBMS products. If your system is an OLTP application based on 
simple forms and ad hoc queries, look at relational systems. If you have complex storage needs such as multimedia 
or geographical information and you need ad hoc query access to that information, consider the ORDBMS products 
as your first choice. 

As you become more familiar with these data models and the technologies that implement them, you will be able to 
use more sophisticated decision rules in choosing your DBMS product. This book gives you a beginning. 

 
Summary 
Gerald Weinberg quotes Bertrand Russell on the relationship between what is meant versus what is done: 

I agree entirely that, in this case, a discussion as to what is meant is important and highly necessary as a preliminary 
to a consideration of the substantial question, but if nothing can be said on the substantial question it seems a waste 
of time to discuss what it means. These philosophers remind me of the shopkeeper of whom I once asked the 
shortest way to Winchester. He called to a man in the black premises: 
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"Gentleman wants to know the shortest way to Winchester." 

"Winchester?" an unseen voice replied. 

"Aye." 

"Way to Winchester?" 

"Aye." 

"Shortest way?" 

"Aye." 

"Dunno." 

He wanted to get the nature of the question clear, but took no interest in answering it. This is exactly what modern 
philosophy does for the earnest seeker after truth. [Russell 1956,pp. 169-170] 

Requirements must lead to solutions, not just to more requirements. Having gathered the requirements, the next step 
is to analyze them a bit more rigorously with use case analysis. 

 
Chapter 4: Modeling Requirements with Use Cases 

The court assembles. Hamlet sits by Ophelia and makes bawdy jests that trouble her, and also makes 
remarks to disturb the King and Queen. With pantomime and spoken action the Players enact a murder 
like that of Hamilet's father, and the wooing of the Queen. The King rushes out in agitation and the court 
disperses in confusion. Hamlet says the ghost has proved trustworthy. 
A scenario describing Act 3, scene 2, of Shakespeare's Hamlet [Fuller 1966] 

Overview 
A scenario, in literature, is a summary of a scene or story that describes the plot in terms a reader can 
easily understand. The UML use case performs a similar function for the software system. Like scenarios 
for plays, use cases can at best give you a pale reflection of the real workings of the system. For all that, 
they are more than useful; they are essential. Done properly, the use cases for a system describe at a high 
level what the system should do. A use case has at least four major effects on database design: 

 A use represents an atomic transaction through the system [Rational Software 1997b]. 
Knowing the system transactions lets you design the logical and physical database and the 
architecture to accommodate the transaction processing requirements of the system. 

 A use case shows how the system uses data elements, both internally through inserting, 
updating, and deleting, and externally through querying. Knowing the set of data elements lets 
you organize them into user schemas and relate them to the overall conceptual schema of the 
system. The use case is the basis for the business rules that constrain your database design. 

 A use case provides the infrastructure for measurement of the database product. The 
function points you estimate for the use case let you measure the value your database 
contributes to your project. 

 A use case provides the basis for validation of your database product. As you move through 
incremental design and construction of the database, you validate what you've done by 
relating it back to the use cases that drive it. As your scope changes, you change the use 
cases to reflect new requirements and trace new work directly to those requirements. 

The use case comes from Jacobson's original work, which is still the primary source for the intimate details 
[Jacobson et al. 1992]. The UML uses the term scenario for a use case instance, a particular path through 
a use case [Rational Software 1997a]. 

 
All the World's a Stage 
The UML Notation Guide defines the actor [Rational Software 1997a, p. 77]: 

An actor is a role of object or objects outside of a system that interacts directly with it as part of a 
coherent work unit (a use case). An Actor element characterizes the role played by an outside object; 
one physical object may play several roles and therefore be modeled by several actors. 

The UML uses a stick figure icon to represent the actor in use case diagrams, as in Figure 4-1. 
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Actors represent the context of the use case. By developing your actor model carefully, you can better 
understand who or what is going to use which parts of your system. As you map use cases to your 
database design, you will fill in blanks as you realize that certain actors need access to certain data 
elements in specific ways. 

An actor may be a user, but an actor may also be another software subsystem or even a piece of hardware 
[Rational Software 1997b]. Use cases do not limit you to representing the overall system. You can 
represent the use of any interface, internal or external, with use cases. For example, consider a subsystem 
that represents image processing of crime scene photographs. This subsystem provides a series of 
services to other subsystems of the overall commonplace book system. Developing a use case diagram for 
this subsystem provides you with measurable, testable requirements for the crime scene subsystem as a 
part of the overall system. The end user may not be the actor for this use case, however. Instead, the other 
subsystems of the commonplace book become its actors. 
To develop your actor model for a system, you must first carefully define the boundaries of the system. The 
requirements gathering process in Chapter 3 results in a broad description of the system. You can start 
with these requirements to work out your first pass at an actor model. 

For example, for the commonplace book system, various requirements refer to certain roles in the system: 
 Consulting private detective (the main client of the system) 
 Marketing and sales person (identifies revenue opportunities and gathers testimonial data) 
 Police and media suppliers (supply information to the system) 
 Data entry clerk (enters new data) 
 Data quality engineer (ensures high quality of data in database) 
 Database administrator (maintains database) 
 Security administrator (maintains security system) 
 Legal representatives (resolve privacy and intellectual property issues) 

These actors all have some reason to use the system, and the system must supply transactions (use 
cases) for those actors. 
It may be that certain actors relate to other actors in generalization relationships. For example, a security 
administrator may be a kind of database administrator, or a database administrator may also use the 
system as a consulting private detective. A detective can also be a data entry clerk if you decide to 
integrate data entry of case information with the query interface, letting detectives enter case information 
as they get it. Figure 4-1 shows an actor model with some actor hierarchies. In this case, the model breaks 
down the consulting private detective into several types based on the type of case with which they deal. 
The different kinds of actors will use different parts of the commonplace book. You could alternatively 
break down detectives by security classification if that will have a major impact on system structure. 

Modeling actors in a hierarchy lets you simplify your use case descriptions. In this context, inheritance 
means that a subactor inherits the role played by its super-actor parent. Anything a consulting private 
detective can do, an administrator can do. If you didn't model these overlaps in roles, you would need to 
connect administrators to the same use cases as the detectives. Now, all you need to do is to model the 
detective use cases, then show where administrators do something in addition to what a detective can do. 
This works both ways, of course. A detective uses a certain set of use cases in the system, sharing these 
with the administrator. But the administrator uses certain use cases not available to the detective. 

Actors also perform passive roles in the system. You can define various external elements that the system 
controls or uses as actors if it has an impact on requirements. An important use for this approach is to 
define "the database" as an actor. You can integrate your knowledge about the database structure in a first 
cut at system architecture. For example, it may be that the commonplace book system requires four 
databases. The first is a U.S. database containing facts relevant to detective practice in the United States. 
The second is a U.K. database containing facts relevant to international operations around the world. The 
third is an image database containing photos, fingerprints, DNA profiles, and other images. The fourth is a 
text database containing media text and graphics. These latter two systems also provide different 
interfaces (image searching and text searching engines, for example) that distinguish them from the 
standard SQL fact databases. You can use these actors to show how the different use cases use the 
database systems. 
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Figure 4-1: A Use Case Actor Hierarchy  

The database actors also provide a way for you to specify the use of data elements from the database in 
the use cases. In the details of the use case, you can enumerate the tables and columns or objects that 
you will use and relate them to the specific database schema in which they appear. See the section "Data 
Elements and Business Rules Summary" for details. 

Defining the hierarchy of actors gives you the staff to use in populating your stage: the use case model. 
 

Actors on Stage 
With the actor model in place, you can now develop the main part of the use case model. While this is an 
iterative process, defining the actors first usually helps you to define your use cases more clearly. You will 
usually find yourself refining your actor model during use case development, though. You may also find 
opportunities for connecting actors to use cases in unanticipated ways, rendering certain actors irrelevant 
to the system. 

Use Case Diagrams 
The use case diagram is a context diagram that shows the top-level relationships between actors and 
use cases. You can also include relationships between use cases (uses and extends relationships) in 
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these diagrams. Figure 4-2 illustrates a very high level use case diagram for the commonplace book 
system. The rounded rectangle is the system boundary for the commonplace book system. The actors 
appear on the outside of the system boundary, while the use cases are inside it. The use cases are 
labeled ovals with no internal structure whatever. The idea is to model the transactions of the system 
at the highest level. 

 
Figure 4-2: The Commonplace Book Use Case Diagram  

Starting with each actor, think about the transactions that actor initiates. Create a use case in the 
system for each of these and connect it to the actor with an association (a line from the actor to the 
use case). The association is a communication relationship showing that the actor communicates with 
the use case in some way (active or passive). You usually start with the top-level actors in your actor 
hierarchy and work downwards, adding specialized use cases for the subactors. 
Now, think about the transactions you've created and decide whether they are truly atomic. This is a 
critical part of defining both the system and its databases. Atomicity is a property of a transaction that 
relates to its coherence as a set of operations. A transaction has a series of operations that the use 
case describes. Making that series atomic means that you must complete the entire series or remove 
the effects entirely from the system. You cannot complete only part of the series. This concept of 
atomicity is fundamental to database transactions. It is also fundamental to system transactions and 
forms the basis for your use case. 

Finally, think about the other actors. Do any of them also communicate with a use case that you've 
defined? If so, connect them. Remember that you only need to associate actors that don't inherit from 
the other actors in the actor model. That is, if an actor is a subactor for the one for which you've 
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defined the use cases, that actor automatically shares the communication you've already drawn for 
the first actor to the use cases. 

Now that you've finished thinking about all this, take the use cases and present them to real people 
who play the roles of the actors you've created. Observe their work, interview them, talk with them 
casually about the use cases. Close the feedback loop by integrating the real world with your model of 
it. 

A Brief Example 
For example, start with the consulting private detective. A first cut at transactions might yield 
something like this: 

 Authenticate: Connect to the system as an authenticated user 
 Report Case History: Report a case history with text and multimedia details 
 Report Event: Report on a set of events based on factual and text search criteria 
 Report Criminal: Report a criminal biography with text and multimedia details, including 

police file data and case histories involving the criminal 
 Identify with Alias: Find a criminal's identity based on alias 
 Identify with Evidence: Find a criminal's identity based on evidence analysis such as 

fingerprint, DNA, and so on 
 Report Topic: Report an encyclopedia topic 
 Find Agony Column: Find an agony column entry (a newspaper or Web advertisement of a 

personal nature) based on text search criteria 
 Find Mob: Find information about criminal organizations based on factual search criteria 
 Explore: Explore relationships between people, organizations, and facts in the database 

Figure 4-3 shows this first cut with associations. It also shows some associations to other actors, such 
as the databases and the police and media suppliers of data. These actors in turn supply other use 
cases, such as the addition of police files, fingerprint records, photos, media text, and all the other bits 
of fact the commonplace book needs to satisfy the needs of the detectives. A complete system use 
case for the commonplace book might involve 150—200 use cases over five or six levels, perhaps 
more. 

At the point where you have the basic use cases fleshed out, take it on the road. Present an overview 
with high-level descriptions of the important transactions to the detectives around the world. You will 
doubtless find additional use cases that people want you to consider putting into the system. You will 
also find that you have misunderstood some of the requirements, resulting in changes to your use 
cases. 

Transactions and Use Cases 
As you continue your system analysis, you break down each use case into several use cases, 
creating a nested series of use cases that combine to form the overall system. For example, Report 
Case History breaks down into several use cases, one for each basic element of the case history. 
These include Report Criminal Information (another high-level use case), Report Case Police History, 
Report Case Media History, Report Case Evidence, and Report Case Cross References (to 
information about criminal organizations, for example). 

These use cases illustrate certain aspects of transaction analysis. Most of the high-level use cases 
are general query transactions. Each is a transaction because each retrieves a specific set of 
information with a clear beginning and end. The Add Police Case History use case is an example of a 
transaction that changes the database. The police organization that enters the case history does so in 
a single, atomic transaction. If the transaction fails, either for hardware reasons or because of violation 
of business rules (no authorizing signature, for example), no information from the case history 
appears in the database. The system rolls back the transaction. 
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Figure 4-3: The Commonplace Book Use Case Diagram with Associations  

The breaking down of use cases into internal use cases brings up the issue of transaction 
management. There are really two kinds of use cases from the transaction perspective, atomic use 
cases and subatomic ones. You can easily distinguish these: atomic use cases have communication 
associations with actors, while subatomic use cases extend other use cases or are used by other use 
cases (for details on «extends» and «uses» relationships, see the section on "Use Case 
Relationships"). Some OODBMS products support a nested transaction model that lets you nest 
atomic transactions within transactions. Most RDBMS products give you the concept of a checkpoint, 
a point in the sequential set of actions in a transaction to which you can roll back. If you are using 
either model, you can build transactions (or partial transactions to a checkpoint) that represent the 
subatomic transactions. You can commit or roll back any level of the transaction. 

Warning   Using nested transactions and checkpoints is definitely advanced database management. 
Don't try this at home, and don't expect it to be easy or bug free. 

You can avoid some of these transaction issues by putting all the use cases at the top level. This kind 
of model gets hard to understand very quickly, however. Divide-and-conquer design is an extremely 
useful way to limit complexity and promote understanding. You do have to trade off such usefulness 
against the possible illogic you introduce into the system transaction model. How might a real user 
accomplish the use case through the user interface of the system? If you can make a case for a single 
menu choice or button driving the use case, then it is probably right to treat it as a high-level use case. 
But also think about how hard a system with 200 menu items is to use. You may want to remove 
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chunks of the system into other systems, modules that you can access on demand. This yields a more 
complex system configuration that is much easier to use. 
You may also want to consider some of the implications for transaction processing in defining your 
transactions. The cardinal rule in designing transactions is to make them as short as possible. If you 
are updating a row, lock the row just before updating it, not when you read it. Use update locks rather 
than exclusive locks to allow readers to read even while you're contemplating the update. If you are 
inserting or deleting a row, don't acquire an exclusive lock on the table at the beginning of the 
transaction; let the DBMS handle the locking transparently. If your DBMS doesn't handle locking in a 
reasonable way, consider getting a new DBMS; yours is out of date. Surprisingly, I've encountered 
problems with locking (particularly deadlocking, where multiple users have conflicting locks that 
mutually lock each other out, causing transactions to fail or wait indefinitely) in leading RDBMS and 
OODBMS products. You should investigate and prototype your technology choice early in your project 
to avoid surprises on the back end. Particularly if you have transactions with a lot of data (100,000 
rows or more in a query is a lot), don't assume that tests with simple and limited data are telling you 
what will really happen when you go live. While these technology issues seem to be implementation 
issues, not requirements issues, you will find that your use case transactions are the source of many 
problems if they don't take transaction processing basics into account. 

Use Case Relationships 
There are two relationships between use cases in the UML: «extends» and «uses». Both are 
stereotyped extensions to the UML that permit a special relationship to exist between two use cases. 
The «extends» relationship says that the extending use case conditionally occurs within the extended 
use case. One implication is that the extension is not a complete transaction but rather is a conditional 
part of a transaction. The «uses» relationship unconditionally uses a use case that two or more use 
cases share, thus permitting a fan-in style of modularization in use case development. You can create 
shared use case transactions that larger transactions share, reducing the complexity and redundancy 
of the overall system. 
The UML Semantics guide defines the two stereotypes [Rational Software 1997b,p.95]: 

Commonalities between use cases are expressed with uses relationships (i.e., generalizations 
with the stereotype «uses»). The relationship means that the sequence of behavior described in 
a used use case is included in the sequence of another use case. The latter use case may 
introduce new pieces of behavior anywhere in the sequence as long as it does not change the 
ordering of the original sequence. Moreover, if a use case has several uses relationships, its 
sequence will be the result of interleaving the used sequences together with new pieces of 
behavior. How these parts are combined to form the new sequence is defined in the using use 
case. 
An extends relationship, i.e., a generalization with the stereotype «extends», defines that a use 
case may be extended with some additional behavior defined in another use case. The extends 
relationship includes both a condition for the extension and a reference to an extension point in 
the related use case, i.e., a position in the use case where additions may be made. Once an 
instance of a use case reaches an extension point to which an extends relationship is referring, 
the condition of the relationship is evaluated. If the condition is fulfilled, the sequence obeyed by 
the use case instance is extended to include the sequence of the extending use case. Different 
parts of the extending use case sequence may be inserted at different extension points in the 
original sequence. If there is still only one condition (i.e., if the condition of the extends 
relationship is fulfilled at the first extension point), then the entire extending behavior is inserted 
in the original sequence. 

The «uses» relationship lets you consolidate a part of a use case into a separate use case that you 
can share between multiple transactions. This permits you to identify shared behavior corresponding 
to shared code in the design. It also lets you simplify to some extent the use case model by 
eliminating chunks of use case description from multiple use cases. The most common «uses» 
relationship is the sharing of a simple chunk of behavior such as display of a graphic or calculation of 
an algorithmic value. 
In the commonplace book model, there is a «uses» relationship between the Identify with Alias use 
case and the Identify with Evidence use case (Figure 4-4). Both use cases use the Identify Criminal 
use case, which presents information to the actor identifying a person with a criminal record, including 
the criminal's name and aliases, fingerprints, DNA profile (if available), and picture(s). In the first case, 
the transaction queries the criminal's identity using an alias. In the second case, the use case 
identifies the criminal using some kind of evidentiary profile such as a fingerprint or DNA profile. 



 - 57 -

 
Figure 4-4: The «uses» Relationship  

 
Figure 4-5: The «extends» Relationship  

The «extends» relationship lets you simplify a use case by excluding conditional elements that are 
distractions from the main point of the transaction: "exceptions." The most common example of this is 
error handling. Under a certain condition, a use case "exits" with an error. For example, in the 
commonplace book system, you can try to find a criminal through his or her alias and fail. Instead of 
including this in the use case description, you extend the use case by adding an extension with the 
error condition and the resulting behavior. For example, you could display an alert with the text "Could 
not identify suspect." Figure 4-5 illustrates this relationship between the Identify Criminal with Alias 
and the Could Not Identify Suspect use case. You can extend different use cases with the same 
extension, of course. This lets you build up a library of extensions for your error-handling procedures. 
This usually translates into an exception-handling library in your system design. 
The next most common example of an extension is the use of menu and keypress use cases 
throughout a system. Within any use case, you can access shared actions by choosing a menu item 
or pressing a key. You can thus represent the menu and keypress selections as use cases related to 
your main use cases through the conditional choosing of a menu item or keypress. Figure 4-6 
illustrates the use case diagram with the Main Menu use case. That use case represents the available 
main menu for the Report Case History and Report Criminal and windows of the commonplace book 
application. This diagram assumes that these two use cases are main transactions of the system. 
Usually, these use cases correspond to "documents" or windows in a multiple-document interface. 

 
Figure 4-6: The Main Menu Use Case and its «extends» Relationship  

The use of «extends» and «uses» relationships have two major effects on your use case model. First, 
it simplifies the model by removing conditional distractions and shared behavior. Second, it lets you 
measure the value of your system more accurately by representing the same behavior once instead of 
many times. 

The use case model structures your requirements into a straightforward representation of the system 
you need to build. The next step is to build the detailed use case that tells your architect and builder 
what he or she needs to do. 

 
Setting the Scene 
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The point of a use case description is to convey to an audience the meaning and behavior of the system that the use 
case represents. That can be as simple as a paragraph of text or as complex as a complete state model of the 
system. You need to use your judgment about the level of detail and formality in the use case. Most books that 
describe use cases [Jacobson et al. 1992; Harmon and Watson 1998] tend to rely on a simple description of a 
process: a use case story. I usually go one step further and include an activity diagram, mainly because my audience 
usually includes a tester. The test model for a use case usually is some kind of control or data flow model [Muller 
1996]. The activity diagram serves as that model given its representation of the branching control flow of the use 
case. 

The audience for a use case consists of at least four roles. 
First, you are your own audience. Knowing and exploring requirements gives you the big picture. Analyzing them 
systematically as you write down use cases crystallizes your thoughts and forces you to make connections that you 
would not otherwise make. 
Second, your team is your audience. Depending on the size of the system, you can develop use cases with a team 
effort. The other team members need to know what different parts of the system do, both to aid in understanding 
their requirements and to make it easier to reuse commonalties in the set of use cases. The use case is a good 
place to communicate the background and context that team members need to design and code your system. 
Third, your client is your audience. A use case is an excellent way to get the client to buy into the system you intend 
to build. They've given you their expectations, and you've explored their informal requirements. With the set of use 
cases for the system, you can go back to them and take them through scenarios in a low-fidelity prototyping process. 
This lets them understand what you think they think, and it also lets them express any concerns and to buy into your 
understanding of the system. 
Fourth, your organization is your audience, primarily in the role of reviewer. Chapter 5 goes into some detail on 
testing your use cases. A big part of that process is reviewing the use cases with fresh eyes. The easier you make it 
for a reviewer to understand your use cases, the more likely you will uncover problems and oversights. 

The form of the use case can vary widely depending on your orientation toward these audiences. Generally, you 
want to have a summary of the use case, a narrative and/or diagrammatic description of the details, and a clear 
statement of business rules and data elements to which the use case refers. 

Summaries 
The use case summary is a short paragraph that describes what the use case does. The paragraph should convey 
the essence of the use case, not the details. The purpose of the summary is to give the reviewer a quick 
understanding of the use case. This can be very useful: 

 It focuses the reviewer's attention on the essence of the use case by removing details that might 
confuse basic understanding. It does the same for you when you write the use case, often clarifying 
a fuzzy understanding of the basic purpose of the case. 

 It permits rapid understanding of a use case related to the one the reviewer is inspecting in detail. 
 It provides a text that you can use in situations that require a comment about the use case, such as 

a short report on the use cases or a comment in code that traces back to the use case. 

The Report Case History use case, for example, has this summary paragraph: 

The Report Case History use case builds a report of one or more criminal cases for a Consulting Private Detective 
using the Fact and Image Databases. For each case, the report contains a summary of the case, a list of people and 
organizations associated with the case, any objects (photographs, documents, sound or video recordings) relevant to 
the case, and a list of evidence (including analyses of the evidence) related to the case. 

The summary should mention the actors that communicate with the use case. In the Report Case History example, 
the summary mentions that the report is for a Consulting Private Detective and that it uses the Fact and Image 
Databases. 

For use cases that express commonalties or exceptions through «extends» and «uses» relationships, you should 
summarize the purpose and mention the shared nature of the case or the condition or conditions likely to raise the 
case. There are two goals you need to satisfy. First, the summary should tell the reviewer that the use case is not a 
complete transaction in itself. Second, prospective reusers of the use case (either in this project or in a later project) 
should be able to understand what the use case delivers for reuse. Here are two examples using the previous 
examples of the «extends» and «uses» relationships: 

The Identify Criminal use case provides shared behavior for more specific use cases such as Identify with Alias or 
Identify with Evidence. The use case starts with a list of identifiers for criminals created by the related use case. It 
then displays the name of the criminal, a picture, a list of aliases, a list of identification documents, and a brief 
summary of the criminal history of the individual. 
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The Could Not Identify Suspect use case extends other use cases with an exception meaning that the related use 
case could not identify a criminal. The use case occurs when the related use case queries the identity of a criminal or 
criminals from a database and comes up with nothing. 

You can optionally include a use case diagram with the use case, the actors that use it, and any use cases related to 
the case through «extends» or «uses» relationships. This can supplement the summary text with a picture. Some 
reviewers understand the use case relationships better if they see a graph; others prefer straight text. This difference 
leads into the way you present the details of the use case as well, through narratives and/or activity diagrams. 

Note 
  

You can also include background information in your summaries, though you should keep it 
short and sweet. Define basic terms, identify basic players, explain the fundamental concepts 
that a casual reader of the use case would need to understand the why of the use case. Did I 
say keep it short and sweet?  

Narratives 
The use case narrative is a series of text descriptions of the detailed steps in the use case. This usually takes the 
form of a numbered list of steps that alternate between the actor(s) and the system. The "system," in this case, is the 
software that implements the use case. 

There really aren't many rules for constructing these narratives. The primary objective is to be as clear as possible. 
As you write, think about the audience for the use case, and shape the text to their level of understanding of the 
events. If you find it difficult to describe what goes on in the use case in language comprehensible to your audience, 
you might want to back off and redo the use cases in your system to reflect better what needs to happen. Keep it 
simple. 
Also, you should stay away from describing specific user interface or system details, keeping the narrative as 
abstract as possible. This technique (essential use case analysis) pushes the user interface decisions into the design 
stage, leaving the requirements to deal only with the generic behavior of the application. This delayed commitment to 
an interface can save you a good deal of stress and bother when you start designing your user interface. On the 
other hand, sometimes you really do have user interface requirements because of early architectural decisions or 
even because of explicit client expectations. For example, if a high-up manager at Holmes PLC hands you a copy of 
a case history report and tells you they want it to look exactly like that with such-and-such changes, you should put 
the specific interface requirements into your use case. You should always probe a bit under these circumstances to 
make sure the client really wants that format. Propose some alternatives and listen carefully to the response. For 
example, I once was required to develop a report in a specific format. The format allowed the client to print the report 
onto a half-page form already printed by the company. After questioning, it turned out that we could dispense with 
the printed forms if the report writer could produce printouts of comparable quality, which it could. On the other hand, 
the basic format needed to stay the same; the people using the form had used it for years and didn't want to have to 
learn a whole new layout. 

In the end, if the client really wants a specific screen control or report format, you should make that a formal part of 
the requirements. 

If the use case makes explicit reference to the database, you can express the step using the database access 
language. For an SQL database, that means an SQL statement. For an OO database, it might mean C++ code or 
OQL statements. You should keep your SQL or OQL as generic as possible, using only ANSI/ODMG standard 
language for the same reason that you avoid specific user interface controls or formats. Each statement should form 
a complete step in the narrative and in the activity diagram of the use case. 
The use of SQL or OQL at this stage of development implies that you have a schema. As you iterate through 
creation of use cases, you will determine the classes of persistent objects the use cases require. Chapter 7 
discusses the UML static structure diagrams (diagrams of classes, objects, and associations) that represent these 
objects. You should develop these diagrams in parallel, or at least iteratively, while you develop your use cases. This 
approach gives you a basic schema, with object or table names and attribute or column names that you can use in 
your SQL and OQL use case steps. 

Using SQL or OQL in your use cases also gives you a clear picture of how your system will access the database. 
You can use such use cases during a design phase to understand more clearly how the system uses the database in 
terms of transaction processing and performance. 

Your narrative should refer to «uses» relationships directly in the steps that use the shared behavior. However, you 
should not refer to «extends» relationships at all in your narrative. The whole point of the «extends» relationship is to 
remove the extension from the main use case to simplify it. Putting it back into the narrative would therefore be 
counterproductive. Usually, you add a section at the end entitled "Extensions" that contains a list of the extensions. 
In each element of this list, you detail the conditions under which the extension extends the use case and refer to the 
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extension by name. You should identify the point in the narrative where the extension condition appears, but that's 
all. The reader can then look up the extension use case to see its details if needed. 

This narrative describes the Identify Criminal with Alias use case, in this case using the RDBMS/ORDBMS SQL 
approach: 

1. The Identify Criminal with Alias use case begins with the Consulting Private Detective asking the 
System to identify a criminal by entering an alias, a character string. 

2. The System looks up the criminal, returning the identity of the criminal (PersonID, Name), using 
this SQL statement: 
3. SELECT PersonID, Name 
4.    FROM Person p, Alias a 
5. WHERE p.PersonID 5 a.PersonID AND 
6.       Alias 5 :Alias 

7. The System uses the Identify Criminal use case to display information relating to the criminal's 
identity. This ends the transaction. 

The first step in this narrative tells you where the use case begins. For use cases relating to actors, this usually 
means identifying the actor and what the actor communicates to the system. Communications are either control 
("asking the system to identify a criminal") or data ("by entering an alias, a character string"). You can regard the 
data as parameters to the use case. This step starts the transaction. 

The second step in this narrative tells you what the system does in response to the user's request. In this case, it 
uses an SQL statement to describe the input (Alias, a "host variable"), the processing (a join of the Person and Alias 
tables on PersonID and a selection based on an equality comparison to the alias string), and the output (a projection 
of PersonID and Name). 

The third step identifies a «uses» relationship. This kind of narrative step identifies the other use case by name. It 
can also identify any special issues regarding the relationship. For example, you can intermingle the steps in the 
other use case with steps in this one. I generally have found this is counterintuitive, so I avoid this kind of 
relationship. This step also explicitly ends the transaction. You should try to end a transaction explicitly in only one 
place, the last step of the use case. Many use case designers will find that overconstraining because they want to 
leave the use case based on some conditional determination earlier in the sequence. It does clarify the logic of the 
use case a good deal to structure the logic with a single ending point. 

Note 
  

You do not mention «extends» relationships in this part of the narrative. The whole point of 
this kind of relationship is to get the other use case and the conditional logic involved out of 
the use case proper. 

In the second step, you could have used extended ORDBMS SQL or OQL to specify the query. For example, using 
an ODBMS, you could have a Boolean method on the Person object that returns true if the person has an alias that 
matches the input alias string. The method could use some kind of complex pattern-matching algorithm. Your OQL 
might look like this: 
SELECT p.PersonID, p.Name 
  FROM Person p 
 WHERE p.matchesAlias(:Alias) 

It's a good idea to keep the steps to a single SQL statement. This keeps the purpose of the step clear and the 
narrative easy to understand. The exception is when you have nested SQL statements in some kind of iteration, 
where you are doing the SQL inside the loop for each row from the outer SQL. 

You might also think about identification and realize that it is both a fuzzy process and one that can result in 
ambiguity. In database terms, with this specification, you can't guarantee that you will return only a single row or 
object from this query. The step should read, "The System looks up the set of criminals that match the input alias, 
returning the identity of the criminals (PersonID, Name), using this OQL statement." 

For the Identify Criminal use case, you have two choices for the first step. If the use case can stand on its own 
(usually a good idea), then you begin the use case just as for the previous one: 

1. The Identify Criminal use case begins with the Consulting Private Detective asking the System to 
identify a criminal by entering a person identifier (a unique integer for the person). 
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If the use case always extends another, and thus never interacts with an external actor, you need to state that in the 
first step. 

1. The Identify Criminal use case begins with another use case using it, passing it a unique person 
identifier (a unique integer for the person). This requests the System to display aliases, criminal 
history, and identification information for the criminal. 

You should also state this in the use case summary. 

The last part of the narrative is a section on extensions. In this section, you identify all the «extends» relationships for 
the use case and the conditions under which they occur. For example, it is possible that the alias you pass to Identify 
Criminal with Alias results in no criminal identifications. You can add an extension use case, No Criminal Identified, 
that displays an error message. In the extensions section, you add this paragraph: 

1. The No Criminal Identified use case extends the Identify Criminal with Alias use case when the 
query in step 2 fails to return any rows or objects. 

If your use case has conditional logic, often you can best express it through substeps. For example, the Identify 
Criminal use case step 5 conditionally displays information about the role of the person in a criminal organization: 

5. Display the role of the person in criminal organizations. Query the set of roles that the criminal 
plays with this SQL statement: 
6. SELECT p.Name, o.OrganizationID, o.OrganizationName,rt.ShortTyp 
7.   FROM Person p, Role r, RoleType rt, CriminalOrganization o 
8.  WHERE p.PersonID 5 r.PersonID AND 
9.        r.RoleTypeID 5 rt.RoleTypeID AND 
10.        r.OrganizationID 5 o.OrganizationID AND 
11.        p.PersonID 5 :PersonID 

a. If there are no roles for this person, display the text "<Name> has no known 
association with any criminal organization." 

b. If there are roles, for each role display the role's short type and the organization's 
name in this text: "<p.Name> plays the <ShortType> role in the <OrganizationName> 
criminal organization." 

You can refer to these steps as "step 5a" and "step 5b" in other parts of your narrative and in an activity diagram. 
You show loops in the same way, as multiple steps within a larger step. 
The use case is usually part of a larger system of models that include the class model and the interaction diagram. 
Depending on the level of detail you want at the requirements level, you can abstract the "things" in your use case 
narrative into a class model. You can connect the use case to it through interaction diagrams [Jacobson et al. 1992]. 
Chapter 7 goes into detail on using static structure models for database design. The section "Data Elements and 
Business Rules Summary" in this chapter suggests some ways to connect database elements with these other 
diagrams as well. As with other parts of the OO development process, you revise all these models incrementally and 
iteratively. As you design your class model, you will learn things about your use cases: what elements are missing, 
what things you could reorganize to take advantage of synergy between classes, and so on. You then can return to 
your use cases to make them better requirements models. You'll find a similar benefit in formalizing the narrative 
through UML activity diagrams. 

UML Activity Diagrams 
Every computer programmer knows the activity diagram as a "flow chart," though there are some differences in 
notation and semantics. You use the activity diagram to represent the control logic of the use case in a graphical 
format. This model also formalizes to some extent the control flow of the use case. You can use this control flow to 
structure system testing of the use case. Chapter 5 contains a detailed description of how this works. 

Note 

  

Activity diagrams are good at representing procedural flow of control. They do not handle 
situations with external or asynchronous events. If a use case must respond to external input 
other than through the initial state of the use case, or if it must respond to external, 
asynchronous events, you should use a UML statechart (a hierarchical state transition 
diagram). You generally use statecharts to model the behavior of objects and activity charts 
to model the behavior of individual methods or processes such as use cases. Both are 
excellent ways to create test models as they directly represent the flow of control. 
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Elements of the Activity Diagram 

The UML activity diagram reflects two of the basic control structures: sequence and condition. The sequence is the 
directed connection between the elements; a 

 
Figure 4-7: A Simple UML Activity Diagram  

condition is the equivalent of an IF statement. Figure 4-7 is a simple activity diagram. You can also represent 
iteration through a sequence that connects to an ancestral sequence element (an element already executed). 
The activity chart is a special case of the statechart [Rational Software 1997a]. Action states, the rounded rectangles 
in Figure 4-7, are states that represent an action with no internal transitions, at least one transition at the completion 
of the action, and potentially multiple transitions with guards or conditions. Transitions are the directed arrows in 
Figure 4-7. The action state corresponds to the process in a flow chart, and the transition corresponds to the flow of 
control arrow. You can show the guard conditions as labels on the transitions, or you can place a diamond on the 
transition and split it to show a decision, as in Figure 4-7. The decision format is closer to the flow chart and is better 
for understanding the conditional flow of control. The guard conditions must be Boolean (true or false) and cannot 
have associated events. 

Note 

  

Because the SQL language, and databases in general, support null values in a three-valued 
logic, it makes sense to allow a three-valued logic for these guards in use cases based on 
SQL processing. If you don't understand the concept of three-valued logic, consult a standard 
book on SQL [Groff and Weinberg 1994] or one of Chris Date's articles on the subject [Date 
1986, pp. 313—334]. Since most programming languages do not support a three-valued 
logic, this won't help much in translating your use cases into programming language code. It 
does help you to understand the result of an SQL query, however, and can flag potential 
problems with returning null values. On the other hand, if you are using OQL or another form 
of OODBMS logic based on C++ or Smalltalk, you probably should stick to the two-valued 
logic, as these languages don't support null values. 

In Figure 4-7, the use case starts in step 1. Step 1 has two possible transitions, one for the condition "guard 1" and 
one for the condition "guard 2." The transition based on guard 2 results in a further decision (a multiple-part 
predicate, for example) that requires doing step 1a if guard 3 is true and step lb otherwise. Steps 2 and 3 happen in 
parallel, which the branching line from step 1 shows. You must complete steps 2 and 3 (and possibly la or lb) before 
you can start step 4, the final step in the use case. 
Figure 4-8 shows the logic of the example from the prior section on "Narratives." This activity diagram isn't very 
complex, but it does immediately convey the basic structure of the use case. Each action state corresponds to a step 
in the use case. In this use case, the transitions are sequential and there are no conditional guards or decisions. You 
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can put the SQL or OQL into the action state, as Figure 4-8 illustrates, unless it is too extensive. The SQL directly 
and clearly expresses the content of the step. It also aids in understanding the test requirements of the use case. 

The Activity Diagram as Test Model 
A test model is a system model that represents the elements of the system of interest to testers. Usually, this means 
control. The two main forms of test model are the control flow diagram and the state transition diagram. The control 
flow diagram represents a system through its flow of control; the state transition diagram represents the states of the 
system and the possible transitions between states. Both help focus testers on system elements likely to fail, which 
is the whole point of testing. A system at rest does not fail, it just sits there. The system making a 

 
Figure 4-8: The Activity Diagram for the Identify Criminal with Alias Use Case  

decision about where to transfer control or which transition to make is a system with the potential to fail. 
Chapter 5 goes into detail on system testing and use cases. That chapter puts use cases into a context of system 
quality, showing how you can take advantage of the natural form of the use case to structure system testing. 

Data Elements and Business Rules Summary 
The final section of the use case lets you express the details of your database requirements. Your narrative and 
activity diagram have referred to data elements and constraints, perhaps in an informal way. This section gives you a 
place to collect your requirements to show the overall impact of the use case on the database. You can also use this 
section in counting function points to estimate complexity factors [Garmus and Herron 1996]. 

Expanding a bit beyond the database, you can also summarize the set of objects and operations that the use case 
uses. As the section "Narratives" mentioned, these elements find their expression in design-related diagrams such 
as the class diagram and interaction diagrams. Whether or not you decide to link your use cases explicitly to these 
diagrams, it is useful to summarize their use in the use case itself. 
Any data element to which your SQL or OQL statements refer should appear here, organized within their table, type, 
or class. The Identify Criminal with Alias use case, for example, refers to these data elements with Table 4-1. 
Business rules are constraints on the data or operations. Use cases mention both simple and complex constraints 
because the use of the data is the context in which such constraints usually apply. Often, however, your design will 
move these constraints into the database as triggers or constraints in the database schema. Regardless, the use 
case specifies the rules to ensure that the point of view of the user of the system comes through to the design. Since 
multiple use cases impose different rules on the data, the database design may reflect the input of several use 
cases, not just one. Sometimes the business rules even conflict between different use cases, making it necessary to 
design negotiation layers to handle the conflict. The source of these business rules is the use case narrative. Again, 
to make it easy for the user and designer to understand the rules, placing them in a summary is very useful. 

For example, a simple rule is that a Person must own an Alias. That is, there is a foreign key constraint that requires 
the Alias to have an associated PersonID to identify the person. PersonID is therefore part of the primary key of the 
Alias table as well as being a foreign key to the Person table. What about an alias that you know about but that you 
can't yet link to a person? For example, Sherlock Holmes once dealt with a very secret informer [VALL]: 

Table 4-1: Identify Criminal with Alias Use Case Data Elements Table  
Table  Column  Comments  

Person PersonID Unique integer 
that identifies 
the person 

  Name The composed 
name of the 
person 
(concatenation 
of first and last 
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names) 

Alias PersonID A foreign key to 
Person.PersonI
D 

  Alias An alias name 
of a person; the 
actor passes 
this alias in to 
use to look up 
the person 

 

"Porlock, Watson, is a nom-de-plume, a mere identification mark; but behind it lies a shifty and evasive personality. 
In a former letter he frankly informed me that the name was not his own, and defied me ever to trace him among the 
teeming millions of this great city." 

…"Did you never trouble to see who called for [these letters]?" 

"No." 

The inspector looked surprised and a little shocked. "Why not?" 

"Because I always keep faith. I had promised when he first wrote that I would not try to trace him." 

"You think there is someone behind him?" 

"I know there is." 

"This professor that I have heard you mention?" 

Given the circumstances, perhaps the business rule about linking each alias to a person is getting in the way. This is 
a fairly common design problem. You could dispense with the business rule and have aliases that don't correspond 
to people. Unfortunately, that would mean that querying people through aliases would simply miss Porlock, since 
there would be no associated person row. An alternative is to create a "fake" row in the Person table for an as-yet-
unknown person. Taking the OO approach, you could create a subclass of Person called UnknownPerson that would 
serve this purpose admirably. The object could behave just like a regular person, but the name would be "Unknown" 
or something like that. When the consulting detective figures out who the person is, the UnknownPerson mutates 
into a person and carries its aliases with it. 
Another problem: What if "Fred Porlock" is a nom de plume for several people, not just one Expressing a strong link 
between a person and an alias would make this impossible. You would need to enter the alias several times, once 
for each person you know uses it. A better design solution is to create a many-to-many relationship between Alias 
and Person with a constraint that there must be at least one row in the relationship for each Alias row. This is an 
additional business rule that should appear in your use case business rule summary. 

Here is the business rule summary: 

A person may have several aliases. Several people may use an alias. An alias must refer to at least one person, 
even if you don't know that person right now. 

If you wish, you can express business rules in SQL, OQL, or an equivalent logical language. Unless the logic is 
critical, it's usually best to leave it in a simply stated natural language format that your audience can easily 
understand. Leave it to the class model to express the constraints formally. 

 
Summary 
Before even starting to develop your use cases, you develop a model of who uses them: actors. Actors provide the 
context for the system, the "who" that motivates what you're doing. Actors can be either stakeholders or external 
systems such as databases that you access. 
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Use cases themselves represent the transactions (logical units of work) that the actors perform. You can break the 
system down using the «extends» and «uses» relationships to create subatomic use cases that you can share 
between transactions. Each use case contains a summary, a narrative description, an optional activity diagram, a 
table of data elements that the use case uses, and a set of business rules that constrain the use case. 
The use case is a critically important part of any database development project. A software system, however, like a 
play, does not consist of scenarios alone. The actors, the props, the stage, the playbook, the audience all play their 
part in the experience. The next chapter briefly discusses the role of use cases and requirements in testing, 
preparing you for the rest of the book, which focuses on design. 

 
Chapter 5: Testing the System 
It is commonly said, and more particularly by Lord Shaftesbury, that ridicule is the best test of truth. 
Wit and Wisdom of Lord Chesterfield, Epigrams  

Overview 
The quality of a thing reflects the value of the work that goes into it. A well-done steak is, well, a mistake—unless 
that's what the customer wants. The trick to getting a high-quality database application system is not to load large 
amounts of data in the wild hope that, by brutalizing the system, you will find out what's wrong with it. Instead, you 
must compare the end result of your effort to the needs and wants of your customers. In this short chapter, I hope to 
cover some of the techniques I've learned over the years for testing databases against requirements. 

There are two parts to such testing: the database and the requirements. If you are going to hold the database design 
and development accountable for meeting a set of requirements, you must be reasonably sure that the set is correct 
and complete. That means that you must verify your requirements in the same way that you verify your design and 
code. As with all testing, this is not a one-time, do-or-die testing effort that you must complete before moving on to 
design. You do it over and over as your design and implementation progress, always questioning, always testing the 
limits of your requirements. You start with presenting the use cases to your clients and getting their feedback on 
completeness and accuracy of the use cases as statements of their requirements. As your design and 
implementation proceed, you find parts of the use cases that need revision, missing use cases, and different ways of 
thinking about the problem (as opposed to the solution). These changes lead you back to validation through more 
client interviews and observations, always subject to the need of your project to complete its tasks on schedule 
within a reasonable budget. Life is a trade-off. 

On the other side of the equation, the validation process compares the end result of a project increment against its 
requirements. System validation testing of the database against its requirements is the critical test your project must 
pass to deliver a working database application. The section "Systems and Truth" in this chapter shows you how to tie 
your end result back to requirements through testing. 

 
Requirements and Truth 
The main risk in project requirements is that they do not accurately reflect the real needs of project 
stakeholders. Verifying requirements means reducing this risk below your tolerance for failure. In practice, 
this means getting agreement from the stakeholders that the use cases accurately reflect what they want 
from the system. A requirements review is a meeting for the purpose of verifying the system requirements, 
thus reducing the risk of failure. 

Your use cases have two audiences: the users of the system and the designers of the system. The users 
are the source for the requirements, while the designers are the "consumers" of the requirements. Both 
must participate in a requirements review through capable representatives. You should also include subject 
matter experts who can objectively comment on the correctness and completeness of the use cases. You 
may also have other stakeholders (upper management, government regulators, labor unions, and so on) 
that need to participate at various times. 
Warning 

  

Conducting requirement reviews with only people from your project participating is a 
waste of time. You must involve stakeholders that will actually use the system in such 
reviews, or you will not truly validate your use cases. I was involved in a largish 1000-
function-point project that proceeded with only internal reviews of the use cases by the 
programming team. They found all the cases where objects were never deleted and all 
the instances where the use cases were inconsistent with each other. They did not find 
any features missing. Talking to customers revealed the need for at least five major use 
cases that no one on the programming team even understood, much less perceived as 
missing. Internal reviews are good at checking consistency, but not at validating the 
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connection between your use cases and the real world, which is the real point of such 
reviews. 

The goal of the review is to discover problems with the requirements. A requirements review must deal with 
all of these types of problems [Freedman and Weinberg 1990, pp. 294–295]: 

 Completeness: Are all the requirements there that must be there? Are any database 
elements or business rules missing? 

 Correctness: Are there any errors in the requirements? Are all the data element definitions 
correct? 

 Clarity: Does any ambiguity remain in the requirements? 
 Consistency: Are there any conflicts between requirements? Have you stated all trade-off 

assumptions clearly? Are there any data elements that will conflict with each other? Are there 
business rules that contradict one another? 

 Relevancy: Do all the requirements really apply to the problem and solution? Are all data 
elements really necessary? Do some data or business rules apply only to things outside the 
scope of the current project? 

 Testability: Will it be possible to determine whether the end product meets each 
requirement? Given a working database schema, will it be possible to validate the design and 
construction of the database against the requirements? Will the database be so large that 
testing it will be intractable with current testing tools? 

 Traceability: Will it be possible to trace all features back to the source requirement? Do you 
have tools and procedures in place to link database deliverables to requirements? 

 Feasibility: Is each requirement possible given the time, resources, and tools available? In 
particular, are there requirements for the schedule and budget that conflict with the feature 
requirements? Can the database technology you've chosen handle the performance and 
storage requirements? 

 Necessity: Do the requirements include just the detail needed, leaving out unnecessary 
specification of design details? Are there data elements in the requirements that aren't 
necessary for meeting the requirements? Do you have elements or rules in your use cases 
that exist for "compatibility" or that are there "just in case we'll need them in the future"? Take 
them out. They'll just confuse your testing. 

 Manageability: Is the set of use cases capable of controlled change? Can you modify a 
requirement without any impact on the others? Do you have a change control process for the 
database schema and/or data in the database? 

Systematically examining your use cases in these categories can yield a surprising number of problems. 
The extent to which you resolve the problems depends on both the contribution of the problem to the 
overall risk of failure and your tolerance for such risk. For example, you may find it possible to leave a 
requirement ambiguous by deciding to fix it later, after you have design experience with the system. Or, 
you might find that the requirement's value is small enough that you can tolerate the system not meeting it 
(a "nice-to-have" priority on the requirement). 

 
Systems and Truth 
Testability doesn't seem very important, just one of many things on the checklist for your use cases. 
However, this factor is actually one of the most critical because your use cases form the basis for your 
system testing. Most of the other factors you must review relate as well to testability. For example, an 
incorrect requirement means a requirement you can't test, as does an ambiguous requirement. 

A system test is a test of the system as a whole, as opposed to tests of the pieces that make it up [Muller 
1996; Muller, Nygard, and Crnkovic 1997; Siegel and Muller 1996]. Object or unit tests test individual code 
units (classes and methods), and integration tests test subsystems that don't stand on their own as working 
systems. These tests should comprise the bulk of your verification efforts and can uncover most serious 
bugs long before they get to system test. When you deliver a working version of your system, your testing 
becomes a different thing. 

There are several different kinds of system test [Muller, Nygard, and Crnkovic 1997]: 
 Validation/acceptance test: A test that validates the system against its requirements; an 

acceptance test is when the customer plans and executes the tests, as opposed to the 
developer of the system 

 Performance test: A test that verifies specific performance requirements and that serves as a 
performance benchmark for future iterations of the system 
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 Configuration test: A test that verifies the proper operation of the system under different 
hardware and software environments 

 Installation test:A configuration test that verifies installation procedures under an array of 
different environments 

 Field test: A configuration test that tests the system in the field using real customer data 
 Recovery test: A test that verifies the proper recovery of system data after a disabling failure 
 Security test: A test that verifies the ability of the system to prevent undesirable intrusion or 

access to data by unauthorized users of the system 
 Stress test:A test that verifies the ability of the system to handle saturationlevel use (many 

users, many transactions, large volumes of data, and so on); the objective is to observe how 
the system fails, gracefully or disastrously 

A test model is a system model that abstracts the characteristics of the system under test that are of 
interest to the tester [Siegel and Muller 1996; Muller 1998]. For example, the source code of a C++ 
member function is not a test model for the function; its purpose is to represent the operation of the 
function in terms a programmer can understand and that a compiler can translate into machine code. A test 
model is a control flow or state transition model that describes the flow of control through the member 
function, which is what interests a tester. The actual program statements don't interest the tester, only the 
points at which decisions can go wrong or loops can go on endlessly. 

The use cases are the test model for your validation/acceptance system test. They can include 
performance and security requirements or other capability requirements, but usually the use cases do not 
formally model these characteristics of the system. If they do, then you must validate the system against 
these requirements just as with any other requirements. Otherwise, the use cases are irrelevant to the 
other kinds of system test. Use cases represent the objects of interest to a validation/acceptance tester: 
the steps that an actor goes through to use the system. 

What this means in practice is that you use the narratives or the activity charts in your use cases to build 
your test cases. A test case is a single instance of the test model. For a use case, that means a test case 
is a scenario, a specific instance of the use case. If you use activity charts to model your use case, you can 
achieve branch coverage of the use case by having a single test case for each possible path through the 
flow chart. You can generate additional test cases by developing equivalence classes of data inputs to the 
use case. 
The database affects system testing in several ways. First, the database often serves as a test bed for your 
system. A test bed is a configuration of data that the system uses in a test case or test suite (a collection of 
test cases related to one another in some way). The test bed you develop must enable you to exercise the 
right level of testing of your test models. In other words, your test data must permit thorough exercise of 
your use cases. 
Note 

  

There are several test data generation tools on the market. Let me be blunt. They don't work 
for me. Especially with the style of design this book presents, these tools are simply not 
capable of producing data that looks reasonable taking into account all the associations, 
inheritance generalizations, and other semantic aspects of the data. For example, if you have 
a table with a foreign key to a table with a foreign key to a superclass table, which in turn has 
a foreign key to an association class table with foreign keys to three other tables, each of 
which have aggregate composition associations to children tables, it's hopeless for these 
tools. They don't understand the connection at the semantic level, only at the structural level. 
Random data generation just doesn't make it for these test beds. I have failed to generate 
effective test beds in every single case where I've tried to use these tools on a database of 
any complexity. 

Second, the database often contains behavior as well as data, especially for OODBMS and ORDBMS-
based products, but increasingly even in RDBMS-based products. Stored procedures, triggers, methods, 
and operators all perform specific elements of the system use cases on the database server rather than on 
the application server(s) or clients. Database testing then begins to look much like any kind of system 
testing, not just data testing. 

Third, the database may contain data you integrate from different sources. The data itself becomes part of 
the system under test. For example, Holmes PLC integrates multimedia documents and objects, police 
files, fingerprint records, and DNA sample profiles into the database. These data objects are as much a 
part of the system as the code that displays it. If your data is dirty, your system will fail to achieve its 
purpose. Data testing is thus an essential part of constructing the database-centric application system. It 
comprises both testing the data against the business rules (hint: don't disable integrity constraints on data 
loading, then forget to turn them back on) and testing data accuracy and content for correctness. Random 
sampling is often the best way to verify content. 
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In any event, getting your use cases right is critical for adequate system testing. Since system testing 
comes after delivery of the system, you must also keep your use cases up-to-date. If you let them diverge 
from your current understanding of the requirements as you iterate through design and construction, you 
will find it very difficult to develop effective validation test cases during system test. You must also feed 
back changes to the use cases into your test bed so that it accurately reflects the requirements of the 
system. 

 
Summary 
Your main risk at this point is that your requirements do not reflect the real needs of your stakeholders. To address 
this risk, you must verify requirements with a review of the use cases. Such reviews should involve both team 
members and external stakeholders. 

You must also make sure that requirements are testable. Preparing for the system validation test that validates the 
finished system against its requirements means developing both test models and test beds that you can use in such 
tests. As always, this is an iterative process that requires revisiting the test models and test beds as your 
requirements change throughout the project. 
Now that you are comfortable with the whys of the system, it is time to turn to the how: database design. 

 
Chapter 6: Building Entity-Relationship Models 
The excellency of every art is its intensity, capable of making all disagreeables evaporate, from their being in close 
relationship with beauty and truth. 

John Keats, to T. and T. Keats, January 13, 1818 

Overview 
Over the last 20 years, the intense art of data modeling has grown and changed with the needs of designers, though 
not perhaps in beauty and truth. In today's database design world, the dominant method of modeling information is 
the entity-relationship (ER) diagram. While I am proposing to do away with this method, or at least to expand its 
capabilities greatly, you cannot design databases without a familiarity with the techniques of ER diagramming. If for 
no other reason, you'll need to explain yourself to those who have exposure only to ER techniques. The source of 
many of the techniques that the UML offers originate in ER modeling. Understand ER models, and you are more 
than halfway to understanding object models. In particular, this chapter introduces some of the really basic modeling 
concepts that you use in data modeling of whatever variety. 

This chapter briefly surveys ER diagramming and data modeling without going into full detail on design methods. The 
following chapters go into great detail on modeling techniques using UML. Usually, the comparison to ER models is 
easy to make; the later chapters explicitly mention any great departures from things that ER models do. This chapter 
introduces you to the basic data modeling concepts through ER diagrams, and the following chapters then show you 
how to use UML to accomplish the same things in a broader, OO context. 

First, some history. Peter Chen invented the ER diagram in the early days of relational databases to model the 
design of those databases from a more abstract perspective [Chen 1976]. At the time, relational databases 
contended with network and other types of databases, particularly in academic research. Chen wanted a way to 
represent the semantics of the data model that would unify these database models, so he invented ER models to do 
exactly that. 

Ten years later, ER modeling was becoming broadly used, but many competing forms emerged as the various 
communities that needed database design tools began to address those needs. A major leap forward came when 
Teorey and his coauthors proposed the extended ER model in 1986 [Teorey, Yang, and Fry 1986]. Because this 
paper coincided with the rise of the CASE tool as the next silver bullet, it became a standard through these tools. 
The extended ER model included generalization (inheritance) as a major extension to Chen's original model. The 
extensions came from the same work on semantic networks that informed the rise of the original OO design and 
programming methods. 

Several other models became current in different regions of the world. Europeans focused on Natural-language 
Information Analysis Method (NIAM) and data modeling techniques based on it, while Americans continued to 
develop variations on ER diagrams. In the 1990s, the information systems industry began to adopt widely two such 
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variations: IDEF1X [Bruce 1992] and Information Engineering dialects, often known as "crow's-foot diagramming" 
[Everest 1986]. 

Note 
  

These references may seem a bit long in the tooth for the fast-moving software industry. 
While I'd like to be able to refer you to more recent innovative training materials on these 
techniques, there aren't any.  

About the same time, the first stirrings of the OO world began to suggest ways to use OO methods in database 
design. The developers of the Object Modeling Language (OML) published a paper that described how you might 
use OML to design databases [Blaha, Premerlani, and Rumbaugh 1988] and followed it up recently with a 
comprehensive book [Blaha and Premerlani 1998]. OML object modeling itself derives from ER modeling 
[Rumbaugh et al. 1992, p. 271], as does the Shlaer-Mellor approach [Shlaer and Mellor 1988]. Since much of the 
work in OO modeling had its roots in data modeling, the fit with database design was fairly good. People began to 
experiment tentatively with these techniques, but because of the slow adoption rate of OO, the techniques did not 
become popular. As OO adoption speeds up, that is changing quickly, as evidenced by the techniques in this book. 

So what exactly is entity-relationship diagramming, and what can it do for you? 
 

Entities and Attributes 
An entity is a data object. You can get quite baroque about terminology if you go into this formally. Briefly, you have 
to distinguish between a particular thing, a set of things with similar properties, the definition of that set, and the set 
of such definitions. When you see the word "entity" in a database design book, it generally refers to the definition of 
the set of things. It could potentially refer to a particular thing or even to the set of particular things. Other names for 
particular things include entity instance, entity occurrence, object, tuple, or row (for the relationally inclined). Other 
names for sets of things are entity set, result set, object collection, extension, relation, or table. Other names for the 
definitions are entity type, intension, object type, class, relation (just to be confusing), or relvar (short for relational 
variable, Date's formal term for this concept). Other names for the set of definitions are schema, database (very 
inexact usage), data model, or even database design. 
In practice, you use the term "entity" to refer to the rectangle in an entity-relationship diagram [Teorey 1999]. 
Formally, this is a model of the intensional definition of a set of objects. The extension of the entity is the set of 
objects in the database that the entity models. Figure 6-1 shows a Chen ER entity, a rectangle with a name. The 
circles connected to the rectangle are the attributes (properties, columns) of the entity. 

The entity Person consists of objects that all have the properties PersonID, Name, Sex, DateOfBirth, Height, Weight, 
MaritalStatus, and Comment. Name is a complex attribute that consists of a series of attributes (Honorific, 
FirstName, MiddleName, LastName, and Suffix). All of these attributes have values for each instance of the entity 
(each person). The underlined attribute PersonID is the identifier or primary key for the person, a value that uniquely 
identifies each object. 
Figure 6-2 shows the IDEF1X version of the Person entity. The entity is a box with its name over the top of the box. 
Inside the box appear the same attributes. The box has two sections. The top section contains all the attributes of 
the primary key (the identifying attributes). The lower box contains all other attributes. This format consumes quite a 
bit less space than the attribute circleapproach. It is also quite close to the UML class in format, as Chapter 7 will 
demonstrate. 
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Figure 6-1: A Chen Entity and Its Attributes  

 
Figure 6-2: An IDEF1X Entity and Its Attributes  

Note 

  

In the IDEF1X approach, there is no way to show complex attributes. IDEF1X shows 
attributes in first normal form, meaning that there are no internal components in an IDEF1X 
attribute. You must model the complex name as a separate entity, then relate it to the Person 
through a relationship. As you will see in Chapter 7, UML has a similar requirement, but it 
comes from a different source: encapsulation of the internal structure of objects. See Chapter 
11 for more information on normal forms.  

 
Relationships 
The other half of the ER diagram is the relationship. A relationship is a model of the association between 
objects of one or more different entity types. You can do the same kind of formal language expansion for 
relationships that appeared in the above section "Entities and Attributes" for entities. Relationships show 
how each entity connects to other entities. They correspond to mappings between attributes of the different 
entities. These mappings can be objects in their own right, having properties and primary keys (more on 
that later in the section "ER Business Rules"). Figure 6-3 shows two entities, Person and 
CriminalOrganization, mapped to one another with a relationship "plays a role in." 
The ER relationship is omnidirectional; that is, each entity relates to all the other entities in the relationship 
and can "see" those entities. Each side of the relationship (the line connecting the diamond to the 
rectangle) is a role, the function of the entity in the relationship. You can name each role for clarity, though 
you need not. Conventionally, you use verbs for relationship and role names and nouns for entity names. 
You then construct sentences with the appropriate subject and object. 
Figure 6-4 shows the relationship between the Person entity and the Identification entity. From the person's 
perspective, a person is identified by a set of identification papers. From the identification perspective, an 
identification identifies a person. The person-side role name is therefore "is identified by," while the 
identification-side role name is "identifies." This active-passive mode naming is very common, though 
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certain kinds of relationships evade such easy naming. You can choose to name the relationship with one 
or the other role name or a separate name that makes sense in the context. In the case of Figure 6-4, the 
relationship is "identifies," which makes sense in the context. 

 
Figure 6-3: A Relationship between Two Entities  

 
Figure 6-4: Roles in a Relationship  

Note 

  

A common trap is to fall into the uniqueness fallacy when naming roles. For years, all names 
in a database had to be unique. There was no concept of scope, or name space. All database 
systems now let you scope most names to an appropriate level in the schema, so there is 
really no reason to make all attribute names unique. Role names (which may correspond to 
attribute names in the relational table or class) need not be unique either. The point of the 
role name is clarity: what the relationship means in the context of the entity. "Has" is often 
good enough, or you might want to include a noun object ("has an address," for example, in 
the relationship between Person and Address). In OO design, encapsulation upgrades this 
feature to a principle; names within a class should reflect the perspective of the class, not the 
unique names of all the other classes in the system. As you will see in Chapter 7, another 
way to think of role names is as class property names, which are of necessity scoped to the 
class and therefore unique only within the class.  

IDEF1X dispenses with the diamonds and represents the relationships with just a labeled line. The crow's-
foot notation similarly represents relationships. Figure 6-5 shows the "identifies" relationship in those 
notations. 
Figure 6-6 illustrates a special relationship. The recursive relationship relates entity objects to others of the 
same type. In this example, you want to model the relationship between criminal organizations. A criminal 
organization can be a part of another criminal organization, or indeed several such organizations. Figure 6-
6 shows this relationship in Chen, IDEF1X, and crow's-foot notations. 
A relationship can have properties of its own in addition to the entities that it relates. For example, you 
might want to have an attribute on the "plays a role in" relationship in Figure 6-3 that names the role (Boss, 
Underboss, Lieutenant, and so on). This feature of ER diagramming expands the semantics of the 
relationship to considering the relationship as an object in its own right with its own properties. The classic 
example of this is marriage. A marriage is a relationship between two people that has legal properties as 
an object. You can model these objects as entities, but they are really relationships with all the associated 
semantics of relationships. 
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Figure 6-5: The "identifies" Relationship in IDEF1X and Crow's-Foot Notations  

Figure 6-6: The Recursive Relationship in Various Notations  

A relationship has several properties of interest to the database designer: 
 The number of objects that can participate in a role 
 The number of objects that must participate in a role 
 The number of entities that participate in the relationship 
 Whether the relationship is strong (independent) or weak (dependent) 

These properties are the major way an ER diagram defines business rules, the subject of the "ER Business 
Rules" section that follows. Every dialect has a different way to express these constraints. First, however, 
there are some extensions to ER modeling that introduce a different kind of relationship: a semantic one. 

 
Semantic Relationships: Subtyping and Aggregation 
During the 1970s, there were several strands of software research that cross-pollinated each other with ideas about 
the semantic relationships between data structures. The term "semantic" means of or relating to the meaning of an 
object, as opposed to its structure (syntax) or its use (pragmatics). Chen's ER notation introduced part of this 
background data theory by integrating relationships and their constraints as abstractions that made a valuable 
modeling contribution. Later ER notations went even further, introducing the concept of subtyping [Teorey, Yang, and 
Fry 1986] and aggregation [Bruce 1992]. 

Tip 
  

You can usually do a perfectly good database design using ER diagramming techniques 
without worrying much about subtyping and aggregation. Once you start moving in the direction 
of OO design with UML, however, you will find these issues much more important.  

Subtyping is also known by several other names: generalization, inheritance, is-a, is-a-kind-of, or subclassing. Each 
comes from using the basic concept of generalization in different contexts. The generalization relationship specifies 
that a supertype generalizes the properties of several subtypes. In other words, the supertype contains the 
properties that the subtypes share, and all subtypes inherit the properties of the supertype. Often the supertype is 
purely an abstract type, meaning that there are no instances of the supertype, just of the subtypes. 
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Note 
  

Chapter 7 goes into much more detail on inheritance, which is a fundamental property of 
class modeling. It also discusses multiple inheritance (having multiple supertypes), which you 
never find in ER models, or at least I haven't observed it in the ER salt marshes I've visited.  

Figure 6-7 illustrates a subtype relationship expressed in IDEF1X notation. An identification is an abstract type of 
object that identifies a person, and there are many different kinds of identification. The subtype hierarchy in Figure 6-
7 shows an additional abstract subtype, identifications that have expiration dates (passports, driver's licenses, and 
so on), as opposed to those that do not (birth certificates). 
You can add mutual exclusivity as a constraint on this relationship as well [Teorey, Yang, and Fry 1986; Teorey 
1999]. If the subtypes of an entity are mutually exclusive, it means that an object or instance of the entity must be 
precisely one of the subtypes. The identification hierarchy represents this kind of subtyping. You can't have an 
identification document that is simultaneously a passport and a driver's license, for example. If subclasses are not 
mutually exclusive, then the subtypes overlap in meaning. You could imagine a document that would be 
simultaneously a passport, driver's license, and birth certificate, I suppose. A better example would be an 
organization that is both a criminal organization and a legal company, a very common situation in the real world. The 
underlying reality of this way of looking at subtypes is as overlapping sets of objects. Mostly, you want to avoid this, 
as it makes the objects (rows in the database) interdependent and hence harder to maintain through changes. On 
the other hand, if the underlying reality really does overlap, your modeling should reflect that. 
Finally, you can constrain the generalization relationship with a completeness constraint [Teorey, Yang, and Fry 
1986; Teorey 1999]. If the subtypes of an entity are complete, it means that an object of that kind must be one of the 
subtypes, and that there are no additional (unknown) subtypes. This constraint lets you express the situation where 
your subtypes are a logical division of the supertype that exhaustively covers the possibilities. Descriptive objects 
such as identity documents are almost never complete. Usually, this constraint applies to divisions that you make to 
handle conceptual or abstract categorizations of the data, such as grouping organizations into the categories of 
criminal, legitimate, and "other." Having the "other" category makes this set of subtypes complete. 

 
Figure 6-7: The Identification Subtype Hierarchy Using IDEF1X Notation  

Aggregation links two entities in a relationship that is tighter than the usual relationship. The aggregation relationship 
is often called a "part-of" relationship, because it expresses the constraint that one entity is made up of several other 
entities. There is a semantic difference between being a part of something and something "having" something else 
[Booch 1994, pp. 64—65, 102, 128—129; Rumbaugh et al. 1992, pp. 57—61; Teorey 1999, p. 26]. 
The most common situation in which you find aggregation useful is the parts explosion, or more generally the idea of 
physical containment. A parts explosion is a structural situation where one object is made up of a set of other 
objects, all of the same type. The parts explosion thus represents a tree or graph of parts. Querying such a tree 
yields the transitive closure of the graph, the collection of all the parts that make up the tree. 
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Note 

  

The parts explosion or transitive closure is a hard problem for relational databases. Some 
SQL dialects, such as Oracle SQL, have operators that do this kind of query (CONNECT BY), 
but most don't. As a result, SQL programmers generally spend a lot of time programming the 
retrieval of these structures. Identifying an aggregate thus tells you interesting things about 
the amount of work involved in your application, at least if you're using a standard relational 
database.  

Holmes PLC is as much interested in parts as in wholes: 

He passed close beside us, stole over to the window, and very softly and noiselessly raised it for half a foot. As he 
sank to the level of this opening, the light of the street, no longer dimmed by the dusty glass, fell full upon his face. 
The man seemed to be beside himself with excitement. His two eyes shone like stars, and his features were working 
convulsively. He was an elderly man, with a thin, projecting nose, a high, bald forehead, and a huge grizzled 
moustache. An opera hat was pushed to the back of his head, and an evening dress shirt-front gleamed out through 
his open overcoat. His face was gaunt and swarthy, scored with deep, savage lines. In his hand he carried what 
appeared to be a stick, but as he laid it down upon the floor it gave a metallic clang. Then from the pocket of his 
overcoat he drew a bulky object, and he busied himself in some task which ended with a loud, sharp click, as if a 
spring or bolt had fallen into its place. Still kneeling upon the floor, he bent forward and threw all his weight and 
strength upon some lever, with the result that there came a long, whirling, grinding noise, ending once more in a 
powerful click. He straightened himself then, and I saw that what he held in his hand was a sort of a gun, with a 
curiously misshapen butt. He opened it at the breech, put something in, and snapped the breech-block. Then, 
crouching down, he rested the end of the barrel upon the ledge of the open window, and I saw his long moustache 
droop over the stock and his eye gleam as it peered along the sights. I heard a little sigh of satisfaction as he 
cuddled the butt into his shoulder, and saw that amazing target, the black man on the yellow ground, standing clear 
at the end of his foresight. For an instant he was rigid and motionless. Then his finger tightened on the trigger. There 
was a strange, loud whiz and a long, silvery tinkle of broken glass. At that instant, Holmes sprang like a tiger on to 
the marksman's back, and hurled him flat upon his face. 

… Holmes had picked up the powerful air-gun from the floor, and was examining its mechanism. 

"An admirable and unique weapon," said he, "noiseless and of tremendous power: I knew Von Herder, the blind 
German mechanic, who constructed it to the order of the late Professor Moriarty. For years I have been aware of its 
existence, though I have never before had the opportunity of handling it. I commend it very specially to your 
attention, Lestrade, and also the bullets which fit it." [EMPT] 
Figure 6-8 illustrates the basic parts explosion in IDEF1X notation. Each gun component is a part of another, with the 
top-level ones (the air-gun in the above quotation, for example) having a null relationship (no parent). This structure 
represents a forest of mechanical trees, a one-to-many relationship between mechanisms and parts. There is a case 
for making the relationship many-to-many, representing a forest of graphs or networks instead of hierarchical trees. 
The aggregation adornment is the diamond shape at one end of the relationship line. The relationship is strong, or 
"nonidentifying," so the entity gets a foreign key attribute that is not part of the primary key ("is part of") and a dashed 
line (see the later section "Strong and Weak Relationships" for more information about nonidentifying relationships). 

While aggregation can be interesting and useful, it seldom has many consequences for the underlying database 
design. The main consequence is to couple the design more tightly. When you design a system, you break the 
system into subsystems, uncoupling the elements as much as possible. This permits the reuse of the elements in 
different situations. When you identify an aggregate, you are usually saying that you can't separate the aggregate 
from the entity it aggregates. That generally means you can't break the two apart into separate subsystems. Often, 
genericity (templates or generics) provides a way to gain reuse while still allowing for the tight coupling of the entities 
(as instantiated templates or generics). As ER diagramming has no concept of genericity, however, the concept isn't 
of much value in ER aggregation situations. 

Also, in OO design, aggregation is a kind of abstraction, just like inheritance. In this case, you are abstracting and 
encapsulating the aggregated objects under the aggregate. Usually, your aggregate will have operations that 
manipulate the encapsulated objects that make it up, hiding the structural details. For example, to search a tree, you 
create an operation that returns an iterator, which in turn lets you walk the tree in some well-defined order. In design 
terms, if you don't want this level of encapsulation, you shouldn't designate the relationship as an aggregate. 
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Figure 6-8: The Air Gun Parts Explosion  

Note 

  

You can see almost any component relationship as aggregation if you stretch the semantics 
enough. You can call the attributes of an entity an aggregation, for example: the entity is 
made up of the attributes. While this may be possible, it isn't useful for design. You should 
limit your use of aggregation to situations such as parts explosions or physical containment, 
where the result means something special for your design and code. This is especially true 
when it means something for your database structures, as in the case of the criminal 
organization tree.  

 
ER Business Rules 
Business rules are any logical conditions that must be true at the end of a transaction. Broadly defined, a 
business rule is any policy that you want to impose on your data handling, no matter how complex. From 
the database design perspective, these business rules fail into two categories: integrity constraints and 
database policies. There are other business rules that you enforce at the application level, such as process 
flow requirements and other policies that affect transient data. Those rules do not concern the database 
designer unless they have some impact on transactions. In an object system, there is usually an object 
model or domain layer that represents the system's objects, and that layer of the application manages the 
business rules. 
Note 

  
The GUIDE International Business Rules Project Final Report does an excellent job of 
defining formally the concept of business rules [GUIDE 1997]. You should consult that 
document to get a full discussion of all the issues with business rules.  

An integrity constraint is a logical relationship between entities that imposes some restriction on those 
entities. The concept directly corresponds to the relationship in the last section. A database policy is a 
constraint independent of particular entities that the database must enforce, such as security or physical 
layout constraints. In the context of ER diagramming, you find three basic constraints: multiplicity, the 
relationship itself ("foreign key constraint"), and primary key. You also can constrain how foreign keys and 
primary keys interact; ER diagramming does this using strong and weak relationships. You can also 
specify domain constraints on the kind of data that an attribute represents. 

Multiplicity 
Multiplicity is the number of objects that can participate in a role of a relationship. That is, multiplicity 
constrains the range of the number of objects that relate to other objects through a particular role. In 
Chen's original approach [Chen 1976], you put variable letters or constant integers on the roles to 
indicate their multiplicity. The "plays a role in" Chen relationship, for example, in Figure 6-9, shows an 
"M" on one side and an "N" on the other. This is a many-to-many relationship: a person may play a 
role in many (M) criminal organizations, and a criminal organization may have several people (N) 
playing a role in the organization. You could replace these with a number to indicate a specific number 
of items; the usual constant is 1, meaning the role is a one rather than a many role. 
The crow's-foot notation uses its eponymous line adornments to show to-many roles. Figure 6-9 
shows the crow's feet on both sides of the relationship, meaning that it's a many-to-many relationship. 
There are variations on the symbols that let you show that a role may have no value for a given object 
(multiplicity 0) or must have exactly one (multiplicity 1). 
IDEF1X shows multiplicity with specific adornments on the relationship roles, at least in its incarnation 
in the ERwin modeling tool [Logic Works 1996], now a product of Platinum Technology. A "P" 
indicates a to-one-or-more constraint, a "Z" indicates a to-zero-or-one constraint, and an integer 
indicates an exact-number constraint. However, although there is a notation for many-to-many 
relationships, IDEF1X models usually create an associative entity for the relationship, then put one-to-
many or one-to-one relationships from the entities to the associative entity. Figure 6-10 illustrates both 
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formats for the "plays a role in" relationship. In the first, the black dots at both ends of the relationship 
indicate its many-to-many character. In the second, the relationship becomes an associative entity 
with two relationships, one to Person and one to CriminalOrganization. 
The relationship between Person and Identification is a one-to-many relationship named "is identified 
by," shown in Figure 6-11. A person is identified by some number of identification documents, while an 
identification document identifies a single person. In this case, the Person role has multiplicity 1, and 
the Identification role has multiplicity "many," making it a one-to-many relationship. 
You can also have one-to-one relationships, many of which are really subtype relationships, others of 
which represent objectified candidate keys. Figure 6-8 shows the subtype relationship in IDEF1X 
notation. A birth certificate is a subtype of an identification document, as is a passport or a driver's 
license or an identity card. All of these entities are separate and linked by a relationship. In Chen's 
notation, which does not provide generalization or subtyping notation, this is a simple, one-to-one 
relationship. One passport corresponds to one identification document. IDEF1X and crow's-foot 
notations show the generalization relationship directly without indicating the one-to-one nature of it, 
but the methodology implies that from the way generalization and subtyping works. 

 
Figure 6-9: The Multiplicity of the "plays a role in" Relationship in Two Notations  

 
Figure 6-10: The Multiplicity of the "plays a role in" Relationship in IDEF1X  

Other one-to-one relationships relate two objects that are both unique in their own collections. That is, 
one entity has a unique attribute that refers to another entity's unique key (a set of attributes that 
uniquely identifies an object, see the following section on "Keys and Relationships" for details). You 
can identify both entities if you know the value of the attribute. This situation is relatively rare. An 



 - 77 -

example: every person has a unique set of fingerprints and a unique DNA profile. The relationship 
between the Person entity and the FingerprintRecord entity is thus one-to-one, as is the DNAProfile 
relationship to Person. These relationships usually show up as simple connections with 1 for both role 
multiplicities. 

Note 

  

If you are using ER modeling and encounter a one-to-one relationship, analyze it carefully to 
see whether the data model should actually express this as a subtype. If not, consider 
whether one entity can be usefully collapsed into an attribute or attributes of the other entity. 
You could, for example, have a FingerprintProfile as an attribute of the Person rather than as 
a one-to-one relationship if the profile was just a single value (a picture, say). On the other 
hand, you may want to break up a single table into two or more tables related to each other 
one-to-one as a physical design technique to minimize retrieval time, separating data that you 
use all the time and data you use relatively infrequently. This is not really a logical design 
issue, however.  

 
Figure 6-11: The Multiplicity of the "is identified by" Relationship in Various Notations  

Multiplicity has many names. The term "multiplicity" is the best one I've found; it comes from the UML 
and originated in OMT [Rumbaugh et al. 1992]. Various design methods name this with other terms: 

 Cardinality [Teorey 1999; Logic Works 1996] 
 Cardinality Ratio [Fleming and von Halle 1989] 
 Connectivity [Teorey, Yang, and Fry 1986] 
 Designation [Date 1986, pp. 437—438] 
 Frequency Occurrence [Halpin 1995] 
 Functionality [Ullman 1988] 

Note 

  

In the ER world, you usually use the term "cardinality," which comes by analogy from set 
theory in mathematics, where it refers to the size of a set. Given that this is really a constraint 
on the range of such sizes, not the size itself, I prefer to use the term "multiplicity," which has 
no unfortunate conflicts in meaning. It's also the term that the UML (and its precursor, OMT) 
uses to describe this design specification.  

Relationships and their multiplicities connect the different entities in the schema design. The 
constraints they create imply certain things about the structure of the entities: primary and foreign 
keys. 
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Keys and Relationships 
A key is a set of attributes that identifies an object. The primary key of an entity is one key that 
uniquely identifies the entity that owns the attributes. An alternate or candidate key is a unique 
identifier other than the primary key. An entity can have any number of keys, though having more than 
a single alternate is quite unusual. A foreign key is a key that identifies an object in another entity; it 
acts as a data pointer to the other kind of entity, relating the two entities. A composite keyis a key 
where the set has more than one attribute in it; I don't think there is a special name for the key with a 
one-element set, which is far more common. 

Note 
  

As with everything to do with computer science, somebody somewhere has probably given 
this a name. More likely, there are multiple names for the concept. I just haven't run into 
them. As with cardinality and multiplicity, the name isn't as important as the concept.  

In Chen diagrams, you show the primary key either by an asterisk on the attribute name or names or 
by underlining them, as in Figure 6-12. There is no way of showing alternate keys. The IDEF1X 
notation puts the primary key attributes in the upper division of the entity and marks alternate keys 
with an "AK<n>" in parentheses after the attribute name, with <n> being an integer identifying the key 
if it has several attributes. The crow's-foot notation, which does not show attributes, has therefore no 
way of showing primary keys. CASE tools extend the notation with notations similar to Chen or 
IDEF1X. Those tools depend on this information to generate the correct relational tables, including 
key constraints. 

The foreign key does not exist formally in the ER diagram, as it is really the relational way of 
representing the many side of a one-to-many relationship. When they generate a relational schema 
from the ER diagram, most ER case tools take such relationships and include attributes from the 
primary key of the one side in the table on the many side. A foreign key is thus a set of attributes that 
represents a relationship to another group of entities. IDEF1X represents this explicitly using 
"(FK<n>)" to mark the foreign key attributes, again with <n> identifying the key over multiple attributes. 

 
Figure 6-12: Primary and Alternate Keys in ER Notations  

Many-to-many relationships create foreign keys in a completely separate object, one that represents 
the relationship itself. The "plays a role in" relationship of Figure 6-10, for example, is a many-to-many 
relationship between a person and a criminal organization. That is, one person may play a role in 
several criminal organizations, and one criminal organization has at least two and possibly more 
persons playing a role in it. In this case, you can see that placing the primary key attributes in either of 
the two entities isn't going to work. You have to put their primary keys in the relationship, which then 
explicitly represents the connections between people and organizations. The relationship's primary 
key is then the combination of the two foreign keys. Using the IDEF1X notation, the two keys appear 
together in the upper part of the entity box, both marked with the (FK) adornment to indicate they are 
foreign keys. 

Note   These kinds of associative entities are also examples of weak or identifying relationships; see 
the following section on "Strong and Weak Relationships" for details.  

You can have relationships that relate more than two entities to one another. A binary relationship is a 
two-way relationship with two roles. A ternary relationship is a three-way relationship with three roles. 
You can keep going, but there are very few relationships with four or more roles. As an example of a 
ternary relationship, consider the "plays a role in" relationship again. Figure 6-13 shows in Chen 
notation an expanded relationship that includes the RoleType entity. One use for this might be to 
create a description of the role that several people play in different organizations. Another use might 
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be to permit modeling of the role structure of organizations with a graph structure (Underboss reports 
to Boss, Lieutenant reports to Underboss, and so on). 

 
Figure 6-13: A Ternary Relationship in Chen Notation  

The relationship contains three keys, one for Person, one for Criminal Organization, and one for Role. 
It represents a specific role played by a specific person in a specific criminal organization. This 
particular ternary relationship expresses a many-to-many-to-many multiplicity. That is, each of the 
relationship roles is a to-many role. Often, there are functional dependencies that limit ternary roles to 
a to-one role. For example, you might want to say that a person can play a role in only one criminal 
organization, not several. Then the criminal organization role (the link from the relationship to criminal 
organization) would be a to-one link, and the relationship would be many-to-many-to-one. This 
constraint is a functional dependency from the person and role to the criminal organization. Chapter 
11 discusses functional dependencies and their impact on relational database design and normal 
forms in more detail. In that context, putting the relations into fifth normal form requires breaking the 
relationship into three tables, showing the relationships between person and criminal organization, 
person and role, and role and criminal organization. Combining these tables using a relational join lets 
you express any fact about the relationship without introducing spurious facts or losing any 
information. The ER model shows you the relationship directly and lets you express the real 
semantics of the situation in a very direct way. 
The foreign key, as a surrogate for relationship, is at the center of the storm in the data modeling 
world. More than anything else, the foreign key and the relationship provide the differentiator between 
most design notations and methods as well as the DBMS physical models that implement the 
relationships. The foreign key is essentially a relational concept. Chen, in creating the relationship, 
tried to abstract the notion away from the relational data model to accommodate the needs of other 
models. Later ER models such as IDEF1X downplay this aspect of the relationship by forcing you to 
create what is essentially a relational model. Instead of many-to-many relationships or ternary 
relationships, for example, you create an associative entity [Logic Works 1996] with one-to-many 
relationships to the entities that make it up. Figure 6-14 shows the expanded "plays a role in" ternary 
relationship in the equivalent IDEF1X notation. 
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Figure 6-14: A Ternary Relationship in IDEF1X Notation  

The "plays a role in" relationship is now an entity with the appropriate relationship links to the three 
components. The primary key of the associative entity consists of the three primary keys of the three 
related entities. These keys are now foreign keys that are part of the primary key, making the 
associative entity a weak or dependent entity. This kind of entity, and its reliance on foreign keys, has 
a special representation in ER diagrams. 

Strong and Weak Relationships 
Chen introduced the idea of weak relationship to describe the relatively common situation where the 
foreign key is part of the primary key [Chen 1976]. That is, a weak entity is an entity whose primary 
key includes the primary key of a related entity. IDEF1X, for example, automatically shows the 
elements of the primary key from the many side as part of the primary key in the upper section of the 
entity box if you link the entities with an identifying relationship. The relationship itself (Figure 6-14) is 
a solid line rather than the nonidentifying (strong) relationship's dashed line. Chen's notation just 
shows the relationship as a double-line diamond and the corresponding weak entity as a double-line 
rectangle. 

In Chen diagrams, weak entities are rare because there are few existence constraints between real 
entities. Chen's original example was to have a Dependent entity related to an Employee entity with a 
weak relationship. The Dependent's primary key combined the employee's EmployeeID and the name 
of the dependent. Making this a weak relationship asserted that the dependent person was of no 
interest other than as a dependent of the employee. If you think a bit about this, however, and think 
about the real-world situations that might confront the hapless human resource clerk (multiple 
addresses for divorced dependents of ex-employees with ongoing COBRA coverage and on and on), 
you realize that the real world does not often present opportunities to use weak relationships with real 
entities. 

Almost all associative entities, however, are weak entities because their existence depends 
essentially on the existence of the entities they associate. They are relationships, not freestanding 
entities. So the weak or identifying relationship is much more important in ER diagramming techniques 
that use associative entities, such as IDEF1X. 

Weak entities depend on the existence of their related entities. If you delete the related entity, you 
must cascade that deletion to the weak entities that contain the primary key you've deleted. 

Note 

  

The implications of the weak entity are much more interesting in the object world. The 
equivalent situation in object design is when an object creates and owns another object rather 
than just having a reference to the object. If you delete the main object, it must delete all the 
dependent objects that it owns. If the objects are independent, one object simply refers to the 
other object. When you delete the referring object, the relationship disappears, but the other 



 - 81 -

object still exists.  

Domains 
A domain is a set of values to which an attribute maps an object. That is, each value for an attribute in 
an entity set must come from the domain of the attribute. This is a very simple form of integrity 
constraint. It puts restrictions on the values in a very direct way. 

Note   The value domain is completely unrelated to the Microsoft Windows NT domain, a network 
naming concept.  

ER diagrams do not directly represent domains, but all CASE tools that I've used let you put the 
domain information into the repository for each attribute. Since a critical feature of a CASE tool is the 
generation of the data definition language or the schema itself, you have to have a way of specifying 
the required domain constraints. Often you can specify a separate set of domain requirements for 
each target DBMS, as they all have different features relating to domains. 

 
Summary 
Entites, relationships, and the ER diagrams they populate are the meat and potatoes of the database 
design world. Entities are rectangles connected to other entities by relationship lines, with many variations 
in different modeling techniques ranging from Chen notation to NIAM to data modeling to IDEFIX. 

Most ER diagramming notations support these concepts: 
 Entity: A set of objects 
 Attribute: A property of an entity 
 Relationships(both strong and weak): A link between two or more entities, corresponding to 

foreign keys in relational databases 
 Role: One side of a relationship 
 Multiplicity: The number of objects that participate in a role (one-to-one,one-to-many,many-

to-many) 
 Primary and candidate keys: Attributes that uniquely identify objects 
 Domains: A set of values to which an attribute maps an object 

You've new seen all the different elements of standard data modeling using ER diagrams. The next 
chapter turns this on its head introduces you to the concepts of modeling objects. 

 
Chapter 7: Building Class Models in UML 
There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy. 
Shakespeare, Hamlet I:v 

Overview 
The ER modeling techniques in Chapter 6 are a good start at the methods you need for effective data modeling. This 
chapter expands on these basic techniques by extending them into the world of object orientation. Instead of 
modeling entities, now you are going to learn how to model objects. Hamlet was right: there are more things in 
heaven and earth than you can conceive—but at least you can model more effectively what you can conceive. 

The Unified Modeling Language (UML) is a notation that combines elements from the three major strands of OO 
design: Rumbaugh's OMT modeling [Rumbaugh et al. 1992], Booch's OO Analysis and Design [Booch 1994], and 
Jacobson's Objectory [Jacobson et al. 1992]. The UML shows every sign of becoming a standard. OMG has adopted 
the UML as the standard notation for object methods. The UML is ubiquitous in trade show presentations. Several 
professional books now cover the UML in greater or lesser detail in presenting their analysis and design methods 
[Douglass 1998; Eriksson and Penker 1997; Fowler, Jacobson, and Kendall 1997; Harmon and Watson 1998; 
Larman 1997; Muller, Nygard, and Crnkovic 1997; Quatrani 1997; Texel and Williams 1997]. 

Note 

  

There are thus many ways to learn UML. Rather than tutoring you in UML, this chapter 
focuses on teaching you the elements of UML you need to model data. By no means does 
this exhaust the language. As an designer, you should become familiar with all the different 
parts of the UML. The most direct way to do this is to download the UML specification 
documents from the Rational or OMG Web sites [Rational Software 1997a, 1997b, 1997c]. 
Reading these documents and using one of the many tutorials the above paragraph 
references will introduce you to all the OO features of the UML. All of the following material 
draws on the three UML documents for details; please consult those documents for more 
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information on any individual elements of the class diagrams. You can acquire additional 
understanding through the readings in the preceding paragraph and their examples. Fowler is 
a good introduction [Fowler, Jacobson, and Kendall 1997], Larman and Harmon are good 
intermediate texts [Larman 1997; Harmon and Watson 1998], and Eriksson is a particularly 
good advanced text [Eriksson and Penker 1997].  

Chapter 4 covered one type of UML diagram, the use case. This chapter covers the class diagram, which models 
object classes. Object-oriented analysis and design using class diagrams can get quite complex; this chapter's 
objective is to cover just those elements of class diagrams that you use to model information. The first section covers 
object structure: packages, classes, and attributes. The second section covers the structure of object behavior: 
operations and methods. The third section covers relationships and their representation of referential business rules. 
The final section expands the coverage of business rules to object identity and uniqueness, domain constraints, and 
more general constraints. 

 
Packages, Classes, and Attributes 
The UML class and its structure corresponds closely to the entity type and its structure in ER diagramming. 
In the UML: 

A class is a description of a set of objects that share the same attributes, operations, methods, 
relationships, and semantics. A class may use a set of interfaces to specify collections of operations it 
provides to its environment. [Rational Software 1997b, p. 20] 

There are quite a few words with specific meanings in this definition, all of which are relevant to the 
database designer: 

 Attribute: "A named slot within a classifier [an interface, type, class, subsystem, database, or 
component] that describes a range of values that in stances of the classifier may hold" 
[Rational Software 1997b, p. 149]. This is very similar to the relational definition of an attribute 
as a named mapping to a domain [Codd 1972]. 

 Operation: "A service that can be requested from an object to effect behavior. An operation 
has a signature [name and parameters, possibly including the returned parameter], which may 
restrict the actual parameters that are possible." [Rational Software 1997b, p. 155] 

 Method: "The implementation of an operation. It specifies the algorithm or procedure that 
effects the results of an operation." [Rational Software 1997b, p. 154] 

 Relationship: "A semantic connection among model elements. Examples of relationships 
include associations and generalizations." [Rational Software 1997b, p. 156] 

 Association: "The semantic relationship between two or more classifiers that involves 
connections among their instances." [Rational Software 1997b, p. 149] 

 Generalization: "A taxonomic relationship between a more general element and a more 
specific element. The more specific element is fully consistent with the more general element 
and contains additional information. An instance of the more specific element may be used 
where the more general element is allowed." [Rational Software 1997b, p. 152] 

 Interface: "A declaration of a collection of operations that may be used for defining a service 
offered by an instance." [Rational Software 1997b, p. 153] 

The classifier is a fundamental concept in the UML that may confuse even many OO design experts. This 
is an abstract UML class that includes the various UML notational subclasses you can use to classify 
objects in some way by their structure and behavior. Classes, types, interfaces, subsystems, components, 
and databases are all kinds of classifiers. Often the UML diagramming notations apply to classifiers in 
general, not just to classes. 

These terms combine to form the semantics of the class as it appears in the UML class diagram. That is, to 
be meaningful, you must build your class diagram with notation that corresponds to these concepts as the 
UML defines them. This section discusses classes and attributes, while the following sections discuss 
operations, relationships, and other business rules. 
A class diagram is a structural or static diagram with which you model the structure of a system of classes. 
In many ways, class diagrams strongly resemble ER diagrams. If you compare the definition of the class 
given above to the definition of the entity type for ER diagrams, you'll see they are substantially the same. 
Differences emerge mainly in the modeling of operations and relationships. All this is hardly surprising, 
since the OO notations on which UML was founded all developed from ER notations. 
Note 

  

The UML class diagram is really broader than just classes, as it can model interfaces, 
relationships, and even individual class instances or objects. An alternative and sometimes 
preferable name for the class diagram is thus the "static structural diagram," which many of 
the books on the UML use instead of the more common "class diagram." Since the focus here 
is on classes and their relationships, I have chosen to use the term "class diagram."  
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But before getting into the details of class diagramming, you first need to understand how to structure your 
system as a whole, and that means packages. 

Packages 
Most UML-capable design tools let you organize your classes independently of the UML diagram 
structure, as the UML specification suggests. That is, you can model all your classes in a single 
diagram, or you can break them up into chunks across several diagrams. Some tools let you do both, 
letting you define your classes in a repository or single diagram from which you create other diagrams 
that refer back to the repository for class and relationship structure. You can thus show different views 
of your system without duplicating your actual modeling efforts. 

In many ways, the organization of your diagrams depends on the tools you use to draw them. Using a 
simple drawing tool, you can organize the classes however you like, but it's a lot of work. Using a 
comprehensive tool such as Rational Rose or one of its competitors, you can let the tool do most of 
the work. However, you pays your money and you takes your choice: you must often structure your 
diagrams the way the tool requires. 

Part of the art of OO project management is to structure your project and organization along the lines 
of your product architecture [Hohmann 1997; Muller 1998]. One aspect of the project is the data 
model, and modeling your information is just as subject to architectural structuring as every other part 
of the project. This may seem kind of vague and difficult, but it isn't really if you understand how object 
systems work in architectural terms. 
An software system is a working software object that stands alone, such as a software product or a 
framework library. These systems in turn comprise various smaller systems that do not stand alone 
but which come together to make up the system as a whole. I call these subsystems clusters [Muller 
1998]; others call them everything from packages to subsystems to layers to partitions to modules. 
A UML package is a grouping of model elements. A UML subsystem is a kind of package that 
represents the specification and realization of a set of behaviors [Rational Software 1997b, pp. 130—
137], which is close to my concept of cluster. A subsystem is also a kind of classifier, so you can refer 
to it anywhere that you can use a class or interface. The specification consists of a set of use cases 
and their relationships, operations, and interfaces. The realization is a set of classes and other 
subsystems that provide the specified behavior. You relate the specification and the realization 
through a set of collaborations, mappings between the use cases and the classes or interfaces, in a 
collaboration diagram, which this book doesn't cover. These subsystems are the building blocks or 
components that make up your software system. They, not classes or files, should be the basis for 
configuration management in your system, if your source control tools are smart enough to 
understand subsystems [Muller 1998]. Usually a subsystem groups several classes together, though 
you can have single-class subsystems or even subsystems that are merely facades for other 
subsystems, with no classes at all, just interfaces. In terms of system architecture, subsystems often 
correspond to static (LIBs) or dynamic link libraries (DLLs), which present the external interfaces of 
the subsystem for reuse by other libraries. 

Packages are really just name spaces, named groupings of elements that have unique names within 
the group. Subsystems are much more substantial and form the basis for your system design. You 
can use packages as such to create lightweight groups within your subsystems without needing to 
develop separate use cases and collaborations. How to decide what needs a subsystem and what is 
OK to leave as just a package is up to you. 
The UML model is a package that contains a complete representation of your system from a given 
modeling perspective. You can have different models of the system using different perspectives or 
levels. For example, you can have an analysis model consisting entirely of use cases and a design 
model consisting of subsystems or classes. 
Besides models and subsystems, there are several kinds of packages identified only by adding 
stereotypes to the package name. A stereotype is a phrase in guillemets, « », that you place on a 
symbol to represent an "official" extension to the semantics of the UML. 

 «System»: The package that contains all the models of the system 
 «Facade»: A package that consists solely of references to other packages, presenting the 

features of those packages in a view 
 «Framework»: A package that presents an extensible template for use in a specific 

domain, consisting mainly of patterns 
 «Top-level package»: A package that contains all the other packages in a model, 

representing all the nonenvironmental parts of the model 
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 «Stub»: A package with a public interface and nothing more, representing design work that 
is not yet complete or that is deferred for some reason 

Note 

  

The way you structure your packages and subsystems is a part of the general process of OO 
system architectural design [Rumbaugh et al. 1992, pp. 198—226; Booch 1994, pp. 221—
222; Booch 1996, pp. 108—115]. There is much more to system architecture than just the 
aspects relevant to database design, so please consult these references for more details. 
The UML semantics specification is also a very useful reference for system architecture 
concepts [Rational Software 1997b].  

This concept of system architecture as related and nested packages helps you to structure the system 
for optimal reusability. The point of packaging model elements is to let you uncouple large parts of the 
system from one another. This in turn lets you encapsulate large parts of the system into the 
packages, which become your reusable components. In other words, the package is the focus for 
creating reusable components, not the class. Packages typically have a package interface or set of 
interfaces that model the services that the package provides. Other packages access the packaged 
elements through those interfaces but know nothing about the internal structure of the package. 

It's best to be clear: you should think about your system architecture as a set of packages and their 
interfaces, not as a collection of interrelated database entities. This focus on packaging is the critical 
difference between the ER approach to designing databases and the OO methods I am presenting in 
this book. The consequences of this type of thinking go all the way through to the database—or, I 
should say, databases. You should consider the subsystems different schemas and hence different 
databases, even if you actually build them all together in a single physical schema. The databases 
themselves become packages at some level, representing shared data, when you're detailing the 
actual implementation structure of your system. Breaking up your system into multiple databases 
gives you the option of modularizing your system for reuse. You can create a Person package that 
lets you model people and their related objects (addresses, for example). You can use that package in 
several systems, reusing the database schema nested within it along with everything else. You might 
even be able to reuse the database implementation, which is after all the point of the three-level 
ANSI/SPARC architecture. 

You will find two central organizing principles behind most of your packages. The first is purely 
structural: How do the classes within the package relate to classes outside the package? Minimizing 
such interrelationships gives you a clear metric for judging whether to include a class in one package 
or another. From the database perspective, you have another consideration: transactions. Minimizing 
the number of packages that are part of a transaction is usually a good idea. Keeping transactions 
within a single package is ideal. 

A good way to approach the packaging of your classes is through your use cases. To start developing 
your classes, as the next section describes, you go through your use cases looking for objects and 
their attributes. As you do this, also look at the transaction structure. You'll often find that you can 
simplify your package structure by understanding how the use case scenarios affect objects in the 
database. Start building subsystems by grouping the use cases that affect similar objects together. 
You will also often find that you can think of interesting ways to modify the use cases to simplify your 
transactions. As you build your packages, think about how the use cases map to the transactions 
involving the classes in the package. If you can find a way to restate the requirements to minimize the 
number of packages, you will usually have a better system in the end. Since your use cases 
correspond to transactions, this method guarantees that transactions center within packages rather 
than being spread all over the system. 

All this is part of the iterative nature of OO design. You will find yourself moving from the microdesign 
level back to the architectural level or even back to requirements, then moving forward again with a 
better system. Your subsystems grow from a set of use cases to a complete subsystem package with 
classes, interfaces, and collaborations as well as the use cases. Your use cases may get more detail 
as you understand more about what is really going on within them. As long as you have it under 
control, such iteration is the essence of good design. 

Enough abstraction. How do packages work in practice? When you first begin designing an 
architecture, you should usually have gone through building a set of use cases. You've gotten some 
basic ideas about the classes you'll need, and a reasonably clear idea of the sorts of transactions in 
the system. You should be able at this point to brainstorm a few basic packages that will form a basis 
for building your system architecture model. You have a few class hierarchies in mind, and you've 
almost certainly identified a few major subject areas of the system. 
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For example, the commonplace book system has several major areas of interest. Recall the use 
cases from Chapter 4: 

 Authenticate: Connect to the system as an authenticated user 
 Report Case History: Report a case history with text and multimedia details 
 Report Event: Report on a set of events based on factual and text search criteria 
 Report Criminal: Report a criminal biography with text and multimedia details, including 

police file data and case histories involving the criminal 
 Identify with Alias: Find a criminal's identity based on alias 
 Identify with Evidence: Find a criminal's identity based on evidence analysis such as 

fingerprint, DNA, and so on 
 Report Topic: Report an encyclopedia topic 
 Find Agony Column: Find an agony column entry based on text search criteria 
 Find Mob: Find information about criminal organizations based on factual search criteria 
 Explore: Explore relationships between people, organizations, and facts in the database 

The System Architecture model contains a top-level subsystem called Commonplace Book that 
contains all the other subsystems. You can see several major areas of interest here. Authentication 
implies that something needs to keep track of users of the system and their security attributes. You 
might call this subsystem the Security package or the User package. Other subsystems all check with 
Security before allowing access. Case histories and events have their own subsystems. There are a 
series of use cases relating to criminals, who are people, and use cases that refer to other kinds of 
people as well, so you have a Person subsystem. You could create a Criminal subsystem layered on 
top of Person, or generalizing Person, that holds things such as aliases and roles in criminal 
organizations. You need a CriminalOrganization subsystem, certainly, to accommodate the needs of 
the Report Case History, Report Criminal, and Find Mob use cases. The first two use cases are part 
of the Event and Criminal subsystems, while Find Mob becomes part of the CriminalOrganization 
subsystem. You also need Encyclopedia and Media Report packages to hold information about these 
elements of the use cases. Finally, Explore requires a separate subsystem called Ad Hoc Query that 
offers a set of operations permitting users to explore the relationships in the other subsystems. 

Thinking a bit more about the needs of case history reports and criminal record reports, you might 
create some additional packages for the multimedia objects such as fingerprint records, photos, DNA 
profiles, and other data elements of the commonplace book. These are perhaps a bit too detailed for 
the first pass. You might benefit from doing some class design before creating packages for these 
things, or at least making sure you iterate a few times before putting it all in the freezer. 
You can also take a first crack at relating the packages, resulting in the package diagram in Figure 7-
1. 
The package diagram shows the overall structure of your system. Each package is a named file folder 
icon with the package name and the appropriate stereotype. You show dependencies between the 
packages with dashed, directed arrows. In Figure 7-1, for example, both the Ad Hoc Query subsystem 
and the Role package depend on the CriminalOrganization subsystem. The Role package depends 
on both the Criminal and the CriminalOrganization subsystems, and the Case History subsystem 
depends on the Role. The Commonplace Book subsystem depends on all the other subsystems 
except for Person; it also uses the Role package. Security does this as well, but I've hidden the arrows 
for clarity. Keeping the diagram from resembling a plate of pasta is always a problem; using straight 
lines helps, and hiding minor lines helps even more. The solid arrow with a white arrowhead from 
Criminal to Person is a generalization, meaning the Criminal subsystem inherits from the Person 
subsystem (a criminal is a kind of person). 
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Figure 7-1: The Initial Package Diagram for the Commonplace Book  

You could actually label all these as «Stub» until you're ready to push down the design, but in this 
example the intent is to complete the subsystem designs in the current design process step. If you 
tasked several people with designing the different pieces in separate design steps, you could stub the 
subsystems until the first complete design is ready. 

As you progress in defining the details of the system, your packages acquire internal details such as 
use cases, classes, interfaces, and collaborations. By the end of your design effort, you should have a 
reasonably solid set of packages that are mostly independent of one another and that interact through 
well-defined, reusable interfaces. Each package should break down into a set of class diagrams that 
you can use to document and direct the construction of the actual code for the system, including the 
database creation and manipulation code. 

Again, while architectural design is different from database design, you will find your subsystems and 
packages do have direct effects on the underlying database architecture in the end. You do the 
database design within the structure you set as you design the classes with their attributes. 

In many ways, this iterative architecture is similar to the way Holmes built his case against Moriarty: 

But the Professor was fenced round with safeguards so cunningly devised that, do what I would, 
it seemed impossible to get evidence which would convict in a court of law. You know my 
powers, my dear Watson, and yet at the end of three months I was forced to confess that I had at 
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last met an antagonist who was my intellectual equal. My horror at his crimes was lost in my 
admiration at his skill. But at last he made a trip—only a little, little trip—but it was more than he 
could afford, when I was so close upon him. I had my chance, and, starting from that point, I have 
woven my net round him until now it is all ready to close. In three days—that is to say, on 
Monday next—matters will be ripe, and the Professor, with all the principal members of his gang, 
will be in the hands of the police. 

…Now, if I could have done this without the knowledge of Professor Moriarty, all would have 
been well. But he was too wily for that. He saw every step which I took to draw my toils round 
him. Again and again he strove to break away, but I as often headed him off. I tell you, my friend, 
that if a detailed account of that silent contest could be written, it would take its place as the most 
brilliant bit of thrust-and-parry work in the history of detection. Never have I risen to such a 
height, and never have I been so hard pressed by an opponent. He cut deep, and yet I just 
undercut him. This morning the last steps were taken, and three days only were wanted to 
complete the business. [FINA] 

As always, that last 10% of the project was the hardest to complete. 

Classes and Attributes 
Returning to the class, now you need to define the structure that you will transform into your database 
schema design. Of course, there's more to it than that. Your database design is really a part of the 
larger design process that includes designing all the objects in your system, including both the in-
memory ones and the persistent ones. You need to do some special things to the persistent ones. 
This section goes over certain aspects of this database-related customization but defers other things 
to the following sections, "Relationships" and "Object Constraints and Business Rules." 

 
Figure 7-2: A Simple Class Symbol  

The class diagram can contain a number of different things, ranging from classes to interfaces to 
packages and all the relationships between these things. The package diagram from the last section 
is really a very high level class diagram that only contains packages. Each of the subsystems usually 
has its own class diagram that describes the classes and interfaces that realize the subsystem. This 
section focuses on the classes and their attributes, leaving the operations and relationships to later 
sections. 
The symbol for a class is a rectangle with up to three compartments, as Figure 7-2 shows. The top 
compartment contains the class name and properties, if any. The middle compartment contains a list 
of attributes and their properties. The lower compartment contains a list of operations and their 
properties. You can hide or display as much detail as you need. You usually hide most of the details 
when you import the class into another diagram, showing it only as a reference. You can also do it to 
display the class diagram as a high-level view of the class model for clarity, as the lists can get quite 
involved for large subsystems. 
The class name is unique within the package. Again, a package represents a name space, a scope 
for the names of the package elements. You can have classes with the same name in different 
packages. To refer to an object in another package, you prefix the name to the package name in the 
format "package::class." The :: symbol is a scope resolution operator that attaches the name space 
name to the class. You can nest name spaces, so you can have multiple prefixes for the class name: 
package1::package1.1::package1.1.3::class, for example, means that package1.1.3 defines the class 
within the package1.1 package, which in turn nests within the package1 package. 

The upper compartment contains more than just the class name. Classes that you intend to be 
persistent have a stereotype indicating that: «persistent». The persistent stereotype tells you that the 
system does not destroy the state of an instance when it destroys the instance. The «persistent» class 
converts later to the underlying implementation (relational table, object-relational type, or object-
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oriented persistent class, for example). Chapters 11 to 13 go into more detail on using component 
diagrams to represent these model elements in the implementation model of the system. 
An abstract class is a class that has no instances. It exists primarily to represent a common 
abstraction that several subclasses share. The UML suggests that the class symbol show abstraction 
by italicizing the class name. You can also display the property below the class name in curly braces: 
{abstract}. Making a persistent class abstract has no relationship to data in the relational or object-
relational database, unlike its effect on transient objects and OO databases. Because of the way you 
translate the OO data model into the schema, the relational databases do have data for the abstract 
class. This data represents the part of the concrete objects that comes from the abstract class, not an 
instance of the abstract class itself. 
Figure 7-3 shows the Person class as a simple example of an abstract persistent class with various 
attributes and operations. 
The second compartment in Figure 7-3 also illustrates the list of attributes, while the third 
compartment shows the operations on the class. The attributes, like the class name in the upper 
compartment, have various qualifiers that you can suppress at will: stereotype, visibility, data type, 
and constraints and properties. This is the syntax of an attribute expression: 

stereotype visibility name : type-expression = 
     initial-value { property-string } 

In the case of Figure 7-3, you see visibility, name, and type-expression. There are three symbols for 
visibility, all taking their meaning from the C++ access qualifier concepts: 

 Public visibility, meaning that any other class may directly examine or change the 
attribute's value 

 

Figure 7-3: The Person Persistent Class  

 Protected visibility, meaning that only methods of the class or of a public or protected 
subclass can directly examine or change the attribute's value 

 Private visibility, meaning that only methods of the class (but not of inheriting classes) can 
directly examine or change the attribute's value 

The standard UML notation does not define any stereotypes for attributes. The later section on 
"Object Constraints and Business Rules" suggests some extensions for attribute tagged values. 

The initial-value is the value that the system automatically gives to the attribute when you create an 
instance of the class. This translates directly into the DEFAULT value in an SQL CREATE TABLE 
statement, for example. 
The abstract persistent Person class in Figure 7-3 has several protected attributes and several public 
operations. During the next round of design, you would add more public operations to get and set the 
various attributes as required. You might, for example, add a constructor that supplied most of the 
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data on object instantiation, plus a series of get operations to give access to the values, plus a few set 
operations to set things like DateOfDeath that might change during the person object's life cycle. 

You can adopt some simplifying conventions for get and set attributes. If you make an attribute public, 
your implementation standards can translate this into a protected data structure accompanied by a get 
and a set operation. You can add the {readonly} tagged value to the attribute to specify creation of just 
the get operation. This is the scheme that the CORBA IDL uses for class generation, for example. 

Tip 

  

Good OO design practice makes all attributes either protected or private, allowing direct access 
only within the class hierarchy or class, respectively. With persistent types, this is less clear, as 
relational and object-relational implementations may not be able to represent the visibility. 
Often these DBMSs only provide public attributes and hence no encapsulation. Still, you are 
designing the class both for the database and for the domain model of the system, so it's 
usually a good idea to encapsulate your attributes. Choosing between protected and private is 
a matter of deciding whether you want subclasses to be able to use the attributes. I've 
generally found protected visibility a better choice in reusable persistent classes, particularly for 
relational or object-relational target implementations. On the other hand, making attributes 
private uncouples the class from the subclasses, reducing the overall data coupling in your 
system. 

The data type expression is language dependent. When specifying persistent classes, I generally use 
SQL-92 or ODMG-2 ODL data types (see the later section on "Domain Constraints" for details). This 
lets you produce standard SQL or ODL while also providing enough information to produce other 
programming language declarations. Both SQL-92 and ODL have language bindings that translate 
SQL/ODL data types into programming language data types. Unfortunately, the SQL-92 standard has 
no bindings for OO programming languages, but you can add a standard binding to your development 
standards for this. You could also specify C++, Java, or other such data types, then provide the 
translation to SQL types. ODL has standard bindings for these languages. 

Note 

  

Data type expressions are a part of the more general concept of domain constraints. See the 
section on "Domain Constraints" in the later section on "Object Constraints and Business 
Rules" for more details on data type expressions and other domain constraints. You can use 
the UML type classifier to define your data types for use in other diagrams, as that section 
does.  

One question that always comes up is when to declare an attribute and when to declare an 
association. The UML equates attributes with associations: the attribute data type is the name of a 
class or type, thus showing an association to that class or type [Rational Software 1997a, p. 29]. For 
the general case of OO design, I recommend specifying attributes only for the primitive language data 
types (INTEGER, VARRAY(FLOAT), or char[1000], for example). To represent objects that are 
instances of classes, you should always use associations. Let your CASE tool or conversion algorithm 
do the work of creating the appropriate attributes in your tables, object types, or class declarations. 
For the special case of persistent class design, you should specify attributes that convert into the 
standard primitive data types of your target DBMS. In Figure 7-3, all the types are standard SQL 
except for Sex and MaritalStatus. These are simple enumerated types taking on a range of specific 
code values ('M' and 'F' for Sex, 'Single' and 'Married' for MaritalStatus, for example). Most DBMS 
products have some way of representing these types directly, though some don't. If you are unsure 
about the type, make it a class and an association rather than an attribute. 
Certain attributes (and operations) in 00 systems apply to the class as a whole rather than to each 
instance. For example, if you create a Criminal object, it has all the attributes from Person in Figure 7-
3 as distinct values for that object. You can make an attribute a class-scope attribute by showing it 
underlined in the attribute list. A class-scope attribute has a single value for all objects of the class; 
that is, all objects share the same value, and all see any change to that value. Relational tables don't 
have class-scope attributes, but OR and 00 types often do. In C++, the class-scope attribute becomes 
a variable with storage class static. A common use for this in domain factory classes is to represent a 
static SQL statement with which the factory queries a collection of objects. It has fewer applications in 
the persistent classes themselves. 
Persistent class attributes have some needs that go beyond the standard UML properties. In 
particular, you need to be able to specify nullability, keys, uniqueness, and domain constraints. The 
later section "Object Constraints and Business Rules" discusses the special UML properties that 
correspond to these constraints, such as {OID}, {alternate OID}, and {nullable}. 
The lower compartment of the class box contains the operations. You can specify operations with 
return data types as in Figure 7-3. The following section, "Operations," goes into detail on operations 
and their syntax in class diagrams as well as their use in data modeling. 
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With class and attribute information, your class notation lets you define a nearly complete data model. 
Extending classes with behavior through operations, methods, and interfaces gives you even more 
power to specify your database design. The class diagram, however, becomes much more interesting 
when you relate classes to one another with generalization and association relationships. The next 
two sections deal with these two topics. 

 
Operations 
Normally, you wouldn't think you'd need to specify operations if you are just building a data model. Don't believe it. 
With stored procedures and functions in relational databases and with methods in object-relational and object-
oriented databases, you can almost guarantee the presence of operations on the database server. 

Unless you resolve to avoid any coding of behavior in the database server, you should specify operations on your 
classes. You can decide later whether the methods that implement the operations translate to stored procedures or 
other such constructs. See Chapters 11 to 13 for more advice on converting operations to server-based methods for 
specific kinds of conceptual data models. 

Operations, Methods, and Interfaces 
An operation is a service that you can request of a class instance, or object. The operation requests the abstract 
interface of the service. A method is the concrete implementation of the interface, the executable code that you call 
when you request the service. An interface is a classifier that represents an abstract collection of operations. A class 
may have one or more interfaces, and interfaces can group operations of several different classes. 

An operation has a name and a list of parameters, which are variables you can pass to the operation to affect its 
behavior or that the operation can pass back to return information. Operations appear in the third compartment of the 
class box, optionally with their parameter list and various other characteristics. This is the syntax for operations: 
stereotype visibility name ( parameter-list ) : return-type-expression 
{ property-string } 

The three stereotypes in the UML for operations are «create», «destroy», and «signal». The first two stereotypes 
represent constructors and destructors, operations that create and destroy instances of the class. You use these in 
the normal way to define the various methods for building objects and destroying them. For data modeling, they have 
a different purpose, particularly when combined with visibility. Visibility takes on the same values as for attributes 
(public, protected, or private). If you declare a constructor protected instead of public, it means that other objects 
can't construct the object without some special qualities giving them access. In the database, this means your 
applications can't add rows to the object's table, or the equivalent in OR and OO systems. You can also use it to 
model a situation where the database comes with one or several rows that applications can't add to under any 
circumstances. 

The «signal» stereotype has a special use for data modeling; see the later section on "Triggers" for details. 
The parameter-list is a list of variables and data types in a language-specific syntax, as is the return-type-expression. 
The combination of the name, parameter list types, and return type constitutes the signature of the operation, which 
must be unique within the scope of the class. If a second operation appears with the same signature, the UML 
considers it a method—the implementation of the operation that the first appearance of the signature defined. You 
specify the parameter list with this syntax: 
kind name : type-expression = default-value 

The kind is one of several possibilities describing the access of the operation to the parameter value: 
 in: >The operation can read the value but cannot change it (pass by value). 
 out: >The operation can change the value but cannot read it or use it. 
 inout: >The operation can both read the value and change it (pass by reference). 

The default-value is a value that the parameter takes on if you don't pass the parameter when you call the operation. 
You can mark an operation with the {query} property. Specifying an operation as {query} means that it has no side 
effects—that it does not change system state. If you transform the operation into persistent programming language 
(stored procedure or function) program units, often this designation is useful in the implementation of the unit. For 
example, Oracle lets you extend SQL expressions with stored functions that have no side effects, but not with 
functions that may have side effects. In Figure 7-3, the GetAddresses operation is a query operation. You generally 
use the "Get" verb prefix to indicate queries that return attributes or related objects of the class. The "Set" prefix 
indicates a nonquery operation that updates the attributes or related objects. 
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Note 
  

You can use a constraint (a formal Boolean expression that evaluates to true or false at the 
end of each transaction and that has no side effects) as the specification for a {query} 
operation. Any method that implements the operation must satisfy the constraint. For details 
on constraints, see the later section on "Complex Constraints."  

You can also give an operation the property {abstract}. Just as with class names in the top compartment of the class 
box, you can show this by italicizing the operation name. An abstract operation is one that has no corresponding 
method (implementation). C+ + calls this a pure member function, for example. You use abstract operations in 
abstract classes to show interfaces for which subclasses provide an overriding implementation. Polymorphism and 
dynamic binding resolve the call to the appropriate subclass method at runtime. 
In the Person class in Figure 7-3, the GetName class is an abstract query operation. Person, being an abstract class, 
needs to provide an interface that constructs a name object for the person. Subclasses of person will provide 
GetName methods that actually implement this service, but the Person operation is abstract and has no 
implementation. When you instantiate a Person object, you are really instantiating a Criminal or some other kind of 
person. Say you then request the GetName operation on what you perceive as an object of class Person, which is 
really a Criminal or some other subclass. The runtime system resolves this through dynamic binding to the method 
that implements GetName for the particular subclass. You might, for example, get the criminal's best-known alias 
embedded in the name: Salvatore "Lucky" Luciano, for example. 

An interface is a collection of operations. Interfaces have a special role in UML diagrams. They are a kind of 
classifier, meaning that you can specify an interface anywhere you can specify a class. This abstraction permits you 
to define packages with interfaces that abstract the internal structure of the package as a set of operations. It also 
lets you use the same interface in different classes and packages. The Java language has its "implements" keyword, 
for example, which lets you include an interface in a class without requiring you to inherit it from its superclasses. As 
Java does not support multiple inheritance, this facility lets you mix in behavioral abstractions that many classes can 
share without complicating the inheritance model. 
To specify an interface, you build a class box using the «interface» stereotype. Figure 7-4 shows the Person 
interface as opposed to the Person class.Notice there are no attributes, just a collection of operations. Also notice 
there are no italics; everything in an interface is abstract, so there is no need to distinguish the abstract elements. 

 
Figure 7-4: The Person Interface  

You connect an interface to a package or class with a labeled line ending in a circle. The label is the name of the 
interface. This shorthand lets you add interfaces in a very compact way. It also lets you connect the classes or 
packages that use the interface by drawing a dashed connection from the using classifier to the interface. This 
means that the using classifier uses some or all of the interface. Figure 7-5 is a package diagram that shows the 
Person subsystem with its two interfaces, the Person interface and the Address interface. The Role subsystem uses 
the Person interface but not the Address interface. 

There are really two kinds of interfaces: interfaces for packages and interfaces for classes. Class interfaces are small 
collections of operations that many classes use. The UML uses the example of the Comparable interface, which has 
a hash() operator and an isEqual() operator. You include this in any class that needs comparison operations instead 
of specifying the operations over and over again. Package interfaces, on the other hand, provide an abstraction for 
the package that lets you formalize the package interface for use and reuse by other packages. This permits you to 
rigorously construct subsystems that are highly reusable through careful interface development. 

Where an operation turns into actual object behavior depends on how and where you implement the operation. You 
can implement the operation as application behavior, or you can do it as server behavior. These implementations 
have very different characteristics. 

Application Behavior 
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Operations translate into application behavior by putting methods into classes that are part of the domain model for 
your application. Application behavior is thus behavior you associate with persistent objects that runs as part of the 
application. 

 
Figure 7-5: Using the Person Interface  

Until recently, most persistent object behavior was application behavior, as DBMS products had no way to execute 
object behavior on the database server. You would write all your source code and compile it as part of the 
application, then retrieve the data and conduct the operations on it. Now you usually have the choice of performing 
services in either the application or the database. In the application, you can opt for a standard domain model 
consisting of the persistent classes and various helpers and aggregates (classes that aggregate instances of the 
persistent classes), or you can be more complex. 

Such complex behavior takes its format from the way you build your object subsystems. For example, you can build 
classes using the multithreading support of modern compilers and operating systems, and you can make your 
operations multithreaded or multitasking. You can designate some operations as signals that respond to events and 
interrupts instead of being called by other objects. Multithreading lets you operate on objects in parallel in your 
application. It also means you need to build concurrency management into your objects, which makes them a bit 
more complicated than otherwise. This concurrency management is completely separate from the transaction 
management relating to database concurrency; it exists only to manage the transient objects. 

When you create your conceptual schema, you ignore the application operations. It thus makes sense to extend the 
UML property persistence to operations: {persistence=transient} means that the operation is application behavior, 
while {persistence=persistent} means that the operation is server behavior. These are extended properties, not 
standard UML properties. 

Database Server Behavior 
Server behavior is behavior you associate with persistent objects that executes through the database server. Where 
it actually executes and how is completely up to the database server and its optimization. For example, say you have 
a DBMS with parallel processing capabilities, and you are running on a hardware setup with multiple CPUs available. 
The DBMS could run the operations in parallel without your application knowing the difference. 
There are three basic kinds of server behavior that most DBMS products offer in one way or another: methods, 
stored procedures, and triggers. This means another UML extension—the {format} property, which takes one of 
three values: method, stored procedure, or trigger, with method being the default (consistent with standard UML). 
For example, you could specify that GetName in Figure 7-3 was a server operation implemented as a stored 
procedure by attaching the property {format=stored_procedure} to the operation in your class diagram. 

Note 
  

This UML extension is very high level, as there are many options you can specify about 
implementation in most DBMS products. You should extend the UML properties as required 
by your needs. Just make sure you standardize the extensions as part of your development 
design standards so that everyone adding to the design is using the same extensions.  

Methods 
A method is the concrete implementation of the operation. In the database world, only object-relational and object-
oriented databases have methods. 

OODBMS products tend to view methods as application methods. Typically, you create the OO schema by coding 
classes with attributes and methods. The attribute structure goes into the database, while the methods remain as 
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transient. When you query objects from the database, you instantiate transient objects by converting the stored data 
into transient data, then you call the transient operations on the transient data in the application. No behavior actually 
executes on the database server. 

ORDBMS products let you define the methods as server extensions. Some ORDBMS products such as Oracle8 let 
you code the methods in the database programming language. In the case of Oracle8, that means PL/SQL (and 
according to Oracle Corporation marketing plans, Java). Others, such as DB2 UDB, let you integrate externally 
compiled methods written in "real" programming languages such as C or C++. Still others, such as Informix Dynamic 
Server, let you create extension modules that define methods for the classes as part of the module (NCS cartridges 
for Oracle8 and DataBlades for Informix). 

RDBMS products don't have methods because tables don't have behavior and aren't types. If you use an RDBMS, 
you must define your methods as transient and execute them in the application, not on the server. However, you can 
fake it with stored procedures, as the following section, "Stored Procedures," describes. 

There is no support from the ODBC or JDBC standards for method invocation. 

If you are designing your class operations to be persistent methods, this restricts your options to just a few of the 
available DBMS products, mostly the ORDBMS products. A better strategy is to design your operations leaving the 
implementation open. This lets you design operations that can translate into different implementations should you 
need to support other databases. 

Stored Procedures 
A stored procedure is an operation that the system does not explicitly attach to a class. Compare this to a global 
function in C++, for example. Anything that can see the stored procedure can execute it by passing in the required 
arguments, with no need for having an object instance to qualify the call. 

Stored procedures emerged from the attempts of Sybase, Oracle, Informix, and other RDBMS vendors to provide 
server behavior in their relational database products. Sybase defined a language, Transact-SQL, that it integrated 
with its server; Oracle did the same with PL/SQL. Oracle also made PL/SQL available as an application 
programming tool through its Developer/2000 product, letting you build libraries of PL/SQL that the application 
executes rather than the server. 

The ANSI SQL-92 standard provides no support for stored procedures. ODBC and JDBC support invoking stored 
procedures through a special escape syntax [Jepson 1996; Signore, Creamer, and Stegman 1995]: 
{? = CALL <procedure name >(<parameter list> >} 

The question mark represents the value that the procedure returns, if any, and you can retrieve one or more result 
sets that the procedure creates using SQLFetch and its siblings. You can thus code the implementation of your 
operation as a stored procedure, then call it using the special syntax in the transient method you create in your 
object domain model. 

This technique can be quite useful when your target DBMS is relational. Using the standard security mechanisms, 
you can essentially make your relational database invisible to applications except for a well-defined set of stored 
procedures. For example, you can create a CriminalOrganization table and not GRANT it to any users. No user but 
the table's owner can see it. You can then define insert, update, and delete stored procedures that perform those 
common operations on the criminal organization, granting execution privileges (no, not that kind of execution) on the 
procedures to the appropriate users. The applications then can call the stored procedures but can't perform the 
underlying operations on the table, effectively encapsulating the table data just as a class does its protected and 
private attributes. 

Your UML design for this situation is a fairly standard design with protected attributes and well-defined interface 
methods for creation, removal, updating of attributes (Set operations), and queries (Get operations and more 
extensive «query» operations). Just specify the property {format=stored_procedure} and your design is complete. 

Triggers 
A trigger is an event handler. That is, it is executable code that executes when a certain event happens in the 
database server. The ANSI SQL-92 standard says nothing about triggers or the events that signal them. Most DBMS 
products do have triggers at this point in one form or another, but there is no standard format for them. 
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The most common set of triggers are before and after event triggers for the three standard relational data 
manipulation events: insert, update, and delete. That is, an event occurs at the following points in database 
processing: 

 Before Insert 
 After Insert 
 Before Update 
 After Update 
 Before Delete 
 After Delete 

These row-oriented triggers perform extended business rule checking and other implementation functions. For 
example, one use is to implement referential integrity constraints (foreign key constraints) across databases through 
triggers. When you insert a row in a table in one database, for example, the Before Insert trigger checks to make 
sure the foreign key you've specified exists in a foreign key reference to a table in another database. You need this 
in multiple-database environments because the SQL integrity constraint mechanism requires all the tables to be in 
the same database, which isn't very helpful. 

ORDBMS and OODBMS systems could presumably develop more complex trigger mechanisms. You can generalize 
triggers into rules, for example [Stonebraker and Brown 1999]. Not many mainstream systems yet give you much in 
the way of such things, though, as they can have a big impact on performance and reliability of the database engine. 

Using UML, you can declare triggers by the use of the standard «signal» stereotype on the method. You might want 
to add a property with the name of the event that signals the operation. You could even go so far as to define 
standard interfaces with the appropriate event operations defined, then refer to the interface in your class diagram to 
show the presence of triggers. This can be complex, however, since you don't want each and every class to catch 
each and every event and fire an operation. You just want the events that need the server to do something when 
they happen. Unfortunately, if you include an interface, you must implement all the operations in the interface. I've 
found the best way to model triggers is to create individual trigger interfaces with one operation for a single event. 
You can at least standardize the signature and semantics that way. 

Note 
  

You can also specify many triggers through constraints such as pre-and postcondition 
constraints on operations or classes. Constraints must have no side effects, so you can't use 
them for triggers that update, insert, or delete from the database, just validation constraints 
that cause the transaction to fail if certain integrity conditions aren't met.  

Now you've seen how UML lets you model classes, attributes, and operations in the class box. The next step is 
modeling the connections between class boxes. 

 
Relationships 
A class relationship is a connection between classes that relates one class to other classes (or back to itself). For 
data modeling, the UML has two kinds of relationship: generalization and association. 

Inheritance and Generalization 
A generalization relationship is a "taxonomic relationship between a more general element and a more specific 
element. The more specific element is fully consistent with the more general element and contains additional 
information. An instance of the more specific element may be used where the more general element is allowed" 
[Rational Software 1997b, p. 152]. Generalization relationships between classes define the inheritance hierarchy, the 
graph showing which classes inherit the elements of what other classes. 
Chapter 6 described an example of an inheritance hierarchy surrounding the concept of identification in the section 
"Semantic Relationships: Subtyping and Aggregation." A brief recap: an Identification is an abstract concept that 
breaks down into ExpiringId, LawEnforcementID, SocialSecurityCard, and BirthCertificate. ExpiringID breaks down 
into several classes as well: DriverLicense, Passport, and NationalID. Recasting this example in terms of the UML 
generalization relationship language: DriverLicense, Passport, and NationalID are more specific than ExpiringID, 
which is more specific than the abstract Identification class. Each of these three elements is fully consistent with 
ExpiringID and contains more information (license number, issuing office, and issuing country, for example). You can 
use a passport anywhere you can use an expiring identification (or the even more general identification). Figure 7-6 
shows the UML class diagram for the Identification class hierarchy. 
The arrows with white arrowheads are generalization relationships. The arrow points to the more general class, 
variously known as the superclass or the base class. The arrow comes from the more specialized class, variously 
known as the subclass or the derived class. A leaf class is a class with nothing more specialized (no incoming 
generalization relationship). A root class is a class with nothing more general (no outgoing generalization 
relationship). 
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Superclasses with several subclasses, such as Identification or ExpiringID, may have a named discriminator in the 
UML. The discriminator becomes an attribute of the superclass that identifies the subclass, although you don't 
specify the attribute in the list of attributes, just as the label for the generalization. For example, the ExpiringID has 
an attribute, ExpiringIDType, which has three possible values: DriverLicense, Passport, or NationalID. Since the 
ExpiringID class is abstract, the attribute cannot be null; the object instance must always be one of the three 
subclasses. 

Inheritance and generalization are the most difficult and complex concepts in OO design. The following discussion 
gives you an overview of the concepts and issues without going into the great detail you would need to become an 
expert in using generalization in OO design. Instead, it touches on the basic concepts from the data modeling 
perspective. Please consult other books on OO design for a more complete discussion [Booch 1994; Jacobson et al. 
1992; Rumbaugh et al. 1992]. 

Generalization 
The human mind has tried to make sense of the world with generalization at least since Aristotle and Plato, and 
probably before. Perhaps the pyramids, or cuneiform and hieroglyphic writing, represent even older abstraction and 
generalization. The human mind makes great use of its ability to abstract the common structure and behavior of a set 
of different things into a more general class of things. 
For example, in Figure 7-6, the various kinds of identification that share an expiring date combine into an abstract 
class, ExpiringID, which then contains the expiring date. That abstraction, together with nonexpiring identification 
classes, generalizes into the abstract concept of identification. That's generalization to the abstract. When you 
instantiate a passport or a driver's license, that subclass object inherits the expiring date attribute from its superclass, 
ExpiringID. That's inheritance from the abstraction. 

 
Figure 7-6: The UML Identification Class Diagram  

Going in the other direction—specialization—the subclass extends or restricts the superclass. Extending the 
superclass means adding attributes, operations, or associations to those present in the superclass and inherited by 
the subclass. Restricting the superclass means overriding the behavior of the superclass with polymorphic or virtual 
operations. 

Polymorphism 
Polymorphism is the ability of the language to use the same name for different operations. Using C++ terminology, 
there are two basic kinds of polymorphism. Overloading is the ability to provide operations with the same name but 
different signatures (parameter types differ, although the name may be the same). Overriding is the ability to define, 
in a subclass, an operation which restricts or changes the behavior but has the same signature. 
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Overloading provides several different opportunities for the creative designer to simplify (or complicate) 
programming. For example, you can use overloading to provide a "single" operation that you can apply to many 
different kinds of objects. In reality, of course, you must create many different overloaded operations; the 
programmer who uses them doesn't need to worry about that, however. Another example is to overload the name to 
provide slightly different behaviors depending on different types of input. 
Overriding is a key feature in most OO programming languages. Those languages all support late or dynamic 
binding, the ability of the runtime system to determine which method to execute depending on the type of an object. 
Figure 7-6 has an extended example of overriding. The abstract class Identification has three operations: GetPerson, 
GetAlias, and GetID. These are themselves abstract operations (an interface) with no method implementations. The 
ExpiringID subclass, also an abstract class, does not define any implementations, but all the other concrete classes 
override the three operations to provide specific implementations. Consider a person who has several identification 
documents. From the person's perspective, this is a set of Identification objects, not objects of the individual types 
(Passport, BirthCertificate, and so on). When you instantiate a Passport, for example, and request the ID using 
GetID from the object (as an Identification object), the runtime system resolves the call to Identification::GetID() as a 
call to Passport::GetID() by late binding. The method that implements the operation looks up the passport number 
attribute and converts it to a string, then returns it. This behavior restricts the abstract behavior of the superclasses. 

Warning 
  

Overloading and overriding give you the ability to change the behavior of a subclass 
dramatically. As with all homonyms, if the meaning is sufficiently different, you will get 
nothing but confusion. Overloaded and overridden operations should have substantially 
similar semantics in their different classes. 

What is the relevance of overloading and overriding to data modeling? If you're using an OODBMS or ORDBMS as 
your target implementation, they both support (more or less) the concepts of polymorphism. Even some relational 
databases (Oracle7 and Oracle8) support overloading: using the Ada model, PL/SQL packages let you have multiple 
program units with the same name and different signatures. 

You can go quite far with persistent versions of operations. Since you are using your class model as a proxy for both 
your transient and your persistent models, keeping clear on overloading and overriding operations is essential to 
keeping things straight between your in-memory objects and your persistent database objects. 

Abstract and Concrete Classes and Inheritance 
Another recap: remember that an abstract class is one that has no instances, while a concrete class is one that can 
have instances. An interface is an abstract class that has no attributes and that contains only abstract operations. 
The more general case of the abstract class may have both. 

Abstract classes are meaningless without generalization relationships. What good, for example, would the 
Identification class be as an abstract class without its subclasses? Since you can't instantiate an object of the class, 
the only reason for its existence is to set up the common properties of its concrete subclasses for inheritance when 
you instantiate their objects. 

Abstract classes represent the opportunity to express intermediate concepts in your semantic hierarchy, such as 
ExpiringID. You create abstract classes when you see common properties that make sense as a cohesive cluster of 
behavior. Sometimes this corresponds to an easily understood object, and sometimes it doesn't. If it doesn't, check 
and double-check your design to make sure you're not introducing too much abstraction. Simpler is better, and the 
shallower you keep your inheritance hierarchy the better. 

Note 
  

An interface is an abstract class, but not all abstract classes are interfaces. While you can't 
have methods implementing operations in an interface, you can in an abstract class that is 
not an interface. This lets you share common behavior in concrete subclasses.  

What is the place of abstract classes in a data model? The abstract class gives you a place to put attributes and 
operations that you would otherwise spread around many classes. You are reducing redundancy by centralizing the 
implementation of these objects. When the design translates into the database schema, the lower redundancy will 
usually result in a more flexible schema. You may see more complexity in relational schemas because of the extra 
tables, but you will see fewer normalization problems and easier table management and maintenance. 

Multiple Inheritance 
Classes can have more than one more general parent superclass. If this is part of your design, you are using 
multiple inheritance. The world is full of such things, in reality, because the human mind imposes classification on the 
world, not vice versa. Humans are, if nothing else, inconsistent and complex, and we can find endless ways to 
classify things. Our thinking tends to overlap—good for thought, lousy for software system design. 
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A common reason for using multiple inheritance is the presence of more than one dimension to the data. If you 
model dimensions using inheritance trees, you wind up with multiple subtrees from a common superclass. As you 
break things down, you begin to see objects that combine the dimensions in meaningful ways, so you use multiple 
inheritance to bring the trees together. 

One aspect of the commonplace book is the tracking of stolen property. 

"The goose, Mr. Holmes! The goose, sir!" he gasped. 

"Eh! What of it, then? Has it returned to life, and flapped off through the kitchen window?" Holmes twisted himself 
round upon the sofa to get a fairer view of the man's excited face. 

"See here, sir! See what my wife found in its crop!" He held out his hand, and displayed upon the centre of the palm 
a brilliantly scintillating blue stone, rather smaller than a bean in size, but of such purity and radiance that it twinkled 
like an electric point in the dark hollow of his hand. 

Sherlock Holmes sat up with a whistle. "By Jove, Peterson," said he, "this is treasure trove indeed! I suppose you 
know what you have got?" 

"A diamond, sir? A precious stone. It cuts into glass as though it were putty." 

"It's more than a precious stone. It's the precious stone." 

"Not the Countess of Morcar's blue carbuncle!" I ejaculated. 
"Precisely so. I ought to know its size and shape, seeing that I have read the advertisement about it in The Times 
every day lately. It is absolutely unique, and its value can only be conjectured, but the reward offered of £1000 is 
certainly not within a twentieth part of the market price." 

… When the commissionaire had gone, Holmes took up the stone and held it against the light. "It's a bonny thing," 
said he. "Just see how it glints and sparkles. Of course it is a nucleus and focus of crime. Every good stone is. They 
are the devil's pet baits. In the larger and older jewels every facet may stand for a bloody deed. This stone is not yet 
twenty years old. It was found in the banks of the Amoy River in southern China, and is remarkable in having every 
characteristic of the carbuncle, save that it is blue in shade, instead of ruby red. In spite of its youth, it has already a 
sinister history. There have been two murders, a vitriol-throwing, a suicide, and several robberies brought about for 
the sake of this forty-grain weight of crystallized charcoal. Who would think that so pretty a toy would be a purveyor 
to the gallows and the prison? I'll lock it up in my strong box now and drop a line to the Countess to say that we have 
it." [BLUE] 
In tracking these objects, there are two dimensions to consider: the kind of property involved and the insurance 
status of the property. Figure 7-7 shows an inheritance structure starting with the property. One branch of the 
hierarchy divides property into types by their nature: collectibles, jewelry, cash, security, personal, or "other" (to 
make the classification complete). The other branch of the hierarchy divides property into uninsured, privately 
insured, or publicly insured depending on the source of the theft insurance. These are all abstract classes. 

The tricky part of this hierarchy comes when you need to create an actual object: you must combine the two subtrees 
into joint subclasses, such as Uninsured Jewelry or Publicly Insured Securities. In this case, you might practically 
have to define a subclass for the Cartesian product (all possible combinations of the abstract classes). 

Note 

  

I am not advocating this style of design. If anything, you should avoid this kind of design like 
the plague. There are ways around it, depending on your needs. The primary justification for 
this sort of design is to override operations in, and add structure to, the various dimensions. If 
you don't have much need to extend or restrict operations and structure, you shouldn't even 
consider the dimensional hierarchy approach; just use enumerated data types for the 
dimensions. In OR and OO products, you have many different options for representing 
dimensions. You should try to limit your inheritance to just what you need rather than going 
overboard with semantic distinctions that are pragmatically the same.  

This form of multiple inheritance exhibits the infamous diamond shape, where the superclasses eventually merge in 
a single parent. This structure results in some hard problems in programming language design. If you call an 
operation, and that operation exists in both immediate superclasses and in the shared parent, which actual method 
executes? C++ forces you to specify the exact operation through a scope operator identifying the class owner, which 
increases your coupling. Worse, because of its structural logic, C++ gives you two copies of the shared parent, 
StolenProperty. You have to declare the intermediate classes virtual base classes in C++ to tell the compiler to share 
the parent. This has the result of forcing you to modify several classes if you want to add a class using multiple 
inheritance, again increasing coupling. 
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Think about the structure translated into persistent structures. You have a StolenProperty table, a table for each of 
the property types, and a table for each of the insurance types. It seems natural to add an InsuredStolenJewelry 
table if you need to represent attributes or operations that such an account has that its two parents do not. The 
object ID for stolen property flows through these tables representing the generalization relationships. A row in 
InsuredStolenJewelry has a one-to-one relationship with rows in InsuredStolenProperty and StolenJewelry. This 
represents the fact that an InsuredStolenJewelry object is also an InsuredStolenProperty and a StolenJewelry object. 

 
Figure 7-7: Dimensional Multiple Inheritance of Stolen Property  
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If you then reverse-engineer this back into a UML diagram, your natural choice would be to use associations, not 
generalization, making the joint table a relationship rather than an entity. That is, instead of inheriting operations and 
structure, you refer to InsuredStolenJewelry as an association between StolenJewelry and InsuredStolenProperty, 
not as a subclass of both of them. This is one workaround for this kind of multiple inheritance—factoring the 
dimensions into separate classes and using associations to relate them [Blaha and Premerlani 1998, p. 60]. 
Dimensional multiple inheritance is not the only kind there is. A different reason for using it is to combine two 
unrelated classes (that is, classes with no common parent). In most cases, this reflects the mix-in approach: you are 
mixing in behavior or structure that the subclass needs. For example, you may want at some point to treat 
fingerprints as identification, but the Fingerprint class is a kind of image. Figure 7-8 shows what this looks like as 
multiple inheritance. 

What this design does is to integrate the operations and structure from the Identification class into the Fingerprint 
class by subclassing both using multiple inheritance. The resulting FingerprintIdentification class acts as both a 
fingerprint record (with image) and as a kind of nonexpiring identification. 

Note 
  

Again, there are better ways to do this. Mix-in inheritance is better done through the use of 
interfaces. You create the interface you need for any kind of identification, then include it in 
the Fingerprint class or a subclass. See the next section, on "Subtypes: Type versus Class 
versus Interface," for a look at this example.  

Multiple inheritance lets you say that a thing is a kind of several other things. To the extent that this reflects the true 
meaning of the thing, that's fine. Unfortunately, what you're doing when you subclass two or more classes is 
exponentially increasing the coupling of the system through inheritance. Inheritance coupling isn't all bad. For any 
given class, your shared attributes, operations, and associations inherited from a superclass make perfect sense 
from the perspective of the object. But as you increase the number of superclasses, you increase the 
interdependence of more and more parts of the system. 

When you then make a change to a part of the system, that change affects all its subclasses in some way. At the 
very least, you need to retest them. In a data model with persistent classes, that change is by definition persistent: 
you're changing the database schema. Migrating schemas under these circumstances is, if anything, more difficult 
than maintaining spaghetti code with meatball objects floating in it. The more interconnections you have, the more 
difficult maintenance and extension becomes. So, it's in your best interest to use multiple inheritance—and single 
inheritance, for that matter—with great restraint. 

 
Figure 7-8: Fingerprints as Identification Using Mix-in Multiple Inheritance  

The double-edged sword of multiple inheritance exists for one reason: to model objects that you want to use as a 
subtype of two or more different types. This is not as simple as it might appear. 

Subtypes: Type versus Class versus Interface 
Even the UML definition of generalization embeds the concept of subtype: "An instance of the more specific element 
may be used where the more general element is allowed." In a strongly typed system, the behavior of an object 
depends on its type, and you can't call operations or access attributes in contexts that require objects of a different 
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type. Subtyping lets you extend the concept of "the same type" to a hierarchy of related objects rather than just to the 
objects of a single class. 

Computer scientists carefully distinguish the notions of type and subtype from the concept of inheritance. 
Programming language designers are less careful for the most part, though some OO languages do make the 
distinction. Languages such as Smalltalk have no typing at all, just inheritance. In Smalltalk, for example, you can 
send a message to any object that provides the method with the signature your message specifies. 

The rationale for strong typing is that this kind of flexibility leads inevitably to defects, for at least three reasons. You 
can accidentally set up your system at runtime to call a method on an object that doesn't exist, yielding an exception 
(falling off the top of the inheritance hierarchy). You can call a method that does something entirely unrelated to what 
you intended. You can pass objects that differ enough in format to yield operating system or runtime system errors 
such as divide-by-zero or access violations. 

C++ combines subtyping and inheritance into a single structure, the inheritance hierarchy. A subclass is a subtype in 
C++. You can use a C++ subclass object anywhere you can use one of its parents. This in turn provides the rationale 
for multiple inheritance. Since strong typing prevents you from using an object that doesn't inherit from the 
designated superclass, you must use multiple inheritance to inherit that superclass. Otherwise, you have to turn off 
strong typing by using void pointers or something similar. 

The interface provides an alternative to multiple inheritance through introduction of a completely different subtype 
relationship. In systems that support interfaces as types, you can use an object that supports an interface anywhere 
you can use the interface. Instead of declaring variables with the class type, you use interface types. This then 
permits you to refer to the interface operations on any object that provides those methods. It's still strong typing, but 
you get much of the flexibility of a weakly typed system such as Smalltalk without the complexity and strong coupling 
of multiple inheritance. The Java programming language supports this kind of typing. The downside to interfaces is 
that you can't really use them to inherit code, just the interface specification. You must implement all the operations 
in the interface with appropriate methods when you apply it to a class. 
Interfaces support a special UML relationship: the "realizes" relationship. This is a kind of generalization relationship 
that represents not inheritance, but type realization. That is, when you associate an interface with a class, you are 
saying that the class realizes or implements the interface. The class can thus act as a subtype of the interface. You 
can instantiate objects of the class, then assign them to variables typed with the interface and use them through that 
interface. This is similar to what you do with superclasses, but you have access only to the interface, not to all the 
operations on the subclass. 

Interface realization permits you to use overriding and late binding outside the class hierarchy, freeing you from the 
artificial constraints imposed by inheritance in a tree structure. For example, instead of instantiating the different 
Identification subclasses and putting them into a container typed with the Identification class, you can type the 
container as the Identification interface. This gives you the best of both worlds. You still have strong typing and type 
safety, but you can access an object through multiple mixed-in interfaces. Multiple inheritance gives you this ability 
as well but with a much greater degree of system coupling between classes, never a good idea. 
Figure 7-9 shows the Identification hierarchy redone using interfaces. The diagram is simpler, and you have the 
additional flexibility of being able to use the Identification interface in other classes beyond the Identification 
hierarchy. Consider again the fingerprint identification example from the earlier section on "Multiple Inheritance." Just 
adding the Identification interface to Fingerprint, then building the appropriate methods to realize the three interface 
operations, lets you extend FingerprintRecord and use it wherever you use an Identification interface. 
Figure 7-9 also shows the two forms of the realization relationship. The dashed arrow with the white arrowhead is a 
formal realizes relationship, showing the connection of Identification to BirthCertificate. The other classes, to save 
space, show the realizes relationship as a small, labeled circle connected to the class. The label is the interface 
name. 
Figure 7-9 is less complex, but you can easily see why interfaces are not the preferred way of doing every kind of 
subtyping. Although inheriting the GetExpireDate abstract operation is logically the same as inheriting the ExpireDate 
attribute, practically the latter makes more sense. This is especially true in a data model destined for implementation 
in a DBMS logical schema. As a rule, if you have meaningful attributes as common properties, you should use a 
generalization; if you have only operations, you should use interfaces. Identification meets this test (ignoring the 
object identifier), while ExpiringID does not. The FingerprintRecord class is the best example of good interface 
realization. If you can use the phrase "is used as," as in "a fingerprint record is used as identification," you are 
looking at interface realization. If you use the phrase "is a," as in "a passport is an expiring ID," that's generalization. 
Finally, Figure 7-9 also shows a feature of interfaces: interface inheritance. The ExpiringID interface inherits the 
Identification interface, and you can use an object with an ExpiringID interface anywhere you use an Identification 
interface. 
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There is a third kind of type-related concept in programming languages: genericity. Languages that support 
templates (C++) or generics (Ada, Eiffel) give you the ability to create multiple versions of an implementation of a 
class or function, each one parameterized with a series of types and/or objects. When you instantiate an object typed 
with the generic class, you supply appropriate types and objects as parameter arguments. All the operations and 
attributes take on the appropriate types, and you can use the object in a strongly typed system. Classic uses for 
generics are basic data structures such as stacks and trees and generic algorithms such as sorts. You parameterize 
the kind of objects the aggregate structures contain, for example. 

 
Figure 7-9: The Identification Interface and Interface Realization  

Data modeling can make good use of typing. Most database programming languages are strongly typed, though 
some of them are curious in that regard. For example, SQL does not regard a table definition as a type. When you 
create a named table, you are creating an aggregate object (Date's "relvar" or relational variable), not a type you can 
use to specify the type of an attribute somewhere. Cursors provide a generic way to access these objects. You can 
look at most current relational DBMS CASE tools for the specific consequence for data modeling. When you define 
the schema, you create an entity. When you forward-engineer that schema, that entity becomes a table in the 
database. If you want to define multiple tables with the same structure, you have to copy the existing entity or create 
a new one that looks identical. These things don't behave as types. The later section on "Domain Constraints" 
discusses some of these attribute type issues in more detail. 

ORDBMS products extend the typing system with user-defined types (UDTs in the jargon of the vendors and the 
SQL3 standard). You define the type, then instantiate tables from it. You can access all the objects of a given type 
with specific variations on the SELECT statement, or you can access just those in a single table instance 
[Stonebraker and Brown 1999]. This opens up a world of interesting storage options by freeing up the storage of the 
rows/objects from their type definition. In the RDBMS, you need to define the physical model for the entire set of 
objects of the entity. In the ORDBMS, you can store multiple tables of the same type in totally different locations. 
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ORACLE8's table partitioning scheme lets you automate the process without introducing instance logical location 
issues. The table is one table stored in multiple locations defined by the data, not multiple tables of the same type, 
though you can do that too. 

Most OODBMS products adopted the C++ model (Gemstone being the early exception with its Smalltalk format). For 
better or worse, this has meant the integration of typing and inheritance in OODBMS schemas. One difference with 
the OODBMS products is that you create objects of the type and store them in logical (not physical) containers. 

Not one of these products, as far as I am aware, supports interfaces or generics directly. Interfaces are useful in the 
data model as a way of expressing the realization relationship, but the translation to the logical and physical models 
requires quite a bit of work. Generics or templates simply don't exist in the database world. 

While generalization in all its variety is a powerful data modeling tool, it pales in the light of the other major type of 
relationship: the association. 

Associations, Containment, and Visibility 
An association relationship is the "semantic relationship between two or more classifiers that involves connections 
among their instances" [Rational Software 1997b, p. 149]. In other words, associations show how an object of a 
class relates to other objects. The network of associations defines the containment hierarchy, a graph showing which 
kinds of objects contain what other kinds of objects. It also defines the visibility hierarchy, a graph showing which 
kinds of objects can see and use what other kinds of objects. 

Containment is important because object ownership is a critical business rule. Ownership affects where you create 
objects, what happens when you delete objects, and how you store objects in all the different kinds of DBMSs. The 
key choice you make when you create an association is to decide whether the association represents a reference to 
an independent object or an ownership link. 

Visibility is important because encapsulation is important. In an OO design, you want to limit the visibility of an object 
as much as possible. Limiting visibility through encapsulation is the best way to reduce coupling in your system, 
which leads to much more maintainable and robust software. In the database, visibility (and encapsulation) has 
always been a problem. With the newer ORDBMS and OODBMS products, you can increasingly control visibility; 
with most RDBMS products, your ability to control visibility is at best moderate. 
Before getting into details, here is some notation. Figure 7-10 shows the basic association notation from the UML. 
There are two kinds of association: binary and other. The relationship between Person and Address, for example, is 
a binary association, an association between two classes. The association "influences" between 
CriminalOrganization and itself is a recursive binary association. The association "plays" between 
CriminalOrganization, Role, and Person is a ternary association (three classes related to one another rather than 
two). The binary association is a line connecting two classes, while the ternary and higher association is a series of 
lines connecting the various classes through a central diamond representing the association. You can have as many 
participants in an association as you need, though (as Chapter 6 mentioned for ER diagrams) there are very few 
realistic associations beyond ternary. The exception is in data warehouse star schemas, which invert the usual 
design into a massive association between a series of dimensional objects, with the central fact object being a 
multidimensional association. 

Association names are generally verb phrases, just like ER relationship names. You will usually have quite a few 
associations that you can't name more specifically than "has." Just leave these names off and assume that a 
nameless association means that one class "has" instances of another class. 
As with ER diagrams, each side of the association is a role, the part played by the class in the relationship. Each role 
has an optional name, a multiplicity, and an optional navigability. You can optionally make the relationship an 
aggregation, showing ownership, and you can include a qualifier to show multiple relationships. 
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Figure 7-10: UML Association Notation  

Roles and Role Names 
A role is one end of the association. A binary association thus has two roles, a ternary one three roles, and so on. 
You can name a role to clarify the nature of the association, though you don't have to do so. In Figure 7-10, for 
example, you see role names on the binary association between Person and Address and on the ternary association 
between Role, CriminalOrganization, and Person. 

Unlike roles in ER diagrams, which generally are verb phrases, most roles in UML are noun phrases corresponding 
to the subjects and objects of the fact that the association represents. For example, from the perspective of a 
Person, a person resides at a set of addresses. From the perspective of the address, a set of residents resides at the 
address. The verb phrase is the name of the association, while the subject and object noun phrases are the roles. 

Role names translate directly into variable names in the class implementation. If you're having trouble thinking what 
to call the role, think about the name you will give to the attribute or method that implements the role in the class. For 
example, in the Person class, you have a series of methods for manipulating addresses. GetAddresses obtains an 
iterator to the collection of addresses for a person. AddAddress adds an address to the set of addresses, while 
RemoveAddress gets rid of one identified by an iterator. Thus, "addresses" represents the name you call the set of 
addresses. It will usually become the name of the internal variable that represents the set (a C++ STL set<> 
instance, for example, or an ODL relationship set<>). 

Note 

  

Figure 7-10 does not show similar methods on Address. Why? The requirements do not call 
for accessing people through their addresses, though that's a perfectly reasonable thing to 
do. The class itself may need to iterate over the set of residents, but users of the class do not. 
Thus you have a role name but no corresponding operations. The lesson here is that 
operations and roles are distinct: operations package roles, they don't implement them. This 
distinction is fundamental to the encapsulation of the associations within the class and limiting 
visibility to just what you need.  
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You can also specify a visibility for the role (public, protected, or private, with the same symbols as for attributes and 
operations). This lets you complete the specification of the association variable in your implementation for 00 
systems that support access control in some way. 
You should understand, however, that not all relationships are equally meaningful. For example, the Person role in 
the ternary relationship in Figure 7-10 is quite hard to name. I chose "players" for this role name. The objects 
involved are the people and organizations in which they play the role, a very abstract concept. From the perspective 
of the role, there is very little meaning. It does support queries such as "Give me the names and addresses of all the 
bosses in criminal organizations in London." The person and the organization are critical, while the role simply 
qualifies the relationship. 

Role names are very useful in data modeling because they translate into the names the logical schema gives to 
columns, collections, or other logical artifacts that represent the associations when you construct the schema. 
Choosing a meaningful role name results in meaningful schemas. 

Multiplicities and Ordering 
The multiplicity is a property of the role that represents a business rule or constraint on the number of objects that 
participate in the association from the perspective of the role. Recall from Chapter 6 that ER diagramming sees 
multiplicity as one-to-one, one-to-many, or many-to-many qualifiers on the association. The "one" and the "many" are 
the role multiplicities. UML takes this a bit further than ER models. 

Each role multiplicity consists of a specification of integer values, usually a range of such values. Here are some 
alternatives: 

 0..*:Zero or more objects 
 0..1:No more than one optional object 
 1..*:At least one object 
 1:Exactly one object 
 *:Zero or more objects 
 2..6:At least two but no more than six objects 
 1, 3, 5—7:At least one object but possibly three, five, six, or seven objects 

The asterisk "*" represents an unlimited upper bound. The range is inclusive; that is, the range includes the values 
separated by the ".." range indicator. The multiplicities "*" and "1" are the most common, with "1..*" for not-optional 
to-many and "0..1" for optional to-one following closely behind. 

You can also specify that objects associated with a multiplicity greater than one (to-many) are in some order using 
the {ordered} property on the role. This qualification means you have to use some kind of ordered representation in 
the logical schema. In the relational schema, this translates into an ordering attribute in the appropriate table. In the 
OR and 00 schemas, it translates into the use of an ordered collection relationship, such as a vector, a list, a stack, 
or a queue, for example. If it were unordered, it might be a set or a bag. 
Multiplicity is critical in the data model because it translates directly into the structure of the foreign key business 
constraints in the logical schema (see Chapter 6 for details in the ER diagram context). If you specify a 0..* role, this 
translates into a to-many null foreign key attribute in a relational database, for example, or to a relationship set<> 
with optional membership in ODL. Getting the multiplicities right in the data model lets you create the right schemas; 
getting them wrong definitely means a wrong schema. 

Navigability and Symmetric Visibility 
The navigability property of the role lets you specify the visibility relationships between the classes. Navigability is the 
ability to navigate to the class to which the role attaches from the other classes in the association. The association 
thus becomes a directed association. By default, the roles in a UML class diagram are undirected, meaning you have 
full navigational access to each class participating in the association. Adding an arrowhead to the association turns 
this off, specifying navigation in only that direction. 
This introduces asymmetric visibility, the ability of one class in a relationship to see the others without having the 
others being able to reciprocate. Judicious use of navigability can reduce the coupling in the data model to just that 
necessary to satisfy the requirements. It does, however, impose constraints on your ability to reuse the model, as 
you are explicitly saying that you can't see certain things even if it makes sense in a new situation. Used sparingly, 
navigability can improve your design; used to excess, you can wind up with something very hard to reuse. 

In data modeling, navigability gives you the ability to have one-way relationships. Translating this into the conceptual 
schema, navigability can be very useful for OR and 00 schemas that support unidirectional relationships, as most do. 
That is, you create a relationship that exists in one class, but the other class can't see the related objects in the first 
class. In the ODL, this corresponds to a relationship that has no inverse traversal path, for example. 
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Aggregation, Composition, and Ownership 
Aggregation is a part-whole relationship between two classes. The UML lets you specify two kinds of aggregation: 
weak or shared aggregation and strong or composite aggregation. Shared aggregation lets you model a part-whole 
relationship in which one object owns another object, but yet other objects can own that object as well. Composition 
lets you model the part-whole relationship where one object exclusively owns the other object. 

Note   Composition aggregation corresponds directly to the ER modeling concept of the weak 
relationship, just to be thoroughly confusing about the terminology.  

The UML represents aggregation as a diamond shape at the end of the association line that terminates in the owner 
class. A shared aggregation is a hollow diamond, while the composite aggregation role is a black-filled diamond. 
Figure 7-11 shows two aggregation relationships. The first one describes the shared aggregation relationship 
between a photographic image and a person. The second shows the composite aggregation role between people 
and identification. 

The shared aggregation describes the situation in which a thing aggregates some other thing. In this case, a photo 
aggregates a set of people. But also, any given person may appear in more than one photo. The "*" multiplicities 
make this explicit. Given the semantics, there is no ownership: the photo does not own the person, and the person 
doesn't disappear (at least, from the database) when you delete the photo. 

 
Figure 7-11: UML Aggregations  

The composite aggregation, on the other hand, is quite explicit about ownership. You identify a person by one or 
more identification documents, and the person owns those documents. If the person disappears, the documents 
disappear. You thus identify the identification documents by their relationship to the person. 
Only one role in an association can have an aggregation marker. By definition, only one object can "own" the other 
one. An n-ary association with more than two associated classes cannot have any aggregation [Rational Software 
1997b, p. 27]. A composite aggregation, by definition, must have a multiplicity of 1, 1..1, or 0..1 on the role 
corresponding to the aggregate owner. 

Composite aggregation is critical to data modeling because it represents the weak relationship. Translated into the 
conceptual schema of a relational or object-relational database, a composite aggregate association becomes a 
foreign key that is part of the primary key of the dependent object (in this case, the identification document). Even in 
object-oriented databases, there is an implication of cascading deletes: should you delete the aggregation, all the 
aggregated parts disappear as well. This in turn translates into a cascaded delete specification or trigger on the table 
in the conceptual schema. 
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Qualified Association 
The qualified association is an association with a qualifier: "an attribute or list of attributes whose values serve to 
partition the set of objects associated with an object across an association. The qualifiers are attributes of the 
association" [Rational Software 1997a, p. 58]. Figure 7-12 shows a qualifier on the association between Person and 
Identification. The qualifier translates into an associative array or map, a collection indexed by some attribute. In this 
case, the IDType attribute identifies the various kinds of identification, and the multiplicities on the association 
indicate that the person may have any number of identifiers. Putting the qualifier on this association means that you 
can have only one identifier of each type—in this case a reasonable business rule. 

 
Figure 7-12: The UML Qualified Association  

The qualifier is relatively rare in data modeling, but you can use it to advantage when you have this particular kind of 
constraint. In a relational data model, the concept translates to a table containing the qualifier attribute and the rest of 
the object attributes, with the qualifier a part of the primary key of the table. The IDType attribute would appear in the 
Identification table, where it also serves as a discriminator for the different subclasses of Identification. In the case of 
an 00 data model, you can use a map, dictionary, or similar data structure for associative access to represent the 
collection. The Person would have an attribute defined as a map<IDType,Identification> type, where the first 
template parameter is the enumerated type containing all the different types of ID and the second is the Identification 
type. 

Association Classes 
Associations are generally quite simple—or as simple as roles, multiplicities, aggregation, and qualifiers allow them 
to be. Some associations, however, contain information not just about the related classes, but about the association 
itself. To add attributes to an association, you create an association class, a class that acts as an association but has 
its own attributes and operations. 
The UML represents the association class as a class box attached to the association with a dashed line. The class 
has the name of the association. Figure 7-13 shows an association class that represents special properties of the 
ternary relationship between Person, Role, and CriminalOrganization. This class has several attributes: tenure (the 
length of time in the role), start date, end date, and termination method (for those individuals no longer playing a 
role—promotion, demotion, removal by various ugly methods, such as might have happened to Porlock in Moriarty's 
organization). 
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Figure 7-13: The UML Association Class  

By carefully defining association classes, you can model relationships as first-class objects in your conceptual 
schema design. Association classes translate directly into conceptual schema classes (tables in a relational 
database). 

Generalization and associations provide many of the constraints that a data model requires to produce a complete 
conceptual schema. There are still a few constraints you will need to add to your model, including keys, domains, 
and more complex constraints. 

 
Object Constraints and Business Rules 
Associations let you constrain the relationships between classes and objects with referential integrity, and these 
constraints form the bulk of your conceptual data model. The remaining constraints—primary keys, domains, and 
complex constraints—complete the data model. If you haven't already done so, please read the section "ER 
Business Rules" in Chapter 6. This section expands on the discussion there, putting the different constraints in the 
context of UML class diagrams. 

Object Identity and Uniqueness Constraints 
Any database data model must contain a way to identify each unique object in the database. Holmes's identification 
of the individual weapon used at Thor Bridge shows the value of individuality. 

"No doubt she blamed this innocent lady for all those harsh dealings and unkind words with which her husband tried 
to repel her too demonstrative affection. Her first resolution was to end her own life. Her second was to do it in such 
a way as to involve her victim in a fate which was worse far than any sudden death could be. 

"We can follow the various steps quite clearly, and they show a remarkable subtlety of mind. A note was extracted 
very cleverly from Miss Dunbar which would make it appear that she had chosen the scene of the crime. In her 
anxiety that it should be discovered she somewhat overdid it, by holding it in her hand to the last. This alone should 
have excited my suspicions earlier than it did. 

"Then she took one of her husband's revolvers—there was, as you saw, an arsenal in the house—and kept it for her 
own use. A similar one she concealed that morning in Miss Dunbar's wardrobe after discharging one barrel, which 
she could easily do in the woods without attracting attention. She then went down to the bridge where she had 
contrived this exceedingly ingenious method for getting rid of her weapon. When Miss Dunbar appeared she used 
her last breath in pouring out her hatred, and then, when she was out of hearing, carried out her terrible purpose. 
Every link is now in its place and the chain is complete. The papers may ask why the mere was not dragged in the 
first instance, but it is easy to be wise after the event, and in any case the expanse of a reed-filled lake is no easy 
matter to drag unless you have a clear perception of what you are looking for and where." [THOR] 
Most database systems provide unique, proprietary, and hidden identifiers for rows and objects (ROWIDs in Oracle, 
for example). 00 database managers provide uniqueness through the object identifier, or OID. Identifying an object 
through this kind of surrogate is implicit, or existence-based, identification [Blaha and Premerlani 1998, pp. 193—
1941]. The alternative is explicit, or value-based, identification. With explicit identification, you can identify the object 
with the values of one or more attributes of the object. Object identity corresponds to the ER modeling concept of 
primary key. I use the term "OID" to refer to any kind of key that uniquely identifies an object. 
To recap the key definitions, this time in terms of objects: a candidate key is a set of implicit or explicit attributes that 
uniquely identify an object of a class. The set of attributes must be complete in that you should not be able to remove 
any attribute and still preserve the uniqueness of the objects. Also, no candidate key can be null, as this would 
logically invalidate the equality comparison you need to apply to ensure uniqueness. A primary key is a candidate 
key that you choose to become the identifier of the class, the OID. An alternate key is a candidate key that is not the 
primary key. The alternate key thus represents an implicit or explicit uniqueness constraint. 

Note 
  

In the UML, objects have identity but data values do not. Data values are values of primitive 
types, types such as int or VARCHAR that have no assumption of underlying object identity. 
Objects are instances of classes. See the section "Domain Constraints" for a complete 
discussion of data values and object values.  

The UML does not provide any standard means of expressing object identity because it assumes that object identity 
is a basic, implicit, and automatic property of an object. To include the concept in UML data modeling, therefore, you 
must extend the UML with some additional properties for attributes. You define explicit keys in a UML class diagram 
with two extended tagged values, {OID} and {alternate OID}. Again, these are not standard UML notation; they are 
custom UML extensions for data modeling. 
These two properties identify those attributes that serve to identify a unique instance of the class. By attaching the 
{OID} tagged value to an attribute, you specify that attribute as part of the primary key, or object identifier. By 
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attaching the {alternate OID=n} tagged value to an attribute, you specify it as part of alternate key n, where n is an 
integer. 

The {OID} and {alternate OID} properties constrain the objects of the class regardless of storage. They correspond to 
the SQL PRIMARY KEY constraint and the UNIQUE constraint, respectively. If, for example, you create an object 
relational type and instantiate two tables from that type, the {OID} property on the attributes constrains all of the 
objects in both tables to have unique values with respect to each other. 

Note 
  

You only specify the {OID} property on the primary key attributes of the regular classes you 
build, not association classes. The OID of an association class is always implicit and consists 
of the combined oid attributes of the classes that participate in the relationship.  

Figure 7-14 shows the oids for the Person and Identification classes. The Person class is a complete object in itself 
and has strong object identity. If you need to make identity explicit, you usually add an attribute with a suitable type 
to serve as the object identifier, in this case the PersonID: OID {OID} attribute. 

In relational and object-relational systems, this corresponds to an identifier you generate, such as a sequence in 
Oracle or an IDENTITY in SQL Server. Be careful, though: if you create the OID on a table basis, its scope is the 
table, not 

 
Figure 7-14: The Explicit {OID} Tagged Value  

the class. That is, if you define multiple tables from a class, the OID will not uniquely identify the objects across the 
two tables, just within each table. In most OODBMS systems, objects have built-in oids that you can access and use 
for establishing identity. Usually referential integrity happens automatically because of the way you relate objects to 
one another, and the systems use the oids in representing the relationships. Codd described this problem and its 
requirements for "complete" RDBMS products. He specified that relational systems must behave in a similar way, 
treating a primary key as potentially shared between several tables [Codd 1990, pp. 25—26, 36—37]. Specifically, 
the attributes share a common, composite domain from which all the participating tables draw their values. Defining 
this in terms of domains lets you preserve strong typing under joins and set operations as well as in comparison 
expressions [Codd 1990, p. 49]. 
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When you build a generalization hierarchy, you specify the {OID} property at the top of the hierarchy. The subclasses 
of the root class inherit the explicit object identifier from that class. You can always add {alternate OID} specifications 
lower in the generalization hierarchy. Multiple inheritance, of course, throws something of a monkey wrench into this 
scheme, just as it does for object structure. If a class inherits {OID} attributes from more than one parent, you must 
override the property in the inheriting class to specify one or the other attribute set as the {OID} of the multiply 
inheriting subclass. You can also specify a completely new {OID} property if that makes sense. 

Tip 

  

Making sense of multiple inheritance is hard. This is just another reason to avoid multiple 
inheritance in data modeling. One way or another, this is going to complicate your life. Try to 
avoid it. If you can't avoid it, make the OID implicit and let the system handle identity through 
object existence rather than through inheritance. If you won't do that, all I can say is that I feel 
your pain. 

Similarly, a class related to another through composite aggregation (a weak relationship in ER terms) gets the OID 
from the aggregating class. This does not constitute the complete OID for the aggregated class, though; you need to 
specify any additional attributes required to identify the individual element within the aggregate. For example, in 
Figure 7-14, the Identification class OID is the combination of the Person OID from the aggregating person and the 
identification number. This usage is a bit unusual in UML. 

In 00 design and programming, and hence in the UML, every object has implicit identity. In transient systems, identity 
often is the address in memory of the object. In persistent OODBMS systems, each object has an OID that often 
contains physical or logical storage information. In relational and ORDBMS products, there is usually a similar way to 
identify each row. None of these identifiers is explicitly part of the conceptual schema or class design, it just happens 
automatically. This is most of the reason why there is no standard way to refer to oids in UML diagrams; other 
constructs such as relationships, classes, and objects imply the whole concept. 
Which approach is better, explicit or implicit identity? From the purist 00 perspective, you should leave out the explicit 
OID attributes entirely. Figure 7-15 shows what Figure 7-14 would look like using this approach. Given this diagram, 
when you generate a relational database schema, you would add a column that uniquely identified each row in the 
Person table corresponding to a Person object. The aggregation relationship between the two classes implies that 
there is a foreign key in Identification pointing to a single person. The aggregation implies that the foreign key is also 
part of the primary key. Instead of generating a unique OID column for Identification, therefore, you generate two 
columns. First is the Person OID that refers back to the person table as a foreign key. You follow it with a unique 
number for each row with the same Person oid. You could specify the attribute to use as the second OID element by 
using a different tagged value, {aggregate OID}. This tags the attribute as the element to add to the aggregating 
object's OID to create the new object's oid. If you wanted to replace the implicit OID with an explicit set of attributes, 
you would just specify the {OID} tagged value on those attributes. There would be no implicit OID in the underlying 
conceptual schema. 
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Figure 7-15: The Implicit OID Approach  

The second approach makes all this explicit at the design level, much as in Figure 7-14. The explicit approach has 
the benefit of keeping all the attributes clear and open in your design. This makes the connection between your data 
model and your conceptual schema in the target data model more direct. Since the objects are persistent, you will 
usually have to have methods on your classes that manipulate the oids on their way from persistent memory to 
transient memory. OODBMS products handle this automatically, but RDBMS and ORDBMS products usually don't. 
Making the OID explicit gives you the ability to design OID handling into your persistent classes. The implicit 
approach, on the other hand, hides the details and lets you do the work when you convert the data model to the 
conceptual schema in your target database. As long as you have standard OID handling built into your persistent 
class hierarchy in some way, this works fine. In relational databases, this requires a good deal of additional work. 
You can have an explicit OID spanning two or more attributes of a class, which corresponds to the ER composite key 
from Chapter 6. When you join sets of objects (tables or whatever) on the primary key, and that key has more than 
one attribute, the syntax for the join condition can get very messy, especially for outer joins. You need one 
comparison expression for each attribute in the join. You can simplify coding a good deal by replacing multiple-
attribute explicit oids (composite keys) with single-attribute explicit oids that you generate. This usage is somewhere 
between an explicit and an implicit oid. It's implicit because it depends on existence. It's explicit because it has to be 
an actual attribute of the class, since you're creating it for explicit use. 

Yet another issue arises as your data model grows in size. For largish databases, you may find that consistency in 
your choice of identity approach yields productivity benefits. Consistency, in this case, means the implicit approach. 
With a large number of tables, programmers may get easily confused by a plethora of different OID attributes 
scattered around the database. With implicit OIDs, and with a standard OID naming convention for persistent 
attributes in the conceptual schema, programmers will usually be able to code without confusion about which 
attributes are identifying ones. 

Domain Constraints 
The section on "Domains" in Chapter 6 defined the domain of an attribute as a set of values to which the attribute 
maps. There are an infinite number of potential sets of possible values. This section classifies domains to provide a 
structure for talking about the things without falling into a morass of detail. Some philosophy is useful, though. 
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Note 

  

For an excellent discussion of domains in the context of the extended relational model, 
consult Codd's book on RM/V2 [Codd 1990, pp. 43—59] or Date and Darwen's Manifesto 
[Date and Darwen 1998], which discusses the relationships between domains and other 
aspects of the object-relational system. Blaha goes into some detail on 00 domain concepts 
with a slightly different perspective than the following classification [Blaha and Premerlani 
1998, pp. 45—46].  

There are really only two types of domains: extensional and intensional. These terms come from mathematical logic 
and denotational semantics. Don't confuse the attribute domain with the completely separate use of "domain" to refer 
to the specific business area to which a software system relates (or to the NT network domain, either). Defining a 
"domain model" in 00 design refers to setting up the classes for a business area, not to defining the basic data types 
of your system. Also, don't confuse the definition of the type with the definition of the set of values or objects typed. 
That is, don't confuse the definition of integer with a set of integer values. The definition of the type tells you about all 
possible values of the type, while the definition of a set of values tells you about the actual values in a particular 
context such as a database or table. 
The intension of a set is a logical predicate (a combination of relations and operators on those relations such as 
AND, OR, NOT, FOR ALL, and FOR ANY) that defines the contents of the set. For example, you can define the set 
of all criminal organizations as "the set of all organizations organized for the purpose of engaging in criminal 
activities." This definition is close to that of the RacketeerInfluenced and Corrupt Organizations (RICO) Act that 
defines the U.S. federal government's approach to organized crime. If you define a set by its intension, you are 
stating a condition that you can apply to an object to discover whether it is a member of the set. 
The extension of a set is the collection of objects that belong to the set, the set's elements. If you define a set by 
intension, the objects that satisfy the intensional definition constitute the extension of the set. Again referring to 
criminal organizations, the actual criminal organizations are the elements of the set of criminal organizations. Using 
the intensional definition, only those organizations that satisfy the condition are part of the extension of the set. If you 
define a set extensionally, you are defining it by listing out the members. For example, you define the set of Arabic 
digits as {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. 

You can define some domains easily with an intensional definition, such as criminal organizations. The "easy" part is 
the definition, not the application. For example, the U.S. government tried the Hell's Angels in California federal court 
as a criminal organization under the RICO statute. But the court decided that they were just a motorcycle club with 
some people in it who sold illegal drugs—not a criminal organization. Certain domains, such as the set of integers, 
the set of colors, or the set of JPEG images, can only have an intensional definition. There is literally no way to list 
the elements, as there is an infinite number of them. Practically, of course, the computer's internal numeric 
representation scheme limits the number of integers. Color is really all possible combinations of three 32-bit integers. 
The number of images must be finite in reality as there are only a finite number of atoms in the universe to serve as 
bits. Still, reality should not constrain designers too much. After all, who could possibly use more than 64K of 
memory? 
You can define other domains best through an extensional definition, such as a short list of possible values. For 
example, the possible states of the legal status of a criminal organization include "legally defined," "on trial," 
"alleged," and "unknown." This is a nominal scale, a set of values with no intrinsic ordering or comparison operator 
defined other than equality [Fenton and Pfleeger 1997]. You can use it to define an enumerated type in most modern 
programming languages. 

Note 

  

It's interesting that the C++ and ODL enum type does not completely conform to the 
definition. The type is defined to be an integer, and therefore has an internal order. Many C 
and C++ programmers take advantage of this by assigning the integers and using 
conversions to get the actual integer values when they need them, usually for comparisons or 
sorting. This kind of programming violates the mathematical assumptions of the nominal 
scale, unfortunately, and can have misleading results, particularly in statistical applications. 
You should try to avoid it in database programming in particular because of the data 
constraints implicit in the domain. This only applies to C++-based 00 database systems for 
the most part, fortunately.  

The domain can be simple (the set of integers, or the set of valid dates, or the set of JPEG images), it can be 
structured (a struct or other record type), it can be multivalued (an array or collection of objects of some domain), it 
can be extensional (an enumerated list of possible values), or it can be intensional (a logical predicate that defines a 
set of possible values as its extension). 

Note 

  

There is no room in this book to go into the deeper theoretical details of domains. If you want 
to understand the mathematics behind domains, consult one of the standard works on 
measurement theory [Fenton and Pfleeger 1997; Roberts 1979]. In particular, pay attention to 
the organization of data with respect to comparability and other operations. If you mix or 
convert data between incompatible types, it is impossible to determine the meaning of the 
results of operations on such data.  



 - 112 -

The simple domains correspond to the standard single-valued data types. In SQL, that means exact or approximate 
numbers, character strings in various forms, dates, times, timestamps, and intervals [ANSI 1992]. Using CHECK 
constraints, you can impose restrictions on the simple domains to create new domains. You can't define them 
separately and specifically as domains; you have to write out the CHECK constraint on each attribute. In certain 
ORDBMS products such as DB2, you can define subtypes that apply such constraints [Chamberlin 1998]. 

In OQL, there are more choices: floating point, integer, character, string, Boolean, octet, date, time, timestamp, and 
interval [Cattell and Barry 1997]. There is also an "any" type to give you the ability to refer to any object. ORDBMS 
products let you add simple types through extensions to the type system. 

The structured domains include various forms of the record, a collection of attributes coming from different domains. 
The multivalued domains include arrays and other ways of representing a collection of objects coming from the same 
domain. 

An extensional domain defines the domain through a simple list of values. This is also known as an enumerated 
type. In SQL, you do this through a CHECK constraint, usually using an IN expression with a list of elements: 
CHECK LegalStatus IN ('Legally Defined', 'On Trial', 'Alleged', 'Unknown'). In SQL, these are integrity constraints on 
individual attributes, not separate domains. That means, for example, that you must put the CHECK constraint 
separately on all the attributes that must conform to the list of values. In ODL, there is an explicit enum type that lets 
you define the domain, then apply it to several properties [Cattell and Barry 1997]. 

The UML does not specify any particular domain model—just the reverse. The UML specification implicitly makes the 
data type "implementation defined," letting you specify the domain model to use based on your target programming 
language. The UML defines the semantics of the data type this way: 
A data type is a type whose values have no identity, i.e., they are pure values. Data types include primitive built-in 
types (such as integer and string) as well as definable enumeration types (such as the predefined enumeration type 
boolean whose literals are false and true). [Rational Software 1997b, p. 22] 

There are three subclasses of the DataType classifier in the UML metamodel: Primitive, Structure, and Enumeration. 
These are stereotypes you can use to qualify the classifier (class box) that you set up to represent the type and its 
operations. 
For data modeling, you should carefully define a set of data types for your data models as a separate package of 
classifiers. Figure 7-16 illustrates a data type package based on the ODL (and OMG) type model. 

Figures 7-17 through 7-19 show the details of the individual packages (AtomicLiteral, CollectionLiteral, and 
StructuredLiteral). The OMG object model 
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Figure 7-16: The ODL Type Model as a UML Data Type Package  

 
Figure 7-17: The AtomicLiteral Package  
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Figure 7-18: The CollectionLiteral Package  

does not define standard operations on these types, though the SQL data type model does (operators +, -, *, and /, 
for example, on numeric types). You could add operations, as Figure 7-17 illustrates for the Atomic Literal type. Once 
you've defined this type model package, you can then refer to the types and the operations you've defined on them 
in your designs without confusion. You can also define standard relationships between the type model data types 
and the target data model or DBMS data types. This then permits you to generate the correct DBMS data types for 
different target DBMS products. You can also define subtypes as subclasses with constraints such as range 
constraints. 

 
Figure 7-19: The StructuredLiteral Package  

The enum<> type is parameterized by a set of literals in the ODL object model. It thus produces instances of the 
generic enumerated type. You can then use these instances to define attributes or parameters. This approach is an 
example of using genericity instead of inheritance to construct varieties of an object with different qualities (in this 
case the enumeration constants). If you have the ability to define subtypes, you can name the specific instance with 
its own name and use that name. For example, to define LegalStatus, you can use this direct declaration: 
attribute enum<LegallyDefined, OnTrial, Alleged, Unknown> LegalStatus; 

Alternatively, you can define a subtype and use a declaration with the subtype name: 
type enum<LegallyDefined, OnTrial, Alleged, Unknown> LegalStatusType; 
LegalStatusType LegalStatus; 
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The second usage is better because you can reuse the type for several different attributes while still defining the type 
as an instance of a generic enum type. Unfortunately, not all target languages support enums, genericity, or 
subtyping, so you may have to do things in another way. 

Because of the three-valued logic of SQL (true, false, and null), the ODL defines a mirrored type hierarchy for null 
literals (nullable_float, nullable_set, and so on, not illustrated here) [Cattell and Barry 1997, p. 34]. You can use 
these types to define attributes that can be null. Remember, though, that null is not a value, it is the absence of a 
value. SQL (and OQL) uses IS null for comparisons to null rather than the "= null" syntax, which would imply that null 
is a value. 

Tip   If you choose to use another approach, you can express nullability as an extended UML 
property of the attribute: {nullable}. 

Complex Constraints 
To this point, the UML has expressed the simple business rules such as integrity constraints and domain constraints 
with standard notation. There are many business rules that go beyond these simple constraint expression 
mechanisms in the UML. The UML therefore provides a formal language for expressing these constraints: the UML 
Object Constraint Language (OCL) [Rational Software 1997c]. There is no room to go into the details of the OCL 
here; consult the language specification if you want to use it. 

Note 

  

You can express constraints in whatever language is appropriate as long as it meets the 
requirements. A constraint is a Boolean expression that evaluates to true or false (not null) at 
the end of each transaction in whatever context you place it. The expression cannot have 
side effects on the state of that context object. You can use an SQL or OQL expression, for 
example, instead of OCL, or you can use Java, Smalltalk, or first-order predicate calculus if 
that makes sense to you. In some systems such as Oracle8, you do have to avoid language 
that results in side effects on object state, which you can't use in constraints.  

Where can you use OCL expressions in UML diagrams? 
 Classes and types: >Constraints on all instances of the class or type (class invariants) 
 Operations: >Pre- and postconditions and other constraints on operation behavior 
 Transitions/flows: >Guard conditions in state transition and activity diagrams 

As an extension, you can also use the class invariant expressions on the individual attributes of a class diagram to 
express rules on each attribute. As with SQL CHECK constraints, there is really no limit on what you can express 
with 

 
Figure 7-20: A UML Constriant on CriminalOrganization  
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such constraints, but it is often convenient to place the rule with the attribute to which it applies. 
The UML notation for constriants is a note attached to the constrained object. Figure 7-20 shows a simple class 
invariant constraint on the CriminalOrganization class. The constraint, expressed in SQL, tells you that a criminal 
organization cannot simultaneously have a LegalStatus of "LegallyDefined" and a Prosecution Status of anything but 
"History" In English, if you have successfully had a court define an organization as a criminal organization, your 
prosecution status must be "History" meaning you've won your case. 

 
Summary 
This exceptionally long chapter is very hard to summarize, since it is itself a summary of a much larger corpus, the 
UML specification. The chapter focuses on those parts of the UML notational system that are of direct use in data 
modeling and database design. 

Most of the UML classifiers play some kind of role in database design: packages, subsystems, types, interfaces, 
database, and classes are all elements of such a design. As well, the association, generalization, and realization 
relationships of UML play a direct role in data modeling by relating classifiers to one another. 

You use package and subsystems to build the high-level architecture of your database application. These classifiers 
represent a name space that organizes your classes and other subsysems into cleanly separable units. You specify 
those units with transactional use cases, and you realize the use cases with the various classifiers that collaborate 
with each other. In this way, you build up the data model that realizes the transactions your requirements specify. 

Classes may be abstract (no instances) or concrete. Each class has a set of attributes and operations, with attributes 
and their data types representing the state of the class (the data) and operations being the behavior. Methods are 
the implementation of the operations. Both attributes and operations have public, protected, or private visibility, a 
feature that gives you the ability to encapsulate your data and operations within the class, reducing overall coupling 
in your subsystems. 

The generalization relationship lets you relate classifiers into an inheritance hierarchy, with either single or multiple 
inheritance. You should avoid multiple inheritance in your design whenever possible. you can use interfaces to avoid 
mix-in multiple inheritance while still maintaining a strongly typed design. 

The association relationship lets you relate classifiers into a visibility hierarchy. Each side of an association is a role 
that a classifier plays. Each role has a multiplicity (1, *, 0..*, 2..6, and so on) that tells you how many objects may link 
to other objects through the association. A composite aggregation strengthens the association to ownership instead 
of just visibility: the parent owns the child object. Associations can themselves become objects through association 
classes, which have their own attributes and operations. 

Finally, you can use UML to specify constraints on your classifiers and relationship. Object identity may be implicit 
(the UML standard) or explicit (the extended {OID} and }alternate OID}) tags. You can place domain constraints on 
define with the type classifier). You can use extended tags to specify data model constraints, such as {nullable}. you 
can specify arbitrarily complex constraints through constraint comments, boxes you attach to the constrained 
notation. You can use any kind of constraint language ranging from the UML's OCL to SQL expressions. 
Now you've seen most of the UML relevant to data modeling. The next chapter brings everything together in the 
process of data model design. 

 
Chapter 8: Patterns of Data Modeling 
Imagination continually frustrates tradition; that is its function. 

John Pfeiffer 

Overview 
Design in the object-oriented world has taken an odd turn in recent years. The usual course of design in the software 
world is revolution upon revolution. Every new generation of designer ignores what came before and builds a new 
way of doing what needs doing. The evolution of programming languages over the last 30 years reflects this 
revolutionary way of thinking, to the consternation of experienced language designers. 
In the OO world, designers have begun to accept that there are aspects of design that should not change, or should 
change very little. Much of the rationale for this thinking comes from the fact that OO designers emphasize 
reusability. Once OO thinking moved beyond programming, designers realized that some of the lessons of 
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architectural design thinking and philosophy could apply just as well to software design. These software architects 
adapted the work of Christopher Alexander, the great architectural philosopher, to software design through the 
concept of the pattern: 

Design patterns capture solutions that have developed and evolved over time. Hence they aren't the designs people 
tend to generate initially. They reflect untold redesign and recoding as developers have struggled for greater reuse 
and flexibility in their software. Design patterns capture these solutions in a succinct and easily applied form. 
[Gamma et al. 1995, p. xi] 

The essence of a pattern is tradition. The tradition is the core of the solution. The funny thing about traditions is that 
they constantly confront imagination, and vice versa. Design patterns, like most traditions, help establish a context 
for your solution to a design problem. Your imagination then takes over to move beyond the tradition to solve the 
problem. Occasionally, your imagination comes up with the beginnings of a new pattern—"out of the box" thinking, 
as many people now call it. If you spend all your time out of the box, however, you won't get very far with your work. 

This chapter shows you how to use patterns in your data modeling. It provides examples of some common abstract 
and concrete solutions to data modeling problems and suggests ways you can move beyond patterns to achieve 
working solutions to specific problems. 
The art of building a database-centric system doesn't lie with the notation you use but rather with your use of the 
notation. As you go through the examples of analysis and design patterns, think about the modeling techniques from 
Chapter 7 and how they apply to the patterns. The thinking itself, and its expression through UML, is the essence of 
designing databases. This data modeling, reusing patterns and integrating views of the data, prepares the way for 
the more concrete tasks of implementing the conceptual and physical schemas. 

 
Modeling with Reusable Design Patterns 
A design pattern is a reusable system that describes a design problem and its solution. You can vary the structure of 
your pattern descriptions. However, the basic nature of a pattern consists of a name, a problem description, a 
solution description, and a discussion of issues, trade-offs, and consequences of the pattern [Gamma et al. 1995]. 

The name of the pattern is literally the key to the pattern. When you talk about patterns, or any tradition for that 
matter, you refer to it by a catch phrase that everyone in the culture recognizes. Each person may have personal 
variants of the pattern, but each understands its basic nature when you refer to it by name. You can put the name 
into a comment in the code or design diagram, and reviewers will immediately understand what they are seeing. The 
name is an abstraction that contains all the pain that went into developing the tradition. 

The problem is the set of circumstances that lead to the need for a solution. Often the most helpful part of a design 
pattern, the problem tells you when to apply the pattern. If your problem doesn't match the problem description well, 
the design solution probably isn't appropriate. Small variations are not important in this comparison, only the 
essential problem elements, so when you read the problem description, focus on the essential elements, not the 
details. 

As with most abstract discussions, the problem description often seems ambiguous and indefinite until you fully 
understand it. The pattern almost always benefits from a concrete problem description, a real-world issue that maps 
to the abstract problem. Be careful not to get caught up in the particular example, however, as there may be 
significant differences between it and the problem you are trying to solve. Don't force one real world onto another 
that isn't the same. 

The solution is the design that solves the problem. In the present case, this is a UML data model that represents the 
abstract design in general terms. You then convert this model by naming the various elements with your classes and 
relationships as they apply to your specific problem. 

The discussion of the pattern contains all the things you can think of that a designer might want to consider when 
applying the pattern. It includes one or two extended examples of the application of the pattern to real problems. 
Providing working code is usually a good idea if you can do it. You should certainly mention any limitations on the 
implementation in different languages, portability issues, or situations that might lead to problems in one way or 
another. 

The following sections present some patterns as examples of what you might do as a pattern designer. The level of 
detail is not as thorough as it might be because of space limitations. 

Tip 
  

You should definitely consult more complete pattern books for ideas and details, especially if 
you are a software architect about to embark on pattern design of your own. The Gang of 
Four's book [Gamma et al. 1995] is required reading. Also, one pattern I don't specify here is 
the Star pattern, which lets you create a multidimensional representation of a complex data 
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warehouse. This book doesn't discuss data warehousing modeling. See the Preface for a 
discussion of the star schema and its fact-dimension tables. These correspond to a simple 
UML pattern with a central n-ary relationship (the fact association and its class) and the 
participating objects (the dimension classes). 

The design patterns that you adopt from other sources and the ones you develop yourself are part of your portfolio of 
reusable systems. You should catalog and index them so that designers in your business can find and use them, just 
as with any reusable system. 

There are two kinds of pattern of direct interest to data modelers: abstract patterns and analysis patterns. The 
following sections give you some examples of both of these types. 

 
Abstract Patterns 
An abstract pattern, in the context of data modeling, is a pattern of classes and relationships that describe a generic 
solution to a generic problem. The names are often very general ("composite," for example, or "mediator") and don't 
map directly to the objects you are considering in your design problem. 

The following subsections each present a single pattern from the Gang of Four or from my own work, transformed 
into a database pattern. These are the patterns for which I've been able to see direct uses in a database application. 
Other patterns relate more to the application design, and especially to abstractions or behavior in the application 
code rather than in the database server. There is much overlap in coding techniques in modern DBMS software with 
application software (triggers, server extensions and plug-ins, stored procedures, persistent class methods, and so 
on). You may well find other patterns to be of direct interest in your designs. 

The Singleton Pattern 
The Singleton pattern ensures that a class has only one instance in the database. 

The Problem 
Often in data modeling you find you have an abstraction for which there can be only one object instance. There are 
several common examples of this in relational databases: a row that represents a default value for a table, a row that 
represents a pointer to one row in another table, and a row that represents the control state of the system. For 
example, you may have an organization table that represents the hierarchy of organizations and a singleton table 
that contains the primary key of your organization, the main one concerning you. Or you can have an object that 
represents a time interval after which objects in the database cannot change. 

You use the Singleton when you must have one object and when you may want to extend that object through 
subclassing. Subclassing the Singleton class doesn't create a different instance, it creates an extended version of 
the instance that replaces the original one's behavior with polymorphic behavior in the subclass. 

The Solution 
Figure 8-1 represents the Singleton data model. 
The Singleton class in Figure 8-1 has a single instance. The relationship UniqueInstance is a one-to-one relationship 
where both objects in the relationship are identical, and UniqueInstance is a class attribute, so there can be only one 
instance of the class. You can make all the attributes class attributes, since there is only one instance, though that 
isn't necessary. 

You use the Instance operation to get a reference to the single instance. In a relational database, this corresponds to 
a static query that retrieves the row from the database. In an ORDBMS, it might also execute a constructor function 
to create the instance if it doesn't already exist. In an OO database, it retrieves the instance object (or creates it if 
necessary) using a static object identifier or other means of reference to the instance from the class. 

 
Figure 8-1: The Singleton Pattern  
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Discussion 

The Singleton pattern at the application level is usually the means of setting up a single object and getting access to 
it. The main event loop in the system is usually a Singleton, for example. If you make things like that persistent in an 
OODBMS, they are usually Singletons. In relational databases, the Singleton plays a distinctly less central role, 
being confined to utility tables that other tables join to or use to set values. 

Enforcing the Singleton constraint requires making any constructors private or protected so that only the Instance 
operation can create the instance if it isn't already there. The UniqueInstance attribute/relationship also enforces the 
Singleton constraint. A relational database has no constructors or access protection. You thus implement the 
constraint with a trigger or through procedural encapsulation, hiding the table behind security privileges and allowing 
access only through an Instance stored procedure. 

Using the Instance operation to create the instance avoids having to create the single instance if you don't need it. In 
most database applications, this isn't an issue, since you define and store the instance for use in multiple 
applications through retrieval. It's conceivable, though, that you might find a use that required the instance creation 
only under certain circumstances. Holmes PLC could implement an intruder shutdown system, for example, by 
creating a Singleton instance, the presence of which would disable access to any sensitive data from a particular 
user or for all users. The DBA would then investigate the situation and resolve it by removing the instance. This kind 
of extremity would require lots of auditing and other data about the security violation, of course. 

The Composite Pattern 
The Composite pattern represents a tree structure made up of different kinds of related objects, all of which share 
the same interface. You use the Composite pattern to represent part-whole hierarchies in your database. 

The Composite pattern is a very common one in application modeling. Database designers new to OO modeling and 
patterns may find it difficult at first because of its apparent complexity, but the flexibility you gain is well worth the 
extra complexity you add. 

The Problem 
One of the classic modeling problems in relational database theory is the parts explosion problem. Despite its 
exciting name, this does not refer to active components of military databases and is rarely dangerous except to the 
unfortunate SQL programmer that must deal with it. A parts explosion is a tree structure of data that models a series 
of product parts, some of which contain other parts. The part, in this case, is not the instance or object itself but 
rather the type of part. For example, the structure of a commonplace book encyclopedia entry contains various 
objects. For lots of different reasons, you want to consider these different objects to all be of a common class: the 
part. Each type of part has a part number that identifies it. 
Figure 8-2 illustrates a simple parts explosion using document components as the parts. The encyclopedia article 
contains other articles as well as text, images, and sounds. 
The task is to generate a complete list of all the parts that a given part requires. Since some parts contain other 
parts, the structure is a tree, as Figure 8-2 shows, and this task requires that you walk the tree to find all the parts. 
The mathematical term for this operation is transitive closure, the set of all the parts in the database that you can 
reach from the root part. 
There are a couple of additional issues with this structure that motivate the Composite pattern. First, the parts are not 
uniform; they are not all members of the same class. Second, the parts all must share a common interface because 
you want to access them uniformly. In the example in Figure 8-2, you want to retrieve all the components of the 
encyclopedia article and display them without needing to know the specific kind of thing, a classic use of interface 
polymorphism. In the classic OO model, this last requirement means that all the different classes must inherit from a 
common abstract superclass. 

The Solution 
Figure 8-3 shows the Composite pattern. The Component is the abstract superclass, and there are two types of 
subclass, a Leaf class that has no children and a Composite class that does have children, all of which are 
Component objects. The children association produces the tree structure by allowing Composite objects to contain 
other Composite objects or Leaf objects as they require. 

The Component class is the abstract interface for all the objects in the tree. It contains both abstract operations and 
operations that provide default behavior. 
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Figure 8-2: An Encyclopedia Parts Explosion  

It also may contain attributes that all component objects share. The Component thus provides all the operations that 
you can do on any component object, including iterating over the children of the object. The Leaf class operations 
and methods provide the ultimate behavior of the system through implementations of the basic component 
operations. 

The Composite class actually stores the children, as indicated by the composite aggregation diamond on the children 
association to the class. It also provides operations and methods that override the abstract operations of Component 
to manage the children, such as Add(), Remove(), and GetChildren(). 
In the case of the parts explosion of Figure 8-2, the Article class is the Composite, and the Text, Video, Image, and 
Sound classes are all Leaf subclasses (along with Article) of the Component class. Figure 8-4 shows the 
EncyclopediaComponent class hierarchy that contains all these classes. 
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Figure 8-3: The Composite Pattern  

Discussion 
Most designers seeing the Composite pattern for the first time have the irresistible impulse to ask, What about 
operations on the leaves that don't make any sense on other leaves or on the composite? The answer: don't do it. 
The objective of the Composite pattern is to treat all the objects in the tree as identical Component objects, not as 
the Leaf. If the Leaf classes have semantics that demand special operations, define separate classes and 
encapsulate them within the leaf classes. You can then maintain the objects in a separate table and refer to them 
through the tree as needed while preserving the data and operations of the individual class. The MPEG File and 
WAV File classes are examples of this approach in Figure 8-4. The EncyclopediaComponent just displays the 
component; the two file classes have the various file operations that let you manipulate them within the Display 
operation. If you want to manipulate the files specifically as MPEG or WAV files outside the tree, retrieve them 
separately and do so. 
Implementing the Composite can be a challenge in a database. Relational databases, for example, complicate the 
implementation because they don't have sets to hold the children. The pattern specifies storing the children in the 
Composite, as the Leaf classes do not inherit the relationship. In a relational database, you store the parent OID in 
the child. For example, if you transform Figure 8-4into an Oracle schema, you would create an 
EncyclopediaComponent table. You then add an attribute to store the identifier for the encyclopedia component that 
is the parent. The root component gets a null parent value. 
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Figure 8-4: The EncyclopediaComponent Composite Pattern Application  

In this case, you almost certainly want to create a separate table to represent the relationship, even though that 
seems more complicated than necessary. Create a separate ComponentChildren table that maps the 
EncyclopediaComponent identifier for a child to a parent. You can then join all three tables 
(EncyclopediaComponent, ComponentChildren, and EncyclopediaComponent) to get the children of a given 
component (or its parents, for that matter). This fifth-normal-form approach also permits expanding the pattern to 
enable a component to have multiple parents (component sharing), which is not possible with the other design. That 
changes the composite aggregation (the black diamond on Composite) to shared aggregation (a white diamond). 
See the section on "The Flyweight Pattern" for a design alternative. 

With the ORDBMS and OODBMS products, you can store REFs or sets directly, so this pattern is not so much of a 
problem. 

You can add an {ordered} tag to the Children role to specify that the children have a specific ordering. This would 
allow you to process the encyclopedia article in the same order each time, if that had some use in laying out the 
screen, for example. 

The composite aggregation implies the management of deletion by the composite. That is, when you remove a 
composite, you also delete all of its children. That may mean some special trigger code or referential integrity 
constraint definitions in a relational database. 

The Flyweight Pattern 
The Flyweight pattern could be considered an example of the crow's feet coming home to roost. This pattern "uses 
sharing to support large numbers of finegrained objects efficiently" [Gamma et al. 1995, p. 195]. 

The Problem 
Translating this goal to the database context reduces it to eliminating redundancy by separating intrinsic and 
extrinsic data—in other words, normalization. Extrinsic data is data that varies with the context rather than with the 
object; intrinsic data varies with the object. In database terms, an OID (a primary key) identifies an object. Intrinsic 
data is data that, in the context of a set of objects, varies with the oid. In relational database terms, this translates to 
a functional dependency on the entire primary key, or fourth normal form (more on this in Chapter 11). Reducing the 
redundancy means creating objects with only intrinsic data and putting the extrinsic data in a separate place. The 
difference between the situation that leads to the Flyweight pattern and the concept of normalization is sharing. 

If the application uses a large number of objects, the duplication of intrinsic data among all the objects can be 
extreme, depending on the size of each object's intrinsic data. All this duplication can lead to a bloated database and 
a bloated application. By sharing the data, you can reduce the overall storage requirements a great deal—always an 
advantage in database (and application) design. 

Consider a situation in the commonplace book encyclopedia system, for example. Many of the images in the 
database are composite images made up of different components. Many of these components are the same, just 
positioned and colored differently in each image. If you store the images as parent-child composites, with each 
component accompanied by its location and color, you store all the components of each composite image 
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separately. That means there is quite a lot of redundancy in the database. By sharing the components, you can 
greatly reduce the overall storage requirements. You can separate the images and store only the coloring and 
location information with the composite along with a pointer to the shared image. 

This situation is common with computerization of real-world things. The first blush look at any situation yields millions 
of things; only on carefully analyzing the objects do you begin to see the similarities. In the extreme, you need 
theoretical science and its ability to break through irregularity with systematic innovation that reduces the chaos to a 
series of laws. 

The Solution 
The Flyweight pattern breaks apart the objects into intrinsic and extrinsic properties to enable the system to 
represent as few objects as possible by sharing. Figure 8-5 illustrates the abstract Flyweight pattern. 

The Flyweight class is an abstract class that represents the needs of the subclasses for extrinsic information. The 
various bits of extrinsic information are all elements of the various interface operations. The FlyweightFactory class is 
the class that manages the collection of Flyweight objects, sharing them among various client objects. It has builder 
methods that either construct the shared object for the first time or just return it if it already exists. It may also have 
builder methods for Flyweight subclasses that just create the unshared objects every time you call the method. The 
FlyweightFactory also owns the transient aggregate data structure that holds the objects and the query code that 
reads them from the database. The ConcreteFlyweight class represents the actual intrinsic state of the Flyweight 
object shared between various classes. 
Figure 8-6 shows the image example as a Flyweight pattern. This example simplifies the interface. The 
ImageFactory produces either a shared image or an unshared composite image, depending on what its client wants. 
It stores the collection of shared images, querying them from the database as needed (or all at once if that makes 
sense). The interface in FlyweightImage imports context and location information as needed. The image bitmap (or 
whatever the Image data type is) is the intrinsic state in the shared concrete Flyweight class SharedImage. The other 
concrete class, CompositeImage, stores the set of children as a Composite pattern—no sharing. 
In the database, a central table or object cluster stores the shared images. Another table or class, which Figure 8-6 
does not show, stores the location and coloring information for the images, mapping these to the shared image 
through a foreign key or association of some kind. When the application needs a shared image, the client asks the 
Factory for it, supplying an Image OID identifier as the key. The factory manages the querying of previously created 
images or the creation of new ones. 

 
Figure 8-5: The Flyweight Pattern  
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Figure 8-6: The Image ComponentHierarchy as a Flyweight Pattern  
Note   To keep things simple, the example in Figure 8-6 does not include the operations to 

implement the Composite pattern, such as First and Next or Getlterator. 

Discussion 

Persistent Flyweights differ from your usual persistent objects mainly in the relationships they have with other 
objects. In a relational database, the number of links to the Flyweight should be high enough to justify keeping it 
normalized instead of denormalizing to reduce the overhead of joins in the application. 

Much of the Flyweight pattern is about how to represent the objects in memory, not how to store them in the 
database. In an OODBMS, for example, you have the option of making the Factory a persistent class and storing the 
links to shared Flyweights as persistent links in a set association. You then just retrieve the Factory and use the 
interface to retrieve the Flyweights into memory. With a relational database, this isn't really useful, since the Factory 
object has no state to store in a relational mapping. You can just as easily create the Factory and query the OIDs of 
the shared objects into an internal mapping structure, then query the objects as the clients request them through the 
Factory interface. 

A critical fact of life with the Flyweight pattern is that all the subclasses must use the same types of extrinsic 
information. If you have any complexity in this regard (subclasses using different kinds of information) you need to 
extend the Flyweight with an aggregating pattern. That pattern lets you represent multiple kinds of interfaces in a 
single class hierarchy. In a Flyweight, data is either intrinsic or extrinsic, with all extrinsic data being passed through 
the Flyweight interface. 
Sharing, as Chapter 7 points out, is a different kind of aggregation. When you share objects, you can no longer rely 
on the parent creating the object and managing it. Like any joint venture, the shared Flyweight needs a separate 
management to survive. That means a Factory, or some other manager object, that controls the set of Flyweights 
and implements the sharing capability of the set. For the most part, the Factory is a transient object in charge of 
creating and destroying Flyweight objects from persistent data. You can potentially make the Factory persistent if it 
contains data about the Flyweight, such as a special way to refer to the object (an indexing scheme for image 
elements based on strings, for example). 
The original pattern [Gamma et al. 1995] states that the effectiveness of the pattern increases as the amount of 
object state that you can make extrinsic increases. Actually, the effectiveness increases as the amount of object 
state that you can make intrinsic increases. The more you can share, the better off you are. 
If the extrinsic state is complex and requires additional normalization structuring, you may find that you are 
approaching the number of objects you had in your original problem. This is the classic case for denormalization, the 
recombining of elements of a normalized database to reduce join complexity and increase performance. 
Denormalization reduces the total number of objects (rows in a relational database) and the number of operations 
you must perform to navigate between objects. Consult Chapter 11 for a complete discussion of normal forms, 
normalization, and denormalization. If you find yourself creating a huge number of classes as you implement your 
Flyweight, you're almost certainly a candidate for flypapering the thing and denormalizing your database. 
A relational database implements a Flyweight as a straightforward series of tables. The superclass Flyweight 
(FlyweightImage in Figure 8-6) shows the abstract, extrinsic interface for the various image components. Since it has 
no state, the table contains only the primary key for the subclass tables. You could alternatively define the Flyweight 
class as a UML interface instead of inheriting from it as a superclass and eliminate it entirely from the relational 
database. This produces the classic normalization scenario. In both cases, the references are a classic referential 
integrity foreign key relationship. 
In an ORDBMS, the Flyweight pattern uses types and references rather than table nesting. Table nesting is a classic 
example of a composite aggregation, where the parent table owns the nested table. Instead, you break out the 
Flyweight class from the extrinsic classes and refer to it from them. You must maintain referential integrity in your 
application or in triggers, though, as references don't have automatic referential integrity mechanisms (see Chapter 
12 for details). 
In an OODBMS, you create the Flyweight superclass and its subclasses and retrieve the extent of the Flyweight 
through that class or the individual extents through the subclasses. You can also make the Factory persistent and 
thus make the set of Flyweight objects a persistent association using an OODBMS. You thus access the Flyweights 
through the Factory, just as you would in a purely transient organization. You use bidirectional relationships with 
automatic referential integrity maintenance for all these associations (see Chapter 13 for details). 

The Metamodel Pattern 
The Metamodel pattern models the structure of an object as a series of objects. This lets you build very general 
models of very complex, arbitrary data relationships. 
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Note   Metamodel is not a Gang-of-Four pattern but rather an original pattern from work I've done in 
the past. Other authors have similar structures [Hay 1996, pp. 61-65]. 

The Problem 

At times, reality can give you a reality check. This happens most when the complexity of the structure of objects is so 
great that your model explodes with subclasses and alternatives. It can also happen when your model starts out 
simple, then meets the real world when the customer uses it. The customer comes back with demand after demand, 
each of which adds more classes and attributes to your database. 

There are two issues with this situation. The more complexity you have in your data model, the harder it is to 
maintain over time. It becomes harder to understand and harder to change. Second, the changes often affect a very 
small part of the population of users. You essentially wind up having to customize the system for each user and then 
transmit the customizations to all users. 

The Solution 
The Metamodel pattern builds structures using building blocks from the structural paradigm. Figure 8-7 illustrates the 
Metamodel pattern. The Client class represents a class of objects to which you want to add an attribute. The 
Attribute class represents a data attribute you add to the Client class. The Value association class models the many-
to-many relationship between attribute and target client. You have one ConcreteValue subclass for each type of data 
you want to model. 

 
Figure 8-7: The Metamodel Pattern  

The Metamodel pattern solves the feature creep problem by letting you "modify" the structure of the database 
without actually modifying the structure of the database. Instead, you add data to the metamodel structures, and your 
application presents that data as though it were actually part of the Client. Your program can present a fixed set of 
attributes, or you can provide an interface for the user to add attributes through the application. 

Discussion 
If you know the specific kind of database your system will use, you can modify the pattern to represent the 
conceptual model structures rather than using classes and attributes. For example, in a relational metamodel, you 
can model columns rather than attributes. 
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The biggest problem with the Metamodel pattern is the restriction on data retrieval. Attributes and values are not 
really database structures, and you can't use SQL or OQL to query them directly. You cannot, for example, use the 
attribute in a WHERE clause with a value literal to retrieve a subset of rows from a table. One way around this 
limitation is to provide a way for the system to create real structures in the database on the fly, which most 
databases can do. That means putting a bit more information into the Attribute and Value classes. The extra 
information lets you create SQL or ODL statements that build the correct structures and fill them in with data taken 
from the Value objects. Your application can then generate the appropriate SQL or OQL queries on the new objects. 

Note 
  

In the last few years, CASE and other software development tools have begun to use 
repositories, databases of metadata about software. These databases are a clear example of 
the Metamodel pattern. 

 
Analysis Patterns 
An analysis pattern [Fowler 1997] is a model of concrete, domain-specific objects generalized for reuse in different 
situations. These are patterns that emerge from years of designing databases. You keep seeing the same tables or 
objects over and over until you just know what to do when you see the situation in a new context. The generalization 
is not to the level of the design patterns in the "Abstract Patterns" section, though. The analysis models have specific 
semantic ties to particular domains. 

There are a huge number of domains for data models, as fine-grained as a system for representing utility patents 
and as coarse-grained as a model of people and organizations. There are some basic domain-specific models that 
have an intermediate granularity, such as the ones this section presents, and these models can be very reusable 
across domains with finer granularity. 

Note 

  

This section draws on the pioneering work of various people [Blaha and Premerlani 1998, pp. 
81—88; Fowler 1997; Hay 1996; Silverston, Inmon, and Graziano 1997]. The models I 
present are modifications of that work, redrawn and redesigned using the UML modeling 
techniques of Chapter 7 and using the succinct style of the abstract pattern. The analysis 
patterns this section presents are just a few of those available. Also, because of space 
limitations, this section can't go into the kind of detail that the original authors did; please 
consult those works for more details on the domain-specific patterns. Where I have seen 
improvements, I mention them in the discussion rather than "improving" the original pattern. 
I'll leave that to a future book on database patterns. 

The Party Pattern 
The Party pattern models, not celebrations, but people and organizations and their basic relationship: employment. 

The Problem 
Most business domains at one point or another involve people and organizations—people because people make up 
organizations, and organizations because businesses without organizations generally don't need databases. An 
organization is, however, more than just a simple aggregation of people. In certain ways, it is a kind of legal person 
in its own right, especially as the corporation or limited company. Both have names and addresses, and several 
people and organizations can share an address. 

Employment is a relationship between a person and an organization. Unless your organization lives in a time warp, 
however, people and organizations have different employment relationships over time. People employed in a single 
organization over time can assume different positions with different job titles. 

Finally, people and organizations relate to one another in reporting hierarchies. People report to other people, and 
organizations report to other organizations. The exact form of such relationships is often more general than a simple 
hierarchy, as people report through complex matrix arrangements and organizations associate to one another in 
networks. 

The Solution 
A party is a generalization of a person or an organization. Figure 8-8 shows the Party pattern that models people and 
organizations, their addresses (sites), their employment relationships, and their reporting relationships. 

The Party relates to other parties in a many-to-many reporting relationship between a set of Superiors and a set of 
Reports. This is a completely general relationship between parties that handles any kind of reporting relationship. 
The special employment relationship is separate, however, as an association between people and organizations. 
The Party has "placements" at one or more sites, each of which has a purpose (Residence, Office, Manufacturing, 
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and so on) and a text address (presumably with embedded line returns for mailing labels). Each site places any 
number of parties (people or organizations). 

The Person has whatever data is of interest to the particular domain, as does the Organization. The two mutually 
relate as Employees and Employers, with the Employment class being an association class holding the time period 
over which employment extends. That class in turn associates with the Position Assignment class, which assigns a 
series of positions to a particular employment period. Each position relates to a given organization (composite 
aggregation), which is responsible for defining the position. 

Discussion 
A major problem with this pattern is the way it handles contact information. There are no telephone numbers, and the 
Site structure for addresses leaves something to be desired. If you wanted to query all people located in San 
Francisco, for example, Site isn't going to help. The telephone problem might be just attributes in Person or 
Organization or even Party; unfortunately, there is more structure to contact than that. Each party can have multiple 
contact points, including several phones (home, office 1, office 2, cell, car), several email addresses, faxes, and 
different mailing addresses as well as their physical site location. Generally these come in some kind of priority—call 
this number first, then email, and so on. The Party pattern doesn't handle any of this. 

 
Figure 8-8: The Party Pattern  

The pattern also points up a common problem with analysis patterns—word choice. I would not choose the word 
"Party," for example, or "Placement." In different contexts and domains, the structure might be valid, but the 
semantics of the words might not be as appropriate. As an example, Figure 8-9 shows the commonplace book 
CriminalOrganization domain with some modifications to the class names that help the pattern make more sense in 
that context. The the-saurus can be your best friend as a dats modeler. 
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Figure 8-9: The CriminalOrganization as a Party  

Figure 8-9 also points up a further generalization. Instead of modeling Position, it models Role. This is a more 
general construct than Position, though it has much the same structure. You can model things that don't correspond 
to job positions using Role without stretching the semantics of the class title. You might generalize and simplify the 
structure further by modeling the relationship as a three-way relationship between Organization, Person, and Role 
rather than having the intermediate Employment class. Employment could be one role a person takes in an 
organization, while his specific position is yet another role. This greatly simplifies the complexity of an association to 
an association class in the original pattern. 

The Geographic Location Pattern 
The Geographic Location pattern models networks of geographical areas. 

The Problem 
Many businesses, organizations, and government entities need to model geographic locations. They need to track all 
kinds of different geographical areas, often for different reasons. Geopolitical locations provide data about countries, 
cities, states, counties, and other legally defined areas. They need to track surveyed areas such as townships and 
sections, usually established by a county assessor for tax purposes or ownership recording. They need to track 
specific types of areas, such as bodies of water, oil or other mineral deposits, or natural habitat areas. They need to 
track administrative regions. All of this goes far beyond site management, which requires only an address. Most 
applications need to understand at a relatively deep level how all these locations relate to one another. 
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Geographical information systems (GIS) provide an application interface and database structure for these kinds of 
applications. If you are designing your own, what kind of database structure do you need? 

The Solution 
The Geographic Location pattern provides a basic breakdown of kinds of locations and a way to relate locations to 
one another. Figure 8-10 illustrates the pattern. This particular version of the pattern reflects some of the 
requirements of a land management government agency at the third level, but the second-level categories are quite 
general. 

The many-to-many relationship between locations reflects the fact that any given location may overlap with any other 
location, spatially and politically. For example, a government agency dealing with Native American affairs would 
require geopolitical areas for tribal land areas. These areas would overlap states, counties, and other geopolitical 
units as well as national forests and other management areas. 

 
Figure 8-10: The Geographic Location Pattern  
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Discussion 

While you can effectively represent addresses using Geographic Location, it's probably overkill. You could represent 
the site as a surveyed area, the city, the state, the zip code, and the country all as geographic locations related to 
one another. However, this pattern better represents demographic information or complex area management data, 
such as for a government agency or a resource exploration company. 

The other problem with this pattern is its relatively arbitrary nature. Without too much thought, you can reclassify 
geographical areas in several different ways, raising the specter of multiple inheritance and infinite complications. 
This might be an instance where less is more: perhaps you should model location as a concept and let the data 
model the detailed classifications. In other words, use the Classification pattern to model classification and use the 
Location pattern to model location, then combine them to produce classifications of locations. 

The Process Pattern 
The Process pattern models continuous manufacturing processes. A good deal of manufacturing conforms to the 
discrete models of process that you usually find in work flow systems, with input objects moving along a path through 
transforming machines into new output states. Continuous manufacturing requires a different sort of model because 
it involves flows of materials such as oil or chemicals, not discrete items such as parts. 

The Problem 
Business models that model assets and part explosions are fine for modeling auto production or other manufacturing 
processes that produce bigger parts from smaller parts. Confronted with liquid flows as in a chemical production 
plant or sewage facility, these models fail. They are adequate to model the production facilities, machines, and pipes, 
but not to model the processes that result in products. For these processes, the concept of flow of material, and in 
particular the rate of flow, is the most important thing to model. As well, to ensure quality through process planning 
and measurement, you must distinguish between actual flows and potential flows. You want to measure what's 
supposed to happen as well as what actually does happen. 

The Solution 
Figure 8-11 is a rather complex representation of the Process pattern. It models a number of different aspects of the 
problem: 

 The process models (conditions and potential inputs and outputs for processes) 
 Process material requirements (products, flows, and constituents) 
 Facility structures (facilities, product inventories, fluid paths) 
 Process operations (potential and actual product flows through process instances) 
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Figure 8-11: The Process Pattern  

Note 

  

The original pattern [Hay 1996, pp. 187-196] is very different from Figure 8-11. As I translated 
the original pattern, I discovered many problems moving from the CASE*Method 
diagramming style into an OO style. In particular, the modeling of relationships as entities 
made it very difficult to translate Hays's pattern effectively. I have therefore taken the liberty of 
revising the pattern into a design that is more compatible with OO concepts. 

This pattern is an example of an explicit, detailed pattern for a particular middle-level domain. The details of the 
pattern are clearly beyond what an abstract pattern would represent. Yet it still is quite general, and it can apply to 
any number of industries, not just firms in a specific industry. You can see how the levels of detail of patterns can 
vary between your particular problem, your company's problems, your industry's problems, your type of industry's 
problems, and generic problems. 
The process is also an example of the transitive qualities of associations in a software system. Figure 8-11 has 
several association classes that represent realized relationships between classes: 

 ProductInventory: The relationship between Product and ProductionFacility; a facility contains an 
inventory of a product, which is a mixture of different materials 

 Constituent: The relationship between MaterialType and Product, the composition of the Product 
mixture 

 FluidPath: The relationship between two Production Facilities; literally, a pipe connecting two 
facilities that permits product to flow between processes 

 Condition: The relationship between a ProcessModel and a set of Variables; the variables control 
the conditions under which the processes modeled can proceed 

 Actual Flow: The relationship between ProductInventory and FluidPath; the actual flow of 
material mixtures (products) through the pipes (fluid paths) 

Actual Flow is an example of a relationship on a relationship. The actual flow of materials from inventory to process 
follows the relationships between production facilities. Although seemingly complex in abstract form, you can easily 
see how all this works in the real world. You have mixtures of product in tanks. The product flows from the tanks 
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through production facilities that apply processes controlled by models to transform the input products into output 
products. These outputs in turn flow into yet other tanks, and potentially become the input to yet other processes. 

Discussion 
When you start seeing this kind of reliance on associations, you should think about OODBMS products and schemas 
instead of RDBMS or even ORDBMS schemas. Your application is almost certain to concern itself primarily with 
navigation along the paths and flows, not with class-extent queries over entity types. The navigational qualities of 
OODBMS sets are much more likely to provide the facilities you need in your application. In these systems, you 
typically want to follow the pipes or flows, not retrieve tabular data about them. 
The constraints in a pattern of this complexity are hard to get right. Looking at Figure 8-11, how would you 
automatically apply the process model to actual processes, for example? The model tells you what inputs a process 
expects and what outputs it produces, and it tells you the conditions of the variables under which it produces the 
product. Relating this to the production facilities means knowing where the inventories with the right mixtures are, 
what products can flow through which fluid paths at what capacities, and so on. The pattern contains the basic 
information, but there are many details still missing, such as scheduling of flows, tracking of samples and process 
measurements, and inventory management features. The Process pattern is a start at measuring the process 
relationships, but it doesn't provide everything you need for a continuous manufacturing domain by any stretch of the 
imagination. 

The Document Pattern 
The Document pattern lets you model documents, including structured documents and their users. 

The Problem 
The librarian's problem is the infinite, as one of the most famous librarians has pointed out, dreaming (perhaps) of an 
infinite number of hexagonal rooms, poorly lit, with books containing all possible combinations of the alphabet 
[Borges 1962]. The problem is to find the document that contains the information that you want among the huge 
volume of such things. As different media take hold in the publishing world, the librarian's job just gets more 
challenging. 

The Solution 
The Document pattern lets you describe the universe of documents that you choose to collect in your library. Figure 
8-12 shows the Document pattern. 

The first aspect of this pattern is the modeling of document types. Instead of using generalization for this, the pattern 
models the document types as a separate class using the Metamodel pattern. Because there are potentially an 
infinite number of kinds of documents with very little to distinguish them in structure or behavior, this provides a way 
to classify documents without complicating your design model. In this case, each document has a single type for 
classification purposes. 
Next, you must represent copies and versions of documents. A document is the abstract concept of the document; a 
copy is a real instance of this abstraction. For example, Mark Twain's Huckleberry Finn is a document; the dog-eared 
copy on the third shelf from the left in Room 23 is a copy of the document. The key elements of the copy are a way 
to identify it and a location. 

A version of a document is an abstraction, but at a finer grain than the document itself. There are two kinds of 
versions: the amendment and the edition. An amendent adds a second document that extends the first one and 
becomes (usually legally) a part of it. An edition replaces the document with a revised version. Continuing the Mark 
Twain example, someone can publish the original edition with an amending preface that contains biographical and 
historical material that sets the context. Another example is a contract document and later amendments to that 
contract that change the terms of the contract after the signing of revision of Huckleberry Finn based on an extensive 
analysis of original manuscripts and author's notes that extensively revises and adds to the material in the original 
edition of the book. The pattern assumes that you can have multiple versions but only one predecessor. That is, you 
can produce multiple branches of versions, but each branch leads back to a single document. 
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Figure 8-12: The Document Pattern  

The Document pattern lets you associate topics with documents however you like. You can find a particular topic in 
any number of documents, and a particular document may address any number of topics. The structure assumes 
that a document can address no topics. This lets you create a document without indexing it immediately; it also lets 
you store documents that you cannot access through the topic index. 

Discussion 
Obvious applications of the document pattern apply to areas such as knowledge management or World Wide Web 
content searching and other indexing functionality. Going beyond such indexing and searching, the next step in 
document management is managing work flow. You can add in the Party pattern and connect it through roles to 
show how documents move from role to role in a work flow process. One such role could replace the Author attribute 
with a relationship to a Party. Others could link a Person as the current owner of the document, the signer of the 
document, or any other related role. You would also record the history of the process as a series of role ownership 
records. 

You might also choose to extend the Document class hierarchy with inheritance while still continuing to use the 
DocumentType objects. This would give you two ways to classify documents, one relating to structure and behavior 
and the other as a purely abstract categorization. Both may be useful at different times for different reasons. For 
example, you may have structured information available for a document that you want to use to search or otherwise 
process the data. Rather than adding extensive metamodeling, it might prove more efficient to create subclasses in 
the database for different kinds of documents. For example, the IdentificationDocument hierarchy might contain 
detailed data that you could use for query purposes, or you might have fingerprint documents with special category 
elements useful in quickly searching for records. 

Summary 
A design pattern is a reusable system that describes a design problem and its solution. The generic pattern contains 
a number of elements: 

 A name 
 A problem description 
 A solution description 
 A discussion of issues, trade-offs, and consequences of the pattern 
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An abstract pattern is a pattern of classes and relationships that describe a generic solution to a generic problem. 
This chapter gave several examples of abstract data model patterns: 

 Singleton: Ensures that a class has only one instance in the database 
 Composite: Represents a tree structure made up of different kinds of related objects, all of which 

share the same interface; a part-whole hierarchy or parts explosion in your database 
 Flyweight: Uses sharing to reduce redundancy in the system (normalization) 
 Metamodel: Represents data about data to enable flexible and extensible data modeling 

An analysis pattern is a model of concrete, domain-specific objects generalized for reuse in different situations. This 
chapter gave several examples of analysis patterns: 

 Party: Jointly represents people and organizations (entities) 
 Geographic Location: Represents an extensive variety of physical places 
 Process: Represents a flow-oriented manufacturing process 
 Document: Represents an extensive variety of documents and searching features 

Abstract patterns and analysis patterns give you a leg up on your data modeling. The next chapter shows you how to 
get a clue as to how big the horse is that you're mounting. 

 
Chapter 9: Measures for Success 
O mighty! Dost thou lie so low? Are all thy conquests, glories, triumphs, spoils, Shrunk to this little measure? 
Shakespeare, Julius Caesar III.i.148 

Overview 
I considered titling this chapter "Measures of Success." I thought about it a little and instead opted to use the word 
"for." Measuring is not passive. It is an active, indeed aggressive approach to forcing success to emerge out of a 
situation. At its essence, measuring is feedback. It is the process of obtaining information to use to guide your work 
to a successful conclusion. 

Many of the measurement efforts in which I've participated have been passive measurement. Passive measurement 
collects data because that's what professionals do, or because a consultant recommended it, or because 
somebody's read a book. This is making measurement into a magical talisman, an amulet you can wear to ward off 
evil spirits. Although amulets may have their place, software development isn't it. 

To measure aggressively, you must first know why you are measuring. What kind of feedback are you trying to get? 
Are you trying to decide whether your approach is too complex? Are you hoping to improve the quality of your 
product through measuring defect rates? Are you hoping to improve productivity? Are you trying to understand the 
effectiveness of the systems you've put in place to get results? If you can't articulate a specific reason for measuring, 
you shouldn't be measuring because you won't use the results. 

 
Goals, Metrics, and Scales 
A metric is a method of measuring some empirical aspect of the real world. In this case, the metric is a tool 
that measures the achievement of the goal you've articulated. The metric lets you measure how well the 
system you've designed matches the goals you've set for it. 

Designing a valid metric for a particular goal is hard. You need to worry about three things: 
 You have to be able to measure your goals. 
 You have to use the right kind of scale for the type of goal. 
 You have to use a metric that lets you make meaningful statements about the state of the 

object. 

Some goals are not measurable, however cunning the metric. Vague goals or goals with little structure 
prevent you from measuring the results. If you can't get good empirical data with the metric, and if you can't 
relate that data directly to the objective, you do not have a valid metric. If you can't build a metric or state a 
measurable goal, you should rethink your objective. 
A scale is a mapping from an empirical system to a numerical system. The representation problem occurs 
whenever the relationships between empirical elements are the same as the relationships between 
numerical elements [Roberts 1979, pp. 54—55]. The uniqueness problem is how unique this 
homomorphism (mapping between elements) is. That is, what kinds of transformations can you apply to 
the data without destroying the representation? Measurement theory specifies a standard set of scale 
types it identifies by the kind of transformation. Table 9-1 shows the standard scales and their 
characteristics. 



 - 135 -

For example, your goal might be a simple true-or-false goal, such as "to represent criminal organizations." 
You would use a nominal metric (1 or 0 for true or false). If your goal relates to an ordering, such as "to 
order criminal organizations by prosecutor priority," use an ordinal metric (1, 2, and 3 for high, medium, and 
low priority). A goal with no zero value, such as "to make data available to prosecutors within two days of 
acquisition," should use an interval metric such as the data acquisition date. A quantifiable goal, such as 
"to achieve manageable schema complexity," needs a ratio metric (a measurable schema complexity 
metric such as number of relationships divided by number of classes). Finally, an absolute goal of some 
kind, such as "to count number of burglaries in West Sussex," requires an absolute metric (number of 
burglaries). 
It doesn't do any good to measure achievement of a goal that has no meaningful characteristics. For 
example, controversy continues about the measurement of intelligence, and in particular its application to 
determining the intellectual success of individuals. None of the words in the previous sentence are in 
themselves meaningful, much less measurable. Does IQ measure "intelligence," and if so, ho? Effectively 
measurable goals should stick to relatively commonplace things in the real world, such as effort, time, and 
money. It also doesn't do any good to try to apply metrics that use a certain kind of scale to goals that 
require a different scale. For example, consider a goal "to deliver the object within 10% of the estimated 
effort." You decide to measure this goal with a metric that rates effort for an object as "too little, just right, 
too much." You're going to have trouble making the objective have any real meaning. 

Table 9-1: Types of Measurement Scales from Measurement Theory  
Scale  Characteristics  Example  

Nominal Any one-to-one transformation is possible. 
There is no ordering of numbers and no 
ability to add, subtract, or relate any two 
numbers other than a basic equality 
comparison. Uses numbers as labels or 
names. 

Boolean values (true/false), 
categorizations (good, bad, don't care), 
alternative codes such as WBS 
numbers or object identifiers 

Ordinal Any order-preserving transformation is 
possible. Only order is important, not the 
relative distance between numbers or the 
value of the numbers in themselves. 

Rankings (good, better, best), grades, 
mineral hardness 

Interval Linear transformations of the type φ (x) = ax 
+ b for a >. 0. An ordered scale with an 
arbitrary origin b and a unit of measurement 
a, allowing you to compare intervals 
between scale values. 

Temperature (Celsius or Fahrenheit), 
time 

Ratio Linear transformation of the type φ (x) = ax 
for a > 0. Scale values are unique with 
respect to an arbitrary unit of measurement 
a, allowing you to compare the numbers 
themselves. The scale fixes the origin 
(zero), however. 

Length, mass, absolute temperature, 
and similar physical quantities; time 
intervals; effort; most kinds of value 
where there is a concept of no (zero) 
value 

Absolute No transformations possible. Count of objects 

 

Table 9-2 sets out several characteristics that you can use to evaluate your metric [Osgood, Suci, and 
Tannenbaum 1957, p. 11; Henderson-Sellers 1996, pp. 33—38]. The more of these criteria that your metric 
satisfies, the better is the metric. 

Finally, measure the measurement. Keep track of the impact of your measuring activities, and improve 
them just as you would any other system. 

The key areas in which you need to measure include the size of your model, its complexity, how well it 
hangs together (cohesion), and how well you've divided things up (coupling). The ultimate value of your 
model is in its reuse potential, both for the model itself and for the system you build from it. The following 
sections summarize some of the metrics you can use to measure these aspects of your data model. 

Table 9-2: Evaluation Criteria for Metrics  
Criterion  Definition  
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Objectivity Does the metric yield reproducible data? Can different data collectors measure the same 
object with the same results? 

Reliability Does the metric yield the same results under the same conditions, within acceptable margins 
of error? 

Validity Can you validate the data that the metric yields with other similar data that measures a 
similar kind of goal? Is there another metric that you can use to provide assurance that you 
are getting valid data? 

Sensitivity Does the metric yield data capable of distinguishing differences at the level of your goal? 

Comparability Can you apply the metric to all objects having the same or a similar goal? 

Utility Can you collect meaningful data at a reasonable rate and with reasonable effort? 
 

Size Measures 
A critical measure by any standard is the metric for the size of your system. The most common measure, lines of 
code, is nearly useless for measuring databasecentric systems, since code is not really your concern. For these 
kinds of systems, your measurement goals are to understand how big the database will be for storage resource 
estimation and how big the data model will be for effort estimation. 

Database Size 
Sizing a database is a tricky thing, even when you have an actual database to measure. At the data modeling stage, 
your resources are even more limited. This is especially true if your choice of underlying DBMS technology is still 
uncertain, or if you have multiple DBMS targets for your system. At the data modeling stage, your best bet is to get 
an order-of-magnitude metric based on the number of classes and the average estimated number of persistent 
objects per class. You can get this latter number by looking at existing systems or the logical definition of the system 
to determine how many objects the system might create in some typical time interval. 

Schema Size 
Sizing a schema for estimation purposes is easy, right? You just count the classes, and voila! Perhaps, but if you are 
going to be using the size metric for estimating effort, you'll find that not all classes are created equal, at least for that 
purpose. 

The best all-around metric for schema size that I've found is the function point. A function point is an ordinal-scale 
metric (with some interval-ratio tendencies) that measures the functionality of a software system. There is no room 
for an extensive description of function points here, so you should consult a tutorial for more details [Dreger 1989; 
Garmus and Herron 1996; IFPUG 1994;Jones 1991]. 

Once you have your use cases, you can count function points for your system as a whole. The total number of 
adjusted function points gives you a clear measure of the size of the software system, including the database-centric 
aspects. In counting function points, you divide the functionality of your system into five separate countable types of 
functions: 

 External inputs (EIs): Transactions that result in input across the application boundary 
 External outputs (EOs): Transactions that result in output across the application boundary 
 External queries (EQs): Transactions that send inputs to the application and get back outputs 

without changing anything in the database 
 Internal logical files (ILFs): Data the application manages 
 External interface files (EIFs): Data the application uses but doesn't manage 

For schema sizing, these last two counts are the most important. ILFs are for the most part the persistent classes in 
your data model. To qualify as an ILF, your persistent class must be within the application boundary; that is, your 
application must create persistent objects of the class as part of its essential function. ELFs, on the other hand, are 
classes that you refer to but don't maintain. That is, your application does not create or update persistent objects, it 
just uses them after retrieval from the database. 

To count ILFs and ELFs, you need your data model and your use cases. First, divide the classes in your model 
according to whether the application manages them or just queries them. For example, in the commonplace book 
system, the bulk of the classes represent data that the application queries for the Holmes PLC operatives without 
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letting them change anything. These are ELFs, such as Person and CriminalOrganization. There are some classes 
that represent operatives' input into the system, such as Case Note, in which operatives record their reports on 
current cases. These are ILFs. Most systems have many small tables that an administrator maintains, such as lists 
of cities and states, data type codes, and security information. These are usually ELFs in most applications. The 
tables critical to a given application are usually ILFs, but not always, as in the commonplace book. Such systems are 
usually query-only systems for the most part. 

Tip 
  

If your data model consistently marks the operations of classes with the {query} tag, you should 
consider adding a {query} tag to the class to indicate that it is an ELF rather than an ILF in your 
application. This makes counting function points even easier. 

The second part of function point counting is determining the complexity of the count for a given item. To do this for 
the two file counts, you need to determine the record element types (RETs) and data element types (DETs) for the 
file. With respect to function points, complexity is a weighting factor by which you multiply the raw counts to get an 
"unadjusted" function point count (I'll get to "adjusting" those counts later). 

DETs are "unique user recognizable, nonrecursive fields/attributes, including foreign key attributes, maintained on 
the ILF or EIF" [Garmus and Herron 1996, pp. 46—47]. These correspond to the individual attributes and 
relationships in your UML classes. You count one DET for each attribute/relationship; you don't vary this by the 
number of objects of the class or the number of related objects. You just count the attributes and relationships. If you 
have a relationship to a class with an explicit OID consisting of more than one attribute, you count one DET for each 
of the attributes rather than just one DET for the relationship. The explicit OID means that you are using a user-
recognizable attribute to identify an object, and therefore each contributes to complexity. You can ignore attributes 
that appear only as implementation techniques. You also should collapse repeating attributes that are identical in 
format, a common implementation technique. Usually these are arrays or structures (or embedded classes); 
sometimes for reasons of clarity you break them out into separate attributes, such as a series of bit flags or a group 
of monthly amount fields. Ignore these extra attributes and count a single DET. 

RETs "are user recognizable subgroups (optional or mandatory) of data elements contained within an ILF or EIF. 
Subgroups are typically represented in an entity relationship diagram as entity subtypes or attributive entities, 
commonly called parent-child relationships" [Garmus and Herron 1996, p. 47]. The RET thus corresponds to either 
the generalization relationship or to the composite aggregation association or to the parent-child recursive 
relationship in UML persistent object diagrams. The idea is to count a single RET for a single object, and an object 
consists of its class and its superclasses as well as the objects it owns through aggregation. You count one RET for 
an object with no generalization or aggregation association, or you count one RET for each such relationship. 
For a real-world example, consider the criminal organization in Figure 8-9, reproduced here and labeled for your 
convenience as Figure 9-1. The commonplace book lets the operative query information about the criminal 
organization; other parts of the Holmes PLC system maintain the information. Therefore, all of the classes in Figure 
9-1 are EIFs or RETs. In a data entry application for criminal organizations, they would be ILFs and RETs. The 
RET/DET determination is the same, however. The EIFs appear with the «EIF» stereotype and the RETs appear 
with the «RET» stereotype, just to be completely compatible with the UML notational world. You show the DET 
counts as tagged DET values on the classes. 
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Figure 9-1: Counting the CriminalOrganization  

There are five EIFs with five RETs and 29 DETs in Figure 9-1. It's not quite that simple, however, because you need 
to associate the RETs and DETs with the EIFs of which they are a part. This lets you factor in the complexity of the 
EIF or ILF in counting its function points. The example shows the kind of decisions you need to make. 

Note 

  

Figure 9-1 shows how you can use the UML notation in a completely different way, in this 
case to count function points more easily. If you are using a diagramming tool that permits 
multiple views of models, you can use the various different stereotypes and tags to great 
effect in this way. Such tools are hard to come by, however; I know of none that currently 
support this kind of modeling.  

The first decision you must make is what class in a class hierarchy to use as the EIF. In this case, our application 
focuses on CriminalOrganization, so that becomes the first EIF. If you're counting a standalone database design, you 
start with the root class as the EIF. You then make the subclasses RETs. In this case, we make the 
CriminalOrganization class an EIF and the rest RETs. 

The Entity class provides a second decision. It has a recursive, parent-child relationship to show how entities relate 
to one another. This association becomes an RET. 

The Role class provides a third decision. Because it relates to the Organization class as a composite aggregate, it 
becomes an RET rather than an EIF. That is, you consider the Role a part of the Organization object rather than 
thinking about it separately. The Role is a part of the Organization. 
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Finally, the Membership class owns the RoleAssignment class, so that is in turn an RET rather than an EIF. Again, 
the RoleAssignment is a part of the Membership (which in turn is a relationship between a Person and an 
Organization, just to be totally confusing). 
How do you convert the raw function point count (in this case, five EIFs) into the unadjusted function point count? 
Use Table 9-3 to determine the ordinal value for the complexity given the number of RETs and the number of DETs 
for a given EIF. 

Let's consider the EIFs one by one. The first one is CriminalOrganization, the center of the web. It has two 
generalization RETs, Organization and Entity, its superclasses. Organization has in turn the RET for Role, making 
three RETs. Leave the RoleAssignment to its owner, Membership. Entity has a RET for the parent-child recursive 
relationship. Thus the CriminalOrganization EIF has four RETs and a total of eight DETs from the various classes, 
leading to a low complexity. 

Person has a single RET, its superclass Entity. It has two DETs itself and two for Entity. That leads to a low 
complexity. You don't count the RET for the parent-child recursive relationship again, as you've already accounted 
for that in the Organization count. 

Table 9-3: File Complexity Ordinals  

RETs  1—19 
DETs  

20—50 
DETs  

51+ 
DETs  

1 Low Low Average 

2—5 Low Average High 

6+ Average High High 

 

Site has no RETs, which means you count one RET for the class itself. It has three DETs. That leads to a low 
complexity. 

Whereabouts has no RETS(1) and four DETs, two for its attributes and two for the foreign keys of the association 
class, leading to a low complexity. 

Membership has one RET (RoleAssignment) and five DETs, three for the attributes and two for the foreign keys of 
the association class, leading to a low complexity. 
Given these ordinals, you calculate unadjusted function points with Table 9-4. 

Since all of the complexity ordinals are low, you multiply the number of EIFs by five to get a total of 25 unadjusted 
function points (five EIFs multiplied by complexity multiplier five). The CriminalOrganization application that uses 
these classes thus has 25 function points relating to the database. There are, of course, other function points coming 
from the EI, EO, and EQ calculations for the transient software subsystems; these contribute to effort estimates just 
as much as the data calculations. 

The final step in counting function points is to adjust the total by the "general system characteristics." It is at this point 
that function points become a bad metric. You evaluate your application according to an ordinal scale on various 
characteristics, such as data communications, performance, transaction rate, online data entry, reusability, 
installation ease, multiple sites, and online update. You rate each item on an ordinal scale of 1 to 5, then sum these 
to get the total degree of influence. You then calculate the value adjustment factor by multiplying this number by .01 
and adding 0.65 to it. This calculation, unfortunately, completely destroys the validity of the measure by converting it 
from an ordinal scale to a ratio scale, resulting in a meaningless fractional number such as 4.356. 

Fortunately, for most database systems using the client/server model and destined for a real-world commercial 
environment with a decent number of users, the value adjustment factor comes surprisingly close to unity (1). For the 
most part, I recommend using the unadjusted function point count as your size measure for this reason. 

Table 9-4: Function Point Count Multipliers  
Type  Low  Average  High  

ILF í7 í10 í15 

EIF í5 í7 í10 
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Note 

  

You should consult the IFPUG documentation for complete details on adjusting function points. If 
your situation differs significantly from the normal commercial database application, you may 
need to adjust your function point count. Don't put too much faith in the exact nature of the 
number, however, since you've abrogated the mathematical validity of the scale by moving to a 
ratio scale. 

 
Complexity Measures 
Function points give you a measure of the size of your information system, but they don't tell you much about how 
complex it is. Although you adjust your functions for complexity, the result is still a weighted size measure. 

Most of the work on complexity relates to programming complexity, but even then the problem with the term is its 
vague meaning [Fenton and Pfleeger 1997; Henderson-Sellers 1996]. In the context of the data model, it is definitely 
less than clear what you mean when you say you want to measure complexity. The dictionary defines "complex" as 
"made up of related parts" or "complicated," which in turn means "difficult, confused, intricate, or complex." The 
complexity of a model is of interest because of the assumed relationship between such complexity and the difficulty 
in building the system. 

The first distinction you need to make is between problem complexity and solution complexity. Data modeling 
generally models the problem, and thus the problem complexity is of more interest here than the solution complexity. 
On the other hand, the data model is the first cut at the design of the system, and design complexity is solution 
complexity. If you spend any amount of time working with designing databases, you very quickly realize that there 
are different ways to model the problem—some more difficult and some less difficult. Which is more appropriate 
depends usually on the use to which you are going to put the model. 

Solution complexity breaks down a number of different ways. One breakdown divides complexity into algorithmic 
(efficiency of the system), structural (architectural elements and relationships), and cognitive (effort required to 
understand the system) [Fenton and Pfleeger 1997, p. 245]. Another approach breaks complexity into computational 
(algorithmic), psychological (cognitive, structural, and problem), and representational complexity [Henderson-Sellers 
1996, pp. 51-52]. Most research focuses on structural complexity, with some research devoted to cognitive 
complexity. Unfortunately, most of this work relates to procedural design, not to database design. 
An example is the most frequently used complexity metric, cycolmatic complexity, or the McCabe metric [McCabe 
and Butler 1989]. This metric takes a model of a procedure as a connected graph (a graph where all nodes are 
reachable from every other node): 

 
where e is the number of edges in the graph, n is the number of nodes in the graph, and 2 has to do with the number 
of paths in a strongly connected graph. V(G) measures the number of linearly independent paths through graph G 
[Fenton and Pfleeger 1997, p. 293]. Unfortunately, there are significant limitations in the metric as a measure of 
complexity, and it applies to procedural structure, not to data structure. 

Note   For tools that let you apply McCabe's metric to a variety of programming languages, consult 
the McCabe Associates Web page at www.mccabe.com/vqt/.  

There is no widely accepted measure of database schema complexity. Nevertheless, database designers intuitively 
know when they are complicating their lives with their design. The best I can do at this point is Occam's razor, 
turning complexity into simplicity: make the data model as simple as possible. This does not mean fewer classes; 
you can combine a bunch of classes into a single class and have a much more complicated system because the 
result is harder to use and maintain. Another test is the idiot test: explain the model to any idiot off the street (who 
understands UML) and see where he or she fails to grasp what's going on. The problem with the idiot test is that 
you're assuming that you understand the model well enough to make up questions that reveal lack of knowledge on 
other people's parts, a rather subjective assumption at best. It's also kind of rude. 

 
Cohesion Measures 
There are two types of cohesion of interest to the database designer: the abstract cohesion of a classifier 
and the structural cohesion of a set of related classifiers. It's important to realize that cohesion is a central 
aspect of reusability. The more cohesive your classes, the more likely you are to be able to reuse the 
classes under different circumstances. The later section "Reuse Potential" addresses this issue in detail. 
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Abstraction Cohesion 
The cohesion of an individual classifier (class, interface, package, subsystem) is "the extent to which 
its individual components are needed to perform the same task" (Fenton and Pfleeger 1997, p. 312). 
The data model classifier requires a slight modification of this definition: the extent to which it needs 
its individual components to maintain its abstraction. 
The data model as a UML static structure model is a set of abstract classifiers and the relationships 
between them. You should therefore be able to use standard measures of abstraction cohesion to 
measure the cohesion of your model. One such metric is the lack-of-cohesion metric [Chidamber and 
Kemerer 1993]. This metric relates the class methods to its attributes on a pairwise basis. You 
systematically compare all pairs of methods and classify them as good or bad: a good member 
function pair is one that shares at least one attribute or relationship of the class. You don't compare 
the method to itself, nor do you distinguish pairs based on the order of the operations in the pair. 

The biggest problem with this measure of cohesion is that it requires at least partial implementation of 
the system's methods. You could estimate this at the data model stage by listing the attributes or 
relationships you think a method that implements an operation will use. This is just an estimate until 
you get through the coding. Most of the examples in the last two chapters don't even have operations 
specified, as they aren't critical to data modeling. 

Another problem with this metric is the emphasis on abstraction as a data concept rather than as a 
semantic concept. You really want to measure how well the class hangs together conceptually, how 
integral the various components are to the meaning of the class. We do not as yet have any direct 
way to measure this. Again, using your intuition can be the best way to estimate the cohesion of a 
class. Are the attributes and relationships meaningful aspects of some underlying thing you are 
modeling? If you think you can spot clusters of attributes that relate to different things, you can try to 
split up the class to see whether the different components can work as separate classes. This is often 
successful in creating inheritance hierarchies, as you separate individual elements that apply only 
under certain circumstances. A classic example of this is the undefined null value, where an attribute 
is null by definition when a certain logical condition is true. Creating a subclass and moving the 
attribute into it often removes the need to make the attribute null. This is a good example of 
abstraction cohesion. 

Structural Cohesion 
If you consider a set of related classes as a system comprising the classes and their relationships, 
you can think about the cohesion of that system directly rather than just the cohesion of the individual 
classes. This structural cohesion is the extent to which the objects' structure yields meaningful results 
in queries. 
A dependency is an implication constraint on a set of attributes. A functional dependency is a single-
attribute implication: if you know the value of attribute A, then you know the value of attribute B. A 
multivalued dependency is a twoattribute constraint: if you know the values of A and B, then you know 
the value of C. More generally, a join dependency is an n-valued constraint. Dependencies are the 
basis for the process of normalization in relational databases. See Chapter 11 for a complete 
discussion of these concepts. 

Normalization provides you with the assurance that 
1. you can update or delete a value in a table with a single command 
2. you can join any tables without losing information 

These assurances are also a good definition of structural cohesion, at least to the extent that they 
apply to the underlying structures. The problem with using strict normalization as a measure of OO 
cohesion of a set of classes is that its formal requirements are a bit too strict for the very flexible OO 
world. First normal form, for example, requires that all attributes have a single value, whereas 
multivalued attributes such as arrays, structures, and nested classes are possible in OR and OO 
systems. The join operation is meaningless on such attributes, as it depends on a single-valued 
comparison operator. That is, you can't join two sets of objects on an array attribute; the whole notion 
is meaningless. 

On the other hand, you can make a pretty good argument that a database with such things in it is 
going to be difficult to use, at best, if your query language has a join operator in it. If you use arrays, 
for example, as attributes of a persistent class, and you are designing a relational database, you're 
going to have problems using ANSI SQL to form queries of that data. Since relational databases don't 
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have the concept of an array, you're going to have problems mapping the UML design into your 
relational schema at all. 

Given this fact, it should be clear that unless your target schema data model is an OR or OO model, 
you should not use structured data in your classes. To do so reduces structural cohesion. Instead, you 
should break out structured data into separate classes and use relationships to represent the 
multivalued structure. This solution, of course, maps directly to normalization. 

You thus can evaluate the structural cohesion of your system on a five-point ordinal scale: 
 First normal form: No class contains an attribute of a structured data type. 
 Second normal form: No class contains an attribute that is not fully dependent on an OID 

of the class. 
 Third normal form: No class contains a functional dependency that is not from a full OID of 

the class (really Boyce-Codd normal form). 
 Fourth normal form: No class contains a multivalued dependency that is not from a full OID 

of the class. 
 Fifth normal form: No class contains a join dependency that is not from a full OID of the 

class; put another way, you cannot join any tables in such a way that you lose 
information. 

The use of normalization status as a proxy for cohesion shows promise, but it definitely restricts your 
design choices in interesting ways. By "interesting," I mean likely to cause arguments among 
knowledgeable people. You will find those who adamantly believe that "good" database design has 
nothing to do with normalization, and those who believe that unless the data is in at least third normal 
form the design is evil and degenerate in the extreme. You will also find those who regard 
normalization irrelevant to OO design [Blaha and Premerlani 1998, p. 273]. I prefer to think about 
normalization more gently as a cohesion metric. I strive to be more cohesive and use cohesion as a 
rationale for decision making, but it does not constrain my application of common sense to data model 
design. I will say that using entity-or class-based design methods such as UML, you tend to get fully 
normalized, fifth-normal-form databases because they tend to reflect semantically meaningful objects 
and relationships. 

 
Coupling Measures 
Coupling is "the degree of interdependence between modules" [Fenton and Pfleeger 1997, p. 310; 
Yourdon and Constantine 1979]. As with cohesion, design theory says it is easier to modify and to reuse 
systems that minimize coupling. Yourdon and Constantine defined six kinds of coupling between two 
modules in an ordinal scale. This metric refers to the way in which a module uses data in another module, 
which (in a regular program) either happens through direct reference or by passing data on the stack. 

1. No coupling: The two modules are totally independent of one another. 
2. Data coupling: The two modules pass data (not control) through parameters on methods. 
3. Stamp coupling: The two modules pass data of the same structured type through parameters 

on methods (they both depend on a third structure). 
4. Control coupling One module passes data that controls a decision point in the other module 

(control data, or flag parameters that a conditional statement checks before doing 
something). 

5. Common coupling: Both modules refer to shared global data. 
6. Content coupling: One module refers directly to data inside the other. 

Translating these ordinal values into the database world is reasonably straightforward. The database 
provides more connections, however. You can refer to data through associations, through generalization 
and inheritance, or by reference in operational code (SQL, OQL, or procedural code in stored procedures 
or methods). 
No coupling in the database means that a given class does not have any associations to other classes and 
does not inherit from another class. Methods on the class do not refer to data in other classes in any way. 
They refer only by calling methods on other classes, executing stored global procedures that refer to data 
in other classes, or directly through SQL or variable references. 
Data coupling limits access to persistent data values (not objects, just primitive data types) by 
encapsulating them all in methods. A class that accesses such data through method calls, but not by 
association or inheritance or direct reference and not any other object data, exhibits data coupling to the 
other class. 
A class that gains access to structured data (record types, arrays, or objects) through methods exhibits 
stamp coupling. In a relational database, this means accessing data through stored procedures that return 
cursors or structured data (record types or some other structured object). In an OR database, stamp 
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coupling means having methods that pass in or return objects, such as the Oracle8 object view. In an OO 
database, stamp coupling can additionally mean using OQL constructs that refer to objects. For example, 
you can have expressions that return a set or bag of objects or expressions that use functions taking 
arguments of class types. 
Control coupling is by definition procedural, not data oriented. To the extent a database language supports 
procedural control, you can have control coupling in your language statements. In the relational database, 
for example, a correlated subquery exhibits control coupling. This is where a nested SELECT refers 
outside itself to a value in the outer select (a parameter) to limit its return. Even more directly, creating a 
parameterized SQL statement that uses the parameter in a WHERE clause, or building an SQL statement 
using data passed in by parameter in a transient method, both exhibit control coupling. Boolean flags in 
methods are still the most common control coupling in OR and OO databases. 

Turning this around, if you find yourself creating Boolean flags in your tables or classes, are you going to 
use these to make control decisions, or do they just represent true/false data? If it's the former, you should 
consider a subclass to represent the different control choice. For example, consider CriminalOrganization 
in the commonplace book. You can add a Boolean value to indicate whether the organization is active or 
not. If the intent is to represent information for query purposes, this is just fine. If the intent is to support a 
method that returns a different value if the caller sets the flag, that's control coupling. The same logic 
applies to invalid nulls—null values that represent not missing data but invalid attributes. Breaking the 
attributes out into a separate table eliminates the nulls and the control coupling they require. 

Another way to look at this decision is to decide whether your flag is part of the object state or whether it 
represents a different kind of object. The best way to decide this is to think about what happens when the 
flag's value changes. Does the object need to mutate into a different kind of object? If it does, it's a strong 
indication that the flag represents state. Once you create an object, you generally shouldn't be converting it 
into another object because of some control transition in your system. It's better design to change the 
internal state of the object through an internal flag. 
Common coupling refers to the use of global data. In a sense, using a database at all means you are using 
global data, and hence you raise your coupling level to common for any class that refers to data in the 
database. Global data is data that is visible to all parts of a system. To get access to data in a database, 
you connect to the database server, then use SQL, OQL, or some other access mechanism to manipulate 
the data. What little visibility control exists is part of the database security mechanism, not the 
programming visibility mechanism. 
Note 

  

It would be interesting to design a feature into an RDBMS or ORDBMS to provide visibility 
control for just this reason. Your application could declare visibility of a particular schema, 
reducing your coupling to data/stamp coupling. I often use security mechanisms to achieve 
this effect by splitting up the integrated schema into subsystems stored in different areas 
(users, roles, databases, authorizations, or whatever the security construct in the particular 
DBMS). I then use security access mechanisms, usually either privilege grants or database 
links, to make data selectively visible. This limits the global impact, but it's not very portable 
and requires quite a bit of database administration on the server side. Another approach I've 
used is to encapsulate tables within stored procedures, or in the case of PL/SQL, with 
packages. I hide the tables in a user that owns everything but just grants access to the 
procedures, not to the underlying data. 

With a relational schema, you don't have much choice but to access the data globally. OR schemas, 
unfortunately, do not encapsulate their data for the most part, so again you must access data globally. OO 
schemas, on the other hand, offer fully encapsulated access to data, so in an OO database you have full 
visibility control. 
Similarly, with content coupling, you refer directly to data rather than referring to it only through methods. 
The relational and object-relational database do not encapsulate the data, and the SQL refers directly to it. 
You can use views and stored procedures to emulate encapsulation in relational and OR systems. The 
view is a way of encapsulating access to a schema by creating a stored SQL statement that looks like a 
table, at least for query purposes. Similarly, you can create stored procedures (in Oracle, stored packages) 
that emulate classes and methods with some limitations already discussed in Chapter 7. With OO 
databases, you should never make your data visible directly but rather you should create accessor and 
mutator operations that provide access, thus reducing coupling to data/stamp coupling. 

Coupling intimately relates to maintainability and reusability. The lower you are on the coupling scale, the 
easier it is to maintain your system, and the more likely you are to be able to reuse it under different 
scenarios. The less strongly coupled your classes are, the less impact do changes to any given class have 
on the rest of the system. 
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In OO design, there are three specific ways to limit coupling. 

First, observe encapsulation. If you make your attributes public, you allow other classes to move all the 
way to content coupling, the worst variety. If you change your class, all the classes that use it must also 
change. The more you can conceal, the better. For example, do not just create get/set methods for all your 
attributes by rote. This is, strictly speaking, better than content coupling (it's data or stamp coupling), but 
you will find that changing the internal structure without changing the interface is quite difficult. Create an 
interface that is meaningful rather than just exposing your internal structure. A nice way to remember all 
this is to observe the Law of Demeter: any object should access directly only objects directly connected to 
it through association or generalization [Lieberherr, Holland, and Riel 1988]. 

In persistent terms, this means that you should encapsulate your data attributes as much as possible. If 
you use SQL or OQL in your coding, encapsulate it in the appropriate classes. SQL, almost by definition, is 
a global-variable programming language with no encapsulation at all. This leads naturally to a 
programming style that uses common and content coupling. As just mentioned, there are ways around this 
using stored procedures and functions to encapsulate tables, and you can also use views to limit your 
exposure. Extended OR SQL is better, and OQL is better still, in that they give you more direct 
encapsulation techniques by integrating operations and methods into the programming language. 

Second, use inheritance sparingly. If a subclass refers directly to a member in a superclass, that's content 
coupling. If you change the superclass, you have to change all the subclasses that use it. If you can, make 
your data members private and use superclass member functions to access superclass features. 

Persistent inheritance is a bit more difficult to control. Avoid joins of superand subclasses where possible; 
instead, break access to the tables into their logical parts and place those parts into super-and subclasses 
in your transient code. Pass data from one query result into the query of the super-or subclass. This 
reduces the common coupling to data coupling. In OR and OO databases, use the private access 
declaration to limit access as much as possible. 

Third, avoid control coupling by using polymorphism where possible and feasible. Control coupling is 
where you pass in data that you use to make some choice about the flow of control in your code. Passing 
in a Boolean flag is the most common example of this. You can usually avoid this kind of control by 
subclassing and defining virtual or polymorphic functions for the alternatives. There are certain 
circumstances, however, where this leads to difficulties. 

For example, consider a system of currency conversion. You can create a class hierarchy with one class 
for each currency you support, adding conversion methods for each other currency and a common set of 
virtual methods for addition, subtraction, and the like. Using double-dispatching, you can construct arbitrary 
currency expressions that always return the right result no matter what currency you use where. In 
operation, and in concept, this sounds great. In practice, you've traded one kind of coupling for another. 

The alternative to this is to have a single currency converter class that has a table of conversions. You 
pass in an amount and a currency flag (the control data), and you get back an amount in dollars or some 
other common currency. You can have another method in which you pass in dollars and a currency, and 
you get back the amount in the currency. 

The second approach is definitely at the level of control coupling. The function uses the currency flag to 
decide where to look in its internal tables (or the database) for conversion factors. The first approach 
avoids this by distributing the table across a class hierarchy. However, now each class knows about each 
other class, which is minimally stamp coupling and maximally content coupling if you use friend access or 
some other direct mechanism to get at internal data. Stamp coupling is better than control coupling; 
however, in this case you have created a monster by creating dozens of classes all coupled together using 
stamp coupling. Add a new currency, and you literally must change all the classes in the currency system. 
The second approach, control coupling, is definitely preferable. 

In the database, this translates to similar structures. A currency conversion table is preferable to spreading 
the conversion information among many separate tables, one for each currency. It would never occur to a 
relational database designer to think that way, for better or worse. 

Reuse Potential 
Reuse is the ability to use a database again outside the task or application system that created and 
used it. The potential for reuse is the probability that you will reuse the database. This depends on 
three reusability factors [Goldberg and Rubin 1995; Karlsson 1996]: 
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 Inherent reusability: The probability of reuse due to internal properties, such as the 
completeness of the database and its programming interface or domain model with 
respect to use cases, or with respect to the lack of coupling of the database elements to 
other elements (degree of encapsulation), and especially elements in other databases or 
in the transient classes that make up the application system 

 Domain reusability: The probability of reusing the database because its content and 
structure will support meeting the requirements of future systems; another way to say this 
is the probability that you will have similar requirements (domains) in the future 

 Organizational reusability: The probability of reuse due to organizational factors such as 
repository facilities, communication, and reuse policies 

The relative impact of each probability on reuse potential depends on the kind of system. If, for 
example, the system is heavily domain-dependent, such as a specialized manufacturing database, 
you should weight the domain reusability probability higher. If the system depends less on a particular 
domain and more on its inherent structure, such as a pattern-oriented database of generic 
organizations and people, you should weight inherent reusability higher. The weight for organizational 
reusability depends on the overall impact of organizational factors on reuse; if you want to focus 
efforts on organizational aspects, weight this factor more heavily. You can calculate a weighted reuse 
potential measure using this formula: 

 
where wiPi is the weighted probability of inherent reuse, wdPd is the weighted probability of domain 
reuse, and woPo is the weighted probability of organizational reuse. Weights by default are all⅓, so the 
probabilities contribute equally, but you can vary the weights to emphasize one type of probability over 
another if that makes sense for the system, as long as the weights sum to one. 

Certain characteristics of OO design techniques make more general kinds of reuse easier. The 
emphasis on encapsulation, for example, emphasizes the internal properties that lead to inherent 
reusability. The availability of inheritance makes it more likely that you will meet at least some future 
requirements even though you need to override certain features and add others. The focus of OO 
design on modeling domains leads to a high level of domain reusability in databases. The cohesion 
you introduce with OO design is easier to communicate and document, leading to higher 
organizational reusability. Even a "global" database, such as a relational one designed with OO 
techniques, is often easier to make sense of for organizations needing its features. 

In developing reusable databases, you need to consider the potential reusers and their requirements. 
As with any kind of development project, you can never identify all the requirements or stakeholders, 
as there will always be something new. What you can do is apply general OO design principles and 
patterns that make your system extensible and adaptable: 

 Parameterize the system. 
 Let users set options through persistent data stores. 
 Make classes easy to reuse through inheritance. 
 Don't make too many assumptions about what people want to do. 

If you give reusers a chance, they will want to reuse your database and its design. 
 

Reuse Certification 
Certifying the database as reusable requires a certification policy to establish trust in the system. Trust is essential 
for reuse; if you don't trust a system, you won't use it. 

First, you have to establish the risk level of the system. This means certifying that the system can achieve its mission 
within a certain level of risk (the risk tolerance of the reusing systems). To do this, you need to use the appropriate 
risk control approaches, such as design reviews and database tests, to reduce the database risk to the certified 
level. The reuser determines their risk tolerance, which in turn determines whether they can reuse the system at its 
indicated risk. 

Second, you must provide a clear statement of the goals and structure of the system. Generally, this requires the 
publication of the vision, mission, and operational objectives of the database components. Those attributes of the 
system should be useful for potential reusers in determining whether to trust the system in a particular situation. 
Besides the mission, reusers also want to know precisely what the system does, and to what domain or domains it 
does it. The operational objectives show reusers how the system approaches its mission and how it measures 
success, but there may be additional components of the system that provide useful information. In particular, 
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publishing the data model and the schema design provide potential reusers with a complete description of the 
database. As well, if you have a database test bed for exercising the database, making that available will raise the 
comfort level of reusers a good deal. 
Third, you must provide a clear statement of responsibility for the database and its components. That is, by 
publishing the system as reusable, you are offering a kind of "contract" to the reuser. Part of any legal contract is the 
promise you make regarding quality, quantity, performance, or legal title to a system. This warranty may range from 
the typical "as is" warranty (no express or implied warranties including implied warranties of merchantability or fitness 
for a particular purpose) to a complete, express warranty of some promise. The warranty means that you accept 
responsibility for the problems of the system. The level of warranty often determines the level of trust the system 
user places in the system. For example, if you provide a reusable database schema "as is," you take no 
responsibility for its problems. This almost guarantees that no one will reuse the schema. You can make some 
express warranties by guaranteeing some level of maintenance or by providing the reuser with enough detail that 
they can do the maintenance themselves if they so desire. This usually means providing the data model and all the 
scripts or programs the reuser needs to recreate the database. Table 9-5 lists some standard warranties of 
responsibility. 

Warning 

  

All of this sounds like soulless legal claptrap, and that's exactly what it is. You can incur 
definite legal responsibilities and liabilities if you make reusable software available for use 
by others, even inside your company. You should consult an attorney without fail about 
the implications of your warranties and even your extended reuse certification as a whole, 
just so that you're aware of what risks you're taking. 

Certification must state for the reuser exactly what responsibility the source of the system assumes and what actions 
that source will take in what time frame if there is a problem. You are informing the reuser of your accountability and 
thus establishing the third plank of trust in your system. You need to tell the user, for example, who the domain 
experts are that can answer questions about how the system fits into its intended domains. You need to supply 
experts and maintainers to keep the system operational. 

Certifying a reusable database establishes trust, but only for those in the know. That is, if a potential reuser does not 
know about the existence of the database and its design, it really doesn't matter how well you have certified it. The 
sharing step communicates the availability of the system to its potential reusers. The focus of the sharing step is the 
reuse repository, the storage facility in which you keep the design. Usually this will be some kind of database with a 
set of associated browser and search tools. You need to classify and index the reusable systems to support these 
tools. 

But the repository is a passive communication tool at best. If you want to emphasize reuse as an approach to 
improving productivity, you need to sell your database actively. You can do this with communication meetings, in 
which people familiar with what's available work with potential reusers to identify reusable systems of interest. You 
can use training classes to train people in the systems they may want to use. Typically, project managers and 
architects get the most benefit from training. You can also use organizational structures to transfer knowledge. For 
example, you can train resources in what's available for reuse, then assign those resources as reuse experts to work 
groups on projects. This cross-pollinates the work groups with resources that know what is available in the reuse 
repository. 

Table 9-5: System Warranties for System Reuse Certification  
Warranty  Description  

Performance The database will function at a certain level of risk, and it will do what it claims to do 
in the domains you've specified for it. 

Title and infringement The creator of the database has the right to let reusers use it, usually with respect to 
intellectual property rights or exclusive use agreements. You need to reassure users 
they are not infringing your copyrights, for example, by using your test plans. 

Disablement There is no feature of the system that will disable the database. 

Compatibility The database will function in a particular environment stated in the description of the 
system. For example, you can designate a design and a schema for use with a 
particular DBMS only or certify it for use with any DBMS for which an ODBC level 3 
driver with specific extended features exists. You must also specify any thirdparty 
software required to use the system, such as Microsoft Access, OLE controls, or any 
other software your system requires for reuse. 
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The maintenance step is the final task you perform for the reusable system. Maintenance supports the warranties of 
your system certification with live bodies. You must provide the appropriate maintenance services to fulfill your 
responsibilities. Usually this involves revising the reusable database in some way. But you can't stop there; you must 
propagate the changes to the reusers of the database. You must maintain a list of the systems who reuse your 
system to be able to inform those systems of changes. The model for reusable systems uses the system class 
relationship to other systems to represent this list. 

Note 

  

It may be easier to maintain a database that has only a single instance reused by many 
applications. This is the promise of the enterprisewide database. On the other hand, 
developers may want more control over the database than this gives them, as often an 
enterprisewide database puts a real straightjacket on new application development. 
Certification is always full of trade-offs. 

 
Summary 
The chapter started out with an overview of how to transform your measurement goals into actual metrics, 
or yardsticks that you can use to take measurements. To do that effectively, you must both understand the 
concept of scale from measurement theory and you must know how to validate your metric using the 
several different areas of validation criteria. 

Specific metrics measure various aspects of databases and data models: 
 Size: Database size (number of classes and objects) and schema size (function points) 
 Complexity: Metrics of problem and solution complexity, including the McCabe metric and the 

idiot test 
 Cohesion: Metrics of how well the system hangs together; abstract cohesion and structural 

cohesion 
 Coupling: Metrics of the degree of interdependence between modules, including coupling 

type and the logical horizon 
 Reuse potential: Metrics of how easy it will be to reuse the database or data model 

In this chapter, you've seen a range of methods for measuring your database and data model. Now, it's 
time to start designing the actual database schema at the conceptual level, the subject of the next four 
chapters. 

 
Chapter 10: Choosing Your Parents 
If men could learn from history, what lessons it might teach us! But passion and party blind our eyes, and the light 
which experience gives is a lantern on the stern, which shines only on the waves behind us! 

Samuel Taylor Coleridge, December 18, 1831 

Overview 
Not everyone can choose their parents; most of us must do the best we can with the hand we're dealt. This is no less 
true with database design. Most of the databases I've designed over 15 years did not emerge full-blown from my 
head like Athena. Rather, they emerged out of existing systems, other designers' work, and the various corporate 
cultures in which I was working. 
In moving from data modeling to database design, you must first confront the impact of previous design decisions on 
your schema. As with children, those decisions can have been good or bad in their own context and might be equally 
bad or good in the new context you are providing for their growth. All of this happens in an organizational culture that 
heavily influences your decisions. Your job is to migrate the existing schema (and probably the existing data) into 
your new schema and database. The section "Software Development Cultures and the Legacy System" helps you 
through some of the political, cultural, and technical perils you will encounter. It covers the issues with replacing or 
reusing legacy schemas. 
When you start fresh, you can look at it as incredibly fortunate or particularly ill-favored, depending on the situation. It 
is often easier to begin with an existing schema than to try to imagine—or worse, determine—the nature of the reality 
your business needs to model. The section "Starting Fresh" goes through the issues specific to creating a completely 
new schema, including the choice of database technology. 
There are a series of problems you face when you must start from a database that is "wrong" in some sense. Issues 
of trust and legitimacy arise to undermine the political support you need to make things happen. The section 
"Starting from Scratched" helps you navigate these issues and gives you some tips for moving your design forward. 
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The next section, "The Structure of Schema Design," summarizes the structure the following chapters will use to 
present specific transformations of your data model into relational, object-relational, and object-oriented schema 
design. This structure establishes a framework for schema design that you can use regardless of your target 
database technology. 
The final section, "Integrating Data Model Views," brings the last few chapters together to discuss the integration of 
your data modeling into a complete system model. With that done, you can begin to consider the transformation of 
your model into a schema design. 

 
Software Development Cultures and the Legacy System 
Every software development project proceeds in the context of a development culture. The nature of your culture 
structures the way you go about the design and construction of your database. This culture has a large impact on 
how you deal with legacy systems. 

Cultural Events 
Your development culture is possibly the most robust reusable system you will find in your workplace. It's there, you 
can't ignore it, and it's not going away, unlike most of your reusable code. The cultural system is the collection of 
socially transmitted systems that make up your way of doing things. Besides the simple process of learning 
technology, your main task when you join an organization is to learn how it does things—to become part of the 
culture. 

First, here is the summary from Anthropology 1A: there are five major systems that make up the culture of a software 
development organization [Simons 1997; Hohmann 1997]: 

 Norms 
 Values, attitudes, and beliefs 
 Rituals 
 Folklore (stories and symbols) 
 Shared Language 

Norms 
Norms are the shared policies and standards that the organization uses to set boundaries on what behavior it does 
or does not allow. Boundaries exist to avoid or mitigate risks, either external or internal. Some norms are formal, set 
explicitly by those in authority. Some norms are informal, set by interacting social leaders in the organization. Here 
are some examples of norms that range from very formal (enforced by law) to very informal (not enforced at all): 

 HR policies about discrimination and sexual harassment 
 Travel expense policies 
 SQL coding standards 
 Mandatory design methods and tools such as UML or ERwin 
 SEI capability maturity level 
 Process models and development life cycles 
 Delivering systems on schedule 
 The "usual" number of hours worked per week 
 Anti-dress codes (that is, nobody can wear a tie on pain of social ostracism or at least ridicule) 
 Starting meetings on time 
 Not playing computer games during the workday (the Suit Culture) 
 Requiring playing computer games during the workday (the T-Shirt Culture) 

All norms relate to some kind of risk. Your culture is more or less useful depending on how well it addresses your 
business mission. For example, you may spend all your time figuring out how to enforce on-time delivery. Your 
management may spend most of its time on figuring out how to stuff more bodies into cubicles. If your business 
mission focuses on quality, not budget or schedule, your culture doesn't support your mission. That means you are 
at high risk of not achieving that mission. Norms help your organization focus on managing such risks. 
How does forcing everyone to participate in joint computer games address risk? Mostly, it manages the risk of 
cultural drift. It is a ritual designed to bring people together into a functioning team, even if they're busy killing each 
other through simulations. The point is not blasting simulacra, it is doing so with everyone else. This reduces the risk 
that people who aren't a part of the group culture will introduce Dilbertian nonsense into the development process. 
On the other hand, they may blast you, but a game reset takes care of that! 

Also, it's important to realize that norms establish trust. If your market expects you to deliver high-quality products on 
time, but you have no internal norms relating to quality and schedule, your stakeholders will not trust your 
organization. I have participated in presentations to customers that had no other purpose than to reassure the 



 - 149 -

customer that the organization and its culture were trustworthy. Having standards and policies can go a long way 
toward garnering external support. Having a good delivery record is even better. 

Similarly, a shop with no standards often makes developers uncomfortable. A completely anarchic shop is too hard 
to deal with on an ongoing basis. Instead, most developers prefer to stabilize the process around authoritative 
decisions and policies, however informal. Picking a standard database, for example, in a large, diverse organization 
dramatically simplifies the lives of the database designers and engineers. It allows more exact planning and 
execution of plans. Sometimes too much creativity is as much of a problem as too little, particularly when it turns into 
thrashing around decisions and people not being productive. This is a balancing act for management, which must 
find the right mix of formal and informal norms and encourage a productive, mission-directed culture. 

Values, Attitudes, and Beliefs 
Values are the social principles of the organization, the things people care about. Attitudes are the ways people think 
about organizational facts. Beliefs are the things you think are true about your organization or about the world it 
inhabits. 

Here are some common values, attitudes, and beliefs in software organizations: 
 A vision statement 
 A mission statement 
 A values statement 
 It's so hard to get anything done around here during the workday. That's why I come in at 10 PM. 
 How's the pig doing today? (This in reference to the financial database system you're about to 

deliver to 10,000 slavering customers.) 
 That's marketing's job, not ours. (This is in reference to someone requesting a requirements 

model for a new product.) 
 The market won't buy anything but software that runs under Microsoft Windows (UNIX, the Mac, 

whatever). 
 The market insists on software that runs on any operating system (presumably including RSX-

11M). 
 My manager wants us all to work weekends. 
 We succeeded beyond our wildest dreams with this latest system! 
 We can do better than that [expletive deleted] system you bought! 

Reflect on these examples for a moment. What is their common thread? Purpose. Without values, attitudes, and 
beliefs, the members of your organization must be very uncertain about what they should achieve, much less what 
they can achieve. Core values of an organization, as represented by vision, mission, values, and objectives 
statements, are vital in establishing a set of values aligned with the goals of the organization as a whole. 

Most database people have very strong belief systems, having gone through extensive preparation for their 
priesthood. This is, of course, a metaphorical stretch; nevertheless, database designers and programmers have a 
strong set of beliefs that qualifies them for their profession. Some are adherents of the mainstream relational religion, 
while others belong to smaller cults such as OO databases or dBase worship, an almost extinct religion that pops up 
every now and again in odd places. Anyone who has ever confronted an Oracle DBA with the need to denormalize a 
database schema understands the religious nature of these values and beliefs. Moving to design using UML is, to a 
certain extent, a challenge to these values and beliefs, so I'm trying to make it as easy as possible to say, "It's really 
the same thing, just a different notation." 

Rituals 
A ritual is a repeated pattern of social behavior. Related to norms, rituals establish routines that you follow. 
Sometimes rituals exist to channel behavior that might otherwise violate norms, such as expressing less-than-
serious visions of your boss. The formality of the ritual comes from its source (upper management, teams, or other 
level of authority). Here are some examples of rituals in a software organization: 

 Christmas parties 
 Team lunches 
 Communication meetings 
 "Open door" meetings 
 Friday breakfasts 
 Casual days 
 Development method processes 
 Quality assurance system tests 
 Structured walkthroughs 
 Dunking the boss on carnival day 

In modern American software organizations, you can divide rituals into three types: outlet, purposive, and magical. 
An outlet ritual is one that serves as a way to blow off steam or to integrate out-of-the-ordinary elements of life into 
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the organization, such as a party. A purposive ritual is one done for a reason—the reason being empirical in nature, 
such as a structured walkthrough or a system test. A magical ritual is one that serves a protective or instrumental 
purpose without the benefit of empirical evidence, such as a management review or communication meeting. 
Regardless of type, the main point of a ritual is to repeat the behavior, usually in the hope of achieving some goal, 
whether real or magical. 
Database rituals are everywhere. In design, the normalization process is such a ritual. As Chapter 11 discusses in 
detail, it is very easy to put your database into fifth normal form with a simple, direct design (strongly related to the 
OO design methods). Because the usual ritual proceeds very differently, however, I've found it difficult to persuade 
some DBAs to do this. Instead, they insist on going through the stages of normalization (first, second, third, BCNF, 
fourth, fifth) and arguing Talmudic points the whole way. Pilpul aside, normalization is a ritual, and often not a 
particularly useful one. Nevertheless, it's one you have to deal with in large organizations. 

Another ritual is optimization. As they gain experience (go through ritual torture), DBAs and database designers 
create small rituals that exist to propitiate the database performance gods. Creating a bitmap index here, enabling 
dirty reads there, using unique column names even though SQL scopes names to the table, not to the database, and 
so on—these are all rituals with the purpose of developing shields against "doing it wrong." Usually, there is little or 
no empirical evidence for the value of these. Sometimes, the DBA will go so far as to say that it is just the "right thing 
to do" and leave it at that. As your organization moves from a ritualistic, magical culture into a feedback culture, you 
see measurement start to appear. As an anthropological observer, you can distinguish these cultures by their 
actions: Do DBAs benchmark their databases and change them based on the results? Or do they simply assert that 
using VARCHAR is slower than CHAR and you shouldn't do it? Magic rituals work as long as you don't have the time 
to tie your system to empirical reality, but eventually the problems and scope of the database expand beyond this 
kind of ritual. 

There are useful rituals too, of course. As you experience, you learn; as you learn, you ritualize. You begin to 
understand how to install Oracle reliably through a sequence of very specific steps repeated many times, hopefully 
not all on the same weekend. You learn that translating a data model consistently into a schema requires specific 
transformations in a certain sequence. You learn that using single-attribute surrogate keys is often preferable to 
using multiattribute primary keys, so you ritualize the design in a pattern that you apply to most tables. As you gain 
experience, you sediment and abbreviate the rituals into processes or actions that become second nature—until 
someone challenges them and you must expand them again. As you ritualize, you create folklore to support your 
rituals, and it's that folklore that emerges on demand when you get a challenge to your rituals. 

Folklore 
Folklore is a set of symbols and stories about the organization. Folklore often transmits organizational or personal 
values and norms as part of the socialization structure of the organization. One major purpose is to show status. 
Another is to show achievement. Yet another is to represent some value the organization holds in high regard. Here 
are some symbols and stories common in software organizations: 

 The product T-shirt or coffee mug 
 Stories about the early days of the company 
 Stories about other parts of the organization (sometimes known as "rumors") 
 War stories about past projects at the company and elsewhere that caution against something 
 Fables that promote some behavior as good 
 Slogans and mottoes ("Sooner is better than later.") 
 Meeting minutes 
 Functional specs (a special kind of fable, with or without the implication of being imaginary) 
 Team award trophies 
 Project wall charts 
 Window offices 
 Corner window offices 

Folklore is all about transmitting other aspects of culture. Without folklore, you have no way to communicate the 
culture without depending on dry, academic descriptions of the anthropology of the organization (such as this 
section). 
Database work is full of folklore, both good and bad. Anyone who has worked in databases more than a year has 
war stories about Oracle, Informix, Sybase, or whatever system they've used. Most designers have a repertoire of 
analysis patterns (see Chapter 8) with accompanying stories about how the patterns worked in practice on various 
jobs. Most people have their DBMS vendor coffee mugs prominently displayed, or T-shirts from the last users' 
conference. Some of us have even worked at DBMS companies and thus have a good range of war stories and 
fables to explain some of the quirks of the products we worked with or built. 

Most people don't realize, for example, that PL/SQL (Oracle's built-in programming language) comes from Ada, the 
1980s' military software engineer's choice. The architect of PL/SQL was an Ada guru hired into Oracle to manage 
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development projects and grew into the role of language guru for the company. The Ada story tells people why 
certain things are there (packages, for example, with overloaded procedures, and exceptions), putting the language 
in a broader context than just a database programming one. Folklore contributes in a big way to shared language by 
providing common symbols and stories using that language. 

Shared Language 
Shared language is the special language that evolves in the organization to describe things of interest to its 
members. Here are some examples of shared language in a software organization: 

 Technical jargon from the tools you use 
 Method-speak 
 Puns or coinages on the company name ("license plate words") 
 Derogatory references to products, groups, or people 
 Culturally or geographically related references to products, groups, or people 
 Abbreviated terms for common tasks or things 
 Catch phrases that aren't quite slogans or mottoes 

Shared language establishes a linguistic boundary around the organization, or around parts of the organization. 
Language is possibly the most important aspect of a social group because it is the mechanism by which people 
communicate. A good deal of the social content of a software organization resides in the software it builds; virtually 
everything else except the coffee mugs is language. 

The database world has its own technical jargon, from normalizing relations to pinning objects to cost-based 
optimizations. The various techniques (bitmap indexes, outer joins, pointer swizzling, and so on) account for much of 
the linguistic acculturation that people must go through to become effective database designers and developers. 

As you develop your data models, and especially at the enterprise/global level, you also build a shared language to 
describe your business objects. You make countless decisions about what to call things, particularly abstract things 
such as relationships. You develop standard abbreviations and start using them in everyday speech to refer to your 
objects. All this is part of the linguistic culture of your organization. 

What's interesting about the shared language is the way it focuses the values and beliefs of the organization. If the 
words you develop about the product, for example, are negative ("pig," "trash," and so on), the organization clearly 
believes the product is poor, and the implications are dire for motivation. If all you hear is high-tech jargon, clearly the 
organization values technology. If all you hear is language about motivation ("rowing harder," "Work smarter, not 
harder"), look for (1) a belief that people, not technology, are central to getting work done, (2) a lack of motivation, 
and the reasons behind such a lack, or (3) a strong belief that people need pushing to get their jobs done. You can 
tell a lot about an organization from the language its managers use. 

Culture consists of people interacting with one another. A development culture centers on software systems that are 
the focus of this interaction. Culture is at its most important when you are creating new software in the presence of 
old software: the legacy system. 

Replacing or Leveraging Legacy Systems 
A legacy system is a system created long enough ago that it no longer represents the best practices in technology or 
design but still provides value to the business. It may involve older database technology, such as mainframe IMS 
databases or personal computer dBase systems that now must grow up. With your new data model, you are 
providing a framework for replacing the legacy schema with a new one using new technology. This may be the right 
way to go, or it may not. 

The viability of the existing technology is the prime driver for your decisions about a legacy system. Just because 
new technology exists doesn't mean you have to use it. Existing technology becomes a problem under various 
circumstances: 

 When the vendor abandons all or part of the technology, refusing to maintain it or enhance it 
further because of lack of market demand 

 When the underlying technology, such as hardware platforms or operating systems, changes 
enough to render the technology useless or obsolete 

 When the nature of your business problems changes enough to make the original technology 
useless because it does not have the scalability or features to solve the changed problem 

 When new technology appears that delivers massive improvements over a range of different 
requirements (performance, scalability, access, security, recoverability, or whatever) 

 When new methods emerge that focus your attention on solutions quite different from the original 
technology (adopting OO design across all your applications, for example, can render much of 
older PC or mainframe technology irrelevant and harmful) 
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 When the risk of change becomes too great for the older technology to handle effectively 

All of these situations lead to the need to replace the legacy system. Certainly, if you are in a crisis situation where 
you simply cannot continue to use the old technology, your decision is made for you. Often, however, the situation is 
not so cut and dried: 

 The vendor may not be enhancing the technology, but they're still signing maintenance contracts 
and fixing bugs. 

 You may be able to keep running an older version of an operating system by adding compatibility 
software or making other changes to accommodate the older software. 

 While massive improvements may be available, you may not really need them in your 
application. 

As a metaphor, consider the difference between the Public Broadcasting System's two popular builder's shows, This 
Old House and Hometime [O'Day 1998]. The premises of This Old House, as the title expresses, are that (1) old 
houses are valuable in themselves, and (2) you restore an old house, while improving it with modern materials and 
techniques. The premises of Hometime, on the other hand, are that (1) new houses are wonderful, and (2) building a 
new house gives you the opportunity to use the best of modern materials and techniques. These approaches are not 
conflicting; they simply apply in different situations. When you have an old house that works, you restore it. When 
you have an old house that sort of works but not really, you renovate it. When you have a nice piece of land with 
potential, or when you have an old house that isn't working and can't work, you build a new house. 
Extending the metaphor to culture, the two shows express a very different culture. The culture of This Old House 
places tremendous value on restorative techniques and ways of integrating modern materials and technology into an 
existing context. The culture of Hometime emphasizes modern materials and technology and focuses on the 
techniques and processes by which you use it, lots of advice on dealing with contractors and architects, and tips for 
clever shopping. Again, these are not conflicting cultures. Hometime, for example, does restoration work 
occasionally and usually places more emphasis on existing quality in those situations. This Old House sometimes 
strays into renovation when pushed by owner's needs, neighbor or planning commission requirements, or a really 
cool new technology such as groundwater-based heat pumps. Sound familiar? 

If you do a return-on-investment (ROI) analysis on the work involved in replacing the legacy system versus adding to 
it, you may find the latter significantly outperforms the former. To do this, estimate the amount of work involved in the 
new solution, not forgetting the maintenance costs over a certain time period, such as five years. Then estimate the 
maintenance costs over the same period for your legacy system. Estimate the additional revenue you will gain 
through the advantages of the new system and the benchmark revenue you get with the legacy system. Plug these 
cash flows into a standard ROI algorithm using discounted cash flow techniques, and you can see the internal rate of 
return or net present value of both solutions. Easy, right? 

Unfortunately, while ROI analysis gives you a nice, clear, hardheaded set of numbers that you can use to impress 
your friends and bosses, these numbers aren't very realistic. Estimation weaknesses aside, ROI ignores much of the 
realworld impact on your decision. Is your organization one that values leading-edge technology? Or do you hear the 
term "bleeding edge" used in most meetings on such decisions? Perhaps people bring up stories about previous jobs 
where management made the wrong decision (one way or the other). Perhaps someone in the decision meeting is 
ostentatiously fiddling with an Oracle8 coffee mug or is wearing a CORBA T-shirt. Technology is important in such 
decisions, but beliefs about technology, values, and symbols relating to technology are often more important. In 
other words, you need to take culture into account when making decisions about legacy systems. 

Design is all about satisfying the project stakeholders. If those stakeholders have a lot invested in their organizational 
culture, you ignore it at your peril. Add up the stories, folklore, values, norms, and other aspects of culture. If they tell 
you a story about how well the legacy system has worked, or conversely about how appalling the situation is, you 
know where the organization wants to go, and very probably where it needs to go. Help it get there. 

Actually getting there is half the fun. Once you've plumbed the depths of your organizational culture, your job as a 
database designer is to figure out how to best represent your data model given your legacy requirements. 

Note 

  

It's probably worthwhile for large legacy systems to use metrics to evaluate the reliability and 
stability of the system. Using reliability measures such as mean time to failure can tell you 
how your system is performing in the hands of its users. Using stability measures 
[Schneidewind 1998] can tell you whether your efforts to maintain the legacy system are 
successful or whether the system is degrading. 

 
Starting Fresh 
You've just convinced the chief financial officer of your company that the legacy IMS database from the 1960s is 
ready for the scrap heap. You've contracted for demolition and site grading, and you're ready to start designing the 
new house. What are the key things you must worry about in replacing the legacy system? 
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Using Your Legacy 
Even though you are developing your design from scratch, you should not just ignore what went before. First and 
foremost, the old system constitutes an intellectual asset of the company. It represents work-years of effort to distill 
and reify the knowledge of customers, developers, and company management. The needs may have changed, but 
the legacy system obviously relates in some way to those needs or it wouldn't be legacy, just junk. This corresponds 
to materials or features you can save from the old house you're demolishing. What's more, the legacy system may 
be more than just an intellectual asset; it may be intellectual property. 
While an intellectual asset represents knowledge realized in some permanent form such as software, intellectual 
property is a legally protected form that has a specific value to your company. Patents, copyrights, trademarks, and 
trade secrets are all intellectual property. You should do your utmost to preserve intellectual property rather than just 
throwing it away. Reuse the property as much as possible. For example, even if you demolish the house, you usually 
try to save the important features of the landscape, such as ancient but viable oak trees. Some features, such as 
lakes, are a key part of the value of the land. Perhaps you can't use the actual software, but you can use the 
patented processes, the trademarks, or the trade secrets that represent the knowledge embedded in the software. 

Another kind of intellectual asset that the legacy system represents is the know-how accumulated in the company 
through work done on the old system. Much of this know-how may not be in realized form but rather in the heads of 
people who have worked on the system. As you develop your use cases, data model, and schema designs, consult 
people associated with the legacy systems. 

Database systems in particular have a value that goes beyond just intellectual property. The data in the database is 
often valuable in itself—not as the bits that make up the data, but the information that it represents. Minimally, a 
business database contains the sedimented organizational knowledge of your business. It represents transaction 
histories, people, events, processes, and a truly infinite array of other systems on which your business runs. It 
represents both operational parameters of your business (process specifications, manufacturing models, and other 
business systems) and history (accounting databases, product databases, contact management databases, and so 
on). 
Regardless of whether you are intending to reuse the software of the legacy system, you will almost certainly have to 
use the data. You've decided not to reuse the database, and that means you have to move the data into the format 
of the new database. With any luck, your new database manager will provide tools capable of moving the data with 
minimal configuration information. Possibly you may be able to find a third-party tool to do this; there are several 
such tools, ranging from generic file readers such as Data Junction or Cambio (www.datajunction.com) to higher-end 
DBMS-oriented data migration tools such as Powermart (www.informatica.com) or Data Navigator 
(www.platinum.com). At worst, you may have to write a program to export the data from your old system into a 
format that your new system can load. This is a good job for an independent consultant because one can do it with 
very little interaction or reference to other parts of your project. 

The key issue in reusing legacy data is data quality. How well can you trust the legacy data? Answering this question 
tells you how much work you'll have in reusing the data. This is, of course, what reuse certification is all about. If you 
haven't certified your legacy database for reuse, formally or informally, you have work to do to determine just how 
much you can trust the data. Part of the process of transferring the data into your new schema uses the standard 
constraint tools such as referential integrity constraints, triggers, and validation methods. You should be sure that all 
of the data that comes in through the import process goes through the same constraints as the data that users will 
enter through your application system. 

You should also audit or test the data, either by random sampling or census techniques, to determine its quality 
according to the criteria your requirements set. This is a relative measure of quality, not an absolute one. You don't 
need perfect data in this best of all possible worlds; you need data that satisfies the needs of your application users. 
Your requirements should express all these data-related needs. 

Warning 
  

Data quality is almost certainly the biggest problem you're going to have in a legacy-
bound project. If your schedule doesn't include a big chunk of time for analyzing, fixing, 
and testing the data from the legacy system, your schedule is wrong. 

Having dealt with the data, how about the functionality? This is where culture comes in. You need to unearth the 
rituals, folklore, and other aspects of culture that have grown up around the old system over the years. Ask 
customers how they used the old system and what they'd like to see as a result in the new one. What's worth 
keeping, and what didn't you use? What did they hate about the old system? What did they love about it? What new 
things have cropped up in their work that the system might address? Get them to relate the folklore of the system. 

Ask developers on the old system, those that haven't ascended to corporate heaven, about complex algorithms or 
relationships. Often, it isn't obvious what led to these decisions in the old system. You need to distinguish hacks—
temporary solutions to problems—from innate complexity of the problem. Someone may have developed a large 
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amount of code to work around a bug in version 3 of your DBMS. Since you are replacing it with an OODBMS, you 
don't need to worry about that. On the other hand, you may not have realized just how complicated certain financial 
transactions can be. Probe the ritual solutions to figure out exactly what function they perform. 

Tip 

  

You may find it possible to use deassemblers, decompilers, or similar tools for reengineering 
your data. For an example, see the tools offered by McCabe and Associates 
(www.mccabe.com). While these tools can help you understand existing legacy code, they 
aren't infallible. Don't depend on any tool to translate legacy code into modern systems 
because this is an almost impossible task. 

You can also reuse the legacy schema to some extent. Someone may have worked with customers to solve a broad 
array of complex problems with a particularly ornate set of tables and relationships. You can use that knowledge to 
structure your class model more effectively, perhaps improving on the design by reducing complexity, decreasing 
coupling, and increasing cohesion. Again, the schema may reflect hacks and not innate complexity. Probe into the 
folklore and norms of the schema system and its culture to understand why it developed the way it did. 

Even though you're starting afresh, you can make strong use of what went before. 

Scoping the System and the Culture 
When you're building your new database application from scratch, you have the opportunity to get the scope right 
that you might not have when you're expanding an existing system. Make the most of it. 

System Requirements 
Chapter 3 and 4 went into detail on gathering requirements and building a requirements model with use cases. When 
you have a set of use cases that describe your system, you've scoped your project. The techniques of Chapter 3 in 
gathering requirements are an essential part of this process because they force you to question the scope of the 
system. Starting fresh with the technology, you should also start fresh with the requirements. 

Don't assume that the legacy system expresses the requirements of the users. It may only reflect the development 
culture that produced it. Investigate the norms and values of that culture if you're not already a part of it. If you find a 
strong value system around satisfying the customer's needs, fine. That means you can look at the legacy system for 
the roots of customer satisfaction. The development culture that built the legacy system may be one that places 
value on technology—or worse, places little value on anything but getting the job done. If so, you can't use the 
legacy system as your starting point because of the potential for data quality problems. You'll need to evaluate and 
audit the data first. You'll also need to evaluate the requirements that the legacy system expresses to validate them 
against current needs. 
You should also look beyond your application requirements. Your business may be planning to add other 
applications to the system that uses your database. Though you need not take these requirements into account, and 
though it may be difficult to state these requirements, it's in your best interest to make a stab at it. The best approach 
to getting the big picture is generalization and certification for reuse, discussed in Chapter 9. Work on the inherent, 
domain, and organizational reuse potential of your requirements and design. Conduct tests and risk analysis to 
certify them for reuse under appropriate conditions. 

System Culture 
You may find that the scope of your new system is broader than just the technical issues involving software and 
data. It may be that the environment has changed enough that you must initiate cultural changes as well. To 
evaluate this, look at three statistics: system size, customer satisfaction, and delivery failure [Muller 1998, pp. 532–
536]. If the system you're proposing to build is an order of magnitude greater in size than ones you've built 
previously, it's a good bet your culture isn't capable of doing it. If the last few projects your culture has undertaken 
resulted in relatively low customer satisfaction (many complaints and defect reports, a lot of database maintenance 
and availability problems, for example) or were very late or over their budgets or canceled, you've definitely got a 
culture problem. 

The capability of a given culture to achieve project missions depends on the level of risk and the stakeholders' 
expectations for the projects the organization undertakes. As risk grows, and as expectations become more complex 
and demanding, the culture must adapt and grow. Beyond a certain risk or expectation level, a culture may become 
incapable of delivering on its promises. It must change to incorporate better processes, feedback, and anticipation of 
problems [Weinberg 1992]. 

In database work, the big size transition comes with projects involving more than about 100 classes. This size 
indicates that the expectations for the system are relatively complex because of the inherent nature of the business 
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problems it is proposing to solve. Increased risk in database systems comes from technical difficulty or feature 
mismatch. Again, we're discussing systems you are building from scratch, not legacy systems you're maintaining or 
enhancing. 

Technical difficulty in the database arena comes from using leading-edge technology that more readily fails under 
loading. Pushing down to root causes, you tend to use such technology when you have business problems that 
require the technology. You can easily manage the risk associated with using technology you don't need by just not 
using it. You can't easily manage risk that comes from hard problems. As your business becomes more willing to 
take on such problems, you begin to strain the limits of existing technology, and you take on a lot more risk. 
Terabytes of data, thousands of simultaneous transactions, huge interactive queries—all of these are business 
issues that put strain on the safe technology you've used in the past. These very problems may be the reason you've 
decided to abandon the legacy system and move to a completely new one. 

Feature mismatch comes from using technology that is not appropriate to the purpose. You may be using a personal 
database manager to create a sophisticated multiuser application, or you may be using a complex, distributed-object 
application development system to develop an address database. A fundamental problem is choosing the type of 
database manager. Many database projects choose RDBMS technology, for example, rather than moving into 
ORDBMS or OODBMS technology. You might do this because of corporate standards, or because of money 
concerns, or because it's what you know. If the problem involves objects with many behavioral requirements, or if the 
problem involves a lot of navigation, tree building, or the like, choosing relational technology is likely to increase your 
risk dramatically. The software can't deliver the features you need. 

Given this kind of situation, you may need to move your culture into a more capable set of values, norms, and rituals. 
Introducing feedback through measurement, data collection, and data evaluation usually is a big culture shift for most 
software companies. Once you have the rituals in place, you can build your organization's capabilities for building 
larger, more complex database applications. 

 
Starting from Scratched 
Every database designer has war stories about finding the entire schema in first normal form instead of third normal 
form, or of discovering that half of the attributes in the schema are keywords in the new database system you've 
spent three weeks installing, or of wandering through a maze of cryptic abbreviated column names like YRTREBUT, 
B_423_SPD, or FRED. As stories, these provide us all with something to talk about while waiting for people to show 
up at meetings. As reality, finding a database with these kinds of problems is the start of a rather nightmarish 
process of spring cleaning if you're lucky, and building a patched-up monster if you're not. 
We're now in the culture of This Old House. This section assumes that you are building your application as an 
enhancement to the existing system, which may or may not be a legacy system. That is, you are extending what 
already works. In the ordinary way of things, this is the same thing as developing a new system except that you have 
to identify where to put your new data based on new requirements. This section also assumes that the system you're 
extending is not perfect—in fact, it is far from perfect, and you've just acquired a huge problem. The floor's sagging, 
or the roof leaks and has damaged the upper story irreparably. You can't ignore the problem, however, because for 
one reason or another your organization has decided that the existing system is too important. Your culture, in other 
words, values the old house for itself. They've declared it a national landmark, and you're stuck with making it safe 
for tourists. 

War Stories and Shared Language 
First of all, pay attention to the particular war stories and language in your culture. Understanding where other people 
think things have gone wrong is a great way to identify risky places in your system. For example, I worked with one 
application system that used a batch process at night to deal with massive updates to a financial institution's portfolio 
of securities. The data requirements were huge, and doing it interactively would slow down the system to a crawl. 
Interestingly, the acronym for this program was the PIG, short for Principal and Interest Generation. I never found out 
whether this was fortuitous or intentional, but it was clear that this was a problem area in the system. When we 
looked at the database design behind this, we found several problems relating to invalid assumptions about 
customer needs, poorly organized data, and poorly developed application code. One project rewrote the application 
code using structured techniques to improve memory-based performance, and other projects restructured the 
requirements and the database to improve performance on the back end. It was still the PIG, but it didn't run for 36 
hours to do daily batch processing anymore. 
Language translation can also lead to problems. Are you well versed in OO design theory, but your culture only 
knows relational SQL? This kind of language mismatch mirrors the underlying conceptual mismatch between the 
needs of your system and the existing database. Although the database may reflect a relational culture, it probably 
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won't reflect the kind of suggestions that Chapter 11 of this book makes. You'll find table structures that are less than 
optimal for reuse. 

For example, I worked on a database done by some pure relational database people. A new manager was 
introducing object-oriented design techniques similar to those in this book. I designed a class hierarchy around some 
of the geographical concepts in the system to extend it with new requirements by adding new geographic classes. 
The translation of this class hierarchy into multiple tables with relationships proved to be almost too much for the 
system to handle. The problems didn't come from any technical issue with the database technology but with the 
language with which the developers and designers talked about the system. Introducing generalization relationships 
confused them by introducing a new language and a new set of structure requirements into the system. They were 
constantly missing the need to update the superclass tables, for example, and not putting in the triggers and/or 
application code needed to do that. 

Norms, Values, and Beliefs 
Second, consider the norms, values, and beliefs of your culture. People make bad technical decisions often because 
they believe something that isn't true. The existing system often reflects such beliefs and poor decisions. These 
come in two flavors, the hack and the bug. 
A hack is a solution to a specific problem that has some kind of unfortunate side effect. This is classic This Old 
House. You're always finding carpenter's tricks that may have held up for years but worked their damage unseen. 
The database code may not be portable, such as using an SQL Server-specific feature to solve a very specific 
problem. It may involve a performance trade-off under different conditions. It may use a feature of the programming 
language or of SQL that is harder to understand. 

For example, many Oracle applications have code reaching back to version 3 of Oracle that uses the DECODE built-
in function. That function lets you use conditional logic in your SELECT expressions or WHERE clause to achieve 
things that might otherwise require program code. This is a hack, especially when you have DECODE expressions 
nested to three or more levels. This hack comes from a value: the belief that it is better to express a solution in a 
single SQL statement than in multiple ones embedded in program code. Often this value comes from the belief that 
such program code is hard to write, expensive, and hard to debug, while SQL is not. Anyone who has tried to 
maintain a six-level DECODE statement would disagree with this, and all but the most hardened SQL advocates 
don't believe it. If you must, for some reason, extend this kind of hack, you should seriously consider throwing it 
away and rewriting it. The DECODE, for example, you can better express these days as a PL/SQL function, with the 
conditional logic expressed as it should be with IF statements in a clear flow-of control logic. 
The bug is a solution that once worked but no longer does. Again, classic This Old House. This is where you poke 
the screwdriver into the beam holding up the first floor, and it goes all the way through, disturbing the termites 
unwarrantably. These are the things that you have to fix or the house will fall down. For example, Year 2000 
problems are this kind of bug. At some point, a database encoded data in a format that did not consider the 
millenium change. Most database products handle this, but for some reason the tool you were using did not. Another 
classic example is a system that has no integrity constraints defined because the database developers had not 
upgraded their schema scripts to use the referential integrity features when they became available. Bugs come from 
two basic cultural areas: beliefs and values. 

Beliefs often persist beyond the point where they are useful, and they actually become harmful because of changing 
business requirements. I knew one database designer who absolutely refused to normalize his designs because he 
knew that performance would suffer. When a new version of the DBMS came out with a cost-based optimizer that 
did away with the problem, he ignored it and kept designing unnormalized databases, causing all kinds of problems 
with update code. Usually, the answer to this kind of problem is training. 

Values-based bugs are harder to manage. The developer who loves coding but thinks documentation is a waste of 
time is usually a source of major bugs in the system. They value the coding process so much relative to everything 
else that they lose track of their impact on the overall system. They check code in without testing it, for example. 
They put schema changes into production databases that require you to recompile and reinstall all the code. 
Egregious examples like this usually only happen once or twice because their impact is so great that it forces 
management, even hands-off management, to step in. It's usually the more subtle memory and schema design bugs 
these people introduce that cause you problems when you're updating a legacy system. 
A special case of values-based impact on legacy systems comes from the assumptions underlying a reusable 
framework. The original architect of a house generally imposes a values-based view of how the house will adapt to 
the people that live in it. That's the source of the patterns movement led by the famous architect Christopher 
Alexander, now being adopted as a model for object-oriented system design (see Chapter 8). If those assumptions 
are wrong, or a changing environment makes them less than valid, you may have to tear down the house and 
replace it rather than restoring or renovating it. 
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One framework developer, for example, assumed that every application that used the general GUI framework he 
was designing would use the standard file open dialog. I came along with a database application that opened 
databases, not files. It turned out that it was impossible to substitute a different dialog box for the standard open 
dialog. The framework designer coupled the classes involved into other parts of the system to such an extent that 
replacing the standard dialog crashed the system with a pointer error. We wound up having to "open" the database 
file rather than being able to use a standard connect login box. 

Rituals 
Third, consider the rituals of your culture. Processes alone contain tremendous potential for blocking your ability to 
modify an existing system. You might find, for example, that the smallest change to a legacy system requires reams 
of supporting documentation and change bureaucracy. If you run into problems with the legacy database design, or 
with the legacy application architecture based on that design, you may well discover that the cultural rituals are 
effective in preserving the current system regardless of its adequacy and quality. 

Even harder than simple process blocking is the situation where you must work with a priesthood. A priest, in 
database design, is a team member who mediates the relationship between you and the gods, with the database 
schema and content being the physical manifestation of the gods on earth. By definition, the priesthood that created 
it (with the help of the Gods, of course) controls the legacy system. To modify the database, you must get the priest 
to understand what you want, then the priest tells you what the gods will deliver. As with all Oracles, this can be very 
ambiguous. 

One can carry metaphor too far. In any event, there is usually somebody associated with the legacy system who has 
to go through some process to make what you are doing legitimate. The level of ritual varies depending on the 
culture. Do make sure that there is no human sacrifice involved before getting in too deep. 

I've worked with large companies that are very bureaucratic, with many rituals around the legacy application. For 
example, one large contract administration system I worked with needed to migrate to a different fourth-generation 
language. The group that maintained the database in Oracle was in another building from the group that was 
charged with developing the new application system. To make any changes to the database, the application group 
needed to meet with the database group, then file change requests and get them approved. This applied to new 
tables as well as to changes to existing tables. As you might imagine, this slowed down application development 
considerably. As well as processes, there were corporate politics involved. There was a reuse organization (in yet 
another building) that needed to have a say in making sure everything was reusable, or was at least contributing to 
the concept of reuse. The head of this organization did not like the head of the application organization, so nothing 
ever got done. 

Working culture is full of challenges to the database designer working on a system with problems. Many of these 
challenges come down to the way the designer must gain the support of the culture for needed change. Gaining 
support is all about negotiation and the way you create legitimacy in the culture. Often, it requires gaining support for 
change by making the change legitimate through positive organizational politics and strong technical leadership. You 
may find it easier to convince legacy gatekeepers to change, for example, if you demonstrate the benefits of OO 
design and development on smaller, prototype projects. Having measures of success, you can build legitimacy and 
begin to convince adherents of the current culture that change can be beneficial. 

Whatever choices you need to make with respect to developing new systems or adapting legacy systems, the 
transition from your data model to your schema is a critical process of designing databases. 

 
The Structure of Schema Design 
At some point, you make your choice as to the exact nature of the database management approach you 
will take. The rest of the book, Chapters 11 to 13, shows you the process of transforming your data model 
into a schema in one of the three approaches. The rest of this section outlines the pattern of this 
transformation, which is the same in all three cases. The next section then wraps up data modeling with a 
discussion of integrating views and systems. 

Structures 
Every database schema contains a series of structures that represent in some way the classes of your 
data model. A structure groups the data attributes as the data architecture permits: with simple 
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structures in the relational architecture, and with more complex structures in the OR and OO 
architectures. 

The structural section in each chapter shows you how to transform the basic structures of the UML 
data model into schema structures: 

 Packages 
 Subsystems 
 Classes 
 Interfaces 
 Attributes (including visibility) 
 Domains and data types, including nullability and initialization 
 Operations and methods (including polymorphic operations, signals, and visibility) 
 Object identity 

After transforming the data model structures into schema structures, you have the start of your 
schema design. 

Relationships 
The UML data model contains two kinds of relationships, the association and the generalization. 
Transforming the UML relationships is the area in which the competing architectures differ the most, 
especially in transforming generalizations. 

There are certain interactions between the relationships and the schema structures in the different 
architectures. "Creating a relationship" is not always creating a relationship: it may involve creating a 
structure in place of, or in addition to, a relationship. Also, certain relationships have characteristics of 
structures; sometimes a relationship role is an attribute, for example. 

Each of these UML elements has a transformation for each data architecture: 
 Generalizations (abstract and concrete classes, multiple and single inheritance) 
 Binary associations 
 Roles 
 Shared and composite aggregations 
 Multiplicities 
 Association attributes 
 Ternary and higher-cardinality associations 
 Qualified associations 
 Ordered associations 

Business Rules 
The previous sections deal with many of the classic business rules. Primary keys, foreign keys, 
multiplicities—all are part of structures and relationships. There are certain constraints, however, that 
exist outside these structural elements. 

When you express an explicit UML constraint, you are usually expressing a business rule that is 
beyond the capability of the standard modeling language of classifiers and relationships. Most 
database management systems have a way to express these constraints. The transformation of your 
data model into a schema must also transform these constraints. You have two choices. 

First, you can transform the constraints into a set of transient behaviors. That is, you can build the 
constraints in your application (or application server) rather than in your database (or database 
server). In the extreme, you build the constraint into your client. Unfortunately, client constraints are 
seldom reusable. You must implement the constraint anew in each application, and possibly in each 
subsystem of your application. 

Second, you can transform the constraints into a set of persistent behaviors. In a relational database, 
this means triggers and stored procedures. In an OR database, it means the same thing, or possibly 
type methods. In an OO database, it means adding methods or asserts in methods to enforce the 
constraints. 
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Design Guidelines 
Whatever your target data architecture, you will need guidelines for design. Every architecture has a 
different set of informal or formal patterns, such as normalization for relational databases. In OR 
systems, you must decide between many different ways of doing the same thing. In OO systems, you 
have very specific guidelines for inheritance, encapsulation, and other aspects of the object-oriented 
design that relate to persistence. 

Data Definition Languages 
Each database architecture has its own data definition language. The following chapters give you a 
brief introduction to the language of the architecture (SQL-92, SQL3, and ODL, respectively). 

 
Integrating Data Model Views 
Data modeling hardly ever proceeds in a vacuum. Most large databases support multiple views of the data, 
different ways of using the data in a single database. By using the techniques in this book, you can 
produce data models that are highly reusable. Why do this? Because in a real-world domain, there are 
usually multiple uses for any information subsystem. 
Chapter 2 introduced one of the earliest logical architectures for database systems, the ANSI/SPARC 
three-level architecture. The highest level is the view taken by the applications that use the data. The job of 
the conceptual data model is to map different user views into a single conceptual data model that serves all 
the application views. As modeling has grown more sophisticated, the underlying structure of the 
conceptual and physical schemas has grown more complex. Multiple reusable subsystems replace 
monolithic enterprise data models, and multiple, highly specific optimizations replace a monolithic access 
path model. You can even integrate heterogeneous collections of databases into a fully distributed object 
architecture. 

At the highest level in the logical architecture sit the applications. You have described these applications 
with a set of use cases and a corresponding data model that describes the objects to which the use cases 
refer. Each use case represents a view of the persistent data. The mapping between the use case and the 
persistent data model is the view database, the schema that represents just the data the use case needs. 

As you move down in the architecture, your use cases become part of a subsystem, and your subsystems 
eventually combine into a working system, or application. Each subsystem maps to the data model, as 
does the full system. The mapping models the database for that system. Finally, as you move down toward 
the conceptual schema, your working systems combine into a global system of applications working 
against a global, or enterprise, database. The data model at this level integrates all the views of the 
enterprise into a single model. The next job is to translate that data model into a conceptual schema. The 
next few chapters move from the data model to the conceptual schema and its derivation from the data 
model. At the end of that process, you have integrated the disparate and competing user views into a 
single, global database that supports all applications. Or, at least, that's the theory. 

You may find it exceedingly difficult to reconcile all the competing views of the system. Once you win or 
lose the arguments over the structure of the logical data, you then need to work out the competing needs 
for physical storage and performance. Databases that consume huge amounts of resources often cause 
plenty of concurrency and reliability problems to support just one user view. Other users of the database 
will not be especially receptive to their being told that their application must take second place to another, 
larger one. You may find it easier to set up several separate databases at the global level to support these 
users, always assuming you can work out and enforce the constraints across these databases. 

The integration process achieves these goals: 
 Accurate representation of functional needs through structures and constraints, including 

ones between high-level systems or applications 
 Controlling redundancy 
 Resolution of inconsistency 

Representational accuracy sounds easy to achieve, but it requires a very clear understanding of all the 
domains you are modeling. Accuracy, consistency, and redundancy often are all aspects of the same 
thing—the interaction of constraints on the data. In the process of working out the use cases, you consult 
with users and potential users of the system, domain experts, and anybody else that can give you 
information about the domain. As an analyst, you integrate all this detailed information into your use cases 
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and develop the class model to support the data requirements of those use cases. In the end, you must 
rely on your own understanding to develop the correct structures and constraints. A user can tell you 
whether a use case describes what they want to do. They will not necessarily understand the database 
structure and constraints, especially when you are trying to integrate different user and application views. 

For example, Holmes PLC has several different users interested in various aspects of the commonplace 
book system. One group in Switzerland, for example, liaises with Interpol. They want to make sure that 
they can get the information that Interpol wants when they want it. To do that (this is purely a made-up 
example, not how Interpol really works), they need data about criminal events and suspects with certain 
specific international data about those things. The particular structure of the several classes conflicts with 
the more general pattern of people, organizations, and events that the main set of users of the 
commonplace book system will use. The conflicts are in different multiplicity constraints on the 
relationships and different attribute constraints on the classes. By working through the details, you 
understand the differences and how you might make the two sets of requirements compatible with one 
another. A judicious blend of negotiation and interfacing (creating separate subclasses, for example, and 
integrating the results into the class model) will bring the two views together into a database that makes 
sense for both users. You might discover one or two things (or more, in a complex application) that make 
no sense. On investigating further, you find that you misinterpreted some requirements. For example, the 
Interpol requirement might have originally sounded like a many-to-many relationship, but when you 
investigate further to resolve a conflict, you discover that it's really one-to-many. 

You can make your integration approach as formal as you wish. If you are in an environment where you 
must be able to roll back changes selectively or to trace changes to the individual schemas, a formal 
transformation approach is appropriate [Blaha and Premerlani 1998, pp. 210–222]. A transformation is a 
specific change that you can make to a data model, such as subtracting an element, partitioning a class, 
and factoring multiple inheritance. As you find integration issues, you transform the source schemas into 
the merged schema using these transformations. At any time, you can see exactly how you got from the 
source schema to the merged one. This lets you understand the rationale for the merged schema, and it 
lets you selectively reverse the transformations to get back to a valid schema state if you run into trouble. 

Most database designs don't need this level of formality, however, and can proceed keeping the basic 
goals in mind through a few key strategies: 

 Merge classes with similar structures. 
 Use generalization as appropriate to integrate structures and constraints. 
 Use specialization as appropriate to differentiate structures and constraints with shared 

characteristics. 
 Use generalization and association to eliminate unneeded redundancy in structure and 

relationships between classes; replace derived attributes created by merging with operations 
that derive the values. 

 Make all constraints, especially complex ones, consistent with one another. 
 Look for and add any missing relationships. 
 Place the classes into loosely connected subsystems with a minimal number of relationships. 
 Evaluate the big picture from the design perspective and redistribute any components for 

better cohesion and coupling. 

Structural Integration 
The first step in integrating two different data models is to compare them for overlaps. You can take at 
least two approaches to this. First, look for structural similarities—similar class names, similar attribute 
names, and similar class and relationship structures. Compare the object identifiers for the classes 
you think are the same to ensure that basic identity requirements are correct. Second, use your now-
extensive domain knowledge to compare the two models for overlaps in meaning. This means looking 
for concepts that are similar, then looking for similar structure within the classes and relationships. 
You may be able to resolve superficial differences by adding or subtracting attributes or rearranging 
relationships. 
The commonplace book system, for example, uses Person as a central table for representing all the 
individual people that are the subjects of interest to operatives. Holmes PLC also has a contact 
management application that it wants to integrate into the same global database as the commonplace 
book. Figure 10-1 shows the two original schemas for Contact and for Person. 
You can see in comparing the Person and the Contact that there are certain structural similarities. 
Person links to Name and Address, Contact links to Name and Contact Method, and the key is a 
standard object identifier. Semantically, the comparison is even more similar. A contact is a kind of 
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person, and there is really no distinction between them except for the purpose of the data. A Contact 
in the contact management application is a person along with the various ways to communicate with 
that person. A Person in the commonplace book is a biographical entry that tracks a personal history 
and the various personal characteristics for identification and investigation requirements. Merging the 
two is not hard, as Figure 10-2 shows. 

To merge the two classes into a single Person class, the Person class acquires a link to the Contact 
Method class, replacing the link to Address. Address becomes a subclass of Contact Method 
(discussed later in "Generalization Integration"). You will need to recode the three Address methods 
(Add, Get, and Remove) as more general methods for handling contact information. You might add a 
specific GetAddress method to simplify programming in the commonplace book classes if that makes 
sense. 

 
Figure 10-1: People and Contacts in Their Original Form  

Tip 

  

In standard database design, structural integration centers on primary keys and attributes. In 
the OO model, you're much more likely to find similarities based on the relationships and 
operations, though attributes do play a role. Using primary keys for discovering similarities is 
less likely because of assumptions about implicit primary keys. If you can determine that a 
primary key (object identifier) shares a domain with another class in another application, that's 
a good candidate for merging the two classes.  

Generalization Integration 
Two classes or clusters may diverge in structural requirements only a little, having much more in 
common than not. This is a classic situation for using generalization. Generalize the shared attributes 
into a superclass and keep the differences in subclasses. More directly, you may find concepts that fit 
directly into generalization hierarchies in other systems; the system in which they appear just didn't 
need the rest of the hierarchy. 

For example, one Holmes PLC application implements a detective work flow system. Each process 
type in the work flow is a different subclass of the class hierarchy of processes. Often, two or more 
processes share a set of attributes because they're conceptually similar. You abstract these common 
attributes from the different process types into a single superclass. This generalizes the concept but 
provides the concrete subclasses for specific work flows. 
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Figure 10-2: The Merged Person and Contact Classes  

Another system models people and organizations to represent criminals, criminal organizations, and 
other people and organizations of interest to operatives. Again, because of structural characteristics 
they share, the application data model abstracts people and organizations into a common superclass, 
Entity. 

Business Rule Integration 
There are many different business rules in a global data model for a large business. Logic being what 
it is, and people being what they are, you can almost guarantee that any two applications merging into 
a single model will have conflicts in their logic. Relationships will have different multiplicities, some 
attributes will be nullable in one application and not in the other, or complex constraints will simply be 
logically irreconcilable with one another. 
For example, Holmes PLC has an application that manages checking account security for banks. A 
federal regulation requires that a bank check the customer's picture identification when they open an 
account. The Bank Account class links to a Person class with the relationship including a PictureID 
class that represents the individual ID used to establish the account. When this data model integrates 
with the commonplace book, which has a much more extensive identification model, the Bank 
Account links to the already existing Person class, but the PictureID is harder. Figure 10-3 shows the 
conflict. 

In this case, linking PictureID is a bit more difficult than just figuring out a new generalization or 
association link. The whole notion of a picture ID is out of place in the commonplace book model, 
which models specific identification varieties. 
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Figure 10-3: The Conflict between PictureID and Identification  

Moving PictureID into the Identification class hierarchy won't work, because the picture ID objects 
(Driver's License, NationalID, or whatever it might be) will overlap with objects of another class. There 
are some alternatives: 

 Link PictureID to the specific (as opposed to abstract) subclasses that are in fact picture 
IDs. This introduces multiple inheritance into the schema and clearly makes things more 
complex. 

 Create a PictureID interface and add it to the specific subclasses that are in fact picture 
IDs. This is a good solution for the short term. It allows merging the two schemas without 
any change to the underlying schema structure other than the addition of a single 
interface and the implementation of a few methods (not shown in Figure 10-3) in the 
specific subclasses that support it. 

 Rethink the Identification class hierarchy to include an abstract PictureID class. 
Reorganize the specific classes under it. This is going to disrupt the commonplace book 
system a good deal, depending on how much work designers have already done using 
the current hierarchy. 

 Rethink the PictureID class and replace it with an association to Identification. Add 
constraints that require the Identification to exist when there is a Bank Account for the 
person and that require the ID to have a picture. Add that polymorphic feature to the 
relevant interfaces of Identification. This generalizes the relationship nicely, reducing 
coupling by use of polymorphism, but it also introduces more complexity through the 
additional constraints required to express the complex requirements of Bank Accounts for 
identification. 

The choice is yours. Each choice trades off advantages with disadvantages. For maximal reuse of the 
schema, the last choice of generalizing PictureID is probably best, despite the added complexity. You 
can encapsulate that. The interface solution is a great short-term solution if you need to merge the two 
systems and get them working quickly. You'll run into trouble the next time, however, because of the 
slightly jury-rigged nature of the relationship. If it seems to you that picture IDs are more important 
than the original breakdown of expiring IDs and so on, then the third choice may be best. Everything 
depends on your project goals in this case, or on your long-term goals. 
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Big Picture Integration 
Beyond just looking at short or long-term goals, though, you really need to step back from your design 
and look at the big picture before you finally accept the choices you need to make. Work through the 
scenarios from your use cases and from the use cases in the systems you are merging into your 
schema to see how the schema actually supports them. As you do that, you'll emerge with a bigger 
and bigger picture of the merged schema as a whole rather than as a collection of parts. The synergy 
of the whole system and its interrelationships is the key to the final set of strategies for integrating 
schemas. 

The first thing to look at is whether there are any missing relationships. If you want to do this 
systematically, you can create a spreadsheet matrix for each subsystem with all the subsystem 
classes along the top and down the side. Fill in the cells with a value if there is a relationship. The 
value itself can be "True," or you can use the relationship type (such as generalization or association), 
or you can use the multiplicity. Don't forget the recursive relationships along the diagonal of the matrix, 
where classes relate to themselves. You can leave the cells above the diagonal (or below, whichever 
you wish) blank if you think of the relationships as symmetric. If you use directed arrows, on the other 
hand, you need to represent the different directions of the relationship in different cells. Also, include 
transitive generalizations, where a class is a subclass of another indirectly at a lower level. Below this 
matrix, you can list the relationships to classes outside the subsystem, which you'll use later. 

Now look at the blank cells. First, consider each association that isn't there. Would it make sense in 
any potential application to associate the classes? Is the association meaningful? Is it useful enough 
to add some complexity to the data model? If you can answer "yes" to all these questions, create a 
new association. 

Second, consider each generalization that isn't there. Would connecting the classes as superclass-
subclass be meaningful? Again, is it worth adding the complexity? The comments on the various 
design choices in the previous section on "Business Rule Integration" show you some of the trade-offs 
here. If it makes sense, reorganize the class hierarchy to include the new class at the appropriate 
place in the hierarchy. 

After you've gone through this exercise for each subsystem, step out another level and consider the 
relationships between subsystems. If it helps, draw a package diagram and annotate the package 
dependencies with the exact relationships you've listed at the bottom of your various spreadsheets. 

First, find any cycles. A cycle in the package diagram is where a dependency from a package leads to 
a package on which the first package is dependent, directly or indirectly. 

Second, find any relationships that are composite aggregations (the black diamond that establishes a 
class as contained within another class). Without a really strong reason, you should not have such 
relationships between packages. Composites are tightly coupled, usually with overlapping object 
identity. Therefore, they belong in the same unit of cohesion in the system. 

Third, find any generalization relationships between packages. Again, subclasses are tightly coupled 
to their superclasses, as an object contains an instance of both classes. There are, however, certain 
situations that justify putting a superclass in a different subsystem. 

For example, you can reuse a packaged component such as a framework through "black box" reuse, 
which requires subclassing the component class to make it specific to your domain. That means by 
definition that the superclass is in a different package, as the "black box" nature of the situation means 
you can't modify the reused component package. 

Another example: you can have class hierarchies with disjoint subtrees that relate to completely 
different parts of the system. The joint superclass may exist only for implementation or very general 
feature inheritance. This is the case, for example, in systems that have a single root object (CObject, 
ooObject, and so on). The hierarchical nature of UML is somewhat inhibiting in this regard. It might be 
better to treat packages as overlapping, with some classes being part of a generalization tree package 
as well as an association-related package. One represents the entire class hierarchy starting at an 
arbitrary root, while other packages represent the use of those classes. The more overlaps you have, 
though, the more difficult it is to understand everything that's going on because of the increasing 
complexity of relationships between packages. 
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Fourth, and finally, look at the number of dependencies between each package and the other parts of 
the system. The objective in decomposing your system into subsystems is to uncouple the subsystem 
from the rest of the system to the highest possible degree. The fewer dependencies you have, the 
better. On the other hand, each dependency represents a form of reuse. If a subsystem is highly 
reusable, it almost certainly means that more than one other system will depend on it for its features. 
To understand the trade-offs, you should measure the dependencies with the coupling and reuse 
potential metrics from Chapter 9. If a subsystem has a low reuse potential, you should have a 
relatively low coupling metric for each dependency and a low number of dependencies. The higher the 
reuse potential, the more dependencies the package can support. On the other side, a package that 
depends on more than just a few other packages should not have a particularly high reuse potential 
because of its strongly coupled nature. If you find this combination, go back and understand why you 
have rated the reuse potential so high. Should the entire set of subsystems be part of a larger 
reusable subsystem (a "framework"), for example? 

Note 

  

Another method for evaluating the cohesion of your subsystems is to use the logical horizon 
of classes. The logical horizon of a class is the transitive closure of the association and 
generalization relationships from the class that terminate in a multiplicity of 1..1 or 0..1 [Blaha 
and Premerlani 1998, pp. 62–64; Feldman and Miller 1986]. Walk all the paths from the class 
to other classes. If an association to the other class has a multiplicity of 1..1 or 0..1, that class 
is in the logical horizon, but the path ends there. You can walk up a generalization 
relationship to the class's superclass, but not down again to its siblings. The classes with the 
largest horizons are usually at the center of a subsystem that includes most of the logical 
horizon of that class. As with most mechanistic methods, however, using a logical horizon 
approach can be misleading and does not guarantee a highly cohesive subsystem, 
particularly if the associations are incomplete or wrong (never happens, right?). 

Because you are changing the subsystem relationships, you may want to make one more pass 
through the subsystem analysis to see if anything has changed because of moving classes between 
subsystems. 

 
Summary 
Not everyone chooses their parents wisely. Developing data models around legacy systems brings into 
sharp focus the culture of the organization that created those systems. This culture has a large impact on 
your legacy development and maintenance efforts through several mechanisms: 

 Norms 
 Values, attitudes, and beliefs 
 Rituals 
 Folklore 
 Shared language 

Given these elements of your organization culture, you may or may not be able to leverage existing data 
and technology in your legacy system to provide the basis for your system development. Sometimes it's 
better to start fresh; sometimes its better to renovate the old house. Part of your job is to develop the scope 
of the new system based on both the system requiements and the system culture. on the other hand, if you 
renovate, you need to pay a lot more attention to culture to understand both the scope of the old system 
and the scope of your changes to it. 

The next three chapters (the rest of the book) show you how to transform your data model into one of the 
three scheams: relational, object-relational, or object-oriented. Each chapter follows a similar structure, 
showing you the transformation of the following elements: 

 Structures 
 Relationships 
 Business rules 
 Design guidelines 
 Data definition languages 

Finally, the last stage of building your data model is the intergration of all the different views into a single 
shared conceptual model. You generalize comcepts brought together into class hierarchies. You integrate 
business rules and resolve any logical conflicts between them. Lastly you step back and look at the big 
picture to optimize the total view of the system. 
You are now at the point where the rubber meets the road. Unfortunately, you are in a computer game 
where the road changes its character depending on where you are and what tools you are carrying. Moving 
from the data model to the schema is a tricky process. You must find your way through the maze of culture, 
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you must understand the tools available, and you must understand how to leverage what you are carrying 
with you. Good luck, and do watch our for the human sacrifice in Chapter 12. 

 
Chapter 11: Designing a Relational Database Schema 
Thou shalt prepare a table before me against them that trouble me: thou hast anointed my head with oil, and my cup 
shall be full. But thy loving-kindness and mercy shall follow me all the days of my life: and I will dwell in the house of 
the Lord for ever. 
Church of England Prayer Book, 23:4 

Overview 
Transforming a data model into a database schema is not easy, but it's not going to put another person on the moon 
either. The techniques for turning an ER model into a relational model are well understood [Teorey 1999, Chapter 4]. 
Transforming a UML data model into a relational database uses these techniques and adds some more to take some 
of the expanded features of such models into account. The first three sections of this chapter go into detail on the 
structures, relationships, and constraints of your UML data model and their transformation into the relational schema. 
The next section of the chapter discusses the concept of data normalization. You really can't talk about relational 
databases without talking about normalization. If you approach it from the OO perspective, though, you can eliminate 
much of its complexity and detail. It is still important to understand how your database structure meets the "normal" 
requirements of the relational world, but it's much easier to get there from an OO data model. 
The last section summarizes the sequence of steps you take to transform the OO data model into an SQL-92 
schema. It also shows you some of the specialized things you can do by using the nonstandard elements of a 
database manager, in this case Oracle7. 

 
Turning the Tables 
The structures of a relational database are very simple. You have tables, and you have tables. Unless you want to 
create a table, of course. This simplicity has one negative effect: it complicates the process of representing complex 
objects. The trick in moving from a UML data model to a relational schema is to make the simplicity of the relational 
table work for you instead of against you. 
To illustrate the process, Figure 11-1 shows a UML model for the Person subsystem of the commonplace book, and 
Figure 11-2 shows a UML model for the Organization subsystem. Both of these subsystems are part of a third 
subsystem, the Entity subsystem. Figure 11-3 shows the architecture for the package. 

The Person subsystem contains the Person class and the Identification hierarchy that belongs to it. I've chosen to 
use the inheritance version of Identification rather than the interface version. People connect to organizations 
through a three-way relationship to the Role class in the Organization package. The scope notation 
(Organization::Role) identifies classes that are not a part of the Person subsystem. 

The Organization subsystem contains the Organization hierarchy, which includes the CriminalOrganization class. It 
also includes the Role class and the relationships between Role and Organization. Organizations connect to people 
through a three-way relationship to Role. 

The Entity subsystem contains three elements: the two subsystems Person and Organization plus an abstract class, 
Entity. The Person and Organization classes in their respective packages inherit from that class. In the future, Entity 
will have relationships to other subsystems such as Contact Method, Geographical Location, and Image. 

Packages, Subsystems, and Name Spaces 
The package and its specialization, the subsystem (see Chapter 7), provide organizing name spaces for your system 
architecture. The objective is to design a system in reusable chunks that are as independent from one another as 
possible. 

Packages are a new concept to the relational world. Most database designers think about relational schemas as a 
kind of global data repository, or even as a single name space. This approach comes from technological limitations 
in the past and from cultures that built up around these limitations. For example, you will still find DBAs who insist on 
global column names, or on names that include all kinds of identifying information. CMN_ID_ID_NO_NUM, for 
example, might represent such an excessive naming convention: The commonplace book (CMN) ID table (ID) ID 
number (ID_NO) column, which is a numeric data type (NUM). I prefer IDNumber in the Identification table, taking full 
advantage of the name space established by the schema and the table. 



 - 167 -

Note 

  

Don't confuse the UML package that I discuss here and in Chapter 7 (and later in this chapter 
put to use designing a database) with the Oracle PL/SQL package. PL/SQL took the package 
idea from the Ada programming language, where a package is a compilation unit that collects 
a number of different elements into a single object. It's really more of a module or a class than 
a subsystem, although the concepts are related by the concept of the name space.  

 
Figure 11-1: The Person Subsystem in UML  
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Figure 11-2: The Organization Subsystem in UML  

The problem with schemas as sets of global names is precisely the problem that packages address: reusability 
through encapsulation and uncoupling. Most database designers have at some point confronted the need to 
integrate more than one database into a seamless whole. In reality, you should think about the problem as 
integrating multiple packages into a system. Each package provides its contribution as required in an encapsulated, 
uncoupled way. Using OO techniques, you don't use the lowest common denominator approach of raising all the 
names up to the top as global; you use name spaces to carefully organize access. 
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Figure 11-3: The Entity Subsystem in UML  

Standard SQL provides a very basic name space capability with the schema name [Melton and Simon 1993; ANSI 
1992]. An ANSI schema is a descriptor that includes a name, an authorization identifier, a character set name, and 
all the descriptors of a set of components (tables, views, domains, assertions, privileges, character sets, collations, 
or translations). No major DBMS of which I am aware implements this schema capability precisely. IBM's SQL/DS 
and DB2 systems established a de facto standard by setting up a system of users in a single database. Oracle and 
Informix followed suit, as did a host of smaller DBMS vendors. This concept of user corresponds to the ANSI concept 
of authorization identifier. In the earlier SQL standard, schema name and authorization were the same; the 1992 
standard uncoupled them. 

Note 

  

As an aside, I have to express my opinion (repeat, opinion) at this point in a small sermon 
about the unfortunate way in which the major relational vendors have ignored the ANSI 
standard. Not one of the major vendors even comes close to implementing the full features of 
that standard, despite the dramatic improvements it makes to the SQL language in areas 
ranging from date-time processing to character sets and internationalization [Melton and 
Simon 1993]. The schema name space capabilities are just another example of the major 
vendors' inability to move forward. You should pressure the vendors to implement the 
complete standard as quickly as possible. You can remind vendors that complain about the 
difficulty of implementing the standard that people are paying huge amounts of money for 
their software design and implementation skills. Also, having a complete ANSI SQL provides 
a tremendously strong value proposition for customers. A vendor who provides this will have 
a very strong competitive position in the RDBMS market.  

The user corresponds to the authentication identifier and to the schema name. These databases do not have a 
"schema" object, although they implement the CREATE SCHEMA statement from the standard. Instead of 
establishing a schema name space, these systems establish a user name space. Each user can run multiple 
CREATE SCHEMA statements without any implication about the relationships between the sets of objects the 
various statements create other than that they all belong to the named user. 
Users are really part of the standard SQL security mechanism, which security theorists call discretionary access 
control. This kind of security system establishes an owner for each object, such as a table, and a set of privileges 
granted on that object to other users. Users must refer to objects owned by other users by prefacing the object with 
the name of the owning user. Again, this corresponds to the SQL standard's authentication identifier and schema 
name. 
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Note 

  

Microsoft has integrated its SQL Server security system with the security system of the 
underlying operating system, Windows NT. This makes it easier to administer the database 
by using the NT user and password to authenticate access to the database as well. You don't 
have to define separate users for the database and the operating system. The database 
name space thus becomes part of the larger name space established by operating system 
security. 

Various DBMS vendors extend this system with an additional concept: the synonym or alias. You can create an alias 
for an object that belongs to another user. You can then refer to the alias without prefacing it with the name of the 
owning user. Using synonyms, you can create names in your user name space that make a database with multiple 
name spaces look like a single, global name space. A public synonym makes the name global to all users to provide 
a truly global name. 

But what about multiple databases? The SQL standard is totally silent on the concept of database; its only concern is 
to establish the schema name space. This omission has resulted in an array of different approaches to having 
multiple databases. Oracle and Informix have added the concept of a database link. This is essentially a synonym 
you establish that refers to a foreign database within the database in which you create the link. You then prefix the 
name of an object in the foreign database with not only the name of the owning user but the database link name as 
well. 

Sybase and its cousin Microsoft SQL Server take a different and more complex approach. These systems have 
multiple databases as objects registered on a server. Databases and users are completely separate. You also have 
logins, the username and password with which a user authenticates themselves, and these are also completely 
separate. You can give a user access to any object in any accessible database. You then refer to an object by 
prefacing it with the database name and the name of the owning user, which may or may not be the name of the 
login. At the moment, the name space extends only to the boundaries of the server on which the databases reside 
due to the way these systems identify the server. There is an administrative login (sa) with full access to everything. 
There is for each database a publicly owned set of tables (the standard user dbo, database owner, owns these 
tables) that any user with access to the database can see. 

Note   Again, SQL Server version 7 integrates the security system with operating system security. 

Bringing all of this diversity to bear on the problem of implementing persistent UML packages is an interesting 
exercise. First, forget a standard approach—there is none. Second, spend some design time establishing how your 
applications will refer to the different name spaces. Ideally, a subsystem or package should refer to a well-defined 
set of other packages, and it should be able to ignore any relationships between those packages. 

To see an example of implementing an approach to name spaces in Oracle7, see the section "Packaged 
Subsystems" toward the end of this chapter. 

To summarize, you can establish separate package and subsystem name spaces and encapsulation using a 
combination of different aspects of your relational database manager. You still don't get a complete representation of 
the package, but you get more encapsulation than with a more usual implementation of the system. 

Types and Domains 
Once you've established your name spaces, you can start thinking about the kinds of data you want to put into the 
database. Before you start transforming your UML classes into tables, you need to establish the types that you will 
use to declare the table columns. 
Recall from Chapter 7 that you can easily build a set of basic data types in a separate package of classifiers defined 
with the «Type» stereotype. You have at least four alternatives to structuring this package: 

 You can build a set of types corresponding to the types your RDBMS makes available; for example, 
if you're using Oracle7, you might define types for NUMBER, VARCHAR2, CHAR, DATE, LONG, 
RAW, and LONGRAW. 

 You can build a set of types corresponding to ANSI standard types: CHARACTER, CHARACTER 
VARYING, BIT, BIT VARYING, NUMERIC, DECIMAL, INTEGER, SMALLINT, FLOAT, REAL, 
DOUBLE PRECISION, DATE, TIME, TIMESTAMP, and INTERVAL. 

 You can build a set of types based on OO programming types, such as the C++ types: int, string, 
char, array of type, struct, enum, and so on. 

 You can build a set of types based on the OR and OO database standards for maximum portability 
between different kinds of database managers. The ODMG types that the "Domain Constraints" 
section in Chapter 7 defines are an example of this. 
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There are two aspects to transforming these types into a relational database schema: creating ANSI standard 
domains and establishing a transformation table. 

ANSI Domains 
The ANSI SQL-92 standard added the concept of domain to standard SQL. An SQL domain is "a set of permissible 
values…. The purpose of a domain is to constrain the set of valid values that can be stored in SQL-data by various 
operations" [ANSI 1992]. Melton and Simon give a slightly more practical definition [Melton and Simon 1993]: "A 
domain is a sort of macro that you can define to pull together a specific data type (and, if applicable, size), as well as 
some characteristics [including] defaults, constraints, and collations. You can then use the name of the domain to 
define columns that inherit the data type (and other characteristics) of the domain." 
Figure 11-4 gives the syntax of the ANSI CREATE DOMAIN statement. 

Note 

  

These syntax diagrams are "railroad diagrams" because you follow the tracks, tracing along 
the lines from the start to the finish. You start at the arrow with nothing at the starting point 
and finish at an arrow which points to nothing, following the arrows between syntax elements. 
If you can trace a line that skips a box, it means the element is optional, such as <default 
clause> and the other optionsin Figure 11-4. Splits like the one between <data type> and 
<domain name> in Figure 11-6 (the <column definition> clause) are alternatives: you can go 
one way or the other. If a line links back to a box, it means repetition or looping, such as with 
the <domain constraint> in Figure 11-4. You can have zero or more domain constraints 
following one another in a CREATE DOMAIN statement. In constructing the statement, you 
can go directly from the data type to the end of the expression, or you can put in the default 
clause, the column constraint(s), or the collation clause. Elements in angle brackets <> 
indicate elements with definitions in other diagrams. You separate elements in different boxes 
with at least one space. Some boxes combine several elements for readability, but you can 
put any number of spaces between the internal elements of a box if one space appears there  

 
Figure 11-4: The SQL-92 <create domain definition> Statement  

The <default clause> corresponds to the initial-value specification in the UML attribute definition (see the later 
section on "Attributes"). Figure 11-5 shows the syntax for the default clause. 

The ANSI standard specifies several possible values for <default option> that most of the RDBMS products don't 
implement, and most provide possibilities that the standard does not. You can use the standard values in your UML, 
but you will need to transform them into the system-dependent values that your target RDBMS provides. Similarly, 
you can define your own set of possibilities to use in UML, as long as you provide a transformation table for the 
target RDBMS. 
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Figure 11-5: The SQL-92 <default clause> Syntax  
The <collate clause> in Figure 11-4 defines the collating sequence if the <data type> is a character type. Since none 
of the major vendors implement this syntax, don't worry about it. 

Now, all that being said, forget it. Let me repeat my sermon about database vendors and the ANSI standard: none of 
the major database vendors implement the CREATE DOMAIN statement in their systems. The newer ORDBMS 
products from these vendors add capabilities that look suspiciously like this, such as CREATE TYPE, but even they 
don't implement the CREATE DOMAIN from the standard. Therefore, although you can dream about the 
transformation of types into domains, in practice it's hopeless. 

The Transformation Table 
Even if you could create domains in RDBMS schemas, you would still need a way to relate your UML types to your 
domains and data types. Before transforming classes, you should have a table in some form that shows how to map 
UML type expressions into the SQL of your target DBMS. If you have multiple targets, you should have multiple 
tables. For optimal reusability, you should package your UML type package diagram and the table together in a 
reuse repository for use in multiple data models and schema designs. 

The transformations may be simple ("if UML type is string, then SQL type is VARCHAR(254)," for example), but 
usually you will find various ifs, ands, or buts that make your job more complex. For example, does a string translate 
into a VARCHAR(254), or can you specify a shorter size? Do you sometimes want a CHAR instead of a VARCHAR? 

Enumerated types pose a real problem. If there is a way to define domains, you can encode the CHECK constraint 
that corresponds to the list of values into the CREATE DOMAIN statement: 
CREATE DOMAIN Boolean AS CHAR(1) NOT NULL DEFAULT 'T' 
  CONSTRAINT Bool_Constraint CHECK (Boolean IN ('T', 'F')); 

If you don't have domains, and mostly you don't, you must put the CHECK constraint (and probably the DEFAULT 
and NOT NULL clauses as well) into each attribute that uses the type. Alternatively, you can create a type table and 
put the values into it, then create a foreign key constraint to that table. You would definitely do that if you thought you 
might add new values to the enumeration over time. For a Boolean type, that isn't true; for other enumerations, it is 
often true. 

You may also want to specify some display values to use in your programs. For example, if your user interface 
presents a field that takes a value of an enumerated type, you might want to make it a dropdown list. It can then 
display fullword natural language values such as "True" and "False" for a Boolean type. You can encode this into a 
type table, a single table for each type with the following structure: 
CREATE TABLE <Name> Type ( 
  Value <Data Type> PRIMARY KEY, 
  DisplayString VARCHAR2(50) NOT NULL, 
  Description VARCHAR2(2000)) 

In this parameterized CREATE TABLE statement, <Name> is your UML type name and <Data Type> is the SQL 
data type that corresponds to your enumerated values. The type is usually either CHAR(n) for character code 
representations or NUMBER for numeric code representations. You insert one row of data for each enumeration 
value. For example, the possible states of the legal status of a criminal organization include Legally Defined, On 
Trial, Alleged, and Unknown. The following Oracle7 SQL creates a type table for the UML LegalStatus Type: 
CREATE TABLE LegalStatusType ( 
  Value CHAR(1) PRIMARY KEY, 
  DisplayString VARCHAR2(50) NOT NULL, 
  Description VARCHAR2(2000)); 
INSERT INTO LegalStatusType (Value, DisplayString) 
VALUES ('L', 'Legally Defined'); 
INSERT INTO LegalStatusType (Value, DisplayString) 
VALUES ('T', 'On Trial'); 
INSERT INTO LegalStatusType (Value, DisplayString) 
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VALUES ('A', 'Alleged'); 
INSERT INTO LegalStatusType (Value, DisplayString) 
VALUES ('U', 'Unknown'); 
CREATE TABLE LegalStatusTypeDefault( 
  Value CHAR(1) PRIMARY KEY); 
INSERT INTO LegalStatusTypeDefault (Value) 
VALUES ('U'); 

This series of SQL statements sets up the table, inserts a row for each enumeration value with an alphabetic code, 
and sets up a singleton table containing the default code. The advantage in this approach is that you can add to or 
modify the value set by inserting or updating rows in the type table. You can use the default table to modify the 
default value. An alternative way to indicate defaults is with a Boolean tag column in the type table, IsDefault or 
something like that. The singleton table is clearer in most cases and is easier to maintain from your application. 

Note 

  

Sometimes you see type tables in relational database designs that merge several types into a 
single table. This is a bad design idea for two reasons. First, the Value column must have the 
type of value that is correct for the enumeration. It may be NUMBER, it may be CHAR, or it 
may be a DATE. Your choice is either to use the wrong type by choosing one of these or to 
add a column for each type and make it null for enumerations that are not of that type. 
Neither of these is good design. The first approach is bad because it doesn't do the job. The 
second approach is bad because you introduce a complex constraint into the table. The 
second reason is that you introduce control coupling into your database unnecessarily. By 
adding a discriminator column, usually the type name, to distinguish just those rows that 
apply to a given type, you force applications to add control logic to their SQL retrieval. 

Classes 
A UML class contains attributes and operations. The transformation is easy, at least for the attributes: each class 
becomes a table in a relational database, and each attribute becomes a column in the table. For example, in the 
Person subsystem from Figure 11-1, you create a table for each of the classes in the diagram: Person, Address, 
Identification, ExpiringID, LawEnforcementID, and so on. For example, here is the transformation of the Person class 
and attributes into a standard CREATE TABLE statement: 
CREATE TABLE Person ( 
  PersonID INTEGER PRIMARY KEY, 
  Sex CHARACTER(2) NOT NULL CHECK (Sex IN ('M', 'F')), 
  BirthDate DATE NOT NULL, 
  Height FLOAT, 
  Weight FLOAT, 
  MaritalStatus CHARACTER(1) NULL 
    CHECK (MaritalStatus IN ('S', 'M', 'D', 'W')), 
  Comment VARCHAR(200)) 

The trick to producing CREATE TABLE statements is in transforming the attribute types into SQL data types and 
single-attribute constraints. See the following sections on "Attributes" and "Domains and Data Types" for details on 
these decisions. There is also the problem of the primary key attributes; see the section on "Constraints and Object 
Identity" for details on producing a PRIMARY KEY constraint. 

Warning 

  

A small worry is the length of your class name. Standard SQL-92 limits the length of table 
names to a maximum of 128 characters, including schema name qualifier, but you'll be 
lucky if your system gives you anything like that. All the systems I've used limit you to 31 
or 32 characters (Oracle, Informix, Sybase, and SQL Server) or even 18 characters 
(DB2). 

But what about the operations? There is nowhere in the CREATE TABLE statement for these. In most relational 
databases these days you have at least some possibilities for representing behavior as well as structure. See the 
following section on "Operations and Methods" for some suggestions. 



 - 174 -

Attributes 
Each attribute in a UML class becomes a column in a table. Again, you must worry about name length; this is 18—32 
characters depending on your target DBMS. Most of the transformation of attributes has to do with creating suitable 
data type and constraint declarations, however. 
Recall the UML attribute definition syntax from Chapter 7: 
stereotype visibility name : type-expression = 
     initial-value { property-string } 

There are no attribute stereotypes, and visibility in relational databases is always public (+), so you can ignore these 
parts of the attribute definition. See the section on "Operations and Methods" for a way to pretend that your attributes 
are private, however. 
Figure 11-6 presents the SQL-92 syntax for the column definition. 

The <data type> or <domain name> corresponds to the type-expression you've associated with the attribute in UML. 
See the following section on "Domains and Data Types" for details. The <column constraint definition> is one of the 
several types of integrity constraint you can specify or the NOT NULL constraint. This corresponds to the tagged 
values in the property-string. See the following section on "Constraints and Object Identity." 

Domains and Data Types Your type-expression may include two kinds of type: a type that directly corresponds to a 
basic SQL data type or a more complex domain based on such a type (see the previous section "Types and 
Domains"). You use your type transformation table to determine a reasonable SQL data type for the attribute. 
Beyond that, things get complex. 

 
Figure 11-6: The SQL-92 <column definition> Syntax  

For enumerated types, you should build a type table (see "Types and Domains"). You can then specify a foreign key 
constraint to map the column to that table: 
LegalStatus CHAR(1) NOT NULL DEFAULT 'U' 
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  REFERENCES LegalStatusType(Value), 

This column definition links to the LegalStatus Type table's Value column to get the set of possible values for the 
LegalStatus column in the Criminal Organization table. You use the same data type as the type table defines 
(CHAR(1)). The NOT NULL is optional, as is the DEFAULT clause. You may want to depend on a default table 
approach in which the application queries the default value rather than using a DEFAULT clause. 

For the kind of subtyping available in SQL, you can specify character size, numeric precision and scale, and any 
other such restrictions available in your target RDBMS. 

For ranges and other subtypes of that sort, you must use a CHECK constraint: 
IDNumber NUMBER(10,0) CHECK (IDNumber > 999999999), 

This column definition specifies a 10-digit integer number, a number between 1,000,000,000 and 9,999,999,999. 
Notice how the numeric precision combines with the check constraint to enforce the range. You can also specify the 
range directly: 
IDNumber INTEGER CHECK (IDNumber BETWEEN 1000000000 AND 9999999999), 

To exclude noninteger values, this definition uses the INTEGER data type. This is not a native Oracle7 data type but 
rather an internal synonym for NUMBER with a scale of 0. 

To summarize this example, you can go quite far to satisfying most subtype constraints using the SQL built-in types 
and the CHECK constraint mechanism. Unfortunately, you must specify the entire mess each time you use the UML 
type, because current RDBMS products do not yet implement the ANSI SQL-92 domain. If your vendor does, by all 
means use the domain to represent subtypes, as this greatly enhances reusability and consistency in your schema. 

Note 
  

Relational schemas cannot represent structured or multivalued data types such as records or 
arrays. If your UML design includes attributes with these kinds of types, you must treat them 
as though the type were a class. Create a separate table for the data, then link the table back 
to the owning table with a foreign key relationship. 

Constraints and Object Identity The series of property strings in curly braces in the UML attribute definition 
includes the following extended tagged values: 

 {OID}: An explicit primary key 
 {alternate OID}: An explicit candidate key 
 {nullable}: A specification that the attribute can be null instead of having a value 

The Chapter 7 section on "Object Identity and Uniqueness Constraints" goes into detail on the UML approaches to 
explicit and implicit object identity. Relational databases rely entirely on explicit identity. Relational theorists raise this 
feature to a principle, stating that "all information in the database at any given time must be cast explicitly in terms of 
values in relations and in no other way" [Date and Darwen 1998, pp. 145—146]. The consequence of this principle is 
that there can be no such thing as an object identifier that is not a value in a table column, nor can there be pointers 
to values or rows (see Chapter 12 for the OR concept of "reference," for example). 

Most DBMS products support some kind of identification "under the covers." For example, Oracle7 provides a 
ROWID that uniquely identifies a row in a table. That ROWID can change, however, if the DBMS moves the row to a 
different location on disk. It is a physical identifier, not a logical identifier, and you should not consider it to be an 
object identifier. You thus can't store off a ROWID value in another table and use it later to retrieve the original row, 
as the internal value may change. Also, Oracle reserves the right to change the ROWID structure from version to 
version, as they did in Oracle8. Thus, both as a practical matter and in theory, you should restrict yourself in RDBMS 
schemas to explicit identity. 

Note 
  

SQL Server version 7 provides an OID data type to represent object identity explicitly. This 
moves SQL Server one step in the direction of the object-relational databases discussed in 
Chapter 12. It also integrates the concept of object identity directly into the relational model. 
Whether this constitutes a "value" according to Date's definition is unlikely. 

Taking the explicit approach, you must figure out how to transform implicit and explicit UML identity into explicit 
relational identity. Starting with explicit {OID} attributes is much easier: you just create your columns from the 
attributes and put a PRIMARY KEY constraint on them. If it is a single column, you can just add the words PRIMARY 
KEY to the column definition as a <column constraint definition>. If there are multiple attributes with {OID} tags, you 
must add a <table constraint definition> to specify the PRIMARY KEY. 

Transforming implicit UML object identity to explicit relational identity is a bit harder because the tools vary widely 
from system to system. Usually, the simplest approach is to add an integer column to the table. The variance is how 
you assign values to that column. Oracle7, for example, has the SEQUENCE object that you can use to supply 
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monotonically increasing integer values. This corresponds directly to a primary key domain that any number of tables 
can share. SQL Server and Sybase, on the other hand, let you add the keyword IDENTITY to the attribute, and it 
then generates a monotonically increasing number as part of the INSERT operation. This does not correspond to a 
domain because you can't share the value across tables. 

Tip 

  

You should think about the identifier domain from the perspective of the required integer size. 
Computers limit integer values by the memory architecture of the machine. Many DBMS 
products limit integers to 4 billion or so (232), or half that for signed integers (-2 billion to 2 
billion). If you will have fewer than 2 billion (4 billion) objects, that's fine, but think about it 
carefully. Your application code should understand the limitation as well and decline gracefully 
to produce more objects when it nears the limit. 

Another alternative is to add code, either as a stored procedure or in your application, to generate these numbers. 
I've encountered three ways of doing this. 

One approach is to create a table that has one row for each domain; you increment the number and store it as the 
"current" number, emulating the SEQUENCE. The only problem with this approach is that you lock the row (or in 
SQL Server and Sybase, even worse, the page). Locking can dramatically impact concurrency if you create many 
rows very quickly from many different connections (the OLTP scenario). 

A second alternative is to query the maximum value of the column from the table, increment that by one, and use 
that number as the new value in an INSERT statement. This approach may or may not perform very well depending 
on the optimization available from the DBMS; at worst, it can scan all the rows in the table. It also has various 
impacts on locking the rows in the table (and locking the index pages for the table if the query uses them). 

A third alternative is to generate a unique number in some way. Variants on this include hashing (using a simple 
MOD transformation on the current date and time, for example, or some kind of random number generator) or GUID 
(globally unique identifier) generation. A GUID is also known as a uuid (universally unique identifier) [Leach and Salz 
1997]. You generate it using a standard algorithm based on hardware identity and timestamp. The hashing approach 
works 90% of the time (the real number actually depends on the hash function you use), so you need to check the 
number or add code to generate a new number if the INSERT fails because of duplicate values in the primary key. 
The GUID approach works fine as long as you're willing to accept all keys using 36 bytes of fixed-length character 
space in the table and in the primary key index. For very large tables, this space can really add up compared with a 
single integer value. 

Tip 

  

GUIDs are the method of choice for identity domains that you want to be able to handle 
virtually any number of objects, as is likely for Holmes PLC. If it concerns you that integer 
values may be too limiting, you should definitely look into GUIDs [Leach and Salz 1997]. The 
Win32 application programming interface contains functions that generate GUIDs, as part of 
the remote procedure control library (rpc.h). 

The candidate keys require some additional SQL syntax. Recall that each {alternate OID} tag specifies a number 
identifying the particular candidate key. This lets you have multiple candidate keys that comprise multiple columns. 
For each unique number in such a tag, you should generate a UNIQUE constraint, either as a <column constraint 
definition> or as a <table constraint definition>. Since these candidate keys are always explicit, you just create the 
attribute(s) as columns, then put in the constraints. 

The UML {nullable} tag corresponds to the NOT NULL constraint, at least in its absence. That is, you attach 
{nullable} to the attribute in UML if you do not want a NOT NULL constraint in your relational database. If there is no 
tag on the attribute, you must add the keywords NOT NULL to your column definition. Most RDBMS products let you 
add a null constraint, the reverse of the NOT NULL constraint, though that isn't part of the ANSI standard for the 
column definition. 

Operations and Methods 
Creating your columns only gets you part of the way to having a complete application. Table columns comprise the 
static part, but what about the dynamic part? UML classes have operations as well as attributes. How can you 
leverage these operations in a relational database environment? 

The major relational databases limit you to stored procedures and functions as objects in your schema. For example, 
Oracle7 lets you define stored functions or procedures. If your functions don't have side effects, you can use them in 
standard SQL expressions wherever you can use a scalar value. With a little creativity, you can often represent your 
class behavior as stored procedures or functions that you can call either in SQL expressions or as part of a larger 
stored procedure. You can also call these from your application programs using various nonstandard APIs. Whether 



 - 177 -

this makes sense depends on the nature of the behavior, the larger system architecture of which the database is a 
part, and the requirements for reuse across applications. 

First, however, it's important to realize the distinction between the database server and the application code. This 
division is not arbitrary; some things make sense as database server behavior, while other things do not. This is the 
art of application partitioning. 
Partitioning There are whole classes of operations that you don't want to see on the server. Partitioning is the 
process of deciding whether to put the behavior on the database server, an application server, or the client. 

Note 

  

The world is full of partitions. With respect to computers, in different contexts you can partition 
any number of different things. The consequence so far as this book is concerned is to 
confuse you with using the same word for different things. In particular, don't confuse 
application partitioning, the division of the application between client and server, or server 
and server, with data partitioning, the division of a table or other collection of data into 
different physical chunks for physical input/output optimization. 

First, you don't want operations that handle transient issues. Any operation that requires a reference to an in-
memory address or an in-memory object is not suitable for the database server, since that server has no access to 
such things. 
Second, you don't want client-called operations that access data attribute by attribute. Recall from Chapter 7 that you 
can create operations with the {query} property, here called accessors or observers, that simply return an attribute's 
value (usually as a constant reference in C++, for example). Database servers don't work that way; they return 
records, not values. Visualize a very large tunnel filled with a huge cargo train that contains a single grain of corn for 
each trip. It's going to take a lot of resources to get even a single bag of corn to market. Moving data value by value 
across a network is not a good idea. You can extend this logic to any of the operations on single attributes. For 
example, simple mutators (set operations) often change a single attribute value. Instead, you should leave these on 
the client or application server side, then submit changes as entire rows of data when you're ready to commit the 
transaction. If you can group several attributes for a single update, that's better, but still has limitations. 

Note 
  

If you intend the operations only for use within the database server (that is, by other stored 
procedures), then you can probably get away with accessors and mutators as stored 
functions. If you choose to do this, don't make the functions available to applications. 

Third, you don't want to put operations on the server that need to refer back to the transient client in any way. It's not 
good design to require the server to maintain behavioral state across calls. It has enough to do managing transaction 
state. This is not to say that you can't do it; PL/SQL packages, for example, let you set data values and keep them in 
a special shared buffer across as many calls as you like. This can have very strange effects as you scale up to many 
clients accessing the data at once. Generally, you want your server code to be reentrant: you want a session to be 
able to access and run the behavior without worrying about anything that happened before. That means not relying 
on any state left over from previous invocations of the operation (static data or data from tables). Keep these kinds of 
operations on the server. 

Also, some operations do extensive error checking in memory, aborting the operation if things don't work out. Do this 
checking on the client or application server side, not on the database server side. The only error handling you want 
to do on the server side is error handling related to database structures—business rule checking, physical data 
storage errors, DBMS errors, and so on. This especially applies to code you think belongs in a trigger. Because 
triggers execute when the DBMS raises an event, you don't really have control over trigger execution. Choose code 
you put into triggers wisely. You should code trigger operations that make sense for the event that runs the trigger 
(AFTER INSERT and so on). If you find yourself creating trigger code to work around some problem with a stored 
procedure, consider other alternatives. If you find yourself creating trigger code to work around other trigger code, 
bail out fast! Keeping it simple works nicely with triggers. 

Finally, you want to evaluate the performance of your remaining operations. It may be cheaper to run your operation 
in a compiled language on the application server rather than in an interpreted, slow PL/SQL stored procedure. 

So what kind of operations does this leave? 
 Query a result set: Return a set of records to the client 
 Insert/update/delete: Modify data for a single row (not a single value) 
 Rule checking: Enforce business rules with triggers or procedures (for example, you can handle 

special constraints on foreign keys using triggers or add code that evaluates complex procedural 
constraints on an input row or rows) 

 Derived values: Calculate a value from database data with an algorithm you can't specify as an 
SQL expression in your target DBMS version of SQL 

 Encapsulating operations: Operations that call other database operations such as stored 
procedures provided by the vendor or data dictionary accesses related to the data in the table 
(for example, a stored procedure to retrieve the primary key column definition of the table) 
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 Error checking: Operations that check various error states and raise exceptions (or whatever 
method by which errors return to the client) 

Stimulus and Response: Behavior and Side Effects Much in the relational database world depends on the nature 
of the behavior you intend to put into your persistent classes. Oracle7, Informix, and Sybase all provide server-side 
programming facilities, but there are various subtleties about structure and use that depend directly on what's 
happening inside the black box of the operation. 

Oracle7.3 provides both stored procedures and stored functions. You can use the functions in your SQL statements, 
but only if they have no side effects. In UML terms, the operation must have a {query} tag. This permits the Oracle7 
parser to call the function and return a value with the knowledge that the function won't be doing anything to upset 
the internal processing of the DBMS. 

On the flip side, if the operation has no {query} tag, you cannot use it as an SQL function. You can, however, add it 
to your set of database objects as a stored program unit for use by other program units or by the client through some 
kind of API for calling stored units from programs. 

The SQL security system introduces another factor: privileges. One frequently asked question in the Usenet 
newsgroups for Oracle is "I've coded a stored procedure and I have access to all the data it uses, but I can't run it 
from my program." This is usually because the user logs in under a user name different from the owner of the stored 
procedure and has not granted EXECUTE privilege on the procedure to that user. There are various quirks and 
subtleties in the different RDBMS products with respect to stored program unit privileges. 

A third factor is the external access required by the operation. Many programmers want to open or write to files or 
print things or display things on the screen from a stored program unit. The RDBMS permits all of these things. What 
it does at runtime is not, however, very easy to understand in a client/server context. Generally, if you try to do things 
outside the DBMS, the code executes on the server. You thus print to the printers attached to the server, not to those 
attached to your client. You write files on disks accessible to the server, not your client hard disk (unless of course 
that disk is accessible to the server and you identify it and write to it using parameters). Sending mail, running 
devices, synchronizing with other applications—all of these operations make for much more complexity in your 
operations if you make them stored procedures. 
Another form of access is to in-memory data. Often, programmers want to refer to data in their running program in 
their stored program unit. Since they are running in different processes and potentially on different machines, this is 
not possible. All such references must be to parameters of the stored procedure. In its ultimate form, this leads to 
stateless programming: ensuring that the stored program unit gets everything it needs through its parameters and 
makes no assumptions about prior calls or actions in the database. You will often find such procedures with 
embedded transaction commits and rollbacks, as being stateless implies not carrying transactions across server 
access calls. 

That leads to a final behavioral factor: transaction requirements. If your transactions are at all complex, you will have 
to decide at some point where those transactions happen. Generally, transactions happen in the application, not on 
the database server. In other words, you generally do not put transaction commands (COMMIT, ROLLBACK, 
SAVEPOINT) into your stored program units. Instead, the application server (or client in a two-tier system) issues 
these commands separately because it is the center for the transaction semantics. Whichever you decide is 
appropriate, you then must stick to that: mixing is forbidden. If some stored procedures have transaction logic and 
others don't, programmers get terminally confused about whether they must code commits and rollbacks. 
Programmers are quite surprised if (in Oracle7) they attempt to roll back data that a stored procedure has already 
committed. They are surprised (in SQL Server or Sybase) when they get an exception or database error when they 
commit because there is no active transaction because a stored procedure committed or rolled back earlier. 

The transaction logic issue leads into the next topic: system architecture. 

A Pattern Language: Architecture and Visibility The system architecture determines quite a lot about your 
approach. Given that your UML design is OO, and given that relational databases are not, you need to shift one 
architecture toward the other. It's better to make the relational system look more object-oriented than to mess up 
your OO system architecture to make it look relational. I've done both, and the latter approach is definitely bad for 
the digestion. 

Unfortunately, RDBMS products are not chock-full of OO capabilities. This lack is part of what led to the primary 
justification for OODBMS products—the "impedance mismatch" between the OO and relational structure. You have a 
number of different ways to overcome this mismatch, none totally satisfactory. 
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On the database side, you can use stored procedures and packages to encapsulate your objects. In Oracle7, for 
example, you can create packages that correspond to the classes in your UML data model; in other systems, you 
can just use a collection of stored procedures. You implement the operations that make sense for the database 
server as packaged program units. You create the underlying tables and the packages in a schema belonging to a 
specific user, the "owner" of your application schema. You don't grant access to the tables, though; instead, you just 
grant the appropriate privileges such as EXECUTE to the users that need access to objects of the class. The 
procedures provide the database server interface (API) for the class. When an application logs on as an enabled 
user, the code calls the procedures rather than using SQL to query or manipulate the underlying tables. 

This approach reduces the mismatch in two ways. First, it packages the underlying tables as classes rather than as 
tables. This permits you to use OO structure rather than forcing you into the flat table model of programming. 
Second, the approach eliminates the SQL programming interface, reducing every database access to a procedural 
call. Such calls are much closer to the OO way of thinking, though they don't get all the way there. You must still 
pass the object identifier (that is, the primary key or row identifier) to most of your procedures as a parameter, as the 
package doesn't let you create an instance for each object in your program. That is, procedures are independent of 
the state of any individual row or rows in the underlying tables, so you have to pass in primary keys or other 
identifiers to operate on the correct data. 

Also, this approach provides full encapsulation of your data. No application can access the data in the tables directly. 
You can thus protect the data from accidental or deliberate damage through unauthorized access to the table data. 
Everything goes through the packaged procedures. This provides the same visibility control that an OO language 
gives you through access control and operational visibility restrictions. It's kind of all or nothing, however: you must 
hide all your table data, not just some of it. 

The limitation to this approach is the mismatch hypothesis itself: the lack of SQL. SQL is a declarative language. In 
using it, you specify what you want, not how to get it. Your stored procedures, on the other hand (and OO 
languages) are procedural: you tell the computer exactly how to navigate around the data by procedure calls. The 
whole reason for the existence of SQL is that it is much easier to use a declarative language to specify complex data 
requirements. By eliminating SQL, the procedural approach eliminates all the advantages that SQL gives you. You 
may be fully OO, but you'll be much less efficient at creating the code that manipulates the data. For simple data 
access, that usually isn't a problem. If you find yourself adding more than a few lines of code to a packaged 
procedure, however, you may want to reevaluate your approach. 

Gray Water Applications: Portability and Reuse "Gray water" is water you recycle from household uses such as 
baths to reuse in irrigation or other applications that don't require "clean" water. Many jurisdictions wrongly ban the 
use of gray water on the assumption that dirty water is evil. Gray water is a useful metaphor for relational database 
operations. Each gray water application uses a different technology, which makes it difficult to develop a standard 
approach. Consequently, people use clean water for purposes for which they could be using gray water, and the 
gray water goes down the sewer without reuse. The end result is that you waste a lot of water. 

Similarly, different RDBMS products have completely different approaches to database behavior. The SQL-92 
standard says nothing whatever about it, leaving it up to the database vendors to be creative. Many shops outlaw the 
use of stored procedures and other behavioral constructs such as triggers on the theory that it makes the database 
less portable. I'll take a position on this: it's wrong. It's not wrong because the code is portable; it's wrong because it 
arbitrarily removes a tool you can use effectively to get reuse on the database server. You are essentially flushing 
your reuse potential down the sewer. 

The holy grail of portability is to reduce the amount of code that requires work to move to another system to zero. 
Having achieved the grail, you can move your system from platform to platform with no effort—the ultimate in code 
reuse. 

The trick with grails is that very few people can see them or reach them, and it's a whole lot of work to do so even if 
you are pure of heart, body, and soul. Usually, full database portability implies both a level of performance and a 
level of coding productivity that are close to unacceptable. Many managers think that by insisting on full portability 
they will be saving themselves millions in maintenance and porting costs. This is nothing but magical thinking in a 
shaman culture. 

For example, different DBMS products have radically different transaction processing architectures. Some support 
page-level locking; others support row-level locking. Some support read consistency (Oracle7); others don't. Some 
RDBMS products have automatically maintained temporary tables (Sybase, SQL Server, Informix); others don't 
(Oracle7). Some RDBMS products support UNICODE for standard international language support (Oracle7); others 
don't (SQL Server). Don't even get me started on SQL optimizers. Portability? Only if you don't have transactions, 
don't use temporary tables, and don't need to retrieve data in a hurry. 
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I believe it is foolish not to take the limitations of your targeted range of platforms into account. It is also foolish not to 
take advantage of the major productivity and performance features of your target DBMS. In the best of all possible 
worlds, you would have a standard to which all vendors adhere. That doesn't exist, and will not exist, for relational 
databases, particularly with respect to optimization and transactions, but also for things like globalization and 
character strings. Economics is against it, the installed base is against it, and Microsoft/IBM/ Oracle are against it. I 
won't say I'm against it, but you must bow to reality occasionally. 

The best way to proceed in this situation is to evaluate rationally which parts of your application can benefit from 
using a portable, reusable approach and which would benefit most from coding as stored procedures in your 
database server. It's not going to be 100% one way or the other. As with gray water, you'll find that using dirty stuff is 
fine if you do it in the right place. 

Special Issues 
Having dealt with the basic operations-related issues, there are still some specific things to discuss: polymorphism, 
signals, and interfaces. 
Polymorphic Operations Recall from Chapter 7 that some operations are polymorphic: they use the same name for 
different behavior. Overloading uses the same operation name but a different signature (parameters), while 
overriding uses the same signature in a subclass. Overloading is mostly cosmetic, giving you a way to make 
commands look the same even though they differ based on the objects. Overriding works with dynamic binding to 
provide a real advantage: the ability to call an operation without knowing what kind of object you're calling. Figure 11-
7 shows a portion of Figure 11-1, from the Person subsystem, that illustrates overriding operations. 
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Figure 11-7: Overriding Operations in the Identification Hierarchy  

The abstract classes Identification and ExpiringID both specify abstract operations. The leaf classes implement these 
operations, overriding the abstract operations with concrete ones. This lets you create a leaf object but refer to it as 
an Identification or ExpiringID, then to call GetJurisdiction or whatever without needing to know which specific, 
concrete class the object really is. 
Most relational databases do not support any kind of polymorphism, with one exception of which I'm aware. Oracle7 
PL/SQL supports overloading in the procedures of a package. You can provide several procedures with the same 
name as long as the types of objects you pass through parameters are different in type or order (that is, a different 
type signature for the operation). The primary reason for designing these kinds of overloaded program units is to 
provide alternative parameter lists for slightly different behavior while maintaining the same name. Using overloaded 
procedures, you can leave out "optional" parameters, or you can reverse the parameters so that the programmer 
doesn't need to remember the order. Again, these are cosmetic changes that don't yield a tremendous amount of 
productivity increase, but it's a nice feature. 

For example, say the commonplace book image processing subsystem has the ability to compare fingerprints, 
handwriting, and facial images to libraries of fingerprint and handwriting records and mug shots. This service 
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provides consulting detectives with the ability to use evidence gathered at the crime scene to identify people that 
might have something to contribute to a solution to the problem. 
Having once spotted my man, it was easy to get corroboration. I knew the firm for which this man worked. Having 
taken the printed description, I eliminated everything from it which could be the result of a disguise—the whiskers, 
the glasses, the voice, and I sent it to the firm, with a request that they would inform me whether it answered to the 
description of any of their travelers. I had already noticed the peculiarities of the typewriter, and I wrote to the man 
himself at his business address, asking him if he would come here. As I expected, his reply was typewritten and 
revealed the same trivial but characteristic defects. The same post brought me a letter from Westhouse & Marbank, 
of Fenchurch Street, to say that the description tallied in every respect with that of their employee, James Windibank. 
Voilà tout! [IDEN] 

The parameters to the Compare operation on these classes will be wildly different. For example, the Compare 
operation for fingerprints might specify that the print is a thumbprint or a fingerprint, or it might specify that the image 
contains two or more adjoining prints. A typewriter image might contain parameters that identify the text of the image 
or the probable make of the typewriter. The facial image might contain a list of features to ignore in the comparison, 
to eliminate disguises. All the classes have several Compare operations, none of which have the same parameter 
types or signatures. When the calling operation compiles the Compare call, the compiler decides which method to 
call based on the parameter signature. 

True overriding, dynamic binding, or virtual operations simply don't exist in the relational world. If your UML model 
depends on these, what do you do in your relational program units to implement your model? 
The issue with overriding behavior is that the runtime system needs a lookup table to decide which procedure to 
execute. In C + +, every class with virtual methods has a vtable, a table of function pointers that permits the C++ 
runtime system to call the overriding method rather than a single method that the compiler determines when you 
build your system. You have a simple choice in relational systems: either build a dynamic binding capability in your 
procedural language or just ignore it. My advice: keep it simple. I've seen many work hours spent on systems to 
emulate OO dynamic binding and inheritance in the context of C programming, for example. It usually works, sort of, 
but always at a cost— the cost of maintaining outrageously complicated code, the cost of explaining what that code 
does, and the cost of telling your boss why this is really a good thing even though it reduces productivity. 

So, where does that leave you with your UML design? You have to rename your overriding operations with unique 
names and call them in the appropriate places. That usually means more ornate conditional code such as case 
statements or if-then-else conditionals that test the types of the objects involved and decide which procedure to call. 

Take the GetJurisdiction operation, for instance. That operation returns different information for each class, as the 
type of jurisdiction varies widely with the classes. Counties issue birth certificates, nations issue passports and 
national IDs, and states issue driver's licenses. In an OO system, all these operations override the same abstract 
parent. In Oracle7, that's not possible, so you must provide different stored procedures for each operation. The 
DriverLicense package has its GetJurisdiction, and the Passport package has its jurisdiction. In this case, you use 
the package name space to distinguish between the two functions. When you refer to it in PL/SQL code, you preface 
the operation name with the package name: DriverLicense. GetJurisdiction(). 

In other procedural languages that don't have packages, you would have to use a naming convention to distinguish 
the procedures. You could, for example, preface the operation name with the class name: 
DriverLicense_GetJurisdiction(). Often it is advisable to come up with a unique abbreviation for the class name to 
shorten the total name to get it within the limitations of SQL identifier length for the RDBMS: DrL_GetJurisdiction, for 
example. 

Note 
  

You should realize that despite your creation of these methods, you are not getting any of the 
benefits of polymorphism. Your SQL or PL/SQL code must know exactly what kind of object 
you are dealing with in order to call the method, so you don't get the benefits of dynamic 
binding through inheritance. 

Signals If you design a UML operation with the «signal» stereotype, it means that the operation responds to an 
event of some kind. This corresponds to a trigger, as long as you limit the events to the specific set of trigger events. 
Most RDBMS products now support triggers, though there is no standard ANSI syntax for them in SQL-92. The 
SQL3 standard defines the CREATE TRIGGER statement (Figure 11-8). 
The event that fires a trigger is some point in a database system operation. Figure 11-8 defines the standard events 
for «signal» operations in a database as the various combinations of the <trigger action time> and the <trigger 
event>: 

 BEFORE INSERT 
 AFTER INSERT 
 BEFORE DELETE 
 AFTER DELETE 
 BEFORE UPDATE 
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 AFTER UPDATE 

 
Figure 11-8: The <trigger definition> SQL3 Syntax  

You can therefore define «signal» operations in your persistent classes with these names, suitably transformed into 
whatever naming convention you use: "BeforeInsert," for example. The "before" operations execute before the 
corresponding database operation (insert, delete, or update), while the "after" operations execute after them. 

Note 

  

When you transform the «signal» operation into a database trigger, you will need to use the 
procedural language available in your system, such as Transact/SQL for SQL Server and 
Sybase, PL/SQL for Oracle7 and Oracle8, or a programming language such as C for DB2. 
Each system has its own tips and tricks relating to triggers, such as how to refer to old data 
versus the changed data in an update trigger, so use the documentation for your system to 
figure out the best way of moving the code from your data model into your database schema. 
As with any operation, you can use the procedural language from your target DBMS or some 
neutral pseudocode or programming language to represent the trigger implementation in your 
data model. 

The other parts of the trigger definition syntax vary from product to product. The SQL3 standard contains the 
REFERENCING clause that lets you refer to both the old values and the new values in an UPDATE action. The 
action itself is an SQL procedure sequence. In Oracle7, the equivalent is a PL/SQL block, for example. 
Interfaces Interfaces are a special case of class—a class with no attributes, just operations. A persistent interface is 
thus somewhat of a contradiction in terms, particularly for a relational database. You should consider an interface a 
simple notation for polymorphism (see the previous section on "Polymorphic Operations"). That is, if a persistent 
class realizes an interface (see Chapter 7 for the notation), you need to implement stored procedures corresponding 
to the interface operations if they are appropriate for DBMS-server execution. 
So, for example, if you design the Identification hierarchy as an interface hierarchy as in Chapter 7 (Figure 7-9), you 
need to implement the GetID operation for each table you generate from the classes that realize the Identification 
interface. Again, you don't get the benefits of full dynamic binding using interface realization, but you do get to 
implement the design to the fullest given the relational tools at your disposal. 

 
Foreign Affairs 
In a relational database, there are no relationships. Everything is a table. That means that you must build your 
relationships into the tables through special columns. The way in which you go about this based on a UML design is 
somewhat different than if you used standard entity-relationship designs, but there are more similarities than 
differences. The key differences have to do with generalization (inheritance) and with the special features of UML, 
such as aggregations and qualified associations. 

Binary Associations 
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A binary association is a relationship between two classes, with each end of the association being a role and having 
a multiplicity (Chapter 7, "Associations, Containment, and Visibility"). The role is the role that the class at that end of 
the association plays in the relationship. The multiplicity is the constraint on the number of objects that can play the 
role in a single link. A link is an instance of an association, a relationship between objects as opposed to between 
classes. 

Transforming a binary association into a relational schema is reasonably straightforward and strongly resembles the 
transformation of the ER relationship. To make the transformation, you must first understand the idea of the foreign 
key constraint in a relational database. 

Foreign Keys 
A foreign key is one or more columns of a table that share their joint domain with the primary key of another table. It 
is the relational data model's way of representing the association and its data semantics, a fact stating that one row 
(object) relates to another row (object) in a well-defined, easy-to-use way. Relational databases let you join tables on 
these foreign keys as the primary way of retrieving data that is semantically meaningful given the relationships 
between objects. Relational database theory refers to the whole area of primary and foreign keys as referential 
integrity—the idea that foreign keys must at all times refer to valid primary keys to be consistent. 
SQL provides the REFERENCES and FOREIGN KEY constraints as a way to enforce referential integrity in the 
database server. The REFERENCES clause (Figure 11-9, illustrating the <references clause>) is a column 
constraint that lets you link a single column to a single-column primary key in another table. The FOREIGN KEY 
clause (Figure 11-10, illustrating the <foreign key constraint>) is a table constraint that lets you link more than one 
column to a primary key in another table. 

The table constraint syntax uses the <references clause>. In the context of the column constraint, the <references 
clause> can have only one column in its <reference column list>. 

When you put this constraint on a table, you are asserting that if you insert a row with the foreign key columns not 
null, the values must correspond to primary key values in the other table. If you update the foreign key column 
values, the new values must correspond to primary key values in the other table. You can also have referential 
triggered actions; see the later section "Shared and Composite Aggregations" for details on this syntax and where to 
apply it. 

Given all these capabilities for expressing foreign keys, now we can move on to understanding how to transform 
binary associations into such expressions. 

Roles, Multiplicity, and Foreign Key Columns 
A binary association is a relationship between two classes that implies that one or both classes are visible to the 
other. This corresponds exactly to the concept of the foreign key in relational database theory. As you might expect, 
the transformation is straightforward: you convert each binary association into a REFERENCESor FOREIGN KEY 
constraint in your table definitions. The interesting part of this isn't creating the constraints; it's creating the foreign 
key columns onto which you place them. 

 
Figure 11-9: The <references clause> SQL Syntax  
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Figure 11-10: The <foreign key constraint> SQL Syntax  

Your UML design does not specify the foreign key attributes. It represents these as the binary association. That 
association in turn has two roles (one for each class participating in the association) and two multiplicities (ditto). The 
roles and multiplicities control the specific transformation you make to add foreign key columns. 

To determine the structure of your transformation, you need to consider both the individual multiplicities and their 
combination between the two roles. 

Individual multiplicities can have a number of different configurations: 
 0..*:Zero or more objects 
 0..1:No more than one optional object 
 1..*:At least one object 
 1:Exactly one object 
 *:Zero or more objects 
 2..6:At least two but no more than six objects 
 1, 3, 5—7:At least one object but possibly three, five, six, or seven objects 

The characteristics of these multiplicities break down into two components of interest in the relational transformation: 
columns to produce in which table, and how to produce the NULL/NOT NULL constraint on the column(s). 

If the multiplicity contains a maximum of 1 (0..1 or 1 from the above list of possible multiplicities), then that role 
corresponds to a foreign key column or columns. First, determine the object identity in the class attached to the other 
role. If the class has implicit object identity, it usually has a single primary key column, usually an integer-generated 
sequence of some kind. There are some variations on this, such as in a table with a primary key that depends on 
another class's primary key. This results in two columns (the original primary key and the additional column that 
identifies the specific row in the dependent table). 
For example, in the Person subsystem in Figure 11-1, the Person class has a binary association to the Identification 
class. That binary association is a composite aggregation, as the person owns the identifications that identify him or 
her. The Person class has implicit object identity and a PersonID column in the Person table that is a unique number 
for each person. The Identification class has implicit identity but is an aggregation. It acquires both the PersonID 
column, which identifies all those Identifications that apply to a single person, and the Identification ID column, which 
identifies each unique Identification within a person's set of Identifications. The PersonID column in Identification is a 
foreign key to the Person table. 
CREATE TABLE Identification ( 
  PersonID Integer REFERENCES Person, 
  IdentificationID INTEGER, 
  CONSTRAINT Identification_PK PRIMARY KEY (PersonID, IdentificationID)) 

If an Identification object were independent of the Person, it would not need the PersonID column but just the single 
unique identifier Identification ID. If each identification belonged to a single person at a time, there would be a 
multiplicity of 0..1 on the Person role in the association, so Identification would get a PersonID column that was not 
part of the primary key. 
CREATE TABLE Identification ( 
  PersonID Integer REFERENCES Person, 
  IdentificationID INTEGER PRIMARY KEY ) 

If the multiplicity contains a 0 or implies it (0..*, *, 0..1), then you can have nulls as foreign key values. 
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The role is the name you give to one side of an association. It is the role the associated class plays in the 
association. In OO programming, it becomes the name of a variable holding an item or collection of items of the 
other class. In tables, roles accompanied by a multiplicity with a maximum of 1 can become the name of the foreign 
key. You actually have a choice in this; you can either use the role name or the name of the identity attributes in the 
other class. Some examples can show you the alternatives more clearly. 
The classic example where you use the role name is a recursive association. Figure 11-2 illustrates the Organization 
class with its representation of the organizational hierarchy, a recursive composite aggregation association that 
relates an organization to its parent and a parent organization to its children. When you transform this association 
into a relational database schema, you confront a basic naming problem. The obvious way to represent this 
association produces this Organization table: 
CREATE TABLE Organization ( 
  OrganizationID INTEGER PRIMARY KEY, 
  OrganizationName VARCHAR2(100) NOT NULL, 
  OrganizationID INTEGER REFERENCES Organization) 

The problem with this table specification is the duplicate column name for the foreign key that refers to the parent 
organization. The biggest problem is the name space: you can't have duplicate column names in a single table. The 
next biggest problem is that "OrganizationID" doesn't really convey the purpose of the column to the user. Renaming 
this column using the role name is a good solution: 
CREATE TABLE Organization ( 
  OrganizationID INTEGER PRIMARY KEY, 
  OrganizationName VARCHAR2(100) NOT NULL, 
  Parent INTEGER REFERENCES Organization) 

With associations that aren't recursive, you don't have the name space problem, but you may find the primary key 
name less than clear in your foreign table. In this case, it's your judgment as to whether to use the role name or the 
primary key column name as the name of the foreign key column. One candidate for such treatment is when you 
have a large hierarchy of classes, all of which share a single primary key name. For example, the multimedia 
document archive in the commonplace book system standardizes the hierarchy around the abstract document class 
with its DocumentID column as the primary key. Video clips are documents with a DocumentID, as are sound clips, 
digital photographs and images, and scanned document images. The Driver License class might refer to a digital 
photograph document as a foreign key. Using "DocumentID" as the column name doesn't help the user of the 
Driver's License class understand what's going on. Instead, use the role name, "Photograph," in the Driver License 
table: 
CREATE TABLE DriverLicense ( 
  PersonID INTEGER NOT NULL REFERENCES Person, 
  IdentificationID INTEGER NOT NULL, 
  LicenseNumber INTEGER NOT NULL, 
 
  Photograph INTEGER REFERENCES Digital Photograph, 
  CONSTRAINT DriverLicense_PK PRIMARY KEY (PersonID, IdentificationID)) 

There are doubtless many other situations where using a role name is clearer than using the name of the primary 
key column, but generalization provides the best examples I've found. 

Generalizations 
Chapter 7 went into some detail on generalization relationships and their implications for attributes and operations. In 
this section, you'll see how to transform generalizations into relational tables. The specific situations you must 
consider include single inheritance, inheritance from abstract classes, and multiple inheritance. 

Single Inheritance 
Single inheritance occurs when you relate a class to a single parent through generalization. The more specific class 
inherits attributes and behavior from the more general class. 
To transform this situation into a relational table, you can take one of two approaches: mapping the classes directly, 
or mapping them through spreading the attributes and behavior to the subclasses. 
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Direct Mapping To map classes directly, you create a single table for each class in the inheritance hierarchy, then 
create a foreign key relationship for each generalization relationship. Figure 11-11 repeats Figure 7-6, the 
Identification inheritance hierarchy. 
To transform the hierarchy in Figure 11-11 into tables, you create a single table for each of the classes in the 
diagram, including the abstract classes. Following the guidelines in the previous section on "Classes," you create a 
primary key out of explicit or implicit object identifiers. Identification has implicit object identity, so you create a 
primary key column for the Identification table, usually an integer column that gets a value from an automatic 
sequence number generator. We'll name this column IdentificationID, meaning that it identifies an Identification 
object. Because the Identification class also has a composite aggregation association to the Person class, the 
primary key also contains the primary key of the Person table, PersonID. 
CREATE TABLE Identification ( 
  PersonID INTEGER NOT NULL REFERENCES Person, 
  IdentificationID INTEGER NOT NULL, 
  Constraint Identification_PK PRIMARY KEY (PersonID, IdentificationID)) 

 
Figure 11-11: The Identification Inheritance Hierarchy  

For each subclass of the root parent, you create the class, then create the same column for each subclass as the 
primary key for the superclass. If you created multiple primary key columns in the superclass for some reason, you 
create the same columns in the subclass. With LawEnforcementID, for example, you create the same primary key 
columns, PersonID and IdentificationID. 
CREATE TABLE LawEnforcementID ( 
  PersonID INTEGER NOT NULL REFERENCES Identification, 
  IdentificationID INTEGER NOT NULL REFERENCES Identification, 
  BadgeNumber INTEGER NOT NULL UNIQUE,-candidate key 
  Constraint LawEnforcementID_PK 
    PRIMARY KEY (PersonID, IdentificationID)) 

In addition to making the column a primary key using the PRIMARY KEY column or table constraint, you must also 
make it a foreign key with a REFERENCES column constraint or a FOREIGN KEY column constraint. In the 
example, PersonID references not the Person table but the Identification table. See earlier in this "Foreign Affairs" 
section for some perspectives on these constraints. This foreign key constraint partially represents the generalization 
relationship, but not necessarily fully. If you insert a row in LawEnforcementID, the PersonID and IdentityID of that 
row must match a row in Identification. The foreign key constraint enforces this restriction. However, if you insert an 
Identity row, there is nothing that links the IdentityID of that row to any subclass table. Even conceptually, this makes 
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no sense, because SQL has no way to tell what kind of table you mean to create, as it doesn't understand 
generalization. You can't put another foreign key constraint on Identity, as it would mean a circular dependency. 

Note 

  

This situation applies when your parent class is an abstract class. If the class is concrete, 
then you can create an object of that class without worrying about subclasses. This analysis 
suggests that an abstract class needs a trigger that enforces its abstractness. The trigger 
must ensure that if you insert a row in a table corresponding to an abstract class that you also 
insert a row into one of the several subclasses of the abstract class. If you use this approach, 
step back and evaluate your overall system complexity before adding the trigger. You may 
find that it makes less trouble to maintain the integrity at the application level, particularly for 
smaller databases. Once your stable of applications grows to a decent size, though, you want 
to enforce as much integrity on the server as possible, as the next application could foul 
things up. 

Spreading The basic idea behind generalization is inheritance, where each subclass inherits the attributes and 
operations of the superclasses. You can represent the classes directly as in the prior section on "Direct Mapping," 
then you can use joins and unions to represent the inheritance. Alternatively, you can do the inheritance up front by 
creating the attributes and operations in the subclasses, which I call spreading. 

Spreading has the main advantage that you no longer need to refer to the superclasses for data values or existence. 
This eliminates many joins and unions and triggers and thus reduces complexity in both your schema and in your 
application code. So, why wouldn't you want to do this? The downside of this advantage is denormalization of the 
database schema design. You get a good deal of unnecessary redundancy in your data, leading to insert, update, 
and delete anomalies (see the later section on "Normalizing Relations"). 
Consider the Passport class from Figure 11-11. Using the direct approach, you get this schema design: 
CREATE TABLE Passport ( 
  PersonID INTEGER NOT NULL REFERENCES Identification 
    ON DELETE CASCADE, 
  IdentificationID INTEGER NOT NULL REFERENCES Identification 
    ON DELETE CASCADE, 
  PassportNumber INTEGER NOT NULL UNIQUE,-candidate key 
  IssuingOffice VARCHAR2(100) NOT NULL, 
  Constraint Passport_PK 
    PRIMARY KEY (PersonID, IdentificationID)) 

Using the spreading approach, you get this design instead: 
CREATE TABLE Passport ( 
  PersonID INTEGER NOT NULL REFERENCES Identification, 
  IdentificationID INTEGER NOT NULL REFERENCES Identification, 
  ExpireDate DATE NOT NULL CHECK (ExpireDate > IssueDate), 
  IssueDate DATE NOT NULL, 
  PassportNumber INTEGER NOT NULL UNIQUE,-candidate key 
  IssuingOffice VARCHAR2(100) NOT NULL, 
  Constraint Passport_PK 
    PRIMARY KEY (PersonID, IdentificationID)) 

Instead of referring to the ExpiringID table for the ExpireDate and Issue Date, this design copies the columns down 
the hierarchy into the Passport table (and into all the other subclasses of ExpiringID as well). Passport stands alone 
as a useful table with all its data available to users. A use case that needs passport information need only access the 
one table. However, whenever you update the ExpireDate or IssueDate of a passport, you must also update the 
same columns in the superclass row that corresponds to the passport. That means an additional trigger or code in 
your application. 

As with any design decision, you must consider the broad impact of the decision on overall system quality. Does the 
increased complexity from the trigger balance well against the reduced complexity in the application code that 
accesses passport information? For example, if the hierarchy is quite deep, you could wind up accessing several 
classes by joins rather than a single table that provides all the data. However, the trigger processing contributes little 
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to the maintenance of the system, because once done you leave it alone. In this case, with a single level in the 
hierarchy, it's probably not worth it. 

It's also worth noting that you can mix the two approaches in your system. You can spread certain deep hierarchies 
while leaving other, more shallow hierarchies to use the direct approach. Any time you mix design approaches, you 
risk confusing those who come after you. If you do it, you should carefully document what you're doing, preferably in 
the database itself using table comments or some kind of repository documentation. 

Multiple Inheritance 
Multiple inheritance occurs when a class has generalization relationships to more than one superclass. The subclass 
inherits all the attributes and operations of its superclasses. 

There is really no good way to represent multiple inheritance in a relational database schema. You are usually better 
off if you can restructure your design to avoid multiple inheritance, either through the use of interface types or 
through factoring the elements into separate but conceptually redundant classes. The "elegance" of multiple 
inheritance forces you to pay too high a price in the semantics of the relational table and its foreign keys [Date and 
Darwen 1998, pp. 299—315]. 
As an example of a poor transformation and its problems, consider the approach of building a subclass table that 
includes the primary keys of two superclasses. As an example, what if you decided to have a Digital Photograph be 
both a Document and an Image (Figure 11-12)? 

 
Figure 11-12: Multiple Generalizations  

You might create the Digital Photograph table this way: 
CREATE TABLE DigitalPhotograph ( 
  DocumentID INTEGER NOT NULL REFRENCES Document, 
  ImageID INTEGER NOT NULL REFERENCES Image, 
  Photograph BIT VARYING (65536)) 
Now you need to choose a primary key. Do you choose DocumentID or ImageID? Both are unique identifiers, but 
you can only have one primary key to use as a foreign key in other tables, such as in the Driver License example in 
the section on "Roles, Multiplicity, and Foreign Key Columns." As well, you want the primary key to represent the 
generalization relationship, but since you can only have one, you can't. 
When you get into some of the standard conundrums of representing multiple inheritance, such as the diamond-
shaped hierarchy in which the two superclasses refer in turn to common superclass, you get into even more trouble 
(Figure 11-13). You could potentially have two separate objects in the common superclass with different primary 
keys. Which primary key do you use in the subclass row? If you use the spreading approach, do you create two 
attributes for each one in the common superclass? Worse and worse. 

In C++ and other programming languages, the language designers have built various contorted solutions to this 
problem, such as virtual base classes in C++. You don't have that option in the relational schema and its standard 
language SQL-92. 
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Figure 11-13: Multiple Generalizations with a Common Superclass  

The Digital photograph is better done as an interface realization: 
CREATE TABLE DigitalPhotograph ( 
  DigitalPhotographID INTEGER PRIMARY KEY, 
  DocumentID INTEGER NOT NULL REFRENCES Document, 
  ImageID INTEGER NOT NULL REFRENCES Image, 
  Photograph BIT VARYING (65536)) 

The object (the row) stands alone with a primary key unique to the Digital Photograph table. There are references to 
the document and image, and the table conceptually inherits the interface behavior and behaves as a realized 
document and image. Semantically, this is comprehensible, if strained, in the context of a relational schema. 

Alternatively, you can recast the relationship between the classes as an association instead of a generalization or 
realization. From the OO design perspective, the main difference is that you abjure the possibility of treating the 
photograph itself as a document or image. Instead, you "get" a document or image related to the photograph. The 
Document and Image classes turn encapsulate a photograph (where that applies) and the Digital Photograph class 
in turn encapsulates a document and an image. Since all these classes directly relate, you must create a ternary 
association rather than a binary one; see the later section on "Ternary and Higher-Cardinality Associations" for 
details on transforming ternary associations. The results in this case look like this: 
CREATE TABLE DigitalPhotograph ( 
  DigitalPhotographID INTEGER PRIMARY KEY, 
  Photograph BIT VARYING (65536)) 
 
CREATE TABLE PhotoUsedAs ( 
  DigitalPhotographID INTEGER, 
  DocumentID INTEGER NOT NULL REFERENCES Document, 
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  ImageID INTEGER NOT NULL REFERENCES Image, 
  CONSTRAINT PhotoUsedAs_PK (DigitalPhotographID, DocumentID, 
     ImageID)) 

The obvious difference is that you now have two tables instead of one, with the Photo Used As table corresponding 
to the ternary association. That table has as its primary key the three primary keys of the participating tables. This 
constraint implies the restriction that there can be only one combination of any particular photo, document, and 
image in the database. You may also need a multiplicity constraint if there can be only one document and image 
associated with the photo. That means a UNIQUE constraint on the DigitalPhotographID. Since this implies a 
functional dependency that is not on the primary key, you may want to normalize this back to the single table. Make 
DigitalPhotographID the primary key to get it into fourth normal form. 

Note 

  

This seems to be a rare case where standard OO design techniques yield a schema that is 
not in fourth normal form. You can recognize these situations fairly easily and deal with them 
with standard normalization techniques, which you should always have in the back of your 
mind. See the later section on "Normalizing Relations" for details. Alternatively, this is 
probably yet another justification for avoiding multiple inheritance.  

Special Situations 
Associations and generalizations give rise to some special situations that you need to consider when transforming 
your data model into a relational schema: ternary associations, association classes, composite aggregations, 
qualified associations, and ordered associations. Earlier sections have mentioned some of these situations in their 
usual context; this section discusses them in themselves. 

Ternary and Higher-Cardinality Associations 
A binary association is the most common kind of association. The cardinality of the association (how many classes 
participate in the association) may be three or higher, in which case you create a separate class for the association. 
In Figure 11-2, the Plays association is a diamond that links the Role, the Person, and the Organization. The Person 
plays a Role in an Organization. This translates directly into the Plays table. 
CREATE TABLE Plays ( 
  PersonID INTEGER REFERENCES Person, 
  OrganizationID INTEGER REFERENCES Organization, 
  Role INTEGER REFERENCES Role, 
  CONSTRAINT Plays_PK PRIMARY KEY (PersonID, OrganizationID, RoleID)) 

The table consists entirely of the primary key columns from the associated tables. If a primary key has multiple 
columns, all of those columns migrate into the association table. 

Association Classes and Attributes 
Any association can have an association class and attributes, properties of the association itself. Any such 
association class gets its own table. 
Looking back at Figure 11-2, you see the Plays class connected to the Plays association diamond. This association 
class contains the attributes of the association: how long it lasted, its start and end dates, and the way in which the 
organization terminated the relationship. 

Note   Once you get into the CriminalOrganization subclass of Organization, these attributes get a 
lot more interesting, especially the termination method.  

You thus extend the table with the association attributes and their constraints: 
CREATE TABLE Plays ( 
  PersonID INTEGER REFERENCES Person, 
  OrganizationID INTEGER REFERENCES Organization, 
  Role INTEGER REFERENCES Role, 
  Tenure INTERVAL DAY NOT NULL,-your DBMS probably won't have this 
     type 
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  StartDate DATE NOT NULL, 
  EndDate DATE, 
  TerminationMethod INTEGER REFERENCES TerminationMethod 
    CHECK (TerminationMethod IS NOT NULL OR 
            (TerminationMethod IS NULL AND EndDate IS NULL)) 
  CONSTRAINT Plays_PK PRIMARY KEY (PersonID, OrganizationID, RoleID)) 

Shared and Composite Aggregations 
An aggregation is an association between two classes that represents a part-whole relationship between the classes. 
See the section "Aggregation, Composition, and Ownership" in Chapter 7 for details. Shared aggregation is 
irrelevant for relational schema design, but composite aggregation has an interesting side effect. 
Composition says that the composing object owns the other object and that no other object can link to it. This strong 
form of aggregation corresponds directly to a foreign key with update and delete actions. Figure 11-2 shows a 
composition association between Person and Identification. As the previous section demonstrated, the Identification 
class gets the PersonID primary key of Person as part of its primary key. This gives direct meaning to one name for 
a multiattribute primary key: a composite key. The composition relationship applies to all the subclasses in a class 
hierarchy as well, though the composition is implicit. The Passport class, for example, inherits both the primary key 
of the Person table and the additional key column IdentificationID. The foreign key PersonID references the 
ExpiringID table, however, not the Person table. It still represents a composition, however. 

 
Figure 11-14: The <referential triggered action> SQL Syntax  

The special syntax in the <referential triggered action> clause in the referential integrity constraints lets you control 
some actions that happen when you update or delete the row with the primary key in the owning table [ANSI 1992; 
Melton and Simon 1993, pp. 221—227]. Updating or deleting the primary values directly implies a change to the 



 - 193 -

foreign keys in dependent tables. The ON clause tells the DBMS what exactly to do. Figure 11-14 shows the syntax 
of this clause. 

The CASCADE action updates the value in the dependent table when you update the value in the primary key in the 
owning table. Alternatively, it deletes the row in the dependent table when you delete the row with the primary key to 
which it refers. Since your foreign key is part of the primary key of the dependent table as well, the CASCADE may 
cascade to other tables that have foreign keys to that primary key. 

The Passport table serves as an example of this action: 
CREATE TABLE Passport ( 
  PersonID INTEGER NOT NULL REFERENCES Identification 
    ON DELETE CASCADE ON UPDATE CASCADE, 
  IdentificationID INTEGER NOT NULL REFERENCES Identification 
 
    ON DELETE CASCADE ON UPDATE CASCADE, 
  PassportNumber INTEGER NOT NULL UNIQUE,-candidate key 
  IssuingOffice VARCHAR2(100) NOT NULL, 
  Constraint Passport_PK 
    PRIMARY KEY (PersonID, IdentificationID)) 

If you delete or update a PersonID, the DBMS will also delete or update the corresponding Passport PersonID. 

SET NULL sets the foreign key values to NULL instead of updating or deleting them when you update or delete the 
primary key row. The SET DEFAULT action sets the foreign key values to the value in the DEFAULT clause of the 
column. 

NO ACTION is the default action. This "lack of action" choice tells the DBMS to do nothing to the foreign key. If you 
don't handle it with other SQL statements in the transaction, you get an error, and the whole update or delete rolls 
back. 
Instead of using this syntax, you can also code your integrity maintenance in triggers linked to the UPDATE and 
DELETE events. See the earlier section on "Signals" for details on designing in and using triggers. 

Now that I've said all this, now forget it. The key assumption behind all these actions is that you are changing a 
primary key value. This is not a good idea under most circumstances, with certain exceptions. Object identity should 
generally be unchanging; there are more implications to changing key values than just cascading an update or 
delete. Many figurative lives have been lost in the battle to maintain databases that allowed changing primary keys. 
This is not a good strategy. 

If you are using implicit object identity in your design, you should have no reason at all to change your primary key 
values. PersonID, for example, should not change through your applications. There is no reason to allow it. You may 
want to change the name, but not the identifier. Some designers don't even expose the identifier through their user 
interface; it stays encapsulated in their internal objects. The integer keys you generate, by whatever methods, can 
stay the same forever—as long as you don't run out of integers. You do need to concern yourself about the long-
term number of objects you are going to create if you can't change the keys. 

There are a couple of situations where this restriction doesn't apply. First and foremost, when you delete a row in a 
table that owns rows in other tables, you must cascade the delete. This ownership corresponds to composite 
aggregation in your UML design. There is a degenerate case of this situation in which you order the association to 
the child table, resulting in a two-part primary key for that table that includes an integer order number. If you allow 
changing the order of items in the association, you must be able to change the order number in the primary key. This 
degenerates when other tables depend on that primary key in their turn. 

Second, if you are using explicit identity, you will encounter pressure to allow changing primary key values, as they 
correspond to information that may change in the real world. Ideally, you pick attributes of real-world items that don't 
change, but you don't always have that luxury. A good general strategy is to move to implicit identity and integer 
generated keys when you have a candidate key that might change. 
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Qualified Associations and Discriminators 
A qualified association is a kind of shorthand for a combination of enumerated data type and an association. It says 
that the qualified object has one link for each type value (see the details in Chapter 7, "Qualified Association"). You 
thus usually convert what would have been a to-many association into a to-one association qualified by the qualifier 
attribute. The example in Figure 11-15 (reproducing Figure 7-12) shows the Identification-Person association as a 
qualified association, meaning that a person has several different kinds of ID documents, structured by a qualifier 
attribute. That is, every person has a birth certificate, a driver's license, and a passport, for example. 

The mechanics of producing the relational schema from the qualified association require a combination of a foreign 
key and a qualifier column that specifies the type of object. 
CREATE TABLE Identification ( 
  PersonID INTEGER NOT NULL REFERENCES Person, 
  IdentificationID INTEGER NOT NULL, 
  IDType INTEGER NOT NULL REFERENCES IDType, 
  Constraint Identification_PK PRIMARY KEY (PersonID, IdentificationID)) 

If there are specific requirements for the qualified class, you need to add a trigger or other constraint that enforces 
them. For example, if a person must have a birth certificate and a passport, you would need a trigger that checked 
that there are two Identification objects with the Birth Certificate IDType and the Passport IDType. 

 
Figure 11-15: The Qualified Association  

Tip 
  

I've never liked qualified associations as a modeling tool. They seem to obscure more than 
they elucidate for me (this is an opinion, not an assertion). They can simplify a complex 
relationship, but usually don't. I don't use them.  

You can also transform a qualified association into parallel columns in the qualified table. For example, you could 
add two columns to Person, Birth Certificate and Passport, which in turn are foreign keys to the Birth Certificate and 
Passport tables. Modelers call this structure parallel attributes. A common example is when you create a table with 
seven columns, one for each day of the week, or a table with three address columns to support up to three 
addresses for a person. The limitations of this design are reasonably obvious: if you have the potential for an 
unknown number of objects, you will have to add columns. With days of the week, that's not really a problem. What 
is a problem is that you can't easily use SQL to gather information over multiple parallel attributes. For example, if 
you wanted to average some number for each day of the week, it would be very difficult to do it with parallel day 
columns. It would be easy if you had the data in a separate table with a single day column to identify the day [Blaha 
and Premerlani 1998, pp. 287—288]. 

Note 
  

Parallel columns are not "repeating groups." See the later section on "Normalizing Relations" 
for a discussion of first normal form and repeating groups. However, even though you can be 
fully normalized using parallel columns, they are not generally a good way to design relational 
tables.  

The discriminator is a type attribute you associate with a generalization relationship. The IDType in the Identification 
example of a qualified association could also serve as a discriminator associated with the Identification class 
generalization from its subclasses. The type does not have the potential for constraints of a qualified association, nor 
does it imply multiple links. 

You need a column of this type when you navigate to the subclasses by way of the superclass. For example, in the 
transient domain model, a person has a set of identifications. The query you use to build this set retrieves the rows 
from the Identification table. Without a discriminator attribute, it is difficult to write the queries that retrieve the object-
specific information from the subclass tables. The discriminator column lets you fetch the Identification row with a 
Passport IDType column value, then query the Passport row that corresponds to it. Without the discriminator column, 
you would not know enough to query the Passport table; you'd have to try all the subclass tables in turn. In terms of 
patterns, the discriminator supports the Abstract Factory or Factory Method pattern for building subclass objects in a 
class hierarchy [Gamma et al. 1995]. 

You have to balance this need, however, with the additional complexity that maintaining discriminators adds to your 
code. For example, if a superclass is concrete (can have instances), then your discriminator must include a value 
that identifies the object that is of that class with no subclass. For example, say the Driver's License had a subclass 
Trucker's License (a kind of driver's license that permits you to drive a truck in addition to driving other vehicles). You 
can have driver's licenses and trucker's licenses. The discriminator in Driver's License would have to have two 
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possible values, "Driver" and "Trucker." The first identifies an object that is of type Driver's License, while the second 
identifies an object of the subclass Trucker's License. Maintaining this gets moderately complex. What happens if 
you upgrade your license from a general to a trucker's license? What happens when you add another subclass? Do 
you need to check or use the discriminator when retrieving the driver's license? Do you need to retrieve the subclass 
objects if you are just interested in driver's licenses? You may find it easier to deal with the tables directly rather than 
using the discriminator to navigate. 

Ordered Associations 
Another special case is the ordered association—an association with a to-many multiplicity role that has the 
{ordered} tag on it. In OO design, an {ordered} tag means you need some kind of sequenced collection, such as a list 
or vector, to represent the association. In transforming this kind of association to a relational database, you must 
convert the structural representation (a list) into a data representation (an order attribute). 

The typical order attribute is an integer value that goes from 1 to <n>, where <n> is the number of links to the 
associated object. Two major uses for ordering of this type include the display order of items in a user interface and 
the ordering of details in a master-detail relationship. User interfaces often display lists of objects. If you want them to 
appear in the same order, or if you want the user to control the order across instances of the program, you need to 
store the order in a table. An order column on the table corresponding to the displayed data does that. Similarly, if 
you have purchase orders and lists of items for each order, you usually want them ordered in some way. 

In this last case, the order serves more than one function in the detail table: it is also part of the primary key. This is 
because a master-detail combination is a composite aggregation association (see the prior section on "Shared and 
Composite Aggregations"). If you add the {ordered} tag to the composite association, you generate a counter for the 
second part of the composite key. For example, if for some reason you ordered the Identification-to-Person 
association, say, for display in the user interface, you would implement the table slightly differently: 
CREATE TABLE Identification ( 
  PersonID INTEGER NOT NULL REFERENCES Person, 
 
  OrderNumber INTEGER NOT NULL, 
  IDType INTEGER NOT NULL REFERENCES IDType, 
  Constraint Identification_PK PRIMARY KEY (PersonID, OrderNumber)) 

Instead of IdentificationID as the second part of the primary key, you now have an OrderNumber column. Your 
application or constructor methods in the database server must set the number to the correct order number, usually 
the index of the item in an in-memory list. This requires some additional code for updating because you must update 
the entire set of objects with new order numbers when you change the order. 

 
Living by the Rules 
Rules are everywhere in a relational database; they're just hard to see. When you create a column with a 
certain data type, you're imposing a domain constraint. When you add a PRIMARY KEY clause, you're 
enforcing an object identity constraint. When you make a column refer to another one in a REFERENCES 
clause, you're imposing a foreign key constraint. When you add an AFTER INSERT trigger, you're adding 
a complex integrity constraint or business rule. 

The first part of this chapter has dealt with many of the basic constraints: 
 Domain constraints: Types, domains, CHECK constraints, and NOT NULL constraints 
 Primary key constraints: Implicit and explicit object identity 
 Uniqueness constraints: Candidate keys and alternate OIDs 
 Foreign key constraints: Associations, multiplicity, and aggregation 

There are other business rules you need to enforce in your database besides these structural ones. These 
constraints appear in your UML data model as constraint boxes associated with the appropriate things you 
want to constrain. See the Chapter 7 section "Complex Constraints" for details on expressing constraints in 
the UML OCL or in SQL. 

Class Invariants 
When you have a constraint on a class, it is usually an expression that asserts a class invariant over 
the attributes of the class. A class invariant is a logical expression that an object of the class must 
satisfy at all times (the truth of the expression does not vary with the state of the object). 
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Transforming your class into a table creates a need to express your class invariants in your schema. 
You have two choices: CHECK constraints and triggers. 

A CHECK constraint lets you attach an SQL expression that evaluates to true, false, or null to a 
column or table. The basic syntax is very simple—a search condition that evaluates to a truth value. In 
the SQL language, there are three truth values: true, false, and unknown (null) [ANSI 1992, pp. 188—
189]. Standard logic is two-valued: true or false. Most constraints you conceive in data models reflect 
this standard. 
When you use SQL to express constraints, you move into the world of quasi-modal logic—three-
valued logic that adds a new factor to truth, the unknown truth value. Your Boolean search condition 
must take into account the situation in which the values have nulls that cause the expression to 
evaluate to null. The ANSI standard has syntax that lets you test the expression against a truth value: 
<search condition> IS [NOT] <truth value>. None of the RDBMS vendors implement this expression; 
therefore, your search condition must not evaluate to false to satisfy the constraint. Read that last 
sentence again, carefully: what happens if the search condition evaluates to null? Answer: the table 
satisfies the CHECK constraint. You must therefore ensure the correct handling of nulls in the 
expression, usually by converting them to a value (the NVL() function in Oracle7, for example, does 
this) or by checking for them with IS NOT NULL as part of the search condition. Using a three-valued 
logic thus introduces considerable complexities into your constraint checking, and SQL is by no 
means correct in the way it uses null values [Date 1986, pp. 313—334]. Understand the limitations of 
your tools and take care here. 

There are some restrictions on the SQL you can use in your search condition. You cannot use an 
aggregation function such as AVG or SUM unless it is in a subquery, a nested SELECT statement 
within the expression. You thus can't express a constraint that checks a sum or average against a 
column value directly. You can't refer to session-specific or dynamically changing information, such as 
CURRENT_USER (ANSI) or SYSDATE (Oracle7), for example. This also means you can't call a user-
defined function in a CHECK clause. You could change the function, and the CHECK constraint would 
no longer necessarily evaluate to true for the data already in the database. 

The full ANSI syntax lets you use subqueries in your expression, but the intermediate form of the 
standard excludes these. This reflects the industry norm. None of the major RDBMS vendors 
implement a complete expression syntax for CHECK constraints. Oracle7, for example, does not allow 
subqueries. You thus can't enforce any constraint that refers to data outside the table or in rows other 
than the current row on which the constraint is being checked. 

Finally, there are two forms of the CHECK constraint: using it as a column or domain constraint, and 
using it as a table constraint. The column constraint generally checks a single column; the table 
constraint may check more than one column to represent complex class invariants over several 
attributes. In either case, the RDBMS evaluates the constraint when the SQL statement, such as an 
INSERT statement, completes. There is no actual distinction between the two forms; you can refer to 
multiple columns in a column constraint or to a single column in a table constraint. Some systems, 
such as SQL Server, warn you when you refer to a column other than the column to which you've 
attached a column CHECK constraint. This is just a warning, however, not an error fatal to creating 
the table. 
Given these limitations on the CHECK constraint in principle and in practice, you will probably have to 
build many of your class-invariant constraints as triggers rather than as CHECK constraints. A trigger 
is a stored procedure that the RDBMS executes when a certain event occurs. See the earlier section 
"Signals" for details. 

System Invariants 
There is another class of constraints that go beyond a single class. A system invariant is a logical 
expression that must always be true for the system as a whole. In this case, by "the system as a 
whole," I mean the collection of database schemas and the data contained in the tables defined by 
those schemas. If you define your system across multiple schemas, you sometimes have constraints 
that extend beyond the boundaries of a single schema into another. The most common variety of this 
sort is the foreign key constraint that makes one subsystem dependent on another. See the earlier 
section on "Packages, Subsystems, and Name Spaces" for a complete discussion of multiple-
subsystem design for database schemas. You can build triggers that enforce these constraints, as 
single tables (the table containing the foreign key) drive them. 

Note   No current systems let you use a REFERENCES or FOREIGN KEY constraint across 



 - 197 -

schemas. There are also some restrictions on distributed databases with multiple servers, 
often constraining you as to what you can do across servers. Check your target system 
carefully in this regard if you have system invariants of this kind.  

A second variety of system invariant is the constraint that refers to two or more tables in a single 
logical expression. You can't express this kind of constraint as a CHECK constraint because it is not a 
class invariant on a single table. 
The ANSI standard defined this kind of system constraint as an assertion and gave it a new DDL 
statement, the CREATE ASSERTION statement. This statement is essentially a CHECK clause for a 
schema instead of for a table. Although the standard lets you use subqueries in table or column 
CHECK constraints, you really want the DBMS to evaluate system invariants at a higher level. 
Changes to any of the tables involved should result in constraint checking. 

Tip 
  

A table or column constraint on an empty table is always satisfied (think about it). If you want to 
ensure that a table has data in it, you must use an assertion. An assertion is satisfied if and 
only if the condition r eturns true, regardless of the presence of data in any of the tables 
involved.  

The major problem with the assertion is that no RDBMS vendor implements it. In current systems, you 
must build stored procedures or even application code that your application system runs at the 
appropriate point in each transaction. This requires additional code and complexity in your system, but 
you really have no choice at this time. 

 
Normalizing Relations 
Normalization is the process of structuring the tables and columns in your schema to avoid having certain 
dependency constraints (functional dependencies, multivalued dependencies, and join dependencies). 

It is possible to write an entire chapter or book on normalization [Dutka and Hanson 1989], though hard to make it 
fun to read. The odd thing about normalization is that it is really a state, not a process. The progress from first to 
second to third and so on is illusory ordering of a much more straightforward approach: find and eliminate structural 
dependencies that cause problems. There is no benefit at all to working through the various normal forms. Instead, 
you should understand the mathematics of dependencies, then focus on the practical design techniques that 
eliminate them as a whole. 

Before getting into the dependencies, you should note that an OO design, as reflected in the UML data model, pretty 
much automatically removes most dependencies. The whole idea of object identity and the construction of cohesive 
hierarchies of classes tends to structure your data into related tables rather than into jumbled-together single tables 
with lots of interdependencies between the columns. Starting with OO (or even ER) design is much more likely to 
yield a normalized database than not. This fact impresses some designers so much they believe you can dispense 
entirely with the theory of normalization [Blaha and Premerlani 1998, pp. 273—274]. While I wouldn't go that far, it's 
fair to say that normalization is not really a worry if you start with an OO design. 

Atomic Values 
Next, I'd like to address a very common misconception about first normal form: atomic values. First normal form says 
that each value must be atomic. Consider this example table: 
CREATE TABLE Atomic ( 
  NuclearProgramID INTEGER PRIMARY KEY, 
  Reactor1 VARCHAR2(50), 
  Reactor2 VARCHAR2(50), 
  Reactor3 VARCHAR2(50)) 

The three Reactor columns represent values for the three reactors in the nuclear program. 

If you're a practicing DBA familiar with normalization, here's a quiz: What normal form does this table satisfy? 
Most DBAs, apparently, believe that this table is not in first normal form. To be direct: they are wrong. This is a 
perfectly fine, fully normalized relation in fifth normal form. Each value is atomic, and there are no dependencies of 
any kind in this table. The arguments start when you define what "atomic" means, and part of the problem is the 
confusion with the concept of "repeating groups." This latter concept is an old programming concept that lets you 
repeat a structure within another structure. It has nothing whatever to do with either atomicity or first normal form. 
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Atomicity is very simple. All it says is that each column can have only one value for each row in a table. In the Atomic 
table example, each Reactor column has a single value for each row in the table: it is therefore atomic and in first 
normal form. What would a table that is not in first normal form look like? It's a bit of a problem, since in standard 
SQL you can't define it. Looking ahead a chapter, however, consider this definition from the Oracle8 SQL syntax: 
CREATE TYPE ReactorArray AS VARRAY(3) OF VARCHAR2(50); 
CREATE TABLE NotAtomic ( 
  NuclearProgramID INTEGER PRIMARY KEY, 
  Reactors ReactorArray); 

The VARRAY, or variable array, is a multivalued data type that holds a specified number of objects of a single-
valued data type. The table Not Atomic is not in first normal form because the Reactors column holds more than one 
value for each row of the table. 
I'd like to stress that it is not possible to create nonatomic tables using standard, relational SQL. That language does 
not have multivalued data types such as VARRAY. Therefore, whenever you are designing tables in a standard 
relational schema, your tables are in first normal form. Period. 

Note 

  

The design of the Atomic table has problems, but they aren't normalization problems. 
Because the solution is similar to the kind of decomposition you find in normalization, many 
DBAs equate it with the normalization process, but it's totally different. The main limitation in 
the design is the lack of flexibility about the number of reactors each program can have. The 
other major limitation is when you want to search or compute aggregations over the different 
values; it's much easier when you have each value in a separate row. Also, all of this analysis 
about first normal form notwithstanding, if you have more than one piece of data repeating 
(reactor plus online date plus operating time, for example, instead of just the reactor name), 
then you introduce functional or multivalued dependencies, which means you are not in fifth 
normal form but rather in second normal form. But that's a different issue from the atomicity 
requirement of first normal form.  

Dependencies and Normalization 
Now, on to the heart of darkness in normalization: dependencies. Explaining dependencies is best done by example, 
so I will manipulate some of the examples of this book into examples of dependencies. The ones you've seen so far 
have no unwanted dependencies. 

First, some background. Codd developed the original approach to normalization in some very early relational 
theoretical articles [Codd 1970, 1972]. The basic idea those articles developed was to provide guidance for relation 
design in the presence of certain data manipulation anomalies caused by poor structure. 

Note 

  

The whole normalization approach starts with a complete database design in place. You need 
to have all your attributes defined somewhere to be able to normalize the tables in which they 
appear through analyzing the dependencies. While this is a very formal, consistent, and 
mathematical approach, it provides little guidance to the database designer creating a 
database. UML and the methods that use it, on the other hand, guide you the whole way 
through the process with design methods, prescriptions, patterns, and metrics (one of which 
is the degree of normalization).  

When you determined that a dependency between data elements existed, you would break out the dependent data 
into a separate table, eliminating the dependency. Codd called this process decomposition and structured it as a 
series of normal forms. As the computer scientists and mathematicians began developing these early ideas, they 
grew into ever-more generalized forms. Ultimately, this results in the end of history: the proof that the "join" 
dependency is the most general form of dependency, and that therefore fifth normal form is the highest form of 
normalization [Fagin 1979]. Which is just as well, since people who could explain fourth normal form barely 
adequately began having real trouble with fifth normal form. Having admitted my limitations, let's forge ahead. 
A functional dependency occurs when a column value determines the value of another column in the same table. 
You've already seen the most common functional dependency: the key. A primary key determines the values of the 
other columns in its table, as does every candidate key. So every table you create with object identity, implicit or 
explicit, exhibits a functional dependency. 
A slightly more subtle but very common functional dependency occurs when you represent a to-many relationship in 
a single table along with all the related data. For example, take the relationship between Person and Identification in 
Figure 11-1. If you've been following along, you know that the standard way to represent this relationship is to create 
two tables, a Person table and an Identification table (and all the subclasses as separate tables as well). Instead, 
consider what a single Person table might look like if you included the information in the Driver License and Passport 
tables in it. 
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CREATE TABLE Person ( 
  PersonID INTEGER PRIMARY KEY, 
  Name VARCHAR2(100) NOT NULL, 
  Sex CHAR(1) NOT NULL CHECK (Sex IN ('M', 'F')), 
  DateOfBirth DATE NOT NULL, 
  DateOfDeath DATE, 
  Height NUMBER, 
  Weight NUMBER, 
  Marital Status CHAR(1) CHECK(Marital Status in ('S', 'M', 'D', 'W')) 
  Comment VARCHAR2(2000), 
  DriverLicenseNumber NUMBER, 
  LicenseIssueDate DATE, 
  LicenseExpirationDate DATE, 
  PassportNumber NUMBER, 
  PassportIssueDate DATE, 
  PassportExpirationDate DATE, 
  IssuingOffice VARCHAR2(100)) 

Intuitively, you can see what's happened: you've combined three objects into a single table, the person, the driver's 
license, and the passport. Mathematically what's happened is that you've introduced five functional dependencies: 
LicenseIssueDate and LicenseExpirationDate both depend on DriverLicenseNumber. The three passport-related 
columns depend on PassportNumber, assuming that the two numbers are unique. 
This is a subtle example of a functional dependency because the structure assumes that there is a one-to-one 
relationship between person and driver's license and between person and passport. Therefore, PersonID is still the 
key of the Person table, and you don't have any serious problems with updating or removing data. If a person gets a 
new passport, you just update those columns, for example. However, consider the more general model that Figure 
11-1 represents, and what would happen if you tried to represent it directly. Since a person can have a varying 
number of multiple IDs, the best way to combine all this information in one table is to have one row for each 
combination of person and ID: 
CREATE TABLE Person ( 
  PersonID INTEGER NOT NULL, 
  Name VARCHAR2(100) NOT NULL, 
  Sex CHAR(1) NOT NULL CHECK (Sex IN ('M', 'F')), 
  DateOfBirth DATE NOT NULL, 
  DateOfDeath DATE, 
  Height NUMBER, 
  Weight NUMBER, 
  MaritalStatus CHAR(1) CHECK(MaritalStatus in ('S', 'M', 'D', 'W')) 
  Comment VARCHAR2(2000), 
  IDNumber NUMBER, 
  LicenseIssueDate DATE, 
  LicenseExpirationDate DATE, 
  PassportIssueDate DATE, 
  PassportExpirationDate DATE, 
  IssuingOffice VARCHAR2(100) 
  CONSTRAINT Person_PK (PersonID, IDNumber)) 

I'm going to stop at this point because we're already far down a road that you don't want to travel. This table is a 
mess. You've mixed together all kinds of data at varying multiplicity. This is a terrible way to represent the world 
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you're trying to model. It results in, for example, two Person records for each person with a Passport and Driver's 
License. In the Passport-related row, all the Driver's License columns are null. In the Driver's License-related row, all 
the Passport columns are null. More importantly, you duplicate all the Person data in each of the two rows. When 
you add in identifications of different sorts along with their specific columns, it just gets worse. Now, when you 
update a Weight, for example, you have to update it in two different rows. This is Codd's update anomaly. 

You solve this problem by representing the objects in a straightforward way in separate tables, which is third normal 
form or Boyce-Codd normal form (BCNF), depending on the exact structure. Normalization theory starts with one 
huge table and decomposes it into pieces using the functional dependencies, which represent the clusters of facts 
around object identity and relationships between objects. You can now see why OO and ER design, which represent 
objects and relationships directly, tend not to need much normalization. You directly represent your functional 
dependencies and structure your model from the start into decomposed relations because you represent 
associations directly. 

But I digress. It gets worse. 
A multivalued dependency occurs when a table is the join of two of its projections having a shared subset of columns 
[Fagin 1981, p. 390]. The functional dependency is a special case of the multivalued dependency. Again, let's 
explore the concept by example rather than focusing on the relational mathematics. Consider the 
CriminalOrganization in Figure 11-2, and consider what might happen if you modeled the particular criminal 
operations that the people in the organization conducted (their "businesses"). The following code adds a Business 
Type table that contains the kinds of businesses a criminal organization might operate, and the Criminal Business 
table lists the people and the businesses they run. 
CREATE TABLE CriminalOrganization ( 
  OrganizationID INTEGER PRIMARY KEY REFERENCES Organization, 
  LegalStatus CHAR(1) NOT NULL, 
  Stability CHAR(1) NOT NULL, 
  InvestigativePriority CHAR(1) NOT NULL, 
  ProsecutionStatus CHAR(1) NOT NULL); 
CREATE TABLE BusinessType ( 
  BusinessTypeID INTEGER PRIMARY KEY, 
  TypeName VARCHAR2(100)); 
CREATE TABLE CriminalBusiness ( 
  OrganizationID INTEGER REFERENCES CriminalOrganizaton,-the mob 
  PersonID INTEGER REFERENCES Person,-the mob member 
  BusinessType INTEGER REFERENCES BusinessType,-the criminal business 
  PRIMARY KEY (OrganizationID, PersonID, BusinessID)); 
There is nothing obviously wrong with this model until you understand the underlying semantics of the data. 
Businesses are run by organizations, not by individuals within the organization. The Criminal Business table 
represents this, but it throws in the person as well. Table 11-1 presents the data for the Criminal Business table (I've 
replaced the implicit object-identifying integers with the relevant names for clarity; the names refer to several Holmes 
stories): 

The multivalued dependency here stems from the fact that the PRIMARY KEY constraint on the Criminal Business 
table is the full set of primary keys from the three related tables Person, Criminal Organization, and Business Type. 
However, if you know the organization, you know the businesses it operates, and you know the people in the 
organization. But people and businesses are independent of one another. Thus, you have two columns that depend 
on one other column but are independent—a multivalued dependency that is not on the primary key of the table. The 
Business Type table is a join of two projections, the Organization-Person projection and the Organization-Business 
Type projection. 

Table 11-1: The Criminal Business Table  

Organization 
Name  

Person 
Name  

Business 
Type 
Name  

Moriarty 
Organization 

Fred 
Porlock 

Extortion 
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Moriarty 
Organization 

Fred 
Porlock 

Burglary 

Moriarty 
Organization 

Col. 
Sebastia
n Moran 

Extortion 

Moriarty 
Organization 

Col. 
Sebastia
n Moran 

Burglary 

Clay Gang John 
Clay 

Bank 
Robbery 

Clay Gang John 
Clay 

Burglary 

Clay Gang Archie Bank 
Robbery 

Clay Gang Archie Bank 
Robbery 

 

Table 11-2 presents the Party table, which contains the Organization-Person projection along with the person's role 
in the organization. In this case, although the three columns constitute the primary key, each person plays just one 
role; this is purely for illustration in this case. 
Table 11-3 presents the Criminal Business table revised to include just the organizations and business types, which 
better represents the underlying meaning of the data: 
You can see that joining the new Criminal Business table with the Party table yields the result in the first try at the 
Criminal Business table in Table 11-1. You can also see that keeping the data in the form of Table 11-1 is fraught 
with peril. The second most dangerous man in London becomes a threat to your database integrity because you 
must update his redundant businesses in four separate rows when an organization changes businesses. That's the 
update anomaly for the multivalued dependency. Decomposing into the projections eliminates the redundancies and 
the anomalies. 
A join dependency takes the multivalued dependency and expands it to the general case of joining three or more 
projections having a shared subset of columns. If there were another set of columns in a separate table aggregating 
objects to an organization, joining it in would produce a very redundant series of rows. The join dependency 
decomposition is called fifth normal form and is very hard to define. Basically, you must find the set of projection 
tables (decompositions) that, when joined together, eliminate any spurious rows produced by the join of any two 
tables. That usually means at least three decomposition tables. It's usually quite hard to see these constraints until 
you encounter a problem in a particular join [Date 1998b]. 

Table 11-2: The Party Table  
Organization 
Name  

Person 
Name  

Organizational 
Role Name  

Moriarty 
Organization 

Fred 
Porlock 

Executive 

Moriarty 
Organization 

Col. 
Sebastia
n Moran 

Second most 
dangerous man 
in London 

Clay Gang John 
Clay 

Fourth smartest 
man in London 

Clay Gang Archie Pal 

 

Table 11-3: The Revised Criminal Business Table  
Organization 
Name  

Business 
Type 
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Name  

Moriarty 
Organization 

Extortion 

Moriarty 
Organization 

Burglary 

Clay Gang Burglary 

Clay Gang Bank 
Robbery 

 

Note 

  

To follow up on join dependencies, the best articles on the subject are Fagin's two articles [Fagin 
1979, 1981]. Date has a good two-part article on the subject [Date 1998a, 1998b], which is a 
modified version of the material in his seminal book on database theory [Date 1995]. William 
Kent's classic article is also an easy-to-understand source for the theory of join dependencies 
[Kent 1983].  

The general rule is thus to decompose the tables in your database without losing any information about data 
relationships until you have no dependencies that are not onto the full primary key of each table. Fifth normal form 
also requires having enough tables to represent all the primary keys you need to get correct data when joining these 
tables back together (that's the nonloss part of the definition, really). 

If you follow the basic rule and eliminate any of these dependencies that are not dependencies on a key of the table, 
you will always have a database that is in fifth normal form. 

Denormalizing Your Schema 
If you spend any time around relational database administrators at all, you will hear heated arguments about 
"denormalizing" the data. Some believe religiously in keeping all data in fifth normal form; others believe, just as 
religiously, that fifth normal form is for zealots and serves no useful purpose. 

Both of these positions are extremes to 9avoid. It should be obvious from the examples in the earlier section on 
"Dependencies and Normalization" that eliminating multivalued and join dependencies is a good thing. If you don't 
decompose your tables right to get rid of join dependencies, your joins can yield invalid results because of the loss of 
information. Similarly, the complexity of the data resulting from a multivalued dependency and the simplicity of the 
normalized form (fourth normal form) is pretty clear. 

Why do DBAs consider denormalizing data? In a word, performance. The most expensive operation with a relational 
database is the join (aside from buying the thing in the first place, of course). By prejoining projections into a single 
table, DBAs eliminate the need to join the tables in application SQL code. That can increase performance 
dramatically. Does it in fact do so? The best answer that any DBA who is telling the truth can say is, "It depends." 
Because of the separation of the physical schema from the logical, any change to the logical schema to facilitate 
physical operations is of necessity indirect. Depending on storage requirements, for example, a prejoined table can 
take up more than one physical page. This results in more I/O for the query than a join of two separate tables stored 
on separate disks might [Date 1997b, p. 24]. 

Relational database performance tuning requires good data analysis, a strong understanding of the target DBMS 
and its physical operations, and a clear understanding of the trade-offs in denormalizing data. You should consider 
denormalizing data only when you confront a performance problem. You should almost certainly look at alternative 
SQL expressions and alternative physical structures first, as these solutions don't have the deleterious trade-offs of 
denormalization. It should be a last resort, especially if there are many applications that share the data structures in 
question. 

It's also important to realize that "denormalization" is not a process any more than is normalization. Yes, if you are 
not in third normal form, you are not in fifth normal form. However, you can eliminate all the nontrivial join and 
multivalued dependencies in your database and still have a few functional dependencies in prejoined, denormalized 
tables. Your goal should be to eliminate as many of the nonkey dependencies as possible and to get as close to 
modeling the real objects as possible. 
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Finally, many DBAs think they are denormalizing when they are really just introducing redundancy [Date 1997b]. 
Often, this isn't true. 

First, go back and read the section on "Atomic Values." Many DBAs think that introducing "repeating groups" into the 
table structure, such as Address1, Address2, and Address3, or Monday, Tuesday, Wednesday, Thursday, Friday, 
Saturday, and Sunday columns, is denormalization. Unless you introduce a dependency not onto the full primary 
key, your table remains fully normalized. The DBA will usually argue that these are "repeating groups" and that 
therefore the table is no longer in first normal form. As the earlier section demonstrated, this is nonsense. First 
normal form is about multivalued columns, not a sequence of columns with single values. When you introduce 
sequences of multiple columns that imply a functional dependency you could get rid of by storing the projection of 
those columns with its own primary key in a separate table, you can get a dependency. For example, say you 
wanted to add the monthly income for each person in each role to your schema. You could add the columns 
JanIncome, FebIncome, MarIncome and so on to the Party table. That table is still in fifth normal form. However, if 
you add two columns, both dependent on the month, you introduce a functional dependency—JanIncome, 
JanPayDate, Feb Income, FebPayDate, and so on. 

Second, storing aggregates doesn't denormalize the database. For example, you could store the total number of 
people in an organization in the Organization table. This introduces a constraint that the number is the count of the 
number of distinct people related to the organization through the Party table. While this constraint is complex, it is 
most definitely not a functional, multivalued, or join dependency. Therefore, storing the count does not move your 
Organization table out of fifth normal form. 
Third, you often encounter a situation where your tables contain null values for things that can't logically exist. This is 
a result of combining a superclass and subclass. For example, if your combined the Organization and Criminal 
Organization tables, the LegalStatus column would have null values for any row corresponding to an organization 
that is not a criminal organization. While this is perhaps not ideal, it is also not denormalization because there are no 
functional dependencies—or any other kind of dependency. This comes from a union of projections rather than a join 
of projections; you are combining the objects of two exclusive subclasses into a superclass table with a set union 
operation rather than with a join operation. Normalization, however, depends on the join of projections, not on the 
union of them. 
Fourth, creating a star schema for a data warehouse (see the Preface for a definition) does not denormalize the 
database. What you are doing in a star schema is creating a very complex, n-ary relationship table (the fact table) 
with many related tables (the dimension tables). You are not introducing dependencies or even redundancies; you 
are simply representing the multidimensional characteristics of the data using the Star Design pattern (see the 
section "Modeling with Reusable Design Patterns" in Chapter 8). 

There are probably many other cases of decomposition and composition that do not affect normalization. Your guide 
should be to consider the dependencies rather than being fooled by the composition process. Again, normalization 
isn't really a process, it's a state. 

 
The Language of Peace 
SQL-92 provides a comprehensive schema definition language. The section "Conformity Rules" shows you the steps 
you take to transform your OO model into that language using the techniques presented in the previous sections in 
this chapter. The next section, "Nonconformity Rocks," departs from the standard language to show you some 
techniques in Oracle7, as an example, that provide alternatives to the standard process. 
The transformation process uses the example data model from Figures 11-1, 11-2, and 11-3. 

Conformity Rules 
There are two basic steps to creating an SQL-92 conforming database from a UML data model: creating tables from 
persistent types and creating tables for many-to-many and ternary associations. Each step has various choices to 
make. The preceding parts of this chapter have discussed each of these choices in the context of the UML 
constructs; this section guides you through a complete transformation, connecting everything. 

Persistent Classes 
As the first transformation, create a table for each class in your UML data model that has the «persistent» 
stereotype, including association classes and classes that inherit from other classes. Name the table with the name 
of the class. From Figure 11-1, the Person subsystem, you create 10 tables: Person, Address, Identification, Expiring 
ID, Driver License, Passport, NationalID, Law Enforcement ID, Social Security Card, and Birth Certificate. 

Note   You may merge the association class into another table later if that proves feasible. For now, 
leave it as a separate table in your emerging schema.  
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Within each table, now add a column for each attribute in the attribute section of the class. As an example, for 
Address, add StreetNumber, Street-Fraction, StreetName, StreetSuffix, Locator, City, State, PostalCode, Country, 
and Comment. 

You should at this point have a transformation map that shows how to transform each data type in your data model 
into an ANSI SQL data type. The commonplace book system uses the basic ANSI types extended to include a series 
of "nullable" types for each ANSI type, so the mapping is trivial. There are certain special types that correspond to 
object identity (OID) or enumerated types (Sex, for example). Certain of the types, such as VARCHAR, need 
refinement with the addition of a size specifier. If you need the maximum number of characters available for a size, 
use the least-common-denominator approach. Look at all your target DBMS products and take the maximum from 
the one that supports the lowest number, such as SQL Server's support for only 254 characters in a character 
varying field. Still other types correspond to references to other tables through foreign keys; hold off on these 
columns, which we'll add a bit further on in the process. The end result for this stage for the Address table looks like 
this: 
CREATE TABLE Address ( 
  AddressID INTEGER PRIMARY KEY,-OID type 
  StreetNumber NUMBER, 
  StreetFraction VARCHAR(5), 
  StreetName VARCHAR(100), 
  StreetSuffix VARCHAR(25), 
  City VARCHAR(100), 
  State CHAR(2), 
  PostalCode CHAR(20), 
  Country VARCHAR(100), 
  Comment VARCHAR(250));-size for worst case, SQL Server 

If there is a {nullable} tag on the attribute, add a null constraint; otherwise, add a NOT NULL constraint. In the case 
of the commonplace book, the data model uses the nullable types to represent null constraints, and all of the 
columns in Address except for StreetFraction and Comment are not null: 
CREATE TABLE Address ( 
  AddressID INTEGER PRIMARY KEY,-OID type 
  StreetNumber NUMBER NOT NULL, 
  StreetFraction VARCHAR(5) NULL, 
  StreetName VARCHAR(100) NOT NULL, 
  StreetSuffix VARCHAR(25) NOT NULL, 
  City VARCHAR(100) NOT NULL, 
  State CHAR(2) NOT NULL, 
  PostalCode CHAR(20) NOT NULL, 
  Country VARCHAR(100) NOT NULL, 
  Comment VARCHAR(250));-size for worst case, SQL Server 
You'll find an example of the {nullable} tag in Figure 11-2: the Plays association class contains the 
TerminationMethod column, which has an enumerated type. Instead of creating a separate 
nullable_TerminationType type, this diagram uses the {nullable} tag to specify nullability. 

You should also at this point construct any type-checking utility tables for enumerated types. For example, you need 
a Termination Type table: 
CREATE TABLE TerminationType ( 
  TerminationType CHAR(1) PRIMARY KEY,-character code 
  DisplayString VARCHAR(25));-string to display in UI and reports 

If there is an initial value for a column, add a DEFAULT expression to the column definition. 
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Now it's time to construct the primary key and the things that depend on it. To start with, find the root class of each 
generalization hierarchy (classes to which a generalization arrow points but from which no generalization arrow 
emerges). Also consider all classes with no generalization relationships. 

If the class has implicit object identity, add a column to the table. Name the primary key column with the class name 
suffixed with_ID, such as Person_ID, and add PRIMARY KEY as a constraint. PRIMARY KEY implies NOT NULL, 
so you don't need that constraint on the primary key column. Usually, you should give the column a NUMBER data 
type and use a sequence or the equivalent to generate numbers for it. 

Note 
  

If the class has a composite aggregation association to another class, and the other class is 
the aggregating class, hold off on creating the primary key until you are creating foreign keys. 
Composite aggregation keys are a combination of the primary key of the related class and 
another attribute.  

All the classes in Figures 11-1 and 11-2 have implicit object identity. Consider the Identification class, which is a root 
class with implicit object identity: 
CREATE TABLE Identification ( 
  IdentificationID INTEGER PRIMARY KEY); 

If the class has explicit object identity (an {OID} tag), add a PRIMARY KEY constraint clause to the table and put all 
columns with the {OID} tag into the constraint. If there is only one column in the explicit identifier, just add the 
PRIMARY KEY column constraint to that column. 

If the class has subclasses, add a column to represent the discriminator, and create a CHECK constraint with the 
appropriate enumerated values to represent the subclasses. 

Now proceed on to the subclasses. If there is a single superclass for the class, add a column to the table named 
either with the name of the primary key in the superclass or with a new name more appropriate to the subclass. Add 
PRIMARY KEY as a constraint, and add a REFERENCES clause to relate the column to the primary key of the 
superclass table as a foreign key. Use PRIMARY KEY and FOREIGN KEY table constraints instead of the column 
constraints if there is a multiple-column explicit identifier in the superclass. 

The LawEnforcementID class adds a column, BadgeNumber, to the Identification attributes. It gets the primary key of 
its superclass: 
CREATE TABLE LawEnforcementID ( 
  IdentificationID INTEGER PRIMARY KEY REFERENCES Identification, 
  BadgeNumber INTEGER NOT NULL); 

If there are multiple superclasses (multiple inheritance), add a column to the table for each column in each primary 
key of each superclass. Add a PRIMARY KEY clause with all the columns, and add a FOREIGN KEY clause with the 
columns for each superclass primary key. Consult the earlier section in this chapter on "Multiple Inheritance" for 
examples. 
Association classes are slightly special with respect to primary keys. Instead of creating a new key to represent 
object identity, give the association class the primary keys of all its related classes. For example, the Plays class in 
Figure 11-2 represents a ternary association between three classes. Therefore, Plays gets a primary key comprising 
the three primary keys of its associated classes. Each key in turn is a foreign key back to the role-playing table, so it 
gets a REFERENCES constraint for single-valued keys and a FOREIGN KEY table constraint for multivalued keys. 
CREATE TABLE Plays ( 
  PersonID INTEGER REFERENCES Person, 
  OrganizationID INTEGER REFERENCES Organization, 
  RoleID INTEGER REFERENCES Role, 
  Tenure INTERVAL YEAR TO MONTH, 
  StartDate DATE NOT NULL, 
  EndDate DATE, 
  TerminationMethod CHAR(1), 
  PRIMARY KEY (PersonID, OrganizationID, RoleID)); 
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Next, find any candidate keys. If there are any {alternate OID = <n>} tags, add a UNIQUE constraint to the table for 
each unique <n> identifier and put all columns with the same <n> identifier into the constraint. Again, 
LawEnforcementID serves as an example, as BadgeNumber has the tag {alternate OID = 1}: 
CREATE TABLE LawEnforcementID ( 
  IdentificationID INTEGER PRIMARY KEY REFERENCES Identification, 
  BadgeNumber INTEGER NOT NULL UNIQUE); 

Next step: add any simple table constraints. If there are constraint boxes in the diagram, convert them into CHECK 
clauses if you can express the constraint in an SQL expression that contains only references to columns in the table 
you are defining. If there are data type constraints such as enumerations or ranges, add a CHECK clause to the 
column to represent the constraint. For enumerations with utility tables that list the possible values in the type, wait 
for creating the foreign keys, the next step. 

Now, add any foreign keys. At this point, all tables should have a primary key. If there are any binary associations to 
the class you are defining with a multiplicity of 0..1 or 1..1 on the role attached to the other class, and the association 
has no association class, create a column to represent the association. As you go through the tables, of course, you 
will reach the other end of each binary association. If it's a 1..1 or 0..1 association, and you've already created a 
column for it in another table, don't create the foreign key in both tables. Creating two foreign keys for a relationship 
is not only circular and hard to maintain, it can seriously confuse developers using the tables. You can optimize your 
decision by thinking about how applications will use the tables. If one side of the association seems more natural or 
more likely for a developer to use, put the column in that table. If the multiplicity on the role is 1..1 rather than 0..1, 
add a NOT NULL constraint to the foreign key column (s). 

You will already have created the foreign keys to superclasses through generalization relationships in the prior step 
for creating primary keys. 

There are a couple of alternatives for creating foreign keys, depending on the number of columns in the primary key 
to which they refer. If the primary key of the associated table has a single column, create a single column with the 
same data type and the role name in the current table. Add a REFERENCES clause as a column constraint to relate 
the column to the primary key of the associated table. For example, the Locator attribute in the Address table refers 
to a table in another system called GeoCoord (geographical coordinate) with an implicit object identifier, 
GeoCoordID: 
Locator INTEGER NOT NULL REFERENCES GeoCoord(GeoCoordID), 

If the primary key of the associated table has multiple columns, create the same number of columns with the same 
data types in the current table. Name the columns using both the role name and the column names in the associated 
table (converting the names as appropriate or required by column name length restrictions). Add a FOREIGN KEY 
table constraint to relate the columns to the primary key of the associated table. 

If you've added a foreign key from a composite aggregation association with a to-one multiplicity to the other class, 
add the foreign key column(s) to the primary key (a parent-child class pair). Add the appropriate CASCADE 
constraint to the FOREIGN KEY clause in the other table. Then create a second column for the primary key that 
uniquely identifies the object. Often this will be either an explicit {OID} column or a sequence if the association is 
{ordered}. If not, then create an integer value to uniquely identify the children of the aggregate. 

Finally, optimize your association classes. If there are any binary associations with role multiplicity greater than 1 on 
the role played by the class you are defining, and the association has an association class, add the attributes from 
the association class to the table with data types and constraints as above. Remove the table you created for the 
association class from the schema. 

The schema is nearing completion, but there are still some special associations for you to handle. 

Many-to-Many and Ternary Associations 
You may have many-to-many or ternary associations that do not have association classes. If they did have, you 
would have already created a class for the association. Now, you must create such a class if it doesn't already exist. 

A many-to-many association has two to-many multiplicities (0..*, 1..*, *, 1..5, 10, and so on). A ternary association 
has three classes participating in the association linked through a diamond shape. You can of course have 
quaternary or higher associations as well. 
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Find all the many-to-many and ternary associations in your data model. Create a table for each many-to-many or 
ternary association that does not have an association class to represent it. Add columns to the table for the primary 
keys of each of the participating tables just as you would for the association class. 

If the primary key of the associated table is a single column, add a column with the name of the role or of the primary 
key column (depending on semantics). Use the data type from the primary key column and add a REFERENCES 
constraint to relate the column to the primary key. 

If the primary key of the associated table has multiple columns, add a similar number of columns to the association 
table using the role name and the column name. Add a FOREIGN KEY constraint to relate the column to the primary 
key. 

Add a PRIMARY KEY constraint to the table and add all the columns representing the primary keys of the 
participating tables to that constraint. 

For example, the association between Address and Person is *, *, indicating a many-to-many association. Create an 
association table for it: 
CREATE TABLE Personal Address ( 
  AddressID INTEGER REFERENCES Address, 
  ResidentID INTEGER REFERENCES Person, 
  PRIMARY KEY (AddressID, PersonID)); 

Notice the adaptation of the role name "residents" to the ResidentID column name. This better conveys the meaning 
of the column than "PersonID" would. 

If a multiplicity of a role has a minimum value greater than 0, add a stored procedure that checks that a row in the 
association table exists if a row in the associated table exists. You will need to execute that stored procedure as the 
last step in a transaction involving an INSERT into the associated table. You may be able to do this as an AFTER 
INSERT trigger, but not necessarily if more than one associated table has such multiplicities. 

If you go through this process a few times on moderately complex designs, you'll begin to find the transformations 
second nature. Again, this produces a schema in ANSI standard SQL. Now, let's consider using some of the features 
of the target RDBMS that go beyond the standard. 

Nonconformity Rocks 
The decision to go "off the board" depends on many things, mostly cultural. If your clients only use a certain DBMS, 
or if your organization does not particularly value standards conformance, you may have the freedom to consider 
innovative ways to transform your model into a specific relational database. A key reason to do this is to get closer to 
the OO model and hence to the benefits of that model: ease of maintenance, fewer bugs, and a higher reuse 
potential. Unfortunately, standard SQL has many benefits, but they do not include innovative architecture and OO 
features. 

That having been said, however, relational databases are not OO systems in any way. You can move closer to the 
OO model by using some of the standard features and some of the extending features of the RDBMS, but you are 
not using an OO database. The following transformation, for example, uses the features of Oracle7 as an example to 
add to the standard model from the "Conformity Rules" section. The objectives are to get a higher level of 
encapsulation than is possible with standard SQL and to model as much behavior as possible on the server rather 
than in the application. You can't do this using standard SQL because it doesn't have the behavioral features that 
most RDBMS products have. 

To illustrate some interesting ways to abandon conformity, this section looks at two areas: how Oracle7 can 
implement the packaged subsystems of your data model, and how it can implement your class operations. 

Note 
  

As I said in the Preface, most of my working experience is with Oracle. Please forgive the 
focus on Oracle in this section. Each RDBMS has its own set of extensions that you can use 
in similar ways. I'm most familiar with Oracle, so my examples are Oracle examples.  
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Packaged Subsystems 

Subsystems, also known as name spaces, do have a representation in standard SQL: the ANSI SQL-92 schema 
concept. Virtually no RDBMS represents this concept directly, and all provide facilities that go beyond the standard in 
this area, particularly in their support of distributed databases (databases with multiple servers in different locations). 

You can use one of two approaches to this problem in Oracle7. You can implement a UML subsystem package as 
either a different name space in a single database or as different databases. This means either creating the schema 
for the package in a separate user or in a separate database. 

First, here's how you would set up the users if you want to create the name spaces in a single Oracle7 database: 
CREATE USER Entity IDENTIFIED BY xxxxx; 
CREATE USER PersonIDENTIFIED BY xxxxx; 
CREATE USER Organization IDENTIFIED BY xxxxx; 

These users define three schemas corresponding to the persistent packages in the commonplace book data model 
(see Figure 11-1 to Figure 11-3). Next, you create the objects with CREATE TABLE, CREATE VIEW, or whatever is 
appropriate. Then, if you want to hide the tripartite database division, you create synonyms for each object; 
otherwise, you need to preface object names with their schema name in your SQL code. 

To use the schemas, it's usually a good idea to create users other than the package users. It's those users that need 
the synonyms. You can create public synonyms, but again that's not the best for encapsulation of the name spaces. 
Once you've created a login user for your application, you must grant the appropriate privileges (SELECT, INSERT, 
UPDATE, and/or DELETE) on the objects the application will use. Keeping the privileges to the minimum helps 
ensure you get a reasonably high level of encapsulation. You can also create a view to further encapsulate the 
underlying objects. 

This approach combines the security, data independence, and schema definition elements of Oracle7 SQL to 
achieve at least partial encapsulation. It isn't complete, but you gain assurance that no application can get access to 
the underlying data beyond what you've explicitly granted. 

An alternative to the user approach is to create separate databases. This is a bit more involved from the perspective 
of the DBA. You must identify the database files, size the database, and take care of all the physical database loose 
ends such as redo logs and rollback segments. Once you've created the databases through the CREATE 
DATABASE command or through the Enterprise Manager, you then create the same system and application users 
as in the previous approach. You still have to grant privileges to all the tables, but instead of doing so directly, you 
must first establish links to the databases: 
CREATE DATABASE LINK PersonLink; 
CREATE DATABASE LINK IdentificationLink; 
CREATE DATABASE LINK OrganizationLink; 

Now, you can grant access to the objects in each schema by adding the link name to the object name: 
GRANT SELECT ON Person.Person@PersonLink TO AppUser; 

The only benefit to this separate database approach is that you can reuse elements of the system without any 
concern for the underlying physical connections between the schemas. You would have to concern yourself with 
these if they were all in the same database. There really isn't that much advantage over the single-database 
approach unless you have some physical optimization of your separate databases that makes sense. This happens 
mostly in the context of fully distributed systems in a wide-area network. 

Operations 
The simplest way to represent operations in Oracle7 is to create a stored procedure or function for each operation 
you've defined in the data model. Using this approach, it's up to you to get your applications calling the right 
operations. As an example, consider the CriminalOrganization class from Figure 11-2. That class exports two 
operations: UpdateStatus and SetPriority, both "mutators" that change the state of a particular criminal organization 
object. 

PL/SQL, the programming language that Oracle7 provides, is a computationally complete programming language 
that embeds the SQL data sublanguage for database access. Technically, you can use only SELECT, INSERT, 
UPDATE, and DELETE commands using embedded SQL, but you can issue any SQL through special program units 
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that Oracle provides (the DBMS_SQL package) to create or alter tables, grant privileges, and so on. Oracle is 
moving in the direction of adding a second language for programming, Java, to its stable, jumping on the OO 
bandwagon with a vengeance. Perhaps this will be available in time for the second edition of this book. But I digress 
once again. 

You can transform an operation on a class into a stored PL/SQL procedure. The method (remember, a method is the 
implementation of an operation in UML) has at least one input—something that identifies the row of the table (the 
object) on which you want to operate. 

Without making this small section a lengthy treatise on PL/SQL and its myriad capabilities, I can't go into detail on 
the many options you have for representing specific concepts. PL/SQL has something for everyone and can usually 
provide some way of handling a given UML notation. In this case, we have two requirements: enumerated data types 
and updating a row. 

The first requirement, an enumerated data type, is an example of something that is hard to do in PL/SQL. The 
PL/SQL type system closely models the SQL type system, which has no concept of enumerated type. At least an 
SQL column definition can have a CHECK constraint; this is not true of a PL/SQL variable definition, unfortunately. 
So, you'll have to jump through a couple of hoops to represent your enumerated type. 

A classic approach is to build a lookup table of enumeration values. The section "The Transformation Table" earlier 
in this chapter demonstrated how to do this for the LegalStatus type: 
CREATE TABLE LegalStatusType ( 
  Value CHAR(1) PRIMARY KEY, 
  DisplayString VARCHAR2(50) NOT NULL, 
  Description VARCHAR2(2000)); 
 
INSERT INTO LegalStatusType (Value, DisplayString) 
VALUES ('D', 'Legally Defined'); 
INSERT INTO LegalStatusType (Value, DisplayString) 
VALUES ('T', 'On Trial'); 
INSERT INTO LegalStatusType (Value, DisplayString) 
VALUES ('A', 'Alledged'); 
INSERT INTO LegalStatusType (Value, DisplayString) 
VALUES ('U', 'Unknown'); 

To use the type, you pass the value code into the procedure, then use the table to check the value: 
CREATE OR REPLACE PROCEDURE SetStatus(p_Self IN INTEGER, 
                                      p_Status IN CHAR) IS 
  v_TypeOK INTEGER := 0; 
BEGIN 
  SELECT 1 
    INTO v_TypeOK 
    FROM LegalStatusType 
   WHERE Value = p_Status; 
  IF v_TypeOK = 1 THEN 
    UPDATE CriminalOrganization 
      SET Legal Status = p_Status 
     WHERE OrganizationID = p_Self; 
  END IF; 
EXCEPTION 
  WHEN NO_DATA_FOUND THEN-Couldn't find the status 
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    DBMS_OUTPUT.Enable(100000); 
    DBMS_OUTPUT.Put_Line(to_char(sysdate, 'dd-Mon-yy hh:mm')|| 
      ' SetStatus: '||p_Status|| 
      ' is not a valid legal status for a criminal 
        organization.'); 
END SetStatus; 

This PL/SQL procedure checks the enumerated type against the table of values, and if it is there, updates the 
criminal organization you've specified (p_Self) with the new status. If it isn't there, PL/SQL raises the 
NO_DATA_FOUND exception and passes control to the exception handler, which writes the error message out on 
the server-output log. Having this mutator procedure in place, you now no longer need to code update statements in 
your code. Instead, you call the stored procedure, perhaps from a Pro*C embedded SQL C++ program: 
exec sql execute begin SetStatus(:self, :legal Status); end; end-exec; 

You could encapsulate this code, for example, in the SetStatus member function of the CriminalOrganization class. 

In this case, the code for updating the row is a simple SQL statement, but the code for checking the enumerated 
value type is quite extensive. This is typical of database coding in relational (and object-relational) database 
management, which doesn't give you much in the way of programming tools for error handling. The exceptions in 
PL/SQL are actually a big improvement over the return code approach that prevailed in earlier environments. As with 
any kind of exception handling, though, you must be careful to isolate the exception handling on the server. You 
don't want exceptions trying to propagate to the client crashing the server process. 

A more systematic approach to operations is to add another step to the algorithm in the "Conformity Rules" section. 

Create a PL/SQL package for each class with a «persistent» stereotype. Name the package with the name of the 
class, adding a _pg suffix to distinguish the package from the table you define for the class (this is a single name 
space). Add a RECORD type for the underlying table and its columns, which you use to define a SELECT cursor 
later. Add a RECORD type for the columns in the primary key. Add subprograms to INSERT, UPDATE, DELETE, 
and LOCK rows to the underlying table. Add a subprogram to return a cursor to all the rows in the table (a general 
query of the table). Add subprograms for each operation you've specified in the behavior section of the class box, 
naming the methods with the name of the operation. 

For the CriminalOrganization class, the resulting PL/SQL package looks like this: 
CREATE OR REPLACE PACKAGE CriminalOrganization_pg IS 
  TYPE tCriminalOrganization IS RECORD ( 
    rOrganizationID CriminalOrganization.OrganizationID%TYPE, 
    rLegal Status ID CriminalOrganization. Legal Status%TYPE, 
    rStability Criminal Organization. Legal Status%TYPE, 
    rInvestigativePriority 
      Criminalorganization.InvestetigatePriority%TYPE, 
    rProsecution Status CriminalOrganization.ProsecutionStatus%TYPE); 
  TYPE tCriminalOrganizationKey IS RECORD ( 
    rOrganizationID CriminalOrganization.OrganizationID%TYPE); 
  TYPE tCriminalOrgannizationCursor IS REF CURSOR 
    RETURN tCriminalOrganization; 
  TYPE tCriminalOrganizationTable IS TABLE OF tCriminalOrganization 
    INDEX BY BINARY_INTEGER; 
  TYPE tCriminalOrganizationKeyTable IS TABLE 
    OF tCriminalOrganizationKey INDEX BY BINARY_INTEGER; 
 
  -Operations 
  PROCEDURE SelectCursor(pCursor IN OUT tCriminalOrganizationCursor); 
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  PROCEDURE SelectRows(pTable IN OUT tCriminalOrganizationTable); 
  PROCEDURE InsertRows(pTable IN tCriminalOrganizationTable); 
  PROCEDURE UpdateRows(pTable IN tCriminalOrganizationTable); 
  PROCEDURE DeleteRows(pKeyTable IN tCriminalOrganizationKeyTable); 
  PROCEDURE LockRows(pKeyTable IN tCriminalOrganizationKeyTable); 
END Criminal Organization_pg; 

This approach lets you fully encapsulate the underlying table in the package in a very general way. The first type 
sets up the table columns in a record type. The second type lets you represent the primary key value in a single 
record. The third type gives you a "ref cursor" that lets you query all the data in the table. The fourth type gives you a 
"result set" PL/SQL table that lets you store multiple criminal organizations in a single variable. The fifth type gives 
you a similar capability to store multiple primary keys. The procedures then use these types to give you standard 
select, insert, update, and delete capabilities. The SelectCursor procedure returns a cursor that you can use to 
iterate through the table. You can add parameters to this procedure to pass in WHERE clause qualifiers to return 
subsets. The SelectRows procedure returns a complete result set from a single call rather than returning the cursor. 
The InsertRows and UpdateRows procedures insert and update rows from a set of records in a table. The 
DeleteRows procedure deletes any rows identified in a table of primary keys. The LockRows procedure lets you lock 
a set of rows identified by their primary keys for update. These generic procedures give you all the capabilities you 
need to maintain your database. You can, of course, add specific operations such as SetStatus: 
PROCEDURE SetStatus(pKey IN tCriminalOrganizationKey, 
                    pStatus IN CHAR); 

Again, you specify the object to update with a key and the status to update it with as a parameter. You could also 
provide a bulk update procedure using a key table: 
PROCEDURE SetStatus(pKeyTable IN tCriminalOrganizationKeyTable, 
                    pStatus IN CHAR); 

If you now grant EXECUTE privilege on the package to application users but do not grant privileges on the 
underlying table, the application must program to the package interface instead of selecting data directly from the 
table. Using this combination of SQL security and PL/SQL packaging lets you fully encapsulate your database table 
within a programming API. 

Note 

  

Developer/2000, the Oracle application generation system, uses this kind of package as an 
alternative to direct table access. You can thus provide much more control over your tables 
using Developer/2000 applications because no other application of any kind can access the 
tables directly without authorization. This gives you a rapid application development facility 
with highly encapsulated RDBMS data access.  

Table 11-4: Summary of Relational Schema Transformation  
Step  Transformation  

1 UML class becomes table. 

2 UML attribute in class becomes column in table. 

3 UML attribute type in class becomes column type in table through type 
transformation table. 

4 If {nullable} UML attribute tag, attribute has NULL constraint; otherwise, NOT NULL 
constraint. 

5 If UML attribute has initializer, add DEFAULT clause to column. 

6 For classes with no generalization (root or independent) and implicit identity, create 
integer primary key; for {oid}, add {oid} tagged columns to PRIMARY KEY constraint; 
ignore composite aggregation and association classes. 

7 For subclasses, add the key of each parent class to the PRIMARY KEY constraint 
and to a FOREIGN KEY constraint. 

8 For association classes, add primary key from each role-playing table to PRIMARY 
KEY constraint and FOREIGN KEY constraint. 
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9 If {alternate oid = <n>} tag, add columns to UNIQUE constraint. 

10 Add CHECK for each explicit constraint. 

11 Create FOREIGN KEY columns in referencing table for each 0..1, 1..1 role in 
association. 

12 Create PRIMARY KEY for composite aggregation with FOREIGN KEY to 
aggregating table (with CASCADE option); add additional column for PRIMARY 
KEY. 

13 Optimize binary association classes by moving into to-many side table where 
appropriate. 

14 Create tables for many-to-many, ternary associations with no association classes. 

15 Create PRIMARY KEY, FOREIGN KEY constraints from keys of role-playing tables 
in many-to-many, ternary associations. 

 
Summary 
This has been a long chapter, and it is impossible to summarize it in a couple of paragraphs. The real trick to 
transforming your UML data model into a relational database is being very, very systematic about your approach. If 
you understand how each UML concept maps into a relational concept, you can easily represent most aspects of 
your model. The biggest decision you must make is whether to conform to ANSI SQL for portability or to make use of 
the capabilities of your target DBMS that go beyond the standard. Taking the latter approach lets you get much 
closer to a real OO implementation of your system. 
For convenience, Table 11-4 summarizes the process. FOREIGN KEY and PRIMARY KEY mean either a table 
constraint or a REFERENCES column constraint depending on whether the key is multivalued. 

The standard approach is thus very limiting but very safe in terms of interacting with the relational database. With the 
next two kinds of database manager, you don't have the issue. While there are nascent standards for OR and OO 
databases, in practice you must adapt to the target DBMS implementations, which largely do not conform to any 
standards. 

 
Chapter 12: Designing an Object-Relational Database 
Schema 
Ex umbris et imaginibus in veritatem. "From shadows and types to the reality." 
Cardinal Newman's motto  

Overview 
Object-relational databases extend the capabilities of the relational database toward representing objects. Although 
there are no standards yet in this arena, a clear picture emerges from the competitive landscape and from the 
ongoing standards efforts of SQL3. 

 
So What's New? 
ORDBMS products are also known as "universal" servers or database managers, presumably because 
they can handle any kind of data, or possibly because vendor marketing would like their customers to 
adopt the new technology universally (very small joke). ORDBMS products add several basic things to a 
relational system: 

 Large object data types 
 Extended data types 
 Multivalued data types 
 Object identity 
 Extensions that aid in using the above new features 

Features 
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First, ORDBMS products add extra types to the type system to represent objects of arbitrary 
complexity: BLOBs, CLOBs, FLOBs, and so on. LOB stands for "large object," and these data types 
represent objects by giving you access to the computer representation of the object as SQL data. On 
reflection, though, this makes it sound like more than it is. In reality, LOB data types let you put some 
arbitrary set of bits or characters into a database—and that's it. The more advanced databases let you 
get the bits or characters out again, but it's up to you to make sense of them. The ANSI SQL3 
standard specifies three kinds of large object: the CHARACTER LARGE OBJECT (CLOB), 
NATIONAL CHARACTER LARGE OBJECT (NCLOB), and the BINARY LARGE OBJECT (BLOB). 
Since these types have no built-in capabilities, ORDBMS products also provide a way to add behavior 
to the system to make these objects come alive. Unfortunately, this is the least standardized part of 
the extension. Oracle8, Informix Dynamic Server, and DB2 Universal Data BAse (UDB) all support 
these kinds of types, though with differing syntax and features. 

Second, ORDBMS products extend the typing system to allow SQL to deal with user-defined types 
(UDTs), abstract data types (ADTs), or object types. The emerging SQL3 standard has the CREATE 
TYPE statement for creating these extended types, for example, mirrored by Oracle8's CREATE 
TYPE and IBM UDB's distinct types. SQL3 includes generalization of types into an inheritance 
structure. Oracle8 and UDB don't support inheritance, while Informix does. Many ORDBMS products 
also provide ways to externalize type representations, such as Oracle8 NCA cartridges, Informix 
DataBlades and opaque types, or UDB distinct types and stored procedures. The key difference 
between these extensions and the similar features in relational systems is the close integration of the 
extensions into the SQL typing system. This makes the data available within the context of SQL as 
well as in application programs. The older relational database technology simply stored the data in 
unstructured BLOBS and forced you to retrieve it into your programs to do anything with it. 

Third, many (but not all) ORDBMS products relax the constraints of first normal form to let you nest 
tables within tables, to have arrays as column values, and to link tables through pointers or references 
rather than through data. The ANSI SQL3 standard has arrays but not nested tables. UDB provides 
table types, external programs that materialize tables that you can then use in FROM clauses to 
further process with SQL. Oracle8 has nested tables and variable arrays. Informix has three collection 
data types: set, multiset, and list. 

Finally, accompanying all these other changes, ORDBMS products enhance the rest of the system to 
help you use those changes more effectively. Cast operators, a part of the ANSI SQL-92 standard, 
extend easily to act as constructors for UDTs. Oracle8 attaches methods to its new TYPE objects, 
including construction and indexing methods. Informix and UDB also provide ways of adding 
conversion functions to the system. The SQL3 standard has a complex system of "observer" and 
"mutator" functions for each type that work with the CAST feature to produce a comprehensive 
approach to typing in the context of complex SQL queries. DB2 UDB implements the SQL CAST 
operator, while the other ORDBMS products have not yet done so. 

The Downside 
While all this technology is fascinating, you should bear in mind the lessons of the SQL3 standard 
[Melton 1998]. The sheer complexity of adding serious typing to the SQL language has proved almost 
beyond the capabilities of our current technological understanding. Everyone has a solution; it's just 
that everyone has a different solution. Compromise is in the air, but there's still much disagreement 
over the important details. Some authors disagree over the entire approach the vendors are taking 
[Date and Darwen 1998]. 

The complexity of standardizing the OR capabilities is far worse because of the tremendous array of 
different capabilities in ORDBMS products, many of which do not conform to the emerging standard. I 
believe that no database vendor will even come close to implementing the SQL3 standard during the 
next 10 years, if you extend the lessons learned from the SQL-92 standard to the new standard. 

This jungle of features makes it very difficult to advocate a generalized approach to transforming a 
UML data model into an ORDBMS schema. This chapter takes the approach of relying on basic 
principles rather than on specific technology. Without an accepted standard, and with the very real 
possibility that the standard will not practically exist for a long, long time, you have to base your 
approach on the quirky tools you have at hand. This leads to three major recommendations. 

First, understand your technology before you decide to apply it. The choice of technology in this jungle 
can mean the difference between a successful project and an abysmal failure. Spend the time up front 
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to learn about the specific features you think will solve your problems, and don't believe vendor 
claims—benchmark with your type of application. 

Second, be flexible in your design approach. Don't lock in design decisions before you have 
prototyped and understood their implications for production applications. For example, nested tables 
may seem the ideal solution to a complex design full of composite aggregation. In practice, you may 
find the details of the SQL you have to write very complex and the performance of the system you 
build very slow. 

Third, if you have any concern whatsoever about portability, don't even bother reading the rest of this 
chapter. Certainly don't expect to be able to develop portable OR schemas any time in the near future. 
The equivalents of ODBC and JDBC or even ADO simply don't exist in this kind of database, and the 
sheer complexity of the problem means they won't exist for a long time to come. I hope the ORDBMS 
vendors prove me wrong on this one, but I seriously doubt it. 

Therefore, this chapter goes into less detail on specific technologies than it could. The focus here is 
on basic transformational principles that you can apply to your data model in the context of the various 
kinds of features that OR products provide. Take the principles and apply them in detail to the 
technology of your choice. 

The Transformation Process for ORDBMS Products 
This chapter covers the SQL3 draft standard schema language for object-relational systems [ISO 
1997]. It gives examples of schema choices in the Oracle8 database manager using Oracle SQL and 
PL/SQL [Koch 1998]. Where they are relevant, it provides a look at the syntax that Informix Dynamic 
Server [McNally 1997] and the DB2 UDB using DB2 SQL [Chamberlin 1998] provide. While the SQL3 
language is illuminating, its differences from emerging technology and the difficulties associated with 
its acceptance as a formal ISO standard [Melton 1998] mean that you shouldn't spend too much time 
over its details. 
To illustrate the process, this chapter uses the same design as Chapter 11, reproduced here for 
convenience. Figure 12-1 shows a UML model for the Person subsystem of the commonplace book, 
and Figure 12-2 shows a UML model for the Organization subsystem. Both of these subsystems are 
part of a third subsystem, the Entity subsystem. Figure 12-3 shows the architecture for the package. 

The Person subsystem contains the Person class and the Identification hierarchy that belongs to it. 
I've chosen to use the inheritance version of Identification rather than the Interface version. People 
connect to Organizations through a three-way relationship to the Role class in the Organization 
package. The scope notation (Organization::Role) identifies classes that are not a part of the Person 
subsystem. 

The Organization subsystem contains the Organization hierarchy, which includes the 
CriminalOrganization class. It also includes the Role class and the relationships between Role and 
Organization. Organizations connect to people through a three-way relationship to Role. 

The Entity subsystem contains three elements: the two subsystems People and Organization plus an 
abstract class, Entity. The Person and Organization classes in their respective packages inherit from 
that class. 

Considering just these packages, though, you won't see much benefit from moving to an ORDBMS. 
So, let's add to the mix a package for handling images and a package for handling geographic 
locations. 
Figure 12-4 illustrates a simple hierarchy of images. The design comes directly from the Oracle8 
Visual Information Retrieval data cartridge [Oracle 1997b]. The subclasses reflect some of the options 
that Holmes might like to see in the commonplace book system: cigar ash images, facial images, and 
images of collected evidence. You can relate these images to other classes, such as the relationship 
between the Person subsystem's Person class and the Facial-Image class. 
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Figure 12-1: The Person Subsystem in UML  
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Figure 12-2: The Organization Subsystem in UML  
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Figure 12-3: The Entity Subsystem in UML  

To motivate the Image hierarchy, consider these situations in which Holmes found himself. In an early 
case, the issue of cigar ash identification came up. 

"I gathered up some scattered ash from the floor. It was dark in colour and flakey—such an ash 
is only made by a Trichinopoly. I have made a special study of cigar ashes—in fact, I have 
written a monograph upon the subject. I flatter myself that I can distinguish at a glance the ash of 
any known brand either of cigar or of tobacco. It is just in such details that the skilled detective 
differs from the Gregson and Lestrade type." [STUD] 

With a searchable image of cigar ashes encoding texture and color, any Scotland Yard detective 
could have done the job using a photograph of the ash sample. 

In a much later case during his retirement from the profession, Holmes used photography in his 
investigation: 

"Finally, there is the question of the instrument with which these injuries were inflicted." 

"What could it be but a scourge or flexible whip of some sort?" 

"Have you examined the marks?" I asked. 

"I have seen them. So has the doctor." 

"But I have examined them very carefully with a lens. They have peculiarities." 

"What are they, Mr. Holmes?" 

I stepped to my bureau and brought out an enlarged photograph. "This is my method in such 
cases," I explained. 
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Figure 12-4: The Image Subsystem in UML  

"You certainly do things thoroughly, Mr. Holmes." 

"I should hardly be what I am if I did not. Now let us consider this weal which extends round the 
right shoulder. Do you observe nothing remarkable?" 

"I can't say I do." 

"Surely it is evident that it is unequal in its intensity. There is a dot of extravasated blood here, 
and another there. There are similar indications in this other weal down here What can that 
mean?" [LION] 

Using photographic comparisons to medical case histories, a detective could potentially have 
identified these characteristic weals of the Lion's Mane. Certainly making the photograph available 
digitally would make it easier to engage the help of a consulting forensics expert who might be more 
likely to notice the odd characteristics of the wounds on the victim's back. 

Holmes could be dramatic when he chose: 



 - 219 -

He slipped his key into the lock, and we all very quietly entered the cell. The sleeper half turned, 
and then settled down once more into a deep slumber. Holmes stooped to the water-jug, 
moistened his sponge, and then rubbed it twice vigorously across and down the prisoner's face. 

"Let me introduce you," he shouted, "to Mr. Neville St. Clair, of Lee, in the county of Kent." 

Never in my life have I seen such a sight. The man's face peeled off under the sponge like the 
bark from a tree. Gone was the coarse brown tint! Gone, too, the horrid scar which had seamed it 
across, and the twisted lip which had given the repulsive sneer to the face! 

… "Great heavens!" cried the inspector, "it is, indeed, the missing man. I know him from the 
photograph." [TWIS] 

Had Scotland Yard been using a system of facial identification, the computer could possibly have 
turned up Mr. Neville St. Clair based on the photograph of the subject: the man with the twisted lip. 
The similarities in facial characteristics would very probably have been great. 

A final example will help to clarify the close relationship between technology and requirements that 
occurs when you start to use OR approaches. Consider the problem of the Priory School: 

"This case grows upon me, Watson," said he. "There are decidedly some points of interest in 
connection with it. In this early stage, I want you to realize those geographical features which 
may have a good deal to do with our investigation. 
"Look at this map. This dark square is the Priory School. I'll put a pin in it. Now, this line is the 
main road. You see that it runs east and west past the school, and you see also there is no side 
road for a mile either way. If these two folk passed away by road it was this road." 

"Exactly." 
"By a singular and happy chance, we are able to some extent to check what passed along this 
road during the night in question. At this point, where my pipe is now resting, a country constable 
was on duty from twelve to six. It is, as you perceive, the first cross-road on the east side. This 
man declares that he was not absent from his post for an instant, and he is positive that neither 
boy nor man could have gone that way unseen. I have spoken with this policeman to-night, and 
he appears to me to be a perfectly reliable person. That blocks this end. We have now to deal 
with the other. There is an inn here, the Red Bull, the landlady of which was ill. She had sent to 
Mackleton for a doctor, but he did not arrive until morning, being absent at another case. The 
people at the inn were alert all night, awaiting his coming, and one or other of them seems to 
have continually had an eye upon the road. They declare that no one passed. If their evidence is 
good, then we are fortunate enough to be able to block the west, and also to be able to say that 
the fugitives did not use the road at all." 

"But the bicycle?" I objected. 

"Quite so. We will come to the bicycle presently. To continue our reasoning: if these people did 
not go by the road, they must have traversed the country to the north of the house or to the south 
of the house. That is certain. Let us weigh the one against the other. On the south of the house 
is, as you perceive, a large district of arable land, cut up into small fields, with stone walls 
between them. There, I admit that a bicycle is impossible. We can dismiss the idea. We turn to 
the country on the north. Here there lies a grove of trees, marked as the 'Ragged Shaw,' and on 
the farther side stretches a great rolling moor, Lower Gill Moor, extending for ten miles and 
sloping gradually upwards. Here, at one side of this wilderness, is Holdernesse Hall, ten miles by 
road, but only six across the moor. It is a peculiarly desolate plain. A few moor farmers have 
small holdings, where they rear sheep and cattle. Except these, the plover and the curlew are the 
only inhabitants until you come to the Chesterfield high road. There is a church there, you see, a 
few cottages, and an inn. Beyond that the hills become precipitous. Surely it is here to the north 
that our quest must lie." 

"But the bicycle?" I persisted. 

"Well, well!" said Holmes impatiently. "A good cyclist does not need a high road. The moor is 
intersected with paths, and the moon was at the full." [PRIO] 

In the midst of a case involving this kind of geography, a detective would find a geographical location 
database of great use, both as a reference and as a search tool. The Geometry subsystem in Figure 
12-5 illustrates one such design. 
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An element is a point (latitude and longitude), a line (two points), or a polygon. A geometry is a 
collection of elements that make up a geographical object (the moor, for example, or the two inns). A 
layer is a collection of related geometries. You could have a land feature layer, a road layer, and a 
building layer to describe the entire map with which Holmes solved his problem. The 
GeometryElement class supports all the behavior of the system, including construction of the element 
(InitElement and AddNodes), validation of the internal characteristics of the element 
(ValidateGeometry), and searching (Interact and Relate to test whether elements overlap or relate to 
one another through containment or other relationships). 
With this kind of design, you confront a fact of life. Using a specific technology means your database 
design must use the schema that technology imposes on you. If you are up to the task of writing your 
own geographical information system (GIS), you can use any design you wish, as long as it works. In 
this case, Figure 12-5 uses the design from the Oracle8 Spatial Data Cartridge [Oracle 1997a], a 
technology developed by a third party and integrated into Oracle that uses line and polygon 
computational geometry to represent and process geographical information. This cartridge is a 
completely proprietary and unique approach to geographical information systems that is not 
compatible with other such systems. It indexes geographic elements using a tiling approach called 
tessellation. Tessellation breaks the space into tiles containing pieces of the geography down to a fine 
resolution. Using the data cartridge means installing a number of tables that the system requires to 
store information that it needs, such as the Layer and Geometry tables. These, then, become the 
basis for your data model. The technological requirement thus dominates the functional requirement 
and couples you to a particular solution in your design. This situation wasn't so bad in the Image 
design in Figure 12-4.  

 
Figure 12-5: The Geometry Subsystem in UML  
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In this case, the design is not what an OO designer would like to see. First, the Spatial Data Cartridge 
does not use object types or any of the more interesting OR additions to Oracle8. It is a simple 
transference of the relational implementation of the "Spatial Data Option" to Oracle7. Also, 
presumably for performance optimization, the designers of the Spatial Data Cartridge have broken 
most of the design rules. 

First, each layer in the system gets a unique set of tables identified by name. That is, if you have a 
road layer, you have four tables for that layer named Road_SDOLayer, Road_SDODim, 
Road_SDOGeom, and Road_SDOIndex. This makes the Layer table a singleton table, with the single 
row describing the layer. There really isn't any reason for a singleton except to avoid a join, and in this 
case it's far too limiting. Instead, you should have a series of layers identified by ID and Name. The 
Dimension table is a doubleton, if there is such a thing, with two rows corresponding to the two 
dimensions that the Spatial Data Cartridge supports. Neither of the two tables contains a primary key 
because of the singleton approach. 

The Geom table is not, as you would think, a geometry table; rather it represents the individual 
elements that make up a geometry. Worse, the designers used a "repeating groups" pattern that lets 
you configure the table differently for each layer. One layer could have Geom rows with two 
coordinates, while another layer could have six. Worse still, an individual element can span objects, 
with one real geometry element (a polygon) stretching over several rows with multiple coordinate 
pairs. Standard design techniques would add a real Geometry table to store geometry information, an 
Element table to store element information, and a Coordinate table to store coordinate pairs. 
Broadening this a bit, you could support more than two dimensions with a Coordinate class that keeps 
constant-sized vectors of coordinates. This will be very difficult to do with the current schema. 

The Index table contains the tiles for a geometry that the tessellation scheme computes. The table 
links to the Geometry. Unfortunately, there is no such object in the data model, since the tables don't 
represent it directly, only in an aggregate form through the multiple-row element table. 

This design is really painful to an OO designer. It does, however, have the simple fact of existence. It 
contributes value to an Oracle8 application developer because it allows that developer to do 
geographical representation and searching, however inflexibly, without writing the code to do it. 
Existence, in the reusable software arena, is nine-tenths of the law. The law can be harsh at times. 

You thus have a choice between design and reuse. The usual answer to this situation is layering: 
building packages to contain packages. To make the Spatial Data Cartridge approach more general, 
you could encapsulate these persistent classes in an emollient layer of abstraction that presents the 
structure more directly without layers and geometries and elements. You can package common 
queries. (For example, in a given bounded area, what roads provide exits?) Or, how many paths exist 
between two fixed points in the road layer?) Unless you write a full-scale graphical query system, 
however, you are likely to decrease the flexibility of the underlying technology a great deal by such 
layering. Giving consulting technologists access to the spatial database and training in spatial queries 
using first- and second-order filtering may prove much better when the requirements call for a more 
flexible style of query. That usually means exposing the underlying technology and therefore making 
your design more specific to that technology. 

You can usually expand the information these designs include with little effort. Unlike a compiled 
reusable component, the server-based extended types permit you to add your own columns to the 
tables, or to add your own tables that map to the tables that support the type. In the case of the 
Spatial Data Cartridge, for example, you can add a Geometry table that has the GeometryID as its 
primary key. The standard Element and Index tables link to that with foreign keys. You could also 
create a History table, again for example, that contains records of incidents at that location. This is the 
equivalent of taking a standard map and sticking pins in the locations where incidents have occurred. 
The reusable component supplies the map, and you supply the pins. 

The problem with this comes from the lack of true OO features in the ORDBMS. Your basic data type 
is only subject to black-box reuse: that is, you can't change the type, you can only subclass it or add 
additional classes. Since Oracle8 doesn't have subclassing, that means you can only add classes, 
and the original type and its behaviors don't know anything about them. You have to add your own 
behaviors (stored procedures or methods) to the new classes. You can't really leverage the behaviors 
in the extended type, just use them by reference. 
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This choice becomes more common with OR schemas than with relational schemas. The OR 
approach encourages the use of reusable components through extended data types such as the 
spatial and image types that Oracle8 provides. 

 
Object Diversity-Types 
The key advantage to universal servers is their ability to represent a wide variety of data. As is usual in the software 
marketplace, ORDBMS products also manage to represent that wide variety of data in a wide variety of ways. The 
real trick to designing an OR database is to take advantage of the right OR structures for your particular problem, 
choosing among the multitude of possible structures. 
Many of the innovations in the ORDBMS world center on the type. In OO design, the type plays a central role. 
Chapter 7 discussed in detail the different aspects of packages, classes, types, and interfaces, all of which the UML 
treats as classifiers, a general concept at the center of the design approach and notation. 

In a relational database, a type is one of the basic data types you associate with columns, such as NUMERIC, 
FLOAT, VARCHAR, or TIMESTAMP. There are no structured types of any kind. 

Note 

  

Programmers like to think of tables as the "equivalent" of record types in their programming 
languages. Unfortunately, SQL as a programming language does not treat tables or rows as 
types—or at least SQL-92 doesn't, nor should it [Date and Darwen 1998]. Chapter 11 showed 
you how to transform your class and type definitions into schema tables, but they really aren't 
the same thing. It's that flexibility that lets you UNION ALL across multiple tables without 
worrying about the underlying record types, for examplejust the structure of the columns. It's 
that flexibility that is at the basis of many of the criticisms of SQL as well [Codd 1990; Date 
1986; Date and Darwen 1998]. SQL-92 is the Basic of database programming languages; 
SQL3 is shaping up to be the C++ of such languages, for better or worse.  

In OR databases, the situation is completely different. The SQL3 standard, for example, defines several new data 
types, ranging from the user-defined type (UDT) to the row type: 

 User-defined type: A type that you define using the CREATE TYPE statement that you can use with 
reference types, in generalization (subtyping) relationships, in returning values from user-defined 
functions, in the security system (privileges for using the type), in casting (type conversion) 
operations, and probably most importantly as the basis for defining a table; the distinct UDT refers to a 
built-in type, while the structured UDT lets you define a complex structure. 

 Row type: A type that represents the structure of a row of data 
 Reference type: A "pointer" to a user-defined type, used for referring to a structured type from a 

single-valued column 
 Collection type: A multivalued type, cur rently limited to the ARRAY, a collection of items of the same 

type arranged in a sequence 
 (CLOB): An implementation-defined storage area for characters that can be very large 
 (NCLOB): A CLOB that stores multibyte characters as defined by one of the SQL3 character sets 
 (BLOB): An implementation-defined storage area for binary data that can be very large 

There are two kinds of UDTs, the distinct type and the structured type. A distinct type is a UDT that refers to a 
predefined or built-in type as its source. For example, you can define a MONEY UDT that is a distinct type of 
NUMERIC, for example. A structured type is a UDT that contains a user-defined set of data attributes rather than 
referring to a single-valued built-in type. 

The SQL3 UDT includes the OO features of encapsulation and inheritance by defining methods for data access. 
When you refer to a column name in an SQL3 SELECT statement, for example, you are really calling a function that 
returns the column value, not directly referring to the value. The UDT also supports subtyping, which is a major 
reason for this apparent fiction, as it allows the subtypes to refer to the column values of the supertypes through a 
well-defined set of functions on the type. These features are still quite controversial in the SQL standards community, 
and the details may change [Melton 1998]. 

The ORDBMS vendors implement parts of these standards, but no one vendor comes close to offering the full array 
of SQL3 types. Informix Dynamic Server is the only vendor to offer inheritance of any kind at this time, for example, 
and none of the vendors support full encapsulation of table or type attributes. Most vendors now have a full 
complement of LOB types, as vendors can easily build them and they have no semantic impact on their database 
languages or access methods (indexes, clusters, and so on). 

If the OR world was as orderly as the UML world, you would have no problems constructing an OR schema from a 
UML data model. Unfortunately, that's not the case. The ORDBMS vendors and the SQL3 standardization effort 
have developed a complex array of competing structures. There are some common themes that run through all of 
them, however: object types, large object types, collections, references, and behavior. 



 - 223 -

User-Defined and Object Types 
The user-defined type started life as the more theoretical abstract data type (ADT). Oracle8 has changed the name 
of the UDT to "object type," a much more euphonious appellation that this chapter will cheerfully adopt. This labeling 
focuses attention on the contribution of the UDT to OO representation. The key innovation in OR systems is to 
separate the concept of type from the table rather than trying to redefine the table as a kind of type. 

Warning 

  

It is very dangerous to attach any real meaning to terms such as "ADT" or "object type" 
when in the presence of a database theorist [Date and Darwen 1998]. Serious damage is 
likely to result, either to the theorist from apoplexy or to you from the resultant explosion. 
Treat these terms as operationally defined by the products that use them, not as 
theoretical concepts.  

In the SQL3 world, a type is a description of data. The type tells you what the data means, such as that a character 
string is a sequence of characters defined by a character set with an order defined by the collation of the character 
set, or that a timestamp with time zone has characteristics defined by timekeeping standards. The type also has a 
set of operations (arithmetic operations, string operations, date operations, for example). Finally, the type tells you 
what kinds of values you may compare or convert to what other kinds of values. With an object type, the semantics 
and operations are totally up to you; the comparison, however, requires that the types be related. You can compare 
two objects only if they are of the same base type (have the same superclass at some level in the class hierarchy). 
You can define conversions between types that don't meet this strong typing convention, usually as operators on the 
object type. 
The section in Chapter 7 on "Domain Constraints" discusses the use of the UML type classifier. The UML defines the 
semantics of the data type this way: 
A data type is a type whose values have no identity, i.e. they are pure values. Data types include primitive built-in 
types (such as integer and string) as well as definable enumeration types (such as the predefined enumeration type 
boolean whose literals are false and true). [Rational Software 1997b, p. 22] 

There are three subclasses of the DataType classifier in the UML metamodel: Primitive, Structure, and Enumeration. 
These are stereotypes you can use to qualify the classifier (class box) that you set up to represent the type and its 
operations. If you define classifiers with the «type», «primitive», «structure», or «enumeration» stereotypes, you 
convert these classifiers to distinct types in your ODBMS. 
Class and interface classifiers in UML static structure diagrams correspond to the structured type. In relational 
systems (Chapter 11), you convert classes into tables and interfaces into stored procedures of some kind (if at all). In 
OR systems, you can translate all classes and interfaces into structured types through the CREATE TYPE 
statement. 

Note 

  

You don't actually need to translate all classes into types, just those you intend to use as 
types in SQL statements. You use a class as a type when it is the target of an association (a 
foreign key, reference to an object, or nested table in the ORDBMS), when you make it the 
parent of another class, or when you define multiple tables based on the type. In most 
systems, that covers just about all the classes. You may have some classes that you just use 
as lookups or that have some other reason for being completely isolated in the system; 
singleton objects are an example of this. Adding the complexity of having some tables without 
types may complicate your life unnecessarily, however, especially as you extend your 
system.  

To illustrate the varieties of OR object types, consider these versions of the concept: 
 SQL3 user-defined type 
 Oracle8 object type 
 DB2 UDB distinct type (similar to SQL3 and Informix Dynamic Server distinct type) 
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Figure 12-6: The SQL3 CREATE TYPE Syntax  

The SQL3 UDT 
The user-defined type from the pending SQL3 standard is the most complete definition of an object type. It also 
doesn't exist in any of the major ORDBMS products. Figure 12-6 shows the syntax of the SQL3 CREATE TYPE 
statement that creates a structured UDT. 

Note   The complete syntax of the SQL3 CREATE TYPE statement contains several more options, 
particularly those that let you define a distinct type, including the cast operators.  

The UNDER clause identifies the superclasses of the type you're defining in a comma-separated list of type names. 
You thus convert UML generalizations to other classes into type names in the UNDER clause list. 

The AS clause defines all the attributes of the class. If you don't have an AS clause, you must have an UNDER 
clause that identifies attributes from the superclass. You translate the attributes from a UML class directly into 
attribute definitions in the AS clause using the same transformations you would use to produce column definitions in 
a relational table. 

Note 

  

That is, except for the constraints. The type defines attributes, but it does not define their 
connections to other types, nor does it define their primary key or business rules (CHECK 
constraints). You must place those constraints directly on the tables you create using the type 
with the CREATE TABLE statement. That means that in the OR model, you do not have a 
complete design implementation until you create both the types and the tables that instantiate 
those types. Unfortunately, the SQL3 syntax seems ambiguous on the constraints you can 
place on a table you construct from a structured type.  

If the UML class is an abstract class, specify NOT INSTANTIABLE. Otherwise, specify INSTANTIABLE. In the SQL3 
database, you can create rows in tables of the type only if the type is INSTANTIABLE. The NOT FINAL clause, 
which the standard requires for structured UDTs, doesn't have any semantics in the standard, so I'm not sure what 
purpose it serves. 

The final clause specifies an ordering method for objects of the type. The EQUALS ONLY clause limits ordering 
comparisons to equality comparisons, while ORDER FULL lets you define a complete order for the extension of the 
type. The RELATIVE and HASH ordering methods use relational comparison (greater than or less than) or hashing 
to order elements using functions that you supply as stored functions. The STATE option is valid only for EQUALS 
ONLY comparisons and does the equality comparison based on the attributes of the type. You may be able to 
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specify equivalents in your UML operations list for the class and transform them into stored functions, if that makes 
sense in your context. 

Note 
  

The syntax and semantics of the CREATE TYPE statement are among the most contentious 
issues still to be resolved in the SQL3 standardization process [Melton 1998]. You can 
probably count on changes here.  

The Oracle8 Object Type 
The object type in Oracle8 is at the heart of the object extensions to the relational Oracle database. Object types 
serve as the basis for nested tables, let you reference objects in other tables, and provide well-defined ways to 
integrate behavior with table rows. They do have two major limitations from the OO perspective: a complete lack of 
any form of inheritance and a complete lack of encapsulation. These limitations make them much harder to use from 
the UML perspective, but at least they provide a structured type and object identity you can use creatively in your 
Oracle8 applications. Figure 12-7 shows the syntax of the Oracle8 CREATE TYPE statement that creates an object 
type. 

 
Figure 12-7: The Oracle8 CREATE TYPE Syntax  

The Oracle8 CREATE TYPE statement has a type name in it, but other than that, bears little resemblance to the 
SQL3 statement. This syntax is one of the three variations in Oracle8, which also include creating a VARRAY type 
(see the later "Collections" section) and a nested table type. The syntax in Figure 12-7 creates an Oracle8 object 
type, which you can then use to create tables of those objects. The CREATE TYPE statement contains a list of 
members. You can supply either a MAP or ORDER member to support indexing and sorting. If you don't supply one 
or the other, you can only do equality comparisons. This corresponds to the ORDER FULL and EQUALS ONLY 
syntax in SQL3. You must supply at least one data attribute with a type, and optionally more data attributes and 
types. You can also supply a series of member subprogram (function or procedure) declarations that represent the 
operations of the object type. There is a separate CREATE TYPE BODY statement that separates the 
implementation of the operation from its declaration in the CREATE TYPE statement. The PRAGMA clause lets you 
restrict side effects on database and PL/SQL package state in the methods, a requirement to use the methods in 
SQL statements. 

The Oracle8 type thus supports easy transformation of several of the UML constructs in ways that the SQL3 type 
does not. Each class in your UML static structure diagram transforms to an object type, and each attribute and data 
type to an object type attribute and data type. 
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Although you can't refer directly to an object type for an attribute, you can define a REF to such a type (see the later 
section on "References"). That means that you can define to-one associations as attributes of the object type, with 
0..1 multiplicity transforming to a REF type that allows nulls and 1..1 or just 1 being NOT NULL. Since one kind of 
object type is a VARRAY, you can also define an attribute with a VARRAY of REFs to another object type to handle 
to-many multiplicities. Similarly, you can define an object type for a nested table. If you have a composite 
aggregation association, you can define a nested table object type for the child class, then include a REF to that 
object type to nest the data within each row of tables based on your parent object type. 

Warning 

  

For several reasons, I don't recommend using nested tables or VARRAYs of anything but 
REF to another type. First, using these features leads to the sort of normalization 
problems that we've known about for almost 30 years. I don't see any pressing need to 
forget the basics of database design to go back to the days of hierarchical database 
management and all its complexity. Second, OO design reduces complexity by 
encapsulation. Oracle8 nested tables and VARRAYs do precisely the reverse by 
exposing all the structure and making your life difficult with new and more complex SQL 
syntax (the THE function, if you want to look it up).  

Operations map to member subprograms and the method implementations of operations to member subprogram 
bodies in the CREATE TYPE BODY statement. If an operation has a {readonly} tag, or if it has a {query} tag, you can 
add a PRAGMA clause that restricts references using the WNDS, WNPS, and RNPS purity levels (write no database 
state, write no package state, and read no package state, respectively). Specifying WNDS lets you use the function 
as an SQL function. 

Note 
  

The actual meaning and use of Oracle purity levels is complex. If you intend to make 
extensive use of purity levels in your schema, either with object types or with PL/SQL 
packages, you should consult the Oracle8 Application Developer's Guide [Oracle 1997c] for 
its discussion of the ins and outs of side effect restrictions in PL/SQL.  

As an example of creating an object type and using it, consider the Image example in Figure 12-4. Oracle8 provides 
this class through its Visual Information Cartridge. However, if you wanted to develop your own object types, you 
could create an Image object type to facilitate your representation and processing: 
CREATE OR REPLACE TYPE Image AS OBJECT ( 
  ImageID NUMBER, 
  Height NUMBER, 
  Width NUMBER, 
  ContentLength NUMBER, 
  FileFormat VARCHAR2(64), 
  ContentFormat VARCHAR2(64), 
  CompressionFormat VARCHAR2(64), 
  Content BLOB, 
  ImageSignature RAW(2000), 
  MEMBER PROCEDURE copyContent (destination IN OUT Image), 
  PRAGMA RESTRICT_REFERENCES (copyContent, WNDS), 
  MEMBER PROCEDURE setProperties (SELF IN OUT Image), 
  PRAGMA RESTRICT_REFERENCES (setProperties, WNDS), 
  MEMBER PROCEDURE process (SELF IN OUT Image, 
  command IN VARCHAR2), 
  PRAGMA RESTRICT_REFERENCES (process, WNDS), 
  MEMBER PROCEDURE processCopy (command IN VARCHAR2, 
  destination IN OUT BLOB), 
  PRAGMA RESTRICT_REFERENCES (processCopy, WNDS) 
); 

The SELF argument is an explicit declaration of the current object as the first argument to each method. If you don't 
supply this, Oracle8 assumes a parameter type of IN (read only). So, for example, the first member procedure, 
copyContent, gives read access to the current Image object, while the second procedure, setProperties, gives both 
read and write access to it. 
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You can now set up tables of images, and you can refer to images from other tables: 
CREATE TABLE CrimeSceneImages OF Image ( 
  ImageID PRIMARY KEY); 
CREATE TYPE ImageArray AS VARYING ARRAY (50) OF REF Image; 
CREATE TABLE CrimeScene ( 
  SceneID NUMBER PRIMARY KEY, 
  Description VARCHAR2(2000) NOT NULL, 
  Images ImageArray 
); 

Note 
  

The CREATE TABLE statement based on the Image type contains the primary key 
declaration. You can add a constraint for each of the attributes you've defined in the type, and 
you can add table constraints that involve more than one attribute.  

Depending on how you intend to access the images, you may find it better to create the set of image references in a 
separate table, which permits indexing and joining. The varying array permits only navigation to the specific image 
through program loops or (very ornate) SQL statements. You may also want to consider a nested table structure, 
with or without indexes. This can lead to very complicated maintenance and SQL statement access, especially if you 
wind up storing images in more than one nested table. 

This example leads to a major point about Oracle8 and its OR friends: you truly have an enormous array of choices 
to make when you use these systems. You can create structures in a bewildering variety of forms, each of which has 
advantages and disadvantages. If you intend to target an ORDBMS as your object repository, you should count on a 
steep learning curve as you acquire the knowledge of what works and what doesn't. This is complicated by the lack 
of standards, of course. 
You may have noticed one big difference between the SQL3 CREATE TYPE statement and the Oracle8 object type 
creation statement: you cannot use the latter to create a distinct type, just a structured type. Again, a distinct type is 
a type you derive from one of the built-in SQL types. SQL then enforces strong typing, which increases your 
assurance that you're using the right kind of data in your SQL statements. The consequence, as far as transforming 
UML static structure diagrams is concerned, is that if your target is Oracle8, you cannot translate your «type» 
classifiers directly into distinct types. Instead, you must use a transformation table just as in the relational system 
(see Chapter 11). Distinct types can do more for you, however, as their use in the DB2 UDB product shows. 

The UDB Distinct Type 
DB2 UDB provides no structured types, but it does include the concept of distinct types with the syntax in Figure 12-
8. 

The UDB CREATE TYPE statement is thus much simpler than the SQL3 or Oracle8 statements. All it needs to do is 
to name the new type, relate the name to the source built-in type, and optionally specify the inclusion of default 
comparison operators (=, <, <=, >, >,= and <>). If you leave off WITH COMPARISONS, you cannot compare the 
values of the type. 
A key use of distinct types in UDB is to encapsulate LOBs as distinct types [Chamberlin 1998]. For example, to 
provide the Image class from Figure 12-4 in a relational table, you would create a BLOB column: 
CREATE TABLE Image ( 
  ImageID INTEGER PRIMARY KEY, 
  Height INTEGER, 

 
Figure 12-8: The UDB CREATE DISTINCT TYPE Syntax  

  Width INTEGER, 
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  ContentLength INTEGER, 
  FileFormat VARCHAR(64), 
  ContentFormat VARCHAR(64), 
  CompressionFormat VARCHAR(64), 
  Content BLOB(2M), 
  ImageSignature BLOB(2000)) 

This is fine as far as it goes, but there is no way to tell an SQL statement that the Content column contains an image 
or that the Signature column contains a signature. To achieve this effect, you can use distinct types: 
  CREATE DISTINCT TYPE Image AS BLOB(2M); 
  CREATE DISTINCT TYPE Signature AS BLOB(2000); 
  CREATE TABLE Image ( 
    ImageID INTEGER PRIMARY KEY, 
    Height INTEGER, 
    Width INTEGER, 
    ContentLength INTEGER, 
    FileFormat VARCHAR(64), 
    ContentFormat VARCHAR(64), 
    CompressionFormat VARCHAR(64), 
    Content Image, 
    ImageSignature Signature) 

The two distinct types define specific varieties of BLOBs as Image and Signature types, and the CREATE TABLE 
statement then uses those types to declare the columns. Now when you refer to those columns, UDB SQL will treat 
them as special types and will not allow you to assign them or to call functions on them. You can then define external 
functions in a programming language that accepts arguments of the distinct type. For example, you can define the 
CopyContent, Analyze, and Similar functions as C functions and declare them as UDB functions taking arguments of 
Image and/or Signature. You can then call them on any given Image or Signature, being assured that the data is of 
the correct type. 

Associations 
Creating associations in an OR system is difficult, not because of the lack of technology, but because of too many 
choices. You can stick with the tried and true techniques of Chapter 11 using foreign keys, or you can venture into 
the OR world of object types, references, and collections. My own preference is to use the OR features only where 
they make obvious sense and directly and easily implement the object structure in the UML design. 

Warning   As always, what is obvious to one person may be opaque to another; I am expressing 
opinions, not facts.  

First, you need to understand the concepts of the object attribute, reference, and collection types to make sense of 
these new ways of associating objects. You can also still have foreign keys, but you have to declare them in tables, 
not in the object types. 

Object Attributes 
An object attribute is an attribute of an object type that is itself an object instead of a value with a built-in data type 
such as NUMBER or VARCHAR. If you're confused after reading that sentence, I'm not surprised. Take it piece by 
piece. In relational tables, you have columns that you declare with built-in data types such as NUMBER, 
CHARACTER VARYING, or LONG. Values in such columns are indeed values: they have no separate identity 
outside the row they are in. Objects always have identity as separate, individual things. When, in an OR system, you 
create an attribute with a user-defined or object type, you are creating the possibility of an object embedded within a 
table, each row of which constitutes yet another object with identity. In a UML diagram, this is an association with a 
1..1 or 0..1 multiplicity to the class that represents the embedded object. 
For example, in Figure 12-1, the Identification class associates with the Person class with a 1..1 multiplicity: every 
identification identifies precisely one person. In Oracle8, for example, you can create an object type for Identification 
that embeds a single Person object. Once you are looking at the Identification object, you also know the Person 
object that the Identification identifies. But this isn't a very good example for the embedded object, since a Person 
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has more than one identification. The embedded object, or object attribute, is a clear example of composite 
aggregation, where the object owns the embedded object. But in the case of Identification, the ownership is the other 
way around: a Person owns several Identifications. 

Given this logic, you should use object attributes or embedded objects only when you have an association that is a 
composite aggregation with the 1..1 multiplicity on the side of the aggregated object rather than the aggregating 
object. This is reasonably rare in practice, as most composite aggregations are master-detail relationships with 
multiple details for each master. It only occurs when there is a one-to-one mapping or an even rarer one-to-many 
with aggregation on the one side (one detail to many masters with the master owning each detail, and if you can 
figure out what this means semantically, you're welcome to it). 

References 
A reference is a logical pointer to an object you store somewhere other than in the current table. The "pointer" in this 
case is the object identifier, or OID. The ORDBMS constructs an OID for each object of a structured type you create. 
You can then refer to the object by putting the OID into a column value in the referring table. The reference is a way 
to break the strong ownership model, meaning that the attribute no longer implies a composite aggregation 
association but rather a simple association to a single object. This arrangement is much more common in practice 
than embedded objects. 

You thus have the choice in an ORDBMS of representing associations as either foreign keys or as references. If you 
use foreign keys, you must join the tables in your queries. If you use references, you can navigate to the referenced 
object through SQL expressions, avoiding the join. There are a couple of other issues with references: scope and 
dangling references. 

Both the SQL3 standard and Oracle8 provide a mechanism that scopes a reference to a particular table or tables. 
Each object type may be the genesis of several tables. If you refer to an object of the type, by default there is no 
constraint on what table may store the object to which you are referring. Adding the scope qualifier to the reference 
lets you specify a list of tables. When you insert a new row with a reference or update the reference, that reference 
must refer to an object of the appropriate type in one of the tables you've specified as the scope of the reference. 
There is a bit of a problem with references, however. As implemented by the various ORDBMS products, and as 
specified in the SQL3 standard, references do not enforce referential integrity. If you delete an object, any references 
to it remain just as they are. Also, you cannot constrain operations such as DELETE to fail if there are outstanding 
references to an object. If you use references, you should encapsulate the objects to which they refer within a set of 
operations that maintain the references. You can do this through triggers on the referenced tables, or you can use a 
stored-procedure encapsulation scheme to deny direct access to tables, as Chapter 11 outlines. 

Given the referential integrity problems, you should use references as a performance optimization only. Your usual 
course with associations should be to establish foreign keys. If the join performance of the tables is poor for some 
reason, consider using references instead, but realize that you will then need additional code to maintain referential 
integrity. 

Note 
  

C. J. Date discusses the concepts behind references (he calls them "pointers") extensively 
and decisively rejects them as incompatible with the relational model [Date and Darwen 
1998].  

Collections 

Thus far, the discussion has focused on the to-one side of associations. What about the many? 
A collection is a multivalued attribute of some kind, such as an array, a set, or a table. SQL3 provides the ARRAY as 
the only kind of collection. Oracle8 provides the VARYING ARRAY and the nested table. Informix provides the SET, 
MULTISET, and LIST. The objective of all of these types is to collect several objects into a single column value. This 
is just what you need to represent the * multiplicity side of an association. Or is it? 
Take the Person-Identification association in Figure 12-1, for example. Each person has some number of 
identification documents. This is a composite aggregation association, so we should be able to get away with storing 
the Identification objects as part of the Person object to which they belong, as they do not share the objects. 

As a varying array in Oracle8, the identification documents would be part of an array-typed column of the Person 
table. One limitation occurs right away: you must specify a limit on the number of elements in the array when you 
create the array type. In the original UML diagram, the multiplicity is 0..*, meaning there is no limit. You could replace 
the * with 20, say, to accommodate the implementation limitation. Your type would look like this: 
CREATE TYPE IdentificationDocuments_t 
  AS VARYING ARRAY (20) OF Identification; 
CREATE TYPE Person_t AS OBJECT ( 
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  PersonID INTEGER, 
  . . . , 
  IDs IdentificationDocuments); 

If the multiplicity were 1..20, you would need to qualify the IDs attribute when you create the table with a NOT NULL 
constraint and perhaps a CHECK constraint that the size of the array must be >= 1. Notice that there is a difference 
between a null array and an array with no elements (an empty array). In the first case, the column value is entirely 
null; in the second case, the row has storage for the VARRAY but there are no elements in the array. This distinction 
can complicate your programming slightly. 
For associations that are not composite aggregations, varying arrays of references are a better choice. For example, 
each person can have some number of addresses (Figure 12-1). On the person side, you could represent this as a 
varying array of references to Address objects. Again, references do not enforce referential integrity, so if a house 
burns down or somebody goes to jail, you have to clean up the references in your application code or in triggers. 

You might also have noticed in this last example that, although the collection represents the person side of the 
association, it doesn't do a thing for the address side. To take care of that, you need to create another collection, this 
time as an attribute of Address, that keeps references to Person objects. Your application code or triggers will need 
to ensure that these two collections stay synchronized. 

Given these limitations of the association as collection, you should use this technique only for one-way associations 
(associations with an arrowhead showing one-way visibility with no need to maintain both sides of the association). 
This makes navigation slightly less flexible but improves your code maintainability dramatically. 
Finally, consider the ternary, many-to-many association, such as the Plays association in Figure 12-1. A Person 
plays a Role in a CriminalOrganization. Could you use a collection to represent this association? 

In a word, no. Each element of the varying array must be a single object of another type. You can have an array of 
people in the criminal organization, but you can't bring their roles with them. You can create a type for Plays, giving it 
references to the three other kinds of objects, then create an array for the Plays objects in each of the three other 
types. Because of dangling references and presumably other internal issues, Oracle8 (for one) does not permit you 
to create a primary key on a reference, so the tables of references would have no way to enforce uniqueness 
constraints on the association links—a major headache. 

To sum up, then, if you have a composite aggregation association, you can consider a collection as its 
representation. If you have a one-way, to-many association, you might consider an array of references as its 
representation. For referential integrity reasons, however, you should consider this an option only to improve 
performance when needed. Finally, using collections in other association situations is not advisable. 

Behavior 
In relational databases, you transform operations into stored procedures or triggers as appropriate. Of course, these 
elements are completely nonstandard, so there is no portable way to represent behavior in relational systems. 

Object-relational databases vary this theme only slightly by providing some additional ways to attach behavior to 
objects. The behavioral elements are still completely nonstandard, leaving you with the unsatisfying choice between 
lack of portability and an inability to have your behavior where it belongs on the database server. Once you move to 
an ORDBMS, you have to commit yourself to nonstandard solutions with respect to behavior. For example, although 
Oracle8 adds methods to the object type, the SQL3 standard does not. What is does do is to define the operations 
on the structured type in terms of functions that the system generates, such as get and set functions (observers and 
mutators, in the language of the standard) corresponding to the attributes of the type, constructors, and casting 
functions. 

Note 

  

For a somewhat different logical model of this area, consult Date's book [Date and Darwen 
1998, pp. 104—122]. Date's model places constructors, observers, and mutators in a much 
different position relative to the underlying types. The constructor, which Date calls a 
"selector," selects existing data rather than a allocating storage. Data defines THE_operators 
that act as a pseudovariables to provide both retrieval and updating of the possible 
representations of his types. You can use nested operator calls to navigate through complex 
representations, for example, instead of using dot notation on the attribute names. All these 
operators are globally scoped, not tied directly to the type. This approach has some benefits, 
logical and practical, but you must adopt the entire RM model to realize them, and I doubt any 
of the major vendors will do that in the near future.  
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If you are using Oracle8, you can create all the operations on your UML classes as methods on your object type. As 
previously mentioned, each operation has an implicit, read-only SELF parameter that you can use as a reference to 
the current object. If you want to change the current object, you have to declare SELF as IN OUT in the method 
parameter list. You should create such methods only for operations that make sense as database server operations. 
Operations that work on in-memory objects are not candidates for transformation to the server side. 

 
Who Makes the Rules? 
With respect to business rules, there is very little difference between a relational system and an object-relational 
system. You use the same constraints, the same assertions, and the same kind of procedural code to enforce the 
rules. 

One difference is the presence of the object or structured type versus the tables you build with such types. Types do 
not have constraints, only tables have constraints. Therefore, if you build multiple tables for a given type, you must 
constrain both tables separately. You must have separate foreign key declarations, separate check constraints, and 
so on. 

Note 

  

The logic of how constraints apply to data is somewhat confused in SQL3. As Date points 
out, there is no way in SQL3 to add a type constraint—a constraint that applies to a type 
definition, rather than to the underlying relations or values that use it [Date and Darwen 1998, 
pp. 159—168, 389—390]. This will condemn SQL3 programmers to years of maintaining 
multiple CHECK constraints and value lookup tables that should go away with a decent typing 
system.  

 
The Language of War 
It would be nice to have a cut-and-dried, easily understood way to produce an effective object-relational schema. 
Until there is a standard, that is unlikely to happen, and as mentioned earlier, the standard is having real problems 
[Melton 1998]. Worse, those problems center on the precise parts of the standard with which this book is most 
concerned, the object features. 
This section nevertheless tries to summarize how you can best go about creating an object-relational schema, 
focusing not on the relatively impractical SQL3 standard but on the very practical Oracle8 feature set. The structure 
and language of this section mirrors the similar section in Chapter 11, "The Language of Peace." It thus includes the 
relational techniques for transforming a schema, modified by the object-relational possibilities that the prior sections 
of this chapter have discussed. You should consult Chapter 11 for examples and details on the relational 
transformations; this section focuses on the object-relational additions to the transformation process. The 
transformation process uses the example data model from Figures 12-1 through Figure 12-5. It uses Oracle8 OR 
syntax rather than SQL3 because there is no product that implements the SQL3 standard at this time. 

Just as with the relational schema, you create an object-relational schema in two basic steps: creating types and 
tables from persistent types, and creating tables for many-to-many and ternary associations. This section guides you 
through a complete transformation, connecting everything previously discussed into a transformational whole. 
Conformity, in this case, is in the eye of the beholder. You can think about the SQL-92 requirements, with which 
SQL3 is compatible, while you are deciding which OR extensions to use to best advantage. Conforming with those 
features is not possible at the moment, but you should give some attention to the forthcoming SQL3 standard and its 
way of looking at these features. 

Persistent Classes 
Before starting the transformation process, you will have already identified the classes that correspond to object-
relational extensions in your target ORDBMS. Figures 12-4 and 12-5, which respectively show the Image and 
Geography subsystems for the commonplace book system, directly correspond to Oracle8 cartridges that extend the 
Oracle8 RDBMS. The first task is to build the object types, tables, and other elements that the extension requires to 
do its job. 

Note 

  

Again, I use an Oracle8 example because I'm most familiar with that system. Informix 
DataBlades and DB2 UDB table types with their external C programs provide similar features 
and have similar problems with design and reuse. I would not like to see teachers using any 
of these technologies as examples of how to go about designing modern software systems to 
budding computer scientists and software engineers.  

In the case of the Image class, the basic image type already exists in Oracle8 as the ORDSYS.ORDVIRB object 
type. All you need to do in this case is use that type as an attribute type in the classes that encapsulate image data. 
In this case, the type is really more of an interface, though it does include the data attributes that represent the 
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image. Instead of treating the ORDSYS.ORDVIRB type as a root class for the image class hierarchy, it is probably 
better to create a new Image class with an internal attribute of the ORDSYS.ORDVIRB type: 
CREATE TYPE Image_t AS OBJECT ( 
  ImageData ORDSYS.ORDVIRB; 
); 
You could add methods to pass through the behavior on the Image class in Figure 12-4. Alternatively, you could 
design an interface for the Image object type that is more useful for your particular needs. Then you could implement 
the operations with the underlying ORDSYS.ORDVIRB methods. 
The Geometry class is more complex, given its somewhat difficult design. Oracle8 provides a couple of SQL scripts 
that you run in SQL*Plus or another SQL command tool. The crlayer.sql script creates the various layer tables for a 
particular layer, naming the tables with the layer name. These tables would correspond to subclasses of the base 
types in Figure 12-5. Because there is no automatic updating of superclasses in Oracle8, it is probably 
counterproductive to create tables for the abstract superclasses in Figure 12-5. The subclass tables that crlayer.sql 
creates lack primary key and foreign key capabilities, making it very difficult to integrate them into an OO design. The 
Geometry example is a clear case of a legacy system that you want to reuse. As with any legacy system, you have 
the choice of exposing the legacy design or encapsulating it in your own classes. In this case, if you decide to 
encapsulate, you should add a facade layer that presents the Geometry interface that fits your requirements. You 
then implement this interface with the underlying Oracle8 Spatial Cartridge tables, preferably in a way that makes 
them completely invisible to application programmers developing against your schema. 
As the first transformation, create an object or structured type for each class in your UML data model that has the 
«persistent» stereotype, including association classes and classes that inherit from other classes. Name the type 
with the name of the class, adding a suffix of "_t" to indicate that the object is a type. This lets you create a table 
based on the type using the name of the class, as most ORDBMS products place types and tables in the same name 
space, thus requiring unique names. From Figure 12-1, the Person subsystem, you create 10 object types: Person_t, 
Address_t, Identification_, Expiring_ID_t, Driver_License_t, Passport_t, National_ID_t, Law_Enforcement_ID_t, 
Social_Security_Card_t, and Birth_Certificate_t. 

Note   You may merge the association class into another type later if that proves feasible. For now, 
leave it as a separate type in your emerging schema.  

Within each type, now add an object attribute for each attribute in the attribute section of the class. As an example, 
for Address_t, add StreetNumber, StreetFraction, StreetName, StreetSuffix, Locator, City, State, PostalCode, 
Country, and Comment. 

You should at this point have a transformation map that shows how to transform each data type in your data model 
into an SQL3 data type. These data types consist of the built-in types, including BLOBs, CLOBS, and so on; distinct 
types you derive from those built-in types; and user-defined types or object types, including references to those 
types. 

Now you come to your first OR choice, other than using the type instead of creating a table for each class. If your 
object identity is implicit, you now need to decide whether to use the built-in object identity of the ORDBMS to 
represent identity or to create a primary key attribute as in a relational schema. The primary key attribute lets you 
specify referential integrity constraints. If you are going to have any foreign keys directed at the type, you must have 
a primary key attribute. If, on the other hand, you intend to use object references instead of foreign keys, you can 
dispense with the primary key attribute. Of course, by doing this, you also dispense with the ability to join to the table 
based on a primary key match, a critical relational feature. On balance, I believe you should always add a primary 
key attribute to preserve flexibility in the schema design and to make it easier to adopt relational referential integrity 
where it is advisable. Name the primary key column with the class name suffixed with ID, such as AddressID, 
Usually, you should give the column a NUMBER data type and use a sequence or the equivalent to generate 
numbers for it. 

The end result for this stage for the Address_t type looks like this: 
CREATE TYPE Address_t AS OBJECT ( 
  AddressID INTEGER, 
  StreetNumber NUMBER, 
  StreetFraction VARCHAR(5), 
  StreetName VARCHAR(100), 
  StreetSuffix VARCHAR(25), 
  City VARCHAR(100), 
  State CHAR(2), 
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  PostalCode CHAR(20), 
  Country VARCHAR(100), 
  Comment VARCHAR(250)); 

Note 
  

There are no constraints on the attributes. You constrain tables, not types, in an ORDBMS. In 
SQL3, you can have a DEFAULT clause that corresponds to the UML initial value, and that's 
it. Oracle8 is much the same. See the section "Who Makes the Rules?" in this chapter for 
details.  

You now have a set of types related only by the use of types in attribute declarations, if any. Now you need to create 
tables based on those types and add constraints. For each type, create at least one table. If there is a reason to 
partition the objects of a given type into two or more collections, create additional tables with different names. I 
generally regard this as a physical schema design issue, not a logical one.w 

If there is a {nullable} tag on the attribute, add a null constraint; otherwise, add a NOT NULL constraint. In the case 
of the commonplace book, the data model uses the nullable types to represent null constraints, and all of the 
columns in Address_t except for StreetFraction and Comment are NOT NULL: 
CREATE TABLE Address OF Address_t ( 
  AddressID PRIMARY KEY,-OID type 
  StreetNumber NOT NULL, 
  StreetName NOT NULL, 
  StreetSuffix NOT NULL 
  City NOT NULL, 
  State NOT NULL, 
  PostalCode NOT NULL, 
  Country NOT NULL); 

You still need to create type-checking utility tables for enumerated types in an ORDBMS, as their typing system still 
does not include this kind of type (see the previous section in this chapter, "Who Makes the Rules?"). 

Now it's time to construct the primary key constraint and the things that depend on it. To start with, find the root class 
of each generalization hierarchy (classes to which a generalization arrow points but from which no generalization 
arrow emerges). Also consider all classes with no generalization relationships. 

If the class has implicit object identity, you will have already made a choice about whether to include a primary key 
attribute. If you chose to add one, add PRIMARY KEY as a constraint to that column in the CREATE TABLE 
statement. PRIMARY KEY implies NOT NULL, so you don't need that constraint on the primary key column. 

Note 

  

If the class has a composite aggregation association to another class, and the other class is 
the aggregating class, hold off on creating the primary key until you are creating foreign keys. 
Composite aggregation keys are a combination of the primary key of the related class and 
another attribute. As well, you may decide to represent the composite aggregation 
association with a varying array or other collection instead of a foreign key.  

If the class has explicit object identity (an {OID} tag), add a PRIMARY KEY constraint clause to the tables you've 
created from the type and put all columns with the {OID} tag into the constraint. If there is only one column in the 
explicit identifier, just add the PRIMARY KEY column constraint to that column. 
If the class has subclasses, add an attribute to the type to represent the discriminator. Create a CHECK constraint in 
the tables you create from the type with the appropriate enumerated values to represent the subclasses. If your 
ORDBMS supports inheritance (Informix Universal Server, for example, supports inheritance either through its ROW 
TYPE hierarchies or through table inheritance for tables based on those row types, and SQL3 supports inheritance 
directly with the UNDER clause in CREATE TYPE), use the appropriate syntax to link the types. Otherwise, you 
need to use the same primary key method that Chapter 11 recommended. 

Note 
  

I agree with Date that inheritance is a type feature, not a table feature [Date and Darwen 
1998, pp. 373-378]. You should avoid using the Informix table inheritance features, as they 
will add nothing but confusion to your model-schema relationships.  

In SQL3, for example, you can create the LawEnforcementID class as a type, adding the BadgeNumber attribute to 
the attributes and behavior of the Identification abstract class: 
CREATE TYPE LawEnforcementID_t UNDER Identification_t ( 
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  BadgeNumber INTEGER); 
If there are multiple superclasses (multiple inheritance), you have to fall back on the schemes of Chapter 11 for 
dealing with multiple superclasses. SQL3 lets you define multiple superclasses in the UNDER clause, but the 
semantics of the standard are very weak and don't address even basic problems such as duplicate attribute names 
in different superclasses. This should either prevent the definition of the ambiguous subclass or should involve the 
kind of complex ambiguity resolution mechanisms that languages such as C++ implement [Stonebraker and Brown 
1999]. Again, your best bet is to avoid multiple inheritance if you can. The lack of support for it in your chosen DBMS 
may make this choice for you. 
Association classes represent associations with attributes, many-to-many associations, and n-ary associations that 
link two or more classes together. The association class transforms into a table that contains the primary keys of all 
its related classes. You can create an object type that contains the key and other attributes, then define a table 
based on it, though this doesn't buy you much. Compare the object type Plays_t with the Plays table that Chapter 11 
defines: 
CREATE TYPE Plays_t AS OBJECT ( 
  PersonID INTEGER, 
  OrganizationID INTEGER, 
  RoleID INTEGER, 
  Tenure INTEGER,-Oracle8 doesn't have interval types 
  StartDate DATE, 
  EndDate DATE, 
  TerminationMethod CHAR(1)); 
CREATE TABLE Plays OF Plays_t ( 
  PRIMARY KEY (PersonID, OrganizationID, RoleID), 
  PersonID REFERENCES Person, 
  OrganizationID REFERENCES Organization, 
  RoleID REFERENCES Role, 
  Tenure NOT NULL, 
  StartDate NOT NULL); 
 
-Here is the relational table for comparison 
CREATE TABLE Plays ( 
  PersonID INTEGER REFERENCES Person, 
  OrganizationID INTEGER REFERENCES Organization, 
  RoleID INTEGER REFERENCES Role, 
  Tenure INTEGER NOT NULL,-Oracle doesn't have interval types 
  StartDate DATE NOT NULL, 
  EndDate DATE, 
 
  TerminationMethod CHAR(1), 
  PRIMARY KEY (PersonID, OrganizationID, RoleID)); 

If you choose the type approach, you gain the ability to create more than one table to contain link objects, which may 
or may not be valuable. Most systems see these associations as unique; if split between tables, the primary key can't 
enforce that uniqueness. You should choose the type approach only if you have a real need to have two or more 
tables of links with the same structure and the same linked classes. 

Next, find any candidate keys. If there are any {alternate OID = <n>} tags, add a UNIQUE constraint to the tables 
you've created from types for each unique <n> identifier and put all columns with the same <n> identifier into the 
constraint. Again, LawEnforcementID serves as an example, as BadgeNumber has the tag {alternate OID =1}: 
CREATE TABLE LawEnforcementID OF LawEnforcementID_t ( 
  BadgeNumber NOT NULL UNIQUE); 
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Next step: add any simple table constraints to the tables you've created from types. If there are constraint boxes in 
the diagram, convert them into CHECK clauses if you can express the constraint in an SQL expression that contains 
only references to columns in the table you are defining. If there are data type constraints such as enumerations or 
ranges, add a CHECK clause to the column to represent the constraint. Again, all of these constraints are on tables, 
not types. For enumerations with utility tables that list the possible values in the type, wait for creating the 
associations, the next step. 

At this point, all tables should have a primary key. Find the binary associations to the class you are defining with a 
multiplicity of 0..1 or 1..1 on the role attached to the other class. If the association has an association class, ignore 
the association for now. To represent the to-one association direction, you either create an attribute to represent the 
association as a foreign key or create a reference to the other class. If you create the foreign key, you need to create 
the appropriate constraints (REFERENCES or FOREIGN KEY) in the tables you base on the type. If you create the 
reference, you need to add the code to maintain the reference in the face of object deletion or other referential 
integrity issues. 

As you go through the tables, of course, you will reach the other end of each binary association. If it's a 1..1 or 0..1 
association, and you've already created an attribute for it in another table, don't create the foreign key or reference in 
both types. Creating two foreign keys for a relationship is not only circular and hard to maintain, it can seriously 
confuse developers using the types. You can optimize your decision by thinking about how applications will use the 
tables based on the type. If one side of the association seems more natural or more likely for a developer to use, put 
the attribute in that type. This corresponds to an association with an arrowhead pointing to the other type. If the 
multiplicity on the role is 1..1 rather than 0..1, add a NOT NULL constraint to the foreign key column(s) in the table. 

You will already have created any foreign keys to superclasses through generalization relationships in the prior step 
for creating primary keys. 

For composite aggregations with only one object being aggregated, you should consider the alternative of 
embedding the object in the type rather than creating foreign keys or references. If the composite aggregates 
multiple objects, you can represent this as a collection of child objects. If you choose not to tie the child object so 
closely to the parent type, add the primary key attributes to the child object type. Then create a second attribute for 
the primary key that uniquely identifies the object. Often this will be either an explicit {OID} column or a sequence if 
the association is {ordered}. If not, then create an integer value to uniquely identify the children of the aggregate. 
Make the attributes from the parent table a foreign key to the parent table in the table constraints on the tables based 
on the child type. Add the appropriate CASCADE constraint to the FOREIGN KEY clause in the tables as well. 

Now optimize your one-to-one association classes. Find any binary associations with role multiplicity greater than 1 
on the role played by the class you are defining. If the association has an association class, add the attributes from 
the association class to the type rather than creating a separate type for the association class. 

Create many-to-many and ternary associations using foreign keys just as in the relational transformation. The OR 
collections and referencing techniques do not apply to these kinds of associations. 

Operations 
The simplest way to represent operations in Oracle8 is to create a member procedure or function for each operation 
you've defined in the data model. As an example, consider the CriminalOrganization class from Figure 12-2. That 
class exports two operations: UpdateStatus and SetPriority, both "mutators" that change the state of a particular 
Criminal Organization object. In this case, we have two requirements: enumerated data types and updating the 
current object. 
The first requirement, an enumerated data type, is still hard to do in PL/SQL. The PL/SQL type system has no 
concept of enumerated type. At least an SQL column definition can have a CHECK constraint; this is not true of a 
PL/SQL variable definition, unfortunately. You need to build the same lookup table you would build for a relational 
system (see Chapter 11). The code in theUpdateStatus member procedure then looks up the appropriate value to 
use in updating the object. 

Table 12-1: Summary of Object-Relational Schema Transformation  
Step  Transformation  

1 Create any types, tables, or ancillary objects that you need to create to make use of 
reusable ORDBMS extensions, such as Oracle8 cartridges, Informix DataBlades, or DB2 
UDB extensions. 

2 UML class becomes object (structured) type, usually with a corresponding table of that 
type to hold the object rows, but possibly with more than one such table. 
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3 UML type becomes distinct type if based on built-in type or object type if it has attributes. 

4 UML attribute in class becomes attribute in object type. 

5 UML attribute type in class becomes attribute type in object type through type 
transformation table and/or object and distinct types. 

6 If {nullable} UML attribute tag, attribute has NULL constraint; otherwise, NOT NULL 
constraint. 

7 If UML attribute has initializer, add DEFAULT clause to column. 

8 For classes with no generalization (root or independent) and implicit identity, create 
integer primary key; for {oid}, add {oid} tagged columns to PRIMARY KEY constraint; 
ignore composite aggregation and association classes. 

9 For subclasses, add the key of each parent class to the PRIMARY KEY constraint and to 
a FOREIGN KEY constraint; for fully SQL3 compliant ORDBMS products, you can use 
an UNDER clause to represent the relationship instead, but for all others you'll have to 
put the foreign key constraint in the tables you define with your object type. 

10 For association classes, create an object type and add primary key from each role-
playing table to PRIMARY KEY constraint and FOREIGN KEY constraint. 

11 If {alternate oid = <n>} tag, add columns to UNIQUE constraint. 

12 Add CHECK for each explicit constraint. 

13 Create FOREIGN KEY columns in referencing table for each 0 �1,1 �1 role in 
association; alternately, use a reference to an object type to declare the object as an 
attribute in its own right for single objects or a collection such as an array of references 
for multiple related objects. 

14 Create PRIMARY KEY for composite aggregation with FOREIGN KEY to aggregating 
table (with CASCADE option), add additional column for PRIMARY KEY; alternately, use 
an object type to store the aggregate in the table itself, either through an object attribute 
(for a single object) or a collection such as an array or as a nested table (not 
recommended without extensive experimentation to determine whether it's more trouble 
than it's worth). 

15 Optimize binary association classes by moving into to-many side table where 
appropriate. 

16 Create tables for many-to-many, ternary associations with no association classes using 
foreign keys. 

17 Create PRIMARY KEY, FOREIGN KEY constraints from keys of role-playing tables in 
many-to-many, ternary associations. 

18 Create methods on object types for operations on the corresponding UML classes; use 
the appropriate "purity level" formats for {readonly} or {query} tagged operations. 

 
Summary 
For convenience, Table 12-1 summarizes the transformation to an object-relational database. FOREIGN KEY and 
PRIMARY KEY mean either a table constraint or a REFERENCES column constraint depending on whether the key 
is multivalued. This table greatly resembles Table 11-4, which describes the relational transformation. 
Object-relational databases thus give you a broad array of alternative representations for your data models, perhaps 
too many. The next chapter moves into the fully object-oriented world, in which you have fewer choices but they map 
better to the concepts of UML. 

 
Chapter 13: Designing an Object-Oriented Database Schema 
Work without hope draws nectar in a sieve, and hope without an object cannot live. 
Samuel Taylor Coleridge, Work without Hope  
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Overview 
The final stop in this trip through the world of database design is the object-oriented (OO) schema. Mapping a UML 
data model to an OO schema is straightforward, though there are as always a few issues to consider. Many issues 
arise because OODBMS vendors do not adhere to any schema definition standard. Other issues arise out of the 
inherent nature of persistent object design, appearing in all OODBMS products and in the ODMG standard as well. 

 
The Transformation Process for OODBMS Products 
This chapter covers the ODMG 2.0 Object Definition Language (ODL) for object oriented systems [Cattell and Barry 
1997]. It gives examples of schema choices in the POET database manager using the POET ODL precompiler and 
the C++ language binding [POET 1997b, 1997a]. 

The ODMG 2.0 standard is a comprehensive benchmark for the capabilities of an OODBMS. Unfortunately, the 
OODBMS community does not yet provide schema definition facilities that conform to the standard. Some, like 
POET and Versant, provide variations on the standard; others, such as ObjectDesign and Objectivity, have a 
completely different way of defining their schemas. I use ODL because it provides a generic set of features that map 
well to the different vendors' software. I use POET here because it provides a full-fledged but incomplete ODL 
schema definition facility based on ODMG 1.5 ODL. ODL is in turn based on the OMG's CORBA Interface Definition 
Language (IDL), a language for defining distributed-object interfaces for use with CORBA distributed-object systems. 

Note 

  

Interestingly, POET adopted the ODL interface in addition to the C++ and Java language 
bindings to support language-independent interfaces for use with distributed object 
technology such as COM and Visual Basic. The language independence of ODL thus 
provides value in the world of distributed objects, illustrating at least one of the fallacies of the 
"impedance mismatch" rationale for object databases.  

Almost all OODBMS products started out using OO programming languages as their schema definition languages. 
Most used C++, though at least one (Gemstone) used Smalltalk. By adding language elements or by adding class 
libraries to support persistence, these products turned C++ interface definitions into schema declarations. Most have 
added support for Java schemas as well. The examples in this chapter use the C++ language binding of POET 
[POET 1997a] to illustrate the language-specific approach to schema definition. 

Ultimately, the process of defining an OO database schema with UML comes down to the same kind of 
transformation you make between a UML design and an ODL or C++ implementation of that design. This is the 
simple part of the transformation, mapping from the UML OO concepts into those of C++ or some other OO 
programming language. 
Complexity emerges when the OODBMS vendor's language comes into play either through ODL or OO 
programming language extensions that enable use of persistent objects. Each language has different features and 
different approaches to modeling OO concepts. No OODBMS provides support directly for many-to-many or n-ary 
associations, for example, nor do they offer association classes, so you need to do some transformation work on 
these UML concepts. Also, most OO programming languages don't provide any way of representing null values, so 
it's a challenge to represent nullable attributes. 
To illustrate the process, this chapter uses the same design as Chapter 11, reproduced here for convenience. Figure 
13-1 shows a UML model for the Person subsystem of the Commonplace book, and Figure 13-2 shows a UML 
model for the Organization subsystem. Both of these subsystems are part of a third subsystem, the Entity 
subsystem. Figure 13-3 shows the architecture for the package. 

The Person subsystem contains the Person class and the Identification hierarchy that belongs to it. I've chosen to 
use the inheritance version of Identification rather than the interface version. People connect to Organizations 
through a three-way relationship to the Role class in the Organization package. The scope notation 
(Organization::Role) identifies classes that are not a part of the Person subsystem. 

The Organization subsystem contains the Organization hierarchy, which includes the CriminalOrganization class. It 
also includes the Role class and the relationships between Role and Organization. Organizations connect to people 
through a three-way relationship to Role. 
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Figure 13-1: The Person Subsystem in UML  
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Figure 13-2: The Organization Subsystem in UML  

The Entity subsystem contains three elements: the two subsystems People and Organization plus an abstract class, 
Entity. The Person and Organization classes in their respective packages inherit from that class. 
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Figure 13-3: The Entity Subsystem in UML  
 

Objective Simplicity? 
Recall from Chapter 2 that the primary rationale for object-oriented databases is to reduce the impedance mismatch 
between the programming language and the database. Instead of having to map between the application views and 
the conceptual schema with yet another language (SQL), you just make your classes persistent and run your 
application. 

While the promise of OO transparency and application simplicity is alluring, in practice the OODBMS does not really 
deliver when you look at schema generation. Overall, the mapping process is simpler than for relational databases, 
but there are still a fair number of issues that arise to complicate your life. Where the transparency succeeds and 
succeeds well is in the area of inserting, updating, and deleting objects. 

The primary set of issues comes from the lack of standardization between OODBMS products. There is a standard, 
ODMG, but it really only covers the OQL query language and the basic features that an OODBMS must provide. The 
ODMG standard does not provide interoperability, nor does it help much in reconciling the very different 
programming interfaces of the various OODBMS products. 

The remaining issues come from the same impedance mismatch that motivates the OO database in the first place. 
Transactions, client/server caching, complex associations, keys, and extents are all concepts foreign to the popular 
OO programming languages but essential for databases. OODBMS products cannot ignore these issues, so they all 
provide mappings to them in different ways. 

A third component of transformation complexity comes from the old shibboleth of "portability." With the increasing 
popularity of OO programming, new languages are emerging that challenge the market leaders. OO programming 
languages started with Smalltalk and C++, two very different programming paradigms. Now Java is increasing in 
popularity, bringing as much Smalltalk as C++ to the programming equation and adding new elements such as 
interfaces to the mash. Languages with broader appeal such as Visual Basic are gaining objectoriented features. 
More importantly, with distributed object technology, such languages are able to make use of objects written in any 
language through CORBA and COM interfaces. To write a "portable" program in this context is quite tough; to write a 
portable OO database application is even tougher. For example, consider the ODMG standard Java binding: it does 
not support relationships, keys, extents, or access to the ODMG metaschema [Cattell and Barry 1997, p. 230]. I'll let 
you decide how useful a standard that doesn't handle associations, keys, or extents is to the Java database 
application programmer. 
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Thus, it is by no means easy to transform a UML data model into an OODBMS schema. The following sections cover 
some of the basic issues that arise for most such transformations, but individual products will always produce 
surprises. 

Classes 
The class is at the center of the object-oriented transformation, just as the table is at the center of the relational 
transformation and the object type is at the center of the object-relational transformation. The quirks that the 
OODBMS world contributes to class definition include persistence, use of interfaces, differing data types, null-value 
handling (or the lack thereof), object identity, and extents. 

Persistent Classes and Interfaces 
Mapping a class into an OODBMS schema is easy: create a class. It goes downhill from there. 

The first thing you need to worry about is how to make your classes persistent. There have been quite a few 
interesting schemes for this. ODL 2.0 simply assumes that your classes are persistent. POET requires the use of the 
persistent keyword before the class keyword: 
persistent class CriminalOrganization : public Organization { . . . }; 

There are at least two other schemes. ObjectDesign's ObjectStore, for example, uses the C++ storage class to 
indicate object persistence as opposed to class persistence. This enables the feature of ObjectStore that lets you 
query over an extent that includes both persistent objects and transient objects. By creating persistent objects 
instead of tying the type definition to the database, ObjectStore makes querying independent of persistence. This 
addresses the second major thrust of the OODBMS community: making data types orthogonal to, or independent of, 
persistence. 
The ODMG standard supports this with its C++ binding concept of persistence-capable classes—classes that can 
have both persistent and transient instances. The standard then overloads the new operator in C++ with a Database 
object argument. This gives you the ability to declare a database to be transient (in memory, not persistent), so that 
you can declare transient, persistence-capable objects. This approach nicely integrates class persistence and object 
persistence. 

The Objectivity/DB system used a different approach: inheritance. That system provided a class library with the 
ooObject class. To make a class persistent, you inherited from ooObject. This approach eliminated the need for pre- 
or post-processing and relied directly on C++ to handle everything. The dark side of this approach was the coupling 
of your classes to the Objectivity class and thus the need for multiple inheritance and a greater complexity in the 
class interface. 
Broadening the picture a bit, there are two standard ways to make objects persistent: declarative persistence and 
persistence by reachability, also known as transitive persistence. Declarative persistence is the approach in the 
systems thus far introduced: you declare that a class (or object) is persistent, and only those classes (or objects) 
persist. Transitive persistence declares some root object persistent, then makes all objects to which that root object 
refers persistent. This is more in line with the way the Smalltalk and Java languages work and is thus part of the 
standard ODMG bindings for those languages [Cattell and Barry 1997]. As those languages provide garbage 
collection, you don't actually delete objects, just eliminate references to them. The database then cleans out any 
objects to which nothing refers (persistent garbage collection, a metaphor that boggles the mind). 

If you program in Java, you will doubtless define many interfaces in your UML data model rather than relying 
exclusively on classes and class generalization. Interfaces do not possess state, just abstract behavior 
specifications. As a consequence, interfaces are not persistent objects. The Java ODMG binding, for example, 
specifies that interfaces are not persistent and that the DBMS does not store interfaces in any way. Similarly, 
abstract classes do not correspond directly to objects; any object must therefore be a concrete class, and no 
OODBMS needs to make abstract classes persistent. Thus any UML interface, or any class with an {abstract} tag, 
does not translate into a persistent database class for Java programs. The C++ binding, on the other hand, is silent 
with respect to abstract classes [Cattell and Barry 1997]. 

Your best bet at transforming UML interfaces into a C++ OODBMS schema is to define an abstract class for the 
interface, making all the operations pure virtual (= 0 initializer for the method and no implementation) and having no 
data members at all. You can then use multiple inheritance to represent realization. This requires that (as with Java 
interface implementation) you must implement all the operations you've defined as pure virtual in the abstract base 
class in the subclass that inherits from it. Using multiple inheritance may or may not be possible with any specific 
OODBMS, nor may it be advisable given its theoretical and practical problems, so you should research and 
experiment with your target OODBMS before committing yourself to a particular transformation strategy. 
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Attribute Data Types 
In tune with their underlying philosophy, most OODBMS products define their basic types as the types of the 
programming language, unifying the programming and database type systems. Because databases have some 
additional requirements for data, these products also usually define additional types. 
The ODL defines a set of basic types that it terms atomic literals. A literal in the ODMG standard is a value that has 
no object identity, as opposed to an object, which does. These types are for the most part quite standard: long, short, 
unsigned long, unsigned short, float, double, boolean, octet (byte), char, string, and enum<>. This last type is a type 
generator that creates a type based on the list of element names you supply. There are also a set of collection literal 
type generators (set, bag, list, array, and dictionary) and structured literals (date, time, timestamp, interval, and 
structure<>). The ODL also specifies a nullable literal type for each literal type (nullable_float, nullable_set<>, 
nullable_date, for example) [Cattell and Barry 1997, pp. 32—35]. 

Null values are somewhat problematic in OODBMS products, as most OO programming languages have no concept 
of a null value. C++, Smalltalk, and Java bindings for ODL do not support the nullable literal types, for example, nor 
do they support nulls for objects. In practice, most OODBMS products do not support null values either. If you use a 
{nullable} tag in your UML data models, you will often find that you cannot transform this into a corresponding 
nullable data type in your OODBMS schema. If you can't represent nulls, you'll have to find a standard value that 
means null if you can't find a way to eliminate nulls entirely. 

The ODMG collection types let you collect literals or objects: 
 Set: An unordered collection of elements with no duplicates 
 Bag: An unordered collection of elements that may contain duplicates 
 List: An ordered collection of elements indexed by relative position 
 Array: An ordered collection of elements indexed by numeric position 
 Dictionary: An unordered sequence of key-value pairs with no duplicate keys (an object of type 

Association) 
The collection can be either an object with an object identifier or a literal with no identifier. You use the latter types 
mainly to define relationships between classes. For example, to define the relationship between Person and Address 
in Figure 13-1, you use the following syntax fragment: 
relationship set<Address> addresses inverse Person::residents; 

The set<> literal collection type tells you that each person may have zero or more addresses, that the relationship is 
not ordered (no {ordered} tag), and that there are no duplicate addresses. If you have an {ordered} tag on the 
relationship, use a list<> or array<> type. You use a dictionary if you want to be able to do indexed lookups on some 
value that you can use as the index. Finding a use for the bag<> is hard, since UML relationships assume that there 
are no duplicate links. You may find the bag<> literal type or its object cousin Bag more useful in holding collections 
of transient objects or pointers. 

Note   See the section "Associations" for more details on relationships and how they depend on 
object identity.  

The typedef is a C and C++ concept that lets you create an alias for a type. It does not define a new type. Nothing in 
UML notation corresponds to the typedef. 
An enum is a literal type with a name. A value typed with the enum can take on one of the specific, enumerated 
values you list in the enum declaration. You can define an enumerated type with a UML «type» classifier that lists the 
value elements. This then transforms into a C++ or ODL enumeration that you can use to define attributes and 
operation parameters: 
enum Legal Status{ LegallyDefined, OnTrial, Alleged, Unknown}; 
attribute LegalStatus status; 
void SetStatus(LegalStatus status); 

Class Extents and Subextents 
The ODMG standard defines the extent of a type as "the set of all instances of the type within a particular database" 
[Cattell and Barry 1997, p. 16]. If CriminalOrganization is a subtype of Organization, then the set of all criminal 
organization objects in the database is the extent of CriminalOrganization and each criminal organization object is 
also a member of the extent of Organization. 

In relational databases, an extent corresponds to all the rows in a table. In object-relational databases, an extent 
corresponds to a table scope, which may include several tables. In object-oriented databases, the database can 
automatically maintain the extent set regardless of the ownership or location of objects of a given type. You tell the 



 - 243 -

OODBMS to do this by some kind of keyword or other schema definition mechanism. In ODL, you specify the extent 
keyword and a name: 
class Criminal Organization extends Organization (extent Mobs) 
    { . . . } 

The OODBMS may index the extent automatically to speed up queries if you specify that. You could always maintain 
the extent yourself in a collection;the problem is that this reduces concurrency by locking the collection object. 
Having the database do the job eliminates unnecessary object locks that can block readers and writers. You use the 
extent in queries when you want to search over the set of all objects of a type and its subtypes. Some systems even 
let you restrict the search to a type without its subtypes [Jordan 1998]. You can also create a reference to the extent 
dynamically using the d_Extent<> template, which constructs the extent with a supplied pointer to a database object 
[Jordan 1998, pp.107—108]: 
d_Extent<Criminal Organization> mobs(pDatabase); 

The UML has no concept of extent. If you wish, you can add a class tag to your UML static structure diagrams to 
specify the extent name, such as tagging CriminalOrganization with the tag {extent=Mobs}. You can then transform 
this into the appropriate schema definition for your target OODBMS. 

An interesting application of extents comes in the next section with the discussion of keys. 

Object Identity 
The ODMG standard and most OO systems distinguish between two kinds of data: values and objects. Systems 
make this distinction by defining objects as data elements that have object identity, that the system can uniquely 
identify relative to all other objects in the system. In the case of the OODBMS, the "system" is the database storage 
domain. You will usually have some way to test whether two objects are the same by identity comparison: ODMG 
provides the same_as() operation on all persistent objects, for example. Many OODBMS products let you compare 
objects for equality by comparing attribute values; most also provide a way to compare objects by identity, usually 
through operations on references to objects (the OODBMS equivalent of pointers). 

Object identity renders the concept of the primary key both redundant and unnecessary. References to an object 
refer to it through the object identifier, not the values of attributes within the object. Thus there is no concept of either 
a primary key or a foreign key in an OODBMS. Instead, the {OID} and {alternate OID} tags that you define transform 
into constraints on the extent of the class. ODMG even provides a way to specify the key values—the key clause: 
class LawEnforcementID extends Identification 
     (extent Badges key BadgeNumber){ 
  attribute unsigned long BadgeNumber; 
. . . 
}; 

Alternatively, the target DBMS may provide some kind of unique indexing, as POET does [POET 1997a, p. 114]: 
persistent class LawEnforcementID : public Identification { 
  unsigned long BadgeNumber; 
  useindex BadgeNumberIX; 
}; 
 
unique indexdef BadgeNumberIX : LawEnforcementID 
{ 
  BadgeNumber; 
}; 

Another aspect of object identity is global naming. The original OODBMS products did not support OQL or any 
similar kind of query language. Instead, they let you start at a root object, then navigate through relationships to find 
other objects. To make this easier, OODBMS products introduced the concept of global object names within the 
database name space. You could thus create your own object identifier alias and use it to name the root object of 
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your navigational network. You then retrieve that object directly by its global name and start navigating [Jordan 1997, 
pp. 87—88]. 

Note 
  

Query languages provide a more general and easy-to-use way to achieve the same effect as 
global naming, which also has the disadvantage of increasing data coupling through linking to 
global names in your programs. If your OODBMS provides a query language, use it instead of 
global naming if at all possible.  

You may want to define these global objects using the UML object notation, as in Figure 13-4, which shows the 
various key criminal organizations of interest to commonplace book applications. This particular naming setup names 
five criminal organizations. You can retrieve each CriminalOrganization object directly, then start navigating to its 
members and related criminal organizations through the relationships on the CriminalOrganization class. 

 
Figure 13-4: Criminal Organization Object Names  

To look up the status of the members of the Worthington Bank Gang, for example, you would retrieve that object by 
its object name, then navigate to the collection of people that played roles in the gang. 

If you have such an object diagram, you can transform it directly into global object names in your target DBMS. 

Generalizations and Realizations 
The ODMG standard distinguishes two kinds of object type, the class and the interface. The class defines abstract 
behavior and state for an object type. The interface defines only abstract behavior. These concepts map directly to 
the UML concepts of class and interface (see Chapter 7 for details). 

The ODMG standard divides inheritance into two varieties, inheritance of behavior and inheritance of state. These 
concepts correspond more or less to the UML concepts of realization and generalization relationships, but the 
subtleties between the two object models make them different. A quotation from the standard may or may not clarify 
the relationships for you: 

Classes are types that are directly instantiable, meaning instances of these types may be created by the 
programmer. Interfaces are types that cannot be directly instantiated. For examples, instances of the classes 
Salaried_Employee and Hourly_Employee may be created, but instances of their supertype interface Employee 
cannot. Subtyping pertains to the inheritance of behavior only; thus interfaces may inherit from other interfaces and 
classes may also inherit from interfaces. Due to the inefficiencies and ambiguities of multiple inheritance of state, 
however, interfaces may not inherit from classes, nor may classes inherit from other classes. [Cattell and Barry 1997, 
p. 15] 
The upshot of all this abstraction is that ODL provides two kinds of inheritance. Behavioral inheritance appears in 
interfaces and class specifications following a colon-separated notation resembling C++ base class specifications. 
This is the is-a relationship that corresponds to UML realization or to generalization depending on whether you are 
inheriting from an interface or a class. State inheritance appears in classes in a separate extends clause and 
corresponds to generalization without the behavioral component. You may thus have interfaces inheriting from other 
interfaces (but not classes), and classes inheriting both from interfaces and other classes. 

The ODMG distinction between behavioral and state inheritance has not yet migrated into the realm of the working 
OODBMS, for better or worse. C++ APIs for OODBMS products use the C++ model of inheritance that combines the 
two forms with all the ambiguities that result from multiple inheritance. Thus, for practical purposes, OODBMS 
products support UML generalization. If you are programming with Java, which supports the interface and class 
concepts separately, you may find that the Java OODBMS API maps more closely to the ODMG 2.0 standard. 
Nevertheless, the Java model differs from the ODMG model, more closely resembling the UML concepts of 
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generalization (class or interface inheritance using the extends keyword) and realization (interface implementation 
using the implements keyword). 

The practical transformation of your UML data model's generalization relationships into an OODBMS schema thus 
usually comes down to translating your UML diagram into your chosen OO programming language. This will usually 
be a one-to-one mapping, as UML was explicitly designed with this kind of transformation in mind. Interfaces throw 
something of a wrench into the situation, but unless you're using Java, you don't need to worry about it. If you are 
using Java, there should be a one-to-one transformation of generalizations and realizations into the corresponding 
Java syntax (the extends and implements clauses, respectively). If you're using C++, you must produce abstract 
classes and use multiple inheritance to represent realization (see the previous section on "Persistent Classes and 
Interfaces" for a complete discussion of interface transformation). 

Associations 
The association is where OODBMS products will give you trouble in generating your schema. Associations—
relationships between objects—are at the center of the services that an OODBMS provides. Storing data, transaction 
management, and even recovery and integrity are standard database operations. Being able to navigate between 
objects is what OODBMS products bring to the table as their main advantage. 

Variations on a Theme 
You can represent a link between two objects in a number of different ways, even in the ODMG standard. This 
section presents you with the basic alternatives, and the following section shows you how you can best represent the 
various kinds of UML associations using these structures. 

 Attribute: Directly embedding a single related object as a member of the relating object, which 
owns the related object. In C++, this means declaring a data member using the object type with 
no pointer or reference. For OODBMS schemas, this translates to an object that has no object 
identity but rather consists entirely of values embedded within the relating object. When you 
activate the relating object, you get all its embedded data, including the related object. There is 
no referential integrity directly, but deleting the relating object also deletes the related object. 

 Reference: Embedding a single related object as a reference member of the relating object using 
the d_Ref template or its equivalent (a handle or persistent reference). This corresponds to a 
C++ data member declared as a pointer, but persistent data must have a reference, not a 
pointer, as pointers aren't persistent. The related object has a life cycle separate from its 
containing object, and the reference can be null. When you activate the relating object, you do 
not necessarily activate the related object, though you may with the right options set. The system 
does not maintain referential integrity; your application must manage dangling references. 

 Collection of objects: Embedding a collection template of objects as a member of the relating 
object. This corresponds to a collection of objects allocated directly by the collection in C++, and 
the system treats it exactly as such. The related objects are part of the collection object and have 
no separate object identity. When you activate the embedding object, you get the collection and 
all its data as part of the value. The system does not maintain referential integrity; the collection 
manages the objects as their owner. 

 Collection of references: Embedding a collection template of object references as a member of 
the relating object. This corresponds to a C++ collection of object pointers, but the references 
enable the objects to persist. The related objects have life cycles separate from the containing 
object, and each reference can be dangling (to a nonexistent object) or null. The collection can 
be empty. The system does not maintain referential integrity, and your application must maintain 
the objects, deleting them explicitly and removing dangling references. 

 Relationship: Embedding a special collection template of object references as a member of the 
relating object. This corresponds again to a C++ collection of object pointers, but the template 
collection maintains referential integrity on both sides of the relationship, so there are no dangling 
references. References can be null, and the collection itself can be empty. In some OODBMS 
products, references also permit lazy activation of objects, letting you retrieve the object from the 
server only when you need to use it. Other systems activate all the objects that you can reach 
from an object you activate (a transitive closure activation). 

Figure 13-5 presents the ODL syntax for a relationship. The first identifier (or collection class) is the type of the 
relationship. The second identifier is the name of the relationship. If you use a collection, you put the type of the 
relationship inside angle brackets after the collection class name (set, list, or bag). 

The ODL syntax requires that the relationship contain an inverse clause, which means that the relationship is always 
bidirectional: the relationship is visible from both classes. Since only relationships maintain referential integrity, you 
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can have automatic referential integrity only for bidirectional associations. The inverse clause contains two 
identifiers: the name of the target class and the name of the relationship in that class, separated by the scope 
operator (::). 

 
Figure 13-5: The ODL Relationship Syntax  

The following sections show you how to transform the various kinds of UML association configurations into ODL and 
C++ OODBMS schemas. 

Directed Associations with Multiplicity 1 
A UML directed association is an association with an arrowhead pointing to a class. Adding direction to the 
association establishes one-way visibility. The pointing class can see the target class to which it points, but that class 
cannot in turn see the pointing class. The advantage in specifying a directed association comes from encapsulation 
and the consequent limiting of coupling. Since the target class knows nothing about the class that uses it, its 
contents are completely unaffected by any changes to the pointing class. Also, in this section, the association is not 
an aggregation but a simple association. That means that neither class owns the other class. 

If the multiplicity on the target class role is 0..1 or 1..1, it means that the pointing class object refers to only one 
object of the target class. The transformation thus requires a single-valued attribute for the pointing class. The 
specific nature of this attribute depends mainly on the OODBMS types available. The generic ODL provides for 
declaring an attribute of a class type, and this translates into get-and-set methods, hiding the underlying data 
structure implementation. The C++ ODL provides for two specific kinds of declarations: an embedded object 
declared as part of the data structure and a persistent reference to an object. The embedded object has no object 
identity; it becomes part of the data structure of the embedding object, not a separate object in the database. That's 
appropriate for a composite aggregation association, but not for a regular association. That leaves just the reference, 
a smart-pointer class that lets you declare the reference and point it to the target object with an object identifier after 
creating or activating the object. 

If the multiplicity is 0..1, the reference can be null, and your methods should check for null or catch the null reference 
exception as appropriate. If the multiplicity is 1..1 or just 1, you must enforce the constraint that the reference must 
always point to a valid object in your methods. That means your constructor must associate an object with the 
reference, and no method may leave the reference as null or dangling. 

You will find this situation more common with a 0..1 multiplicity, as the 1..1 multiplicity usually comes with a 
composite aggregation instead of a regular association. The only real reason to have a regular association with a 
single target instead of a composite aggregation is to allow the association to be null. This corresponds to a C++ 
data member that needs to be a pointer because the object may not always exist. 

Note 
  

This very point illustrates a major difference between writing a C++ program and porting a 
C++ program to an OODBMS-based persistent data model. You can't use pointers, which are 
memory objects; instead, you must use some kind of reference or handle or smart pointer to 
refer to persistent objects. The consequence: you can't just take a C++ program, mark certain 
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objects as persistent, and go. You have to convert your pointer members, pointer parameters, 
and pointer return arguments to persistent references. This doesn't sound like much, but in 
reality this can result in quite a lot of work in converting the code.  

As an example, consider the specialized need for an optional street address for a person in the commonplace book 
system. The approach from Figure 13-1 models addresses as a series of string attributes in the Person class. 
Instead, consider a more complex model that represents the street address as a separate class (Figure 13-6). To fit 
the requirements, assume that you can use one street address in several address objects (1..* multiplicity) and that 
addresses can see street addresses but street addresses don't need to see addresses. (It's hard to come up with 
real examples that make sense with this scenario, in practice. Usually these situations wind up being composite 
aggregation, not freestanding objects.) 

The attributes representing the street address are now in the StreetAddress class. The ODL version of the Address 
class now looks like this: 
class Address (extent Addresses) { 
  attribute StreetAddress Street; 
  attribute string City; 
  attribute string State; 
  attribute string PostalCode; 
  attribute string Country; 
  attribute nullable_string Comment; 
  string CreateLabel(); 
}; 

 
Figure 13-6: The Address and StreetAddress Classes  

The C++ version looks like this: 
class Address : public d_Object { 
protected: 
  d_Ref< StreetAddress > Street; 
  d_String City; 
  d_String State; 
  d_String PostalCode; 
  d_String Country; 
  d_String Comment; 
public: 
  const d_String & CreateLabel(void) const; 
}; 

The d_Ref template is the standard C++ representation for an OODBMS persistent reference. The template 
argument (StreetAddress) names the class of objects to which the reference refers. 

Tip 
  

The blanks between the template brackets and the class name are an emerging standard that 
help many compilers identify the class name properly. In this case, since the identifier is a 
simple name, you don't need the spaces. You may find when using complex C++ names (for 
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example, including a name space and nesting classes or typedefs) that the spaces are 
necessary. Standard Template Library (STL) technology still has some complexities that can 
make life difficult at times.  

Directed Associations with Multiplicity Greater than 1 

With a multiplicity of 0..* or * on the directed association, you are now dealing with a collection of objects rather than 
just a single object. Again, the directed association implies a restricted visibility for the pointing object, and the 
association is not a composite aggregation. 
Going back to Figure 13-1, there is a many-to-many, bidirectional association between Person and Address. What if, 
for design reasons, you made the association directed, with the arrow pointing at the address? This would mean that 
you could access an address through a person, but that you could not access a person through an address. This 
situation, again, is rare in real-world design, but despite that the OODBMS world gives you a way to do it. 
class Person (extent People) { 
  attribute set< Address > Addresses; 
  . . . 
}; 

In C++: 
class Person : public Object { 
  d_Set< d_Ref< Address > > Addresses; 
  . . . 
}; 

You should notice two things about the C++ version. First, the set contains references to objects, not the objects 
themselves. That's how the C++ OODBMS maintains the objects as distinct, persistent objects outside the d_Set 
object. Second, you need the spaces between the > characters; otherwise, most compilers have trouble because 
their lexical analyzers see the >> operator rather than the template delimiters and go crazy. 

If you delete an address, you'll need to go to all the people objects in the database and ask them to delete the 
address from their sets of addresses. That probably means adding a special operation to the Person class to handle 
the referential integrity updates, and you'll have to make sure to call that operation whenever you remove an 
address. You'll also have to make the complete set of people visible in the context where you're deleting the 
address. 

Tip 

  

On balance, the added complexity of all this referential integrity management probably 
outweighs any encapsulation advantages you gain by using the directed link. In a regular C++ 
program, this structure requires the additional complexity of cache management operations, 
but adding in the persistence and referential integrity in the database makes it even worse. 
When you don't want composite aggregation semantics, it's usually best to use relationships 
rather than the embedded object or collection approach. That means bidirectional associations.  

Bidirectional Associations with Role Multiplicity 1 

The bidirectional association moves us into the world of relationships, and consequently of automatic referential 
integrity. First, consider the association from a class with a role multiplicity of 0..1 or 1..1 on the role attached to the 
other class. The class you are defining accesses (perhaps optionally) a single object of the target class. Because the 
association is bidirectional, there is also visibility of the association from the target class side. Finally, the target 
object is independent of the associating object, as the association is not an aggregation. This situation corresponds 
directly to the single-object relationship. 
Revisiting Figure 13-6, what if the association here was not directed, with no arrowhead pointing to StreetAddress? 
The ODL for the Address class would look like this: 
class Address (extent Addresses) { 
  relationship StreetAddress Street inverse StreetAddress::Addresses; 
  attribute string City; 
  attribute string State; 
  attribute string PostalCode; 
  attribute string Country; 
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  attribute nullable_string Comment; 
  string CreateLabel(); 
}; 

This differs from the first version of this class by replacing the attribute with a relationship, adding the inverse clause 
that specifies the name of the relationship on the StreetAddress side. The C++ version looks like this: 
extern const char _addresses[]; // Address<->StreetAddress 
class Address : public d_Object { 
protected: 
  d_String City; 
  d_String State; 
  d_String PostalCode; 
  d_String Country; 
  d_String Comment; 
public: 
  d_Rel_Ref< StreetAddress, _addresses > Street; 
  const d_String & CreateLabel (void) const; 
}; 

The standard single-object relationship d_Rel_Ref template in C++ takes two arguments, the name of the target 
class and a character array containing the name of the relationship in the target class (the inverse member). In this 
case, there will be a code (.cpp) file containing the initialization of the const character array: 
const char _address[] = "Addresses"; // rel member of StreetAddress 

Note 

  

To give you an idea of the complexity behind this approach, here's a quiz. What role do you 
think the inverse member name parameter plays, and why don't you just put the literal string 
into the template argument (d_Rel_Ref< StreetAddress, "address" >)? Answer: The memory 
address of the variable you declare (that is, the _address character array) lets the compiler 
differentiate this template instance from other template instances. If you use a literal string, 
the address will differ each time you include the file. Then the relationship template generates 
many instances (once for each inclusion of the template) instead of the single one it requires 
[Jordan 1997, p. 123]. This is fairly typical of the complexity that C++ imposes on the 
database designer (and the template designer as well).  

Bidirectional Associations with Role Multiplicity Greater than 1 
Now, moving to the last variation, consider the association with a role multiplicity of 0..*, 1..*, *, or n..m, where n and 
m define a multiple-object range. Again, this represents an independent object, not an aggregate. If you consider 
Figure 13-6 with no arrowhead again, the StreetAddress class represents this situation. In ODL, the class declaration 
looks like this: 
class StreetAddress (extent StreetAddresses) { 
  attribute int Number; 
  attribute string Fraction; 
  attribute string Name; 
  attribute string Suffix; 
  relationship set<Address> Addresses; 
  string CreateString(); 
}; 

In C++: 
extern const char _streetAddress[]; // Address<->StreetAddress 
class StreetAddress : public d_Object { 
  int Number; 
  d_String Fraction; 
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  d_String Name; 
  d_String Suffix; 
public: 
  d_Rel_Set< Address, _streetAddress >; 
}; 
Figure 13-5 tells you that you have one of three choices for the collection class to use in declaring your to-many 
relationship: set, bag, or list. Most relationships are sets. In certain cases, you may want to be able to store the link 
to an object more than once. If the situation does not require ordering, you use a bag; otherwise, you use a list. Both 
of these collections permit duplicates. If the association requires ordering (an {ordered} tag on the role), you can use 
a list to specify the order. If you cannot allow duplicates, however, you must use a set, which has no ordering. 

Composite Aggregations 
Now let's confront the association we've been avoiding: the composite aggregation. In Figure 13-1, the Identification 
class relates to the Person class with a composite aggregation. The Person class owns the identification, which 
cannot exist without the person. 

In an OODBMS, you can represent this situation in two ways: as a true composition or as a bidirectional relationship. 

The composition approach lets you declare the object directly: 
class Person (extent People) { 
  . . . 
  attribute set<Identification>; 
}; 

In C++: 
class Person : public Entity { 
  . . . 
public: 
  d_Rel_Set< Identification, _person >; 
}; 

The composition approach uses the attribute declaration to create the identification object set and its objects as a 
part of the structure of the Person class rather than as freestanding, persistent objects. When you activate the 
person, you activate the entire set of identification objects by value. The identification objects do not have any 
separate persistent object identity, so when you delete the person, you delete all of its identification objects as well. 

The bidirectional approach would declare a full relationship, as the section "Bidirectional Associations with Role 
Multiplicity Greater than 1" discusses. The Identification objects now become first-class persistent objects with their 
own identity in the database, and you access them through references. The advantages of this approach include 
automatic referential integrity (delete an identification and the reference to it becomes null), automatic inverse 
relationship maintenance, automatic extent maintenance, and the ability to query the independent identification 
objects without reference to the person objects that contain them. The main disadvantage: you have to enforce the 
ownership through code instead of directly. With the true composition approach, if you delete the person, the DBMS 
deletes all the identification objects belonging to that person as well. With the bidirectional relationship approach, you 
must do this in a Delete() operation, as the DBMS will merely delete the object reference, not the object, which is 
independent. 

Note 

  

The POET OODBMS, for example, provides a feature similar to the cascading delete 
available with most RDBMS foreign key constraints. You can use the depend keyword to 
represent the composite aggregation and the various depth modes to control the delete 
propagation (PtSHALLOW versus PtDEEP gives the equivalent of NO ACTION versus 
CASCADE). These features are completely nonstandard, of course, and you can't use them 
with any other OODBMS.  

Ternary Associations 
OODBMS products do not yet support n-ary associations as first-class relationships, nor does the ODMG object 
model give you a way to declare such associations [Cattell and Barry 1997, p. 36]. You must therefore represent 
such relationships by creating association classes and the consequent binary relationships between the three or 
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more related classes and that class [Jordan 1998, pp. 116—117]. For example, to represent the "plays" relationship 
in Figure 13-2 in ODL: 
class Plays (extent Playslnstances) { 
  attribute interval Tenure; 
  attribute date StartDate; 
  attribute nullable_date EndDate; 
  attribute TerminationType TerminationMethod; 
  void Terminate(TerminationType method); 
  relationship Person aPerson inverse Person::playsRoles; 
  relationship Organization anOrganization Role 
    inverse Organization::players; 
  relationship Role aRole inverse Role::played; 
}; 

The three binary relationships represent the three roles as to-one relationships to the association class. For abstract 
relationships such as "plays," you need to get fairly creative with your naming convention to specify attribute names 
different from the type names. On the side of the related classes, you have the appropriate collection relationships: 
class Person (extent People) { 
  . . . 
  relationship set<Plays> playsRoles 
    inverse Plays::aPerson; 
}; 
class Organization (extent Organizations) { 
  . . . 
  relationship set<Plays> players 
    inverse Plays:: anOrganization; 
}; 
class Role (extent Roles) { 
  . . . 
  relationship set<Plays> played 
    inverse Plays::aRole; 
}; 

The C++ versions of these declarations are straightforward, using the d_Rel_Set template with the types and string 
constants to hold the inverse names. 

 
Disciplining Your Objects 
How objects behave and how to constrain that behavior is both straightforward and very different from relational 
tables and object-relational types. 

Behavioral Problems 
The clearest difference between the direction of most RDBMS vendors and OODBMS products is the location of the 
behavior of the system. OODBMS products locate the behavior in the client in all but a few cases. When you define a 
method in a class, you are coding a program that runs in the client process rather than on the server. This makes the 
OODBMS slightly less flexible than the RDBMS with its stored procedures running on the database server. The job 
of the OODBMS is to materialize persistent objects in client memory, then let those objects do their job, coordinating 
through transactions, shared caches, and so on[Jordan 1998]. 
The advantageous consequence of this approach is the dramatic simplification of the behavioral interface. No longer 
do you need to worry incessantly about choosing where to execute a procedure. No longer do you need to separate 



 - 252 -

your coding into C++ and stored-procedure programming languages. All you need to do is write your C++ or Java or 
Visual Basic program in its entirety and let 'er rip. The OODBMS, through cache activation (moving objects into 
cache memory), pointer swizzling (transforming references into objects in memory), pinning and unpinning (holding 
or freeing objects from the cache), and concurrency management (sharing the cache and objects in the database), 
provides a transparent virtual memory system that serves up objects and lets your client process all their methods. 

The dark side to this approach, of course, is that you can no longer distribute behavior to all parts of the system. 
Simple methods that could run on the database server now cannot, but instead you must retrieve the object across 
the network and operate on it at the client. This restriction extends to query processing; when you run a query, you 
are executing behavior on the client application cache, not sending SQL to the server for execution against the 
shared server cache. 

Object databases are thus fat-client systems. With the increasing use of application servers such as CORBA and 
COM systems, however, this is less of a disadvantage than it might seem. You can construct your OODBMS clients 
as application servers, with your truly thin clients referring to distributed objects and behavior executing on the 
pleasingly plump application servers. 

Typically, the OODBMS will generate the appropriate factory classes or methods that the application client needs to 
convert the data from the database into objects with appropriate data structures. These methods should be 
completely transparent to the database programmer. 

The constructors for the objects, on the other hand, are definitely within the realm of programming for the database 
programmer. The system calls the constructor when you create the object, not when you activate it (retrieve it into 
the application cache from the database). Constructors thus serve the same purpose for persistent objects that they 
serve for any object: initialization of data members, creation of nested objects, and any other initial setting up of the 
object. 

Destructors manage memory for persistent objects just as they do for transient objects. This has nothing to do with 
deleting objects from the database, which you do through the delete_object method on a persistent reference or by 
deleting a pointer to a persistent object [Cattell and Barry 1997, pp. 140—141]. Various OODBMS implementations 
have interesting ways of managing locking and deactivation of objects as well as different ways to manage garbage 
collection of deleted objects in the database. You should definitely spend some time with your target OODBMS 
documentation to understand the specific relationships between object deletion, object destruction, and object 
deactivation. 

Similarly, most OODBMS products have different ways to create and update objects. The ODMG standard calls for 
using the overloaded new operator with some additional arguments to support database clustering or creation in a 
specific database. By specifying the special database d_Database::transient_memory, you can create a persistent 
object in transient memory, for example. This feature again makes persistence orthogonal to type. 

For updates, you need to call a special method, mark_modified(), which tells the OODBMS to lock the object and to 
update the persistent storage on committing the transaction. Most OODBMS products provide a way to do this 
automatically, so you usually don't need to worry about it. Worry about it anyway, at least until you understand 
precisely what your target OODBMS product(s) requires in this regard and what you need to do to be portable 
among multiple targets [Jordan 1998, pp. 68—69]. 

Setting Boundaries 
Constraining behavior in the OO schema is simple. You write a program to do it. There is no such thing as a 
database constraint or trigger in the OO schema; it's just another behavior you attach to a class. The OO model thus 
transforms complex constraints into programming problems rather than database problems. As you would when 
writing any OO program, you identify the need for constraints in your UML model, then produce the appropriate 
operations and the calls from specific methods at appropriate times. 

For example, if you have a UML constraint on a class that represents a class invariant constraint (a predicate that 
must always be true for objects of the class), you create a private or protected operation that represents the 
constraint, then call that operation from any class method that might cause the violation of the constraint. This will 
usually be a mutator method that changes the class state, or perhaps it might be a verify() method that exposes the 
class invariant to the clients of the class for testing purposes. 
The same approach applies to primary key constraints, as the OODBMS replaces the concept with the idea of object 
identity. However, as the earlier section "Object Identity" points out, ODL and various OODBMS products give you 
specific ways to implement key constraints, both primary and candidate varieties. 
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More complex constraints that exist across classes in the database may require separate manager classes that 
enforce the constraint on the objects they own. 

 
Objective Language 
This section summarizes how you can create an object-oriented schema using the ODMG standard. The structure 
and language of this section mirrors the similar section in Chapter 11, "The Language of Peace." You should consult 
Chapter 11 for examples and details on the relational transformations and compare them to the more straightforward 
OO transformations here. The transformation process uses the example data model from Figures 13-1 through 
Figures 13-3. 

You create an object-oriented schema in two basic steps: creating classes from persistent types and creating 
classes for many-to-many and ternary associations. This section guides you through a complete transformation, 
connecting everything previously discussed into a transformational whole. You should see by the end of this chapter 
that the transformation from a UML design into an OO schema is much easier than for a relational or object-relational 
schema. Nevertheless, there is still some effort involved because of the limitations of the ODL and the programming-
language-specific schema definition bindings of OODBMS products. 

Persistent Classes and Interfaces 
As the first transformation, create a persistent ODL or C ++ class for each class in your UML data model that has the 
«persistent» stereotype, including association classes and classes that inherit from other classes. Name the class 
with the name of the UML class. From Figure 13-1, the Person subsystem, you create 10 classes: Person, Address, 
Identification, ExpiringID, DriverLicense, Passport, NationalID, LawEnforcementID, SocialSecurityCard, and 
BirthCertificate. 

If there are any interfaces in your UML diagrams, create an ODL interface or C++ class for each one. If you're using 
the Java binding, you should transform the UML interface directly into a Java interface; otherwise, just transform it 
into a class. 

For each attribute in the attribute section of the UML class, add an attribute to the class. As an example, for Address, 
add StreetNumber, StreetFraction, StreetName, StreetSuffix, Locator, City, State, PostalCode, Country, and 
Comment. ODL interfaces have attributes and relationships, but all this means is that you need to generate get and 
set methods. Interfaces do not have state and hence do not have actual data members for the attributes and 
relationships. 

You should at this point have a transformation map that shows how to transform each data type in your data model 
into an ODL data type. These data types include the literal and structured types (value-based data), embedded or 
referenced objects (object IDs), and collections (multiple object IDs). If your UML diagram uses the ODL types, the 
ODMG standard provides mapping tables to the main OO programming languages [Cattell and Barry 1997]. If you 
have denned UML types, use the typedef and enum type declaration keywords to declare subtypes and enumerated 
types. 

Because the C++-based OODBMS gives each persistent object identity, you don't create a primary key or candidate 
keys for the C++ class. Instead, you must enforce any {OID} or {alternate OID} tags as constraints using the key or 
unique index feature if it exists (see the "Object Identity" section) or with methods if it doesn't. You place these 
methods on classes that aggregate the extent of the class. If you have no such transient class, put the method on 
the class itself as a static member (a class-level member in UML terms). Treat the constraint as a class invariant to 
be checked in every method that changes objects or adds objects. 

ODL uses the key specification to transform the {OID} or {alternate OID} attributes into a primary key for a class. You 
can also use this to define alternate (candidate) keys. BadgeNumber, for example, is an alternate key for the 
LawEnforcementID. You could therefore define an ODL class that specifies the key: 
class LawEnforcementID extends Identification 
    (extent LawEnforcementIDs key BadgeNumber) { 
  attribute unsigned long BadgeNumber; 
}; 

You can have as many keys as you like for the class. 
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If you are using C++, or if you choose not to use the ODL key specification, you have to enforce {OID} and {alternate 
OID} constraints through operations that enforce uniqueness on the extent of the class. Such an operation would be 
a static method in a persistent C++ declaration on the class. 
static void CheckuniqueBadgeNumbers() const; // C++ version 

Alternatively, if you have some kind of aggregate abstraction that represents the extent of the class, such as a cache 
or other collection, you can put the method on that class along with the add and remove methods that manipulate the 
class extent. 

The end result for this stage for the Address table looks like this in a C++ POET definition: 
persistent class Address { 
  long StreetNumber; 
  string StreetFraction; 
  string StreetName; 
  string StreetSuffix; 
  string City; 
  string State; 
  string PostalCode; 
  string Country; 
  string Comment; 
public: 
  // Constructor 
  Address(); 
  // Destructor 
  virtual ~Address(); 
  // Uses memberwise copy constructor, assignment 
  // Accessors 
  virtual string GetStreetAddress() const; // constructs string 
  virtual const string & GetCity() const; 
  virtual const string & GetState() const; 
  virtual const string & GetPostalCode() const; 
  virtual const string & GetCountry() const; 
  virtual const string & GetComment() const; 
  // Mutators 
  virtual void SetStreetAddress(long number 
                                const string & fraction, 
                                const string & name, 
                                const string & suffix); 
  virtual void SetCity(const string & city); 
  virtual void SetState(const string & state); 
  virtual void SetPostalCode(const string & code); 
  virtual void SetCountry(const string & country); 
  virtual void SetComment(const string & comment); 
}; 

If you did this in ODL, the appearance is slightly different: 
class Address (extent Addresses) { 
  attribute long StreetNumber; 
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  attribute string StreetFraction; 
  attribute string StreetName; 
  attribute string StreetSuffix; 
  attribute string City; 
  attribute string State; 
  attribute string PostalCode; 
  attribute string Country; 
  attribute string Comment; 
  // Accessors 
  string GetStreetAddress(); // constructs string 
  // Mutators 
  void SetStreetAddress(in unsigned long number, 
                        in string        fraction, 
                        in string        name, 
                        in string        suffix); 
}; 

If there is a {nullable} tag on an attribute with an atomic literal type, and you're using ODL specifications, use the 
nullable versions of the types (nullable_string, for example, or nullable_long). This does not apply to enums or 
structured types, which cannot be null. If you're using C++, you can't represent nulls at all, since C++ doesn't have 
any concept of null value. If you're desperate to have nulls anyway, you can code wrappers that add null-value 
handling to your classes, though this increases complexity considerably. 

If a class inherits from another class or set of classes, include a superclass specification in the class definition. In 
C++ this is usually a ": public <superclass" clause. In ODL, you use the extends keyword. 

An ODL declaration for the LawEnforcementID subclass of Identification looks like this: 
class LawEnforcementID extends Identification 
    (extent LawEnforcementIDs) { 
  attribute unsigned long BadgeNumber; 
}; 

Alternatively, in C++ the LawEnforcementID class looks like this: 
persistent class LawEnforcementID : public Identification { 
  unsigned long BadgeNumber; 
public: 
  // Constructor 
  BadgeNumber(); 
 
  // Destructor 
  virtual ~BadgeNumber(); 
  // Memberwise copy constructor and assignment operator 
  // Accessors 
  virtual unsigned long GetBadgeNumber() const; 
  // Mutators 
  virtual void SetBadgeNumber(unsigned long number); 
}; 
Association classes represent associations with attributes, many-to-many associations, and n-ary associations that 
link two or more classes together. The association class contains associations to the linked classes using the 
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appropriate collections to represent multiplicity (more on this later when you transform associations). For now, create 
a class that contains the association class attributes: 
class Plays { 
  attribute interval          tenure; 
  attribute date              startDate; 
  attribute date              endDate; 
  attribute TerminationMethod termMethod; 
  void terminate(in TerminationMethod method); 
}; 

The actual relationships will come later, when you consider the associations to the classes. 

Now add any simple class-invariant constraints to the classes and interfaces. If there are constraint boxes in the 
diagram, convert them into class-level (static) operations. 

Now it's time to look at the binary associations. If an association has an association class, ignore the association for 
now. Create a relationship member for the other associations in each of the associated classes and specify the 
inverse clause with the name of the relationship in the other class. If the association is directed (an arrow on one 
side), create the relationship member only on the target class (no inverse clause on that relationship or reciprocal 
relationship in the other class). For the to-one side, create a simple identifier relationship. For the to-many side, 
create a collection-class relationship of the appropriate type. If you have a many-to-many relationship, you will have 
collection relationships in both classes. 

Note 
  

There are other possibilities, but using a bidirectional relationship is generally better. Consult 
the section "Associations" for a detailed discussion of all the possibilities for association 
transformations.  

The many-to-many association in Figure 13-1 between Address and Person looks like this in ODL (with class details 
suppressed for clarity): 
class Address (extent Addresses) { 
  . . . 
  relationship set<Person> residents 
    inverse Person::addresses; 
}: 
class Person (extent People) { 
  . . . 
  relationship set<Address> addresses 
    inverse Address::residents; 
}; 
For associations with association classes, treat the relationships not as direct relationships between related classes 
but as relationships to the association class. For example, if you added an association class to Figure 13-1 for the 
many-to-many association between people and addresses (PersonAddress), you would define the three classes with 
relationships in ODL in this way (with class details suppressed for clarity): 
class PersonAddress (extent PeoplesAddresses) { 
  attribute date startDate; 
  attribute date endDate; 
  relationship Person aPerson inverse Person::addresses; 
  relationship Address anAddress inverse Address::residents; 
}; 
class Address (extent Addresses) { 
  . . . 
  relationship set<PersonAddress> residents 
    inverse PersonAddress::anAddress; 
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}: 
class Person (extent People) { 
  . . . 
  relationship set<PersonAddress> addresses 
    inverse PersonAddress::aPerson; 
}; 
You must use this approach to represent n-ary associations, since you cannot directly relate more than two classes 
in a single relationship. The ODL for the ternary Plays association and its associated classes looks like this (with 
class details suppressed for clarity): 
class Person (extent People) { 
  . . . 
  relationship set<Plays> playsRoles 
    inverse Plays::aPerson; 
}; 
 
class Organization (extent Organizations) { 
  . . . 
  relationship set<Plays> players 
    inverse Plays::anOrganization; 
}; 
class Rote (extent roles) { 
  . . . 
  relationship set<Plays> played 
    inverse Plays::aRole; 
}; 
class Plays { 
  attribute interval          Tenure; 
  attribute date              StartDate; 
  attribute date              EndDate; 
  attribute TerminationType TerminationMethod; 
  void terminate(in TerminationType method); 
  relationship Person aPerson inverse Person::playsRoles: 
  relationship Organization anOrganization Role 
 inverse Organization::players; 
  relationship Role aRole inverse Role::played; 
}; 

For composite aggregations with only one object being aggregated, you should consider the alternative of 
embedding the object in the type rather than creating a relationship. If the composite aggregates multiple objects, 
you can represent this as a collection of child objects instead of a collection-based relationship. Using an attribute 
specification instead of a relationship specification expresses the strong ownership of the composite aggregation 
association. It does not, however, provide support for the inverse relationship. 
For example, in Figure 13-1 there is a composite aggregation between Person and Identification. You can use the 
relationship approach, but in this case a collection attribute would be better: 
class Person (extent People) { 
  . . . 
  attribute set<Identification> IDs; 
}; 
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The attribute does not have an inverse, so the Identification class knows nothing about its containing parent object, a 
Person object. If for some reason you must navigate from an Identification object to its owning Person, then use a 
relationship with an inverse instead of an attribute. 

So much for state. What about behavior? 

Operations 
To represent operations in an OODBMS, create a member operation for each operation you've defined in the data 
model. As an example, consider the CriminalOrganization class from Figure 13-2. That class exports two operations: 
UpdateStatus and SetPriority, both "mutators" that change the state of a particular criminal organization object. In 
this case, we have two requirements: enumerated data types and updating the current object. The enumerated types 
are UML type classifiers that you have already transformed into ODL or C++ enum type declarations. You then need 
to add the operations to the ODL class and then implement the corresponding methods in the body of the class in a 
separate C++ file. 

The ODL (or Java) interface provides a somewhat different problem. The interface is a specification of abstract 
behavior with no implementation or state. When you transform a UML interface into an ODL interface, you just 
declare the operations; there is no body file or method implementation. Instead, you add the operations to classes 
that realize the interface and implement them there. 

You usually need to pay special attention to the constructors and destructor for each class. Ensure that the 
constructor sets up everything required. In the destructor, ensure that you remove any transient or persistent objects 
from memory. You will also find that most OODBMS products provide a set of operations on each persistent object, 
usually through inheritance from some root persistent object type. 

Since there is no standard for creating or deleting objects from the persistent store [Cattell and Barry 1997, p. 55], 
each OODBMS provides its own methods for creating new objects and for deleting them when you're finished with 
them. 

The OODBMS creates transient objects from persistent objects through special factory classes or methods that the 
system generates as part of the schema generation process. These factories do the translation from persistent to 
transient, then call your constructor to handle any transient setup required. 

Removing persistent objects from memory and removing them from the database are completely separate things. 
Just as in a relational database, you need to decide where to put the deletion behavior and its accompanying 
propagation to objects that a deleted object owns. In some cases the OODBMS provides a special operation, such 
as delete_object in the C++ ODMG binding. You call this operation on the objects the deleted object owns, then call 
the operation on the object you are deleting. In other cases, this may happen automatically, as with the Java ODMG 
binding, which removes objects from the database when your system no longer refers to them (automatic garbage 
collection). You usually add some kind of delete operation on the class that propagates the deletion. 

Table 13-1: Summary of Object-Oriented Schema Transformation  
Step  Transformation  

1 UML «persistent» class becomes OODBMS persistent class. 

2 UML interface that a «persistent» class realizes becomes an OODBMS interface for 
languages that support interfaces (Java, ODL) or an abstract base class with only pure virtual 
members and no data members for those languages that don't have interfaces (C++, 
Smalltalk). 

3 UML type classifier becomes enum or typedef as indicated. 

4 UML attribute in class becomes attribute in OODBMS class with appropriate type 
transformations and restrictions. 

5 Use nullable literal type (nullable_short, for example) if {nullable} tag appears and the binding 
you're using supports null values (ODL); otherwise, ignore it (C++, Java). 

6 If UML attribute has initializer, add initialization code to constructor, either as part of the 
constructor method or in a C++ member initialization list. 

7 For subclasses, include the superclass specification in the class declaration. 

8 For association classes, create a class with the attributes of the association class. 
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9 For explicit object identity {oid} or candidate key {alternate oid}, specify a key declaration if 
your binding supports it (C++ does not, for example). If not, supply appropriate methods for 
checking uniqueness constraints on sets of objects. 

10 Add a method to the appropriate class for each explicit constraint and ensure that the system 
calls that method whenever the system requires that the constraint is satisfied. 

11 Create a relationship for each binary association that has no association class with the 
appropriate object or collection type deriving from the multiplicities of the association. Use 
inverse relationships unless there are explicit arrows on the association (and even then, 
consider it anyway). 

12 Create a relationship in association classes for each role link to another class. 

13 Create code or use OODBMS features to propagate deletes for any composite aggregation 
associations as your particular OODBMS requires. 

14 Create an association class for ternary associations and create relationships from the 
association class to the associated classes with the appropriate data types given the 
multiplicities. 

 

Again, the OODBMS does not store or execute the operations. All behavior in an object database happens on the 
client, whether it is an application server, a thick-client application, or a Web browser applet. 

 
Summary 
For convenience, Table 13-1 summarizes the transformation to an OODBMS. This table is very different from Table 
11-4, which describes the relational transformation, or Table 12-1, which describes the object-relational 
transformation. Though the basic structure is similar, the details are completely different. 

Object-oriented databases give you a very different way of looking at object persistence and schema design. The 
design issues are the same: class structure, association structure, behavior, and constraints. You be the judge of 
whether the OO path for managing data is more transparent and productive than the relational or object-relational 
paths. 

Tip 

  

I've found it best to use an OODBMS for systems that either benefit dramatically from 
navigational, as opposed to ad hoc query, access or that are primarily object storage facilities 
rather than enterprise systems with many different applications in a variety of languages. For 
example, if your system is a C++ program that uses the database to store and retrieve objects 
into a shared application server, you should use an OODBMS. If your system is a large 
collection of Visual Basic, C++, and Developer/2000 programs with three or four different kinds 
of report writers and query tools, you should use an RDBMS or possibly an ORDBMS.  

You have now seen the basics of database design using UML as represented by the three major kinds of databases 
on the market. Your job as a database designer is to choose the right one for your needs based on the UML data 
models you construct. Complex or simple, the art of database design is still an art, not a science. Choose the right 
muse, and the database gods will smile on you. 

 
Chapter 14: Sherlock Holmes Story References 
The following notations are used for Sherlock Holmes story references: 

BLUE The Adventure of the Blue Carbuncle 

BRUC The Adventure of the Bruce-Partington Plans 

EMPT The Adventure of the Empty House 

ENGR The Adventure of the Engineer's Thumb 

FINA The Final Problem 

FIVE The Five Orange Pips 
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HOUN The Hound of the Baskervilles 

IDEN A Case of Identity 

LION The Adventure of the Lion's Mane 

MISS The Adventure of the Missing Three-Quarter 

MUSG The Musgrave Ritual 

PRIO The Adventure of the Priory School 

REDC The Adventure of the Red Circle 

SCAN A Scandal in Bohemia 

SILV Silver Blaze 

STUD A Study in Scarlet 

SUSS The Adventure of the Sussex Vampire 

THOR The Problem of Thor Bridge 

TWIS The Man with the Twisted Lip 

VALL The Valley of Fear 

VEIL The Adventure of the Veiled Lodger 
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