
KDE 2/Qt
Programming Bible

Arthur Griffith

IDG Books Worldwide, Inc. 
An International Data Group Company

Foster City, CA ✦ Chicago, IL ✦ Indianapolis, IN ✦ New York, NY

4682-1 fm.f.qc  11/20/00  15:45  Page iii



KDE 2/Qt Programming Bible
Published by
IDG Books Worldwide, Inc.
An International Data Group Company
919 E. Hillsdale Blvd., Suite 400
Foster City, CA 94404
www.idgbooks.com (IDG Books Worldwide 
Web site)
Copyright © 2001 IDG Books Worldwide, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.
ISBN: 0-7645-4682-1
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1B/RV/RS/QQ/FC
Distributed in the United States by IDG Books
Worldwide, Inc.
Distributed by CDG Books Canada Inc. for Canada; 
by Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa; 
by Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland;
by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer
Publishing Corporation, Inc., for the Philippines; 
by Contemporanea de Ediciones for Venezuela; by
Express Computer Distributors for the Caribbean 
and West Indies; by Micronesia Media Distributor, Inc.
for Micronesia; by Chips Computadoras S.A. de C.V.
for Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.
For general information on IDG Books Worldwide’s
books in the U.S., please call our Consumer Customer

Service department at 800-762-2974. For reseller
information, including discounts and premium sales,
please call our Reseller Customer Service
department at 800-434-3422.
For information on where to purchase IDG Books
Worldwide’s books outside the U.S., please contact
our International Sales department at 317-572-3993 
or fax 317-572-4002.
For consumer information on foreign language
translations, please contact our Customer Service
department at 800-434-3422, fax 317-572-4002, or
e-mail rights@idgbooks.com.
For information on licensing foreign or domestic
rights, please phone +1-650-653-7098.
For sales inquiries and special prices for bulk
quantities, please contact our Order Services
department at 800-434-3422 or write to the address
above.
For information on using IDG Books Worldwide’s
books in the classroom or for ordering examination
copies, please contact our Educational Sales
department at 800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 650-653-7000 or fax
650-653-7500.
For authorization to photocopy items for corporate,
personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.

Library of Congress Cataloging-in-Publication Data
Griffith, Arthur.

KDE 2/Qt programming bible / Arthur Griffith.
p. cm.

ISBN 0-7645-4682-1 (alk. paper)
1. C++ (Computer program language) 

2. Graphical user interfaces (Computer systems)
3. Linux I. Title.
QA76.73.C153.G7426 2001
005.13’3--dc21 00-047247

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE
DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF
THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR
WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR
SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT
NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: All brand names and product names used in this book are trade names, service marks,
trademarks, or registered trademarks of their respective owners. IDG Books Worldwide is not associated 
with any product or vendor mentioned in this book.

is a registered trademark or trademark under exclusive license
to IDG Books Worldwide, Inc., from International Data Group, Inc.,
in the United States and/or other countries.

4682-1 fm.f.qc  11/20/00  15:45  Page iv



Eleventh Annual
Computer Press
Awards        1995Tenth Annual

Computer Press
Awards        1994

Eighth Annual
Computer Press
Awards        1992 Ninth Annual

Computer Press
Awards        1993

IDG is the world’s leading IT media, research and exposition company. Founded in 1964, IDG had 1997 revenues of $2.05
billion and has more than 9,000 employees worldwide. IDG offers the widest range of media options that reach IT buyers
in 75 countries representing 95% of worldwide IT spending. IDG’s diverse product and services portfolio spans six key areas
including print publishing, online publishing, expositions and conferences, market research, education and training, and
global marketing services. More than 90 million people read one or more of IDG’s 290 magazines and newspapers, including
IDG’s leading global brands — Computerworld, PC World, Network World, Macworld and the Channel World family of
publications. IDG Books Worldwide is one of the fastest-growing computer book publishers in the world, with more than
700 titles in 36 languages. The “...For Dummies®” series alone has more than 50 million copies in print. IDG offers online
users the largest network of technology-specific Web sites around the world through IDG.net (http://www.idg.net), which
comprises more than 225 targeted Web sites in 55 countries worldwide. International Data Corporation (IDC) is the world’s
largest provider of information technology data, analysis and consulting, with research centers in over 41 countries and more
than 400 research analysts worldwide. IDG World Expo is a leading producer of more than 168 globally branded conferences
and expositions in 35 countries including E3 (Electronic Entertainment Expo), Macworld Expo, ComNet, Windows World
Expo, ICE (Internet Commerce Expo), Agenda, DEMO, and Spotlight. IDG’s training subsidiary, ExecuTrain, is the world’s
largest computer training company, with more than 230 locations worldwide and 785 training courses. IDG Marketing
Services helps industry-leading IT companies build international brand recognition by developing global integrated marketing
programs via IDG’s print, online and exposition products worldwide. Further information about the company can be found
at www.idg.com. 1/26/00

Welcome to the world of IDG Books Worldwide.

IDG Books Worldwide, Inc., is a subsidiary of International Data Group, the world’s largest publisher of
computer-related information and the leading global provider of information services on information technology.
IDG was founded more than 30 years ago by Patrick J. McGovern and now employs more than 9,000 people
worldwide. IDG publishes more than 290 computer publications in over 75 countries. More than 90 million
people read one or more IDG publications each month.

Launched in 1990, IDG Books Worldwide is today the #1 publisher of best-selling computer books in the
United States. We are proud to have received eight awards from the Computer Press Association in recognition
of editorial excellence and three from Computer Currents’ First Annual Readers’ Choice Awards. Our best-
selling ...For Dummies® series has more than 50 million copies in print with translations in 31 languages. IDG
Books Worldwide, through a joint venture with IDG’s Hi-Tech Beijing, became the first U.S. publisher to
publish a computer book in the People’s Republic of China. In record time, IDG Books Worldwide has become
the first choice for millions of readers around the world who want to learn how to better manage their
businesses.

Our mission is simple: Every one of our books is designed to bring extra value and skill-building instructions
to the reader. Our books are written by experts who understand and care about our readers. The knowledge
base of our editorial staff comes from years of experience in publishing, education, and journalism —
experience we use to produce books to carry us into the new millennium. In short, we care about books, so
we attract the best people. We devote special attention to details such as audience, interior design, use of
icons, and illustrations. And because we use an efficient process of authoring, editing, and desktop publishing
our books electronically, we can spend more time ensuring superior content and less time on the technicalities
of making books.

You can count on our commitment to deliver high-quality books at competitive prices on topics you want
to read about. At IDG Books Worldwide, we continue in the IDG tradition of delivering quality for more than
30 years. You’ll find no better book on a subject than one from IDG Books Worldwide.

John Kilcullen
Chairman and CEO
IDG Books Worldwide, Inc.

4682-1 fm.f.qc  11/20/00  15:45  Page v



Credits
Acquisitions Editors
John Osborn
Debra Williams Cauley

Project Editor
Kathi Duggan

Technical Editor
David Williams

Copy Editor
Luann Rouff

Project Coordinators
Louigene A. Santos
Danette Nurse

Graphics and Production Specialists
Robert Bihlmayer
John Greenough
Jude Levinson
Michael Lewis
Gabriele McCann 
Victor Pérez-Varela
Ramses Ramirez

Quality Control Technician
Dina F Quan

Permissions Editors
Laura Carpenter
Laura Moss

Media Development Specialists
Laura Carpenter
Travis Silvers

Media Development Coordinators
Laura Carpenter
Marisa Pearman

Illustrators
Shelley Norris
Rashell Smith

Proofreading and Indexing
York Production Services

Cover Image
Angela F. Hunckler
Joyce Haughey

About the Author
Arthur Griffith has been programming computers for twenty-five years. He has 
several years of experience in graphics programming, including X11 and motif. His
broad background includes oil and gas monitoring, satellite communications, insur-
ance company databases, real-time controls, and hardware diagnostic systems. He
specializes in writing computer language interpreters and compilers and has imple-
mented several special-purpose languages. Among the books he has written are
Java Master Reference and COBOL For Dummies. He is also the co-author of Peter
Norton’s Complete Guide to Linux. Arthur now lives in Homer, Alaska, and is a full-
time writer and teacher. You can contact him at arthur@belugalake.com.

4682-1 fm.f.qc  11/20/00  15:45  Page vi



For Mary

4682-1 fm.f.qc  11/20/00  15:45  Page vii



4682-1 fm.f.qc  11/20/00  15:45  Page viii



Preface

If you want to write a KDE application, you’ve come to the right book.

This book is composed of numerous example programs, and each example is 
accompanied by an explanation.  When exploring or learning something new about
software, my personal preference is to have a simple example that shows me just
what I want and nothing else. Software is complicated enough that it becomes
impossible to explain all its nuances without offering examples, and an example 
can be very confusing unless the key parts of it are clearly visible and explained.
Therefore, each example provided here is also a complete running program
designed to demonstrate just one thing.

The documentation of a program can be included as comments in the code, or it
can be separate text supplied along with the code. The examples in this book have
no embedded comments because each one is accompanied by text that explains it.
Leaving out comments produces a cleaner format, making it easier for a reader to
see the structure of the program. Most of the code is printed in the book with line
numbers, so the explanations can refer to specific lines.

What You Will Need
If you know how to program in C++, have access to a Linux computer, and are able
to download files from the Internet, this book will supply you with the know-how
you need to write KDE applications.

You can find a version of the development software on the CD, which is described
in Appendix A. Alternatively, see Appendix B to find out how to get the latest ver-
sion of everything. Appendix B contains a list of all the software you will need, 
and where it can be found on the Internet.

Subject to Change
KDE is large and powerful, and it is moving fast. Fortunately, it is also very friendly.

4682-1 fm.f.qc  11/20/00  15:45  Page ix



x Preface

Because KDE is an ongoing project, new things are being added constantly. This will
likely be the situation for the foreseeable future. Because of its open source status,
this growth will probably continue for the life of Linux and KDE.

From time to time, new methods for getting things done are added to the API, and it
is possible that some of the techniques described in this book will become outdated.
But KDE is quite stable now, so everything in the book should continue to work even
in the event of future changes. In some cases, if you run your applications from the
command line, there will be some text output to the console window. This text may
describe anything from a severe internal error to a simple piece of pertinent infor-
mation for the developer of the class you are using. This is typical of open source 
development software, and symptomatic of software under development. Eventually,
in later versions, these messages will go away.

How to Use This Book
The book is divided into three parts. The first part is one continuous tutorial cover-
ing the basics of KDE programming. The second part is also composed of tutorials,
but the chapters can be consulted in any order on an as-needed basis. The third
part was not intended to be read sequentially — it is more of a reference section, 
as are Appendixes C through G.

Appendix A or B: Installing the Software
If you have a late model Linux on a CD, you will have most of the software and may
have it all. If not, you have two options: You can install it from the CD supplied with
this book, or you can retrieve it from the Internet. Appendix A discusses the CD,
and Appendix B discusses the Internet.

Chapter 20: From Win32 to KDE
If you are a Win32 programmer, start by reading Chapter 20. This chapter is a point-
by-point comparison of two simple programs that are identical except that one is
written for Win32 and the other is written for KDE. Although there are some basic dif-
ferences, the underlying concepts behind writing a KDE application are very much
like those behind writing a Win32 application. For good measure, a GNOME program
is also included so you can compare the relative structure of all three applications.

Part I: Getting Started
Part I starts with the basics and puts the pieces together until you are able to cre-
ate applications that display buttons, labels, and other widgets, in whatever size,

4682-1 fm.f.qc  11/20/00  15:45  Page x



xiPreface

shape, and position you would like them to be. The first chapter explains some of
the background information — mostly having to do with the Qt and KDE libraries
and how the various classes are used to construct running programs.

Chapter 2 is where the programming starts. This chapter describes the classes
available that can be used to create and display the main window for both Qt and
KDE applications. Chapter 3 expands on this by demonstrating methods for orga-
nizing the contents of windows and dialog boxes. Chapters 4 and 5 both cover the
subject of managing pop-up dialogs, both custom-built dialogs and the dialogs that
are predefined as part of either Qt or KDE. Chapter 6 explores the construction and
management of menus and toolbars. Chapter 7 describes the management of wid-
gets that come in groups — such as collections of buttons that toggle on and off 
in relation to one another.

Part II: Step by Step
Part II can be studied from beginning to end, or you can skip around from one topic
to another as necessary. Although you will find a few cross-references from one
chapter to another, for the most part each chapter is independent of the others.

Chapter 8 describes how your program can respond to the mouse and keyboard.
Chapter 9 explains how you can manage and display pixel-level graphics — either
loaded from a file or compiled right into the program. Chapter 10 explains fonts 
and the process for displaying strings of characters. Chapter 11 explores the options
you have for creating and managing colors. Chapter 12 contains several examples 
of using the QPainter class to perform a wide range of detailed graphics rendering.
Chapter 13 delves deeper into graphics by exploring the process of manipulating
graphics to fit a specific size or for placement on a printed page. Chapter 13 also
includes a special section on animation. Chapter 14 contains examples of dragging
and dropping graphic and text objects. Chapter 15 explores the process of communi-
cating data from one application to another. Chapter 16 rounds out the section’s 
presentation of classes with examples of some miscellaneous utilities. Chapter 17 
is an exploration of KDE facilities for internationalization.

Part III: Reference and Mechanics
A widget is an object that contains a window of some kind and is capable of being
displayed on the screen. Chapter 18 is an alphabetical list of the widgets of Qt,
along with some examples of how to use them. Chapter 19 is a list, with examples,
of all of the KDE widgets.

Chapter 20 contains simple descriptive examples of the same program written in
Win32, KDE, and GNOME.

4682-1 fm.f.qc  11/20/00  15:45  Page xi



xii Preface

The Cross-Reference Appendixes
There is a lot of software here, and we all need some way to get a handle on it. The
appendixes contain reference information that can be very helpful in finding things.

Appendix Lists Contains

C Methods Each method name is listed, along with the classes
in which it can be found.

D Returned By The Qt and KDE classes have constructors, but you
can also acquire some of them from other classes
by calling methods that produce them. The
methods are listed here.

E Enumerated Types Enumerated types are listed alphabetically, showing
the classes in which they are defined and the
names of their values.

F Signals Signals are listed alphabetically with their argument
types and the classes from which they are emitted.

G Slots Slots are listed alphabetically with their argument
types and the classes that contain them.

Example Code
Most things described in this book are described by actual code samples. As much
as possible, these examples are complete running programs. I find that a simple
example — an example that demonstrates just one thing — is most useful to me
when I need to figure out (or be reminded) how to do something. Each example 
is intended to demonstrate one, or possibly two, specific things.

The examples are not meant to demonstrate some kind of “correct” coding prac-
tice, or even the “correct” way to do a particular task. There is no correct way
because, in KDE as in all other software systems, there is usually more than one
way to get any particular job done. And the overall style and design of a program
are up to the programmer.

All of the example code, along with the makefiles for each, can be found here:

http://www.belugalake.com/book/kdebible

4682-1 fm.f.qc  11/20/00  15:45  Page xii



Acknowledgments

Iwant to thank all of the KDE developers. This group has created an excellent
graphical user interface, and they have a right to be proud of what they’ve done.

I am grateful to the many members of the KDE developer’s group that took the time
to answer my questions and help keep me on the right track.

John Osborn came up with the original concept for this book. He defined the origi-
nal scope of the project and helped keep me in line when I tended to wander. I also
want to thank Laura Lewin, Andy Marinkovich, and Debra Williams Cauley for
putting things together in such a way that the book became a reality.

Kathi Duggan, while repairing things I wrote that no human being could otherwise
read, kept track of every chapter and graphic as it moved from one stage of produc-
tion to another. I feel more secure in putting my name on the book because David
Williams checked everything to make certain that the book was technically accurate.
Luann Rouff showed me how to convert my strange sentences into something that
could be read and understood.

And, as always, a special thank you to that special lady who makes everything 
happen: Margot Maley at Waterside.

4682-1 fm.f.qc  11/20/00  15:45  Page xiii



Contents at a Glance
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Part I: Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 1: What Is This Thing Called KDE? . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2: Creating and Displaying a Window . . . . . . . . . . . . . . . . . . . . 11
Chapter 3: Laying Out Widgets in a Window . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 4: Displaying a Pop-Up Dialog . . . . . . . . . . . . . . . . . . . . . . . . . 65
Chapter 5: The Predefined Dialogs . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Chapter 6: Menus and Toolbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Chapter 7: Grouping Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Part II: Step by Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Chapter 8: The Mouse and the Keyboard . . . . . . . . . . . . . . . . . . . . . . . 175
Chapter 9: Graphics File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Chapter 10: Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Chapter 11: Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Chapter 12: Drawing and Painting with QPainter . . . . . . . . . . . . . . . . . . 259
Chapter 13: Graphics Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Chapter 14: Drag and Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Chapter 15: Interprocess Communications and Applets . . . . . . . . . . . . . . 355
Chapter 16: Some General Utility Classes . . . . . . . . . . . . . . . . . . . . . . 371
Chapter 17: Internationalization and Configuration . . . . . . . . . . . . . . . . . 395

Part III: Reference and Mechanics . . . . . . . . . . . . . . . . . . . . 413
Chapter 18: The Widgets of Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Chapter 19: The Widgets of KDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Chapter 20: Comparative Anatomy of Windowing Programs . . . . . . . . . . . 581

4682-1 fm.f.qc  11/20/00  15:45  Page xiv



Appendix A: What’s on the CD-ROM? . . . . . . . . . . . . . . . . . . . . . . . . . 591
Appendix B: Setting Up for Software Development . . . . . . . . . . . . . . . . . 597
Appendix C: Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
Appendix D: Returned By . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
Appendix E: Enumerated Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
Appendix F: Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
Appendix G: Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
End-User License Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
GNU General Public License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
CD-ROM Installation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

4682-1 fm.f.qc  11/20/00  15:45  Page xv



4682-1 fm.f.qc  11/20/00  15:45  Page xvi



Contents
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Part I: Getting Started 1

Chapter 1: What Is This Thing Called KDE? . . . . . . . . . . . . . . . . . 3
The Structure of a KDE Application . . . . . . . . . . . . . . . . . . . . . . . . 3
The Software Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
glib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
X11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
C++ API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Qt Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
KDE Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

About Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
The QObject Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
The MOC Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

About KDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Events Happen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
The Names of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2: Creating and Displaying a Window . . . . . . . . . . . . . . 11
Hello Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Hello KDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A Simple Window Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Compound Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Listening to a Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Defining a Slot for a Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3: Laying Out Widgets in a Window . . . . . . . . . . . . . . . 27
Geometric Widget Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
The Size of a Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Fixed Grid Widget Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Stretched Grid Widget Placement . . . . . . . . . . . . . . . . . . . . . . . . 34
Widgets in Multiple Grid Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4682-1 fm.f.qc  11/20/00  15:45  Page xvii



xviii Contents

Vertical Box Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Horizontal Box Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Boxes with Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A Layout Within a Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A Layout That Is Also a Widget . . . . . . . . . . . . . . . . . . . . . . . . . . 50
ISa Instead of HASa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Widgets Inside Widgets (Horizontal) . . . . . . . . . . . . . . . . . . . . . . 55
Widgets Inside Widgets (Vertical) . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4: Displaying a Pop-Up Dialog . . . . . . . . . . . . . . . . . . 65
A Simple Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Using Signals and Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A Signals and Slots Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
KDialogBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
KDialogBase Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Using KDialogBase to Build a Dialog . . . . . . . . . . . . . . . . . . . . . . . 83
An Alternate Approach To KDialogBase Data . . . . . . . . . . . . . . . . . . 88
KMesageBox Derives From KDialogBase . . . . . . . . . . . . . . . . . . . . 89

Chapter 5: The Predefined Dialogs . . . . . . . . . . . . . . . . . . . . 99
The About Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
QFileDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
QTabDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
QProgressDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 6: Menus and Toolbars . . . . . . . . . . . . . . . . . . . . . . 123
KTMainWindow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
The Menu Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Pop-up Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
The Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
The Status Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Chapter 7: Grouping Widgets . . . . . . . . . . . . . . . . . . . . . . . 147
KButtonBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Grouping Buttons with a Single Slot . . . . . . . . . . . . . . . . . . . . . . 150
Grouping Radio Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Grouping Check Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Some Widgets Are Also Frames . . . . . . . . . . . . . . . . . . . . . . . . . 160
Framing Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

The Box QFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
The Panel QFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
The WinPanel QFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Using QFrame to Draw Lines . . . . . . . . . . . . . . . . . . . . . . . 166

Sharing Window Real Estate . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4682-1 fm.f.qc  11/20/00  15:45  Page xviii



xixContents

Part II: Step by Step 173

Chapter 8: The Mouse and the Keyboard . . . . . . . . . . . . . . . . 175
From a Port to a Slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
The Mouse Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Mouse Grabbing and Releasing . . . . . . . . . . . . . . . . . . . . . . . . . 182
Changing the Cursor’s Appearance . . . . . . . . . . . . . . . . . . . . . . . 184
Designing Your Own Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Keyboard Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Chapter 9: Graphics File Formats . . . . . . . . . . . . . . . . . . . . . 197
Two Kinds of Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
The XPM Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Showing XPM from Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Loading a Pixmap from a File . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Using a Pixmap to Decorate a Button . . . . . . . . . . . . . . . . . . . . . 204
The XBM Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
The Bitmap Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Customizing Graphics for Menus and Toolbars . . . . . . . . . . . . . . . . 208

Chapter 10: Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
The Anatomy of a Font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Names of the Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Setting the Font of a Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Selecting a Font with QFontDialog . . . . . . . . . . . . . . . . . . . . . . . 221
Selecting a Font with KFontDialog . . . . . . . . . . . . . . . . . . . . . . . 223
Font Placement by Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Font Placement by Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . 231

Chapter 11: Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
The Architecture of Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Constructing a QColor Object . . . . . . . . . . . . . . . . . . . . . . . . . . 242
The KColorDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
QColors in a QColorGroup  . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
QColorGroups in a QPalette . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Setting Colors for a Few Widgets . . . . . . . . . . . . . . . . . . . . . . . . 254
Using the QPalette for Your Own Coloring . . . . . . . . . . . . . . . . . . . 256

Chapter 12: Drawing and Painting with QPainter . . . . . . . . . . . 259
Painting Pixels to a QPaintDevice . . . . . . . . . . . . . . . . . . . . . . . . 259
Some Rectangle Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Pens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Standard Brushes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

4682-1 fm.f.qc  11/20/00  15:45  Page xix



xx Contents

Creating Custom Brushes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Every QPaintDevice Has Metrics . . . . . . . . . . . . . . . . . . . . . . . . 272
Pixel Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Drawing Arrays of Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Vector Line Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Line Segments and Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Ellipses and Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Drawing Parts of Circles and Ellipses . . . . . . . . . . . . . . . . . . . . . 285
Rectangles with Rounded Corners . . . . . . . . . . . . . . . . . . . . . . . 288
Drawing Pixmaps and Text . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Chapter 13: Graphics Manipulation . . . . . . . . . . . . . . . . . . . 295
Using a QPicture to Store Graphics . . . . . . . . . . . . . . . . . . . . . . . 295
Painting Graphics to a Printer . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Printer Information and Control . . . . . . . . . . . . . . . . . . . . . . . . 301
Fitting a Drawing to a Window . . . . . . . . . . . . . . . . . . . . . . . . . 306
Fitting a Drawing to a Subwindow . . . . . . . . . . . . . . . . . . . . . . . 307
Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Translate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
A Quadratic Bezier Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Animation with Pixmap Sequences . . . . . . . . . . . . . . . . . . . . . . . 320
Accessing Pixel Values with QImage . . . . . . . . . . . . . . . . . . . . . . 326
Using an Icon Provider in a QFileDialog . . . . . . . . . . . . . . . . . . . . 331

Chapter 14: Drag and Drop . . . . . . . . . . . . . . . . . . . . . . . . 339
A Simple Text Drag and Drop . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Drag and Drop of Both Text and Image Data . . . . . . . . . . . . . . . . . 344
Cut and Paste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Chapter 15: Interprocess Communications and Applets . . . . . . . 355
The DCOP Communications Model . . . . . . . . . . . . . . . . . . . . . . . 356
Command-Line Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
A Unique Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
An Example Applet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Chapter 16: Some General Utility Classes . . . . . . . . . . . . . . . . 371
The String Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Examining a QString . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Modifying a QString . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
QString Number Conversion . . . . . . . . . . . . . . . . . . . . . . . 376
The QString Translator . . . . . . . . . . . . . . . . . . . . . . . . . . 378

4682-1 fm.f.qc  11/20/00  15:45  Page xx



xxiContents

The White Space of a QString . . . . . . . . . . . . . . . . . . . . . . . 379
QStringList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Running a Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
The QDate Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
The QTime Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
The QDateTime Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Writing to a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Reading from a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Streaming Text to a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Streaming Text from a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Chapter 17: Internationalization and Configuration . . . . . . . . . . 395
A Translatable Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Declaring Translatable Strings . . . . . . . . . . . . . . . . . . . . . . . . . 399
Manipulating Translated Strings . . . . . . . . . . . . . . . . . . . . . . . . 400
Constructing the Translation Files . . . . . . . . . . . . . . . . . . . . . . . 401
Unicode and QChar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Part III: Reference and Mechanics 413

Chapter 18: The Widgets of Qt . . . . . . . . . . . . . . . . . . . . . . 415
QButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
QButtonGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
QCheckBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
QColorDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
QComboBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
QDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
QFileDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
QFontDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
QFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
QGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
QGroupBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
QHBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
QHButtonGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
QHeader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
QHGroupBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
QIconView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
QInputDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
QLCDNumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
QLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
QLineEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
QListBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
QListView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

4682-1 fm.f.qc  11/20/00  15:45  Page xxi



xxii Contents

QMainWindow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
QMenuBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
QMessageBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
QMultiLineEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
QPopupMenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
QPrintDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
QProgressBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
QProgressDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
QPushButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
QRadioButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
QScrollBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
QScrollView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
QSemiModal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
QSizeGrip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
QSlider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
QSpinBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
QSplitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
QStatusBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
QTabBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
QTabDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
QTabWidget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
QTextBrowser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
QTextView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
QToolBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
QToolButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
QVBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
QVButtonGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
QVGroupBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
QWidget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
QWidgetStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
QWizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Chapter 19: The Widgets of KDE . . . . . . . . . . . . . . . . . . . . . 491
KAboutContainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
KAboutContainerBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
KAboutContributor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
KAboutDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
KAboutKDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
KAboutWidget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
KAccelMenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
KAnimWidget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
KAuthIcon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
KBugReport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
KButtonBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
KCharSelect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
KCharSelectTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

4682-1 fm.f.qc  11/20/00  15:45  Page xxii



xxiiiContents

KCModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
KColorButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
KColorCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
KColorCombo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
KColorDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
KColorPatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
KComboBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
KContainerLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
KDatePicker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
KDateTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
KDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
KDialogBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
KDialogBaseButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
KDirectionButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
KDockMainWindow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
KDockWidget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
KDoubleNumInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
KDualColorButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
KEdFind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
KEdGotoLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
KEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
KEdReplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
KFileDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
KFontChooser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
KFontDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
KFormulaEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
KFormulaToolBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
KGradientSelector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
KHSSelector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
KHTMLView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
KIconButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
KIconDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
KIconView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
KImageTrackLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
KIntNumInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
KIntSpinBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
KKeyButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
KLed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
KLineEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
KLineEditDlg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
KListBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
KListView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
KMenuBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
KNumInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
KPaletteTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
KPanelApplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

4682-1 fm.f.qc  11/20/00  15:45  Page xxiii



xxiv Contents

KPasswordDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
KPasswordEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
KPopupMenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
KProgress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
KRestrictedLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
KRootPermsIcon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
KRuler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
KSelector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
KSeparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
KSpellConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
KSpellDlg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
KSplitList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
KStatusBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
KStatusBarLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
KTextBrowser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
KTextPrintDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
KTMainWindow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
KToolBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
KToolBarButton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
KWizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
KXYSelector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

Chapter 20: Comparative Anatomy of Windowing Programs . . . . 581
A Win32 Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
A KDE Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
A Point-by-Point Win32 and KDE Comparison . . . . . . . . . . . . . . . . . 586

Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
The Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
Responding to Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
The Main Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
Program Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
Global Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

A GNOME Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

4682-1 fm.f.qc  11/20/00  15:45  Page xxiv



xxvContents

Appendix A: What’s on the CD-ROM? . . . . . . . . . . . . . . . . . . 591

Appendix B: Setting Up for Software Development . . . . . . . . . . 597

Appendix C: Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Appendix D: Returned By . . . . . . . . . . . . . . . . . . . . . . . . . 657

Appendix E: Enumerated Types . . . . . . . . . . . . . . . . . . . . . . 687

Appendix F: Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Appendix G: Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723

End-User License Agreement . . . . . . . . . . . . . . . . . . . . . . . . . 756

GNU General Public License . . . . . . . . . . . . . . . . . . . . . . . . . 759

CD-ROM Installation Instructions . . . . . . . . . . . . . . . . . . . . . . 766

4682-1 fm.f.qc  11/20/00  15:45  Page xxv



4682-1 fm.f.qc  11/20/00  15:45  Page xxvi



What Is This
Thing Called
KDE?

The name of the software is the K Desktop Environment,
called KDE for short. This chapter is an introduction to the

application development environment of KDE. It is a graphical
user interface that is popular on Linux and other flavors of the
UNIX family of operating systems. Virtually all graphical inter-
faces in the UNIX family are built on top of the X Windowing
System. The X Windowing System gives the graphics its porta-
bility across many systems; the Qt library of graphics objects
provides the basic building blocks of an application; and the
KDE library provides a standard look and feel.

The Structure of a KDE Application
When you write a KDE application, you are writing code that
will rest on top of a lot of other code. Most of the detailed work
of getting your application written has already been done, and
that work resides in the libraries of code that will link to your
application to do the things you would like for it to do. The
diagram in Figure 1-1 should give you some idea of the levels 
of software that make up a KDE application.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
different parts and
the overall structure
of KDE

Learning the part
played by Qt 
in application
development

Learning the 
part played by 
KDE in application
development

Learning about
widgets and the
event model

✦ ✦ ✦ ✦

4682-1 ch01.f.qc  11/13/00  14:09  Page 3



4 Part I ✦ Getting Started

Figure 1-1: The levels of software 
for a KDE application in Linux

The way the diagram is drawn makes it appear that the levels are completely sepa-
rate, but that’s not the case. For example, perfectly valid calls are made from KDE
classes to glib functions, and there is nothing to prevent your application from 
making calls directly to, say, glib or the system calls. An application typically uses
classes from both KDE and Qt. However, the calls are only downward — for 
example, no part of the Qt API makes use of anything in KDE.

This book is all about using the material at the second and third levels (KDE and
Qt) to create things that go at the top level (applications). There is little or no infor-
mation about using the things at the other levels. Actually, that is one of the main
purposes of KDE and Qt — they simplify the process of developing applications by
insulating the programmer from the minute details handled at the lower levels.

The Software Levels
The following sections describe each of the software levels shown in Figure 1-1.

System
This is the lowest layer of software available to every Linux application. A set of
low-level system calls provides direct access into the operation system, and its
drivers, to do things like open files and create directories. Because the Linux 
kernel is written in C, these are all C function calls.

glib
This is a set of C functions, macros, and structures that are used by all the layers
above it; and, quite often, it is also used by applications. The glib library contains
functions for memory allocation, string formatting, date and time, I/O, and timers. 
It also has utility functions for linked lists, arrays, hash tables, trees, quarks, 
and caches. One of the crucial functions handled by glib is the main loop, which

Application

KDE Classes

Qt Classes

C++ API

glib X11

System

4682-1 ch01.f.qc  11/13/00  14:09  Page 4



5Chapter 1 ✦ What Is This Thing Called KDE?

enables KDE to handle multiple resources while it simultaneously executes the
code of an application.

X11
This is the graphics layer that handles the low-level functions used to control the 
display. All the fundamental windowing functions are included — these are the func-
tions that display windows and respond to the mouse and keyboard. This library has
become very stable over the years and the version numbers have rarely changed.
Currently, it is version 11 (as indicated by its name). And, because version 11 is 
in release 6, it is also known as X11R6. Its original name was without the version 
number, so it is often simply called X.

C++ API
Everything above this layer is written using C++, so the C++ run-time system is
called on for things such as creating new objects and handling I/O streams.

Qt Classes
This set of C++ classes implements the various widgets (buttons, window frames,
and so on) that can be used to create an application. It has the capability of combing
windows to together to create complicated graphics dialogs. At the same time that it
displays these widgets, it can respond to the mouse and keyboard for more input,
and dispatch information from the input window to the correct part of the program.

KDE Classes
These classes modify and add functionality to the Qt classes. There is a large num-
ber of KDE classes, but the majority of them extend directly from one or more of the
Qt classes. This layer is what gives KDE its unique appearance, and standardizes 
the way the window, mouse, and keyboard all interact with one another.

Applications
There are two basic flavors of applications. You can create either a Qt application
or a KDE application. A Qt application is one that creates a QApplication object to
initialize itself, while a KDE application initializes itself by creating a KApplication
object. The KApplication class extends the QApplication class by adding the
things that are necessary for the standard appearance and capabilities of a 
KDE application.

4682-1 ch01.f.qc  11/13/00  14:09  Page 5



6 Part I ✦ Getting Started

About Qt
Qt is a library of C++ GUI application development software. Its purpose is to provide
everything needed to develop the user interface portion of applications. It does this
primarily in the form of a collection of C++ classes.

The Norwegian company Troll Tech (http://www.trolltech.com) first introduced
Qt as a commercial product in 1995.

The set of Qt classes is quite robust. There is nothing to stop you from writing com-
plete applications using Qt. In fact, to demonstrate the basic form of an application,
the first few examples in this book use only Qt. The Qt classes include everything
from basic window controls, drag and drop, and internationalization to network
programming.

In the past there has been some concern over the use of Qt in some open source
development areas because of limitations in software licensing. But licensing is 
no longer a concern. Trolltech has recently released a version of Qt that is entirely
free, and it is licensed under the GPL (GNU General Public License). The same 
software can also be used under the QPL (Q Public License), depending on the 
particular licensing requirements. This dual licensing approach allows for 
the development of both open source software and proprietary software.

With release Qt 2.2.1, there are three different version of the software:

✦ The Qt Free Edition is licensed under the GPL and can be downloaded 
and freely used for any open source project.

✦ The Qt Professional Edition is intended for use by commercial and proprietary
software development. The license and the software must be purchased.

✦ The Qt Enterprise Edition is licensed the same as the Qt Professional Edition,
but contains additional software modules. These extensions include OpenGL,
networking, XML, spreadsheets, and a special optimized 2D graphics package.

The QObject Class
All but about a dozen of the Qt classes inherit from the base class QObject. This
means that virtually every class in the Qt library contains the same basic set of
methods. The constructor for this class can optionally accept the address of a 
parent object, and a character string that assigns the object a name:

QObject(QObject *parent = 0, const char *name = 0);

The following methods are defined in QObject. Most of these methods are used in
one example or another in this book.

void blockSignals(bool b);
QObject *child(const char *name, const char *type = 0);

4682-1 ch01.f.qc  11/13/00  14:09  Page 6



7Chapter 1 ✦ What Is This Thing Called KDE?

const QObjectList *children() const;
virtual const char *className() const;
static bool connect(const QObject *sender, const char *signal,

const QObject *receiver, const char *member);
bool connect(const QObject *sender, const char *signal,

const char *member) const;
static bool disconnect(const QObject *sender,

const char *signal, const QObject *receiver,
const char *member);

bool disconnect(const char *signal = 0,
const QObject *receiver = 0, const char *member = 0);

bool disconnect(const QObject *receiver,
const char *member = 0);

void dumpObjectInfo();
void dumpObjectTree();
virtual bool event(QEvent *);
virtual bool eventFilter(QObject *, QEvent *);
bool highPriority() const;
bool inherits(const char *) const;
virtual void insertChild(QObject *);
void installEventFilter(const QObject *);
bool isA(const char *) const;
bool isWidgetType() const;
void killTimer(int id);
void killTimers();
virtual QMetaObject *metaObject() const;
const char *name() const;
const char *name(const char *defaultName) const;
static const QObjectList *objectTrees();
QObject *parent() const;
QVariant property(const char *name) const;
QObjectList *queryList(const char *inheritsClass = 0,

const char *objName = 0, bool regexpMatch = TRUE,
bool recursiveSearch = TRUE);

virtual void removeChild(QObject *);
void removeEventFilter(const QObject *);
virtual void setName(const char *name);
bool setProperty(const char *name, const QVariant &value);
bool signalsBlocked() const;
int startTimer(int interval);
QStringList superClasses(bool includeThis = FALSE) const;
static QString tr(const char *);

Some Qt objects have the ability to emit signals that can be received by other objects
inside your program. A QObject object emits a signal whenever its destructor 
is called:

void destroyed();

Signals, and the slots that receive them, are briefly described in the next section,
and many examples are included in the book.

4682-1 ch01.f.qc  11/13/00  14:09  Page 7



8 Part I ✦ Getting Started

The MOC Compiler
One feature used by developers is the Meta Object Compiler (also called the MOC
compiler). The MOC compiler reads your source code and generates special C++
source files for you to compile and link along with your application. These special
files contain the code necessary for one object to emit a “signal” that is received by
a “slot” in one or more other objects. This is the method used to asynchronously
transmit information from one object to another within an application.

The MOC compiler is triggered by the presence of the Q_OBJECT macro within a
class definition to determine whether to generate code, and what code is generated.
The resulting source code can be either compiled separately and linked, or simply
included in your code with the #include directive.

Using the MOC compiler not only activates the signals and slots, but also generates
code that enables some special methods that are defined in every Qt class (and
thus, by inheritance, in every object in your program). These special methods,
listed in Table 1-1, are defined in the QtObject class.

Table 1-1
The MOC Methods of QObject

Method Description

className() Returns, as a character string, the name of the class. This does
not require RTTI (Run Time Type Identification) support.

inherits() Returns a Boolean value that specifies whether or not this class
inherits from some other named class.

tr() Performs the translation of a string for internationalization

setProperty() Sets an object property by name

property() Returns a named object property

metaObject() Returns a QMetaObject object for the class. A meta object
contains detailed descriptive information for a class.

About KDE
KDE is an open source development project of a graphical desktop environment.
Other than being the first letter of the acronym, the K doesn’t stand for anything. 
It is just a name.

4682-1 ch01.f.qc  11/13/00  14:09  Page 8



9Chapter 1 ✦ What Is This Thing Called KDE?

The KDE software is constructed using Qt. The project began in 1996, the year after
the first version of Qt was released. Since then, the project has grown to become a
very complete desktop environment with a large collection of applications. To learn
more about the status and content of KDE, visit the http://www.kde.org Web site.

From the software developer’s point of view, KDE is quite simple. While most of 
the software written as part of the KDE project is used as an integral part of the
desktop environment, a large number of classes have also been developed; and
they are included as part of a core KDE API. These classes are meant to help give
KDE applications a standard look and feel. Most of these classes inherit from one 
or more classes of the Qt library, and some of the KDE classes add capabilities
beyond that of Qt, but most of them are simply for the sake of maintaining the stan-
dard appearance of KDE. It would be easy enough to write your entire application
using only the classes of Qt, but if you use the KDE classes, your application is
more likely to appear integrated with the rest of the desktop.

Events Happen
An application that runs in the K Desktop Environment is an event-driven program.
This means that when a program starts running, it displays its window (or windows)
and waits for input from the mouse or keyboard. This input comes wrapped inside
objects called events. An event can also tell the program that a window has been
closed, or that the window has been exposed after being hidden behind another 
window. The application’s entire purpose is to respond intelligently to the keyboard
and mouse.

An application has one main top-level window. It can also have other windows.
These windows can exist for the entire life of the application, or they can appear
and disappear as the application responds to events.

Each window is encapsulated in a widget. The top-level window of an application is
a widget. Each pop-up window is also a widget. In fact, the entire display is made up
of widgets. Because one widget is capable of containing and displaying other wid-
gets, every button, label, and menu item is its own individual widget. Programming
the graphical display portion of your application is a matter of creating and com-
bining widgets, and then writing the code that activates the widgets and responds
to the events received by the widgets.

A widget is any class that inherits from the Qt class named QWidget. A QWidget
object contains and manages its own displayable window. It can also be set to
respond to events issued by the mouse and keyboard (and whatever else you 
have for input) that are sent to the window inside the widget. It knows things 
about its current visibility, its size, its background color, its foreground color, 
its position on the display, and so on. You can use the widgets defined in either 
Qt or  KDE, or you can create your own by using QWidget as a base class.

4682-1 ch01.f.qc  11/13/00  14:09  Page 9



10 Part I ✦ Getting Started

The Names of Things
The Qt class names begin with the letter Q and the KDE class names begin with the
letter K. That way, when you read the source code of a program, you can determine
where a class is defined. If you find two classes that have the same name except for
the first letter, it means that one is an extension of the other. For example, the KDE
class KPixmap uses the Qt class QPixmap as its base class.

Every class in Qt and KDE is defined in a header file. In every case (well, almost
every case), the header file derives its name from the name of the class. For exam-
ple, the header file for the QPopupMenu class is named qpopupmenu.h, and the class
KFontDialog is defined in kfontdialog.h. However, this naming convention is not
universally true because more than one class can be defined in a header. For exam-
ple, the class KFontChooser is also defined in kfontdialog.h. Also, some source
filenames are abbreviated. For example, the header for KColorDialog is named
kcolordlg.h.

Summary
This chapter provided a short, and very general, introduction to the programming
environment of KDE. The concepts introduced in this chapter included:

✦ Several layers of software support the KDE software library.

✦ The X Windowing System controls the low-level GUI interface. The KDE library is
a thin layer of software that is very dependent on the Qt software immediately
below it.

✦ All applications are event driven. The application displays at least one 
window, and then waits for input from the mouse or keyboard.

If you are a Windows programmer but are unfamiliar with KDE, you may want 
to read Chapter 20, which compares a Windows program with a KDE program.
Otherwise, proceed to Chapter 2, which starts with examples of very simple 
KDE applications.

✦ ✦ ✦

4682-1 ch01.f.qc  11/13/00  14:09  Page 10



Creating and
Displaying a
Window

This chapter discusses the fundamental form of a Qt or
KDE application program. If you are new to KDE, you 

are going to be pleasantly surprised. A good deal of effort 
has gone into making the basics as simple possible. The 
creation of a basic application is so simple it would be 
hard to get it wrong.

The examples in this chapter are designed to explain the basic
format of the source and the process necessary to convert that
source into an executable program. To keep things as simple 
as possible, and so you can see the relationship between the
various parts of a program, these examples all use simple hand-
written makefiles. The first example is a minimal Qt application,
and the second is a minimal KDE application. Other examples
show how you can respond to a pushbutton and create a 
display widget containing other widgets.

Hello Qt
The following example program creates and displays a simple
window. It doesn’t do anything other than display a line of
text, but it gives you an idea of the fundamental requirements
of a Qt program. The window is shown in Figure 2-1.

1 /* helloworld.cpp */
2 #include <qapplication.h>
3 #include <qlabel.h>
4 #include <qstring.h>
5 
6 int main(int argc,char **argv)
7 {

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Writing a simple
program with just a
few lines of code

Understanding that
implementing a KDE
program is simply
implementing a 
Qt program with
added capabilities

Creating a window
by coding a C++
object for it

Responding to input
by specifying slots 
to receive signals

✦ ✦ ✦ ✦

4682-1 ch02.f.qc  11/13/00  14:09  Page 11



12 Part I ✦ Getting Started

8     QApplication app(argc,argv);
9     QLabel *label = new QLabel(NULL);
10     QString string(“Hello, world”);
11     label->setText(string);
12     label->setAlignment(
13             Qt::AlignVCenter | Qt::AlignHCenter);
14     label->setGeometry(0,0,180,75);
15     label->show();
16     app.setMainWidget(label);
17     return(app.exec());
18 }

Figure 2-1: A simple Qt program displaying text

The file qapplication.h included on line 2 is almost always included in the same
source file that contains the main() function. This example uses a QLabel widget
to display text, so it is necessary to also include qlabel.h. And a QString object 
is required to specify the text displayed by the QLabel object, so qstring.h is
included on line 4.

Line 8 creates a QApplication object named app. The QApplication object is a
container that will hold the top-level window (or set of windows) of an application.
A top-level window is unique in that it never has a parent window in the applica-
tion. Because the QApplication object takes over things and manages your 
application, there can only be one of these per program. Also, the creation of 
a QApplication object initializes the Qt system, so it must exist before any 
of the other Qt facilities are available.

A Qt program is a C++ program. This means that in order to start the program, 
a function named main() will be called by the operating system. And, like all C++ 
programs, command-line options may or may not be passed to the main() function.
The command-line options are passed on to the Qt software as part of the initializa-
tion process, as shown on line 8.

The two command-line arguments, argc and argv, are used in the construction of
app because some special flags and settings can be specified. For example, starting
a Qt program with -geometry will specify the size and location of the window it 
displays. By altering the profile information that starts a program, a user can 
personalize a program’s appearance.

A QLabel widget is created on line 9. A QLabel widget is simply a window that is
capable of displaying a string of characters. The label is created with its specified

4682-1 ch02.f.qc  11/13/00  14:09  Page 12



13Chapter 2 ✦ Creating and Displaying a Window

parent widget as NULL because this label is to be the top-level window, and top-level
windows have no parents. As it is created, the label contains no text, but it is pro-
vided text by being passed the QString object created on line 10. The QString
object is inserted into the QLabel with the call to setText() on line 11.

The default action for a QLabel is to display the character string centered vertically
and justified to the left, so the call to setAlignment() is made on line 12 to center
the text both vertically and horizontally.

The call to setGeometry() on line 14 determines the location, height, and width 
of the label widget inside the QApplication window. For this example, the label 
is positioned at location (0,0), which is the upper-left corner of the main window. 
It is also instructed to be 180 pixels wide by 75 pixels high. Before anything is 
displayed, the main window will query the label to find out its size, and then 
the main window will set its own size to contain the label.

The call to show() on line 16 is necessary in order for the label to actually appear
on the window. The show() function does not immediately display the widget, it
only configures it so that it will be displayed when the time comes. The parent 
window — in this case, the QApplication window — assumes the task of displaying
the label, but will only do so if there has been a call to the label’s show() method.
Another function, named hide(), can be used to cause a widget to disappear from
the display.

The call to setMainWidget() on line 11 inserts the label into the main window. To
keep this example simple, the QLabel object is used, but normally the widget will
be some sort of compound widget that contains the collection of widgets, text, 
and other elements of the main window of an application.

Finally, a call is made to exec() on line 17. This function does not return until it 
is time for the program to cease execution. It returns an int value representing 
its completion status; and because we are not processing status codes, the value 
is simply returned to the system.

Because the program is simple and consists of only one source file, the makefile that
compiles it is quite simple:

INCL= -I$(QTDIR)/include -I$(KDEDIR)/include
CFLAGS= -pipe -O2 -fno-strength-reduce
LFLAGS= -L$(QTDIR)/lib -L$(KDEDIR)/lib -L/usr/X11R6/lib
LIBS= -lqt -lX11 -lXext
CC=g++

helloworld: helloworld.o
$(CC) $(LFLAGS) -o helloworld helloworld.o $(LIBS)

helloworld.o: helloworld.cpp

4682-1 ch02.f.qc  11/13/00  14:09  Page 13



14 Part I ✦ Getting Started

clean:
rm -f helloworld
rm -f helloworld.o

.SUFFIXES: .cpp

.cpp.o:
$(CC) -c $(CFLAGS) $(INCL) -o $@ $<

The makefile assumes that the environment variables QTDIR and KDEDIR are
defined as the name of the installation directory of the Qt and KDE development
systems. Normally, these two environment variables have their definitions config-
ured when you install the software. Five names are defined inside the makefile, as
shown in Table 2-1.

Table 2-1
Variables Defined in the Makefile

Name Contents

INCL This is the path name of the location of the header files. This is passed to 
the compiler to tell it where to look for header files. The compiler always
looks in /usr/include for the standard headers.

CFLAGS This is the list of options passed to the compiler. The -pipe option
instructs the compiler to use pipes, instead of temporary files, when passing
data between two stages of compilation. The -O2 option specifies a fairly
high level of optimization. The –fno-strength-reduce option prevents
the optimization from reducing or eliminating iteration variables.

LFLAGS This is a list of options passed to the linker. Each of the -L options specifies
a directory that is expected to contain one or more libraries.

LIBS This is the list of library namesthat will be needed by this program. The
named libraries will be sought in the directories named by LFLAGS. The
name of each will be expanded to name the library file. For example, 
-lqt is changed to libqt.so, and -lX11 becomes libX11.so. 

CC This is the name of the compiler.

The last two lines of the makefile are used to instruct make on how to form a com-
mand that will convert a .cpp file into a .o file. There is only one source file in this
example, but if there were more, using the conversion rule allows the compile 
command to be defined once and be applied to the entire makefile.

4682-1 ch02.f.qc  11/13/00  14:09  Page 14



15Chapter 2 ✦ Creating and Displaying a Window

There are an infinite number of ways to write a makefile. This example was made
relatively simple so it would be easy to read. As you develop an application, you
will probably discover other things need to be added to your makefiles.

Hello KDE
This example, shown in Figure 2-2, is the same as the previous one except it is
based on a KApplication object, rather than a QApplication object. Because 
the KApplication class is based on QApplication, there are no fundamental dif-
ferences other than the addition of KDE facilities such as styles and themes, the
capability to use KDE widgets, access to the standard KDE configuration, access 
to session management information, and the capability to launch the user’s Web
browser and e-mail client.

1 /* hellokde.cpp */
2 #include <kapp.h>
3 #include <qlabel.h>
4 #include <qstring.h>
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”hellokde”);
9     QLabel *label = new QLabel(NULL);
10     QString string(“Hello, KDE”);
11     label->setText(string);
12     label->setAlignment(
13             Qt::AlignVCenter | Qt::AlignHCenter);
14     label->setGeometry(0,0,180,75);
15     label->show();
16     app.setMainWidget(label);
17     return(app.exec());
18 }

Figure 2-2: A simple KDE program displaying text

The KApplication object is defined in the header file kapp.h included on line 2.
The kapp.h file includes the qapplication.h file, so every facility available to a 
Qt program is also available to a KDE program. The header files included on lines 3
and 4 hold the definitions of the QLabel and QString classes.

Note

4682-1 ch02.f.qc  11/13/00  14:09  Page 15



16 Part I ✦ Getting Started

The KApplication object is created on line 8 by being passed the command-line
arguments and a name for the application. This name can be used for such applica-
tion-specific tasks as locating icons, receiving messages, and reading configuration
information.

Because a KDE object is being used in this program, it is necessary to include the
KDE library that holds the object. There are some specialized KDE libraries, but 
the main two libraries are libkdecore and libkdeui.

INCL= -I$(QTDIR)/include -I$(KDEDIR)/include
CFLAGS= -O2 -fno-strength-reduce
LFLAGS= -L$(QTDIR)/lib -L$(KDEDIR)/lib -L/usr/X11R6/lib
LIBS= -lkdecore -lkdeui -lqt -lX11 -lXext -ldl
CC=g++

hellokde: hellokde.o
$(CC) $(LFLAGS) -o hellokde hellokde.o $(LIBS)

hellokde.o: hellokde.cpp

clean:
rm -f hellokde
rm -f hellokde.o

.SUFFIXES: .cpp

.cpp.o:
$(CC) -c $(CFLAGS) $(INCL) -o $@ $<

The LIBS definition shows the inclusion of the libraries libkdecore.a, which con-
tains the core functionality of KDE; and libkdeui.a, which contains all of the KDE
widgets. KDE internally implements ODBC (Open Database Connectivity) by dynam-
ically loading ODBC drivers, so it is also necessary to include the library libdl.a.
The installation of KDE places these libraries in the default directory, so there is no
need to add a new search path to LFLAGS.

A Simple Window Class
The following example demonstrates the basic form used to create a widget of your
own. This program creates a MyLabel widget and displays it in the main window, 
as shown in Figure 2-3. The MyLabel widget is quite simple — it inherits everything
from QLabel and doesn’t add any capabilities. The class definition is in the header
file mylabel.h.

1 /*  mylabel.h */
2 #ifndef MYLABEL_H

4682-1 ch02.f.qc  11/13/00  14:09  Page 16



17Chapter 2 ✦ Creating and Displaying a Window

3 #define MYLABEL_H
4 
5 #include <qlabel.h>
6 #include <qstring.h>
7 
8 class MyLabel: public QLabel
9 {
10 public:
11     MyLabel(QWidget *parent);
12     ~MyLabel();
13 };
14 
15 #endif

Figure 2-3: Creating and displaying a widget

The preprocessor commands on lines 2, 3, and 15 are not required, but they are a
very good idea. As a growing application begins to get more complicated, the same
header file is likely to be included more than once in a single source file because it
is common to include header files inside other header files. By creating the defini-
tion of MYLABEL_H, this header can be included any number of times, but will be
compiled only once.

On line 8, the definition of the MyLabel class uses QLabel as its base class. This
necessitates the use of the include statement on line 5 to make the definition of
QLabel available. The header file qstring.h is included on line 6 as a convenience,
because the definition of QString is needed in the MyLabel constructor.

The MyLabel class is implemented in its own source file. It doesn’t do anything
other than pass the address of the parent widget from the constructor of MyLabel
to the constructor of the QLabel base class:

1 /* mylabel.cpp */
2 #include “mylabel.h”
3 
4 MyLabel::MyLabel(QWidget *parent) : QLabel(parent)
5 {
6 }
7 MyLabel::~MyLabel()
8 {
9 }

4682-1 ch02.f.qc  11/13/00  14:09  Page 17



18 Part I ✦ Getting Started

The following example creates and displays a MyLabel widget. Except for the object
used, the main() function  of this program is very much the same as the one for the
previous example.

1 /* helloobject.cpp */
2 #include “mylabel.h”
3 #include <qapplication.h>
4 
5 int main(int argc,char **argv)
6 {
7     QApplication app(argc,argv);
8     MyLabel *mylabel = new MyLabel(NULL);
9     QString string(“Hello, object”);
10     mylabel->setText(string);
11     mylabel->setAlignment(
12             Qt::AlignVCenter | Qt::AlignHCenter);
13     mylabel->setGeometry(0,0,180,75);
14     mylabel->show();
15     app.setMainWidget(mylabel);
16     return(app.exec());
17 }

The MyLabel object is created, manipulated, and displayed in exactly the same 
way as the QLabel object in the previous example. The setAlignment() function
is inherited directly from QLabel, while setGeometry() and show() are inherited
from QWidget.

Object-oriented programming has numerous advantages, but the most well known
are probably the advantages found in handling graphical user interfaces (GUIs). Qt
takes full advantage of this fact. Every displayable object inherits its basic capabilities
from the base class QWidget, which means that every displayable window— label,
button, top-level window, or whatever—all have the same set of basic functions that
control things such as size, color, cursor appearance, mouse detection, and scrolling.
This not only makes it easy to create your own widgets, it automatically applies a
default uniform behavior and appearance to everything on the screen.

The makefile is very much like the previous one, except that it must take into account
the two separate .cpp files by compiling them both and linking them together:

INCL= -I$(QTDIR)/include -I$(KDEDIR)/include
CFLAGS= -pipe -O2 -fno-strength-reduce
LFLAGS= -L$(QTDIR)/lib -L$(KDEDIR)/lib -L/usr/X11R6/lib
LIBS= -lqt -lX11 -lXext
CC=g++

helloobject: helloobject.o mylabel.o
$(CC) $(LFLAGS) -o helloobject helloobject.o \

mylabel.o $(LIBS)

helloobject.o: helloobject.cpp mylabel.h

mylabel.o: mylabel.cpp mylabel.h

Note

4682-1 ch02.f.qc  11/13/00  14:09  Page 18



19Chapter 2 ✦ Creating and Displaying a Window

clean:
rm -f helloobject
rm -f mylabel.o
rm -f helloobject.o

.SUFFIXES: .cpp

.cpp.o:
$(CC) -c $(CFLAGS) $(INCL) -o $@ $<

Compound Widgets
The QApplication object displays, as the main window of the application, the wid-
get you assign to it with the call to the method assignMainWidget(). To display a
main window that contains more than a single item, you need to create your own
widget and use it as the one displayed as the main window. The following example
combines two buttons and a label into a single widget:

1 /* threewidget.h */
2 #ifndef THREEWIDGET_H
3 #define THREEWIDGET_H
4 
5 #include <qpushbutton.h>
6 #include <qlabel.h>
7 
8 class ThreeWidget: public QWidget
9 {
10 public:
11     ThreeWidget(QWidget *parent=0,const char *name=0);
12 private:
13     QPushButton *topButton;
14     QPushButton *bottomButton;
15     QLabel *label;
16 };
17 
18 #endif

Lines 5 and 6 include the header files defining the widgets that are to be included as
part of the compound widget. There are to be two buttons and a label, and the loca-
tions to store their addresses are defined as private data on lines 13 through 15 of
threewidget.h.

1 /* threewidget.cpp */
2 #include “threewidget.h”
3 
4 ThreeWidget::ThreeWidget(QWidget *parent,const char *name):
5                 QWidget(parent,name )
6 {
7     setMinimumSize(120,180);
8     setMaximumSize(120,180);
9 

4682-1 ch02.f.qc  11/13/00  14:09  Page 19



20 Part I ✦ Getting Started

10     topButton = new QPushButton(“Top Button”,this);
11     topButton->setGeometry(15,15,90,40);
12     label = new QLabel(“Middle Label”,this);
13     label->setGeometry(15,70,90,40);
14     label->setAlignment(AlignVCenter | AlignHCenter);
15     bottomButton = new QPushButton(“Bottom Button”,this);
16     bottomButton->setGeometry(15,125,90,40);
17 }

Because it needs to be a displayable widget, the ThreeWidget class uses QWidget
as its base class.

Lines 7 and 8 set the minimum and maximum sizes of this widget. The parent win-
dow will query this widget to determine its size. In this example, the minimum and
maximum settings are the same, which means that the window cannot be resized.
The displayed window, shown in Figure 2-4, cannot have its width or height
changed with the mouse.

Figure 2-4: Positioning and sizing buttons and labels

The button at the top is created on line 10. The second argument to the constructor
is the widget that is to be the parent of the button. In this example, the parent is the
new widget being constructed. The same parent/child relationship is established
for the label and the other button on lines 12 and 15.

The newly created widget has a displayable area that is 120 pixels wide and 180 pix-
els high. The widgets are positioned on this window by calls to setGeometry(). On
line 11, a call to setGeometry() positions the top button 15 pixels from the top and
15 pixels from the left side. The same call sets the button width to 80 pixels, and the
height to 40 pixels. Similarly, the calls to setGeometry() on lines 13 and 16 position
the other widgets. The first two arguments to setGeometry() are left and top; the
second two are width and height.

The main() function of this program treats the new compound widget just as it
would any other widget. 

1 /* compound.cpp */
2 #include <qapplication.h>

4682-1 ch02.f.qc  11/13/00  14:09  Page 20



21Chapter 2 ✦ Creating and Displaying a Window

3 #include “threewidget.h”
4 
5 int main(int argc,char **argv)
6 {
7     QApplication app(argc,argv);
8     ThreeWidget threeWidget;
9     threeWidget.setGeometry(10,10,100,100);
10     app.setMainWidget(&threeWidget);
11     threeWidget.show();
12     return(app.exec());
13 }

The threeWidget object is created on line 8. A widget cannot be forced to fit a size
that is not valid for it, so the call to setGeometry() on line 9 has no effect because
of the minimum and maximum size settings in the widget. The call to show() on
line 11 instructs the widget, and all of the widgets it contains, to be visible.

Listening to a Button
A button is a widget, so it can be displayed just like any other widget. However, your
program will need to know when the user clicks on the button. The following example
displays the window shown in Figure 2-5 and responds to the button by halting:

1 /* exitbutton.cpp */
2 #include <qapplication.h>
3 #include <qpushbutton.h>
4 #include <qstring.h>
5 
6 int main(int argc,char **argv)
7 {
8     QApplication app(argc,argv);
9     QString string(“Exit”);
10     QPushButton *button = new QPushButton(string,NULL);
11     QObject::connect(button,
12             SIGNAL(clicked()),&app,SLOT(quit()));
13     button->setGeometry(0,0,80,50);
14     button->show();
15     app.setMainWidget(button);
16     return(app.exec());
17 }

Figure 2-5: A button to exit the program

4682-1 ch02.f.qc  11/13/00  14:09  Page 21



22 Part I ✦ Getting Started

The button is prepared to respond to the mouse, but the response will go unnoticed
unless the button is instructed to send a message to some part of your program. A
message of this type is called a signal, and a method capable of receiving a signal is
called a slot. The call to QObject::connect() on lines 10 and 11 causes a copy of
the signal to be directed from clicked() in the button to the quit() method in 
the application.

If you have worked with other event-driven systems, you are probably familiar with
the concept of callback functions. A slot is similar to a callback, but there are some
differences. The most important difference is that slots are type safe — if the argu-
ment types don’t match, the program won’t compile.

In the call to QObject::connect(), the first two arguments specify the source 
of the signal as being the method named clicked() in the button. The signal is
broadcast. That is, the signal is sent whether or not there are slot functions set 
to receive it. On the other hand, if several slots are set to receive the signal, they
each will receive a copy.

The second pair of arguments on the call to QObject::connect() specify that the
receiving slot is to be the quit() method in the QApplication.

Defining a Slot for a Signal
In order to have a widget receive a signal, it must define a slot and connect it to the
signal. The following example, shown in Figure 2-6, displays a button and a counter,
and whenever the button is pressed, the counter is incremented. Several things need
to be done to make this happen, but the Qt system handles most of the details. In
particular, there are some special macros and the Meta Object Compiler (MOC) to
handle most of the detail work automatically. The main() function in this example
simply creates and displays the widget:

1 /* count.cpp */
2 #include <qapplication.h>
3 #include “clickcount.h”
4 
5 int main(int argc,char **argv)
6 {
7     QApplication app(argc,argv);
8     ClickCount clickcount;
9     app.setMainWidget(&clickcount);
10     clickcount.show();
11     return(app.exec());
12 }

Note

4682-1 ch02.f.qc  11/13/00  14:09  Page 22



23Chapter 2 ✦ Creating and Displaying a Window

Figure 2-6: The slot of the counter receives the signal of the button.

The ClickCount widget contains a button and a label. The label is used to display
the current counter value:

1 /* clickcount.h */
2 #ifndef CLICKCOUNT_H
3 #define CLICKCOUNT_H
4 
5 #include <qpushbutton.h>
6 #include <qlabel.h>
7 
8 class ClickCount: public QWidget
9 {
10     Q_OBJECT
11 public:
12     ClickCount(QWidget *parent=0,const char *name=0);
13 public slots:
14     void incrementCounter();
15 private:
16     int counter;
17     QLabel *label;
18     QPushButton *button;
19 };
20 
21 #endif

The macro Q_OBJECT on line 10 must be present in any class that has a slot. (It also
must be present for a class that broadcasts a signal, as you’ll see in Chapter 5.) The
Q_OBJECT macro defines some of the standard methods that must be present in
order for signals and slots to work.

The method, named incrementCounter() on line 14, is categorized as a public
slot by the declaration on line 13. Other than being declared as a slot, increment
Counter() is the same as any other method in the class; and it can be called
directly as well as being called by a signal.

The constructor of the ClickCount class creates the layout containing the button
and the label, and makes the connection that will send a signal from the button to
the slot named incrementCounter():

1 /* clickcount.cpp */
2 #include <stdio.h>

4682-1 ch02.f.qc  11/13/00  14:09  Page 23



24 Part I ✦ Getting Started

3 #include “clickcount.h”
4 
5 ClickCount::ClickCount(QWidget *parent,const char *name):
6                 QWidget(parent,name )
7 {
8     setMinimumSize(120,125);
9     setMaximumSize(120,125);
10 
11     counter = 0;
12     button = new QPushButton(“Add 1”,this);
13     button->setGeometry(15,15,90,40);
14     label = new QLabel(“0”,this);
15     label->setGeometry(15,70,90,40);
16     label->setAlignment(AlignVCenter | AlignHCenter);
17 
18     QObject::connect(
19             button,SIGNAL(clicked()),
20             this,SLOT(incrementCounter()));
21 }
22 void ClickCount::incrementCounter()
23 {
24     char str[30];
25     sprintf(str,”%d”,++counter);
26     label->setText(str);
27 }

The calls to setMinimumSize() and setMaximumSize() on lines 8 and 9 fix the
size of the window at 120 ×125 pixels. The counter value is initialized on line 11, 
and the button and the label are created and configured on lines 12 through 16.

The call to QObject::connect() on line 18 attaches a slot to a signal. The first two
arguments, on line 19, specify that the source of the signal is to be a method named
clicked(). The clicked() signal is a member of the button’s class, along with the
signals named pressed(), released(), and toggled().

You can find examples of creating signal methods in Chapter 5.

The second pair of QObject::connect() arguments, on line 20, specify the object
and method that are to receive the signal. The object is this (the current instance
of ClickCount) and the method is incrementCounter().

Every time the clicked() signal is sent by the button, it is received by the
incrementCounter() method, which adds 1 to the value being displayed and
updates the text of the button.

Cross-
Reference

4682-1 ch02.f.qc  11/13/00  14:09  Page 24



25Chapter 2 ✦ Creating and Displaying a Window

There is no real connection between the signal and the slot. A signal is broadcast
whether or not any slots are listening — and there can be any number of slots lis-
tening for the signal. Also, a slot can be set to listen for any number of signals.

The makefile for this example shows how the Meta Object Compiler) takes its input
as the source code of the header file defining the class, and produces a new source
file to be compiled and linked with the program:

1 INCL= -I$(QTDIR)/include -I$(KDEDIR)/include
2 CFLAGS= -O2 -fno-strength-reduce
3 LFLAGS= -L$(QTDIR)/lib -L$(KDEDIR)/include -L/usr/X11R6/lib
4 LIBS= -lqt -lX11 -lXext
5 CC=g++
6 
7 count: count.o clickcount.o moc_clickcount.o
8     $(CC) $(LFLAGS) -o count count.o clickcount.o \
9         moc_clickcount.o $(LIBS)
10 
11 count.o: count.cpp clickcount.h
12 clickcount.o: clickcount.cpp clickcount.h
13 moc_clickcount.cpp: clickcount.h
14     $(QTDIR)/bin/moc clickcount.h -o moc_clickcount.cpp
15 
16 clean:
17     rm -f count
18     rm -f count.o
19     rm -f clickcount.o
20     rm -f moc_*
21 
22 .SUFFIXES: .cpp
23 
24 .cpp.o:
25     $(CC) -c $(CFLAGS) $(INCL) -o $@ $<

The dependencies on line 7 show that the program is not only dependent on count.o
and clickount.o, but also depends on something called moc_clickcount.o. The
file moc_clickcount.cpp is created by the MOC compiler from clickcount.h. 
The Q_OBJECT macro adds some method prototypes to the ClickCount class defini-
tion, and the MOC compiler generates bodies for the new methods. The result is that
the repetitive (and thus error-prone) coding required for signals and slots is almost
completely automated. 

There is more about how and why this is done — Chapter 5 examines the entire
process.

Cross-
Reference

Note

4682-1 ch02.f.qc  11/13/00  14:09  Page 25



26 Part I ✦ Getting Started

Summary
It takes very few lines of code to create a working Qt or KDE application. The details
of writing code to create the windows, and the low-level mechanics of listening for
user input, are all handled inside the API.

✦ A Qt program is created by having the mainline of the program create a
QApplication object and use it to control the windows. A KDE program 
is formed the same way, using a KApplication object.

✦ The main window of an application is a single widget. This widget normally
contains a collection of other widgets that display information and supply 
the user interface.

✦ An object can be written to broadcast one or more signals. An object can also
contain one or more slots designed to receive broadcast signals. The implemen-
tation details of slots and signals are automated through the use of macros and
the MOC compiler.

This chapter described how to create and display the main window of an application.
The next chapter deals with displaying pop-up windows and dialog boxes. There are
some pre-defined KDE and Qt dialog boxes, but you can also create your own.

✦ ✦ ✦

4682-1 ch02.f.qc  11/13/00  14:09  Page 26



Laying Out
Widgets in a
Window

This chapter is all about controlling the size and position
of a collection of widgets inside a window. Before an

application can be programmed to respond to a button or
read some text typed by the user, it is necessary to present
the button and the text entry widgets in some sort of reason-
able arrangement. This chapter explains not only how to
place a widget where you want it, but also how to specify its
size and the action that will be taken when the window is
resized.

Widgets can be positioned and sized by coordinate values or
by using a layout. The coordinate values are hard-coded pixel
locations that cannot be adjusted by the user. On the other
hand, a layout object positions and sizes the widgets (within
maximum and minimum limits) relative to one another and
relative to the overall size of the containing window.

Geometric Widget Placement
You can specify the exact placement and size of each widget
by specifying four values: horizontal offset, vertical offset,
width, and height. The coordinate system is that of the parent
window — that is, the window that contains the widgets. The
following example places three pushbuttons on an application
window.

Main
1 /* main.cpp */
2 #include <kapp.h>

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Positioning widgets
on the display using
specific x and y
coordinate values

Attaching widgets 
to a grid coordinate
system

Stretching and
shrinking widgets so
they fit the display

Stacking widgets 
into a vertical box 
for display

Inserting widgets 
into a horizontal 
box for display

Containing the
window of one
widget within the
window of another

✦ ✦ ✦ ✦

4682-1 ch03.f.qc  11/20/00  15:41  Page 27



28 Part I ✦ Getting Started

3 #include “setxy.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”setxy”);
8     SetXY setxy;
9     setxy.show();
10     app.setMainWidget(&setxy);
11     return(app.exec());
12 }

The mainline is quite simple. The header file is included on line 3. The widget with
the buttons is created on line 8, and is specified as the widget to be displayed as
the main application window by the call to setMainWidget() on line 10.

SetXY Header
1 /* setxy.h */
2 #ifndef SETXY_H
3 #define SETXY_H
4 
5 #include <qpushbutton.h>
6 
7 class SetXY: public QWidget
8 {
9 public:
10     SetXY(QWidget *parent=0,const char *name=0);
11     ~SetXY();
12 private:
13     QPushButton *button1;
14     QPushButton *button2;
15     QPushButton *button3;
16 };
17 
18 #endif

The class SetXY is defined using QWidget as its base class. Its only data are the
three QPushButton pointers defined on lines 13 through 15. Normally, there would
be methods designated as slots to respond to the buttons, but this is a simple
placement demonstration so there will be no responses to the buttons.

Because the header file qpushbutton.h is included on line 5 of setxy.h, it will
be automatically included by both setxy.cpp and main.cpp. If another widget
were being used, and if that other widget also included qpushbutton.h, the
same header file would be included twice. That is why it is very important that the
precompiler directives on lines 2, 3, and 18 be used to prevent a header file from
being compiled more than once.

Note

4682-1 ch03.f.qc  11/20/00  15:41  Page 28



29Chapter 3 ✦ Laying Out Widgets in a Window

SetXY
1 /* setxy.cpp */
2 #include “setxy.h”
3 
4 SetXY::SetXY(QWidget *parent,const char *name)
5         : QWidget(parent,name)
6 {
7     setMinimumSize(90,40);
8     setMaximumSize(190,220);
9     resize(190,220);
10 
11     button1 = new QPushButton(“Upper Left”,this);
12     button1->setGeometry(0,0,90,40);
13 
14     button2 = new QPushButton(“Middle Right”,this);
15     button2->setGeometry(90,70,100,50);
16 
17     button3 = new QPushButton(“Bottom”,this);
18     button3->setGeometry(45,140,50,80);
19 }
20 SetXY::~SetXY() { }

All of the work done by SetXY is done in the constructor. Three buttons are defined
and displayed, as shown in Figure 3-1.

Figure 3-1: Three buttons positioned 
by coordinates

The button in the upper left corner is created on line 11 and its size and position
are set on line 12. The order of the four integers passed to the setGeometry()
method is as follows:

x,y,width,height

The distances are measured in pixels. The x value is the number of pixels from the
left of the application window to the left of the contained widget. The y value is the
number of pixels from the top of the window to the top of the widget. That is, the

4682-1 ch03.f.qc  11/20/00  15:41  Page 29



30 Part I ✦ Getting Started

upper-left corner is the origin of the coordinate system. Each button is created and
then assigned a size and position by a call to setGeometry().

If two widgets are placed so that they occupy the same space, the newer one will
obscure the older one; therefore, if you find you are missing a widget, it could be
simply hidden.

The calls on lines 7, 8, and 9 define the rules for displaying this widget. The call to
setMinimumSize() on line 7 specifies that this widget must be displayed at least
90 pixels wide and 40 pixels high. The minimum setting is important because the
widget is to be displayed in a window that can be resized by the user. The widget
cannot be reduced beyond the size shown in Figure 3-2. The call to setMaximum
Size() on line 8 places an upper limit on the height and width of the widget.
Finally, the call to resize() on line 9 sets the initial size of the widget to the 
maximum allowable size.

Figure 3-2: The minimum size setting 
obscures two of the three buttons.

There is nothing to be done in the ~SetXY() destructor on line 20 because when
this application exits — and this widget is destroyed — it will also destroy the three
buttons because this widget is the parent of the buttons. 

The Size of a Widget
You need to consider two important factors when laying out widgets on a window.
Each widget has a location and a size. In the previous example, location and size are
completely controlled by the application program. This is fine if your application
needs that detailed a level of control, but most widgets have an opinion about how
big they should be.

A number of methods in QWidget give you control over the size of the widget. Some
of these methods use height and width values, and some use QSize objects, but
they both do the same thing. The QSize class is simply a wrapper for height and
width, but it also contains some methods and operators that make life a bit easier
when the size manipulation gets complicated. For example, you can use operators
to change the size while maintaining the ratio and to combine two QSize objects
into one:

void setMaximumSize(const QSize &qsize);
void setMaximumSize(int width,int height);
void setMaximumWidth(int width);

Note

4682-1 ch03.f.qc  11/20/00  15:41  Page 30



31Chapter 3 ✦ Laying Out Widgets in a Window

void setMaximumHeight(int height);
void setMinimumSize(const QSize &qsize);
void setMinimumSize(int width,int height);
void setMinimumWidth(int width);
void setMinimumHeight(int height);

If a widget is to have a fixed size, you can either make two function calls to set the
minimum and maximum to the same values, or you can call one of the following
functions:

void setFixedSize(const QSize &qsize);
void setFixedSize(int width,int height);
void setFixedWidth(int width);
void setFixedHeight(int height);

The following functions retrieve the maximum and minimum sizes:

QSize maximumSize();
QSize minimumSize();

Fixed Grid Widget Placement
Using a QGridLayout object enables you to define a grid of invisible horizontal and
vertical lines and then insert widgets into the cells created by the lines. The follow-
ing example creates a grid that is five cells wide by five cells high and inserts a but-
ton into four of the cells.

Main
1 /* main.cpp */
2 #include <kapp.h>
3 #include “fivebyfive.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”fivebyfive”);
8     FiveByFive *fivebyfive = new FiveByFive();
9     fivebyfive->show();
10     app.setMainWidget(fivebyfive);
11     return(app.exec());
12 }

The mainline creates an instance of the FiveByFive widget and uses it as the wid-
get to be displayed in the KApplication window. The result is the window dis-
played in Figure 3-3.

4682-1 ch03.f.qc  11/20/00  15:41  Page 31



32 Part I ✦ Getting Started

Figure 3-3: Four pushbuttons 
positioned by a grid layout

FiveByFive Header
1 /* fivebyfive.h */
2 #ifndef FIVEBYFIVE_H
3 #define FIVEBYFIVE_H
4 
5 #include <qwidget.h>
6 #include <qpushbutton.h>
7 
8 class FiveByFive: public QWidget
9 {
10 public:
11     FiveByFive(QWidget *parent=0,const char *name=0);
12     ~FiveByFive();
13 private:
14     QPushButton *b11;
15     QPushButton *b31;
16     QPushButton *b13;
17     QPushButton *b33;
18 };
19 
20 #endif

The header file defines the FiveByFive class to be a QWidget and to contain the
four buttons to be placed on the grid.

FiveByFive
1 /* fivebyfive.cpp */
2 #include <qlayout.h>
3 #include “fivebyfive.h”
4 
5 FiveByFive::FiveByFive(QWidget *parent,const char *name)
6     : QWidget(parent,name)
7 {
8     QGridLayout *layout = new QGridLayout(this,5,5);

4682-1 ch03.f.qc  11/20/00  15:41  Page 32



33Chapter 3 ✦ Laying Out Widgets in a Window

9 
10     b11 = new QPushButton(“(1,1)”,this);
11     b11->setMaximumSize(100,100);
12     layout->addWidget(b11,1,1);
13     b13 = new QPushButton(“(1,3)”,this);
14     b13->setMaximumSize(100,100);
15     layout->addWidget(b13,1,3);
16     b31 = new QPushButton(“(3,1)”,this);
17     b31->setMaximumSize(100,100);
18     layout->addWidget(b31,3,1);
19     b33 = new QPushButton(“(3,3)”,this);
20     b33->setMaximumSize(100,100);
21     layout->addWidget(b33,3,3);
22 
23     for(int i=0; i<5; i++) {
24         layout->addRowSpacing(i,60);
25         layout->addColSpacing(i,60);
26     }
27     resize(10,10);
28 
29     layout->activate();
30 }
31 
32 FiveByFive::~FiveByFive() { }

The file qlayout.h is included on line 2. This same header file is also used to define
QVBoxLayout and QHBoxLayout, described later in this chapter.

On line 8, the QGridLayout object created is five cells wide and five cells high. The
cell in the upper-left corner is numbered (0,0), the one to its right is (0,1), the next
one over is (0,2), and so on. To position a widget in a grid so that it is one position
over from the left and one down from the top, it is inserted into grid cell (1,1).

Lines 10 and 11 create a button and set both its minimum height and width to 100
pixels. This will allow the button to expand to fill its assigned cell, as long as the
cell is less than 100 by 100 pixels. Normally, a button cannot be stretched because
of its internal maximum settings. 

Lines 10, 11, and 12 create a button with the label “(1,1)” and place it on the grid
square at location (1,1). The call to setMaximumSize() on line 11 allows the button
to expand to fill its containing cell. The sizeHint() method is valid for many, but
not all, widgets. In this case, it is correctly assumed that the QPushButton widget
returns a valid size hint, so no validity test is made before it is used. A more gener-
alized form of the code would look like this:

QSize *qsize = b11.sizeHint();
if(qsize.isValid())

b11.setMinimumSize(qsize);
else

b11.setMinimumSize(30,30);

4682-1 ch03.f.qc  11/20/00  15:41  Page 33



34 Part I ✦ Getting Started

This way, if the widget being tested does not return a valid size setting, something
reasonable will be used. The default setting is pretty good, but it is almost never
exactly what you want.

As you write your own widgets, you may find it useful to implement sizeHint().
It is defined in QWidget as a virtual function and will always return an invalid
QSize unless you override it. 

The loop on lines 27 through 30 calls addRowSpacing() for each of the rows and
columns in the grid. This sets the minimum width of each column, and the mini-
mum height of each row, to 60 pixels. No maximum is set, so each row and column
can be increased to any size, and if you resize this window, you will notice the but-
tons being resized also. There is more about this stretching in the next example.

The call to resize() on line 31 is a request to make the entire widget shrink to 10
by 10 pixels. The widget is unable to comply with the request because of the mini-
mum size of the rows and columns. Whenever a widget is instructed to resize itself
and the new height or width is outside the bounds of its maximum or minimum, the
requested value is ignored and the closest valid value is used — that is, either the
maximum or the minimum. In this example, the widget is simply reduced to its mini-
mum size.

Stretched Grid Widget Placement
The following example uses a QGridLayout object to position four buttons, and
sets some row and column stretching values that control resizing of the buttons
when the parent window is resized.

Main
1 /* main.cpp */
2 #include <kapp.h>
3 #include “fourbyfour.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”fourbyfour”);
8     FourByFour *fourbyfour = new FourByFour();
9     fourbyfour->show();
10     app.setMainWidget(fourbyfour);
11     return(app.exec());
12 }

The mainline creates an instance of the FourByFour widget and uses it as the wid-
get to be displayed in the KApplication window.

Note

4682-1 ch03.f.qc  11/20/00  15:41  Page 34



35Chapter 3 ✦ Laying Out Widgets in a Window

FourByFour Header
1 /* fourbyfour.h */
2 #ifndef FOURBYFOUR_H
3 #define FOURBYFOUR_H
4 
5 #include <qwidget.h>
6 #include <qpushbutton.h>
7 
8 class FourByFour: public QWidget
9 {
10 public:
11     FourByFour(QWidget *parent=0,const char *name=0);
12     ~FourByFour();
13 private:
14     QPushButton *b11;
15     QPushButton *b21;
16     QPushButton *b12;
17     QPushButton *b22;
18 };
19 
20 
21 #endif

The header file defines the FourByFour class to be a QWidget that contains, as 
private data, the four buttons to be placed in the cells for resizing.

FourByFour
1 /* fourbyfour.cpp */
2 #include <qlayout.h>
3 #include “fourbyfour.h”
4 
5 FourByFour::FourByFour(QWidget *parent,const char *name)
6     : QWidget(parent,name)
7 {
8     QGridLayout *layout = new QGridLayout(this,4,4);
9     QSize buttonMax(400,400);
10 
11     b11 = new QPushButton(this);
12     b11->setText(“(1,1)”);
13     b11->setMinimumSize(b11->sizeHint());
14     b11->setMaximumSize(buttonMax);
15     layout->addWidget(b11,1,1);
16     b12 = new QPushButton(this);
17     b12->setText(“(1,2)”);
18     b12->setMinimumSize(b12->sizeHint());
19     b12->setMaximumSize(buttonMax);
20     layout->addWidget(b12,1,2);
21     b21 = new QPushButton(this);
22     b21->setText(“(2,1)”);
23     b21->setMinimumSize(b21->sizeHint());
24     b21->setMaximumSize(buttonMax);
25     layout->addWidget(b21,2,1);

4682-1 ch03.f.qc  11/20/00  15:41  Page 35



36 Part I ✦ Getting Started

26     b22 = new QPushButton(this);
27     b22->setText(“(2,2)”);
28     b22->setMinimumSize(b22->sizeHint());
29     b22->setMaximumSize(buttonMax);
30     layout->addWidget(b22,2,2);
31 
32     layout->addRowSpacing(0,20);
33     layout->addRowSpacing(3,20);
34     layout->addColSpacing(0,20);
35     layout->addColSpacing(3,20);
36     resize(10,10);
37 
38     layout->setRowStretch(2,100);
39     layout->setColStretch(2,100);
40 
41     layout->activate();
42 }
43 
44 FourByFour::~FourByFour() { }

A QGridLayout object is created, on line 8, to be four cells wide and four cells high.
Lines 11 through 30 create four QPushButton objects and add them to the four cen-
ter cells of the layout grid. The minimum size of each button is set to a value that
will guarantee that the text is always visible. The maximum size of each button is
set to an arbitrarily large number to allow the QGridLayout to stretch the buttons
as necessary to fill its cells.

The calls to addRowSpacing() and addColSpacing() on lines 32 through 35 set
the width of the left and right columns, and the height of the top and bottom rows,
to 20 pixels each. The result is a 20-pixel margin between the edge of the applica-
tion window and the four cells in the center that contain the buttons. The call to
resize() on line 36 attempts to reduce the widget to a size smaller than its mini-
mum allowed; therefore, the widget is first displayed at its minimum size. The result
is shown in Figure 3-4.

Figure 3-4: The minimum size 
of the four by four widget

The call to setRowStretch() on line 38 sets the stretch factor of the third row (the
second row of buttons) to 100. The call to setColStretch() on line 34 sets the
stretch factor of the third column (the second column of buttons) to 100. Whenever
the size of the window is changed in either the vertical or horizontal direction, the
rows and columns with larger stretch factors are changed more than those with
smaller stretch factors.

4682-1 ch03.f.qc  11/20/00  15:41  Page 36



37Chapter 3 ✦ Laying Out Widgets in a Window

The default stretch value is 0 for each row and column. If all rows (or columns) are
set to 0, all rows (or columns) may or may not change size. This default is almost
never what you want. When the grid is resized, only those rows and columns with 
a non-zero value are resized with it. The amount that a row or column is resized is
determined by the ratio of its stretch factor to the sum of the stretch factors of all
cells being resized.

In this example, enlarging the window causes it to be displayed looking like the one
shown in Figure 3-5. The stretch factors of column 1 and row 1 are left at zero, so
the button in the upper left corner is left unchanged. On the other hand, column 2
and row 2 both have a non-zero value, so the button in the cell at the lower right
changes size in both directions.

Figure 3-5: Uneven resizing caused 
by the stretch factor

The amount that a cell actually stretches is determined by the ratio of the stretch fac-
tor to the sum of all the stretch factors in the direction being stretched. For example,
a change to the stretch factors of FourByFour can cause all the buttons to change
size, but some will change more rapidly than others. For example, replace lines 33
and 34 with the following:

layout->setRowStretch(1,50);
layout->setRowStretch(2,100);
layout->setColStretch(1,9);
layout->setColStretch(2,1);

With these settings, stretching the window vertically will increase the height of row
1 twice as much as row 2. Stretching the window horizontally will cause column 1 to
increase nine times as much as column 2. The result of expanding the window is
shown in Figure 3-6.

Figure 3-6: Each row and column 
with its own stretch factor

4682-1 ch03.f.qc  11/20/00  15:41  Page 37



38 Part I ✦ Getting Started

Widgets in Multiple Grid Cells
While a QGridLayout can easily be used to position widgets in a rectangular
array — sort of like a checkerboard — it is also possible to have a single widget
cover two or more grid squares, allowing for more flexibility. The following example
uses this technique to have a label positioned across the top of the window, and a
list box cover six cell positions. 

Main
1 /* main.cpp */
2 #include <kapp.h>
3 #include “multicell.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”multicell”);
8     MultiCell *multicell = new MultiCell();
9     multicell->show();
10     app.setMainWidget(multicell);
11     return(app.exec());
12 }

MultiCell Header
1 /* multicell.h */
2 #ifndef MULTICELL_H
3 #define MULTICELL_H
4 
5 #include <qwidget.h>
6 #include <qpushbutton.h>
7 #include <qlabel.h>
8 #include <qlistbox.h>
9 
10 class MultiCell: public QWidget
11 {
12 public:
13     MultiCell(QWidget *parent=0,const char *name=0);
14     ~MultiCell();
15 private:
16     QLabel *label;
17     QListBox *listbox;
18     QPushButton *addButton;
19     QPushButton *deleteButton;
20     QPushButton *cancelButton;
21 };
22 
23 #endif

Storage for all the different widgets is defined as part of the MultiCell class on
lines 16 through 20. This means that there must be an include file, on lines 6
through 8, for each one of them.

4682-1 ch03.f.qc  11/20/00  15:41  Page 38



39Chapter 3 ✦ Laying Out Widgets in a Window

Although it is quite normal to include pointers for all of the widgets in the class
definition, it is not always necessary. Once a widget has been configured for dis-
play, there is no need for your program to retain the pointer unless you are going
to need it for some special situation. For example, if your program were to change
the text of the label or add members to the list box, it would need access to their
pointers. Personally, I like to include the widgets in the class as a form of docu-
mentation.

MultiCell
1 /* multicell.cpp */
2 #include <qlayout.h>
3 #include <stdio.h>
4 #include “multicell.h”
5 
6 MultiCell::MultiCell(QWidget *parent,const char *name)
7     : QWidget(parent,name)
8 {
9     QGridLayout *layout = new QGridLayout(this,4,2,20);
10 
11     label = new QLabel(“A list box with three buttons”,
12             this);
13     label->setMinimumSize(label->sizeHint());
14     label->setAlignment(AlignHCenter);
15     layout->addMultiCellWidget(label,0,0,0,1);
16 
17     listbox = new QListBox(this);
18     for(int i=0; i<20; i++) {
19         char str[40];
20         sprintf(str,”Selection %d\n”,i);
21         listbox->insertItem(str);
22     }
23     listbox->setMinimumWidth(120);
24     layout->addMultiCellWidget(listbox,1,3,0,0);
25 
26     addButton = new QPushButton(this);
27     addButton->setText(“Add”);
28     addButton->setMinimumSize(addButton->sizeHint());
29     layout->addWidget(addButton,1,1);
30 
31     deleteButton = new QPushButton(this);
32     deleteButton->setText(“Delete”);
33     deleteButton->setMinimumSize(deleteButton->sizeHint());
34     layout->addWidget(deleteButton,2,1);
35 
36     cancelButton = new QPushButton(this);
37     cancelButton->setText(“Cancel”);
38     cancelButton->setMinimumSize(cancelButton->sizeHint());
39     layout->addWidget(cancelButton,3,1);
40 
41     resize(10,10);

Note

4682-1 ch03.f.qc  11/20/00  15:41  Page 39



40 Part I ✦ Getting Started

42     layout->activate();
43 }
44 
45 MultiCell::~MultiCell() { }

On line 9, the QGridLayout is constructed to be 4 cells tall and 2 cells wide. Also, a
border value of 20 is used to insert spacing between all cells. The displayed window
is shown in Figure 3-7.

Figure 3-7: Widgets expand to fill 
multiple grid cells.

Lines 11 through 14 define a label with its text, set its minimum size, and set the
alignment so the text will be horizontally centered. On line 15, the label is assigned
to two cells of the grid layout with a call to addMultiCellWidget(). The first two
numbers specify the range of the rows, and the second two numbers specify the
range of the columns, like this:

startRow,endRow,startCol,endCol

Lines 17 through 24 create a list box with 20 entries, and set its minimum width to
120 pixels. The call to addMultiCellWidget() on line 24 specifies that the list box
is to cover six cells — two cells wide by three cells high.

Lines 26 through 29 create the three buttons on the right, assigning each one to a
single cell. The result shown in Figure 3-7 displays the buttons separated by the 
20-pixel spacing that as specified for all cells on line 9.

Vertical Box Layout
You can position a group of widgets in a vertical column by inserting them into a
QVBoxLayout object. The first one inserted will appear at the top of the box, the
second one will go underneath it, and each one added after that is positioned at the
bottom of the list. The following example inserts five buttons — along with some
space and stretch controls — into a vertical box.

4682-1 ch03.f.qc  11/20/00  15:41  Page 40



41Chapter 3 ✦ Laying Out Widgets in a Window

Main
1 /* main.cpp */
2 #include <kapp.h>
3 #include “verticalbox.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”verticalbox”);
8     VerticalBox *verticalbox = new VerticalBox();
9     verticalbox->show();
10     app.setMainWidget(verticalbox);
11     return(app.exec());
12 }

A VerticalBox object is used as the display widget of the application window.

VerticalBox Header
1 /* verticalbox.h */
2 #ifndef VERTICALBOX_H
3 #define VERTICALBOX_H
4 
5 #include <qwidget.h>
6 #include <qlayout.h>
7 #include <qpushbutton.h>
8 
9 class VerticalBox: public QWidget
10 {
11 public:
12     VerticalBox(QWidget *parent=0,const char *name=0);
13     ~VerticalBox();
14 private:
15     QPushButton *buttonOne;
16     QPushButton *buttonTwo;
17     QPushButton *buttonThree;
18     QPushButton *buttonFour;
19     QPushButton *buttonFive;
20 };
21 
22 #endif

VerticalBox
1 /* verticalbox.cpp */
2 #include “verticalbox.h”
3 
4 VerticalBox::VerticalBox(QWidget *parent,const char *name)
5     : QWidget(parent,name)
6 {
7     QVBoxLayout *layout = new QVBoxLayout(this,5);

4682-1 ch03.f.qc  11/20/00  15:41  Page 41



42 Part I ✦ Getting Started

8     QSize buttonMaximum(400,400);
9 
10     buttonOne = new QPushButton(this);
11     buttonOne->setText(“BUTTON ONE”);
12     buttonOne->setMinimumSize(buttonOne->sizeHint());
13     buttonOne->setMaximumSize(buttonMaximum);
14     layout->addWidget(buttonOne);
15     
16     buttonTwo = new QPushButton(this);
17     buttonTwo->setText(“BUTTON TWO”);
18     buttonTwo->setMinimumSize(buttonTwo->sizeHint());
19     buttonTwo->setMaximumSize(buttonMaximum);
20     layout->addWidget(buttonTwo,30);
21 
22     layout->addSpacing(20);
23     
24     buttonThree = new QPushButton(this);
25     buttonThree->setText(“BUTTON THREE”);
26     buttonThree->setMinimumSize(buttonThree->sizeHint());
27     buttonThree->setMaximumSize(buttonMaximum);
28     layout->addWidget(buttonThree);
29 
30     layout->addStretch(30);
31 
32     buttonFour = new QPushButton(this);
33     buttonFour->setText(“BUTTON FOUR”);
34     buttonFour->setMinimumSize(buttonFour->sizeHint());
35     buttonFour->setMaximumSize(buttonMaximum);
36     layout->addWidget(buttonFour);
37 
38     layout->addSpacing(5);
39     layout->addStretch(10);
40 
41     buttonFive = new QPushButton(this);
42     buttonFive->setText(“BUTTON FIVE”);
43     buttonFive->setMinimumSize(buttonFive->sizeHint());
44     buttonFive->setMaximumSize(buttonMaximum);
45     layout->addWidget(buttonFive);
46 
47     resize(10,10);
48     layout->activate();
49 }
50 VerticalBox::~VerticalBox() { }

This class is a widget based on the QVBoxLayout object created on line 7. The sec-
ond argument on the constructor specifies that a five-pixel border is to be inserted
around all the items it contains. If this border is set to zero (the default), the con-
tained items are placed adjacent to one another and flush against the sides.

Lines 10 through 14 create a button, set its text and minimum size, and add it to the
layout. Its maximum size is set to an arbitrarily large value to allow the QVBoxLayout

4682-1 ch03.f.qc  11/20/00  15:41  Page 42



43Chapter 3 ✦ Laying Out Widgets in a Window

object to stretch it to fit. It is the first button added to the layout, so it will appear at
the top.

Lines 16 through 20 create the second button and add it to the layout. As shown in
Figure 3-8, the distance between the first and second buttons is 10 pixels (a border
of 5 on button one plus a border of 5 on button two). The distance between them
does not vary even when the layout is stretched. On line 20, a stretch factor of 20 is
specified as the button is added to the box, which causes the button itself to partic-
ipate in stretching as the layout changes size.

Figure 3-8: A vertical box before 
and after being stretched vertically

Line 22 inserts a 20-pixel space below button two. Then, on lines 24 through 28, but-
ton three is created and added to the layout. This means that there will always be
30 pixels between button two and button three (the two 5-pixel borders plus the 
20-pixel space).

Line 30 adds a stretch point with a stretch factor of 30 below button three, and lines
32 through 36 insert button four below that. As shown in Figure 3-8, when the lay-
out is at its minimum size, no space is added by the stretch factor between buttons
three and four. However, when the window is stretched vertically, some space
appears between the two buttons.

Below button four, line 38 inserts a 5-pixel space and a stretch factor of 10. Then
lines 41 through 45 create and insert button five below that. This means that the
minimum space between the two buttons is 15 pixels (the two 5-pixel borders plus
the 5-pixel space).

Recall that the amount of the stretch is the ratio of the total of all stretch factors to
each individual stretch factor. This example specifies stretch factors of 30 (on line
20), 30 (on line 30), and 10 (on line 39). The total of the stretch factors is 70; there-
fore, as the size of the window is changed, button two will absorb 3/7 of the change,
the space between buttons two and three will absorb 3/7, and the space between
buttons four and five will absorb 1/7.

4682-1 ch03.f.qc  11/20/00  15:41  Page 43



44 Part I ✦ Getting Started

Line 47 reduces the initial size of the layout to its minimum. The layout determines
its minimum size by summing the minimum size of all the widgets and spaces it
contains. Line 48 activates the layout so it will be displayed whenever its parent
window is displayed.

Horizontal Box Layout
A horizontal box is the same as a vertical box, except the contained widgets are
placed side-by-side from left to right instead of one below the other from top to bot-
tom. The windows shown in Figure 3-9 are generated by a HorizontalBox widget
that is identical to the VerticalBox widget in the previous section except for a
couple of changes. The constructor of the horizontal box is on line 7.

7     QHBoxLayout *layout = new QHBoxLayout(this,5);

The names of the buttons were shortened so the window would not be so wide. As
you can see by comparing Figure 3-8 to Figure 3-9, the spacing and stretching works
the same for both of them.

Figure 3-9: A horizontal box before and after being 
stretched horizontally

Boxes with Alignment
If the widget inserted into a vertical box cannot be resized horizontally, and if the
widget is not as wide as the box containing it, you have three choices. The widget
can be positioned on the left, on the right, or in the center. The following example
produces the window displayed in Figure 3-10 by inserting a wide button at the top
of the box and inserting four other fixed-size buttons.

Figure 3-10: A fixed-size widget 
aligns left, right, or center.

4682-1 ch03.f.qc  11/20/00  15:41  Page 44



45Chapter 3 ✦ Laying Out Widgets in a Window

Main
1 /* main.cpp */
2 #include <kapp.h>
3 #include “vboxalign.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”vboxalign”);
8     VBoxAlign *vboxalign = new VBoxAlign();
9     vboxalign->show();
10     app.setMainWidget(vboxalign);
11     return(app.exec());
12 }

VBoxAlign Header
1 /* vboxalign.h */
2 #ifndef VBOXALIGN_H
3 #define VBOXALIGN_H
4 
5 #include <qwidget.h>
6 #include <qlayout.h>
7 #include <qpushbutton.h>
8 
9 class VBoxAlign: public QWidget
10 {
11 public:
12     VBoxAlign(QWidget *parent=0,const char *name=0);
13     ~VBoxAlign();
14 private:
15     QPushButton *acrossButton;
16     QPushButton *leftButton;
17     QPushButton *centerButton;
18     QPushButton *rightButton;
19     QPushButton *defaultButton;
20 };
21 
22 #endif

The header file declares the class to contain, as private members, the variable-size
button that goes all the way across the box, and the four fixed-size buttons that
only go part of the way across.

VBoxAlign
1 /* vboxalign.cpp */
2 #include “vboxalign.h”
3 
4 VBoxAlign::VBoxAlign(QWidget *parent,const char *name)
5     : QWidget(parent,name)

4682-1 ch03.f.qc  11/20/00  15:41  Page 45



46 Part I ✦ Getting Started

6 {
7     QVBoxLayout *layout = new QVBoxLayout(this);
8 
9     acrossButton = new QPushButton(this);
10     acrossButton->setText(“All the way across”);
11     acrossButton->setMinimumSize(acrossButton->sizeHint());
12     layout->addWidget(acrossButton);
13     
14     leftButton = new QPushButton(this);
15     leftButton->setText(“Left”);
16     leftButton->setFixedSize(leftButton->sizeHint());
17     layout->addWidget(leftButton,0,AlignLeft);
18 
19     centerButton = new QPushButton(this);
20     centerButton->setText(“Center”);
21     centerButton->setFixedSize(centerButton->sizeHint());
22     layout->addWidget(centerButton,0,AlignCenter);
23 
24     rightButton = new QPushButton(this);
25     rightButton->setText(“Right”);
26     rightButton->setFixedSize(rightButton->sizeHint());
27     layout->addWidget(rightButton,0,AlignRight);
28 
29     defaultButton = new QPushButton(this);
30     defaultButton->setText(“Default”);
31     defaultButton->setFixedSize(defaultButton->sizeHint());
32     layout->addWidget(defaultButton);
33 
34     resize(10,10);
35     layout->activate();
36 }
37 VBoxAlign::~VBoxAlign() { }

Lines 9 through 12 create and install a button that has only its minimum size speci-
fied. Also, because this button’s label is longer than that of the others, its minimum
width will be greater than any other buttons in the box, so this button will deter-
mine the minimum width of the box itself.

Lines 14 through 17 create and install the button that is always positioned at the
left side of the box. The call to setFixedSize() on line 16 determines the required
size of the button and sets both the minimum and maximum limits to that size. The
call to addWidget() on line 17 sets the spacing to zero (the default) and specifies
the alignment to be AlignLeft. Another fixed-size button is created on lines 19
through 22 and added to the box with the AlignCenter option. The button created
on lines 24 through 27 is set to AlignRight. The last button, defined on lines 29
through 32, is not given a specific alignment setting, but it turns out that the default
is AlignCenter.

4682-1 ch03.f.qc  11/20/00  15:41  Page 46



47Chapter 3 ✦ Laying Out Widgets in a Window

A horizontal box works the same way as a vertical box, but with slightly different
alignment mode names. The three names for horizontally aligning widgets in a verti-
cal box are as follows:

AlignLeft
AlignCenter
AlignRight

Similarly, following are the three names for vertically aligning widgets in a horizon-
tal box:

AlignTop
AlignCenter
ALignBottom

A Layout Within a Layout
The following example demonstrates how one layout can be contained inside
another, producing the window displayed in Figure 3-11. The parent layout is a 
2 ×2 QGridLayout. It contains a QLCDNumber widget in its upper-left corner, and a
QSlider widget spanning its two bottom cells. The cell at the upper-right contains
a QVBoxLayout, which, in turn, contains a column of four buttons.

Figure 3-11: A QVBoxLayout 
inside a QGridLayout

While it is possible to achieve almost any layout by placing all the widgets on a
QGridLayout, there are times when it is more convenient to subdivide the layout
work this way. Dealing with the widgets in small groups can simplify the task of
programming a complicated window.

Main
1 /* main.cpp */
2 #include <kapp.h>
3 #include “layoutlayout.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”layoutlayout”);

Note

4682-1 ch03.f.qc  11/20/00  15:41  Page 47



48 Part I ✦ Getting Started

8     LayoutLayout *layoutlayout = new LayoutLayout();
9     layoutlayout->show();
10     app.setMainWidget(layoutlayout);
11     return(app.exec());
12 }

LayoutLayout Header
1 /* layoutlayout.h */
2 #ifndef LAYOUTLAYOUT_H
3 #define LAYOUTLAYOUT_H
4 
5 #include <qwidget.h>
6 #include <qlayout.h>
7 #include <qlcdnumber.h>
8 #include <qpushbutton.h>
9 #include <qslider.h>
10 
11 class LayoutLayout: public QWidget
12 {
13 public:
14     LayoutLayout(QWidget *parent=0,const char *name=0);
15     ~LayoutLayout() { };
16 private:
17     QLCDNumber *lcd;
18     QPushButton *openButton;
19     QPushButton *saveButton;
20     QPushButton *saveasButton;
21     QPushButton *exitButton;
22     QSlider *slider;
23 };
24 
25 #endif

The class definition includes the six widgets that are to be displayed. They are all
members of the LayoutLayout widget class even though they will be placed and
sized by different layout managers. Two hierarchies are involved here, but the lay-
out hierarchy is not related to the widget hierarchy. The layout hierarchy does
nothing but geographically position and size the widgets; but in order to be of any
use, each widget (except the top-level widget used for a main window) must have a
parent in the widget tree.

LayoutLayout
1 /* layoutlayout.cpp */
2 #include “layoutlayout.h”
3 
4 LayoutLayout::LayoutLayout(QWidget *parent,const char *name)
5     : QWidget(parent,name)
6 {

4682-1 ch03.f.qc  11/20/00  15:41  Page 48



49Chapter 3 ✦ Laying Out Widgets in a Window

7     QGridLayout *layout = new QGridLayout(this,2,2,3);
8 
9     lcd = new QLCDNumber(this);
10     lcd->setNumDigits(2);
11     lcd->display(43);
12     lcd->setMinimumSize(100,100);
13     layout->addWidget(lcd,0,0);
14 
15     QVBoxLayout *vertButtonLayout = new QVBoxLayout(3);
16     layout->addLayout(vertButtonLayout,0,1);
17 
18     openButton = new QPushButton(“Open”,this);
19     openButton->setMinimumSize(openButton->sizeHint());
20     vertButtonLayout->addWidget(openButton);
21 
22     saveButton = new QPushButton(“Save”,this);
23     saveButton->setMinimumSize(saveButton->sizeHint());
24     vertButtonLayout->addWidget(saveButton);
25 
26     saveasButton = new QPushButton(“Save As..”,this);
27     saveasButton->setMinimumSize(saveasButton->sizeHint());
28     vertButtonLayout->addWidget(saveasButton);
29 
30     exitButton = new QPushButton(“Exit”,this);
31     exitButton->setMinimumSize(exitButton->sizeHint());
32     vertButtonLayout->addWidget(exitButton);
33 
34     slider = new QSlider(QSlider::Horizontal,this);
35     slider->setMinimumSize(slider->sizeHint());
36     layout->addMultiCellWidget(slider,1,1,0,1);
37 
38     resize(10,10);
39     layout->activate();
40 }

The main layout grid is created as a 2 ×2 grid on line 7. The this argument speci-
fies that this is to be the main layout object for the LayoutLayout object. The grid
layout is also created so it will insert a 3-pixel border around all of its contained
items. Every item to be displayed by this widget must be positioned by this grid
layout. (While it is possible to display child widgets without including them in 
a layout, their position in the window will be unpredictable.)

Lines 9 through 13 create a QLCDNumber object, to display the 2-digit number 43,
and install it at the upper left corner of the grid.

A vertical layout box is created on line 15. The vertical box has no parent specified
because it is going to be included as a child of the main layout. In fact, the very next
line of code, line 16, calls the method addLayout() to insert the vertical box as the
item in the upper right corner of the grid layout. This establishes the layout hierarchy

4682-1 ch03.f.qc  11/20/00  15:41  Page 49



50 Part I ✦ Getting Started

with the LayoutLayout object being the top; the QGridLayout created on line 7 at
the next level; and the QVBoxLayout created on line 15 as the third level. Note that
the argument this was used to create the grid, thus establishing it as the top-level
container. The this argument is not used to create the vertical box, so the call must
be made to addLayout() to establish its hierarchy.

A QLayout object must have a parent before it can have child widgets or layouts
added to it. The main layout must be the child of the enclosing widget, and all
other layouts must be children (or grandchildren) of it.

Lines 18 through 20 create a QPushButton and add it to the vertical box. A mini-
mum size is set for the buttons, but there is no maximum, so the button will expand
as needed to fill the box. Lines 22 through 32 create and add three more buttons to
the box. This results in the column of buttons shown earlier in the upper right cor-
ner of Figure 3-11.

Lines 34 through 36 create a QSlider and attach it to the grid layout so it covers
the two bottoms cells. Like the buttons, it is assigned a minimum size, but is
allowed to expand to fill the cells of the grid layout.

The call to resize() on line 38 guarantees that the initial size of the produced 
widget is at its minimum. The minimum size is determined by the LayoutLayout
widget asking the QGridLayout for its minimum size. The QGridLayout asks the
QLCDNumber, the QSlider, and the QVBoxLayout for their minimum sizes and 
then sums the result — taking into account the border spacing — to find its own
minimum size. The QVBoxLayout determines its minimum size by requesting 
the minimum size of each of the buttons, and then uses the largest horizontal 
value and the sum of the vertical values for its minimum width and height.

A Layout That Is Also a Widget
The KContainerLayout widget can be used to position and size other widgets. It 
is something like a combination of the QVBoxLayout and the QHBoxLayout, but 
it also has some special properties. The following example demonstrates using the
KContainerLayout widget to size and position a group of buttons as shown in
Figure 3-12.

Figure 3-12: A KContainerLayout 
organizing widgets vertically

Note

4682-1 ch03.f.qc  11/20/00  15:41  Page 50



51Chapter 3 ✦ Laying Out Widgets in a Window

Main
1 /* main.cpp */
2 #include <kapp.h>
3 #include “container.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”container”);
8     Container *container = new Container();
9     container->show();
10     app.setMainWidget(container);
11     return(app.exec());
12 }

Container Header
1 /* container.h */
2 #ifndef CONTAINER_H
3 #define CONTAINER_H
4 
5 #include <qwidget.h>
6 #include <kcontainer.h>
7 #include <qpushbutton.h>
8 
9 class Container: public QWidget
10 {
11 public:
12     Container(QWidget *parent=0,const char *name=0);
13     ~Container();
14 private:
15     QPushButton *sbOne;
16     QPushButton *sbTwo;
17     QPushButton *sbThree;
18     QPushButton *ebOne;
19     QPushButton *ebTwo;
20     QPushButton *ebThree;
21 };
22 
23 #endif

Lines 15 through 20 declare pointers to the six buttons to be displayed.

Container
1 /* container.cpp */
2 #include “container.h”
3 
4 Container::Container(QWidget *parent,const char *name)
5     : QWidget(parent,name)
6 {

4682-1 ch03.f.qc  11/20/00  15:41  Page 51



52 Part I ✦ Getting Started

7     KContainerLayout *layout = new KContainerLayout(this);
8     layout->setOrientation(KContainerLayout::Vertical);
9 
10     sbOne = new QPushButton(this);
11     sbOne->setText(“startONE”);
12     sbOne->setMinimumSize(sbOne->sizeHint());
13     layout->packStart(sbOne);
14     
15     sbTwo = new QPushButton(this);
16     sbTwo->setText(“startTWO”);
17     sbTwo->setMinimumSize(sbTwo->sizeHint());
18     layout->packStart(sbTwo);
19 
20     sbThree = new QPushButton(this);
21     sbThree->setText(“startTHREE”);
22     sbThree->setMinimumSize(sbThree->sizeHint());
23     layout->packStart(sbThree);
24 
25     ebOne = new QPushButton(this);
26     ebOne->setText(“endONE”);
27     ebOne->setMinimumSize(ebOne->sizeHint());
28     layout->packEnd(ebOne);
29     
30     ebTwo = new QPushButton(this);
31     ebTwo->setText(“endTWO”);
32     ebTwo->setMinimumSize(ebTwo->sizeHint());
33     layout->packEnd(ebTwo);
34 
35     ebThree = new QPushButton(this);
36     ebThree->setText(“endTHREE”);
37     ebThree->setMinimumSize(ebThree->sizeHint());
38     layout->packEnd(ebThree);
39 
40     resize(10,10);
41 }
42 Container::~Container() { }

On line 7, the KContainerLayout widget is created, with the Container object 
as its parent widget. On line 8, the orientation is specified as vertical, which means
that all widgets added to the layout will be positioned one above the other, as they
appeared in Figure 3-12.

The first button is created on lines 10 through 12. The button is added to the layout
by the call to packStart() on line 13. Because this button was added first, and
because it was added by packStart(), it will always appear at the very top. A sec-
ond button is created on lines 20 through 22, and is also added to the layout using
packStart(), so it will take the position directly beneath the first button. A third
button is created and added to the layout on lines 20 through 23, and again
packStart() is used to add the button, so it will always appear immediately
beneath the first two.

4682-1 ch03.f.qc  11/20/00  15:41  Page 52



53Chapter 3 ✦ Laying Out Widgets in a Window

Packing widgets from the end has the same effect as packing them from the start,
except each widget is placed in the next available location starting at the bottom.
The first button added to the bottom is the one created on lines 25 through 27, and
added by the call to packEnd() on line 28. The button created and added on lines
30 through 33 takes the position directly on top of the other button packed from
the bottom, and the one on lines 35 through 38 takes up a position directly above
the other two at the bottom.

The actions taken when a KContainerLayout widget is resized depends on
how the widgets were added. Those added at the start will remain against the
start edge (top or left), and those added at the end will stay against the end edge
(bottom or right).

To orient the packed layout horizontally, either remove the statement on line 8
(because horizontal is the default), or replace it with the following:

layout->setOrientation(KContainerLayout::Horizontal);

When the layout orientation is horizontal, the packStart() method inserts wid-
gets on the left and the packEnd() method inserts them on the right. The result 
is shown in Figure 3-13.

Figure 3-13: A KContainerLayout organizing widgets horizontally

ISa Instead of HASa
All of the previous examples in this chapter were widgets that internally created a
layout manager of some sort. However, because KContainerLayout is also a wid-
get, it can be extended instead of simply used. That is, the widget no longer has a
layout object, it is a layout object. The following is an example of creating a widget
that is capable of containing other widgets.

Main
1 /* main.cpp */
2 #include <kapp.h>
3 #include “iscontainer.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”iscontainer”);
8     IsContainer *iscontainer = new IsContainer();

Note

4682-1 ch03.f.qc  11/20/00  15:41  Page 53



54 Part I ✦ Getting Started

9     iscontainer->show();
10     app.setMainWidget(iscontainer);
11     return(app.exec());
12 }

This widget is treated just as any other widget would be. It is created on line 8 and
set as the main-window widget on line 10. It doesn’t matter whether it has a layout
component or is a layout component, as long as it is a widget.

IsContainer Header
1 /* iscontainer.h */
2 #ifndef ISCONTAINER_H
3 #define ISCONTAINER_H
4 
5 #include <qwidget.h>
6 #include <kcontainer.h>
7 #include <qpushbutton.h>
8 
9 class IsContainer: public KContainerLayout
10 {
11 public:
12     IsContainer(QWidget *parent=0,const char *name=0);
13     ~IsContainer();
14 private:
15     QPushButton *One;
16     QPushButton *Two;
17     QPushButton *Three;
18 };
19 
20 #endif

The main difference between this class definition and the ones in the previous
examples is that, on line 8, IsContainer inherits from KContainerLayout instead
of inheriting directly from QWidget. The IsContainer class is still a widget
because KContainerLayout inherits from QWidget.

IsContainer
1 /* iscontainer.cpp */
2 #include “iscontainer.h”
3 
4 IsContainer::IsContainer(QWidget *parent,const char *name)
5     : KContainerLayout(parent,name)
6 {
7     setOrientation(KContainerLayout::Vertical);
8 
9     One = new QPushButton(this);
10     One->setText(“BUTTON ONE”);
11     One->setMinimumSize(One->sizeHint());
12     packStart(One);

4682-1 ch03.f.qc  11/20/00  15:41  Page 54



55Chapter 3 ✦ Laying Out Widgets in a Window

13     
14     Two = new QPushButton(this);
15     Two->setText(“BUTTON TWO”);
16     Two->setMinimumSize(Two->sizeHint());
17     packStart(Two);
18 
19     Three = new QPushButton(this);
20     Three->setText(“BUTTON THREE”);
21     Three->setMinimumSize(Three->sizeHint());
22     packStart(Three);
23 
24     resize(10,10);
25 }
26 IsContainer::~IsContainer() { }

The super classes (including the QWidget class) are initialized by the code on line 5.
Line 7 sets the orientation to vertical. Lines 9 through 22 create and add three but-
tons to the container by calling packStart(). The resulting display is shown in
Figure 3-14.

Figure 3-14: A widget container 
layout with three child widgets

Widgets Inside Widgets (Horizontal)
Because KContainerLayout is a widget, and has the ability to contain other wid-
gets, it can contain other KContainerLayout widgets. The following example is a
collection of horizontal KContainerLayout widgets contained inside a vertical
KContainerLayout widget. This example also displays the effect of using different
combinations of options when creating the container and adding child widgets to it.

Main
1 /* main.cpp */
2 #include <kapp.h>
3 #include “horizlayout.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”horizlayout”);
8     HorizLayout *horizlayout = new HorizLayout();
9     horizlayout->show();
10     app.setMainWidget(horizlayout);
11     return(app.exec());
12 }

4682-1 ch03.f.qc  11/20/00  15:41  Page 55



56 Part I ✦ Getting Started

HorizLayout Header
1 /* horizlayout.h */
2 #ifndef HORIZLAYOUT_H
3 #define HORIZLAYOUT_H
4 
5 #include <qwidget.h>
6 #include <kcontainer.h>
7 #include <qpushbutton.h>
8 
9 class HorizLayout: public QWidget
10 {
11 public:
12     HorizLayout(QWidget *parent=0,const char *name=0);
13     ~HorizLayout();
14 private:
15     void add(KContainerLayout *layout,int count,
16             bool homogeneous,bool expand,bool fill);
17 };
18 
19 #endif

HorizLayout
1 /* horizlayout.cpp */
2 #include “horizlayout.h”
3 #include <qlabel.h>
4 
5 HorizLayout::HorizLayout(QWidget *parent,const char *name)
6     : QWidget(parent,name)
7 {
8     KContainerLayout *layout = new KContainerLayout(this,
9         NULL,
10         KContainerLayout::Vertical,
11         FALSE,
12         5,
13         0,
14         TRUE);
15 
16     int count = 1;
17     add(layout,count++,FALSE,TRUE,TRUE);
18     add(layout,count++,TRUE,TRUE,TRUE);
19     add(layout,count++,FALSE,FALSE,TRUE);
20     add(layout,count++,TRUE,FALSE,TRUE);
21     add(layout,count++,FALSE,TRUE,FALSE);
22     add(layout,count++,TRUE,TRUE,FALSE);
23     add(layout,count++,FALSE,FALSE,FALSE);
24     add(layout,count++,TRUE,FALSE,FALSE);
25 
26     layout->sizeToFit();
27 }

4682-1 ch03.f.qc  11/20/00  15:41  Page 56



57Chapter 3 ✦ Laying Out Widgets in a Window

28 void HorizLayout::add(KContainerLayout *outer,int count,
29         bool homogeneous,bool expand,bool fill)
30 {
31     QPushButton *button;
32 
33     QString str(tr(“%1. “).arg(count));
34     if(homogeneous)
35         str.append(“Homogeneous”);
36     else
37         str.append(“Non-homogeneous”);
38     if(expand)
39         str.append(“, expand”);
40     else
41         str.append(“, no-expand”);
42     if(fill)
43         str.append(“, fill”);
44     else
45         str.append(“, no-fill”);
46 
47     QLabel *label  = new QLabel(str,outer);
48     label->setMinimumSize(label->sizeHint());
49     outer->packStart(label);
50 
51     KContainerLayout *inner = new KContainerLayout(outer,
52         NULL,
53         KContainerLayout::Horizontal,
54         homogeneous,
55         5,
56         0,
57         TRUE);
58 
59     button = new QPushButton(inner);
60     button->setText(“ONE”);
61     button->setMinimumSize(button->sizeHint());
62     inner->packStart(button,expand,fill);
63 
64     button = new QPushButton(inner);
65     button->setText(“BUTTON TWO”);
66     button->setMinimumSize(button->sizeHint());
67     inner->packStart(button,expand,fill);
68 
69     button = new QPushButton(inner);
70     button->setText(“THREE”);
71     button->setMinimumSize(button->sizeHint());
72     inner->packStart(button,expand,fill);
73 
74     inner->sizeToFit();
75     outer->packStart(inner);
76 }
77 HorizLayout::~HorizLayout() { }

4682-1 ch03.f.qc  11/20/00  15:41  Page 57



58 Part I ✦ Getting Started

The vertically oriented KContainerLayout that acts as the container for the top-
level window is created on line 8. Each of the calls to add(), on lines 17 through 24,
adds a new label and a horizontal KContainerLayout widget to the top-level
KContainerLayout. To set positioning for the widgets within the horizontal con-
tainer, there are three basic mode toggles, so the add() method is called once for
each of the eight possible combinations. The first argument to add() is the address
of the container widget, the second is a number to be assigned to the displayed
data, and the other three arguments are the mode switch settings that will control
widget placement. The result is shown in Figure 3-15.

Figure 3-15: The eight KContainerLayout 
horizontal configuration settings

The method add(), starting on line 28, creates a descriptive label and a horizontal
KContainerLayout widget, and then adds them to the KContainerLayout widget
passed in as the first argument. The method begins by creating a QString that
describes the option settings. The string construction begins on line 33 with the 
conversion of the number into a string. Lines 34 through 45 test each of the three
Boolean settings and append text accordingly. The string is used to construct a
QLabel on line 47; and on line 49, the label is packed into the top of the KContainer
Layout of the main window.

The horizontal container is created on lines 51 through 57. Note that the
KContainerLayout that is going to contain it is named as the parent widget on line
51. It is not assigned a name, but is set to horizontal orientation on line 53. Whether
or not the sizing and placement is to be homogeneous is set on line 54 according to
the argument passed in to this method. Lines 59 through 72 create three buttons

4682-1 ch03.f.qc  11/20/00  15:41  Page 58



59Chapter 3 ✦ Laying Out Widgets in a Window

and add them to the horizontal KContainerLayout widget. The other two configu-
ration settings, expand and fill, are used on the calls to packStart(), which adds
the buttons to the container.

Each of the buttons is created with its container as its parent, but still must be
packed into the container to be displayed. For example, the first button is created
on line 59 using the inner KContainerLayout widget as its parent. This is neces-
sary because messages propagate up and down the widget hierarchy, and there
must be communications between the button and its container. Then, on line 67,
the button is packed into the start of the container, thus being assigned its specific
position within the container. With these two relationships, the container can read
size information from the button, calculate the exact size and position the button is
to fill, and write any necessary information back to the button.

The three settings — homogeneous, expand, and fill — all deal with the size and
position of the widgets in a container, and they all have slightly different meanings.
In Figure 3-15, you could see the effects of each. Table 3-1 briefly describes the
effects of each setting.

Table 3-1
The Widget Positional Options in a KContainerLayout

Option Description

homogeneous If TRUE, all the widgets in the container will be assigned the same 
amount of space. This assignment is made regardless of the actual size
of the widget. If FALSE, each widget will determine its own space
requirements, and the widgets could possibly be different sizes.
Whether TRUE or FALSE, expansion and contraction of the window
will expand and contract the widgets according to their allocated
space.

expand If TRUE, the widget should make use of the entire space allocated to it
by the container.

fill If expand is TRUE, setting fill to TRUE will instruct the widget to size
itself to fill the entire space allocated to it by the container.

Widgets Inside Widgets (Vertical)
This example is the same as the previous one, except for the orientation. This pro-
gram organizes button widgets in columns. The top-level widget is a horizontally
oriented KContainerLayout widget that has been filled with a collection of verti-
cally oriented KContainerLayout widgets.

4682-1 ch03.f.qc  11/20/00  15:41  Page 59



60 Part I ✦ Getting Started

Each column in this example is configured the same way as its corresponding row
in the previous example. As shown in Figure 3-16, each vertical KContainerLayout
is numbered. You can use these numbers to compare the appearance of the vertical
layout shown in Figure 3-16 to its horizontal counterpart, shown in Figure 3-15.

Figure 3-16: The eight KContainerLayout vertical configuration settings

Main
1 /* main.cpp */
2 #include <kapp.h>
3 #include “vertlayout.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”vertlayout”);
8     VertLayout *vertlayout = new VertLayout();
9     vertlayout->show();
10     app.setMainWidget(vertlayout);
11     return(app.exec());
12 }

VertLayout Header
1 /* vertlayout.h */
2 #ifndef VERTLAYOUT_H
3 #define VERTLAYOUT_H
4 
5 #include <qwidget.h>
6 #include <kcontainer.h>
7 #include <qpushbutton.h>
8 
9 class VertLayout: public QWidget
10 {
11 public:
12     VertLayout(QWidget *parent=0,const char *name=0);
13     ~VertLayout();
14 private:

4682-1 ch03.f.qc  11/20/00  15:41  Page 60



61Chapter 3 ✦ Laying Out Widgets in a Window

15     void add(KContainerLayout *layout,int count,
16             bool homogeneous,bool expand,bool fill);
17 };
18 
19 #endif

VertLayout
1 /* vertlayout.cpp */
2 #include “vertlayout.h”
3 #include <qlabel.h>
4 
5 VertLayout::VertLayout(QWidget *parent,const char *name)
6     : QWidget(parent,name)
7 {
8     KContainerLayout *layout = new KContainerLayout(this,
9         NULL,
10         KContainerLayout::Horizontal,
11         FALSE,
12         3,
13         0,
14         TRUE);
15 
16     int count = 1;
17     add(layout,count++,FALSE,TRUE,TRUE);
18     add(layout,count++,TRUE,TRUE,TRUE);
19     add(layout,count++,FALSE,FALSE,TRUE);
20     add(layout,count++,TRUE,FALSE,TRUE);
21     add(layout,count++,FALSE,TRUE,FALSE);
22     add(layout,count++,TRUE,TRUE,FALSE);
23     add(layout,count++,FALSE,FALSE,FALSE);
24     add(layout,count++,TRUE,FALSE,FALSE);
25 
26     layout->sizeToFit();
27 }
28 void VertLayout::add(KContainerLayout *outer,int count,
29         bool homogeneous,bool expand,bool fill)
30 {
31     QPushButton *button;
32 
33     KContainerLayout *inner = new KContainerLayout(outer,
34         NULL,
35         KContainerLayout::Vertical,
36         homogeneous,
37         5,
38         0,
39         TRUE);
40 
41     QString str(tr(“%1. “).arg(count));
42     QLabel *label  = new QLabel(str,outer);
43     label->setMinimumSize(label->sizeHint());

4682-1 ch03.f.qc  11/20/00  15:41  Page 61



62 Part I ✦ Getting Started

44     label->setMaximumSize(label->sizeHint());
45     outer->packStart(label,FALSE,FALSE);
46 
47     button = new QPushButton(inner);
48     button->setText(“Btn   1”);
49     button->setMinimumSize(button->sizeHint());
50     inner->packStart(button,expand,fill);
51 
52     button = new QPushButton(inner);
53     button->setText(“Btn\n2”);
54     button->setMinimumSize(button->sizeHint());
55     inner->packStart(button,expand,fill);
56 
57     button = new QPushButton(inner);
58     button->setText(“Btn   3”);
59     button->setMinimumSize(button->sizeHint());
60     inner->packStart(button,expand,fill);
61 
62     inner->sizeToFit();
63     outer->packStart(inner,TRUE);
64 }
65 VertLayout::~VertLayout() { }

The VertLayout class is very much like the HorizLayout class shown in the previ-
ous example. The only real difference is the orientation. In this example, the top-
level window is a horizontal KContainerLayout object filled with labels and vertical
KContainerLayout objects. The descriptive labels were reduced to numbers to
save space.

The KContainerLayout widget used as the top-level widget is created, with hori-
zontal orientation, on line 8. Lines 16 through 24 repeatedly call the add() method
to create the set of labeled vertical KContainerLayout widgets and add them to
the top-level KContainerLayout widget.

The add() method starting on line 28 creates a label and a vertically oriented
KContainerLayout widget and adds them (label first) to the KContainerLayout
widget passed in as the first argument. The second button, created on lines 52
through 55, contains a newline character in its text so the text will be displayed as
two lines — this makes the second button larger than the others to demonstrate
how the shifting and sizing works with non-uniform widgets.

4682-1 ch03.f.qc  11/20/00  15:41  Page 62



63Chapter 3 ✦ Laying Out Widgets in a Window

Summary
There is a variety of ways in which widgets can be configured for size and position.
Some of these will automatically resize widgets, while some will not. Similarly, some
techniques allow you to overlap widgets, while others do not. You should be famil-
iar with all the options so you can apply the one that fits best with your application.

✦ Specific x and y coordinates, along with height and width, can be used to
hard-code the position and size of a widget.

✦ An imaginary grid can be installed as the main window, and widgets can be
hung on it like pictures on a wall.

✦ A widget can be instructed to change its size and shape to fit its place in a
window. These changes are limited by the maximum and minimum size set-
tings of the widget.

✦ Horizontal and vertical boxes display linear rows and columns of widgets.
Spacing and positioning controls can be specified between each pair of 
widgets.

✦ Horizontal and vertical layouts display linear rows and columns of widgets.
Moreover, because a layout is itself a widget, it can be contained in another
layout, box, or grid; or even placed by specific x and y coordinates.

This chapter covered the creation of top-level windows. The next chapter describes
the construction of pop-up windows. Every tool and technique that positions widgets
for top-level windows can also be used for positioning widgets in a pop-up window.
The basic difference is that a dialog (also called a popup) is a temporary window
used to display information to the user, and to return some kind of response.

✦ ✦ ✦

4682-1 ch03.f.qc  11/20/00  15:41  Page 63



4682-1 ch03.f.qc  11/20/00  15:41  Page 64



Displaying a
Pop-Up Dialog

Adialog is a window, usually temporary, that displays
some specific piece of information to the user, requests

some specific information from the user, or both. Many
dialogs are very simple and only require a yes or no answer,
but it is not uncommon for a dialog to be quite complicated
and contain several pages of widgets that display and accept
information.

A dialog is parented to a window in your application, but it
always appears on the display as a standalone window. It
looks very much the same as a top-level window except that
some of the window controls and menus are missing.

There are a number of ways your program can create a dialog
because there are a number of extendable dialog base classes.
Furthermore, the base classes themselves can be used to cre-
ate relatively simple dialogs. This chapter describes and con-
tains examples of the various ways to create a dialog from the
base classes, each of which has its own set of advantages.

A Simple Dialog
The QDialog widget is a base class that you can use to create
dialogs, but it can also be used directly to handle the layout of
simple widgets. QDialog is a simple widget that doesn’t dis-
play anything other than its blank window, but it can be used
as a container for your widgets and it has the capability to dis-
play itself in a standalone window. There are also some built-
in facilities to respond to buttons that you may decide to add
to the window.

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating and
displaying a simple
dialog

Implementing a slot
to receive a signal
from a dialog

Creating a signal 
in a dialog for
transmitting to slots

Extending
KDialogBase to
create customized
dialogs

Popping up
convenience dialogs
defined in
KMessageBox

✦ ✦ ✦ ✦

4682-1 ch04.f.qc  11/13/00  14:10  Page 65



66 Part I ✦ Getting Started

The following example demonstrates the basics of creating and displaying a dialog.
It shows how a QDialog object is capable of being displayed as a dialog. Figure 4-1
shows the top-level window on the left. It contains a single button that is used to
pop up the dialog shown on the right. The dialog has a button that can be used to
close the dialog.

Figure 4-1: A top-level window and the 
dialog it pops up

Main
1 /* simple.cpp */
2 #include <kapp.h>
3 #include “toplevel.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”simple”);
8     TopLevel toplevel;
9     toplevel.show();
10     app.setMainWidget(&toplevel);
11     return(app.exec());
12 }

The mainline of the program creates a KApplication object and then creates and
installs a TopLevel widget as its top-level window. 

TopLevel Header
1 /* toplevel.h */
2 #ifndef TOPLEVEL_H
3 #define TOPLEVEL_H
4 
5 #include <qwidget.h>
6 
7 class TopLevel: public QWidget
8 {
9     Q_OBJECT
10 public:
11     TopLevel(QWidget *parent=0,const char *name=0);
12 private slots:
13     void popupDialog();
14 };
15 
16 #endif

4682-1 ch04.f.qc  11/13/00  14:10  Page 66



67Chapter 4 ✦ Displaying a Pop-Up Dialog

The TopLevel window is a widget, because it inherits from QWidget, and it is
designed for use as the top-level window of the program. The class definition only
contains a constructor and the minimum amount of information required in order
for there to be a response to a button. The Q_OBJECT macro on line 12 must be pre-
sent in order for there to be a slot, as declared on lines 12 and 13. The slot method
popupDialog() will be called whenever the button is clicked.

The concept of signals and slots was introduced in Chapter 2, and is covered in
detail later in this chapter. 

TopLevel
1 /* toplevel.cpp */
2 #include “toplevel.h”
3 #include <qdialog.h>
4 #include <qpushbutton.h>
5 
6 TopLevel::TopLevel(QWidget *parent,const char *name)
7         : QWidget(parent,name)
8 {
9     setMinimumSize(200,80);
10     setMaximumSize(200,80);
11 
12     QPushButton *button = new QPushButton(“Pop Up”,this);
13     button->setGeometry(50,20,100,40);
14     connect(button,SIGNAL(clicked()),
15             this,SLOT(popupDialog()));
16 }
17 void TopLevel::popupDialog()
18 {
19     QDialog *dialog = new QDialog(0,”popup”,FALSE);
20     dialog->setCaption(“A QDialog Window”);
21     dialog->setMinimumSize(200,80);
22     dialog->setMaximumSize(200,80);
23 
24     QPushButton *button =
25             new QPushButton(“Pop Down”,dialog);
26     button->setGeometry(50,20,100,40);
27     connect(button,SIGNAL(clicked()),
28             dialog,SLOT(accept()));
29 
30     dialog->show();
31 }

This code contains the definition of the TopLevel widget, including the method
that creates and displays the dialog.

The TopLevel widget is the main window of the program. In its constructor, on
lines 9 and 10, the size of the window is set so it cannot be changed — the maximum

Note

4682-1 ch04.f.qc  11/13/00  14:10  Page 67



68 Part I ✦ Getting Started

and minimum size limits are set to the same values. On line 12, a button is created.
The geometry settings on line 13 specify the height and width of the button, and 
the position of its upper-left corner. The call to connect() on line 14 requests that
signals originating from the clicked() signal in the button be passed to the popup
Dialog() slot in the TopLevel widget.

The method popupDialog() on line 17 will be called every time the user clicks on
the button in the TopLevel window. Lines 19 through 22 instantiate a QDialog wid-
get and specify its size and caption. The button it is to hold is created and sized on
lines 24 through 26. The call to connect() on line 27 requests that signals originat-
ing from clicked() in this button be passed to the accept() method inside the
QDialog widget. Because the QDialog widget is capable of appearing in its own
window, the call to show() on line 30 causes it to appear.

The QDialog widget is flexible enough that you could use it almost exclusively to
create all of your dialogs. You can close the dialog with the slot method accept(),
as in this example, and you can also call reject() to close it. The only difference
between the two methods is that one of them sets the result to TRUE and the other
sets it to FALSE. These settings correspond to the Cancel and OK buttons that com-
monly appear on dialogs.

When the dialog is closed with a call to either accept() or reject(), the dialog is
not destroyed. Its window is closed by a call to the hide() method. This has the
advantage that your program can read the setting, but you will have to get rid of the
dialog yourself. If, however, you are going to be using the same dialog over and over,
you can create it once and then hide() and show() it as you desire.

This simple example has two problems. First, you can pop up as many of the dialogs
you want. Every time you click the Pop Up button, a new dialog is spawned and left
to run on its own. Second, when you close the dialog with the Pop Down button, it is
not deleted. It is closed with the call to accept(), but it still exists and the program
has no pointer to it.

There is a KDialog widget that is nearly identical to the QDialog widget, except
that it adds some methods to set the window caption and alter the sizes and mar-
gins. Anywhere you can use a QDialog you can use a KDialog. 

Using Signals and Slots
This example uses QDialog as a base class to construct a dialog that accepts a
string of characters; and, if the OK or Apply button is selected, a string is sent to
the program’s main window, which installs it as the new caption for the title bar.
The window on the left in Figure 4-2 shows the main window and its single button.
On the right is the dialog that is popped up to accept a new caption string.

Note

4682-1 ch04.f.qc  11/13/00  14:10  Page 68



69Chapter 4 ✦ Displaying a Pop-Up Dialog

Figure 4-2: A button and the dialog it pops up

Mainline
1 /* responder.cpp */
2 #include <kapp.h>
3 #include “mainwidget.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”responder”);
8     MainWidget mainwidget;
9     mainwidget.show();
10     app.setMainWidget(&mainwidget);
11     return(app.exec());
12 }

The mainline of the program is quite simple. On lines 8 and 9 a MainWidget object
is created, and line 10 installs it as the main window.

MainWidget Header
1 /* mainwidget.h */
2 #ifndef MAINWIDGET_H
3 #define MAINWIDGET_H
4 
5 #include <qwidget.h>
6 #include <qstring.h>
7 
8 class MainWidget: public QWidget
9 {
10     Q_OBJECT
11 public:
12     MainWidget(QWidget *parent=0,const char *name=0);
13 private slots:
14     void popupEnterName();
15     void changeCaption(QString &);
16 };
17 
18 #endif

This is the header file of the widget that is to act as the main window for this exam-
ple. Other than the constructor, defined on line 12, this class only contains a pair of
slots. The slot named popupEnterName() causes the dialog to pop up, and the slot

4682-1 ch04.f.qc  11/13/00  14:10  Page 69



70 Part I ✦ Getting Started

named changeCaption() will change the text of the caption of this widget (which
is the caption of the main window).

Because there are slots in this class, it is necessary to use the Q_OBJECT macro as
the first member of the class. The definitions in Q_OBJECT allow this header file to
compile normally as standard C++ code, and it inserts some special information
used by the Meta Object Compiler (MOC) to generate the code necessary to handle
slots and signals.

MainWidget
1 /* mainwidget.cpp */
2 #include “mainwidget.h”
3 #include “entername.h”
4 #include <qpushbutton.h>
5 
6 MainWidget::MainWidget(QWidget *parent,const char *name)
7         : QWidget(parent,name)
8 {
9     setMinimumSize(200,80);
10     setMaximumSize(200,80);
11 
12     QPushButton *button =
13             new QPushButton(“Update Name”,this);
14     button->setGeometry(50,20,100,40);
15     connect(button,SIGNAL(clicked()),
16             this,SLOT(popupEnterName()));
17 }
18 void MainWidget::popupEnterName()
19 {
20     EnterName *dialog = new EnterName(0,”entername”);
21     connect(dialog,SIGNAL(captionString(QString &)),
22             this,SLOT(changeCaption(QString &)));
23     dialog->exec();
24     delete dialog;
25 }
26 void MainWidget::changeCaption(QString &caption)
27 {
28     setCaption(caption);
29 }

This class is used as the main window of the application. It appears in Figure 4-2,
shown at the beginning of this section, as the window on the left.

This class is a widget because it inherits from QWidget on line 7. Lines 9 and 10 set
the maximum and minimum sizes to the same values, making this a fixed-size widget.

The QPushButton is created on lines 12 and 13, and it is positioned at the center of
the window on line 14. The button has a signal named clicked() that is emitted

4682-1 ch04.f.qc  11/13/00  14:10  Page 70



71Chapter 4 ✦ Displaying a Pop-Up Dialog

whenever the button is clicked by the mouse. The call to connect() on line 15
specifies that whenever the clicked() signal is emitted, the local slot method
popupEnterName() will be called.

Using a method as a slot does not prevent it from being called directly. In this
example, the method popupEnterName() is being called by a signal, but it could
just as easily be called from inside another method of this class, or even from
some other class. A slot is a normal method with the added feature that it can be
used to catch signals.

The method popupEnterName() on line 18 creates an EnterName dialog to prompt
the user for a new caption. The call to connect() on line 21 establishes a connec-
tion so that the captionString() signal in the dialog will make a call to the
changeCaption() local slot.

The call to exec() on line 23 pops up the dialog and in such a way that the dialog
has exclusive access to the input queue. This method does not return until after 
the user has responded by selecting either the OK or Cancel button. Until the user
responds, no other window owned by this application will receive mouse or key-
board signals. On line 23, after the selection has been made, the dialog is deleted.

The slot method on line 26 is called only when the user selects the OK button on
the dialog, so the new caption string is set for the main window.

EnterName Header
1 /* entername.h */
2 #ifndef ENTERNAME_H
3 #define ENTERNAME_H
4 
5 #include <qdialog.h>
6 #include <qlineedit.h>
7 #include <qpushbutton.h>
8 
9 class EnterName: public QDialog
10 {
11     Q_OBJECT
12 private:
13     QLineEdit *lineedit;
14     QPushButton *okButton;
15     QPushButton *applyButton;
16     QPushButton *cancelButton;
17 public:
18     EnterName(QWidget *parent=0,const char *name=0);
19 private slots:
20     void okButtonSlot();
21     void applyButtonSlot();
22     void cancelButtonSlot();

Note

4682-1 ch04.f.qc  11/13/00  14:10  Page 71



72 Part I ✦ Getting Started

23 signals:
24     void captionString(QString &);
25 };
26 
27 #endif

This header file defines the class of the pop-up dialog used to prompt for a new cap-
tion string. It has slots to receive button clicks, and a signal that is sent with the
new caption text.

This class is the definition of a dialog because, on line 9, it uses QDialog as a super
class. Any class that contains either a slot or a signal must include the Q_OBJECT
macro as its first member. Lines 13 through 16 declare storage space for the four
widgets to be used to construct the members of the dialog.

Lines 19 through 22 specify the names of the slots. The okButtonSlot(),
applyButtonSlot(), and cancelButtonSlot() methods are local slots to receive
button clicks. The signal captionString() on line 24 is the signal that will be emit-
ted whenever the user issues a new caption string.

EnterName
1 /* entername.cpp */
2 #include “entername.h”
3 #include <qdialog.h>
4 #include <qlayout.h>
5 
6 EnterName::EnterName(QWidget *parent,const char *name)
7         : QDialog(parent,name,TRUE)
8 {
9     QString caption(“Enter Name”);
10     setCaption(caption);
11 
12     QVBoxLayout *vLayout = new QVBoxLayout(this,10);
13 
14     lineedit = new QLineEdit(this);
15     vLayout->addWidget(lineedit);
16 
17     QHBoxLayout *hLayout = new QHBoxLayout(vLayout,10);
18 
19     okButton = new QPushButton(“OK”,this);
20     connect(okButton,SIGNAL(clicked()),
21             this,SLOT(okButtonSlot()));
22     hLayout->addWidget(okButton);
23 
24     applyButton = new QPushButton(“Apply”,this);
25     connect(applyButton,SIGNAL(clicked()),
26             this,SLOT(applyButtonSlot()));
27     hLayout->addWidget(applyButton);

4682-1 ch04.f.qc  11/13/00  14:10  Page 72



73Chapter 4 ✦ Displaying a Pop-Up Dialog

28 
29     cancelButton = new QPushButton(“Cancel”,this);
30     connect(cancelButton,SIGNAL(clicked()),
31             this,SLOT(cancelButtonSlot()));
32     hLayout->addWidget(cancelButton);
33 }
34 void EnterName::okButtonSlot()
35 {
36     QString str = lineedit->text();
37     emit captionString(str);
38     accept();
39 }
40 void EnterName::applyButtonSlot()
41 {
42     QString str = lineedit->text();
43     emit captionString(str);
44 }
45 void EnterName::cancelButtonSlot()
46 {
47     reject();
48 }

This class is a dialog that enables the user to enter text and, by selecting an appro-
priate button, have that text installed as the caption of the main window:

The arguments to the EnterName constructor on line 6 are passed on to the QDialog
super class on line 7. The third argument to QDialog is TRUE, specifying that this is to
be a modal dialog.

The vertical box created on line 12 is used as the main container for the window.
The QLineEdit object created on line 14 is inserted into the top of the vertical box.
A horizontal box is created as a child of the vertical box, which causes the horizon-
tal box to become the next member of the vertical box (just below the QLineEdit
widget). Inserting the three buttons into the horizontal box (on lines 22, 27, and 32)
completes the layout previously shown on the right in Figure 4-2.

The calls to the connect() methods on lines 20, 25, and 30 associate the
clicked() signals of the buttons to their respective slots.

The slot method okButtonSlot() on line 34 is called whenever the OK button is
clicked. The call to the text() method of the QLineEdit object retrieves the string
that was entered by the user. Line 37 emits the signal named captionString().
The signal is emitted with nearly the same syntax you would use to call a method,
but with the keyword emit in front to signify that it is not a method call — it is a sig-
nal being sent. The slot method concludes by calling accept() on line 38. This call
sets an internal flag to TRUE, indicating that there was a positive response from the
user, and then calls hide() to make the widget invisible.

4682-1 ch04.f.qc  11/13/00  14:10  Page 73



74 Part I ✦ Getting Started

Whenever the Apply button is clicked, the applyButtonSlot() method on line 40
is called. Just as is done with the OK button slot, the string is retrieved and emitted
to using the signal method captionString(). The accept() method is not called
because the dialog is to remain visible.

Whenever the Cancel button is clicked, the cancelButtonSlot() method on line
45 is called. The user has cancelled the action of changing the caption name, so no
signal is sent. A call is made to reject() to set the internal flag to FALSE and to
close the dialog’s window.

Makefile
1 INCL= -I$(QTDIR)/include -I$(KDEDIR)/include
2 CFLAGS= -O2 -fno-strength-reduce
3 LFLAGS= -L$(QTDIR)/lib -L$(KDEDIR)/lib -L/usr/X11R6/lib
4 LIBS= -lkdecore -lkdeui -lqt -lX11 -lXext -ldl
5 CC=g++
6 
7 recaption: recaption.o mainwidget.o moc_mainwidget.o \
8         entername.o moc_entername.o
9     $(CC) $(LFLAGS) -o recaption recaption.o \
10         mainwidget.o moc_mainwidget.o \
11         entername.o moc_entername.o $(LIBS)
12 
13 recaption.o: recaption.cpp mainwidget.h
14 mainwidget.o: mainwidget.cpp mainwidget.h
15 moc_mainwidget.cpp: mainwidget.h
16     $(QTDIR)/bin/moc mainwidget.h -o moc_mainwidget.cpp
17 entername.o: entername.cpp entername.h
18 moc_entername.cpp: entername.h
19     $(QTDIR)/bin/moc entername.h -o moc_entername.cpp
20 
21 clean:
22     rm -f recaption
23     rm -f *.o
24     rm -f moc_*
25 
26 .SUFFIXES: .cpp
27 
28 .cpp.o:
29     $(CC) -c $(CFLAGS) $(INCL) -o $@ $<

As this code illustrates, special entries need to be included in the makefile when
either slots or signals are included in the source. The code is not only compiled
directly, it is also translated by the MOC compiler into a separate source file that
needs to be compiled.

Line 7 has the list of dependencies for linking recaption. Not only are there the .o
files with names matching those of the .cpp files, there are some other .o files that

4682-1 ch04.f.qc  11/13/00  14:10  Page 74



75Chapter 4 ✦ Displaying a Pop-Up Dialog

begin with the four characters moc_. Any class that includes Q_OBJECT as its first
member — any class that has slots and/or signals — must have its header file pro-
cessed by the MOC compiler. The dependency on line 15 specifies that the source
file moc_mainwidget.cpp is dependent on the source file mainwidget.h. The com-
mand on line 16 uses mainwidget.h as input to create moc_mainwidget.cpp. Then
moc_mainwidget.cpp is compiled into moc_mainwidget.o and included in the link
on line 9.

A Signals and Slots Checklist
The creation of signals and slots is really quite simple. Most of the work is auto-
mated in the form of macros and the MOC compiler. The process of emitting a sig-
nal is completely separate from that of the slots that receive the signals. An object
can issue any number of signals without knowing how many, if any, slots are receiv-
ing them. The following steps include everything that needs to be done in order to
create a signal and send it to the slots:

1. Add the Q_OBJECT macro as the first line of the class definition. While the
other items in the class require a semicolon terminator, the Q_OBJECT macro
does not, but you can include one if you prefer (because the compiler simply
throws semicolons away). For example, the definition of a class named
Receiver would start this way:

class Sender {
Q_OBJECT
. . .

Any number of slots and signals can be defined in an object, but the Q_OBJECT
macro only needs to appear once.

2. Add the prototype of the signal to the class definition. For example, if the 
signal is to send a string object as an argument, the prototype would look 
like this:

. . .
signals:

void newName(QString &name);
. . .

There is no public or private specification because there will not be an actual
method — this is only a definition of the prototype that will be used to call the
receiving slot.

3. Use an emit statement to call all of the slot methods listening for a signal. This
is done with the same syntax you would use for calling a local method, except
the call follows an emit keyword:

QString name;
emit newName(name);

4682-1 ch04.f.qc  11/13/00  14:10  Page 75



76 Part I ✦ Getting Started

Note that there is no actual definition of the body of the signal method. The
emit command does not look for a local method; instead, it calls every slot
method in the list of those that have been connected to this signal.

The following steps are necessary to create a slot and connect it to a signal:

1. The same as for a signal, a slot requires that the Q_OBJECT macro appear at
the top of the class definition:

class Receiver {
Q_OBJECT
. . .

2. Add the prototypes of the slot methods to the class definitions. The prototype
must be the same (that is, have the same set of arguments) as the signal it is
to receive. Because slots are methods, and can be called directly as well as
being used as a slot, the slot method can be made publicly available:

. . .
public slots:

void nameChange(QString &name);
. . .

The more usual case of the slot being used only for the purpose of receiving
signals allows you to declare it as private:

. . .
private slots:

void nameChange(QString &name);
. . .

3. Include the header file that defines the class that will be emitting the signal.

4. Write the code that will create an instance of the class that is to emit the sig-
nal. It must exist in order for you to attach the slot to the signal.

5. Connect the slot to the signal. This is often done in the constructor, but it can
be done later if the object is to be constructed later. A call to the connect()
method will add your slot to the list of methods that will be called whenever a
specific signal is emitted. A call to connect() looks like this:

connect(sender,SIGNAL(newName(QString &),
this,SLOT(nameChange(QString &)));

The first two arguments specify the source of the signal, and the second two
specify the destination slot. The macros SIGNAL() and SLOT() both require a
complete method prototype, and the prototypes must be such that the set of
arguments used to call one of the methods is the same as can be used for the
other.

Whenever an emit statement is used to send a signal, it is exactly as if your pro-
gram called each one of the slot methods directly. That is, your program cannot

4682-1 ch04.f.qc  11/13/00  14:10  Page 76



77Chapter 4 ✦ Displaying a Pop-Up Dialog

continue until the slot method returns. Therefore, you should normally keep the
processing inside the slot method as simple as possible so that it will not cause the
signal emitter to pause. The emitter of the signal could be a user-interface process
and result in the appearance of slow or sluggish operation.

You must be very careful not to create a circular situation. If a slot method emits a
signal that, directly or indirectly, executes a method that emits a signal received by
the original slot, the signals will continuously call the slots and your program will
crash. For example, if the method named first() emits signal A, signal A is received
by slot second(), the slot second() emits signal B, and the slot named first()
receives signal B, a circular situation exists and the loop will continue until the pro-
gram crashes (or the user gets tired of waiting).

You also need to be aware that if your slot and signal methods on a connect state-
ment don’t have matching arguments, you will not get an error message until an
attempt is made to resolve the references when the program is running. To avoid
this, make certain that you test every addition or change that you make to the slots
and signals. The only error message is a string written to the console (standard
out) when the connect() method fails to find a pairing — after that, the program
silently ignores the signals. And you can only see the console output when running
the application from the command line.

KDialogBase
The widget KDialogBase is sort of a dialog kit. Most dialogs take the same basic
form: a collection of data-entry widgets with a row of buttons across the bottom.
With that in mind, the KDialogBase widget was designed with a built-in row of 
buttons. The following example program displays the default configuration of a
KDialogBase, as shown in Figure 4-3.

Figure 4-3: The default buttons 
of a KDialogBase window

Mainline
1 /* kdbsimple.cpp */
2 #include <kapp.h>
3 #include “mainwidget.h”

4682-1 ch04.f.qc  11/13/00  14:10  Page 77



78 Part I ✦ Getting Started

4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”kdbsimple”);
8     MainWidget mainwidget;
9     mainwidget.show();
10     app.setMainWidget(&mainwidget);
11     return(app.exec());
12 }

The mainwidget created on line 8 is assigned the task of being the main window for
the application on line 10.

MainWidget Header
1 /* mainwidget.h */
2 #ifndef MAINWIDGET_H
3 #define MAINWIDGET_H
4 
5 #include <qwidget.h>
6 
7 class MainWidget: public QWidget
8 {
9     Q_OBJECT
10 public:
11     MainWidget(QWidget *parent=0,const char *name=0);
12 private slots:
13     void  popupKdb();
14 };
15 
16 #endif

The main window only has two methods. One is the constructor and the other is
the slot that will be connected to the pushbutton. The purpose of popupKdb() is to
display the KDialogBase window.

MainWidget
1 /* mainwidget.cpp */
2 #include “mainwidget.h”
3 #include <qpushbutton.h>
4 #include <kdialogbase.h>
5 
6 MainWidget::MainWidget(QWidget *parent,const char *name)
7         : QWidget(parent,name)
8 {
9     setMinimumSize(200,80);
10     setMaximumSize(200,80);
11 
12     QPushButton *button =

4682-1 ch04.f.qc  11/13/00  14:10  Page 78



79Chapter 4 ✦ Displaying a Pop-Up Dialog

13             new QPushButton(“Popup”,this);
14     button->setGeometry(50,20,100,40);
15     connect(button,SIGNAL(clicked()),
16             this,SLOT(popupKdb()));
17 }
18 
19 void MainWidget::popupKdb()
20 {
21     KDialogBase *dialog = new KDialogBase(this,
22             “kdbwidget”,TRUE);
23     dialog->exec();
24     delete dialog;
25 }

This widget is used as the main window of the example. It contains only a “Popup”
button and the slot that will execute whenever the button is clicked. 

Whenever the button is clicked, the KDialogBase widget is constructed (on line
21). A call to exec() on line 23 causes the dialog to appear as shown previously 
in Figure 4-3. When the window first appears, the OK button is selected, so simply
pressing the Return or Enter key is the same as clicking OK. Also, as you can see
from the figure, each of the buttons has a designated accelerator character — for
example, typing Alt-C is the same as selecting the Cancel button.

Unless you connect a slot to the Apply button, it does nothing. The Cancel and OK
buttons both close the dialog. To use the buttons as intended, it is simply a matter
of connecting the OK and Apply buttons to the slot that will accept and process the
data from the dialog.

KDialogBase Buttons
The previous example showed that the three default buttons are OK, Apply, and
Cancel. There are, however, some other buttons included, and you can add up to
three buttons of your own. The following example will display the window shown 
in Figure 4-4, showing all eight buttons.

Figure 4-4: The button order of the KDialogBase class 

4682-1 ch04.f.qc  11/13/00  14:10  Page 79



80 Part I ✦ Getting Started

The header file and the mainline of the program are identical to those in the previ-
ous example. The only difference between the programs is the set of arguments
passed to the constructor of KDialogBase.

MainWidget
1 /* mainwidget.cpp */
2 #include “mainwidget.h”
3 #include <qpushbutton.h>
4 #include <kdialogbase.h>
5 
6 MainWidget::MainWidget(QWidget *parent,const char *name)
7         : QWidget(parent,name)
8 {
9     setMinimumSize(200,80);
10     setMaximumSize(200,80);
11 
12     QPushButton *button =
13             new QPushButton(“Popup”,this);
14     button->setGeometry(50,20,100,40);
15     connect(button,SIGNAL(clicked()),
16             this,SLOT(popupKdb()));
17 }
18 
19 void MainWidget::popupKdb()
20 {
21     QString caption(“All Buttons”);
22     QString button1(“User1”);
23     QString button2(“User2”);
24     QString button3(“User3”);
25 
26     int buttons = KDialogBase::Ok
27             | KDialogBase::Apply
28             | KDialogBase::Cancel
29             | KDialogBase::Help
30             | KDialogBase::Default
31             | KDialogBase::User1
32             | KDialogBase::User2
33             | KDialogBase::User3;
34 
35     KDialogBase *dialog = new KDialogBase(
36         this,    // parent
37         “kdbwidget”, // name
38         TRUE, // modal
39         caption, // caption
40         buttons, // buttonmask
41         KDialogBase::Cancel, // default button
42         FALSE,   // separator
43         button1, // button caption
44         button2, // button caption

4682-1 ch04.f.qc  11/13/00  14:10  Page 80



81Chapter 4 ✦ Displaying a Pop-Up Dialog

45         button3); // button caption
46     dialog->exec();
47     delete dialog;
48 }

This widget is used as the main window of the application. It contains a button that,
when clicked, displays the KDialogBase window.

The slot method popupKdb() is executed whenever the main window button (the
one created on line 12) is clicked. The KDialogBase widget is created by the con-
structor on line 35. As is indicated by the previous example, all of the arguments
have default values defined for them, but this example specifies a value for each 
of them. The named values are described in Table 4-1.

Table 4-1
Parameters Accepted by the Constructor of KDialogBase

Parameter Description

parent The parent widget. This is normally the widget that causes the
KDialogBase to pop up. The default is NULL.

name The internal name of the widget. Used for internal purposes and for
generating error messages. The default is NULL.

modal If set to TRUE, this widget displays as modal. If set to FALSE,
nonmodal. The default is TRUE.

caption The text of the caption in the title bar at the top of the window. The
default is the name of the application.

button mask A set of one-bit flags specifying which buttons are to be activated for
this dialog. The default is the three-button set Ok, Apply, and Cancel.

default button The button that is to be selected (and thus responsive to the Return or
Enter key) when the dialog first appears. The default is the Ok button.

separator If TRUE, there is a separator line drawn above the buttons. If FALSE,
there is no separator line. The default is FALSE.

button caption This is the text that will appear on the face of the user-defined button.
The default is NULL, which causes the user button to be blank.

The order of the buttons, as shown previously in Figure 4-4, is determined internally
by the KDialogBase widget. You can determine which buttons are to be included,
but the order of their appearance will always be in the order shown.

4682-1 ch04.f.qc  11/13/00  14:10  Page 81



82 Part I ✦ Getting Started

Table 4-2 lists all the buttons that are available in the KDialogBase widget. Receiving
the information from any of these buttons is simply a matter of connecting your slot
method to the appropriate KDialogBase signal method. The buttons that cause the
dialog to close also set a status code indicating the result. To retrieve the result code,
insert a line between lines 46 and 47 of the preceding example, as shown here:

dialog->exec();
int resultCode = dialog->result();
delete dialog;

Table 4-2
Buttons and Signals of KDialogBase

Button Signal Notes

Apply applyClicked() If both the Apply button and the Try button are
specified, the Try button will not appear.

Cancel closeClicked() This button can be used in place of the Close button.

Close closeClicked() If both Close and Cancel are specified, only Close will
appear. The result code is set to FALSE and the
dialog is closed.

Default defaultClicked()

Help helpClicked() This button also calls the method invokeHTML
Help() to display the help text defined by the call 
to setHelp().

No noClicked() This button appears in place of the User1 button
when the dialog is in message-box mode. The result
code is set to FALSE and the dialog is closed.

OK okClicked() The result code is set to TRUE and the dialog is
closed.

Try tryClicked() This button can be used in place of the Apply button.

User1 user1Clicked() An argument on the constructor specifies the label.
This button is replaced by the No button in message-
box mode.

User2 user2Clicked() An argument on the constructor specifies the label.
This button is replaced by the Yes button in message-
box mode.

User3 user3Clicked()

Yes None This button appears in the place of the User2 button
when the dialog is in message-box mode. The result
code is set to TRUE and the dialog is closed.

4682-1 ch04.f.qc  11/13/00  14:10  Page 82



83Chapter 4 ✦ Displaying a Pop-Up Dialog

Using KDialogBase to Build a Dialog
The following example program uses KDialogBase as the base class of a dialog
that enables the user to specify a line of text and two integer values. In this exam-
ple, the information entered into the dialog is used to change the text displayed by
a label and to resize the main window. Figure 4-5 shows the main window (on the
left) after it has been reconfigured by the values shown in the dialog (on the right).

Figure 4-5: The main window is modified from a dialog.

Mainline
1 /* kdbdata.cpp */
2 #include <kapp.h>
3 #include <kcmdlineargs.h>
4 #include “mainwidget.h”
5 
6 int main(int argc,char **argv)
7 {
8     KCmdLineArgs::init(argc,argv,”kdbdata”,
9         “KDialogBase demo”,”0.0”);
10     KApplication app;
11     MainWidget mainwidget;
12     mainwidget.show();
13     app.setMainWidget(&mainwidget);
14     return(app.exec());
15 }

The mainline of the program creates a MainWidget on line 11 and sets it as the
main window of the application on line 13.

The KApplication object is created on line 10 without arguments. This can be
done because the static init() method of the KCmdLineArgs class is called on 
line 8. The KCmdLineArgs class stores command-line arguments, along with other
information, and makes it available to other parts of your application. 

4682-1 ch04.f.qc  11/13/00  14:10  Page 83



84 Part I ✦ Getting Started

Chapter 15 provides more detail about the capabilities of KCmdLineArgs.

MainWidget Header
1 /* mainwidget.h */
2 #ifndef MAINWIDGET_H
3 #define MAINWIDGET_H
4 
5 #include <qwidget.h>
6 #include <qpushbutton.h>
7 #include <qlabel.h>
8 
9 class MainWidget: public QWidget
10 {
11     Q_OBJECT
12 public:
13     MainWidget(QWidget *parent=0,const char *name=0);
14 private:
15     QLabel *label;
16     QPushButton *button;
17 private slots:
18     void popupKdb();
19     void slotSettings(QString &,int,int);
20 };
21 
22 #endif

This widget is the main window of the program. It contains only one button and 
one label. The slot named popupKdb() is used to pop up the dialog. The slot
slotSettings() receives the values returned by the dialog.

MainWidget
1 /* mainwidget.cpp */
2 #include “mainwidget.h”
3 #include “modify.h”
4 #include <qpushbutton.h>
5 #include <kdialogbase.h>
6 
7 MainWidget::MainWidget(QWidget *parent,const char *name)
8         : QWidget(parent,name)
9 {
10     setMinimumSize(200,140);
11 
12     QString str(“Modify Me”);
13     label = new QLabel(str,this);
14     label->setAlignment(Qt::AlignCenter);
15     label->setGeometry(50,20,100,40);
16 

Cross-
Reference

4682-1 ch04.f.qc  11/13/00  14:10  Page 84



85Chapter 4 ✦ Displaying a Pop-Up Dialog

17     button = new QPushButton(“Modify”,this);
18     button->setGeometry(50,80,100,40);
19     connect(button,SIGNAL(clicked()),
20             this,SLOT(popupKdb()));
21     resize(10,10);
22 }
23 void MainWidget::popupKdb()
24 {
25     Modify *modify = new Modify(this,”modify”);
26     connect(
27         modify,SIGNAL(signalSettings(QString &,int,int)),
28         this,SLOT(slotSettings(QString &,int,int)));
29     modify->exec();
30     delete modify;
31 }
32 void MainWidget::slotSettings(QString &str,
33         int height,int width)
34 {
35     resize(width,height);
36     label->setText(str);
37 }

This widget is used as the main window of the program. It contains only a label and
a button. The button is used to pop up a dialog.

Lines 18 through 20 create a button, place it in the window, and attach its
clicked() signal to the local slot popupKbd(). The popupKbd() slot, beginning on
line 23, creates a Modify dialog and connects its signal, named signalSettings(),
to the local slot named slotSettings(). A call is made to exec(), which displays
the dialog and waits until it is closed.

The slot name slotSettings() beginning on line 32 accepts three values as argu-
ments, and uses these values to specify the size of the main window, and the text
that is to be displayed in the label of the main window. The call to resize() on line
35 cannot reduce the size below that specified as the minimum on line 10, but it can
adjust either dimension to a larger size.

Modify Header
1 /* modify.h */
2 #ifndef MODIFY_H
3 #define MODIFY_H
4 
5 #include <kdialogbase.h>
6 #include <qlineedit.h>
7 #include <qpushbutton.h>
8 
9 class Modify: public KDialogBase
10 {

4682-1 ch04.f.qc  11/13/00  14:10  Page 85



86 Part I ✦ Getting Started

11     Q_OBJECT
12 public:
13     Modify(QWidget *parent=0,const char *name=0);
14 private:
15     QLineEdit *lineedit;
16     QLineEdit *width;
17     QLineEdit *height;
18 private slots:
19     void slotSendValues();
20 signals:
21     void signalSettings(QString &,int,int);
22 };
23 
24 #endif

This is the header file for the dialog. It inherits directly from the KDialogBase
class, and defines its own slot and signal.

This design declares the slot named slotSendValues() to receive responses from
the buttons on the dialog. Whenever slotSendValues() executes, it will send the
signal named signalSettings() with the new text and dimensions.

The dialog itself inherits directly from KdialogBase, so most of the work has already
been done. It is only necessary to add the prompts, the data-entry widgets, and a sig-
nal to be transmitted whenever the user specifies a new set of values, as is done in
the following code.

Modify
1 /* modify.cpp */
2 #include “modify.h”
3 #include <qlayout.h>
4 #include <qlabel.h>
5 
6 Modify::Modify(QWidget *parent,const char *name)
7         : KDialogBase(parent,name,TRUE,”Modify”)
8 {
9     QWidget *mainWidget = new QWidget(this,”modifymain”);
10 
11     QVBoxLayout *vLayout = new QVBoxLayout(mainWidget,10);
12 
13     lineedit = new QLineEdit(mainWidget);
14     vLayout->addWidget(lineedit);
15 
16     QHBoxLayout *hLayout = new QHBoxLayout();
17     vLayout->addLayout(hLayout);
18 
19     QLabel *wLabel = new QLabel(“width:”,this);
20     wLabel->setAlignment(Qt::AlignCenter);
21     hLayout->addWidget(wLabel);
22     width = new QLineEdit(mainWidget);

4682-1 ch04.f.qc  11/13/00  14:10  Page 86



87Chapter 4 ✦ Displaying a Pop-Up Dialog

23     width->setMaximumWidth(50);
24     hLayout->addWidget(width);
25     QLabel *hLabel = new QLabel(“height:”,this);
26     hLabel->setAlignment(Qt::AlignCenter);
27     hLayout->addWidget(hLabel);
28     height = new QLineEdit(mainWidget);
29     height->setMaximumWidth(50);
30     hLayout->addWidget(height);
31 
32     connect(this,SIGNAL(okClicked(void)),
33         this,SLOT(slotSendValues(void)));
34     connect(this,SIGNAL(applyClicked(void)),
35         this,SLOT(slotSendValues(void)));
36 
37     setMainWidget(mainWidget);
38 }
39 void Modify::slotSendValues()
40 {
41     QString text = lineedit->text();
42     int w = (width->text()).toInt();
43     int h = (height->text()).toInt();
44     emit signalSettings(text,h,w);
45 }

The constructor, beginning on line 6, passes its arguments through to the base
class. Two arguments are added to the call on the base class to specify a modal 
dialog and assign a caption to the window.

An empty widget is created on line 9. This widget is filled by the vertical box layout
created on line 11. A QLineEdit widget is inserted into the top of the vertical box
on lines 13 and 14. A horizontal box is created on line 16 and is used to position the
widgets that go into the second box of the vertical widget. This horizontal box is
filled with QLabel and QLineEdit widgets on lines 20 through 30. On line 37 the
filled widget is added to the dialog as its main window.

The button selection is allowed to default, so the buttons appearing on the dialog
are the OK, Cancel, and Apply buttons included in the dialog. Whenever the Cancel
button is selected the dialog will close. In this example, there is no action to be
taken in response to the Cancel button; its signal is ignored. The two connect()
method calls on lines 32 and 34 will cause the slot named slotSendValues() to be
executed. The connections are from this and back to this because slots and the
signals are all in the same object — the signals are inherited and the slot is defined
locally.

The slot method beginning on line 39 gathers the information that was entered by
the user and uses the data to emit a signal. The text retrieved from the lineedit
is to be used to modify the caption of a label, so it can stay in the same form. The
width and height QLineEdit objects also return QString objects, but these are
converted to int values with the call to toInt().

4682-1 ch04.f.qc  11/13/00  14:10  Page 87



88 Part I ✦ Getting Started

An Alternate Approach To KDialogBase Data
The following example program is a modification of the previous one. Sometimes it
is more convenient to have your program retrieve values from a dialog instead of
hooking them together with slots and signals. This technique applies only to situa-
tions in which you never need to retrieve data from the dialog until after it closes.

In the previous example, the Apply button causes data to be supplied to the appli-
cation without the window closing. This example removes the Apply button, creat-
ing the window shown in Figure 4-6, and eliminates all the slots and signals (except
the one in the mainline that pops up the dialog).

Figure 4-6: Data can be entered 
without the use of slots.

Because the Apply button cannot be used, it is necessary to remove it. To do this,
change lines 6 and 7 of modify.cpp to the following:

Modify::Modify(QWidget *parent,const char*name)
: KDialogBase(parent,name,TRUE,”Modify,Ok | Cancel)

The next step is to remove lines 23 through 37 of mainwidget.cpp and replace
them with the following method:

void MainWidget::popupKdb()
{

Modify *modify = new Modify(this,”modify”);
modify->exec();
if(modify->result() == TRUE) {

QString text = modify->getText();
int height = modify->getHeight();
int width = modify->getWidth();
resize(width,height);
label->setText(text);

}
delete modify;

}

When the dialog is closed, the exec() method returns. If the OK button was used to
close it, the return value from result() is TRUE; otherwise, it is FALSE. If the result
is TRUE, the user-entered data is extracted from the widgets and used on calls to

4682-1 ch04.f.qc  11/13/00  14:10  Page 88



89Chapter 4 ✦ Displaying a Pop-Up Dialog

resize() and setText() to modify the display. Because the exec() method does
not return until the dialog closes, there is no way, other than a slot, to determine
the selecting of a button that does not close the window — that’s why the Apply
button is not present.

To be able to retrieve the values, the following methods are added to the Modify
class:

QString Modify::getText()
{

return(lineedit->text());
}
int Modify::getWidth()
{

return((width->text()).toInt());
}
int Modify::getHeight()
{

return((height->text()).toInt());
}

There are many ways to get information back from a dialog. The method you use
depends on your application. For example, you can pass the address of a struct to
the dialog and have it fill in the data. Or you can use a combination of slots, sig-
nals, and directly reading the values. You can even have a dialog write its output to
a configuration file that will be used by your program later.

KMesageBox Derives From KDialogBase
A very common type of dialog is one that displays a line or two of text, and the user
responds to the dialog with a simple yes or no answer, or simply presses the button
that closes the dialog. The KDialogBase class has a constructor that is specially
suited to write message box dialogs, and the KMessageBox class uses this special
constructor to implement a group of commonly used message box dialogs.

These message boxes are all modal, which requires the user to respond before mov-
ing on. Moreover, each one is popped up with a simple function call that blocks (does
not return to the caller) until the user responds and closes the message box. This
simplifies programming because it is simply a matter of inserting a call to a static
function at any point in your code.

The following example demonstrates one of each of the nine message boxes. The
main window, shown in Figure 4-7, has a button for each of the nine dialogs. At the
bottom of the window is a label whose text is updated whenever there is a response
from the dialog. The figure shows that the last selection was a Yes button.

Note

4682-1 ch04.f.qc  11/13/00  14:10  Page 89



90 Part I ✦ Getting Started

Figure 4-7: Select a button 
to display a message box.

Mainline
1 /* main.cpp */
2 #include <kapp.h>
3 #include <kcmdlineargs.h>
4 #include “mboxes.h”
5 
6 int main(int argc,char **argv)
7 {
8     KCmdLineArgs::init(argc,argv,”mboxes”,
9         “Message Boxes”,”0.0”);
10     KApplication app;
11     Mboxes mboxes;
12     mboxes.show();
13     app.setMainWidget(&mboxes);
14     return(app.exec());
15 }

The mainline creates an Mboxes object and installs it as the main window of the
application.

Mboxes Header
1 /* mboxes.h */
2 #ifndef MBOXES_H
3 #define MBOXES_H
4 
5 #include <qwidget.h>
6 #include <qlabel.h>
7 
8 class Mboxes: public QWidget
9 {
10     Q_OBJECT
11 public:
12     Mboxes(QWidget *parent=0,const char *name=0);

4682-1 ch04.f.qc  11/13/00  14:10  Page 90



91Chapter 4 ✦ Displaying a Pop-Up Dialog

13 private:
14     QLabel *label;
15 private slots:
16     void button1();
17     void button2();
18     void button3();
19     void button4();
20     void button5();
21     void button6();
22     void button7();
23     void button8();
24     void button9();
25 };
26 
27 #endif

The definition of the class includes one slot for each of the nine buttons, and it
includes the label that will be placed at the bottom of the display.

Mboxes
1 /* mboxes.cpp */
2 #include “mboxes.h”
3 #include <qpushbutton.h>
4 #include <kmessagebox.h>
5 #include <qlayout.h>
6 
7 Mboxes::Mboxes(QWidget *parent,const char *name)
8         : QWidget(parent,name)
9 {
10     QPushButton *button;
11     QVBoxLayout *layout = new QVBoxLayout(this,3);
12 
13     button = new QPushButton(“Question Yes No”,this);
14     layout->addWidget(button);
15     connect(button,SIGNAL(clicked()),this,SLOT(button1()));
16 
17     button = new QPushButton(“Question Yes No List”,this);
18     layout->addWidget(button);
19     connect(button,SIGNAL(clicked()),this,SLOT(button2()));
20 
21     button = new QPushButton(“Warning Yes No”,this);
22     layout->addWidget(button);
23     connect(button,SIGNAL(clicked()),this,SLOT(button3()));
24 
25     button =
26         new QPushButton(“Warning Continue Cancel”,this);
27     layout->addWidget(button);
28     connect(button,SIGNAL(clicked()),this,SLOT(button4()));
29 

4682-1 ch04.f.qc  11/13/00  14:10  Page 91



92 Part I ✦ Getting Started

30     button = new QPushButton(“Warning Yes No Cancel”,this);
31     layout->addWidget(button);
32     connect(button,SIGNAL(clicked()),this,SLOT(button5()));
33 
34     button = new QPushButton(“Error”,this);
35     layout->addWidget(button);
36     connect(button,SIGNAL(clicked()),this,SLOT(button6()));
37 
38     button = new QPushButton(“Sorry”,this);
39     layout->addWidget(button);
40     connect(button,SIGNAL(clicked()),this,SLOT(button7()));
41 
42     button = new QPushButton(“Information”,this);
43     layout->addWidget(button);
44     connect(button,SIGNAL(clicked()),this,SLOT(button8()));
45 
46     button = new QPushButton(“About”,this);
47     layout->addWidget(button);
48     connect(button,SIGNAL(clicked()),this,SLOT(button9()));
49 
50     label = new QLabel(“-”,this);
51     layout->addWidget(label);
52     resize(10,10);
53 }
54 void Mboxes::button1()
55 {
56     int result = KMessageBox::questionYesNo(this,
57         “Are you sure you want to delete\nall “
58         “the files in this directory?”,
59         “questionYesNo”);
60     switch(result) {
61     case KMessageBox::Yes:
62         label->setText(QString(“Yes”));
63         break;
64     case KMessageBox::No:
65         label->setText(QString(“No”));
66         break;
67     }
68 }
69 void Mboxes::button2()
70 {
71     QStringList list;
72     list.append(“fork”);
73     list.append(“spoon”);
74     list.append(“knife”);
75     int result = KMessageBox::questionYesNoList(this,
76         “Are you sure you want to delete\nall “
77         “the items shown in the list?”,
78         list,
79         “questionYesNoList”);
80     switch(result) {

4682-1 ch04.f.qc  11/13/00  14:10  Page 92



93Chapter 4 ✦ Displaying a Pop-Up Dialog

81     case KMessageBox::Yes:
82         label->setText(QString(“Yes”));
83         break;
84     case KMessageBox::No:
85         label->setText(QString(“No”));
86         break;
87     }
88 }
89 void Mboxes::button3()
90 {
91     int result = KMessageBox::warningYesNo(this,
92         “Reset all status codes?”,
93         “warningYesNo”);
94     switch(result) {
95     case KMessageBox::Yes:
96         label->setText(QString(“Yes”));
97         break;
98     case KMessageBox::No:
99         label->setText(QString(“No”));
100         break;
101     }
102 }
103 void Mboxes::button4()
104 {
105     int result = KMessageBox::warningContinueCancel(this,
106         “Overwrite the existing file?”,
107         “warningContinueCancel”,
108         QString(“Overwrite”));
109     switch(result) {
110     case KMessageBox::Continue:
111         label->setText(QString(“Continue”));
112         break;
113     case KMessageBox::Cancel:
114         label->setText(QString(“Cancel”));
115         break;
116     }
117 }
118 void Mboxes::button5()
119 {
120     int result = KMessageBox::warningYesNoCancel(this,
121         “Quitting without saving the file could result\n”
122         “in loss of data. Save before quitting?”,
123         “warningYesNoCancel”);
124     switch(result) {
125     case KMessageBox::Yes:
126         label->setText(QString(“Yes”));
127         break;
128     case KMessageBox::No:
129         label->setText(QString(“No”));
130         break;
131     case KMessageBox::Cancel:

4682-1 ch04.f.qc  11/13/00  14:10  Page 93



94 Part I ✦ Getting Started

132         label->setText(QString(“Cancel”));
133         break;
134     }
135 }
136 void Mboxes::button6()
137 {
138     KMessageBox::error(this,
139         “Unable to save configuration data.”);
140 }
141 void Mboxes::button7()
142 {
143     KMessageBox::sorry(this,
144         “The file you specified contains no data.”);
145 }
146 void Mboxes::button8()
147 {
148     KMessageBox::information(this,
149         “Pressing Esc will clear the window.”);
150 }
151 void Mboxes::button9()
152 {
153     KMessageBox::about(this,
154         “This is a simple about-box that can\n”
155         “contain several lines of text”);
156 }

The widget used as the main window creates nine buttons and a label and packs
them all into a vertical box. Each button has its clicked() signal connected to a
local slot that will create and display one of the message boxes.

A vertical box is created on line 11. Lines 13 through 51 create the nine buttons and
the label that make up the main window.

Lines 13 through 15 create a button and connect it to the slot button1() on line 54.
The call to the method questionYesNo() on line 56 pops up the message box
shown in Figure 4-8 and waits for the user to respond. The string parameter on line
59 is the caption of the message box window. The value returned from the function
is determined by which button is selected. All of the return values from all of the
message boxes are defined in the KMessageBox class.

Figure 4-8: A Yes/No question 
message box

4682-1 ch04.f.qc  11/13/00  14:10  Page 94



95Chapter 4 ✦ Displaying a Pop-Up Dialog

The return values from the message boxes are not Boolean. They cannot be used
in an expression that tests for TRUE or FALSE. 

The switch statement on line 61 determines whether the return value from question
YesNo() is Yes or No. The label at the bottom of the main window is updated with a
string that represents the result. 

For all message boxes, the size and shape of the display is under your control
because you determine the length of the lines of text, and the number of lines dis-
played. The text for the questionYesNo() message box is declared on lines 57 and
58. The text is defined as a single string with ‘\n’ characters inserted wherever the
line is to be broken. Fortunately, the C++ concatenates strings on separate lines into
one large string, so the text can be more easily written in the code.

Lines 17 through 19 create a button and connect it to the slot button2() beginning
on line 69. This message box, created on line 75 and displayed in Figure 4-9, asks a
yes or no question as in the previous example, and also contains a window displaying
a list of items. Use this message box when you need to ask a question that involves a
group of items. There is no way the user can add or delete items — it is a blanket
approval or rejection of the entire list.

Figure 4-9: A Yes/No list question 
message box

The list displayed is a QStringList object created on line 71, and filled with three
strings on lines 72 through 74. This string list is used as an argument on line 78, and
the string on line 79 specifies the window caption.

Lines 21 through 23 create a button and connect it to the slot button3() beginning
on line 89. The call to warningYesNo() on line 91 is much the same as the call to
questionYesNo() on line 56, except for the difference in the graphic displayed
with the text. The warning message box is shown in Figure 4-10.

Figure 4-10: A Yes/No warning 
message box

Note

4682-1 ch04.f.qc  11/13/00  14:10  Page 95



96 Part I ✦ Getting Started

Lines 25 through 28 create a button and connect it to the slot button4(), which
begins on line 103. The warningContinueCancel() message box was designed to
let the user know that some action is about to begin, enabling the user to determine
whether it should proceed or stop. This example, shown in Figure 4-11, warns the
user that continuing will overwrite an existing file.

Figure 4-11: A Continue/Cancel 
warning message box

Some of the message boxes allow the user to override the button labels. In this
example, the QString used as an argument on line 108 changed the button label to
Overwrite from the default Continue. Changing the caption on the button does not
change the returned value — the case statement on line 110 matches the value
named Continue, which is issued by the button labeled Overwrite.

There are times when a simple yes or no answer won’t suffice. Lines 30 through 32 cre-
ate a button and connect it to the slot button5(), which begins on line 118. This situ-
ation comes up quite often. For example, consider the message “Preparing to delete
files. Do you wish to delete subdirectories also?” The user needs to be able to specify
that the directories be deleted along with the files, that the directories be retained, or
to forget the whole thing. The message box created by the call to warningYesNo
Cancel() on line 120 is shown in Figure 4-12.

Figure 4-12: A Yes/No/Cancel 
warning message box

Lines 34 through 36 create a button and connect it to the slot button6(), which
begins on line 136. The call to error() on line 138 creates the message box shown
in Figure 4-13. This message box has no return value because it is intended for use
only when your program is unable to do something it normally should be able to do.

Figure 4-13: An Error message box

4682-1 ch04.f.qc  11/13/00  14:10  Page 96



97Chapter 4 ✦ Displaying a Pop-Up Dialog

Lines 38 through 40 create a button and connect it to the slot button7(), which
begins on line 141. The function sorry() is called on line 143 and displays the win-
dow shown in Figure 4-14. This is intended for situations in which the program 
cannot continue, but the cause is outside the control of the program (such as a
missing file).

Figure 4-14: A Sorry message box

Lines 42 through 44 create a button and connect it to the slot button8(), which
begins on line 146. The function information() is called on line 148 and displays
the window shown in Figure 4-15. This is intended to contain information that 
doesn’t affect processing, but may be something the user needs to know.

Figure 4-15: An Information message box

Lines 46 through 48 create a button and connect it to the slot button9() beginning
on line 151. This is the simplest message box of all. It has no graphic decoration
and it returns no value. Figure 4-16 shows the message box created by the call to
about() on line 153. The function being named about() implies that it could be 
(or once was) used as a very simple About box. (A much more elaborate About 
box is described in the next chapter.)

Figure 4-16: A simple message box

4682-1 ch04.f.qc  11/13/00  14:10  Page 97



98 Part I ✦ Getting Started

Summary
You can create a dialog in a number of ways. The main window of a dialog is always
a single widget, and it can be any widget. This way, the mechanics of displaying a
dialog, retrieving the user input, and laying out the window can all be addressed
separately. The main points covered in this chapter include the following:

✦ If you have a special requirement for a dialog, it is possible to create your 
dialog by using QDialog or KDialog as the basis of the construction.

✦ The KDialogBase facilitates the construction of a dialog by supplying a 
set of standard buttons and a layout manager that you can use to insert 
your widget.

✦ A dialog can send a signal containing the user input data, and your program
can receive the data using a slot.

✦ The KMessageBox class is a collection of static functions, each of which uses
KDialogBase to construct a standard dialog.

Every program, except the very simplest, uses dialogs. They can be popped up
from buttons (as described in this chapter), they can be popped up from an event
inside the program (such as an error writing to a file), or they can be popped up
when the user makes a menu or toolbar selection. One way to standardize the look
and feel of a program is to make use of the set of built-in dialogs. This chapter
described some of the simple built-in dialogs, and the next chapter discusses some
of the more complicated ones.

✦ ✦ ✦

4682-1 ch04.f.qc  11/13/00  14:10  Page 98



The Predefined
Dialogs

Q uite a few dialogs are defined in both KDE and Qt. 
This chapter demonstrates some of the more general-

purpose dialogs. While you can use the dialog classes as base
classes to create your own customized version, more often than
not, all you will need to do is instantiate the dialog in the mode
and with the options you need. This chapter doesn’t include all
of the dialogs. Some special-purpose dialogs are also covered 
in other chapters. For example, the KFontDialog is described 
in Chapter 10, “Fonts,” and KColorDialog is described in
Chapter 11, “Colors.”

The About Dialog
Every completed application has an About box, a window that
displays pertinent information about the heritage of the soft-
ware. This is where the programmers can get their names up
in pixels. The About box can be popped up from a button, but
it is more often available as a menu selection.

The KAboutDialog class is very flexible. It has a collection of
optional parts that you can include or exclude. It also has two
separate constructors that give it two different basic looks. Just
about the only thing that appears by default is the OK button
used to close it. For even more flexibility, it inherits from the
KDialogBase class, which also supplies a number of options.

The KDialogBase class is described in Chapter 4.Cross-
Reference

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a standard
About dialog

Enabling the user 
to select the name 
of a file

Paging through
several widgets 
in one dialog

Displaying 
the completion
percentage of 
a task

✦ ✦ ✦ ✦

4682-1 ch05.f.qc  11/13/00  14:10  Page 99



100 Part I ✦ Getting Started

The KAboutDialog class has two constructors. Beyond having different sets of
arguments, they each place the dialog into a different mode, and each mode has 
its own set of options. Constructor I is in the standard Qt format, with the three
normal arguments of parent widget, the internal name, and whether or not the 
window is to be modal:

KAboutDialog(QWidget *parent,const char *name=0,
bool modal=true)

Constructor II has a number of parameters (most of which have defaults), including
some flags that can be used to configure the dialog to display itself in one of a variety
of configurations:

KAboutDialog(int dialogLayout,const QString &caption,
int buttonMask,int defaultButton,QWidget *parent=0,
const char *name=0,bool modal=false,bool separator=false,
const QString &user1=QString::null,
const QString &user2=QString::null,
const QString &user3=QString::null)

The following example uses both Constructor I and Constructor II to create and 
display some of the possible configurations. There are many more possible combi-
nations other than the ones demonstrated here, but they are all variations on these
basic themes. The main window of the program is shown in Figure 5-1 and consists
of the buttons that can be used to pop up four versions of the About dialog.

Figure 5-1: The buttons used to select four About dialogs

ShowAbout Header
1 /* showabout.h */
2 #ifndef SHOWABOUT_H
3 #define SHOWABOUT_H
4
5 #include <qwidget.h>
6
7 class ShowAbout: public QWidget
8 {
9     Q_OBJECT
10 public:
11     ShowAbout(QWidget *parent=0,const char *name=0);
12 private slots:
13     void emptyAbout();

4682-1 ch05.f.qc  11/13/00  14:10  Page 100



101Chapter 5 ✦ The Predefined Dialogs

14     void simpleAbout();
15     void kdeStandardAbout();
16     void appStandardAbout();
17 };
18
19 #endif

The only purpose of this class is to pop up the requested dialog, so there is only a
constructor and the slot that will be used by the four buttons. Each slot pops up 
a different version of the About dialog.

ShowAbout
1 /* showabout.cpp */
2 #include <kapp.h>
3 #include <qpushbutton.h>
4 #include <qlayout.h>
5 #include <kaboutdialog.h>
6 #include <kcmdlineargs.h>
7 #include “showabout.h”
8 
9 int main(int argc,char **argv)
10 {
11     KCmdLineArgs::init(argc,argv,”showabout”,
12         “About Boxes”,”0.0”);
13     KApplication app;
14     ShowAbout showabout;
15     showabout.show();
16     app.setMainWidget(&showabout);
17     return(app.exec());
18 }
19 
20 ShowAbout::ShowAbout(QWidget *parent,const char *name)
21         : QWidget(parent,name)
22 {
23     QPushButton *button;
24     QVBoxLayout *box = new QVBoxLayout(this);
25 
26     button = new QPushButton(“Empty”,this);
27     box->addWidget(button);
28     connect(button,SIGNAL(clicked()),
29             this,SLOT(emptyAbout()));
30 
31     button = new QPushButton(“Simple”,this);
32     box->addWidget(button);
33     connect(button,SIGNAL(clicked()),
34             this,SLOT(simpleAbout()));
35 
36     button = new QPushButton(“KDE Standard”,this);
37     box->addWidget(button);

4682-1 ch05.f.qc  11/13/00  14:10  Page 101



102 Part I ✦ Getting Started

38     connect(button,SIGNAL(clicked()),
39             this,SLOT(kdeStandardAbout()));
40 
41     button = new QPushButton(“App Standard”,this);
42     box->addWidget(button);
43     connect(button,SIGNAL(clicked()),
44             this,SLOT(appStandardAbout()));
45 
46     resize(10,10);
47     box->activate();
48 }
49 void ShowAbout::emptyAbout()
50 {
51     KAboutDialog *about = new KAboutDialog(0,”about”);
52     about->exec();
53 }
54 void ShowAbout::simpleAbout()
55 {
56     KAboutDialog *about = new KAboutDialog(0,”about”);
57 
58     about->setCaption(“Simple About Configuration”);
59     about->setVersion(“Version 0.0.1”);
60 
61     QPixmap logo;
62     if(logo.load(“tinylogo.png”))
63         about->setLogo(logo);
64 
65     about->setAuthor(“Bertha D Blues”,
66         “bertha@belugalake.com”,
67         “http://www.belugalake.com”,
68         “Mallet Operator”);
69 
70     about->setMaintainer(“Tony Stryovie”,
71         “stryovie@belugalake.com”,
72         “http://www.belugalake.com”,
73         “Finder of Lost Code”);
74 
75     about->addContributor(“Walter Heater”,
76         “heat@belugalake.com”,
77         “http://www.belugalake.com”,
78         “Asker of Questions”);
79 
80     about->exec();
81 }
82 void ShowAbout::kdeStandardAbout()
83 {
84     KAboutDialog *about = new KAboutDialog(
85         KAboutDialog::AbtKDEStandard,
86         “KDE Standard Configuration”,
87         KDialogBase::Ok |  KDialogBase::Help,
88         KDialogBase::Ok,

4682-1 ch05.f.qc  11/13/00  14:10  Page 102



103Chapter 5 ✦ The Predefined Dialogs

89         this,
90         “about”,
91         TRUE);
92 
93     about->setTitle(“The example that is all about About”);
94     about->setCaption(“KDE Standard About”);
95     about->setImage(“penguin1.png”);
96     about->setImageBackgroundColor(QColor(“red”));
97     about->setImageFrame(TRUE);
98 
99     about->addTextPage(“Purpose”,
100         “This program is intended to provide an “
101         “example that\ndemonstrates how to use “
102         “the KAboutDialog.”);
103     about->addTextPage(“Version”,
104         “Version 0.0.1 pre-alpha experimental.\n”
105         “Saturday, April 1, 2000”);
106 
107     about->exec();
108 }
109 void ShowAbout::appStandardAbout()
110 {
111     KAboutDialog *about = new KAboutDialog(
112         KAboutDialog::AbtAppStandard,
113         “App Configuration”,
114         KDialogBase::Ok,
115         KDialogBase::Ok,
116         this,
117         “about”,
118         TRUE);
119 
120     about->setTitle(“The example that is about About”);
121     about->setProduct(“ShowAbout”,
122         “0.0.1 Pre-Alpha”,
123         “Bertha D Blues”,
124         “Saturday, April 1, 2000”);
125 
126     about->addTextPage(“Purpose”,
127         “This program is intended to provide an “
128         “example that\ndemonstrates how to use “
129         “the KAboutDialog.”);
130     about->addTextPage(“Version”,
131         “Version 0.0.1 pre-alpha experimental.\n”
132         “Saturday, April 1, 2000”);
133 
134     about->exec();
135 }

4682-1 ch05.f.qc  11/13/00  14:10  Page 103



104 Part I ✦ Getting Started

Lines 9 through 18 are the mainline of the program, which creates an instance of the
ShowAbout class, inserts it as the widget to be used in the main window, and waits
for it to exit.

The ShowAbout constructor beginning on line 16 organizes pushbuttons into a 
vertical box. Each of the four buttons is connected to one of the slots that displays
a version of KAboutDialog.

The slot emptyAbout() on line 49 displays the empty KAboutDialog shown in
Figure 5-2. The only things that show up in this default version are the OK button
that closes the dialog, and a place that would normally hold a graphic of the logo
for the application. The dialog created on line 51 is modal, so the method exec()
called on line 52 does not return until the user closes the window.

Figure 5-2: An empty KAboutDialog

The slot simpleAbout() beginning on line 54 uses the same constructor, on 
line 52, that was used to create the empty KAboutDialog shown in Figure 5-3.
KAboutDialog methods are called to insert displayable information. Table 5-1 lists
the methods that are specifically designated for use by Constructor I dialogs. The
call to setCaption() on line 58 defines the caption for the title bar of the window,
and the call to setVersion() specifies a version number to be inserted at the top
of the window.

Figure 5-3: A KAboutDialog can 
feature the developers’ names.

4682-1 ch05.f.qc  11/13/00  14:10  Page 104



105Chapter 5 ✦ The Predefined Dialogs

Table 5-1
KAboutDialog Methods for Constructor I

Method Purpose

setLogo() Specifies the pixmap image that is to be displayed 
as the logo

setAuthor() Specifies the name, e-mail address, URL, and job 
performed by the author of the software 

setContributor () Specifies the name, e-mail address, URL, and job performed
by an individual contributor to the software 

setMaintainer() Specifies the name, e-mail address, URL, and job performed
by the individual currently supporting the software

setVersion() Specifies the current software version

The QPixmap created on line 61 loads its image information from the file named
tinylogo.png on line 62. The call to setLogo() on line 63 sets the image as the
logo to be displayed in the upper left corner of the window.

Lines 65 through 78 add names and addresses by calling setAuthor(), set
Maintainer(), and addContributor(). There can only be one author and one
maintainer, but there can be any number of contributors. While there are different
methods to insert each of these names, all the methods have the same set of param-
eters. The first string is the name, the second is the person’s URL, the third is the
e-mail address, and the last one is a description of the job the person performs on
the development team. Once displayed, both the URL and the e-mail address are
active — that is, you can click on them to either send e-mail or load the Web page.

The slot kdeStandardAbout() beginning on line 82 uses Constructor II to create
the customized dialog shown in Figure 5-4. The flag set named AbtKDEStandard
on line 85 specifies which elements are to be used to make up the display. Table 5-2
lists the flags and the element that each includes. The arguments on line 87 are
used to tell the super class KDialogBase which buttons are to appear. In this 
example, there is an OK button, which will automatically close the window; and 
a Help button. The button specified on line 88 is the one that will be selected 
when the dialog first opens.

The description of KDialogBase in Chapter 4 explains how to make the OK and
Help buttons do what they’re meant to do.

Cross-
Reference

4682-1 ch05.f.qc  11/13/00  14:10  Page 105



106 Part I ✦ Getting Started

Figure 5-4: A KAboutDialog with an image and 
text pages

Table 5-2
KAboutDialog Flags That Configure the Display

Flag Name Description

AbtAppStandard Enables a combination of AbtTabbed, AbtTitle, 
and AbtProduct.

AbtImageAndTitle Enables a combination of AbtPlain and AbtImageOnly.

AbtImageLeft Displays the image on the left side of the window.

AbtImageOnly Displays the image in the center because no other item 
will be beside it.

AbtImageRight Displays the image on the right side of the window.

AbtKDEStandard Enables a combination of AbtTabbed, AbtTitle, 
and AbtImageLeft.

AbtPlain None of the default KAboutDialog components will be
displayed. This can be used in combination with other flags
to customize the dialog.

AbtProduce Displays the application name, the version, the author, 
and the date.

AbtTabbed Displays a collection of one or more windows with tabs 
that enable the user to switch from one to the other.

AbtTitle Displays the title immediately beneath the title bar.

4682-1 ch05.f.qc  11/13/00  14:10  Page 106



107Chapter 5 ✦ The Predefined Dialogs

After the flags are set telling the dialog which of its elements it should display, it is
still necessary for you to supply the elements. Table 5-3 lists the methods that are
available when using Constructor II.

Table 5-3
KAboutDialog Methods for Constructor II

Method Purpose

addContainer() Adds a KAboutContainer that you can use to display
text and images

addContainerPage() Adds a KAboutContainer as a tabbed page. You can
use it to display text and images. 

addPage() Adds an empty page to the collection of tabbed pages.
You can use it to contain any widget you would like 
to display.

addTextPage() Adds a page of text to the collection of tabbed pages

setImage() Specifies the image that is to be displayed as the logo

setImageBackground() Specifies the color to be used as background and fill
when displaying the image

setImageFrame() Enables or disables the frame around the image. 
The default is enabled.

setProduct() Sets the four strings defining the name of the
application, the version, the author, and the date

setTitle() Inserts the title at the top of the window (just under 
the title bar)

The call to setTitle() on line 93 is necessary because the flag setting included
AbtTitle, and it is necessary to supply the title to be displayed. The call to set
Caption() on line 94 is a pass-through call to the super class to set the caption
text of the title bar at the top.

The method calls on lines 95 through 97 specify the name of the file containing 
the image to be used as a logo; the background color to be used behind the image;
and whether the image is to have a border drawn around it. The background color
will fill any areas not filled by the window, as previously shown in Figure 5-4, and
will also be the fill color for any transparent portion of the image. The default is to
have the border drawn, but the method setImageFram() can be used to turn it off.

4682-1 ch05.f.qc  11/13/00  14:10  Page 107



108 Part I ✦ Getting Started

The method addTextPage() can be used a number of times — once for each page
you wish to add to the tabbed window. As you can see by the examples on lines 
99 and 103, the only arguments are the string that is to become the label for the 
tab, and the text that is to become the body of the text. It is necessary to insert 
the newline character ‘\n’ to format the text in multiple lines.

The slot named appStandardAbout() beginning on line 109 produces the dialog
shown in Figure 5-5.

Figure 5-5: A KAboutDialog with headings and 
tabbed pages

The text at the top of the window is set by two method calls. The call to setTitle()
on line 116 sets the text of the title that is centered at the top. The call to set
Product() on line 121 sets the rest of the text. The two tabbed pages are added 
by the calls to addTextPage() on lines 126 and 130.

QFileDialog
The QFileDialog allows you to prompt the user for the name of a file or a directory.
You can specify that the selection be limited to files that already exist, or enable the
user to enter a new filename. Also, using filters, you can limit the available filenames
to only those that match specific criteria.

ShowFile Header
1 /* showfile.h */
2 #ifndef SHOWFILE_H
3 #define SHOWFILE_H
4

4682-1 ch05.f.qc  11/13/00  14:10  Page 108



109Chapter 5 ✦ The Predefined Dialogs

5 #include <qwidget.h>
6 #include <qlabel.h>
7 #include <qstring.h>
8
9 class ShowFile: public QWidget
10 {
11     Q_OBJECT
12 public:
13     ShowFile(QWidget *parent=0,const char *name=0);
14 private:
15     QLabel *filelabel;
16     QString filename;
17 private slots:
18     void popupOpen();
19     void popupSave();
20     void popupDirectory();
21     void popupFilter();
22 };
23
24 #endif

The header file defines the ShowFile class. The class contains the name of the cur-
rent file or directory and the QLabel widget used to display it. Each of the four slot
methods is connected to a button that will pop up a QFileDialog in a different
mode. The main window, with the labels and the buttons, is shown in Figure 5-6.

Figure 5-6: A full path name and four ways to select it

ShowFile
1 /* showfile.cpp */
2 #include <kapp.h>
3 #include <qpushbutton.h>
4 #include <qlayout.h>
5 #include <qfiledialog.h>
6 #include “showfile.h”
7
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”showfile”);
11     ShowFile showfile;
12     showfile.show();
13     app.setMainWidget(&showfile);

4682-1 ch05.f.qc  11/13/00  14:10  Page 109



110 Part I ✦ Getting Started

14     return(app.exec());
15 }
16 ShowFile::ShowFile(QWidget *parent,const char *name)
17         : QWidget(parent,name)
18 {
19     QPushButton *button;
20     QVBoxLayout *box = new QVBoxLayout(this,0,3);
21
22     filelabel = new QLabel(“”,this);
23     filelabel->setAlignment(Qt::AlignHCenter);
24     box->addWidget(filelabel);
25
26     button = new QPushButton(“Select File to Open”,this);
27     box->addWidget(button);
28     connect(button,SIGNAL(clicked()),
29             this,SLOT(popupOpen()));
30
31     button = new QPushButton(“Select Save File”,this);
32     box->addWidget(button);
33     connect(button,SIGNAL(clicked()),
34             this,SLOT(popupSave()));
35
36     button = new QPushButton(“Select Directory”,this);
37     box->addWidget(button);
38     connect(button,SIGNAL(clicked()),
39             this,SLOT(popupDirectory()));
40
41     button = new QPushButton(“Filter Selection”,this);
42     box->addWidget(button);
43     connect(button,SIGNAL(clicked()),
44             this,SLOT(popupFilter()));
45
46     resize(10,10);
47     box->activate();
48 }
49 void ShowFile::popupOpen()
50 {
51     QString name = QFileDialog::getOpenFileName(“”,
52             NULL,this);
53     if(!name.isEmpty()) {
54         filename = name;
55         filelabel->setText(filename);
56     }
57 }
58 void ShowFile::popupSave()
59 {
60     QString name = QFileDialog::getSaveFileName(filename,
61             NULL,this);
62     if(!name.isEmpty()) {
63         filename = name;
64         filelabel->setText(filename);

4682-1 ch05.f.qc  11/13/00  14:10  Page 110



111Chapter 5 ✦ The Predefined Dialogs

65     }
66 }
67 void ShowFile::popupDirectory()
68 {
69     QString name = QFileDialog::getExistingDirectory();
70     if(!name.isEmpty()) {
71         filename = name;
72         filelabel->setText(filename);
73     }
74 }
75 void ShowFile::popupFilter()
76 {
77     QString filter =
78             “All (*)\n”
79             “C Source (*.c *.cc *.cpp *.cxx)\n”
80             “C Header (*.h)\n”
81             “Text (*.txt)\n”
82             “HTML (*.html *.shtml *.HTML *.htm)”;
83     QString name = QFileDialog::getOpenFileName(“”,
84             filter,this);
85     if(!name.isEmpty()) {
86         filename = name;
87         filelabel->setText(filename);
88     }
89 }

Lines 8 through 15 are the mainline of the program, which initializes the application,
and then creates and displays the ShowFile window shown in Figure 5-6. The con-
structor, beginning on line 16, is a widget that contains a label and four buttons inside
a vertical box. The label is used to display the latest file or directory selection. The
buttons are each connected to a slot that will create a QFileDialog object and
retrieve the result of the user’s input. Each of the four modes of operation uses 
the same display format, but the title bar caption and button operations vary a bit.
Figure 5-7 shows the layout of the QFileDialog window.

Figure 5-7: A QFileDialog, 
listing files and directories

4682-1 ch05.f.qc  11/13/00  14:10  Page 111



112 Part I ✦ Getting Started

The slot named popupOpen() beginning on line 49 opens a QFileDialog window
that enables the user to select the name of an existing file. The call to the static
function getOpenFileName() on line 51 creates the dialog. The first argument (in
this example, a zero-length string) can be the complete path name of a file to sug-
gest to the user. If no filename is specified, the dialog opens on the last directory
accessed by this application; or, by default, the current directory. Whenever a file 
is selected in the window, the button changes its text to OK, and allows the user 
to select the file.

The slot named popupSave() beginning on line 58 opens a QFileDialog that allows
the user to select an existing file or enter the name of a nonexistent file. The call to
getSaveFileName() on line 60 creates the dialog. The first argument passed to the
constructor is the name of the last file retrieved, and this becomes the current file
displayed in the window for selection.

The slot named popupDirectory() on line 67 uses a QFileDialog to select 
a directory. In this mode, the dialog will only return the name of a selected direc-
tory. If a filename is selected by the user, the filename is stripped off and only 
the directory path is returned.

The slot named popupFilter() on line 75 specifies the group of filename filters
shown in Figure 5-8. The filters are a collection of filename suffixes that are used to
select which filenames are to appear in the window. The filters are all defined as a
single QString beginning on line 77. The file suffixes are organized into categories,
and shown by the “C Source” category shown in Figure 5-8. To define a category, the
category name is followed by the valid file suffixes enclosed in parentheses. Inside
the parentheses, the suffixes are separated by spaces. The different categories are
separated by newline characters “\n”;or, if you prefer, a pair of semi-colons (“;;”).

Figure 5-8: Filtering specifies which files 
are listed.

4682-1 ch05.f.qc  11/13/00  14:10  Page 112



113Chapter 5 ✦ The Predefined Dialogs

In almost every case, and in this example, the filters are used to select files with spe-
cific suffixes. But the filter is actually a regular expression and can be used in other
forms. For example, the filter sh* would limit the list to only files that being with sh.

Figures 5-7 and 5-8 show the ordering of file and directory names. The directories
are tagged with tan rectangles and are always listed before the files. In both groups,
because they are sorted by their ASCII values, uppercase letters come before lower-
case letters. If a listed directory is a symbolic link, its icon has a small mark in its
lower right corner.

You can customize the appearance of the QFileDialog window by providing
your own icons, as described in Chapter 13, which discusses the manipulation of
graphic files.

QTabDialog
The QTabDialog packs two or more dialogs into one by stacking them on top of
one another and supplying tabs that can be used to switch from one to the other.
The following program creates the simple QTabDialog shown in Figure 5-9.

Figure 5-9: A QTabDialog with the 
second widget showing

Cross-
Reference

Note

4682-1 ch05.f.qc  11/13/00  14:10  Page 113



114 Part I ✦ Getting Started

ShowTabs Header
1 /* showtabs.h */
2 #ifndef SHOWTABS_H
3 #define SHOWTABS_H
4
5 #include <qwidget.h>
6
7 class ShowTabs: public QWidget
8 {
9     Q_OBJECT
10 public:
11     ShowTabs(QWidget *parent=0,const char *name=0);
12 private slots:
13     void slotTab();
14 };
15
16 #endif

ShowTabs
1 /* showtabs.cpp */
2 #include <kapp.h>
3 #include <qpushbutton.h>
4 #include <qtabdialog.h>
5 #include <qlayout.h>
6 #include <kfontdialog.h>
7 #include <kdatepik.h>
8 #include <kselect.h>
9 #include “showtabs.h”
10
11 int main(int argc,char **argv)
12 {
13     KApplication app(argc,argv,”showtabs”);
14     ShowTabs showtabs;
15     showtabs.show();
16     app.setMainWidget(&showtabs);
17     return(app.exec());
18 }
19
20 ShowTabs::ShowTabs(QWidget *parent,const char *name)
21         : QWidget(parent,name)
22 {
23     QPushButton *button;
24     QVBoxLayout *box = new QVBoxLayout(this,12);
25
26     button = new QPushButton(“Show Tab Dialog”,this);
27     box->addWidget(button);
28     connect(button,SIGNAL(clicked()),
29             this,SLOT(slotTab()));
30
31     resize(10,10);
32     box->activate();
33 }
34 void ShowTabs::slotTab()

4682-1 ch05.f.qc  11/13/00  14:10  Page 114



115Chapter 5 ✦ The Predefined Dialogs

35 {
36     QTabDialog *tab = new QTabDialog(this,”tabdial”,TRUE);
37     tab->setCaption(“The QTabDialog Widget”);
38     tab->setCancelButton();
39
40     QWidget *fonts = new KFontChooser(this,”fonts”);
41     tab->addTab(fonts,”Fonts”);
42
43     QWidget *date = new KDatePicker(this);
44     tab->addTab(date,”Date”);
45
46     QWidget *hgradient = new KGradientSelector(
47             KSelector::Horizontal,this);
48     tab->addTab(hgradient,”H Gradient”);
49
50     QWidget *vgradient = new KGradientSelector(
51             KSelector::Vertical,this);
52     tab->addTab(vgradient,”V Gradient”);
53
54     tab->show();
55 }

The ShowTabs class is used only to pop up the QtabDialog, so all that its definition
contains, other than the constructor, is a slot method that will pop up the dialog.

The mainline of the program, beginning on line 11, creates a ShowTabs widget and
installs it as the widget displayed as the main window.

The ShowTabs constructor, beginning on line 20, uses a container to hold a single
pushbutton. On line 28, the button has its clicked() signal attached to the slot
method named slotTab().

The slot method slotTab(), beginning on line 34, creates and displays the
QTabDialog. The dialog is created on line 36. The first argument is to be 
the dialog’s parent widget; the second is the name assigned to it; and the third
specifies that the QTabDialog be modal. The default is for a nonmodal dialog.

The call to setCaption() on line 37 specifies the caption to be displayed in the
title bar of the dialog window. The call setCancelButton() specifies that a Cancel
button be included as part of the dialog.

The dialog can have as many as four buttons. By default, there is always an OK 
button present, but you will need to specify any other buttons that you would 
like. Other buttons could have been included with calls to setDefaultButton(),
setHelpButton(), and setApplyButton(). The methods that include buttons 
can be called with no arguments, as on line 38, or with a string that specifies the
text of the button (including setOkButton()). To receive signals from the button,
you need to connect slots to applyButtonPressed(), cancelButtonPressed(),
defaultButtonPressed(), and helpButtonPressed().

4682-1 ch05.f.qc  11/13/00  14:10  Page 115



116 Part I ✦ Getting Started

Lines 40 through 52 create the four pages (sometimes called tabs or tab pages) that
inhabit the QTabDialog. To keep the code simple, four of the standard KDE widgets
were used, and none of them have the software required to extract the data that
was entered by the user. You can certainly construct your own widgets. Normally,
there would be a slot connected to the OK and Apply buttons that would read the
information from the four widgets.

The size of the dialog is determined by the size of the widgets it contains. It will
appear as tall and wide as it needs to be for the largest widgets; and the smaller
widgets are centered, both vertically and horizontally. Popping up dialogs that 
use tabs to switch from one widget to another is becoming increasingly popular. It
shows the user all the available options without also displaying a confusing page
filled with data entry options.

QProgressDialog
Sometimes your program needs to do something that will take a few seconds, or a
few minutes. If the time delay is short, changing the cursor to the image of a watch
is a way of saying, “The program is busy. One moment please.” If the delay is long
(for example, 15 seconds or more), it is only polite to give the user a bit more infor-
mation about what’s going on. The QProgressDialog can be used to display the
percentage of task completion, and it can be set so that it only pops up when 
the duration becomes long enough to warrant it.

The following program demonstrates two ways of using a QProgressDialog. 
Figure 5-10 shows the main window of the application with its two buttons, 
which are used to pop up the QProgressDialog windows. While this dialog is 
normally used to present the progress transmitting data, sorting a large file, or
something else that takes time, the examples in this program simply operate 
based on the progress of timers.

Figure 5-10: Start one of two QProgressDialog windows

Progress Header
1 /* progress.h */
2 #ifndef PROGRESS_H
3 #define PROGRESS_H
4
5 #include <qprogressdialog.h>

4682-1 ch05.f.qc  11/13/00  14:10  Page 116



117Chapter 5 ✦ The Predefined Dialogs

6 #include <qwidget.h>
7 #include <qtimer.h>
8
9 class Progress: public QWidget
10 {
11     Q_OBJECT
12 public:
13     Progress(QWidget *parent=0,const char *name=0);
14 private:
15     QProgressDialog *progressDialog;
16     QTimer *timer;
17 private slots:
18     void slot15();
19     void slot60();
20     void timerStep();
21 };
22
23 #endif

The Progress class has three slots and a timer. The slot methods slot15()
and slot60() are called to start progress dialogs that last for 15 and 60 seconds,
respectively. The timer, and the timerStep() slot, are used internally to track 
the elapsed time.

Progress
1 /* progress.cpp */
2 #include <unistd.h>
3 #include <kapp.h>
4 #include <qpushbutton.h>
5 #include <qlayout.h>
6 #include “progress.h”
7
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”progress”);
11     Progress progress;
12     progress.show();
13     app.setMainWidget(&progress);
14     return(app.exec());
15 }
16
17 Progress::Progress(QWidget *parent,const char *name)
18         : QWidget(parent,name)
19 {
20     QPushButton *button;
21     QVBoxLayout *box = new QVBoxLayout(this,12);
22
23     button = new QPushButton(“15 Seconds”,this);
24     box->addWidget(button);

4682-1 ch05.f.qc  11/13/00  14:10  Page 117



118 Part I ✦ Getting Started

25     connect(button,SIGNAL(clicked()),
26             this,SLOT(slot15()));
27
28     button = new QPushButton(“60 Seconds”,this);
29     box->addWidget(button);
30     connect(button,SIGNAL(clicked()),
31             this,SLOT(slot60()));
32
33     resize(10,10);
34     box->activate();
35 }
36 void Progress::slot15()
37 {
38     int currentStep = 0;
39     int steps = 15;
40
41     progressDialog = new QProgressDialog(
42         “Fifteen seconds..”,”Cancel”,
43         steps,this,”pgrs”,TRUE);
44     progressDialog->setCaption(“Progress”);
45     while(currentStep < steps) {
46         progressDialog->setProgress(currentStep++);
47         if(progressDialog->wasCancelled())
48             break;
49         sleep(1);
50     }
51     progressDialog->setProgress(steps);
52     delete progressDialog;
53     progressDialog = NULL;
54 }
55 void Progress::slot60()
56 {
57     int currentStep = 0;
58     int steps = 20;
59    
60     progressDialog = new QProgressDialog(this,”prgs”,TRUE);
61     progressDialog->setCaption(“Progress”);
62     progressDialog->setLabelText(“Sixty seconds...”);
63     progressDialog->setCancelButtonText(“Quit”);
64     progressDialog->setTotalSteps(steps);
65     progressDialog->setMinimumDuration(3000);
66
67     timer = new QTimer(this);
68     connect(timer,SIGNAL(timeout()),
69             this,SLOT(timerStep()));
70     timer->start(3000,FALSE);
71 }
72 void Progress::timerStep()
73 {
74     int currentStep;
75     int steps = 20;

4682-1 ch05.f.qc  11/13/00  14:10  Page 118



119Chapter 5 ✦ The Predefined Dialogs

76
77     if(progressDialog == NULL)
78         return;
79
80     if(progressDialog->wasCancelled()) {
81         delete timer;
82         delete progressDialog;
83         progressDialog = NULL;
84         return;
85     }
86     currentStep = progressDialog->progress();
87     if(currentStep >= steps) {
88         delete timer;
89         delete progressDialog;
90         progressDialog = NULL;
91     } else {
92         progressDialog->setProgress(currentStep + 1);
93     }
94 }

The mainline of the program, beginning on line 8, creates a Progress object and
installs it as the top-level window. The top-level widget is a Progress widget created
by the constructor on line 17. A vertical box is used to contain two pushbuttons.
The buttons are connected to the slots slot15() and slot60(). The result is the
window shown in Figure 5-15.

The slot method slot15(), beginning on line 36, demonstrates how you can use a
progress bar inside a loop. The progress percentage is determined by the ratio of
the current step number to the total number of steps. Line 38 specifies the current
step (the starting step) to be 0, and line 39 defines the total number of steps to be
15. The constructor on line 41 creates the QProgressDialog and sets the total
number of steps. It also sets the text of the captions and the name of the widget;
and specifies TRUE, that the dialog is to be modal. The call to setCaption() on 
line 44 specifies the text for the dialog title bar.

The examples included here are both modal dialogs, but it is common to have
nonmodal progress dialogs. For example, when a Web browser is downloading a
file or two, each download has its standalone progress dialog, and you are still
able to access other functions of the browser.

The loop beginning on line 45 is there to simulate an activity to be reported by the
progress bar. All this loop does is increment the current step count and sleep for 
a second. In a real-world application, you could compute the value of the next step
and call setProgress() with the value. The call to wasCancelled() on line 47 will
return TRUE if the user has selected the Cancel button, so the loop will exit early.
The result is the progress window shown in Figure 5-11. Normally, with the selec-
tion of the Cancel button, you would have code inside the loop that would put 

Note

4682-1 ch05.f.qc  11/13/00  14:10  Page 119



120 Part I ✦ Getting Started

a stop to whatever was being timed, but there is nothing to do here so it just jumps
out of the loop.

Figure 5-11: A QProgressDialog with fifteen steps

The call to setProgress() on line 51 guarantees that the dialog closes properly.
When a modal QProgressDialog starts running, it first changes the cursor to a
watch symbol. It then waits for a short period of time before it pops up. The display
is updated each time the current value is increased. Once the last step is reached, 
it restores the original cursor and pops itself down. The call to setProgress()
on line 51 is necessary because the loop can exit without reaching the maximum
step value.

The slot method named slot60() beginning on line 55 uses an entirely different
method to create and update a QprogressDialog, as shown in Figure 5-12. Lines 
57 and 58 set the starting value to 0 and the number of steps to 20. The dialog is
created on line 60, using a simpler constructor than the one in the previous exam-
ple. The method calls on lines 61 through 65 set the window caption text, specify
the text of the label that appears in the dialog, change the text of the Cancel button,
and set the total number of steps to completion.

Figure 5-12: A QProgressDialog using a signal

The call to setMinimumDuration() on line 65 sets the pop-up delay time to 3,000
milliseconds (3 seconds). This is the amount of time the dialog will wait before 
popping itself up. Setting it to 3,000 milliseconds causes the cursor to change to 
a watch and do nothing else until the 3 seconds pass. This way, the dialog will
never appear for tasks that take less than three seconds.

Lines 67 through 70 create a timer and start it running. The timeout() signal of 
the timer is connected to the timerStep() slot of this class. The call to start()
on line 70 initiates the timer to expire at 3 seconds. The second parameter being 
set to FALSE means that this is not a one-shot timer — it will run continuously, 
triggering every 3 seconds, until it is stopped. If this second parameter were set 
to TRUE, the timer would trigger only once. Actually, to have a continuously 

4682-1 ch05.f.qc  11/13/00  14:10  Page 120



121Chapter 5 ✦ The Predefined Dialogs

running timer, one mode is about as good as another. If it is running continuously,
you will have to kill it at the end. If it is a one-shot timer, you can restart it each 
time it triggers.

The slot named timerStep() on line 72 executes each time the timer triggers. If the
user selects the Cancel button to halt the operation, the call to wasCancelled()
on line 80 will be TRUE. The call to progress() on line 86 retrieves the current 
step value and, if line 87 finds that it has reached the end, the timer and the dialog
are both deleted. If it is still in progress, the call to setProgress() on line 92 incre-
ments the current step number.

The pointer named progressDialog is set to NULL whenever the dialog is deleted,
and there is a test for whether it is NULL on line 77. This test is necessary because
of the way QTimer works. To achieve timing, QTimer inserts special events into 
the incoming event queue; and because the event queue is asynchronous from the
application, QTimer could have a time event still in the input queue when the
QProgressDialog is deleted. This means the slot timerStep() would be executed
one more time.

Summary
This chapter demonstrated some ways to use a few of the many KDE and Qt dialogs.
There are many more predefined dialogs, and all of these dialogs have a number of
options. This chapter explored dialogs that can be used in the following ways:

✦ Create an About window that is standard enough that your application can 
be recognized as being part of the KDE system.

✦ Present a selection of files and directories, and allow the user to pick one.

✦ Stack widgets on top of one another and supply the user with a set of tabs 
to switch from one widget to another.

✦ Display a progress bar to reassure the user that your program is doing what 
it should be doing.

The dialogs not covered in this chapter are covered in chapters where they are 
relevant. But dialogs are not the only things that pop up. The next chapter begins
examining the process of creating and displaying menus and toolbars.

✦ ✦ ✦

4682-1 ch05.f.qc  11/13/00  14:10  Page 121



4682-1 ch05.f.qc  11/13/00  14:10  Page 122



Menus and
Toolbars

This chapter is all about decorating the main window of
your application with widgets that can be used to access

parts of your program and keep the user informed about what
is going on inside the application. Because this is mostly done
using the main window of an application, there is a special top-
level window class named KTMainWindow. It contains every-
thing that is needed to manage the menu bar, the toolbars,
and/or the status bar. At your request, the KTMainWindow will
construct these items for you, supply you with a place to
insert the widget that is to be used as the main window of your
application, and then manage the user’s interaction with the
various pieces it contains. You could, if you wish, create all of
these widgets and manage them yourself, but it is much sim-
pler to let KTMainWindow do it.

KTMainWindow
The KTMainWindow class is a widget that is a combination of
facilities designed to make it ideal for the top-level window 
of an application. Not only is it a container that holds the
main widget (also called the view widget), it also handles the
basic mechanics of creating and managing a menu bar, a sta-
tus bar, and one or more toolbars.

The KTMainWindow must always be created with the new
command because, when the KTMainWindow closes, it
frees itself along with its internally allocated memory. If it is
either defined as a global object or on the stack, the pro-
gram will crash in the attempt to free the memory.

Note

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Providing your main
application window
with a menu bar

Popping up a menu
from within a widget

Displaying one or
more toolbars in the
main application
window

Updating the text in 
a status bar on the
main window

✦ ✦ ✦ ✦

4682-1 ch06.f.qc  11/13/00  14:10  Page 123



124 Part I ✦ Getting Started

The following example program uses a KTMainWindow to create a top-level window
that has a simple menu, a toolbar, and a status bar surrounding a top-level widget,
as shown in Figure 6-1.

Figure 6-1: Using a KTMainWindow to create 
and control the main window of an application

SimpleMain Header
1 /* simplemain.h */
2 #ifndef SIMPLEMAIN_H
3 #define SIMPLEMAIN_H
4 
5 #include <ktmainwindow.h>
6 #include <kmenubar.h>
7 #include <ktoolbar.h>
8 #include <kstatusbar.h>
9 
10 class SimpleMain: public KTMainWindow
11 {
12     Q_OBJECT
13 public:
14     SimpleMain();
15 private slots:
16     void slotExit();
17     bool queryClose();
18 private:
19     void createMainWidget();
20     void createMenu();
21     void createStatusBar();
22     void createToolBar();
23 };
24 
25 #endif

Lines 5 through 8 include the header files that define the KTMainWindow class and
the three classes that will be included as part of the main window. On line 10, the
SimpleMain class definition specifies KTMainWindow as its base class. While it is
possible to instantiate a KTMainWindow directly, using it as a base class provides
much more flexibility.

4682-1 ch06.f.qc  11/13/00  14:10  Page 124



125Chapter 6 ✦ Menus and Toolbars

SimpleMain
1 /* simplemain.cpp */
2 #include <kapp.h>
3 #include <kcmdlineargs.h>
4 #include <qpushbutton.h>
5 #include “simplemain.h”
6 
7 int main(int argc,char **argv)
8 {
9     KCmdLineArgs::init(argc,argv,”simplemain”,
10         “Simple Main”,”0.0”);
11     KApplication app;
12     SimpleMain *simplemain = new SimpleMain();
13     simplemain->show();
14     return(app.exec());
15 }
16 SimpleMain::SimpleMain() : KTMainWindow()
17 {
18     createMainWidget();
19     createMenu();
20     createStatusBar();
21     createToolBar();
22 }
23 void SimpleMain::createMainWidget()
24 {
25     QPushButton *button =
26             new QPushButton(“Top Level\nWidget”,this);
27     setView(button);
28 }
29 void SimpleMain::createMenu()
30 {
31     KMenuBar *menubar =  menuBar();
32     QPopupMenu *popup = new QPopupMenu();
33     popup->insertItem(“E&xit”,this,SLOT(slotExit()));
34     menubar->insertItem(“&File”,popup);
35 }
36 void SimpleMain::createStatusBar()
37 {
38     KStatusBar *status = statusBar();
39     status->insertItem(“Status Bar”,1);
40 }
41 void SimpleMain::createToolBar()
42 {
43     KToolBar *toolbar = toolBar(0);
44     QPixmap pixmap(“flag.png”);
45     toolbar->insertButton(pixmap,5);
46 }
47 void SimpleMain::slotExit()
48 {
49     kapp->exit(0);

4682-1 ch06.f.qc  11/13/00  14:10  Page 125



126 Part I ✦ Getting Started

50 }
51 bool SimpleMain::queryClose()
52 {
53     return(TRUE);
54 }

The mainline of the program is declared on lines 7 through 15. Line 11 initializes
KDE by creating a KApplication object. The main window of the application is 
created on line 12. Notice that it is not necessary to connect the app object with 
the SimpleMain object (that is, the KTMainWindow object) because the relation-
ships are established internally. That is part of the reason why there can only be
one KTMainWindow object in an application. The call to show() on line 13 causes
the main window to display, so the program proceeds immediately into the com-
mand loop by calling exec() on line 14.

The constructor is defined on line 16. All it does is call four methods to create the
four parts of the main window’s display. The method createMainWidget() on line
23 creates the widget that becomes the main window of the application. In this
example, the main window is simply the QPushButton created on line 25. The call to
setView() on line 27 inserts the widget as the main window — that is, as the view.

The menu bar is configured in the method createMenu() beginning on line 29. The
menu bar is created by the call to the method menuBar() on line 31. This method
can be called any number of times and it will always return the same KMenuBar
pointer because there can only be one menu bar in a KTMainWindow. The first call
to menuBar() will create a new menu only if one does not already exist. If you pre-
fer, you can create your own menu and insert it into the KTMainWindow as follows:

KMenuBar *myMenuBar = new KMenuBar();
setMenu(myMenuBar);

To flesh out the menu bar, a QPopupMenu object is created on line 32. This object
can be inserted into the KMenuBar to act as the pop-up container of a column of
buttons. This example inserts only a single button with the call to insertItem()
on line 33. The button is labeled “E&xit” and will call the slot method slotExit().
The call to insertItem() on line 34 inserts the pop-up menu into the menu bar.

As shown in Figure 6-2, the user can drag the toolbar to the side of the window, con-
verting the toolbar to a vertical orientation. It is also possible to place the toolbar
on the right or at the bottom of the window.

Figure 6-2: Alternate locations for 
the menu bar and toolbar

4682-1 ch06.f.qc  11/13/00  14:10  Page 126



127Chapter 6 ✦ Menus and Toolbars

The method createStatusBar() on line 36 calls statusBar() to create and
install a widget capable of displaying a single line of text. Your program has access
to the text of the status bar, so it can keep it constantly updated. Unlike the toolbar
and the menu bar, the status bar cannot be moved to another location.

The method createToolBar() on line 41 creates a toolbar by calling toolBar()
on line 43. An ID number is required as an argument because your application can
have as many toolbars as you would like. You supply the ID number and, if there is
no toolbar with that ID, one is created and returned. Using the same ID number will
always return the same toolbar. For this example, a pixmap is used to create a sin-
gle toolbar button.

The toolbar can be moved outside of its parent window. Figure 6-3 shows the result
of using the handle at the left end of the toolbar to “tear off” the menu from its par-
ent window and establish it as its own stand-alone window.

Figure 6-3: Tear-off menus and toolbars

The method named slotExit() on line 47 is called whenever the user selects Exit
from the menu. You may need to do some kind of cleanup here and save currently
unsaved data, but this example simply calls the exit() method in the application.
The global variable named kapp always contains a pointer to the KApplication
object.

The slot method named queryClose() on line 51 is called when the figure X in the
upper right corner of the application’s frame is selected. If this slot returns TRUE,
the application is immediately closed. If it returns FALSE, no action will be taken
(the signal from the X button will be ignored).

This is the skeleton of an application. Allowing KTMainWindow to do most of the
work, your top-level window can be very sophisticated with only a few lines of
code. The rest of this chapter describes the details of configuring the menu bar 
and toolbars, and displaying information via the status bar.

4682-1 ch06.f.qc  11/13/00  14:10  Page 127



128 Part I ✦ Getting Started

The Menu Bar
Basically, a menu is a collection of buttons with a slot attached to each one. The
dynamics of a menu simplifies access to the buttons by making a specific subset of
them available at any one time. There are different ways of organizing and decorat-
ing the buttons. The following example creates the window shown in Figure 6-4.
This menu bar was contrived to demonstrate the different things you can use in 
the construction of a menu.

Figure 6-4: An application 
with a menu bar at the top

The header file mostly contains declarations of slots that will be called whenever a
menu button is selected, but there is also some private data that is needed to track
the status of menu buttons that are toggled from one state to another. The MenuMain
class inherits from the KTMainWindow class, so it already has the capability to dis-
play and manage a menu.

MenuMain Header
1 /* menumain.h */
2 #ifndef MENUMAIN_H
3 #define MENUMAIN_H
4 
5 #include <ktmainwindow.h>
6 #include <kmenubar.h>
7 #include <ktoolbar.h>
8 #include <kstatusbar.h>
9 
10 class MenuMain: public KTMainWindow
11 {
12     Q_OBJECT
13 public:
14     MenuMain();
15 private:
16     QPopupMenu *checkPopup;
17     int enableColorsID;
18     int enableGraphicsID;
19 private slots:
20     void slotExit();
21     bool queryClose();
22     void slotNew();
23     void slotSave();

4682-1 ch06.f.qc  11/13/00  14:10  Page 128



129Chapter 6 ✦ Menus and Toolbars

24     void slotSaveAs();
25     void slotClose();
26     void slotLogo();
27     void slotSub();
28     void slotEnableColors();
29     void slotEnableGraphics();
30 private:
31     void createMainWidget();
32     void createMenu();
33 };
34 
35 #endif

MenuMain
1 /* menumain.cpp */
2 #include <kapp.h>
3 #include <khelpmenu.h>
4 #include <kcmdlineargs.h>
5 #include <qpushbutton.h>
6 #include <qwhatsthis.h>
7 #include “menumain.h”
8 
9 int main(int argc,char **argv)
10 {
11     KCmdLineArgs::init(argc,argv,”menumain”,
12         “Menu Main”,”0.0”);
13     KApplication app;
14     MenuMain *menumain = new MenuMain();
15     menumain->show();
16     return(app.exec());
17 }
18 MenuMain::MenuMain() : KTMainWindow()
19 {
20     createMainWidget();
21     createMenu();
22 }
23 void MenuMain::createMainWidget()
24 {
25     QPushButton *button =
26             new QPushButton(“Top Level\nWidget”,this);
27     QWhatsThis::add(button,
28         “Button\n\n”
29         “This button is used as the top\n”
30         “level widget for this example. It\n”
31         “is very safe to click the button\n”
32         “because it doesn’t do anything.\n”);
33     setView(button);
34 }
35 void MenuMain::createMenu()
36 {

4682-1 ch06.f.qc  11/13/00  14:10  Page 129



130 Part I ✦ Getting Started

37     QPopupMenu *popup;
38     QPopupMenu *popup2;
39     QPixmap pixmap;
40     KMenuBar *menubar =  menuBar();
41 
42     popup = new QPopupMenu();
43     popup->insertItem(“&New”,this,
44             SLOT(slotNew()),ALT+Key_N);
45     popup->insertItem(“&Save”,this,
46             SLOT(slotSave()),CTRL+Key_S);
47     popup->insertItem(“Save As”,this,
48             SLOT(slotSaveAs()),CTRL+SHIFT+Key_S);
49     pixmap.load(“flag.png”);
50     QIconSet iconset(pixmap);
51     popup->insertItem(iconset,”Close”,this,
52             SLOT(slotClose()));
53     popup->insertSeparator();
54     popup->insertItem(“Exit”,this,
55             SLOT(slotExit()),ALT+Key_X);
56     menubar->insertItem(“&File”,popup);
57 
58     checkPopup = new QPopupMenu();
59     checkPopup->setCheckable(TRUE);
60     enableColorsID = checkPopup->insertItem(
61             “Enable Colors”,this,SLOT(slotEnableColors()));
62     checkPopup->setItemChecked(enableColorsID,TRUE);
63     enableGraphicsID = checkPopup->insertItem(
64             “Enable Graphics”,this,
65             SLOT(slotEnableGraphics()));
66     checkPopup->setItemChecked(enableGraphicsID,FALSE);
67     menubar->insertItem(“&Toggles”,checkPopup);
68 
69     popup = new QPopupMenu();
70     pixmap.load(“tinylogo.png”);
71     popup->insertItem(pixmap,this,SLOT(slotLogo()));
72     pixmap.load(“qtlogo.png”);
73     popup->insertItem(pixmap,this,SLOT(slotLogo()));
74     menubar->insertItem(“&Pixmaps”,popup);
75 
76     popup = new QPopupMenu();
77     popup2 = new QPopupMenu();
78     popup2->insertItem(“Horizontal”,this,SLOT(slotSub()));
79     popup2->insertItem(“Vertical”,this,SLOT(slotSub()));
80     popup->insertItem(“Orientation...”,popup2);
81     menubar->insertItem(“Submenu”,popup);
82 
83     KHelpMenu *help = new KHelpMenu(this,
84         “Text that will appear in\n”
85         “a very simple About box”);
86     popup = help->menu();

4682-1 ch06.f.qc  11/13/00  14:10  Page 130



131Chapter 6 ✦ Menus and Toolbars

87     menubar->insertItem(“&Help”,popup);
88 }
89 void MenuMain::slotExit()
90 {
91     kapp->exit(0);
92 }
93 bool MenuMain::queryClose()
94 {
95     return(TRUE);
96 }
97 void MenuMain::slotEnableColors()
98 {
99     if(checkPopup->isItemChecked(enableColorsID))
100         checkPopup->setItemChecked(enableColorsID,FALSE);
101     else
102         checkPopup->setItemChecked(enableColorsID,TRUE);
103 }
104 void MenuMain::slotEnableGraphics()
105 {
106     if(checkPopup->isItemChecked(enableGraphicsID))
107         checkPopup->setItemChecked(enableGraphicsID,FALSE);
108     else
109         checkPopup->setItemChecked(enableGraphicsID,TRUE);
110 }
111 void MenuMain::slotNew() {}
112 void MenuMain::slotSave() {}
113 void MenuMain::slotSaveAs() {}
114 void MenuMain::slotClose() {}
115 void MenuMain::slotLogo() {}
116 void MenuMain::slotSub() {}

The mainline of the program, beginning on line 10, creates a MenuMain object, dis-
plays it, and calls exec() to wait for input. The constructor of MenuMain, beginning
on line 15, calls createMainWidget() to provide a widget to act as the main win-
dow, and then calls createMenu() to add the menu bar to the top of the window.

The method createMainWidget(), beginning on line 23, creates a pushbutton and
installs it as the main window of the application. The button is installed by the call
to setView() on line 33. The call to QWhatsThis::add() on line 27 is called to
relate some descriptive text with the button — the user can display the text from
the Help menu.

The method createMenu() beginning on line 35 creates the menu bar and all of its
members. There is one menu bar inside the KTMainWindow widget, and its address
is retrieved and stored in the menubar pointer on line 37. Actually, the menu bar
does not exist until the menuBar() method is called, but subsequent menuBar()
calls return the same menu bar pointer.

4682-1 ch06.f.qc  11/13/00  14:10  Page 131



132 Part I ✦ Getting Started

Each button appearing on the menu bar represents one QPopupMenu object. The
first one is created on line 42 and added to the menu bar on line 56. Between lines
42 and 56 a number of items are inserted in the pop-up menu, resulting in a menu
that looks like the one shown in Figure 6-5.

Figure 6-5: A menu with icons 
and accelerators

The call to insertItem() on line 56 specifies that the name of the menu be “File,”
and the accelerator key be Alt-F. That is, writing the label as “&File” instead of sim-
ply “File” results in the letter being underlined when it is displayed; and pressing
the Alt-F key combination will cause the menu to appear, just as if you had selected
it with the mouse. The up and down arrow keys can be used to locate a member of
the menu; and the Return or Enter key will select it, just as if you had clicked it with
the mouse.

The item labeled “New” is created with the call to insertItem() on line 43. The
accelerator key is specified by the constant value ALT+Key_N. This is a shortcut for
selecting the menu item; whenever the application has the keyboard focus, typing
ALT-N produces the same result as selecting the New entry with the mouse. The
accelerator key appears on the right, as you can see in Figure 6-5. Notice that the
ampersand preceding the letter N causes it to be underlined; however, unlike the
menu bar, this does not automatically assign an accelerator key. You can underline,
or not underline, as you choose. The “Save As” selection has an accelerator key, but
does not have a letter underlined.

The accelerator keys are specified by special values that specify the key and its
modifiers. Three modifiers are available: ALT, CTRL, and SHIFT. You can use none,
one, two, or all three of them in combination with a key. For example, the “Save As”
entry defined on line 47 uses both the CTRL and SHIFT modifiers. Many keys can 
be used for accelerators. The following list contains some of the more commonly
used keys.

There are more keys defined than will appear on any one keyboard, but most of the
ones in this list are common enough that they should be useful, although I have
never seen a keyboard with 35 function keys. If you have some special keys that you
would like to use, look in the source of the Qt header file named qnamespace.h,
where you will find more than 230 keys listed.

4682-1 ch06.f.qc  11/13/00  14:10  Page 132



133Chapter 6 ✦ Menus and Toolbars

Key_0 through Key_9 Key_Down Key_Period

Key_Apostrophe Key_End Key_Plus

Key_Asterisk Key_Enter Key_Print

Key_A through Key_Z Key_Equal Key_QuoteDbl

Key_Backslash Key_Escape Key_Return

Key_BackSpace Key_F1 through Key_F35 Key_Right

Key_Backspace Key_Home Key_ScrollLock

Key_BraceLeft Key_Insert Key_Semicolon

Key_BraceRight Key_Left Key_Slash

Key_BracketLeft Key_Minus Key_Space

Key_BracketRight Key_Next Key_SysReq

Key_CapsLock Key_NumLock Key_Tab

Key_Colon Key_PageDown Key_Underscore

Key_Comma Key_PageUp Key_Up

Key_Delete

The Close menu item defined on lines 49 through 52 is shown in Figure 6-5 with an
icon displayed on its left. To do this, the first step is to create a pixmap containing
the graphics. This is done on line 49 by loading the data from the local disk file
named flag.png. The second step is to create a QIconSet object from the pixmap,
as is done on line 50. The menu item itself is created by the call to insertItem()
on line 48, with the QIconSet inserted as the first argument; otherwise, the argu-
ments are the same as before.

Chapter 13, “Graphic Manipulation,” describes other ways to create pixmaps.

To complete the File menu, line 53 inserts the horizontal separator line that
appears between Close and Exit. Lines 54 and 55 create the Exit menu member.

Figure 6-6 shows a menu with a pair of checkable buttons that can be toggled on
and off. The checkmark appears only when the button has been toggled on. In the
figure, the Enable Colors button is on and the Enable Graphics button is off.

Figure 6-6: A menu with toggle buttons

Cross-
Reference

4682-1 ch06.f.qc  11/13/00  14:10  Page 133



134 Part I ✦ Getting Started

The Toggles menu is created on line 58 and inserted into the menu bar on line 74.
The call to setCheckable() on line 59 configures the pop-up menu so that all of 
its items can be toggled on and off. This way, you can turn any item on the pop-up
menu into a toggled item simply by toggling it on and off.

The actual toggling is not automatic. The two slots for the toggle buttons — on lines
97 through 110 — check the current state of the toggle by calling isItemCheck(),
and then call setItemChecked() to toggle it to the other state. Because of the
arguments required to toggle buttons in the slot methods, it was necessary to store
a pointer to the pop-up menu, along with the ID numbers of the two buttons, on
lines 16 through 18 of the header file. The ID numbers are the return values from
itemInsert(), on lines 60 and 63, and are the only way you can address a specific
item inside a pop-up menu.

Instead of text, you can decorate your menus with pixmaps. Figure 6-7 shows a
menu using pixmaps for buttons. They work just like the text menu buttons, so they
can have accelerator keys and be toggle buttons. In the figure, you can see that one
pixmap is larger than the other — it is up to you to size your pixmaps, because each
menu item will expand to accommodate whatever you give to it.

Figure 6-7: A menu using 
pixmaps for buttons

The pop-up menu with the pixmaps is created on lines 70 through 74. Notice that
the same QPixmap object is used for both of the buttons — this works because the
insertItem() method makes its own local copy. The only difference between a
pixmap and a text button is the type of the first argument — on lines 71 and 73, a
QPixmap object reference is the first argument.

A submenu can be created by inserting one pop-up menu into another as one of its
items. Lines 76 through 81 create a second pop-up menu, named popup2, and insert
it into its parent menu with the label “Orientation...” The resulting menu, when
selected, looks like the one shown in Figure 6-8.

Figure 6-8: A menu with a submenu

4682-1 ch06.f.qc  11/13/00  14:10  Page 134



135Chapter 6 ✦ Menus and Toolbars

The KHelpMenu object is created on line 80 and installed as the rightmost member
of the menu bar on lines 86 and 87. The resulting menu is shown in Figure 6-9.

Figure 6-9: The layout of the standard
help menu

The “Contents” item, with the accelerator key F1, will display help text. The text
itself is provided by you as an HTML file. The name of the file depends on the name
of the application. For this example, named menumain, the index file of the help tree
for the English version is as follows:

/usr/doc/kde/HTML/en/menumain/index.html

The “What’s This” menu item will switch your application into a mode in which
every widget on display can be selected to display explanatory text about itself. 
In this example, the call to the static method QWhatsThis on line 24 inserts the
explanatory text into the button used as the main window. Making the selection
from the menu changes the cursor to a question mark that, when used to select an
item, will display the text. The text is displayed in a window with a simple border
and a yellow background, as shown in Figure 6-10.

Figure 6-10: Text displayed as a 
response to “What’s this?”

The two bottom buttons on the menu are the About boxes. The default About box
for the application is a simple block of text with an OK button, and there is a stan-
dard About box with information about the current version of KDE.

You can use KHelpMenu and replace the built-in About box with one of your own. To
do this, extend the KHelpMenu class and include a slot named aboutApplication().
Instead of popping up the default About box, this slot will be executed — and you can
create your own About box and display it.

4682-1 ch06.f.qc  11/13/00  14:10  Page 135



136 Part I ✦ Getting Started

You can find some examples of creating About boxes in Chapter 5.

Pop-up Menus
A QPopupMenu object does not need to be connected to a QMenuBar. A menu can be
popped up in the middle of a widget. All your application has to do is specify the
location and call the show() method. The following example responds to the right
mouse button by displaying a pop-up menu, as shown in Figure 6-11.

Figure 6-11: A menu pops up from 
the middle of a widget

MenuPopup Header
1 /* menupopup.h */
2 #ifndef MENUPOPUP_H
3 #define MENUPOPUP_H
4 
5 #include <qpopupmenu.h>
6 
7 class MenuPopup: public QWidget
8 {
9     Q_OBJECT
10 public:
11     MenuPopup(QWidget *parent=0,const char *name=0);
12 protected:
13     virtual void mousePressEvent(QMouseEvent *event);
14 private:
15     QPopupMenu *popup;
16 private slots:
17     void slotStub();
18 };
19 
20 #endif

On line 7, the class MenuPopup uses QWidget as its base class. And, because it is 
a widget, it inherits the virtual protected method mousePressEvent(), which 
is called whenever the mouse pointer is within the widget and a mouse button is
pressed.

Cross-
Reference

4682-1 ch06.f.qc  11/13/00  14:10  Page 136



137Chapter 6 ✦ Menus and Toolbars

MenuPopup
1 /* menupopup.cpp */
2 #include <kapp.h>
3 #include “menupopup.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”setxy”);
8     MenuPopup menupopup;
9     menupopup.show();
10     app.setMainWidget(&menupopup);
11     return(app.exec());
12 }
13 
14 MenuPopup::MenuPopup(QWidget *parent,const char *name)
15         : QWidget(parent,name)
16 {
17     setMinimumSize(90,40);
18     resize(200,100);
19 
20     popup = new QPopupMenu(this);
21     popup->insertItem(“Activate”,this,SLOT(slotStub()));
22     popup->insertItem(“Deactivate”,this,SLOT(slotStub()));
23     popup->insertItem(“Arrange”,this,SLOT(slotStub()));
24     popup->insertSeparator();
25     popup->insertSeparator();
26     popup->insertItem(“Logout”,this,SLOT(slotStub()));
27 }
28 
29 void MenuPopup::mousePressEvent(QMouseEvent *event)
30 {
31     if(event->button() == RightButton) {
32         popup->move(x() + event->x(),y() + event->y());
33         popup->exec();
34     }
35 }
36 void MenuPopup::slotStub() {}

The constructor of MenuPopup, beginning on line 14, creates a QPopupMenu object
and stores its address in popup, found on line 15 in the class definition. It isn’t
required, but the parent widget of the QPopupMenu is normally the widget that pops
up the menu. Lines 21 through 26 insert the items into the menu.

The virtual method mousePressedEvent() on line 29 overrides the one in the par-
ent QWidget class. The method is called whenever a mouse button is clicked. The
test on line 31 determines whether the right mouse button is the one selected; if so,
the call to move() positions the menu and the call to exec() pops it up. The coor-
dinate position, supplied to the call to move() on line 32, is the sum of the x and 
y coordinates of the parent widget and those of the mouse pointer. The resulting
coordinate is the location of the mouse on the screen, causing the menu to appear
directly beneath the mouse.

4682-1 ch06.f.qc  11/13/00  14:10  Page 137



138 Part I ✦ Getting Started

The Toolbar
KTMainWindow will manage as many toolbars as you care to insert into it. By default,
they will appear at the top of the window in the order that you insert them. If there is
also a menu, the toolbars will appear beneath it. And you can have more things in a
toolbar than just button icons. The following example, shown in Figure 6-12, installs
two toolbars containing buttons, separators, a combo box, and even a label widget.

Figure 6-12: A pair of toolbars 
containing several items

ToolbarMain Header
1 /* toolbarmain.h */
2 #ifndef TOOLBARMAIN_H
3 #define TOOLBARMAIN_H
4 
5 #include <ktmainwindow.h>
6 #include <ktoolbar.h>
7 
8 class ToolbarMain: public KTMainWindow
9 {
10     Q_OBJECT
11 public:
12     ToolbarMain();
13 private slots:
14     void slotExit();
15     void slotStub();
16     void slotFont(int index);
17     bool queryClose();
18 private:
19     void createMainWidget();
20     void createToolBarOne();
21     void createToolBarTwo();
22 };
23 
24 #endif

Because it is KTMainWindow that manages the toolbars, the class ToolbarMain is
defined as a subclass of  KTMainWindow on line 8. The slots defined on lines 14
through 16 receive calls when toolbar items are selected. The slot queryClose()
on line 17 is used by the system to ask your application for permission to close it.

4682-1 ch06.f.qc  11/13/00  14:10  Page 138



139Chapter 6 ✦ Menus and Toolbars

ToolbarMain
1 /* toolbarmain.cpp */
2 #include <kapp.h>
3 #include <qpushbutton.h>
4 #include <qstrlist.h>
5 #include <qcstring.h>
6 #include “toolbarmain.h”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”toolbarmain”);
11     ToolbarMain *toolbarmain = new ToolbarMain();
12     toolbarmain->show();
13     return(app.exec());
14 }
15 ToolbarMain::ToolbarMain() : KTMainWindow()
16 {
17     createMainWidget();
18     createToolBarOne();
19     createToolBarTwo();
20 }
21 void ToolbarMain::createMainWidget()
22 {
23     QPushButton *button =
24             new QPushButton(“Top Level\nWidget”,this);
25     setView(button);
26 }
27 void ToolbarMain::createToolBarOne()
28 {
29     QPixmap fpix(“flag.png”);
30     QPixmap rpix(“redo.png”);
31     QPixmap upix(“undo.png”);
32     QPixmap spix(“stop.png”);
33     QPixmap epix(“exit.png”);
34 
35     KToolBar *toolbar = toolBar(1);
36     toolbar->insertButton(fpix,5,SIGNAL(clicked()),
37             this,SLOT(slotStub()),TRUE,”Flag As Used”);
38     toolbar->insertButton(rpix,6,SIGNAL(clicked()),
39             this,SLOT(slotStub()),TRUE,”Redo”);
40     toolbar->insertButton(upix,7,SIGNAL(clicked()),
41             this,SLOT(slotStub()),TRUE,”Undo”);
42     toolbar->insertSeparator();
43     toolbar->insertButton(spix,7,SIGNAL(clicked()),
44             this,SLOT(slotStub()),TRUE,”Stop”);
45     toolbar->insertButton(epix,8,SIGNAL(clicked()),
46             this,SLOT(slotExit()),TRUE,”Exit Program”);
47 }
48 void ToolbarMain::createToolBarTwo()
49 {

4682-1 ch06.f.qc  11/13/00  14:10  Page 139



140 Part I ✦ Getting Started

50     QPixmap fpix(“bottom.png”);
51     KToolBar *toolbar = toolBar(2);
52     toolbar->insertButton(fpix,10,SIGNAL(clicked()),
53             this,SLOT(slotStub()),TRUE,”Go To Bottom”);
54 
55     toolbar->insertLineSeparator();
56 
57     QStrList *list = new QStrList();
58     list->insert(0,”Courier”);
59     list->insert(1,”Times Roman”);
60     list->insert(2,”Arial”);
61     toolbar->insertCombo(list,11,FALSE,
62             SIGNAL(activated(int)),
63             this,SLOT(slotFont(int)),
64             TRUE,”Select Font”,110);
65 
66     toolbar->insertSeparator();
67 
68     QLabel *label = new QLabel(“Any Widget”,toolbar);
69     toolbar->insertWidget(12,90,label);
70 }
71 void ToolbarMain::slotExit()
72 {
73     kapp->exit(0);
74 }
75 bool ToolbarMain::queryClose()
76 {
77     return(TRUE);
78 }
79 void ToolbarMain::slotStub() {}
80 void ToolbarMain::slotFont(int index) {}

The ToolbarMain constructor, beginning on line 15, calls methods to create a 
widget for the main window and a pair of toolbars. The main widget created in 
the method createMainWidget() found on line 21 is simply a pushbutton.

Toolbar number one (the top toolbar) is created in the method createToolBar
One() on line 27. As shown previously in Figure 6-12, each member of this toolbar
has its own pixmap. The pixmaps are loaded from files on lines 29 through 33. The
KToolBar is created by calling the method toolBar() that this class inherited
from KTMainWindow. Unlike the menu creation method described earlier, the
toolBar() method creates and returns a new toolbar every time you call it. And
the toolbar it returns to you has already been inserted into KTMainWindow as part
of the display.

There is a small space between the third and fourth members of the top toolbar.
This space is inserted by the call to insertSeparator() on line 42. If you want a
wider space, you can insert more separators.

4682-1 ch06.f.qc  11/13/00  14:10  Page 140



141Chapter 6 ✦ Menus and Toolbars

The second toolbar, created by the method createToolBarTwo() on line 48, con-
tains more than simple toolbar buttons. A normal toolbar button is added by the
call to insertButton() on line 52; and just to its right, a vertical line separator is
inserted with the call to insertLineSeparator() on line 55.

An array of strings is inserted into a QStrList object with calls to insert() on lines
58 through 60, and the array is used to install a combo box in the toolbar by calling
insertCombo() on line 61. Internally, KToolBar creates a standard QComboBox to
manage the list, so most of the information passed to insertCombo() is passed on to
the QComboBox. The insert() methods on lines 58 through 60 define the combo box
text, and assign an ID number to each one. The call to insertCombo() on line 61
specifies that the list be used to create the QComboBox, that it has an ID number of 11,
and that it is not writeable by the user. The signal is activated() and the slot is
slotFont(), and they both have an int argument so that the ID number of the 
selection can be passed to the slot method. The TRUE argument specifies that the
QComboBox is to be enabled. The string “Select Font” specifies the text of the tooltip,
and the number 110 specifies the width in pixels.

The combo box in this example calls the slot with the ID number, but it is possible
to use the character string instead. To do this, use the method activated
(String &) as the signal, and slotFont(String &) as the slot.

You can install any widget into a toolbar. If, for example, you want to have more
control over the QComboBox than you would have by calling insertCombo(), you
can create your own combo box and install it by calling insertWidget(). The code
on lines 68 and 69 creates and installs a label. Notice that the label doesn’t respond
to the mouse the way the other items do. When you are installing a widget, the tool-
bar assumes you have set up all of the signals and slots you will need to get your
responses.

The Status Bar
There is an optional KStatusBar widget included as part of KTMainWindow. It is
normally displayed at the bottom of the window, and it can be used by your appli-
cation to display, and continuously update, a line of text. The following example,
shown in Figure 6-13, uses a status bar to display the current value of an internal
counter that is incremented and decremented by a pair of buttons.

Figure 6-13: A status bar tracking a value

Note

4682-1 ch06.f.qc  11/13/00  14:10  Page 141



142 Part I ✦ Getting Started

StatusBarMain Header
1 /* statusbarmain.h */
2 #ifndef STATUSBARMAIN_H
3 #define STATUSBARMAIN_H
4 
5 #include <ktmainwindow.h>
6 #include <kstatusbar.h>
7 
8 class StatusBarMain: public KTMainWindow
9 {
10     Q_OBJECT
11 public:
12     StatusBarMain();
13 private:
14     int counter;
15     KStatusBar *status;
16 private slots:
17     bool queryClose();
18     void slotAddOne();
19     void slotSubtractOne();
20 private:
21     void createMainWidget();
22     void createStatusBar();
23 };
24 
25 #endif

The class StatusBarMain, defined beginning on line 8, inherits from the KTMain
Window class, which means it inherits a KStatusBar. The value to be tracked is
defined as counter on line 14; and, for convenient access, the KStatusBar pointer
will be stored in status, defined on line 15.

StatusBarMain
1 /* statusbarmain.cpp */
2 #include <kapp.h>
3 #include <qpushbutton.h>
4 #include <kcontainer.h>
5 #include “statusbarmain.h”
6 
7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”statusbarmain”);
10     StatusBarMain *statusbarmain = new StatusBarMain();
11     statusbarmain->show();
12     return(app.exec());
13 }
14 StatusBarMain::StatusBarMain() : KTMainWindow()
15 {
16     counter = 0;

4682-1 ch06.f.qc  11/13/00  14:10  Page 142



143Chapter 6 ✦ Menus and Toolbars

17     createMainWidget();
18     createStatusBar();
19 }
20 void StatusBarMain::createMainWidget()
21 {
22     KContainerLayout *layout =
23             new KContainerLayout(this,”layout”);
24     layout->setOrientation(KContainerLayout::Vertical);
25 
26     QPushButton *button;
27     button = new QPushButton(“Add One”,this);
28     connect(button,SIGNAL(clicked()),
29             this,SLOT(slotAddOne()));
30     layout->packStart(button);
31     button = new QPushButton(“Subtract One”,this);
32     connect(button,SIGNAL(clicked()),
33             this,SLOT(slotSubtractOne()));
34     layout->packStart(button);
35 
36     layout->sizeToFit();
37     setView(layout);
38 }
39 void StatusBarMain::createStatusBar()
40 {
41     status = statusBar();
42     status->insertItem(QString(“>>”),1);
43     status->insertItem(QString(“Add or Subtract”),2);
44 }
45 void StatusBarMain::slotAddOne()
46 {
47     status->changeItem(
48             QString(“Plus 1 = %1”).arg(++counter),2);
49 }
50 void StatusBarMain::slotSubtractOne()
51 {
52     status->changeItem(
53             QString(“Minus 1 = %1”).arg(--counter),2);
54 }
55 bool StatusBarMain::queryClose()
56 {
57     return(TRUE);
58 }

The mainline of the program creates a StatusBarMain object, which, because it
inherits from KTMainWindow, automatically becomes the top-level window of the
application. The StatusBarMain constructor, beginning on line 14, initializes the
internal counter value to zero, and then creates the main widget and installs the 
initial text of the status bar.

4682-1 ch06.f.qc  11/13/00  14:10  Page 143



144 Part I ✦ Getting Started

The method createMainWidget() beginning on line 20 uses a KContainerLayout
widget to hold the two buttons, as shown previously in Figure 6-13. One button is
connected to the slot method slotAddOne() and the other is connected to
slotSubtractOne().

The status bar itself is initialized in the method createStatusBar() on line 39.
The call to statusBar() instantiates the status bar and returns a pointer to it.
Because there can only be one KStatusBar in a KTMainWindow, subsequent calls 
to statusBar() will return the address of the same status bar object. In fact, if you
are only going to need access to the status bar from inside this class, there is no
need to save the pointer yourself because it can always be retrieved.

Lines 42 and 43 call the insertItem() method of the status bar to insert the dis-
played string. The string is inserted in two parts (there can be more), and each one
is assigned an ID number. The strings will each be displayed in the order in which
you add them, and the ID numbers are needed if you wish to change them. This way,
you can change part of the string without the necessity of changing all of it. For
example, the slot method slotAddOne() on line 45 is called whenever the “Add”
button is selected, causing the counter to be incremented; and the status bar text
with ID number 2 is replaced by the call to changeItem(). The text with the ID num-
ber 1 is not changed. Similarly, the “Subtract” button executes slotSubtractOne()
on line 50, which decrements the counter and changes only the text of ID number 2.

The arg() methods of the QString class are used to format various data types
into strings. Examples of all the data types, and the formatting options, are
described in Chapter 16, which discusses some of the utility classes.

You can break the displayed string into as many text segments (or, if you prefer,
text items) as you wish, and work with each one individually. You can also call the
KStatusBar method clear() to remove the text from all the ID numbers.

Summary
The KTMainWindow class is a special top-level window containing code that can be
used to supply the user with access to the facilities of the application, and to keep
the user informed of the application’s current status.

✦ A menu bar can be displayed at either the top or bottom of the top-level win-
dow. At the user’s discretion, it can be torn off the top-level window and
appear as a separate entity on the screen.

✦ Any window can have a menu pop up under control of the mouse or key-
board. Making a selection from this menu, or clicking the mouse on another
location, will remove the menu from the display. 

Note

4682-1 ch06.f.qc  11/13/00  14:10  Page 144



145Chapter 6 ✦ Menus and Toolbars

✦ A number of toolbars can be individually positioned on any of the four sides
of the top-level window, or each one can be torn off to appear as an indepen-
dent item on the screen.

✦ A status bar, with constantly updated text, can be made to appear at the bot-
tom of the top-level window.

Chapter 7 describes widgets that can be used to create and display related collec-
tions, such as a group of radio buttons that can all interact with one another so that
only one of them can be selected at any one time, or a combo box that allows the
user to select one or more items from a list.

✦ ✦ ✦

4682-1 ch06.f.qc  11/13/00  14:10  Page 145



4682-1 ch06.f.qc  11/13/00  14:10  Page 146



Grouping
Widgets

This chapter examines several of the widgets and contain-
ers that can be used to solve some of the problems that

often arise when windows are being laid out. For example, 
it is possible to create a single widget that holds a set of 
buttons, and to have all these buttons attached to the same
slot. There is a need to relate radio buttons to one another
because selecting one of them causes the others in the group
to become deselected. Sometimes groups of widgets are
related by the function they perform, and there is a way 
to draw a frame around them so you can indicate this to 
the user.

KButtonBox
It is very common to have a row of buttons across the bottom
of a dialog window. The class KButtonBox is a container wid-
get that simplifies the task of positioning the row of buttons.
The following example uses a KButtonBox to manage three
buttons arranged horizontally:

1 /* hbuttonbox.cpp */
2 #include <kapp.h>
3 #include <kbuttonbox.h>
4 
5 int main(int argc,char **argv)
6 {
7     QPushButton *button1;
8     QPushButton *button2;
9     QPushButton *button3;
10     KApplication
app(argc,argv,”vbuttonbox”);
11 
12     KButtonBox *box =
13             new
KButtonBox(0,KButtonBox::HORIZONTAL,25,15);

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Organizing a set of
buttons to work with
a single slot

Interlinking a set 
of radio buttons

Relating a set of
check buttons

Enabling the frames
built into some
widgets

Decorating your
widgets with frames

Sliding separator
bars to resize
multiple widgets

✦ ✦ ✦ ✦

4682-1 ch07.f.qc  11/13/00  14:11  Page 147



148 Part I ✦ Getting Started

14     button1 = box->addButton(“First Button”);
15     button2 = box->addButton(“Second Button”);
16     button3 = box->addButton(“Third Button”);
17     box->layout();
18     box->show();
19     box->resize(10,10);
20 
21     app.setMainWidget(box);
22     return(app.exec());
23 }

The button box is created on lines 12 and 13. The first argument is normally 
the address of the parent widget, but because this example is using it as a top-
level window, it has no parent. The second argument specifies the orientation of 
the buttons —HORIZONTAL or VERTICAL. The two last arguments specify the mini-
mum spacing to be inserted around the buttons. The first number specifies the 
minimum distance in pixels between each button and the edge of the KButtonBox.
The second number specifies the distance in pixels between the buttons. The result
is the row of buttons shown in Figure 7-1.

Figure 7-1: Three buttons contained in a 
KButtonBox

The calls to addButton() on lines 14 through 16 create the buttons — that is, the
KButtonBox creates each button and returns a pointer to it. To keep the example
simple, the buttons are not connected to slots. The call to layout() on line 17 is
necessary because it tells the KButtonBox that you are not going to be adding any-
thing else and that it should go ahead and configure itself. Lines 18 and 19 are the
same as for any other widget — the KButtonBox is instructed to display itself (and,
thus, all its contents); and it is sized in such a way that it assumes its minimum
height and width.

The buttons in Figure 7-1 are all the same size. If you would rather have the width 
of the buttons vary according to the length of the text they contain, you can specify
this as the second argument to the addButton() method. For example, the follow-
ing code causes the buttons to vary in width according to the text they contain:

button1 = box->addButton(“First Button”,TRUE);
button2 = box->addButton(“Second Button”,TRUE);
button3 = box->addButton(“Third Button”,TRUE);

Making this second argument FALSE (the default) will cause KButtonBox to deter-
mine the size of the widest button and resize the others to match it.

4682-1 ch07.f.qc  11/13/00  14:11  Page 148



149Chapter 7 ✦ Grouping Widgets

Rarely does the width of the KButtonBox match exactly the width of the dialog that
contains it, so you may want to specify how and where it stretches itself to fit. The
layout at the top of Figure 7-2 shows the default stretch, with all the buttons on 
the left. The layout at the bottom of the figure shows what happens if you specify 
a stretch point.

Figure 7-2: A KButtonBox with and without stretch defined

To do this, insert the stretch point between two buttons as follows:

button1 = box->addButton(“First Button”);
button2 = box->addButton(“Second Button”);
box->addStretch(1)
button3 = box->addButton(“Third Button”);

The stretching is done the same as it is for the containers discussed in Chapter 3.
That is, you can add as many stretch points as you like; and each one will stretch 
in proportion to the others — the proportions are determined by the value of the
argument in addStretch().

With a single change, the previous example can be converted to a vertical orientation.
Change the second argument on the constructor to VERTICAL:

KButtonBox *box =
new KButtonBox(0,KButtonBox::VERTICAL,25,15);

The resulting window is shown in Figure 7-3. The space separating the buttons from
the edges and from one another are specified in the same way. When the window is
stretched vertically, the KButtonBox will simply insert space at the bottom, or at
whatever locations you specify for stretching.

Figure 7-3: A KButtonBox with vertical orientation

4682-1 ch07.f.qc  11/13/00  14:11  Page 149



150 Part I ✦ Getting Started

Grouping Buttons with a Single Slot
A QButtonGroup object can be used to organize a group of buttons either horizon-
tally or vertically. Each button added to the group is assigned an ID number and
you can, if you wish, use a single slot method for all of the buttons. While you can
create a QButtonGroup directly, it is simpler to use either a QHButtonGroup or a
QVButtonGroup, depending on whether you want the buttons to be arranged hori-
zontally or vertically. A QButtonGroup is also a QFrame, so you can use the QFrame
method calls to change the appearance of the grouping.

The following example contains four buttons inside a horizontal QButtonGroup.
Beneath the row of buttons, as shown in Figure 7-4, is a label that has its text
updated as each button is pushed.

Figure 7-4: The QHButtonGroup 
widget organizes buttons horizontally.

HorizPush Header
1 /* horizpush.h */
2 #ifndef HORIZPUSH_H
3 #define HORIZPUSH_H
4 
5 #include <qwidget.h>
6 #include <qlabel.h>
7 
8 class HorizPush: public QWidget
9 {
10     Q_OBJECT
11 public:
12     HorizPush(QWidget *parent=0,const char *name=0);
13 private:
14     QLabel *label;
15     enum ButtonChoice { SetColor, Configure, Clear, Exit };
16 private slots:
17     void slotButton(int ID);
18 };
19 
20 #endif

The label declared on line 14 is the one that displays the text at the bottom of the
window. The enumerated list on line 15 is used as the ID numbers attached to each
of the buttons so the slot method can determine which button was clicked.

4682-1 ch07.f.qc  11/13/00  14:11  Page 150



151Chapter 7 ✦ Grouping Widgets

HorizPush
1 /* horizpush.cpp */
2 #include <kapp.h>
3 #include <qlayout.h>
4 #include <qhbuttongroup.h>
5 #include <qpushbutton.h>
6 #include “horizpush.h”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”horizpush”);
11     HorizPush *horizpush = new HorizPush();
12     horizpush->show();
13     app.setMainWidget(horizpush);
14     return(app.exec());
15 }
16 
17 HorizPush::HorizPush(QWidget *parent,const char *name)
18     : QWidget(parent,name)
19 {
20     QPushButton *button;
21     QVBoxLayout *layout = new QVBoxLayout(this,5);
22 
23     QHButtonGroup *group = new QHButtonGroup(this,”hg1”);
24     button = new QPushButton(“Set Color”,group);
25     group->insert(button,SetColor);
26     button = new QPushButton(“Configure”,group);
27     group->insert(button,Configure);
28     button = new QPushButton(“Clear”,group);
29     group->insert(button,Clear);
30     button = new QPushButton(“Exit”,group);
31     group->insert(button,Exit);
32     connect(group,SIGNAL(clicked(int)),
33             this,SLOT(slotButton(int)));
34     layout->addWidget(group);
35 
36     label = new QLabel(“ “,this);
37     layout->addWidget(label);
38 
39     resize(10,10);
40     layout->activate();
41 }
42 void HorizPush::slotButton(int ID)
43 {
44     switch(ID) {
45     case SetColor:
46         label->setText(“Set Color button pressed”);
47         break;
48     case Configure:
49         label->setText(“Configure button pressed”);
50         break;

4682-1 ch07.f.qc  11/13/00  14:11  Page 151



152 Part I ✦ Getting Started

51     case Clear:
52         label->setText(“ “);
53         break;
54     case Exit:
55         kapp->exit(0);
56     }
57 }

The constructor, beginning on line 17, creates the window layout. The principal 
layout manager is a vertical box, created on line 21, that contains two widgets —
QHButtonGroup on the top and QLabel on the bottom.

The QHButtonGroup is created on line 23 using the HorizPush object as its parent
widget, because although the QVBoxLayout object acts as a container, it is not 
a widget. The HorizPush object inherits QWidget, so it can act as the parent of
another widget.

Lines 24 through 31 create the four pushbuttons and insert them into the
QHButtonGroup. Because a QHButtonGroup is also a widget, it can act as the 
parent of the pushbutton widgets. The calls to insert() assign an ID number to
each button as it inserts it into the group. If you do not specify ID numbers, the 
first button will default to 0, the second to 1, and so on. However, because these ID
numbers are the only way you will have to identify the buttons, it is a good idea to
specify them yourself. In this example, the values are declared as values in an enu-
merated type, which should make it a simple matter to add or remove buttons.

On line 32, a call to connect() attaches the checked() signal of the QHButtonGroup
to the local slot named slotButton(). On line 34, the QHButtonGroup is inserted
into the top of the vertical box. On lines 36 and 37, a label is created and stored in 
the bottom of the vertical box.

Internally, the QHButtonGroup has a slot that receives the clicked() signals from
each of the buttons. It then issues its own clicked() signal, which carries the ID
number assigned to the button. The slot named slotButton() on line 42 receives
the signal and uses the ID number to determine what action is to be taken. If the ID
is equal to SetColor or Configure, the text is set accordingly. If the ID is equal to
Clear, the text is cleared. An Exit value will cause the program to exit.

Whereas a QHButtonGroup widget can be used to display buttons horizontally, 
a QVButtonGroup can be used to display them vertically. The process required is
exactly the same as the one used to create the horizontal grouping. To change the
previous example so it displays the window shown in Figure 7-5, change line 4 to
include the vertical button group instead of the horizontal button group:

#include <qhbuttongroup.h>

Then change line 23 so it creates a vertical instead of horizontal button group, 
like this:

QVButtonGroup *group = new QVButtonGroup(this,”vg1”);

4682-1 ch07.f.qc  11/13/00  14:11  Page 152



153Chapter 7 ✦ Grouping Widgets

Figure 7-5: The QVButtonGroup widget 
organizes buttons vertically.

Grouping Radio Buttons
A QVButtonGroup can be used to handle the relationship among a vertical set of
radio buttons, and a QHButtonGroup can be used to control a horizontal set. When-
ever a QRadioButton is inserted into a QButtonGroup, it becomes related to the
other buttons in such a way that only one can be selected. The window shown in
Figure 7-6 is produced by the following example.

Figure 7-6: The QVButtonGroup widget 
controls a set of radio buttons.

VertRadio Header
1 /* vertradio.h */
2 #ifndef VERTRADIO_H
3 #define VERTRADIO_H
4 
5 #include <qwidget.h>
6 #include <qlabel.h>
7 
8 class VertRadio: public QWidget
9 {
10     Q_OBJECT
11 public:
12     VertRadio(QWidget *parent=0,const char *name=0);
13 private:
14     QLabel *label;
15     enum ButtonChoice { Total, Average,
16             Maximum, Minimum, Exit };
17 private slots:
18     void slotButton(int ID);
19 };
20 
21 #endif

4682-1 ch07.f.qc  11/13/00  14:11  Page 153



154 Part I ✦ Getting Started

Each button has a unique ID number, and the values in the enumeration Button
Choice defined on line 15 enable your program to refer to each number by a name.

VertRadio
1 /* vertradio.cpp */
2 #include <kapp.h>
3 #include <qlayout.h>
4 #include <qvbuttongroup.h>
5 #include <qradiobutton.h>
6 #include <qpushbutton.h>
7 #include “vertradio.h”
8 
9 int main(int argc,char **argv)
10 {
11     KApplication app(argc,argv,”vertradio”);
12     VertRadio *vertradio = new VertRadio();
13     vertradio->show();
14     app.setMainWidget(vertradio);
15     return(app.exec());
16 }
17 
18 VertRadio::VertRadio(QWidget *parent,const char *name)
19     : QWidget(parent,name)
20 {
21     QRadioButton *button;
22     QVBoxLayout *layout = new QVBoxLayout(this,5);
23 
24     QVButtonGroup *group = new QVButtonGroup(this,”vg1”);
25     button = new QRadioButton(“Total”,group);
26     group->insert(button,Total);
27     button = new QRadioButton(“Average”,group);
28     group->insert(button,Average);
29     button = new QRadioButton(“Maximum”,group);
30     group->insert(button,Maximum);
31     button = new QRadioButton(“Minimum”,group);
32     group->insert(button,Minimum);
33     QPushButton *pButton = new QPushButton(“Exit”,group);
34     group->insert(pButton,Exit);
35     connect(group,SIGNAL(clicked(int)),
36             this,SLOT(slotButton(int)));
37     layout->addWidget(group);
38 
39     label = new QLabel(“ “,this);
40     layout->addWidget(label);
41 
42     resize(10,10);
43     layout->activate();
44 }
45 void VertRadio::slotButton(int ID)
46 {
47     switch(ID) {
48     case Total:
49         label->setText(“Total”);

4682-1 ch07.f.qc  11/13/00  14:11  Page 154



155Chapter 7 ✦ Grouping Widgets

50         break;
51     case Average:
52         label->setText(“Average”);
53         break;
54     case Maximum:
55         label->setText(“Maximum”);
56         break;
57     case Minimum:
58         label->setText(“Minimum”);
59         break;
60     case Exit:
61         kapp->exit(0);
62     }
63 }

This example creates a VertRadio object and uses it as the top-level window’s wid-
get. The constructor, beginning on line 18, uses a QVBoxLayout to contain the list of
buttons with a label beneath it. The label is used to indicate which button is active.

Lines 24 through 32 create four radio buttons and insert them into the QVButton
Group. A normal QPushButton is created on line 33 and installed in the same
QVButtonGroup widget on line 34. To create the buttons, the QVButtonGroup
is used as the parent widget. All radio buttons in QButtonGroup automatically
become related so that only one at a time will be selected. You can mix the types 
of buttons in the group because the QVButtonGroup relates radio buttons only —
any other kinds of buttons will remain independent entities.

The slot method slotButton() defined on line 45 is called for all of the buttons, no
matter what their type. Examining the value of the button ID, the slot method sets
the text of the label to indicate which radio button is currently on. The nonradio
button can be used to exit the program.

While it usually makes more sense to organize radio buttons vertically, if you find
yourself in a situation in which you need to arrange them horizontally, it can be done
very easily. The result of converting the previous example to a horizontal orientation
is shown in Figure 7-7. To make the conversion, change line 5 to the following:

#include <qhbuttongroup.h>

And change line 24 to the creation of a horizontal group box:

QHButtonGroup *group = new QHButtonGroup(this,”hg1”);

Figure 7-7: A group of radio buttons
organized horizontally

4682-1 ch07.f.qc  11/13/00  14:11  Page 155



156 Part I ✦ Getting Started

Grouping Check Buttons
A QCheckBox is a button that can be toggled between off and on states. The state is
maintained inside the QCheckBox itself. A check button is sometimes referred to as a
toggle button. The following example creates the collection of check buttons shown in
Figure 7-8. The checkmark only appears if a check button is in the on state.

Figure 7-8: A group of QCheckBox buttons organized vertically

VertCheck Header
1 /* vertcheck.h */
2 #ifndef VERTCHECK_H
3 #define VERTCHECK_H
4 
5 #include <qwidget.h>
6 #include <qlabel.h>
7 #include <qvbuttongroup.h>
8 
9 class VertCheck: public QWidget
10 {
11     Q_OBJECT
12 public:
13     VertCheck(QWidget *parent=0,const char *name=0);
14 private:
15     QVButtonGroup *group;
16     QLabel *label;
17     enum ButtonChoice { Total, Average,
18             Maximum, Minimum, Exit };
19     bool totalFlag;
20     bool averageFlag;
21     bool minimumFlag;
22     bool maximumFlag;
23 private slots:
24     void slotButton(int ID);
25 };
26 
27 #endif

4682-1 ch07.f.qc  11/13/00  14:11  Page 156



157Chapter 7 ✦ Grouping Widgets

The QVButtonGroup is included as part of the class data, on line 15, because the slot
that receives button information only supplies the button ID number, making it nec-
essary to query the group for the check button status. The current QCheckButton
status settings are stored in the Boolean variables defined on lines 19 through 22.

VertCheck
1 /* vertcheck.cpp */
2 #include <kapp.h>
3 #include <qlayout.h>
4 #include <qcheckbox.h>
5 #include <qpushbutton.h>
6 #include “vertcheck.h”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”vertcheck”);
11     VertCheck *vertcheck = new VertCheck();
12     vertcheck->show();
13     app.setMainWidget(vertcheck);
14     return(app.exec());
15 }
16 
17 VertCheck::VertCheck(QWidget *parent,const char *name)
18     : QWidget(parent,name)
19 {
20     QCheckBox *button;
21     QVBoxLayout *layout = new QVBoxLayout(this,5);
22 
23     group = new QVButtonGroup(this,”vg1”);
24     button = new QCheckBox(“Total”,group);
25     group->insert(button,Total);
26     button = new QCheckBox(“Average”,group);
27     group->insert(button,Average);
28     button = new QCheckBox(“Maximum”,group);
29     group->insert(button,Maximum);
30     button = new QCheckBox(“Minimum”,group);
31     group->insert(button,Minimum);
32     QPushButton *pButton = new QPushButton(“Exit”,group);
33     group->insert(pButton,Exit);
34     connect(group,SIGNAL(clicked(int)),
35             this,SLOT(slotButton(int)));
36     layout->addWidget(group);
37 
38     label = new QLabel(“ “,this);
39     layout->addWidget(label);
40 
41     totalFlag = FALSE;
42     averageFlag = FALSE;
43     minimumFlag = FALSE;
44     maximumFlag = FALSE;

4682-1 ch07.f.qc  11/13/00  14:11  Page 157



158 Part I ✦ Getting Started

45 
46     resize(10,10);
47     layout->activate();
48 }
49 void VertCheck::slotButton(int ID)
50 {
51     QButton *button = group->find(ID);
52     switch(ID) {
53     case Total:
54         totalFlag = ((QCheckBox *)button)->isChecked();
55         break;
56     case Average:
57         averageFlag = ((QCheckBox *)button)->isChecked();
58         break;
59     case Maximum:
60         maximumFlag = ((QCheckBox *)button)->isChecked();
61         break;
62     case Minimum:
63         minimumFlag = ((QCheckBox *)button)->isChecked();
64         break;
65     case Exit:
66         kapp->exit(0);
67     }
68     QString string;
69     if(totalFlag)
70         string += QString(“Tot “);
71     if(averageFlag)
72         string += QString(“Avg “);
73     if(maximumFlag)
74         string += QString(“Max “);
75     if(minimumFlag)
76         string += QString(“Min “);
77     label->setText(string);
78 }

The VertCheck constructor, beginning on line 17, creates a vertical box container;
and installs a QVButtonGroup for its top widget and a QLabel for its bottom widget.
The address of the QVButtonGroup is stored as group in the class. The call to
addWidget() makes the QVButtonGroup the top widget of the QVBoxLayout
layout manager.

Lines 24 through 31 create the four QCheckBox objects and insert them into the
QVButtonGroup. A fifth button — a standard pushbutton — is created and inserted
into group on lines 32 through 35. On lines 38 and 39, a label used to display the
text at the bottom of the window is created and installed into the layout.

The default condition of a QCheckBox is off, which is represented as FALSE, so lines
41 through 44 are used to set the four internal flags to the same values as the check

4682-1 ch07.f.qc  11/13/00  14:11  Page 158



159Chapter 7 ✦ Grouping Widgets

boxes. If you wish to preset one or more of the check boxes to being initially on, it
could be done like this:

button->setChecked(TRUE);

You would then set its corresponding Boolean value to TRUE. In fact, more than two
states are possible in the check box, as explained in the next section.

The slot method slotButton() on line 49 is called each time any one of the check
buttons is toggled. The ID value of the activated button is supplied as the argument
and, because this method will need to determine the check button’s internal state,
the call to find() on line 51 is used to retrieve the address of the check box itself.
The switch statement on line 52 is used to determine which button has been
selected. If the button is a check box, a call to isChecked() returns TRUE if the 
button is on and FALSE if it is off. Storing the check box state in a local Boolean 
variable gives the program quick access to the state of all the buttons.

If the value of ID indicates that it is the Exit button, the case statement on line 65
executes, causing a call to exit() to halt the application.

Lines 68 through 77 create a string specifying which of the toggles are currently on,
and set the string as the text of the label displayed at the bottom of the window
shown earlier in Figure 7-8.

Usually, groups of toggle buttons are arranged vertically, but there may be situa-
tions where you would like to arrange them horizontally. The previous example can
be reorganized to configure itself horizontally, as shown in Figure 7-9, by changing
line7 of vertcheck.h to the following:

#include <qhbuttongroup.h>

Also change line 15 of vertcheck.h to the following:

QHButtonGroup *group;

Also change line 23 of vertcheck.cpp to the following:

group = QHButtonGroup(this,”hg1”);

Figure 7-9: A group of QCheckBox 
buttons organized horizontally

4682-1 ch07.f.qc  11/13/00  14:11  Page 159



160 Part I ✦ Getting Started

Some Widgets Are Also Frames
If you need to enclose a collection of widgets in a frame or box to indicate that the
widgets are somehow related, act as a unit, or should otherwise be set apart from
other widgets in the same window, a QFrame widget can be used to enclose them in
a box. Even when no widgets are left outside the QFrame enclosure, the decorative
look of the frame can improve the overall appearance of a window.

In the inheritance tree, the immediate base class of QFrame is QWidget. This means
that any widget you construct can be decorated by simply using QFrame instead of
QWidget as the base class. And many of the existing widgets are already constructed
this way. For example, the QLabel widget uses QFrame as its base class but defaults
to having the decorations turned off — adding a frame to a label is simply a matter of
specifying the type and size. The following example displays the window shown in
Figure 7-10, which shows four labels with their frames enabled.

Figure 7-10: Four labels with their frames enabled

LabelFrame
1 /* labelframe.cpp */
2 #include <qlayout.h>
3 #include <qframe.h>
4 #include <kapp.h>
5 #include <qlabel.h>
6 #include “labelframe.h”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”labelframe”);
11     LabelFrame *labelframe = new LabelFrame();
12     labelframe->show();
13     app.setMainWidget(labelframe);
14     return(app.exec());
15 }
16 
17 LabelFrame::LabelFrame(QWidget *parent,const char *name)
18     : QWidget(parent,name)
19 {
20     QLabel *lab;

4682-1 ch07.f.qc  11/13/00  14:11  Page 160



161Chapter 7 ✦ Grouping Widgets

21     QVBoxLayout *layout = new QVBoxLayout(this,8);
22     
23     lab = new QLabel(“QFrame::Box”,this);
24     lab->setFrameStyle(QFrame::Box | QFrame::Sunken);
25     lab->setLineWidth(2);
26     lab->setMidLineWidth(1);
27     lab->setAlignment(AlignVCenter | AlignHCenter);
28     lab->setMargin(8);
29     layout->addWidget(lab);
30 
31     lab = new QLabel(“QFrame::Box”,this);
32     lab->setFrameStyle(QFrame::Box | QFrame::Raised);
33     lab->setLineWidth(1);
34     lab->setMidLineWidth(1);
35     lab->setAlignment(AlignVCenter | AlignHCenter);
36     lab->setMargin(8);
37     layout->addWidget(lab);
38 
39     lab = new QLabel(“QFrame::WinPanel”,this);
40     lab->setFrameStyle(QFrame::WinPanel | QFrame::Raised);
41     lab->setAlignment(AlignVCenter | AlignHCenter);
42     lab->setMargin(8);
43     layout->addWidget(lab);
44 
45     lab = new QLabel(“QFrame::Panel”,this);
46     lab->setFrameStyle(QFrame::Panel | QFrame::Sunken);
47     lab->setAlignment(AlignVCenter | AlignHCenter);
48     lab->setLineWidth(4);
49     lab->setMargin(8);
50     layout->addWidget(lab);
51 
52     resize(10,10);
53     layout->activate();
54 }

The constructor beginning on line 17 creates a vertical box layout manager and
populates it with four labels.

Lines 23 through 29 create a label that uses a combination of the Box shape with the
shadowing set to Sunken. The resulting shadow pattern makes the box look as if it
were engraved into the surface. The lineWidth() method on line 25 specifies the
pixel width of each of the two lines that make up the edges of the trough in the cen-
ter. The setMidLine() method on line 26 specifies the width of the trough in the
center of the line. The calls to setAlignment() and setMargin() on lines 27 and 28
center the text and put an eight-pixel boundary between the text and the frame.

Lines 31 through 37 create another label with the Box shape, but this time it uses
the Raised shadowing. This causes the box to appear as if it were a ridge sticking
out of the surface. The lines drawn for this frame are narrower than those drawn for
the previous one because the call to setLineWidth() on line 33 specifies that the
edges of the ridge be only one pixel wide.

4682-1 ch07.f.qc  11/13/00  14:11  Page 161



162 Part I ✦ Getting Started

Lines 39 through 43 create a label with the style WinPanel, which is to be shad-
owed such that it appears to be raised. The width is allowed to default, and there 
is no midline width because there is no trough or ridge.

Lines 45 through 50 create a label with the style Panel, which is shadowed to make
the entire label appear to be sunken into the surface. Each line drawn around the
edge is four pixels wide, because of the call to setLineWidth() on line 48.

Many of the Qt and KDE widgets use QFrame as a base class. Some of them display a
frame by default, but they are all capable of displaying a frame. With any of the fol-
lowing widgets, a call to the method setFrameStyle() causes a frame to appear:

KAboutContainer KMenuBar QHButtonGroup

KAboutContributor KMultiLineEdit QHGroupBox

KAccelMenu KMultiWallpaperList QIconView

KApplicationTree KPopupMenu QIconView

KBackgroundDockWidget KProgress QLCDNumber

KCharSelect KRuler QLabel

KCharSelectTable KSeparator QListBox

KColorCells KSplitList QListView

KColorPatch KStatusBar QMenuBar

KContainerLayout KStatusBarLabel QMultiLineEdit

KDMView KTabListBoxTable QPopupFrame

KDatePicker KTextBrowser QPopupMenu

KDateTable KThemeListBox QProgressBar

KDesktop KToolBar QScrollView

KDockWindow KURLLabel QSpinBox

KEdit KfindWindow QSplitter

KEyesWidget KiKbdButton QTableView

KFileSimpleView KiKbdMapInfoWidget QTextBrowser

KFormulaToolBar KickerClientMenu QTextEdit

KGroupBox QButtonGroup QTextView

KHTMLWidget QCanvasView QVBox

KIOListView QfileListBox QVButtonGroup

KIconLoaderCanvas QfileListView QVGroupBox

4682-1 ch07.f.qc  11/13/00  14:11  Page 162



163Chapter 7 ✦ Grouping Widgets

KIconStyle QGrid QWellArray

KImageTrackLabel QGroupBox QWidgetStack

KIntSpinBox QHBox

Framing Options
You can use a number of settings to specify the appearance of a frame: Box, Panel,
WinPanel, Hline, or Vline. Moreover, each of these styles can be set to appear
raised, sunken, or plain. And the widths of the lines can be specified. The following
examples demonstrate the different ways in which a frame can be configured.

The Box QFrame
The program named boxframe displays the different appearances of a Box type of
frame. The three possible adjustments are the line width, the midline width, and
whether the appearance should be sunken, plain, or raised. Figure 7-11 shows the
appearance of the frames with line widths varying from 1 to 3, and midline widths
varying from 0 to 2.

Figure 7-11: Twenty-seven different appearances of the Box 
QFrame type

The following program is used to generate the set of frames shown in Figure 7-11. It
uses a grid layout to position all the frames and labels, and has a loop that creates
and inserts the frames with different settings.

1 /* boxframe.cpp */
2 #include <qlayout.h>
3 #include <qframe.h>
4 #include <qlabel.h>
5 #include <kapp.h>
6 #include “boxframe.h”
7 
8 int main(int argc,char **argv)

4682-1 ch07.f.qc  11/13/00  14:11  Page 163



164 Part I ✦ Getting Started

9 {
10     KApplication app(argc,argv,”boxframe”);
11     BoxFrame *boxframe = new BoxFrame();
12     boxframe->show();
13     app.setMainWidget(boxframe);
14     return(app.exec());
15 }
16 
17 BoxFrame::BoxFrame(QWidget *parent,const char *name)
18     : QWidget(parent,name)
19 {
20     QLabel *label;
21     QFrame *frame;
22     QGridLayout *layout = new QGridLayout(this,6,10,5);
23 
24     label = new QLabel(“QFrame::Box”,this);
25     label->setFont(QFont(“Courier”,24,QFont::Bold));
26     label->setAlignment(Qt::AlignHCenter);
27     layout->addMultiCellWidget(label,0,0,0,9);
28     
29     label = new QLabel(“Line Width”,this);
30     label->setAlignment(Qt::AlignHCenter);
31     layout->addWidget(label,1,0);
32     label = new QLabel(“Mid Line”,this);
33     label->setAlignment(Qt::AlignHCenter);
34     layout->addWidget(label,2,0);
35     label = new QLabel(“Sunken”,this);
36     layout->addWidget(label,3,0);
37     layout->setRowStretch(3,1);
38     label = new QLabel(“Plain”,this);
39     layout->addWidget(label,4,0);
40     layout->setRowStretch(4,1);
41     label = new QLabel(“Raised”,this);
42     layout->addWidget(label,5,0);
43     layout->setRowStretch(5,1);
44 
45     for(int i=0; i<9; i++) {
46         int lineWidth = (i % 3) + 1;
47         int midLineWidth = i / 3;
48         label = new QLabel(
49                 QString(“%1”).arg(lineWidth),this);
50         label->setAlignment(Qt::AlignHCenter);
51         layout->addWidget(label,1,i+1);
52         label = new QLabel(
53                 QString(“%1”).arg(midLineWidth),this);
54         label->setAlignment(Qt::AlignHCenter);
55         layout->addWidget(label,2,i+1);
56 
57         frame = new QFrame(this);
58         frame->setFrameStyle(QFrame::Box | QFrame::Sunken);
59         frame->setLineWidth(lineWidth);
60         frame->setMidLineWidth(midLineWidth);
61         layout->addWidget(frame,3,i+1);
62 

4682-1 ch07.f.qc  11/13/00  14:11  Page 164



165Chapter 7 ✦ Grouping Widgets

63         frame = new QFrame(this);
64         frame->setFrameStyle(QFrame::Box | QFrame::Plain);
65         frame->setLineWidth(lineWidth);
66         frame->setMidLineWidth(midLineWidth);
67         layout->addWidget(frame,4,i+1);
68 
69         frame = new QFrame(this);
70         frame->setFrameStyle(QFrame::Box | QFrame::Raised);
71         frame->setLineWidth(lineWidth);
72         frame->setMidLineWidth(midLineWidth);
73         layout->addWidget(frame,5,i+1);
74     }
75 
76     resize(600,200);
77     layout->activate();
78 }

The label at the top of the window and the labels on the left are all created, and
stored in the grid layout, on lines 24 through 27.

The loop beginning on line 45 iterates nine times because nine columns of frames
are to be displayed. Lines 46 and 47 compute the values of lineWidth and
midLineWidth by using the value of the loop counter. For the current column,
labels to display the two width values are created on lines 48 through 55. The three
frames in the column are created on lines 57 through 73. All three of the calls to
setFrameStyle() use the QFrame::Box style, but are given different shadowing
patterns. For each frame, the line widths are set to the calculated values.

The rest of the examples in this section use the same basic code to display the
options of the other styles. However, as you will see in the figures, the options 
available to any one style vary.

The Panel QFrame
The program named panelframe displays the window shown in Figure 7-12,
demonstrating the appearance of a Panel style of frame. The frame is made from 
a single line that can be shaded to cause the enclosed area of the frame to appear
raised above the surface or sunken below it. The midline value used in the previous
example has no effect here because the frame is constructed from a single line.

Figure 7-12: The three forms of a Panel frame, 
with varying line thickness

4682-1 ch07.f.qc  11/13/00  14:11  Page 165



166 Part I ✦ Getting Started

The WinPanel QFrame
The program winpanelframe displays the window shown in Figure 7-13. The
appearance of the WinPanel frame is the same as a Panel frame with the line 
width set to two pixels. In a WinPanel, the line thickness cannot be varied. This
style of frame was originally designed to mimic the appearance of the Windows
operating system. 

Figure 7-13: The three forms 
of a WinPanel frame

Using QFrame to Draw Lines
Two QFrame styles are not frames at all — they are lines. You can use the HLine
style to instruct QFrame to draw itself as a horizontal line, as shown in Figure 7-14.
All of the modifications that can be applied to the appearance of a Box can also 
be applied to an HLine. That is, each line is drawn as three lines, with the midline
value specifying the width of middle line, and the line width value specifying the
width of the other two lines. The shading is set so that the line appears to be 
raised above or sunken into the surface.

Figure 7-14: A QFrame drawn as a horizontal line

It is also possible to draw a vertical line, as shown in Figure 7-15. It can be config-
ured using the same set of options as the horizontal line.

4682-1 ch07.f.qc  11/13/00  14:11  Page 166



167Chapter 7 ✦ Grouping Widgets

Figure 7-15: A QFrame drawn 
as a vertical line

Sharing Window Real Estate
Using a QSplitter widget, it is possible to display more than one widget in a win-
dow and make it simple for the user to change the size of the individual widgets so
they don’t overlap. Figure 7-16 shows a splitter being used to contain a pair of text
edit windows. 

Figure 7-16: A QSplitter containing two 
edit windows

The bar between the two edit panes can be moved from side to side, increasing the
width of one widget as it increases the size of the other. In this example, the edit wid-
gets are set to automatically wrap the text they are displaying, so moving the bar to
the left (as shown in Figure 7-17) resizes both edit widgets, which causes the text 
to rearrange itself.

4682-1 ch07.f.qc  11/13/00  14:11  Page 167



168 Part I ✦ Getting Started

Figure 7-17: A QSplitter showing the result 
of resizing two edit windows

The following program creates the windows displayed in Figures 7-16 and 7-17.

HorizSplit Header
1 /* horizsplit.h */
2 #ifndef HORIZSPLIT_H
3 #define HORIZSPLIT_H
4 
5 #include <qsplitter.h>
6 
7 class HorizSplit: public QSplitter
8 {
9     Q_OBJECT
10 public:
11     HorizSplit(QWidget *parent=0,const char *name=0);
12 };
13 
14 #endif

This header file defines the class HorizSplit, which inherits the behaviors from
QSplitter.

HorizSplit
1 /* horizsplit.cpp */
2 #include <kapp.h>
3 #include <qmultilineedit.h>
4 #include “horizsplit.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”horizsplit”);
9     HorizSplit *horizsplit = new HorizSplit();
10     horizsplit->show();
11     app.setMainWidget(horizsplit);
12     return(app.exec());

4682-1 ch07.f.qc  11/13/00  14:11  Page 168



169Chapter 7 ✦ Grouping Widgets

13 }
14 
15 HorizSplit::HorizSplit(QWidget *parent,const char *name)
16     : QSplitter(parent,name)
17 {
18     QMultiLineEdit *leftEdit = new QMultiLineEdit(this);
19     leftEdit->setMinimumWidth(50);
20     leftEdit->setWordWrap(QMultiLineEdit::WidgetWidth);
21 
22     QMultiLineEdit *rightEdit = new QMultiLineEdit(this);
23     rightEdit->setMinimumWidth(50);
24     rightEdit->setWordWrap(QMultiLineEdit::WidgetWidth);
25 
26     resize(400,200);
27 }

The process of setting up a split window is simply a matter of inserting a widget for
each of the panes in the splitter. The constructor, beginning on line 15, creates a pair
of QMultiLineEdit objects using this as the parent class. (Recall that this is a ref-
erence to the current object.) Because the HorizSplit class is also a QSplitter
class, and a QSplitter manages all of its child widgets in separate panes, nothing
else is necessary. The minimum allowable width of the text edit windows is set to 50
to give a lower limit to the movement of the splitter bar — if you have no lower limit,
the bar can be moved to completely obscure a window.

The QSplitter default is to arrange the widgets horizontally. The following example
arranges the widget vertically:

VertSplit
1 /* vertsplit.cpp */
2 #include <kapp.h>
3 #include <qmultilineedit.h>
4 #include “vertsplit.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”vertsplit”);
9     VertSplit *vertsplit = new VertSplit();
10     vertsplit->show();
11     app.setMainWidget(vertsplit);
12     return(app.exec());
13 }
14 
15 VertSplit::VertSplit(QWidget *parent,const char *name)
16     : QSplitter(parent,name)
17 {
18     setOrientation(Vertical);
19 
20     QMultiLineEdit *topEdit = new QMultiLineEdit(this);

4682-1 ch07.f.qc  11/13/00  14:11  Page 169



170 Part I ✦ Getting Started

21     topEdit->setMinimumHeight(50);
22     topEdit->setWordWrap(QMultiLineEdit::WidgetWidth);
23 
24     QMultiLineEdit *middleEdit = new QMultiLineEdit(this);
25     middleEdit->setMinimumHeight(50);
26     middleEdit->setWordWrap(QMultiLineEdit::WidgetWidth);
27 
28     QMultiLineEdit *bottomEdit = new QMultiLineEdit(this);
29     bottomEdit->setMinimumHeight(50);
30     bottomEdit->setWordWrap(QMultiLineEdit::WidgetWidth);
31 
32     resize(200,400);
33 }

The call to setOrientation() on line 16 instructs this QSplitter to arrange its
widgets one above the other. The first one added is at the top. It is possible to add 
a number of widgets to the splitter — this example contains three widgets, so it has
two bars to separate them. The result is shown in Figure 7-18. 

Figure 7-18: A vertical QSplitter 
containing three edit windows

Summary
This chapter demonstrated some of the basic techniques you can use to organize
widgets in such a way that they mean something to your application, and to the
user viewing the window. This chapter covered the following:

✦ Using some special widgets, it is possible to organize the display of a group of
buttons and, at the same time, have all the buttons use the same slot to report
a mouse click.

✦ A group of radio buttons must relate to one another physically in order to
limit the selection to only one button at a time.

✦ While check buttons (also called toggle buttons) don’t relate to one another
physically, they often relate to one another logically, and should be consid-
ered as a group.

4682-1 ch07.f.qc  11/13/00  14:11  Page 170



171Chapter 7 ✦ Grouping Widgets

✦ Decorative frames can be drawn around widgets. More than decoration, frames
can be used to clarify widget relationships on an otherwise confusing display.

✦ A collection of widgets can share the same space by enabling the user to slide
a bar back and forth between them.

This chapter completes Part I of the book. The chapters in Part II are less broad,
detailing some subjects that have been only briefly touched on in Part I. For exam-
ple, the next chapter explores the mouse and all the things you can do with it. While
basic mouse operations are demonstrated in every chapter in Part I, there is much
more that you can do with a mouse.

✦ ✦ ✦

4682-1 ch07.f.qc  11/13/00  14:11  Page 171



4682-1 ch07.f.qc  11/13/00  14:11  Page 172



The Mouse and
the Keyboard

A normal KDE/Qt application does nothing until it hears
from the user. When an application is first executed, it

performs any necessary initializations, displays its window,
and then goes to sleep, waiting for the user to do something.
In the majority of cases, it is waiting for input from the mouse
or keyboard, but the input can be from a light pen, a mouse
wheel, a graphics tablet, a trackball, or some other input
device. Most applications can be written using the predefined
set of signals and slots that are included as part of the wid-
gets, but it is sometimes necessary to attach your program
directly to the incoming stream of events. Also, if you are
going to create a widget of your own, you need to know how
to translate the incoming events into signals.

From a Port to a Slot
The following is a brief, simple description of the life cycle of
an event.

An event starts with the hardware. The mouse is moved to a
new location, a keyboard key is released, a mouse button is
pressed, or a keyboard button is held down long enough for
the auto-repeat mechanism to kick in. The device issuing the
event is physically connected to the computer, so the event
will cause an interrupt, and a small program — known as a
device driver — reads the information from the port. The pri-
mary job of the device driver is to translate the hardware
event into a software event.

The device driver must be instructed to wait for events on 
a specific port. This is done from inside a program when it
opens a port, in much the same way that an application would
open a file. The ports are all found in the /dev directory, and

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Propagating events
from the hardware 
to your application

Reading incoming
mouse data

Controlling the mouse
and its cursor

Interpreting events
from the keyboard

✦ ✦ ✦ ✦

4682-1 ch08.f.qc  11/13/00  14:11  Page 175



176 Part II ✦ Step by Step

a port can be addressed by a program just as if it were a file. When a program
opens a port (that is, a name in the /dev directory), the Linux kernel selects a
device driver and gives it the job of passing information back and forth between 
the port and the application.

For Qt and KDE, the application retrieving events from the driver is the X Windowing
System. Each event from the device driver is formatted into a special internal format
known as an XEvent. The window manager inspects the XEvent to determine its
destination window. If, for example, the event is a keyboard click, the event is to be
sent to the window that currently has the focus. If it is a mouse click, the x and y
coordinates of the mouse pointer usually determines which window. By knowing
which window is to receive the event, the window manager can determine which
application is to receive the event.

For an X Window program to process events, it sets up a loop to continuously 
call the low-level queue reading function XNextEvent(). Each time this function
returns, it has retrieved an event from the queue. The events are dispatched to
your application by calling a method assigned to handle events of its type.

When your program calls QApplication::exec() or KApplication::exec() in
its mainline, it executes a continuous loop, calling XNextEvent(), which reads an
XEvent, translates it into one of the Qt events, and calls the appropriate method 
to deal with it. These event-receiving methods are defined as part of the QWidget
class, and are declared as being both virtual and private. The actions performed
by these methods are minimal, so it is necessary to create subclasses of QWidget
that override the methods to receive the events. For example, the QButton class
overrides the QWidget method named mouseReleaseEvent() so QButton can
emit a clicked() signal. This enables your application to set up a slot to receive
the clicked() signal whenever the mouse is used to activate the button.

The Mouse Events
A mouse event contains the current location of the mouse pointer and indicators 
of which, if any, buttons are currently being pressed. A method in the QWidget
class is called whenever a mouse event arrives. If you wish to write your own
detailed mouse event processing, you can override the event handling methods
defined in QWidget.

The following program tracks the mouse and displays the buttons, keys, and posi-
tion of the mouse pointer. As shown in Figure 8-1, the blank widget on the right is
the one being monitored for mouse movement, while each mouse action is listed on
the left. This example demonstrates how an incoming event is translated into a sig-
nal. Whenever a mouse event arrives, the data from it is used to create a descrip-
tive string. This string is emitted as a signal and is received by a slot of another
class.

4682-1 ch08.f.qc  11/13/00  14:11  Page 176



177Chapter 8 ✦ The Mouse and the Keyboard

Figure 8-1: A program to track and display mouse activity

MouseSensor Header
1 /* mousesensor.h */
2 #ifndef MOUSESENSOR_H
3 #define MOUSESENSOR_H
4 
5 #include <qwidget.h>
6 #include <qevent.h>
7 #include <qstring.h>
8 
9 class MouseSensor: public QWidget
10 {
11     Q_OBJECT
12 public:
13     MouseSensor(QWidget *parent=0,const char *name=0);
14 private:
15     void emitDescription(const QString &,QMouseEvent *);
16     virtual void mousePressEvent(QMouseEvent *event);
17     virtual void mouseReleaseEvent(QMouseEvent *event);
18     virtual void mouseDoubleClickEvent(QMouseEvent *event);
19     virtual void mouseMoveEvent(QMouseEvent *event);
20 signals:
21     void description(QString &);
22 };
23 
24 #endif

The MouseSensor class is a widget that tracks mouse activities. It appears as the
blank panel on the right in Figure 8-1. The virtual methods on lines 16 through 19
override the methods in the base class QWidget, so all the mouse events will arrive
here instead of in the base class.

4682-1 ch08.f.qc  11/13/00  14:11  Page 177



178 Part II ✦ Step by Step

MouseSensor
1 /* mousesensor.cpp */
2 #include <qstring.h>
3 #include “mousesensor.h”
4 
5 MouseSensor::MouseSensor(QWidget *parent,const char *name)
6     : QWidget(parent,name)
7 {
8     setMinimumSize(300,300);
9 }
10 void MouseSensor::mousePressEvent(QMouseEvent *event)
11 {
12     emitDescription(QString(“Press: “),event);
13 }
14 void MouseSensor::mouseReleaseEvent(QMouseEvent *event)
15 {
16     emitDescription(QString(“Release: “),event);
17 }
18 void MouseSensor::mouseDoubleClickEvent(QMouseEvent *event)
19 {
20     emitDescription(QString(“DoubleClick: “),event);
21 }
22 void MouseSensor::mouseMoveEvent(QMouseEvent *event)
23 {
24     emitDescription(QString(“Move: “),event);
25 }
26 void MouseSensor::emitDescription(const QString &typeStr,
27         QMouseEvent *event)
28 {
29     QString btnStr(typeStr);
30     ButtonState state = event->state();
31     if(state & ControlButton)
32         btnStr+= “Ctl-”;
33     if(state & AltButton)
34         btnStr+= “Alt-”;
35     if(state & ShiftButton)
36         btnStr+= “Shft-”;
37     if(state & LeftButton)
38         btnStr += “(Lft)-”;
39     if(state & MidButton)
40         btnStr += “(Mid)-”;
41     if(state & RightButton)
42         btnStr += “(Rgt)-”;
43     ButtonState button = event->button();
44     if(button & LeftButton)
45         btnStr += “Lft”;
46     if(button & MidButton)
47         btnStr += “Mid”;
48     if(button & RightButton)
49         btnStr += “Rgt”;

4682-1 ch08.f.qc  11/13/00  14:11  Page 178



179Chapter 8 ✦ The Mouse and the Keyboard

50 
51     QString str = QString(“%1 (%2,%3)(%4,%5)”)
52         .arg(btnStr)
53         .arg(event->x()).arg(event->y())
54         .arg(event->globalX()).arg(event->globalY());
55 
56     emit description(str);
57 }

The MouseSensor class is a widget because it uses QWidget as its base class. The
four methods in this class that receive mouse events override four virtual methods
in the base class. The method mousePressEvent() is called every time one of the
mouse buttons is pressed, and the method mouseReleaseEvent() is called every
time one of the mouse buttons is released. The method mouseDoubleClick() is
called whenever a mouse button is pressed and released twice within a certain time
span. This means that a double-click action will generate five events — two button
press events, two button release events, and one double-click event. This may seem
like overkill, but because the events can easily be separated by type, you can write
your application to only receive the ones you need to deal with.

The method mouseMoveEvent() on line 22 is called whenever the mouse is moved
to a new location within the window. There are two modes of operation: The method
can be called for every mouse movement, or it can be called for only those move-
ments that occur while a mouse button is being held down. The default requires one
of the buttons to be held down, but a call to the method setMouseTracking(TRUE)
causes the mouse position to always be reported.

The method emitDescription() beginning on line 26 is used by all of the event-
receiving methods to create a descriptive string and send a signal containing the
string. The information is all inside the QMouseEvent object.

A ButtonState value is retrieved by calling the state() method of the event on
line 30. This variable contains flags representing the buttons (if any) that were
being held down at the time of the mouse event. Six possible buttons can be set:
the three mouse buttons along with Alt, Ctrl, and Shift. The ButtonState value
retrieved by the call to button() on line 43 is the button (if any) that caused the
event. For example, if you are holding down the Ctrl key and the right mouse but-
ton, pressing the left mouse button will cause the Ctrl key and the right mouse but-
ton indicator to be returned from the call to state(), and the left mouse button
indicator to be returned from button().

While the Alt key can be represented by a flag value in ButtonState, the Alt key
is actually never reported in the mouse events. This is because KDE intercepts the
Alt key when it is used with the mouse. Alt-left mouse button can be used to move
a window; Alt-middle button will rotate focus the next window, and Alt-right but-
ton will resize the current window. If you are using a two-button mouse, you can
usually emulate the middle button by pressing both buttons simultaneously, and
keyboards without an Alt key generally have a Meta key that works the same way.

Note

4682-1 ch08.f.qc  11/13/00  14:11  Page 179



180 Part II ✦ Step by Step

There are two mouse locations in the QMouseEvent object. One represents the x
and y coordinates relative to the top, left corner of the entire screen, and the other
represents the x and y values relative to the top, left corner of the current window.
On line 51, a QString object is created to hold a description of the event. Lines 53
and 54 format both of the coordinates as part of the string describing the event.
Usually, the local coordinates are the ones you want, but sometimes you may need
to know the global location of the mouse.

The emit statement on line 56 is the final step in converting the incoming event
into an outgoing signal. This same sort of process occurs in, for example, a QPush
Button that converts mouse button events into a signal named click(). In this
example, a signal is emitted that carries with it a QString containing a description
of the event:

FollowMouse Header
1 /* followmouse.h */
2 #ifndef FOLLOWMOUSE_H
3 #define FOLLOWMOUSE_H
4 
5 #include <qsplitter.h>
6 #include <qstring.h>
7 #include <qmultilineedit.h>
8 
9 class FollowMouse: public QSplitter
10 {
11     Q_OBJECT
12 public:
13     FollowMouse(QWidget *parent=0,const char *name=0);
14 public slots:
15     void newline(QString &);
16 private:
17     QMultiLineEdit *edit;
18 };
19 
20 #endif

The FollowMouse class is the top-level window shown previously in Figure 8-1. It 
is based on a QSplitter, which enables it to manage both the QMultiLineEdit
object on the left and the MouseSensor object on the right.

FollowMouse
1 /* followmouse.cpp */
2 #include <kapp.h>
3 #include <qstring.h>
4 #include “mousesensor.h”
5 #include “followmouse.h”
6 

4682-1 ch08.f.qc  11/13/00  14:11  Page 180



181Chapter 8 ✦ The Mouse and the Keyboard

7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”followmouse”);
10     FollowMouse *followmouse = new FollowMouse();
11     followmouse->show();
12     app.setMainWidget(followmouse);
13     return(app.exec());
14 }
15 
16 FollowMouse::FollowMouse(QWidget *parent,const char *name)
17     : QSplitter(parent,name)
18 {
19     edit = new QMultiLineEdit(this);
20     edit->setMinimumWidth(80);
21     edit->setReadOnly(TRUE);
22 
23     MouseSensor *sensor = new MouseSensor(this);
24     sensor->setMinimumWidth(80);
25 
26     connect(sensor,SIGNAL(description(QString &)),
27             this,SLOT(newline(QString &)));
28 
29     resize(10,10);
30 }
31 void FollowMouse::newline(QString &str)
32 {
33     edit->insertLine(str);
34     edit->setCursorPosition(5000,0);
35 }

The FollowMouse constructor, beginning on line 16, creates a QMultiLineEdit
widget on lines 19 through 21. The call to setReadOnly() disables the editing facili-
ties and makes the editor a display-only text window. Because the editor widget is
created first, it appears on the left. The MouseSensor, created on line 23, appears
on the right.

In order for this class to receive mouse event descriptions, a call to connect()
is made on line 26, establishing a connection from the description() signal of
MouseSensor to the slot newLine() of FollowMouse.

The slot method on line 31 is called with a descriptive string of every mouse event.
The call to insertLine() on line 33 appends the string to the bottom of the text
being displayed by the QMultiLineEdit widget. The call to setCursorPos()
ensures that the newest string (the one at the bottom) is visible. Specifying an index
greater than the actual number of members of the list causes QMultiLineEdit to
choose the last one.

4682-1 ch08.f.qc  11/13/00  14:11  Page 181



182 Part II ✦ Step by Step

Mouse Grabbing and Releasing
A single widget in your application can take control of the mouse. It doesn’t restrict
the movement of the mouse pointer, but it does prevent all other widgets (in this or
any other application) from receiving any events from the mouse.

If you grab the mouse, you must also make sure there is a release mechanism. If
your program grabs the mouse and doesn’t release it, the terminal is effectively
locked. The keyboard works, but the mouse is disabled until your program is
killed.

The following program displays a window like the one shown in Figure 8-2. The top
button grabs the mouse and changes the cursor appearance to cross hairs. The
lower button releases the mouse.

Figure 8-2: A grabbed mouse cannot 
move outside its window.

GrabMouse Header
1 /* grabmouse.h */
2 #ifndef GRABMOUSE_H
3 #define GRABMOUSE_H
4 
5 #include <qwidget.h>
6 #include <qlayout.h>
7 #include <qpushbutton.h>
8 
9 class GrabMouse: public QWidget
10 {
11     Q_OBJECT
12 public:
13     GrabMouse(QWidget *parent=0,const char *name=0);
14 private:
15     QPushButton *grabButton;
16     QPushButton *relButton;
17 public slots:
18     void mouse_grab();
19     void mouse_release();
20 };
21 
22 #endif

Caution

4682-1 ch08.f.qc  11/13/00  14:11  Page 182



183Chapter 8 ✦ The Mouse and the Keyboard

GrabMouse
1 /* grabmouse.cpp */
2 #include <kapp.h>
3 #include <qcursor.h>
4 #include “grabmouse.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”grabmouse”);
9     GrabMouse *grabmouse = new GrabMouse();
10     grabmouse->show();
11     app.setMainWidget(grabmouse);
12     return(app.exec());
13 }
14 
15 GrabMouse::GrabMouse(QWidget *parent,const char *name)
16     : QWidget(parent,name)
17 {
18     QVBoxLayout *layout = new QVBoxLayout(this,20);
19 
20     grabButton = new QPushButton(“Grab Mouse”,this);
21     grabButton->setMinimumSize(grabButton->sizeHint());
22     layout->addWidget(grabButton);
23     connect(grabButton,SIGNAL(clicked()),
24             this,SLOT(mouse_grab()));
25     
26     relButton = new QPushButton(“Release Mouse”,this);
27     relButton->setMinimumSize(relButton->sizeHint());
28     layout->addWidget(relButton);
29     connect(relButton,SIGNAL(clicked()),
30             this,SLOT(mouse_release()));
31 
32     resize(10,10);
33     layout->activate();
34 }
35 void GrabMouse::mouse_grab()
36 {
37     relButton->grabMouse(QCursor(CrossCursor));
38 }
39 void GrabMouse::mouse_release()
40 {
41     relButton->releaseMouse();
42 }

The GrabMouse class is a widget that uses a vertical box, created on line 18, to hold
a pair of buttons. The top button, named grabButton, has its clicked() signal con-
nected to the slot method mouse_grab() defined on line 35. Similarly, relButton is
connected to the slot method mouse_released(), defined on line 39.

4682-1 ch08.f.qc  11/13/00  14:11  Page 183



184 Part II ✦ Step by Step

Whenever the top button is selected, the grabMouse() method of relButton
is called, causing relButton to grab the mouse. Passing a cursor definition to
grabMouse() causes the appearance of the cursor to be modified for the duration
of the grab. Because it was the relButton that executed the grab, it is the only 
widget that will respond to the mouse, and it does so by calling releaseMouse()
to return mouse control to the system.

Changing the Cursor’s Appearance
You can use a standard set of built-in cursors to notify the user of the program’s
current status. The method that changes the cursor is found in QWidget, so any 
displayable object can have its cursor changed.

When you change the cursor’s appearance, the change applies only to the region
you specify. For example, if you change the cursor for the top-level window of your
application, it will not be changed for the title bar, but it will be changed for every
widget that is a child or grandchild of your top-level window. However, if one of the
child widgets has its own cursor setting, it (and all of its descendents) will have its
own cursor.

The following example allows you to dynamically choose among all of the standard
cursors. You can apply one cursor to the entire window and another to a single but-
ton inside the window. As shown in Figure 8-3, the names of the cursors are listed
on the left. Whenever the name of a cursor is selected, it becomes the default cur-
sor for the entire window. Using the Select button on the right causes the currently
selected cursor to be assigned as its own private cursor — that is, its cursor is no
longer inherited from its parent.

Figure 8-3: A cursor selection list

CursorMouse Header
1 /* cursormouse.h */
2 #ifndef CURSORMOUSE_H
3 #define CURSORMOUSE_H

4682-1 ch08.f.qc  11/13/00  14:11  Page 184



185Chapter 8 ✦ The Mouse and the Keyboard

4 
5 #include <qlayout.h>
6 #include <qpushbutton.h>
7 
8 class CursorMouse: public QWidget
9 {
10     Q_OBJECT
11 public:
12     CursorMouse(QWidget *parent=0,const char *name=0);
13 private:
14     QPushButton *selectButton;
15     QPushButton *exitButton;
16     int cursorID;
17 public slots:
18     void changeCursor(int);
19     void selectCursor();
20     void shutdown();
21 };
22 
23 #endif

The CursorMouse class includes three slots. Two of them are used to change the
cursor; the third exits the program. The cursorID, defined on line 16, holds the 
ID number of the currently selected cursor.

CursorMouse
1 /* cursormouse.cpp */
2 #include <kapp.h>
3 #include <qcursor.h>
4 #include <qlistbox.h>
5 #include “cursormouse.h”
6 
7 struct cursStruct {
8     QString name;
9     int number;
10 } curs[] = {
11     { “ArrowCursor”,ArrowCursor },
12     { “UpArrowCursor”,UpArrowCursor },
13     { “CrossCursor”,CrossCursor },
14     { “WaitCursor”,WaitCursor },
15     { “IbeamCursor”,IbeamCursor },
16     { “SizeVerCursor”,SizeVerCursor },
17     { “SizeHorCursor”,SizeHorCursor },
18     { “SizeBDiagCursor”,SizeBDiagCursor },
19     { “SizeFDiagCursor”,SizeFDiagCursor },
20     { “SizeAllCursor”,SizeAllCursor },
21     { “BlankCursor”,BlankCursor },
22     { “SplitVCursor”,SplitVCursor },
23     { “SplitHCursor”,SplitHCursor },

4682-1 ch08.f.qc  11/13/00  14:11  Page 185



186 Part II ✦ Step by Step

24     { “PointingHandCursor”,PointingHandCursor },
25     { “BitmapCursor”,BitmapCursor }
26 };
27 
28 int main(int argc,char **argv)
29 {
30     KApplication app(argc,argv,”cursormouse”);
31     CursorMouse *cursormouse = new CursorMouse();
32     cursormouse->show();
33     app.setMainWidget(cursormouse);
34     return(app.exec());
35 }
36 
37 CursorMouse::CursorMouse(QWidget *parent,const char *name)
38     : QWidget(parent,name)
39 {
40     QHBoxLayout *horlayout = new QHBoxLayout(this);
41 
42     QListBox *list = new QListBox(this);
43     for(int i=0; i<sizeof(curs)/sizeof(cursStruct); i++)
44         list->insertItem(curs[i].name);
45     horlayout->addWidget(list);
46     connect(list,SIGNAL(highlighted(int)),
47             this,SLOT(changeCursor(int)));
48 
49     QVBoxLayout *verlayout = new QVBoxLayout(30);
50 
51     selectButton = new QPushButton(“Select”,this);
52     selectButton->setMinimumSize(selectButton->sizeHint());
53     verlayout->addWidget(selectButton);
54     connect(selectButton,SIGNAL(clicked()),
55             this,SLOT(selectCursor()));
56     
57     exitButton = new QPushButton(“Exit”,this);
58     exitButton->setMinimumSize(exitButton->sizeHint());
59     verlayout->addWidget(exitButton);
60     connect(exitButton,SIGNAL(clicked()),
61             this,SLOT(shutdown()));
62 
63     horlayout->addLayout(verlayout);
64 
65     resize(250,200);
66     horlayout->activate();
67 }
68 void CursorMouse::changeCursor(int index)
69 {
70     cursorID = curs[index].number;
71     setCursor(QCursor(cursorID));
72 }
73 void CursorMouse::selectCursor()
74 {

4682-1 ch08.f.qc  11/13/00  14:11  Page 186



187Chapter 8 ✦ The Mouse and the Keyboard

75     selectButton->setCursor(QCursor(cursorID));
76 }
77 void CursorMouse::shutdown()
78 {
79     kapp->exit(0);
80 }

The array on lines 7 through 26 holds the names and ID numbers of the predefined
cursors. The names are used as the selection text in a list box, and the ID values are
used as arguments on the constructor of QCursor.

The CursorMouse class, defined beginning on line 37, is the top-level widget of the
application. It uses a horizontal box to hold a QListBox on the left, and a vertical
box with two buttons on the right, as shown previously in Figure 8-3.

The list box is created on line 43. The loop on lines 43 and 44 populate the list box
with the cursor names. The call to connect() on line 46 connects the list box sig-
nal named highlighted() to the local slot named changeCursor(). The change
Cursor() slot will be executed whenever a list box member is highlighted. It isn’t
used here, but there is also a selected() signal from the list box that requires a
double-click on a list box member. Both of these list box signals supply the index
number of the list box item.

The selectButton is created on line 51, and it has its clicked() signal connected
to the local slot selectCursor(). The exitButton is created on line 57, with its
clicked() signal connected to the local slot shutdown().

The slot method changeCursor() on line 68 is passed the index of each newly
selected list box item. The text of the list box was loaded from the array names, so
the index from the list box is also an index into the array. Line 70 extracts the cur-
sor ID from the array and makes it the current cursor ID number by storing it in
cursorID. The call to setCursor() on line 71 sets the cursor to the one supplied
as the argument. The QCursor constructor accepts the cursor ID of one of the pre-
defined cursors, as selected from the list box.

The slot method selectCursor() on line 73 sets the cursor of the selectButton
to whatever is the currently selected cursor. If no cursor is ever set for this button,
it will use the same one as its parent window (that is, the cursor defined on line 71).
Once the call to setCursor() on line 75 has been made, the selectButton will use
its own cursor.

All of this means that three cursors are being used in this one application. The
default cursor (the one named ArrowCursor) will continue to be used for the title
bar of the main window. Whichever cursor is currently highlighted in the list box
will be used for everything else inside the main window. The only exception is that
the Select button will have its own cursor — it will be the one that was highlighted
when the button was selected.

4682-1 ch08.f.qc  11/13/00  14:11  Page 187



188 Part II ✦ Step by Step

There are a couple of special cursors in the list. The cursor named BlankCursor
has no graphic — the cursor simply disappears. It is a valid cursor in that you can
still move it around and try to find things to click on, but you can’t see it. The other
special cursor is the one named BitmapCursor. For this to work, you must supply a
cursor of your own making, which is the subject of the next section.

Designing Your Own Cursor
A cursor is a rectangle of pixels. Each pixel can be black, white, or transparent. 
For example, the KDE default arrow cursor is a black arrow with a white outline. All
the other pixels are transparent. Filling with one color and outlining with another
makes the cursor visible no matter what background color the cursor passes over.

To create a cursor, you need to create a pair of bitmaps. Both bitmaps must be the
same height and width because one of them is a mask that overlays the other. The
masking is necessary because there is only one bit per pixel, but there are three
ways to display a pixel: black, white, or transparent.

Figure 8-4 shows the shape of a 16 ×16 cursor. The pixel at the top — the one with
the diamond in it — is the hot spot for this cursor. The hot spot is usually at the end
of a pointer or at the center of cross hairs — it determines the exact cursor position
that is reported to your application. Figure 8-5 shows another bitmap that acts as
the mask for the cursor. The two bitmaps are combined using the rules in Table 8-1.

Table 8-1
Cursor Bitmap Display Rules

Cursor Bit Setting Cursor Mask Bit Setting Result

1 1 Black

0 1 White

0 0 Transparent

Figure 8-4: The definition of the 
shape of a cursor 

4682-1 ch08.f.qc  11/13/00  14:11  Page 188



189Chapter 8 ✦ The Mouse and the Keyboard

Figure 8-5: The definition of a 
cursor mask 

There are several utility programs that you can use to create the bitmaps describ-
ing the cursor. One is supplied as part of the X11 system. Normally found as /usr/
X11R6/bin/bitmap, it is quite easy to use to create 16 ×16 cursor images — just
start the program running and select the pixels with the mouse. You can learn more
about this utility, and about bitmaps in general, in Chapter 9.

The following example uses the cursor bitmaps shown in Figures 8-4 and 8-5 to 
create a cursor.

MyCursor Header
1 /* mycursor.h */
2 #ifndef GRABMOUSE_H
3 #define GRABMOUSE_H
4 
5 #include <qwidget.h>
6 
7 class MyCursor: public QWidget
8 {
9 public:
10     MyCursor(QWidget *parent=0,const char *name=0);
11 };
12 
13 #endif

MyCursor
1 /* mycursor.cpp */
2 #include <kapp.h>
3 #include <qcursor.h>
4 #include <qbitmap.h>
5 #include “mycursor.h”
6 
7 #define upleft_width 16
8 #define upleft_height 16
9 #define upleft_x_hot 6

4682-1 ch08.f.qc  11/13/00  14:11  Page 189



190 Part II ✦ Step by Step

10 #define upleft_y_hot 1
11 static unsigned char upleft_bits[] = {
12     0x00, 0x00, 0x40, 0x00, 0xe0, 0x00, 0xf0, 0x01, 0xf8,
13     0x03, 0xfc, 0x07, 0xfe, 0x0f, 0xf0, 0x01, 0xf0, 0x01,
14     0xf0, 0x01, 0xf0, 0x01, 0xf0, 0x7f, 0xf0, 0x7f, 0xf0,
15     0x7f, 0xf0, 0x7f, 0x00, 0x00};
16 
17 #define upleftmask_width 16
18 #define upleftmask_height 16
19 static unsigned char upleftmask_bits[] = {
20     0x40, 0x00, 0xe0, 0x00, 0xf0, 0x01, 0xf8, 0x03, 0xfc,
21     0x07, 0xfe, 0x0f, 0xff, 0x1f, 0xff, 0x1f, 0xf8, 0x03,
22     0xf8, 0x03, 0xf8, 0xff, 0xf8, 0xff, 0xf8, 0xff, 0xf8,
23     0xff, 0xf8, 0xff, 0xf8, 0xff};
24 
25 int main(int argc,char **argv)
26 {
27     KApplication app(argc,argv,”mycursor”);
28     MyCursor *mycursor = new MyCursor();
29     mycursor->show();
30     app.setMainWidget(mycursor);
31     return(app.exec());
32 }
33 
34 MyCursor::MyCursor(QWidget *parent,const char *name)
35     : QWidget(parent,name)
36 {
37     QBitmap upleft(upleft_width,upleft_height,
38             upleft_bits,TRUE);
39     QBitmap upleftmask(upleftmask_width,upleftmask_height,
40             upleftmask_bits,TRUE);
41     QCursor upleftCursor(upleft,upleftmask,
42             upleft_x_hot,upleft_y_hot);
43     setCursor(upleftCursor);
44     resize(100,100);
45 }

The cursor body is defined on lines 7 through 15. This format of the data is the
actual output from the bitmap utility — it was simply inserted into the source code
of the program. The height and width of the cursor, and the location of the hot spot,
all appear as defined constants. You can make a cursor of just about any size you
would like, but most cursors are either 16 ×16 or 32 ×32 pixels. The bitmap used for
the cursor mask is defined on lines 17 through 23.

The procedure for turning bitmap data into a cursor occurs in the constructor,
which begins on line 34. On line 37, the cursor bitmap data is used to create a
QBitmap object. In the same way, the mask is used to create a QBitmap on line 39.
Notice that the defined constants are required so that the QBitmap constructor can
determine the height and width that is to be applied to the array of bits. Finally,
using the two bitmaps and the location of the hot spot, the cursor is created on 

4682-1 ch08.f.qc  11/13/00  14:11  Page 190



191Chapter 8 ✦ The Mouse and the Keyboard

line 41. The call to setCursor() on line 43 installs the cursor image to the current
window. The result is shown in Figure 8-6.

Figure 8-6: A custom cursor

Keyboard Events
Two events are issued from the keyboard. One is issued when a key is pressed; the
other is issued when the key is released. This makes it possible for the software to
determine which key combinations are being pressed. For example, if the Shift key
has been pressed and not released, a letter key should result in uppercase instead
of lowercase. Fortunately, the Qt library keeps track of the keys for you.

The following program displays the two-pane window shown in Figure 8-7. The panel
on the right is set to receive keystroke information, and each keystroke is listed in
the panel on the left. Each line begins with a P or R, indicating whether this was a
Press or Release event. The number following the colon is the unique ID number of
the key. This is followed by a description of the key (for this example, however, they
do not all have descriptions). If the keyboard event was generated because a key
was being held down, the word “repeat” appears on the right.

Figure 8-7: Displaying information 
from each keystroke 

Qt recognizes about 240 unique keys. When you Include the Control, Alt, and Shift
modifier key combinations, the total comes to almost 2,000 because many special-
ized keyboards have special keys and special characters. If you are going to be
working with the special keys, look in the file qnamespace.h for the complete list.

Note

4682-1 ch08.f.qc  11/13/00  14:11  Page 191



192 Part II ✦ Step by Step

FollowKeyboard Header
1 /* followkeyboard.h */
2 #ifndef FOLLOWKEYBOARD_H
3 #define FOLLOWKEYBOARD_H
4 
5 #include <qsplitter.h>
6 #include <qstring.h>
7 #include <qmultilineedit.h>
8 
9 class FollowKeyboard: public QSplitter
10 {
11     Q_OBJECT
12 public:
13     FollowKeyboard(QWidget *parent=0,const char *name=0);
14 public slots:
15     void newline(QString &);
16 private:
17     QMultiLineEdit *edit;
18 };
19 
20 #endif

FollowKeyboard
1 /* followkeyboard.cpp */
2 #include <kapp.h>
3 #include <qstring.h>
4 #include “keyboardsensor.h”
5 #include “followkeyboard.h”
6 
7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”followkeyboard”);
10     FollowKeyboard *followkeyboard = new FollowKeyboard();
11     followkeyboard->show();
12     app.setMainWidget(followkeyboard);
13     return(app.exec());
14 }
15 
16 FollowKeyboard::FollowKeyboard(QWidget *parent,
17     const char *name) : QSplitter(parent,name)
18 {
19     edit = new QMultiLineEdit(this);
20     edit->setMinimumWidth(80);
21     edit->setReadOnly(TRUE);
22     edit->setMinimumWidth(200);
23 
24     KeyboardSensor *sensor = new KeyboardSensor(this);
25     sensor->setMinimumWidth(80);
26 

4682-1 ch08.f.qc  11/13/00  14:11  Page 192



193Chapter 8 ✦ The Mouse and the Keyboard

27     connect(sensor,SIGNAL(description(QString &)),
28             this,SLOT(newline(QString &)));
29 
30     resize(10,10);
31 }
32 void FollowKeyboard::newline(QString &str)
33 {
34     edit->insertLine(str);
35     edit->setCursorPosition(5000,0);
36 }

The FollowKeyboard constructor, beginning on line 16, is a horizontal QSplitter
widget that contains two widgets. On the left is a QMultiLineEdit object that is used
to display the text, and on the right is a KeyboardSensor widget that is used to
receive keystroke information. The slot method newline() on line 32 appends a
string to the bottom of the text in the QMultiLineEdit object. The call to setCursor
Position() on line 35 makes the bottom line of the text window visible.

KeyboardSensor Header
1 /* keyboardsensor.h */
2 #ifndef KEYBOARDSENSOR_H
3 #define KEYBOARDSENSOR_H
4 
5 #include <qwidget.h>
6 #include <qevent.h>
7 #include <qstring.h>
8 
9 class KeyboardSensor: public QWidget
10 {
11     Q_OBJECT
12 public:
13     KeyboardSensor(QWidget *parent=0,const char *name=0);
14 private:
15     void emitDescription(const QString &,QKeyEvent *);
16     virtual void keyPressEvent(QKeyEvent *event);
17     virtual void keyReleaseEvent(QKeyEvent *event);
18 signals:
19     void description(QString &);
20 };
21 
22 #endif

This header file defines the class KeyboardSensor to be a QWidget. The declara-
tions of keyPressEvent() and keyReleaseEvent() on lines 16 and 17 override
those in the QWidget base class, and they will be called once for each keystroke.
The signal description() on line 19 emits descriptions of each keystroke.

4682-1 ch08.f.qc  11/13/00  14:11  Page 193



194 Part II ✦ Step by Step

KeyboardSensor
1 /* keyboardsensor.cpp */
2 #include <qstring.h>
3 #include <ctype.h>
4 #include “keyboardsensor.h”
5 
6 KeyboardSensor::KeyboardSensor(QWidget *parent,
7     const char *name) : QWidget(parent,name)
8 {
9     setFocusPolicy(QWidget::StrongFocus);
10     setMinimumSize(300,300);
11 }
12 void KeyboardSensor::keyPressEvent(QKeyEvent *event)
13 {
14     emitDescription(QString(“P: “),event);
15 }
16 void KeyboardSensor::keyReleaseEvent(QKeyEvent *event)
17 {
18     emitDescription(QString(“R: “),event);
19 }
20 void KeyboardSensor::emitDescription(
21         const QString &typeStr,QKeyEvent *event)
22 {
23     int key = event->key();
24     int ascii = event->ascii();
25     ButtonState state = event->state();
26 
27     QString keyStr = QString(“%1”).arg(key);
28 
29     QString charStr = QString(“”);
30     if(key == Key_Control) {
31         charStr += QString(“Control”);
32     } else if(key == Key_Alt) {
33         charStr += QString(“Alt”);
34     } else if(key == Key_Shift) {
35         charStr += QString(“Shift”);
36     } else {
37         if(state & ControlButton)
38             charStr += “Ctl-”;
39         if(state & AltButton)
40             charStr += “Alt-”;
41         if(state & ShiftButton)
42             charStr += “Shft-”;
43         if(isgraph(ascii))
44             charStr += ascii + QString(“ “);
45         else if(state & ControlButton)
46             charStr += (ascii + 64) + QString(“ “);
47     }
48 
49     if(event->isAutoRepeat())

4682-1 ch08.f.qc  11/13/00  14:11  Page 194



195Chapter 8 ✦ The Mouse and the Keyboard

50         charStr += “    repeat”;
51 
52     QString str = QString(“%1 %2 %3”)
53         .arg(typeStr).arg(keyStr).arg(charStr);
54 
55     emit description(str);
56 }

Only one window on the display has the keyboard focus at any one time — any
keystroke entered will go only to that one window. Some windows are capable 
of receiving the focus and others are not. The constructor, on line 6, calls set
FocusPolicy() to specify the way in which this widget is to receive the keyboard
focus. By default, your widget will not receive the keyboard focus. Table 8-2 con-
tains a description of the possible focus settings.

Table 8-2
Settings to Control Focus Policy

Name Description

ClickFocus The focus moves to this widget only if selected by the mouse.

NoFocus This widget does not accept focus.

StrongFocus This policy is a combination of TabFocus and ClickFocus.

TabFocus Only the Tab key can be used to move the focus from one widget to
another. This is normally used with a collection of widgets in a dialog.

WheelFocus The focus can be changed to this widget using TabFocus,
ClickFocus, or the movement of the mouse wheel.

The method keyPressEvent() and keyReleaseEvent() on lines 12 through 19
override virtual methods in the base class, and are called with each keystroke. Both
methods are passed a QKeyEvent object, and they pass it on to the method emit
Description() to format it as a string.

The method emitDescription() beginning on line 20 extracts the data from the
QKeyEvent and emits a description() signal with a descriptive string.

Each key has a unique number. This number is retrieved from the QKeyEvent by
the call to key() on line 27. If the key is a displayable ASCII character, the key value
is the same as its ASCII value. Nondisplayable keys are assigned larger numbers.
For example, as shown previously in Figure 8-7, the Shift key’s value is 4128; the 
Alt key is 4131; and the Return key is 4100.

4682-1 ch08.f.qc  11/13/00  14:11  Page 195



196 Part II ✦ Step by Step

The conditional code (on lines 30 through 35) determines whether the key is one of
the three modifier keys. If it is not, the code on lines 27 through 46 lists any modi-
fiers that are being held down, and then displays the character itself (if it is dis-
playable). The test on line 43 will be true if the character is displayable. However, 
if the Control key is being held down, the character value itself is modified (adding
64 to any Control character reveals the original displayable character).

Line 49 checks the Boolean method isAutoRepeat() to determine whether the key
is being held down, causing the events to be automatically generated.

Summary
The Qt library simplifies the processing of data coming from the mouse and the key-
board. Events are formatted into a descriptive object and are directed to the correct
widget. This chapter explained the following:

✦ There can be a direct relationship between an event in the hardware and a
method call in your application.

✦ Any widget can monitor the mouse for both movement and mouse button
clicks.

✦ Changing the appearance of the mouse cursor will change it only for that one
window and all of its child windows, unless a child window makes its own
change.

✦ Keyboard events are issued for every key press and every key release.

This chapter touched briefly on the graphic process required to create a custom
cursor. The following chapter explores graphic processing further, and uses graphic
files to decorate window backgrounds, buttons, menus, and other parts of an 
application.

✦ ✦ ✦

4682-1 ch08.f.qc  11/13/00  14:11  Page 196



Graphics File
Formats

This chapter primarily concerns itself with loading graphic
data from disk files and displaying it. KDE is capable of

recognizing and reading a number of formats of graphic files.
Everything that appears on the display has a window because
it inherits the one from QWidget. Also, every class that has a
window is capable of displaying a pixmap (a full-color graphic)
in its window.

Your program can get its graphic data from one of two locations.
It can be stored in a file on disk, in one of several formats, and
your program can then read the file and convert the data into 
an internal pixmap. Also, if you prefer, there is a way to convert
the contents of the graphic file into C source code so it can be
compiled directly into your program. The two methods result 
in the same thing — a QPixmap object that can be used to paint
a window.

Two Kinds of Graphics
The two basic kinds of graphics are bitmaps and pixmaps: 

✦ A pixmap is a rectangular array of pixel values. Each
value in the array represents a color for one pixel. A
pixmap can contain as many colors as you can load 
into your palette at any one time.

✦ A bitmap is a rectangular array of bits in which each 
bit corresponds to one pixel. A bitmap has only two col-
ors — that is, each pixel is either “on” or “off.” Normally,
this is displayed as black and white, but KDE enables
you to display a bitmap using any two colors. A bitmap
is really just a special case of a pixmap, but it is used
often enough that it has its own special file format.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Manipulating the 
two basic forms of
graphic data

Loading and
displaying graphic
data stored in files

Decorating buttons
and labels with icons

Creating special
modifications of a
graphic to represent
different states

✦ ✦ ✦ ✦

4682-1 ch09.f.qc  11/13/00  14:11  Page 197



198 Part II ✦ Step by Step

There seems to be no end to graphics file formats. Thanks to a “universal” conversion
utility, almost any graphics file format can be used inside a KDE application. The
convert utility (described in more detail later in this chapter) can convert a graphics
file from some external format into a format that can be displayed. For example, the
following command shows how to convert a JPEG file into a pixmap — a form that 
can be compiled directly into your program:

convert rickrack.jpeg rickrack.xpm

If you want to include a bitmap (no color) in your program, you can make the 
conversion as follows:

convert rickrack.jpeg rickrack.xbm

The convert utility looks at the contents of the input file to determine what kind of
file it is (it doesn’t trust the file suffix on input), and looks at the suffix of the output
filename to determine what kind of graphics file to produce.

The XPM Format
The XPM (XPixMap) graphics format is a standard in X11 for storing graphics as
ASCII text. This format enables you to use your text editor to create or modify 
simple color graphics. Not only is an XPM definition ASCII, but its format is C
source code that you can compile directly into your program.

The following is an example of an XPM graphic with four colors:

1 /* XPM */
2 /** essPixmap.xpm **/
3 static const char *essPixmap[] = {
4 “12 14 4 1”,
5 “  c None”,
6 “X c #FFFFFF”,
7 “R c Red”,
8 “B c #0000FF”,
9 “    RRBB    “,
10 “XXXXXXXXXXXX”,
11 “XXXXXXXXXXXX”,
12 “XX  RRBB    “,
13 “XX  RRBB    “,
14 “XX  RRBB    “,
15 “XXXXXXXXXXXX”,
16 “XXXXXXXXXXXX”,
17 “    RRBB  XX”,
18 “    RRBB  XX”,
19 “    RRBB  XX”,
20 “XXXXXXXXXXXX”,
21 “XXXXXXXXXXXX”,
22 “    RRBB    “,
23 };

4682-1 ch09.f.qc  11/13/00  14:11  Page 198



199Chapter 9 ✦ Graphics File Formats

The syntax of this XPM file is defined as an array of character strings. The comment
on the first line must be present because it is used by utilities to determine the 
file type.

Line 4 contains four numbers that are used to describe the data that follow. The
first number specifies that the pixmap is 12 pixels wide, and the second number
specifies that it is 14 pixels high. The next number specifies that four colors are
used in drawing the graphic. The last digit specifies that one letter is used as the
tag for each of the colors.

Lines 5 through 9 are the color definitions. Each string begins with a character that
is to be used as the tag that will identify the color. Any ASCII character can be used.
Line 5 defines the space character as the color named None. This specifies that no
pixel is to be painted, which produces transparency because the background is not
overwritten. Line 6 assigns the value of white to the letter X. The hexadecimal value
FFFFFF is the red-green-blue value for white (in base 10, the values are 255 255 255).
Line 8 uses the hexadecimal value 0000FF to assign the color blue to the letter B.
Line 7 uses a name to define a color for the letter R— the name must be one of the
RGB names found in the file /usr/X11R6/lib/X11/rgb.txt.

The graphic itself begins on line 9 and concludes with line 22. Each string is 12 
characters long because the graphic is 12 pixels wide and only 1 character is used
to represent a pixel. There are 14 of these strings because the graphic is 14 pixels
high. Every pixel is assigned a value by containing one of the 4 color characters
defined earlier.

An XPM file can be used to contain large, high-resolution images with a large num-
ber of colors. For example, the Linux distribution includes a file named logo.gif
that contains the Linux penguin. You can convert the GIF file to an XPM file with 
the following command:

convert logo.gif logo.xpm

In the resulting XPM file, more than 24 bits of color information are included, which
means there are more colors than can be represented by single characters. The
entire XPM file is 560 lines long. Here is an excerpt:

/* XPM */
static const char *magick[] = {
“257 303 251 2”,
“   c Gray0”,
“.  c #080800000404”,
“X  c #080808080000”,
“o  c Gray3”,
“O  c #101004040404”,
“+  c #101010100404”,

. . .
“{. c #f0f0b8b80808”,
“}. c #f8f8b0b00808”,
“|. c #f8f8b8b80808”,

4682-1 ch09.f.qc  11/13/00  14:11  Page 199



200 Part II ✦ Step by Step

“ X c #f0f0b0b01010”,
“.X c #f0f0b8b81010”,
“XX c #f8f8b8b81010”,
“BX c #d8d8d8d8e8e8”,
“VX c #e0e0e0e0d8d8”,
“CX c #f0f0e8e8d8d8”,
“ZX c Gray88”,
“AX c Gray91”,
“SX c #e8e8e8e8f0f0”,
“DX c #f0f0e8e8ecec”,
“FX c #f0f0f0f0e8e8”,
“GX c Gray94”,
“HX c #f8f8f8f8f8f8”,
“JX c None”,

. . .

This XPM graphic is 257 pixels wide and 303 pixels tall. It contains a total of 251 
colors and uses 2 characters to represent each color. The first few characters 
may appear to be defined by a single character, but, in fact, 2 characters are used
because the blank serves as the second character. As you can see later in the file,
the period and X characters are used. Because 2 characters are required to specify
a color, each string defining a row of pixel values has to be 514 characters long
(twice 257).

Also, notice that the hexadecimal numbers for the colors have 12 digits instead of 
6. This is still an RGB format, but each color is 16 bits (4 hexadecimal digits). Either
length is valid for an XPM file — the software that reads it counts the digits to deter-
mine the format. The colors in the file /usr/X11R6/lib/X11/rgb.txt, and many
colors found in other places, are defined as three 8-bit values. The following simple
program converts three 8-bit values into both the long and short hexadecimal
strings required by XPM:

/* hexcolor */
#include <stdio.h>
#include <stdlib.h>
char *usage[] = {

“       Usage: hexcolor r g b”,
“ Enter the three RBG color values in the”,
“ range of 0 to 256. The output is both a”,
“ 24-bit and 48-bit hexadecimal number of the”,
“ color that can be used in an XPM file.”

};
int main(int argc,char *argv[])
{

int i;
int r,g,b;

if(argc < 4) {
for(i=0; i<5; i++)

printf(“%s\n”,usage[i]);
exit(1);

}

4682-1 ch09.f.qc  11/13/00  14:11  Page 200



201Chapter 9 ✦ Graphics File Formats

r = atoi(argv[1]);
g = atoi(argv[2]);
b = atoi(argv[3]);
printf(“#%02X%02X%02X\n”,r,g,b);
printf(“#%02X00%02X00%02X00\n”,r,g,b);
exit(0);

}

Showing XPM from Data
Because the convert utility can convert virtually any graphics file into an XPM file,
and because the XPM format is C source code, almost any graphic can be compiled
directly into your program. This is mostly used for icons, button labels, list bullets,
and other small decorative items.

The convert utility converts image data into C, not C++. Before you can actually
use an XPM file to create a QPixmap inside your program, you need to edit the top
line to insert the const modifier to the name declaration. Without the const, the
declaration compiles okay, but the QPixmap constructor complains about it not
being const. And if you are going to use more than one XPM file in your program,
you need to rename the array, because convert always names it magick.

The following program is an example of compiling an XPM file directly into the code
and displaying it:

1 /* showxpm.cpp */
2 #include <kapp.h>
3 #include <qwidget.h>
4 #include <qpixmap.h>
5 
6 #include “logo.xpm”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”showxpm”);
11     QPixmap pixmap(magick);
12     QWidget *widget = new QWidget();
13     widget->setFixedSize(pixmap.width(),pixmap.height());
14     widget->setBackgroundPixmap(pixmap);
15     widget->show();
16     app.setMainWidget(widget);
17     return(app.exec());
18 }

The #include statement on line 6 causes the XPM data to be compiled directly into
the program. Line 11 creates a QPixmap from the XPM data.

Note

4682-1 ch09.f.qc  11/13/00  14:11  Page 201



202 Part II ✦ Step by Step

Any widget can be used to display a pixmap as its background; therefore, for this
example, a generic widget is created on line 12. The call to setFixedSize() on 
line 13 causes the widget to be exactly the same size as the pixmap. The call to
setBackgroundPixmap() on line 14 inserts the pixmap into the widget. The 
result is shown in Figure 9-1.

Figure 9-1: Displaying compiled XPM data

If you set your window to a fixed size, and you have a pixmap of that exact size, 
the pixmap is shown in its entirety. If the widget’s window is smaller than the
pixmap, the image is trimmed on the bottom and on the right. If the window is
larger than the pixmap, the pixmap is tiled until it fills the window. The following
example uses the smaller pixmap (defined earlier in this chapter as essPixmap) 
to tile the background of a widget:

1 /* showxpmtile.cpp */
2 #include <kapp.h>
3 #include <qwidget.h>
4 #include <qpixmap.h>
5 
6 #include “essPixmap.xpm”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”showxpmtile”);
11     QPixmap pixmap(essPixmap);
12     QWidget *widget = new QWidget();
13     widget->setBackgroundPixmap(pixmap);
14     widget->resize(200,100);
15     widget->show();
16     app.setMainWidget(widget);
17     return(app.exec());
18 }

4682-1 ch09.f.qc  11/13/00  14:11  Page 202



203Chapter 9 ✦ Graphics File Formats

This example creates a small pixmap from the XPM data included in the source on
line 6. The actual size of the pixmap is ignored, and it is set as the background
pixmap on line 13; the size of the widget is set on line 14. The result is the window
shown in Figure 9-2.

Figure 9-2: Displaying compiled XPM data as a 
tiled background

Loading a Pixmap from a File
You can load a graphic from a file, instead of compiling it as part of the program, 
by making a slight change to the previous example. All that is needed is a different
method to create the pixmap. The following program loads and displays the logo
pixmap previously shown in Figure 9-1:

1 /* showfilexpm.cpp */
2 #include <kapp.h>
3 #include <qwidget.h>
4 #include <qpixmap.h>
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”showfilexpm”);
9     QPixmap pixmap(“logo.xpm”);
10     QWidget *widget = new QWidget();
11     widget->setFixedSize(pixmap.width(),pixmap.height());
12     widget->setBackgroundPixmap(pixmap);
13     widget->show();
14     app.setMainWidget(widget);
15     return(app.exec());
16 }

The QPixmap constructor on line 9 uses a file to locate the graphic data. You can
use file types other than XPM. For example, to load a different type of file, change
the filename on line 9 as follows:

QPixmap pixmap(“logo.gif”);

The software does not look at the suffix of the filename to determine the file type.
Instead, it loads a block of data from the beginning of the file and inspects it to deter-
mine the file type. This is why the commented string containing the characters XPM
must remain at the top of an XPM file.

4682-1 ch09.f.qc  11/13/00  14:11  Page 203



204 Part II ✦ Step by Step

If the software complains about an invalid XPM file, it may be in an older format.
The file must be in version 3 in order for you to use it. Make the conversion with 
a command like the following:

sxpm -nod oldform.xpm -o newform.xpm

In order to load from a graphic file, the software must understand the file format.
The Qt software supports the file types PNG, BMP, GIF, JPEG, XBM, XPM, and 
PNM. The Qt software was designed in such a way that it may be extended later 
to include other formats. Also, because of patent issues, it is probably not a good 
idea to count on the GIF format being available in all countries.

Nothing special is required to read from the various file formats. The following
example program loads and displays a JPEG version of the graphic shown 
previously in Figure 9-1:

/* showfilejpeg.cpp */
#include <kapp.h>
#include <qwidget.h>
#include <qpixmap.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showfilejpeg”);
QPixmap pixmap(“logo.jpeg”);
QWidget *widget = new QWidget();
widget->setFixedSize(pixmap.width(),pixmap.height());
widget->setBackgroundPixmap(pixmap);
widget->show();
app.setMainWidget(widget);
return(app.exec());

}

Using a Pixmap to Decorate a Button
A button contains a window just like any other widget, so it can display a picture 
as well as text. In fact, the QPushButton class has some special enhancements 
that cause the pixmap to represent the current state of the button. The following
program uses a PNG file to paint the face of the button shown in Figure 9-3:

1 /* decobutton.cpp */
2 #include <kapp.h>
3 #include <kpixmap.h>
4 #include “decobutton.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”decobutton”);

4682-1 ch09.f.qc  11/13/00  14:11  Page 204



205Chapter 9 ✦ Graphics File Formats

9     DecoButton decobutton;
10     decobutton.show();
11     app.setMainWidget(&decobutton);
12     return(app.exec());
13 }
14 
15 DecoButton::DecoButton(QWidget *parent,const char *name)
16         : QWidget(parent,name)
17 {
18     setFixedSize(200,150);
19 
20     QPixmap pixmap(“hil-app-go.png”);
21     button = new QPushButton(this);
22     button->setPixmap(pixmap);
23     button->setGeometry(50,50,100,50);
24 }

Figure 9-3: A button with a graphic instead of text

The widget used for the top-level window is DecoButton. Its constructor begins on
line 15. Line 18 sets the widget to a fixed size of 200 pixels wide and 150 high.

The pixmap is created from a file named hil-app-go.png on line 20. A button is
created and the pixmap is inserted into it with the call to setPixmap() on line 22.
On line 23, the button is sized to fit properly with this pixmap.

The QPushButton class does something special when the button is pressed. To
make the button appear depressed, the background is changed to a darker color
and the graphic itself is shifted one pixel down and one to the right. The result is
shown in Figure 9-4.

Figure 9-4: An activated button with a graphic 
instead of text

4682-1 ch09.f.qc  11/13/00  14:11  Page 205



206 Part II ✦ Step by Step

When the button is activated, the area not covered by the graphic icon is darkened.
The icon is actually square, so to darken some of the pixels within the graphic itself
it is necessary for them to be transparent. The transparent pixels changing color
gives the user the expected feedback from selecting a button. But the graphic of the
icon itself is also modified, as you can see by comparing Figures 9-3 and 9-4. This
modification is made with the QIconSet class described later in this chapter.

The XBM Format
If there are only two colors (usually black and white), it is more efficient to store a
picture with a single bit for each pixel, as is done in XBM (XBitMap) format. The
XBM format is most often used to define mouse and keyboard cursors, but it also
has other purposes. Like the XPM format, an XBM file is an ASCII file that can be
compiled directly into a C program. The following is an example of an XBM file:

#define arrow_width 16
#define arrow_height 16
#define arrow_x_hot 15
#define arrow_y_hot 7
static unsigned char arrow_bits[] = {

0x00, 0x00, 0x00, 0x00, 0xc0, 0x07, 0x80, 0x0f, 0x80,
0x1f, 0xfc, 0x3f, 0xfc, 0x7f, 0xfc, 0xff, 0xfc, 0x7f,
0xfc, 0x3f, 0x80, 0x1f, 0x80, 0x0f, 0xc0, 0x07, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00};

The first two lines determine the width and height in pixels. The next two lines
specify the coordinates of the hot spot. The hot spot is the exact x and y pixel loca-
tion inside the bitmap that is considered to be the mouse location whenever the
bitmap is used as a mouse cursor. The specification of the hot spot is optional, so
the two lines can be omitted. Figure 9-5 shows the appearance of this bitmap. The
hot spot is at the tip of the arrow point on the right.

Figure 9-5: A bitmap defines graphics in black and white.

In the file, the bit settings are written as byte values, and each number specifies the
on or off status of eight pixels. The pixels are first mapped from left to right, and
then from top to bottom. They are all held in a single array, so the software that
uses it must have the height and width information to know where the lines break.

The Bitmap Utility
There is a utility that you can use to create bitmap files and to modify them once
they are created. To create a new bitmap with the default size of 16 ×16, just enter

4682-1 ch09.f.qc  11/13/00  14:11  Page 206



207Chapter 9 ✦ Graphics File Formats

the command name with no arguments. If you want to create a new bitmap that is
24 pixels wide and 32 pixels high, enter the command as follows:

bitmap -size 24x32

Once a bitmap is created and written to disk, it can be loaded again for editing by
being named on the command line as follows:

bitmap arrow.xbm

The window used to edit the arrow is shown in Figure 9-6. As you can see from the
array of controlling buttons, you can edit the figure in a number of ways. The figure
layout is displayed in the grid on the right, enabling you to use the left mouse button
to set pixel values to 0, and the right mouse button to set them to 1. The diamond-
shaped pixel on the right indicates the hot spot — and there can be only one hot
spot. To set the hot spot, select the Set Hot Spot button and then select a pixel.

Figure 9-6: The bitmap editor with
arrow.xbm loaded

The bitmap utility can be used to create cursors. A cursor requires two bitmaps — one
for the cursor and one for the mask. The process of creating a cursor is described in
Chapter 8.

4682-1 ch09.f.qc  11/13/00  14:11  Page 207



208 Part II ✦ Step by Step

This program is part of the standard X11 distribution. Its buttons and menu labels
look very different from the ones in KDE because this program was developed
using a completely different set of widgets and utilities. Fortunately, the underlying
X11 standards and protocols allow programs based on completely different soft-
ware to all execute simultaneously on the same display.

Customizing Graphics for Menus and Toolbars
The graphic icon indicator on a toolbar button can be modified to indicate that 
the selection is either not available or that the toolbar button widget is currently
being selected by the user with the mouse button. To indicate the conditions, it is
necessary to make modifications to the appearance of the pixmap. To do this, the
QIconSet class accepts a single QPixmap as input and generates three pixmaps 
in two different sizes. These six different versions of the pixmap can be used in 
toolbars and menus, as described in Chapter 6.

The following example program allows you to browse through a selection of graph-
ics files and display the six different forms of the one you select, as shown in Figure
9-7. A QFileDialog, described in Chapter 5, is used to select and load a QPixmap
from a graphic file. A QIconSet object is then used to create the six versions of the
pixmap displayed in the figure.

Figure 9-7: An icon shown in six different forms

SetIcon Header
1 /* seticon.h */
2 #ifndef SETICON_H
3 #define SETICON_H
4 
5 #include <qwidget.h>
6 #include <qlayout.h>
7 #include <qlabel.h>
8 #include <qpixmap.h>
9 #include <qpushbutton.h>
10 
11 class SetIcon: public QWidget
12 {
13     Q_OBJECT
14 public:

Note

4682-1 ch09.f.qc  11/13/00  14:12  Page 208



209Chapter 9 ✦ Graphics File Formats

15     SetIcon(QWidget *parent=0,const char *name=0);
16 private:
17     QVBoxLayout *makeVerticalBox();
18     QGridLayout *makeGrid();
19     void insertNewPixmap();
20 private:
21     QPixmap pixmap;
22     QString pixmapName;
23     QPushButton *button;
24     QLabel *picLabel;
25     QLabel *nameLabel;
26     QLabel *normal;
27     QLabel *disabled;
28     QLabel *active;
29     QLabel *small;
30     QLabel *large;
31     QLabel *normalSmall;
32     QLabel *normalLarge;
33     QLabel *disabledSmall;
34     QLabel *disabledLarge;
35     QLabel *activeSmall;
36     QLabel *activeLarge;
37 public slots:
38     void newPixmap();
39 };
40 
41 #endif

Three internal methods are defined on lines 17 through 19. The methods make
VerticalBox() and makeGrid() are used by the constructor to help in the layout
of the top-level window. The method insertNewPixmap() is called whenever a 
new QPixmap has been created and needs to be displayed.

The QPixmap and QString on lines 21 and 22 hold the current pixmap and its name.

The pushbutton and the labels declared on lines 23 through 36 are the ones that
appear on the display. The labels named picLabel and nameLabel display the
unmodified pixmap and the name of the file from which it was loaded. The labels 
on lines 26 through 30 are used to annotate the table shown in Figure 9-7, and 
the labels on lines 31 through 36 are used to display each of the six versions 
of the pixmap.

SetIcon
1 /* seticon.cpp */
2 #include <kapp.h>
3 #include <qfiledialog.h>
4 #include “seticon.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”seticon”);

4682-1 ch09.f.qc  11/13/00  14:12  Page 209



210 Part II ✦ Step by Step

9     SetIcon seticon;
10     seticon.show();
11     app.setMainWidget(&seticon);
12     return(app.exec());
13 }
14 
15 SetIcon::SetIcon(QWidget *parent,const char *name)
16         : QWidget(parent,name)
17 {
18     pixmapName = “hil-app-go.png”;
19     pixmap = QPixmap(pixmapName);
20 
21     QHBoxLayout *hbox = new QHBoxLayout(this,5);
22     QVBoxLayout *vbox = makeVerticalBox();
23     hbox->addLayout(vbox);
24     hbox->addSpacing(50);
25     QGridLayout *grid = makeGrid();
26     hbox->addLayout(grid);
27     hbox->activate();
28 
29     insertNewPixmap();
30 
31     connect(button,SIGNAL(clicked()),
32             this,SLOT(newPixmap()));
33 }
34 
35 QVBoxLayout *SetIcon::makeVerticalBox()
36 {
37     QVBoxLayout *vbox = new QVBoxLayout(5);
38 
39     vbox->addStretch(1);
40     
41     button = new QPushButton(“Select”,this);
42     button->setFixedSize(button->sizeHint());
43     vbox->addWidget(button);
44 
45     vbox->addStretch(1);
46 
47     picLabel = new QLabel(“”,this);
48     picLabel->setAutoResize(TRUE);
49     picLabel->setAlignment(AlignHCenter | AlignVCenter);
50     vbox->addWidget(picLabel);
51 
52     nameLabel = new QLabel(“”,this);
53     nameLabel->setAutoResize(TRUE);
54     nameLabel->setAlignment(AlignHCenter | AlignVCenter);
55     vbox->addWidget(nameLabel);
56 
57     vbox->addStretch(1);
58 
59     return(vbox);
60 }
61 QGridLayout *SetIcon::makeGrid()
62 {

4682-1 ch09.f.qc  11/13/00  14:12  Page 210



211Chapter 9 ✦ Graphics File Formats

63     QGridLayout *grid = new QGridLayout(4,3);
64 
65     normal = new QLabel(“Normal”,this);
66     grid->addWidget(normal,1,0);
67     disabled = new QLabel(“Disabled”,this);
68     grid->addWidget(disabled,2,0);
69     active = new QLabel(“Active”,this);
70     grid->addWidget(active,3,0);
71     small = new QLabel(“Small”,this);
72     grid->addWidget(small,0,1);
73     large = new QLabel(“Large”,this);
74     grid->addWidget(large,0,2);
75 
76     normalSmall = new QLabel(“”,this);
77     grid->addWidget(normalSmall,1,1);
78     normalLarge = new QLabel(“”,this);
79     grid->addWidget(normalLarge,1,2);
80     disabledSmall = new QLabel(“”,this);
81     grid->addWidget(disabledSmall,2,1);
82     disabledLarge = new QLabel(“”,this);
83     grid->addWidget(disabledLarge,2,2);
84     activeSmall = new QLabel(“”,this);
85     grid->addWidget(activeSmall,3,1);
86     activeLarge = new QLabel(“”,this);
87     grid->addWidget(activeLarge,3,2);
88 
89     return(grid);
90 }
91 void SetIcon::insertNewPixmap()
92 {
93     picLabel->setPixmap(pixmap);
94     nameLabel->setText(pixmapName);
95 
96     QIconSet iconset(pixmap);
97 
98     QPixmap p;
99     p = iconset.pixmap(QIconSet::Small,QIconSet::Normal);
100     normalSmall->setPixmap(p);
101     p = iconset.pixmap(QIconSet::Large,QIconSet::Normal);
102     normalLarge->setPixmap(p);
103 
104     p = iconset.pixmap(QIconSet::Small,QIconSet::Disabled);
105     disabledSmall->setPixmap(p);
106     p = iconset.pixmap(QIconSet::Large,QIconSet::Disabled);
107     disabledLarge->setPixmap(p);
108 
109     p = iconset.pixmap(QIconSet::Small,QIconSet::Active);
110     activeSmall->setPixmap(p);
111     p = iconset.pixmap(QIconSet::Large,QIconSet::Active);
112     activeLarge->setPixmap(p);
113 }
114 void SetIcon::newPixmap()
115 {
116     QString filter = “Icon (*.png *.xpm *.xbm)”;

4682-1 ch09.f.qc  11/13/00  14:12  Page 211



212 Part II ✦ Step by Step

117     QString name = QFileDialog::getOpenFileName(“”,
118             filter,this);
119     if(!name.isEmpty()) {
120         int length = name.length() - name.findRev(‘/’);
121         pixmapName = name.right(length - 1);
122         pixmap = QPixmap(name);
123         insertNewPixmap();
124     }
125 }

The SetIcon widget, with its constructor beginning on line 15, is used as the 
top-level window of the application on line 11. Lines 18 and 19 specify the name 
and value of the initial pixmap. The window is laid out as the horizontal box hbox,
which contains a QVBoxLayout named vbox on the left and a QGridLayout named
grid on the right. The call to makeVerticalBox() and makeGrid() on lines 22 
and 25 create the two sub-layouts included in the horizontal box.

The call to insertNewPixmap() on line 29 installs the initial pixmap as the one 
currently displayed. The call to connect() on line 31 establishes the slot method
newPixmap() as the one to be executed whenever the button is clicked.

The method makeVerticalBox() on line 35 creates the Select button, the display
label to display the unmodified graphic, and the label holding the name of the
graphic file. These are all inserted into a vertical box. The button is created and
inserted on lines 41 through 43. The two labels are created and added to the 
vertical box on lines 47 through 55. The labels are left empty for now because 
the pixmap and its filename will be installed in them later.

The method makeGrid() beginning on line 61 uses a QGridLayout to create a 
table of QLabel objects that are used to display the various incarnations of the 
current pixmap. The grid is 3 cells wide and 4 cells high. The first row and the first
column are used for annotation labels, as you can see on the right side of the win-
dow in Figure 9-7. The labels created on lines 65 through 74 are the annotations, so
they are all created with the text included. The labels created on lines 76 through 
87 are intended to display pixmap graphics, so they are created without text.

The method insertNewPixmap() on line 91 uses the current pixmap information to
fill out the display. This method is called once when the program first starts running,
to install the default pixmap; and once again whenever a new pixmap is selected.

The QIconSet object iconset is created on line 96 using the pixmap that was stored
in the pixmap field of the object. All that is needed now is for each of the six modified
pixmaps to be retrieved and inserted into the label widgets for display. The method
pixmap() is used to retrieve each version of the graphic. The arguments passed to
the method determine which of the six is returned. The first argument specifies that
the returned pixmap be either Small or Large. The second argument requests that it
be Normal, Disabled, or Active. The argument values are defined as enums in the
QIconSet class.

4682-1 ch09.f.qc  11/13/00  14:12  Page 212



213Chapter 9 ✦ Graphics File Formats

If the pixmap you select is the correct size for a small icon, then the original is
unchanged for Small and an expanded version is created for Large. If, on the other
hand, the pixmap is already the size of a Large icon, a Small icon will be produced
from it. The sizes are not adjusted to absolute dimensions — they are relative to the
original size of the graphic. For example, if you select a very large graphic, its size
will not be changed for the Large icon, and will only be slightly reduced for the
Small icon.

The slot method newPixmap() on line 114 is called whenever the Select button is
clicked. It pops up a QFileDialog with the call to getOpenFileName() on line 117
to select a graphics file. The filter, defined on line 116, limits the files to those with
the .png, .xpm, and .xbm suffixes, but you could include other graphic files if you
wish. If a filename is selected, its full path name is returned. The QString methods
findRev() and length() on line 120 are used to determine the length of the file-
name without its path, and the call to right() on line 121 extracts the name of the
file to be displayed. The new pixmap is created on line 122, and the new display is
constructed by the call to insertNewPixmap() on line 123.

Summary
There is a lot more to graphics, but this chapter presents enough of an introduction
that you can create graphic buttons for menus and toolbars. This chapter explained
the following:

✦ The two basic types of graphics are the bitmap and the pixmap. A bitmap 
contains no color information — it just specifies either 1 or 0 for each pixel. 
A pixmap can be any number of colors. And both the pixmap (known as the
XPM format) and the bitmap (known as the XBM format) can be compiled
directly into your program or dynamically loaded at run time.

✦ Any object that inherits from QWidget has the capability of displaying a
pixmap instead of solid colors for its background.

✦ KDE recognizes a number of graphic file formats, and the software is designed
so that others can be added later. In fact, they can be added to a shared library
and used by your program without recompiling. 

The pixmaps introduced in this chapter are often used as identifiers so the user can
tell which button does what. But sometimes only text will work. The next chapter
explores the various fonts and font-rendering techniques that are available to your
application.

✦ ✦ ✦

4682-1 ch09.f.qc  11/13/00  14:12  Page 213



4682-1 ch09.f.qc  11/13/00  14:12  Page 214



Fonts

The way that fonts are used by X11 (and thus by Qt and
KDE) may confuse you at first. But once you see what is

going on, it becomes quite simple. A method was devised that
keeps font handling very flexible and, at the same time, quite
straightforward. In your application, you can be specific and
use exactly the font you like, or you can leave some leeway in
your font selection and allow each system to pick a font that
fits with the selection criteria. There is also a pair of widgets
that enable a user to choose the font.

Fonts vary in size and shape in different ways. There is a 
special set of metrics applied to fonts. By using the standard
values to position characters on the display, you can treat 
all fonts (no matter how radical) the same way. This chapter
deals with acquiring, positioning, and rendering fonts of 
different types and sizes.

The Anatomy of a Font
A number of different measurements can be made on a charac-
ter, or a string of characters, in a font. Complicating the issue
is the fact that some characters are taller than others, some
descend lower than others, and some characters are wider
than others. It also is possible to have one character overlap
another when they are adjacent to each other in a string — this
is quite common in an italic font, where the top of a tall charac-
ter extends above the bottom of the character to its right.

Figure 10-1 shows the measurements that can be made on
each character. The origin is the x and y coordinate point that
is used to draw the character. In other words, when you draw
the letter t at a specific coordinate point, it actually appears
above and to the right of that point. On the other hand, the
letter p appears to the right of the point, but both above and
below it. The pixel rendering, or graphic design, of a character
is called a glyph. Every glyph is designed relative to an origin
point in such a way that it is only necessary for you to line up
the origin points of the characters to line up the characters

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Learning how fonts
are measured and
sized

Understanding the
X11 font naming
convention

Using a font-picker
widget to select 
a font

Reading font
measurement
information

Position text

✦ ✦ ✦ ✦

4682-1 ch10.f.qc  11/13/00  14:12  Page 215



216 Part II ✦ Step by Step

themselves. This string of origin points is called the baseline. The ascent and
descent values are the measurements from the baseline to the top and bottom of 
the character — the sum of the ascent and the descent is the height of the charac-
ter. The width of the character is measured from the origin point to the right side 
of the character. The lbearing (left bearing) is the distance from the origin to the
character, and the rbearing (right bearing) is the width of the graphic part of 
the character.

Figure 10-1: Font measurements on single characters

You can see from the ascent, descent, and height measurements in Figure 10-1 that
the value of the descent can be zero. It also is possible for the lbearing value to 
be zero. In fact, it can even be negative in the case of the character’s glyph being
drawn to the left of the origin. (For example, this can happen with the bottom 
portion of an italic font.)

Figure 10-2 shows the set of measurements that can be made on a string of 
characters. The ascent, descent, and height can include a leading area that 
extends outside the maximum extent upward, downward, or both. The same 
is true of width. The border around the string allows your program to easily 
place pieces of text, even text in different fonts, next to one another and have 
the spacing be correct. The origin of the string — the x and y coordinates used 
to draw the string — is the origin of the leftmost letter in the string. The origins
of the other letters are used internally to place each letter next to one another
when the string is drawn.

baseline

ascent

descent

lbearing
rbearing

width

height

origin

ascent

lbearing rbearing

width

height

origin

4682-1 ch10.f.qc  11/13/00  14:12  Page 216



217Chapter 10 ✦ Fonts

Figure 10-2: Font measurements on a string of characters

Names of the Fonts
The fonts are stored in disk files. The font files are part of the standard X distribu-
tion. When an application requests a font, it is loaded from the file into the X server,
not into the application. Because the fonts are in the server, there is no overhead of
passing detailed font information from the application to the server for display.
This reduction in traffic can save you a lot of time because it is common to open 
a local X window (with its local server) controlled by an application in another
computer. Besides, if more than one application is using the same font, only
one copy has to be loaded.

The font files usually are stored in subdirectories of /usr/lib/X11/fonts. In each
subdirectory, the font files have the suffix .pcf or .pcf.gz. In the same directory
as the fonts, there is a file named fonts.dir that maps alias names to the actual
font filenames. There is also a fonts.alias file that you can use to assign alternate
names to the fonts defined in fonts.dir. For example, you can use the font file
named 10x20.pcf.gz by specifying its name like this:

10x20

Or you can use the alias name assigned to it:

-misc-fixed-medium-r-normal--20-200-75-75-c-100-iso8859-1

The short form has the advantage of being easy to remember, but the long form has
the advantage of being descriptive. And the software enables you to make selections
using wildcards for the various parts of the name. Each part of the name has a specific
meaning. Table 10-1 describes each of the parts of the name shown in Figure 10-3.

Figure 10-3: The parts of a font name

font foundry font family slant

weight proportional width

pixels points

horizontal dpi

verticle dpi

spacing

pixel width

character set

–adobe–courier–bold–r–normal––11–80–100–100–m–60–iso8859–2

baseline

lbearing

ascent
height 

descent

rbearing
width

origin

4682-1 ch10.f.qc  11/13/00  14:12  Page 217



218 Part II ✦ Step by Step

Table 10-1
Parts of a Font Name

Part Name Description

font foundry The name of the company or organization that created the font. 
Some of the more common names are adobe, b&h, bitstream, dec,
schumacher, sony, and sun. If no foundry claims the font, the name
is misc.

font family The name of a set of related fonts, of which this font is a member.
Possible names are lucida, times, courier, helvetica, and so on.

weight This is the stroke weight. It is usually either medium or bold, but it
also can be black, book, demibold, light, or regular.

slant The angle of each letter can be italic, oblique, or r (short for roman,
meaning upright).

proportional width The relationship between height and width is usually normal, but it
can be condensed, semi-condensed, narrow, or double.

pixels The size of the font in pixels. Normally, font sizes are measured in
points (a point is 1/72 of an inch). To arrive at the pixel-size value,
the point size is translated into the pixel size, which means that the
point size may have to be rounded up or down to come out on a
pixel boundary.

points The point size of the font in tenths of a point. In the example, the
value 80 indicates that this is an 8-point font. The relationship
between the point size and the pixel size is determined by the
vertical and horizontal dpi (dots per inch) values. In this example, 
at 100 dpi, an 8-point font has a pixel size of 11. At the same dpi, 
a 12-point font has a pixel size of 17.

horizontal dpi The number of horizontal pixels per inch of resolution. This value is
used to compute the pixel and point sizes. It also is used as a ratio
with vertical dpi to determine the horizontal vertical dpi that will
cause the font to display properly.

vertical dpi The number of vertical pixels per inch of resolution.

spacing This can be m (for monospace), p (for proportional), or c (for
character cell). A monospace font is one in which all characters 
are the same width. A proportional font has characters of various
widths (for example, the letter w is wider than the letter i). 
A character-cell font is a fixed-width font based on the way 
typewriter fonts are spaced.

pixel width The average width, in tenths of a pixel, of all the characters in the font.

character set This is the version of the standard used to define the character 
set. The International Organization for Standardization (ISO) has
established standards for the sets of characters that are included 
in the alphabet of various languages.

4682-1 ch10.f.qc  11/13/00  14:12  Page 218



219Chapter 10 ✦ Fonts

Not only are the long-font names descriptive, they are in a form that enables you to
use wildcard characters in searching for a font. This way, you only need to specify
the things you care about, and let the rest of it default. For example:

-*-bookman-light-r-normal--14-*-*-*-p-*-iso8859-1

The parts specified in the name must be an exact match with an actual font, while 
the asterisks can match any value. Of course, several fonts may match, but the first
match encountered is the one returned. The preceding example could select this font:

-adobe-bookman-light-r-normal--14-135-75-75-p-82-iso8859-1

When specifying a font name, you should be specific only with the parts you need.
This way, you have a better chance of matching an actual font name. If your specifi-
cations do not match the name of a font, the default font named fixed is used, and
it is almost never the one you want.

Setting the Font of a Widget
A QFont object can be created and used to specify the font used by a widget. The
following example displays three labels, each of which uses a different font, as
shown in Figure 10-4:

1 /* fontset.cpp */
2 #include <kapp.h>
3 #include <qlabel.h>
4 #include <qlayout.h>
5 #include <qfont.h>
6 #include “fontset.h”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”fontset”);
11     FontSet fontset;
12     fontset.show();
13     app.setMainWidget(&fontset);
14     return(app.exec());
15 }
16 FontSet::FontSet(QWidget *parent,const char *name)
17         : QWidget(parent,name)
18 {
19     QVBoxLayout *vbox = new QVBoxLayout(this,10);
20 
21     QLabel *label1 = new QLabel(
22             “Bold 14-point Courier”,this);
23     QFont font1(“Courier”,14,QFont::Bold,FALSE);
24     label1->setFont(font1);
25     vbox->addWidget(label1);
26 

4682-1 ch10.f.qc  11/13/00  14:12  Page 219



220 Part II ✦ Step by Step

27     QLabel *label2 = new QLabel(
28             “20-point Fixed”,this);
29     QFont font2(“Fixed”,20,QFont::Normal,FALSE);
30     label2->setFont(font2);
31     vbox->addWidget(label2);
32 
33     QLabel *label3 = new QLabel(
34             “Bold Italic 18-point Charter”,this);
35     QFont font3(“Charter”,18,QFont::Bold,TRUE);
36     label3->setFont(font3);
37     vbox->addWidget(label3);
38 }

Figure 10-4: Setting the fonts for labels

Once the QFont object is created, the call to setFont() installs it in the label. The
setFont() method is a virtual method inherited from the QWidget class, so the
same method should work for any widget that displays text.

The QFont constructor accepts a list of arguments that specify the name of the
font. These arguments contain the same information as the font filenames specified
earlier, but they are in an easier to use format. To create a QFont, you need to spec-
ify the font family name, the point size, the weight of the characters, and whether
or not the font is to be italic. The weight numbers, each defined as an enum in the
QFont class, are Light, Normal, DemiBold, Bold, and Black.

Using the arguments on the constructor, it is possible to describe a font that 
doesn’t really exist — for example, a 12-point fixed italic — but the constructor will
succeed in finding a font because the font naming convention is used to find the
closest match to the one requested. Before hard-coding a QFont constructor, you
may want to use one of the programs in the chapter to browse the available fonts.

If you wish to specify the exact name of a font, you can do so using the method
setRawName() on a QFont object. For example, the following code creates a 
QFont object that is italic, of the Utopia family, and produced by Adobe:

QFont font;
font.setRawName(
“-adobe-utopia-regular-i-normal--15-140-75-75-p-79-iso8859-1”);

4682-1 ch10.f.qc  11/13/00  14:12  Page 220



221Chapter 10 ✦ Fonts

Selecting a Font with QFontDialog
The following program presents on its main window a button that can be used to
pop up a QFontDialog. A font selection made in the dialog will cause both the text
and the font of the button to be changed — each font description is presented in its
own font. Figure 10-5 shows three different appearances of the main window and 
its button.

Figure 10-5: Three fonts displayed by a button

FontPrompt Header
1 /* fontprompt.h */
2 #ifndef FONTPROMPT_H
3 #define FONTPROMPT_H
4 
5 #include <qwidget.h>
6 #include <qpushbutton.h>
7 
8 class FontPrompt: public QWidget
9 {
10     Q_OBJECT
11 public:
12     FontPrompt(QWidget *parent=0,const char *name=0);
13 private:
14     QPushButton *button;
15 private slots:
16     void popupDialog();
17 };
18 
19 #endif

The FontPrompt class is quite simple. It only contains the button to be clicked and
the slot to be executed to pop up the dialog.

4682-1 ch10.f.qc  11/13/00  14:12  Page 221



222 Part II ✦ Step by Step

FontPrompt
1 /* fontprompt.cpp */
2 #include <kapp.h>
3 #include <qfontdialog.h>
4 #include “fontprompt.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”fontprompt”);
9     FontPrompt fontprompt;
10     fontprompt.show();
11     app.setMainWidget(&fontprompt);
12     return(app.exec());
13 }
14 FontPrompt::FontPrompt(QWidget *parent,const char *name)
15         : QWidget(parent,name)
16 {
17     button = new QPushButton(“”,this);
18     QFont font = button->font();
19     button->setText(font.rawName());
20     button->setFixedSize(button->sizeHint());
21     setFixedSize(button->sizeHint());
22 
23     connect(button,SIGNAL(clicked()),
24             this,SLOT(popupDialog()));
25 }
26 void FontPrompt::popupDialog()
27 {
28     bool okay;
29 
30     QFont oldFont = button->font();
31     QFont newFont =
32             QFontDialog::getFont(&okay,oldFont,this);
33     if(okay) {
34         button->setFont(newFont);
35         button->setText(newFont.rawName());
36         button->setFixedSize(button->sizeHint());
37         setFixedSize(button->sizeHint());
38     }
39 }

The FontPrompt constructor, starting on line 14, creates and installs the button in
the main window. The call to font() on line 18 retrieves the current (default) font
of the button. The call rawName() on line 19 retrieves the full name of the font, and
then calls setText() to specify that the font name be used as the button text. Line
20 calls setFixedSize() so that the size of the button is exactly the same as the
size of the text. The call to setFixedSize() on line 21 sizes the main window to
just fit the button. The button is connected to the slot method on line 26. The
resulting window, showing the default text, looks like the one shown earlier at 
the top of Figure 10-5.

4682-1 ch10.f.qc  11/13/00  14:12  Page 222



223Chapter 10 ✦ Fonts

The popupDialog() slot method on line 26 does all of the work of retrieving and
installing a new font. The call to font() on line 30 retrieves the existing font from
the button. The call to getFont() on line 32 passes the existing font to the dialog,
which uses it as the default. The initial window, displaying the default font, looks
like the one shown in Figure 10-6.

Figure 10-6: A font selection dialog showing the 
default font

A couple of options on the dialog are not included as part of the standard font 
definition. Toggle buttons for Strikeout and Underline are part of the dialog
because these are two font options added by the QFont class.

If the OK button is selected, the new font is returned as newFont on line 31. Also,
the Boolean variable okay will be set to TRUE. To update the display, there is a call
to setFont() on line 34. The setFont() method is defined as part of the QWidget
class, which means the same method can be used to set the text of any widget dis-
playing text. Line 35 calls rawName() and setText() to insert the full description
of the new font into the button. Lines 36 and 37 are necessary to resize the button
and the window because changing the font almost always changes the size of 
the window.

Selecting a Font with KFontDialog
The following font selection program is very much like the previous one, except
that it uses a KFontDialog to do the selection. The pop-up dialog is shown in
Figure 10-7.

Note

4682-1 ch10.f.qc  11/13/00  14:12  Page 223



224 Part II ✦ Step by Step

Figure 10-7: A font selection dialog showing 
a large font

FontPrompt2 Header
1 /* fontprompt2.h */
2 #ifndef FONTPROMPT2_H
3 #define FONTPROMPT2_H
4 
5 #include <qwidget.h>
6 #include <qpushbutton.h>
7 
8 class FontPrompt2: public QWidget
9 {
10     Q_OBJECT
11 public:
12     FontPrompt2(QWidget *parent=0,const char *name=0);
13 private:
14     QPushButton *button;
15 private slots:
16     void popupDialog();
17 };
18 
19 #endif

FontPrompt2
1 /* fontprompt2.cpp */
2 #include <kapp.h>
3 #include <kfontdialog.h>
4 #include “fontprompt2.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”fontprompt2”);
9     FontPrompt2 fontprompt2;
10     fontprompt2.show();
11     app.setMainWidget(&fontprompt2);
12     return(app.exec());

4682-1 ch10.f.qc  11/13/00  14:12  Page 224



225Chapter 10 ✦ Fonts

13 }
14 FontPrompt2::FontPrompt2(QWidget *parent,const char *name)
15         : QWidget(parent,name)
16 {
17     button = new QPushButton(“”,this);
18     QFont font = button->font();
19     button->setText(font.rawName());
20     button->setFixedSize(button->sizeHint());
21     setFixedSize(button->sizeHint());
22 
23     connect(button,SIGNAL(clicked()),
24             this,SLOT(popupDialog()));
25 }
26 void FontPrompt2::popupDialog()
27 {
28     QFont font = button->font();
29     int result = KFontDialog::getFont(font);
30     if(result == QDialog::Accepted) {
31         button->setFont(font);
32         button->setText(font.rawName());
33         button->setFixedSize(button->sizeHint());
34         setFixedSize(button->sizeHint());
35     }
36 }

The FontPrompt2 constructor, beginning on line 14, creates a window with a 
button. The appearance of the button is initialized on lines 18 and 19 so it will 
show the name of its own font. Lines 20 and 21 size the top-level window and 
the button to the size of the text.

The slot method popupDialog() on line 26 is called whenever the button is
clicked. The call to the static method getFont() on line 29 pops up the dialog 
and returns the value QDialog::Accepted if a selection was made, or QDialog::
Rejected if a selection was not made. Lines 31 and 32 update the button to use 
the chosen font and specify the text of the button to be the descriptive name of 
the font. Lines 32 and 33 resize the button and window to fit the text.

The dialogs KFontDialog and QFontDialog are very much alike, except QFont
Dialog has a couple of extra options (Underline and Strikethrough), while the
KFontDialog allows you to work with the sample text at the bottom of the window.
Both of them allow you to edit the string of characters — so you can see what the
font looks like for the text you are going to be using — but only the KFontDialog
allows you to both initialize it and return it to your program. To do this, create the
dialog as follows:

int result = KfontDialog::getFontAndText(font,btext); 

The btext argument is a QString object that will receive the text displayed at the
bottom of the dialog window whenever the OK button is clicked.

4682-1 ch10.f.qc  11/13/00  14:12  Page 225



226 Part II ✦ Step by Step

Font Placement by Metrics
There are metric values available that you can use to position the fonts in a 
window. The following application allows you to choose from any font and have 
it displayed in positions calculated from the font’s metrics.

Figure 10-8 shows the top-level window of the program, with the buttons that can
be used to select the font and position the text. The three buttons at the top posi-
tion the text vertically inside the black rectangle, and the three buttons at the bot-
tom position the text horizontally. The large button at the bottom pops up a dialog
like the one shown earlier in Figure 10-6, which can be used to change the font.

Figure 10-8: Positioning text in a window

FontPaint Header
1 /* fontpaint.h */
2 #ifndef FONTPAINT_H
3 #define FONTPAINT_H
4 
5 #include <qwidget.h>
6 #include <qframe.h>
7 #include <qpushbutton.h>
8 
9 class FontPaint: public QWidget
10 {
11     Q_OBJECT
12 public:
13     FontPaint(QWidget *parent=0,const char *name=0);
14 private:
15     void updateDisplay();
16 protected:
17     void paintEvent(QPaintEvent *);
18 private:
19     enum { Hleft, Hcenter, Hright };
20     enum { Vtop, Vmiddle, Vbottom };
21     int Hposition;
22     int Vposition;
23     QPushButton *topButton;
24     QPushButton *middleButton;

4682-1 ch10.f.qc  11/13/00  14:12  Page 226



227Chapter 10 ✦ Fonts

25     QPushButton *bottomButton;
26     QPushButton *leftButton;
27     QPushButton *centerButton;
28     QPushButton *rightButton;
29     QPushButton *selectFontButton;
30     QWidget *frame;
31     QFont font;
32 private slots:
33     void popupDialog();
34     void setTop() { Vposition = Vtop;
35                     updateDisplay(); }
36     void setMiddle() { Vposition = Vmiddle;
37                     updateDisplay(); }
38     void setBottom() { Vposition = Vbottom;
39                     updateDisplay(); }
40     void setLeft() { Hposition = Hleft;
41                     updateDisplay(); }
42     void setCenter() { Hposition = Hcenter;
43                     updateDisplay(); }
44     void setRight() { Hposition = Hright;
45                     updateDisplay(); }
46 };
47 
48 #endif

The FontPaint class is the widget used as the top-level window. The enumerated
types on lines 19 and 20 are used to specify the vertical and horizontal positions of
the text, with the current positions stored in Hposition and Vposition on lines 21
and 22. The pushbuttons defined on lines 23 through 28 are each used to store val-
ues in Vposition and Hposition. Each of the slot methods on lines 34 through 45
is connected to a button; and when the method is called, it updates the position of
the text and calls updateDisplay() to paint the window.

FontPaint
1 /* fontpaint.cpp */
2 #include <kapp.h>
3 #include <qfontdialog.h>
4 #include <qpainter.h>
5 #include <qlayout.h>
6 #include “fontpaint.h”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”fontpaint”);
11     FontPaint fontpaint;
12     fontpaint.show();
13     app.setMainWidget(&fontpaint);
14     return(app.exec());
15 }
16 FontPaint::FontPaint(QWidget *parent,const char *name)
17         : QWidget(parent,name)
18 {

4682-1 ch10.f.qc  11/13/00  14:12  Page 227



228 Part II ✦ Step by Step

19     QHBoxLayout *hbox;
20     QVBoxLayout *vbox = new QVBoxLayout(this,5);
21 
22     hbox = new QHBoxLayout(5);
23     topButton = new QPushButton(“Top”,this);
24     hbox->addWidget(topButton);
25     connect(topButton,SIGNAL(clicked()),
26             this,SLOT(setTop()));
27     middleButton = new QPushButton(“Middle”,this);
28     hbox->addWidget(middleButton);
29     connect(middleButton,SIGNAL(clicked()),
30             this,SLOT(setMiddle()));
31     bottomButton = new QPushButton(“Bottom”,this);
32     hbox->addWidget(bottomButton);
33     connect(bottomButton,SIGNAL(clicked()),
34             this,SLOT(setBottom()));
35     vbox->addLayout(hbox);
36 
37     frame = new QWidget(this);
38     frame->setMinimumSize(150,150);
39     vbox->addWidget(frame);
40 
41     hbox = new QHBoxLayout(5);
42     leftButton = new QPushButton(“Left”,this);
43     hbox->addWidget(leftButton);
44     connect(leftButton,SIGNAL(clicked()),
45             this,SLOT(setLeft()));
46     centerButton = new QPushButton(“Center”,this);
47     hbox->addWidget(centerButton);
48     connect(centerButton,SIGNAL(clicked()),
49             this,SLOT(setCenter()));
50     rightButton = new QPushButton(“Right”,this);
51     hbox->addWidget(rightButton);
52     connect(rightButton,SIGNAL(clicked()),
53             this,SLOT(setRight()));
54     vbox->addLayout(hbox);
55 
56     selectFontButton = new QPushButton(“Select Font”,this);
57     vbox->addWidget(selectFontButton);
58     connect(selectFontButton,SIGNAL(clicked()),
59             this,SLOT(popupDialog()));
60 
61     Hposition = Hcenter;
62     Vposition = Vmiddle;
63     font = frame->font();
64     updateDisplay();
65 }
66 void FontPaint::popupDialog()
67 {
68     bool okay;
69 
70     QFont newFont = QFontDialog::getFont(&okay,font,this);
71     if(okay) {
72         font = newFont;

4682-1 ch10.f.qc  11/13/00  14:12  Page 228



229Chapter 10 ✦ Fonts

73         updateDisplay();
74     }
75 }
76 void FontPaint::updateDisplay()
77 {
78     int x;
79     int y;
80     QString text;
81     QPainter painter(frame);
82     painter.setFont(font);
83     QFontMetrics fm = painter.fontMetrics();
84 
85     painter.setBackgroundColor(QColor(“black”));
86     painter.setPen(QColor(“white”));
87 
88     QRect rect = painter.window();
89     painter.eraseRect(rect);
90 
91     switch(Vposition) {
92     case Vtop:
93         y = fm.ascent();
94         text = “Top “;
95         break;
96     case Vmiddle:
97         y = rect.height() / 2;
98         y += (fm.ascent() - fm.descent()) / 2;
99         text = “Middle “;
100         break;
101     case Vbottom:
102         y = rect.height() - fm.descent();
103         text = “Bottom “;
104         break;
105     }
106     switch(Hposition) {
107     case Hleft:
108         x = 0;
109         text += “Left”;
110         break;
111     case Hcenter:
112         text += “Center”;
113         x = (rect.width() - fm.width(text)) / 2;
114         break;
115     case Hright:
116         text += “Right”;
117         x = rect.width() - fm.width(text);
118         break;
119     }
120     painter.drawText(x,y,text);
121 }
122 void FontPaint::paintEvent(QPaintEvent *)
123 {
124     updateDisplay();
125 }

4682-1 ch10.f.qc  11/13/00  14:12  Page 229



230 Part II ✦ Step by Step

The FontPaint constructor, beginning on line 16, uses a vertical box as the primary
layout, and fills it with widgets on lines 19 through 59. The two rows of three buttons
are each contained in horizontal boxes. Each of the six position buttons is connected
to one of the slot methods defined in fontpaint.h. The frame widget created on line
37 is the black rectangle used to display the text as shown in Figure 10-8. The button
at the very bottom, created on lines 56 through 59, is connected to the slot method
named popupDialog().

The popupDialog() slot defined on line 66 uses the static method getFont() in
the QFontDialog class to retrieve a new font. If a new font is selected, it becomes
the current font on line 72 and a call is made to updateDisplay() to display a new
frame window.

The work of displaying the text is done in the method updateDisplay() starting 
on line 76. To display the text it is necessary to create a QPainter object, as is 
done on line 81. A QPainter object contains one font, and uses it to paint all of its
text. On line 82, the selected font is assigned to the Qpainter object. On line 83, 
the QFontMetrics object containing information about this font is retrieved 
from the QPainter object.

The QPainter class can be used for a large number of fundamental graphics
functions, as described in Chapter 12. In this example, the QPainter constructor
uses frame as its target widget, but it is also possible to create a QPainter object
that is independent of a widget and can be attached to one only when painting
needs to be done.

Line 85 sets the background color to black and the foreground to white. This means
that when the widget is cleared, it appears black; and the text painted on it appears
white.

There are three options each for the vertical and horizontal positions of the text,
and these are selected by the switch statements on lines 91 and 106. To draw a
string of characters, it is necessary to specify the vertical position of the baseline
and the horizontal position of the left side of the left character. Using the font met-
ric information, it is possible to determine the location required in order to place 
a string exactly where you want it.

On line 93, the text is placed at the top by setting y to the value of the ascent of the
font. That is, the vertical placement of the baseline is such that the top of the tallest
characters will just touch the top of the window.

On lines 97 and 98, the vertical position is set so the text appears in the center. 
The expression on line 97 determines the vertical center of the window, but because
the ascent and descent are almost certain to have different values, it is necessary to
adjust the center so that the text (not the baseline) is centered. Line 98 determines

Note

4682-1 ch10.f.qc  11/13/00  14:12  Page 230



231Chapter 10 ✦ Fonts

the difference between the ascent and descent, and adds that difference to the 
center. Although it is not as intuitive as breaking it into two statements, the same
expression can be written as follows:

y = (height + ascent - descent) / 2;

Line 102 calculates the vertical position such that the lowest font descender will
just rest on the bottom of the window, as previously shown in Figure 10-8. To do
this, it is necessary to use the entire height of the window and subtract just the
descent.

Line 108 starts the text at the left of the window. Because a string is always drawn
immediately to the right of its x coordinate, it is only necessary to set x to zero.

Line 112 determines the x coordinate for the text to be horizontally centered. Half
of the width of the window is the center of the window. Adjusting the location to
the left by half the length of the character string results in the correct position for
the string to be centered. Notice that the call to the width method uses the text as
an argument — this is because the width is calculated not just from the number of
characters in the string, but from the sum of each actual character width. Fixed
width fonts, such as Courier, can calculate the width from simple character 
counts, but variable width fonts need to be measured one character at a time.

Line 117 calculates the starting point of the text so that its last character ends flush
with the right side of the window, as shown previously in Figure 10-8. To get the value,
the width of the entire window has the width of the string subtracted from it.

Once the text string has been constructed, and the x and y coordinates have been 
calculated, the call to drawText() on line 120 is used to paint the text on the window.

The method paintEvent() on line 122 is called whenever the window becomes
exposed — for any reason — and needs to be repainted. If this method were not
defined here, the window would only be painted when a new font or new position 
is selected.

Font Placement by Rectangles
The previous example used a QFontMetric object to calculate various font positions
within a rectangle. Replacing the updateDisplay() method with the following code
will result in exactly the same display:

. . .
76 void FontPaint2::updateDisplay()
77 {
78     int align;
79     QString text;

4682-1 ch10.f.qc  11/13/00  14:12  Page 231



232 Part II ✦ Step by Step

80     QPainter painter(frame);
81     painter.setFont(font);
82 
83     painter.setBackgroundColor(QColor(“black”));
84     painter.setPen(QColor(“white”));
85 
86     QRect rect = painter.window();
87     painter.eraseRect(rect);
88 
89     switch(Vposition) {
90     case Vtop:
91         align = AlignTop;
92         text = “Top “;
93         break;
94     case Vmiddle:
95         align = AlignVCenter;
96         text = “Middle “;
97         break;
98     case Vbottom:
99         align = AlignBottom;
100         text = “Bottom “;
101         break;
102     }
103     switch(Hposition) {
104     case Hleft:
105         align |= AlignLeft;
106         text += “Left”;
107         break;
108     case Hcenter:
109         align |= AlignHCenter;
110         text += “Center”;
111         break;
112     case Hright:
113         align |= AlignRight;
114         text += “Right”;
115         break;
116     }
117     painter.drawText(rect,align,text);
118 }

. . .

In this example, the align variable is used as a set of flags. The call to drawText()
on line 117 uses the QRect object that defines the size of the entire window, along
with the flags that specify the location of the text within the rectangle. All of the
flags are described in Table 10-2. Actual pixel values to position the text, as used in
the previous example, are not required. Also, the rectangle doesn’t necessarily have
to include the entire window — you can specify a smaller rectangle somewhere
inside the window.

4682-1 ch10.f.qc  11/13/00  14:12  Page 232



233Chapter 10 ✦ Fonts

Table 10-2
Flags for Painting Text in a Rectangle

Flag Name Action

AlignBottom The text is positioned so that the bottom of the lowest descender in
the font is flush against the bottom of the rectangle. Cannot be used
with AlignTop or AlignVCenter.

AlignHCenter The text is positioned so that it is centered horizontally between the
two sides of the rectangle. Cannot be used with AlignLeft or
AlignRight.

AlignLeft The leftmost character of the text is flush with the left side of the
rectangle. Cannot be used with AlignRight or AlignHCenter.

AlignRight The rightmost character of the text is flush with the right side of the
rectangle. Cannot be used with AlignLeft or AlignHCenter.

AlignTop The text is positioned so that the top of the tallest character in the
font is flush against the top of the rectangle. Cannot be used with
AlignBottom or AlignVCenter.

AlignVCenter The text is positioned so that it is centered vertically between the top
and bottom of the rectangle. Cannot be used with AlignTop or
AlignBottom.

DontClip By default, if the rectangle is smaller than the window, and is also
smaller than the text, the string will be trimmed to fit the rectangle.
With this flag set, the text is not trimmed to fit the rectangle.

ExpandTabs By default, each tab character ‘\t’ is converted to a single space.
With this flag set, sufficient spaces are inserted so that the next
character appears on an 8-character boundary counting from the
beginning of the string.

ShowPrefix By default, an ampersand character in the text appears normally. With
this flag set, the ampersand character is removed and the character 
to its right appears underlined. For example, the text “Mi&ddle
&Center” will appear as Middle Center with this flag set, and 
as Mi&ddle &Center if it is not set.

SingleLine By default, each newline ‘\n’ character will break the text and cause
it to be displayed on more than one line. With this flag set, each
newline character is converted to a single space.

WordBreak If the text does not fit the rectangle, this flag will allow newline
characters to be inserted in place of spaces to attempt to make it fit.

4682-1 ch10.f.qc  11/13/00  14:12  Page 233



234 Part II ✦ Step by Step

The text can be broken into more than one line and the resulting block will be posi-
tioned according to the alignment flags. In the previous examples, the two words of
the text were separated with a single space so they appeared as one line. Figure
10-9 shows the alignment resulting from using the ‘\n’ character to insert a new-
line character between the words by changing the code in the previous example 
to this:

. . .
89     switch(Vposition) {
90     case Vtop:
91         align = AlignTop;
92         text = “Top\n”;
93         break;
94     case Vmiddle:
95         align = AlignVCenter;
96         text = “Middle\n”;
97         break;
98     case Vbottom:
99         align = AlignBottom;
100         text = “Bottom\n”;
101         break;
102     }
. . .

Figure 10-9: Positioning multi-line text
in a window

Summary
Of all the elements displayed as part of a graphical user interface, the eye is most
critical of letters, numbers, and punctuation. We have been reading and writing all
of our lives, so our brain instantly recognizes single characters and patterns of
groups of characters. Some character fonts appear to be nice and friendly, even
attractive; while others appear to be klunky or stiff. The actual difference between
the one we like and the one we don’t can be very small. Although characters nor-
mally are displayed as very small graphic objects in a window, it is easy for us to

4682-1 ch10.f.qc  11/13/00  14:12  Page 234



235Chapter 10 ✦ Fonts

instantly recognize the details of their shape. This preconceived notion of the
appearance of characters is why a font can seem so dramatic to us. 

In this chapter, the fundamentals of font manipulation were described:

✦ Each font is stored in its own file, so it is easy to add new fonts or delete 
old ones.

✦ Your application can refer to a specific font by its exact name; or it can select
a font by using descriptive terms, such as the font family and point size.

✦ You can use a standard set of metrics to position text in the window, and to
determine the size of the displayed text.

✦ A QFontDialog or KFontDialog widget can be included in your program 
to enable the user to pick a font.

This chapter discussed painting text on a widget’s window. The next chapter
explains how to create and assign colors to the text and its background. It also
describes how colors are constructed, and how your program can create and 
use them.

✦ ✦ ✦

4682-1 ch10.f.qc  11/13/00  14:12  Page 235



4682-1 ch10.f.qc  11/13/00  14:12  Page 236



Colors

This chapter explains how to control the color of the vari-
ous widgets that make up your application’s interface. You

can use broad coloring techniques to standardize all the colors
in all of the widgets you use; you can set specify unique colors
for each individual part of each individual widget; or you can
use a combination of these two approaches. KDE and Qt allow
you to set and reset the widget colors any way you like.

An X11 color is defined as a single numeric value that can be
broken into its fundamental primary color parts. A QColor
object is a wrapper for a single X11 color. A QColorGroup
object contains a suite of QColor objects used to color the
various parts of a widget’s window. A QPalette object con-
tains a trio of QcolorGroups, which are used to contain 
colors for each of the states of a widget. All of these are 
under the control of your application.

At the lowest level, a color is a numeric value applied to a dis-
played pixel. The fundamental principles are always the same,
but different graphics cards take slightly different approaches.
This chapter briefly describes these approaches and some 
of the things you can do in your program to detect which
approach is being taken on your system — and some of the
things you can do to take advantage of the situation.

The Architecture of Color
The X Window System’s color system uses each of the three
primary colors, represented by a binary value. The intensity
of each color is the ratio of the color value to the maximum
value possible. For example, to get 50 percent red on a system
with 8 bits per color, the value would be 127. To get 50 per-
cent on a system with 16 bits per color, the value would be
32,767. Colors can also be represented by floating-point 
values, usually in the range of 0.0 to 1.0, so a 50 percent 
color level would be 0.5.

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Discovering how your
system creates colors

Creating an object
containing a single
color

Prompting the user
for a color selection

Collecting colors into
related groupings

Collecting color
groupings into 
a palette

Specifying a palette
for one widget,
several widgets, 
or all widgets

✦ ✦ ✦ ✦

4682-1 ch11.f.qc  11/13/00  14:12  Page 237



238 Part II ✦ Step by Step

There are a number of different kinds of display architectures. The X11 has devised
a method of dealing with them in a standard way. The KDE/Qt software is built on
top of this generalized system, so you probably will never need to know all the low-
level details (unless you need to do something very special). However, some of the
operations your program needs to perform make a lot more sense if you have some
idea of what’s going on in the basement.

A physical display has a hardware storage location for each pixel it places on the
screen. Each of the values in storage determines the color and brightness of its asso-
ciated pixel — to change a pixel, simply change the contents of its storage location.
Hardware uses different methods of converting the stored value into a color — some
use the numeric value and directly convert it into a color, and others use the stored
value as an index into a table of colors. The table of colors is known as a color map.
Different hardware requires different kinds of color maps. Table 11-1 lists the 
various types.

Table 11-1
The Classes of Physical Displays

Name Description

Pseudo Color The pixel value indexes a color map containing RGB values. The color
map can be modified dynamically.

Direct Color The pixel value is split into three values and used to index three
separate color maps: one for the red component, one for the blue,
and one for the green. The color maps can be modified dynamically.

Gray Scale The pixel value indexes a color map containing displayable gray-scale
values. The color map can be modified dynamically.

Static Color The pixel value indexes a color map containing RGB values. The color
map is static in the hardware and cannot be changed.

True Color The pixel value is split into three values and used to index three
separate color maps: one for the red component, one for the blue,
and one for the green. Each of the color maps is an even (or near-
even) gradient from no color to full saturation and cannot be altered.

Static Gray The pixel value indexes a color map containing displayable gray-scale
values. The color map is static and cannot be modified.

The color map is used by the display hardware to paint all pixels in all windows, 
so changing the color map changes the appearance of everything. Some color 
maps allow this sort of change, and some don’t. You seldom need to make 
a color map change, but if your application does change the color map, it is 
polite to put the original one back when you lose focus to another application.

4682-1 ch11.f.qc  11/13/00  14:12  Page 238



239Chapter 11 ✦ Colors

The following program tells you what kind of display you have, the number of bits
per pixel, the size of the color map, and some other related information:

1 /* showvisual.cpp */
2 #include <kapp.h>
3 #include <qlabel.h>
4 #include <qlayout.h>
5 #include <X11/Xlib.h>
6 #include “showvisual.h”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”showvisual”);
11     ShowVisual showvisual;
12     showvisual.show();
13     app.setMainWidget(&showvisual);
14     return(app.exec());
15 }
16 ShowVisual::ShowVisual(QWidget *parent,const char *name)
17         : QWidget(parent,name)
18 {
19     QString str;
20     QLabel *label;
21 
22     QVBoxLayout *vbox = new QVBoxLayout(this,10);
23 
24     str.sprintf(“%4d   Screen number”,x11Screen());
25     label = new QLabel(str,this);
26     vbox->addWidget(label);
27 
28     str.sprintf(“%4d   Bits per pixel”,x11Depth());
29     label = new QLabel(str,this);
30     vbox->addWidget(label);
31 
32     str.sprintf(“%4d   X dots per inch”,x11AppDpiX());
33     label = new QLabel(str,this);
34     vbox->addWidget(label);
35 
36     str.sprintf(“%4d   Y dots per inch”,x11AppDpiY());
37     label = new QLabel(str,this);
38     vbox->addWidget(label);
39 
40     Visual *visual = (Visual *)x11Visual();
41 
42     str.sprintf(“%4d   Bits per RGB”,
43             visual->bits_per_rgb);
44     label = new QLabel(str,this);
45     vbox->addWidget(label);
46 
47     str.sprintf(“%4d   Colormap entries”,

4682-1 ch11.f.qc  11/13/00  14:12  Page 239



240 Part II ✦ Step by Step

48             visual->map_entries);
49     label = new QLabel(str,this);
50     vbox->addWidget(label);
51 
52     switch(visual->c_class) {
53     case StaticGray:
54         str.sprintf(“%4d   StaticGray class”,
55             visual->c_class);   
56         break;
57     case GrayScale:
58         str.sprintf(“%4d   GrayScale class”,
59             visual->c_class);   
60         break;
61     case StaticColor:
62         str.sprintf(“%4d   StaticColor class”,
63             visual->c_class);   
64         break;
65     case PseudoColor:
66         str.sprintf(“%4d   PseudoColor class”,
67             visual->c_class);   
68         break;
69     case TrueColor:
70         str.sprintf(“%4d   TrueColor class”,
71             visual->c_class);   
72         break;
73     case DirectColor:
74         str.sprintf(“%4d   DirectColor class”,
75             visual->c_class);   
76         break;
77     }
78     label = new QLabel(str,this);
79     vbox->addWidget(label);
80 
81     str.sprintf(“0x%08X  Red Mask”,
82             visual->red_mask);
83     label = new QLabel(str,this);
84     vbox->addWidget(label);
85 
86     str.sprintf(“0x%08X  Green Mask”,
87             visual->green_mask);
88     label = new QLabel(str,this);
89     vbox->addWidget(label);
90 
91     str.sprintf(“0x%08X  Blue Mask”,
92             visual->blue_mask);
93     label = new QLabel(str,this);
94     vbox->addWidget(label);
95 
96     resize(10,10);
97 }

4682-1 ch11.f.qc  11/13/00  14:12  Page 240



241Chapter 11 ✦ Colors

All of the information displayed by this program is actually supplied by the low-level
X11 system. The QWidget object inherits these methods from the QPaintDevice
base class, so the same information can be retrieved from any widget. Figure 11-1
shows the display produced by a system that can display 256 colors simultaneously.

Figure 11-1: The color characteristics of a display

Lines 24 through 26 create a label that displays the screen number. This number 
is almost always zero, but because X11 is designed to simultaneously handle any
number of screens, there will be a different number for each one. Also, because X11
was designed for networking, the screens can be on another computer. In fact, it 
is possible for the same application to simultaneously have screens displayed on
multiple computers.

Lines 28 through 30 create a label that displays the number of hardware bits assigned
to each pixel. Two pixels that have the same numeric value will have exactly the same
color, so the total number of simultaneous colors is limited to 256.

Lines 32 through 38 create a pair of labels that specify the number of dots per inch in
both the horizontal and vertical directions. You should be aware that these values are
only approximations because there is no way for the software to know about the con-
figuration of the terminal. A CRT has adjustable width and height, and the display
area is seldom straight on all edges.

The call to x11Visual() on line 40 retrieves a Visual struct, which is a low-level
X11 struct containing some fundamental information about the display. These values
are used to create the rest of the displayed window. This struct is part of the X 
software, so it is necessary to include the file Xlib.h, as is done on line 5.

Lines 42 through 45 create a label stating that there are 6 bits per RGB value. That
is, 18 bits (6 for each primary color) represent a complete color value. There is
often another 6-bit value (the alpha value) that specifies the level of transparency
of the color; thus, 6 pixels per RGB is often referred to as a 24-bit color system.

4682-1 ch11.f.qc  11/13/00  14:12  Page 241



242 Part II ✦ Step by Step

Because each of the 6-bit integers can contain values from 0 to 63, and because 
64 to the third power is 262,144, that it is the total number of colors that this sys-
tem can store. However, it can only display 256 of the colors simultaneously. Lines
47 through 50 create a label that shows the total number of entries in the color
map. The number 256 is indicated by the fact that there are 8 bits per pixel. Each
member of the color map array is 24 bits wide, so each can hold the four values
(red, green, blue, and alpha) of a color.

Lines 52 through 76 create a label that specifies the class of the display. The classes
are the lines listed earlier in Table 11.1. The type names are defined in the X header
files, which are included on line 5. In this example, the display uses Pseudo Color,
which means that the value stored in the 8-bit pixel is used as an index into the color
map array, and the values in the color map can be modified by the application.

Lines 81 through 94 create labels that display the values of the three color masks.
They are zero in this example because they apply only to True Color and Direct
Color. Both of these display classes use a separate color map for each of the pri-
mary colors, and the masks are used to extract, from the pixel value, the index 
values into each of the arrays. In fact, because each color map contains only one
color, and there is even shading from no color (black) to full brightness of color,
there is often no actual color map. Instead, the size of the mask — which can be 
a different size for each color — is used to determine where the color is to fall
between these two extremes.

There is more information about windows and screens from the lower level X11 sys-
tem, but you probably won’t need to bother with them. One of the advantages of
avoiding the X11 routines is that your code is simpler. Moreover, the application
you produce will be portable from one system to another. The rest of this chapter
deals with high-level color controls and leaves the details to KDE and Qt.

Constructing a QColor Object
A QColor object contains the definition of a color. There are a number of ways to
create QColor objects. The following program demonstrates different ways to cre-
ate a QColor object by creating the set of colored labels shown in Figure 11-2, using
a different set of QColor constructor arguments for each one.

1 /* colormaker.cpp */
2 #include <kapp.h>
3 #include <qlabel.h>
4 #include <qlayout.h>
5 #include “colormaker.h”
6 

4682-1 ch11.f.qc  11/13/00  14:12  Page 242



243Chapter 11 ✦ Colors

7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”colormaker”);
10     ColorMaker colormaker;
11     colormaker.show();
12     app.setMainWidget(&colormaker);
13     return(app.exec());
14 }
15 ColorMaker::ColorMaker(QWidget *parent,const char *name)
16         : QWidget(parent,name)
17 {
18     QString str;
19     QLabel *label;
20 
21     QVBoxLayout *vbox = new QVBoxLayout(this,3);
22 
23     label = new QLabel(“Defined by RGB numbers”,this);
24     label->setBackgroundColor(QColor(250,150,100));
25     vbox->addWidget(label);
26 
27     label = new QLabel(“Defined by RGB numbers”,this);
28     label->setBackgroundColor(QColor(150,250,100,
29             QColor::Rgb));
30     vbox->addWidget(label);
31 
32     label = new QLabel(“Defined by HSV numbers”,this);
33     label->setBackgroundColor(QColor(310,150,250,
34             QColor::Hsv));
35     vbox->addWidget(label);
36 
37     label = new QLabel(“Defined by QRgb value”,this);
38     QRgb rgb = 0x00F0E000;
39     label->setBackgroundColor(QColor(rgb));
40     vbox->addWidget(label);
41 
42     label = new QLabel(“Defined by colormap index”,this);
43     label->setBackgroundColor(QColor(rgb,86));
44     vbox->addWidget(label);
45 
46     label = new QLabel(“Defined by RGB name”,this);
47     label->setBackgroundColor(QColor(“#F58F95”));
48     vbox->addWidget(label);
49 
50     label = new QLabel(“Defined by file name”,this);
51     label->setBackgroundColor(QColor(“green”));
52     vbox->addWidget(label);
53 
54     resize(10,10);
55 }

4682-1 ch11.f.qc  11/13/00  14:12  Page 243



244 Part II ✦ Step by Step

Figure 11-2: A few basic ways to create color

Every widget has a background color. This example uses QColor objects to set 
the background colors of a collection of QLabel widgets. The background color is
used to paint all the pixels of a widget that are not otherwise painted or drawn. In 
a Qlabel, the background color is used to fill the entire widget; then the text is 
written on top of it. Whenever you create a QColor object, it may be necessary for
the constructor to insert a new member into the current color map. If the color is
already in the color map, no action is necessary. However, if a color must be added,
and there is no room in the color map, the QColor object simply attaches itself to
the closest thing it can find in the color map. Because of this, an application with 
a lot of colors may look a little different under different circumstances.

Lines 23 through 25 create a label with the color specified as RGB values. Each
value is in the range of 0 to 255, with 0 being none of the color and 255 being the
maximum amount. The RGB values 0,0,0 are black; and the values 255,255,255 
are white.

Lines 27 through 30 create a color using the RGB values, just as in the previous
example, except for the extra argument that tells the constructor that the three 
values are to be interpreted as RGB values.

Lines 32 through 35 use the same QColor constructor as on line 28, but it creates 
a QColor object using HSV (hue, saturation, value) instead of RGB. An HSV color 
is defined by three numbers, as is an RGB color, but the numbers have very differ-
ent meaning. You will also see HSV referred to as HSB (hue, saturation, brightness).
The H value is the hue (also called tint), which specifies the frequency of the light
within the color spectrum. The S value is the saturation (also called shade), which
specifies the amount of black or white that is mixed with the base color to make it
lighter or darker. The B or V value (also called brightness or luminosity) specifies
the intensity at which the color is displayed.

When creating an HSV color, the H value passed to the constructor can be in the
range of 0 to 360 to select the color, or it can be -1 to specify that the color is to 
be without hue (gray, black, or white). The S value ranges from 0 (maximum 
black mixed in) to 255 (maximum white mixed in). To get a pure color, use 127 
for the saturation. The V or B value ranges from 0 (minimum brightness) to 
255 (maximum brightness).

Lines 37 through 40 specify the colors with RGB values, but the three values are all
stored in the single integer. For convenience, the value itself is declared as a hex-
adecimal value on line 38. The first byte of the value is ignored — the red color
value is 0xF0, the green is 0xE0, and the blue is 0x00.

4682-1 ch11.f.qc  11/13/00  14:12  Page 244



245Chapter 11 ✦ Colors

Lines 42 through 44 specify the color by using an index into the color map. The sec-
ond argument to the constructor (the number 86) is the index into the color map,
while the first argument is an integer containing an RGB value. The index value is 
an unsigned number, but if you were to specify it as 0xFFFFFFFF, the index will be
ignored and the RGB value will be used instead.

Lines 46 through 48 use the hexadecimal character form of an RGB value to specify
the color. The form of the number string used in the example is “#RRGGBB”, but 
it could also have been “#RGB”, “#RRRGGGBBB”, or even “#RRRRGGGGBBBB”. The
color-defining software detects the leading # character and divides the remaining
string into equal parts before extracting the values.

Lines 50 through 52 use a QColor object created from an entry in the file /usr/lib/
X11/rgb.txt. This is a plain text file, and each entry contains a name and the RGB
values for a color. For example:

60 179 113 MediumSeaGreen
32 178 170 LightSeaGreen
152 251 152 PaleGreen
0 255   0 green
0 250 154 MediumSpringGreen

There are over 750 entries in this file, and the file is distributed with X11, so you
can feel safe using the names you find there. There are less than 750 unique colors
in the file because almost all the colors have more than one name. Also, if you wish,
you can add your own names and your program will find them, but your application
won’t be as portable.

The KColorDialog
You can take several approaches to setting the colors in your application. You can
simply ignore the colors and use the defaults, you can set specific color values to
each widget, or you can enable the user to select the colors. The KColorDialog
is a pop-up dialog that prompts the user to make a color selection. The following
example demonstrates how you can pop up a KColorDialog and retrieve the 
color information chosen by the user.

The main window of the application, shown in Figure 11-3, contains a button at the
bottom that will pop up the dialog. At the top of the window are the hexadecimal
RGB (Red, Green, Blue) values of the currently selected color. In the center of the
window is a block that displays the color.

Figure 11-3: Clicking the button to change the color

4682-1 ch11.f.qc  11/13/00  14:12  Page 245



246 Part II ✦ Step by Step

ShowColor Header
1 /* showcolor.h */
2 #ifndef SHOWCOLOR_H
3 #define SHOWCOLOR_H
4 
5 #include <qwidget.h>
6 #include <qlabel.h>
7 #include <qstring.h>
8 
9 class ShowColor: public QWidget
10 {
11     Q_OBJECT
12 public:
13     ShowColor(QWidget *parent=0,const char *name=0);
14 private:
15     QLabel *label;
16     QWidget *widget;
17     QColor color;
18     QString colorName;
19 private slots:
20     void popup();
21 };
22 
23 #endif

The ShowColor class is the widget that displays the main window in Figure 11-3. 
It contains the label that appears at the top with the RGB values, and the widget
that appears in the middle to display the color. It also stores the current color, as 
a QColor object; and the name of the color, as a QString object. The name of the
color is the hexadecimal representation of the RGB value. The slot named popup()
is used to display the KColorDialog whenever the button is clicked.

ShowColor
1 /* showcolor.cpp */
2 #include <kapp.h>
3 #include <qpushbutton.h>
4 #include <qlayout.h>
5 #include <kcmdlineargs.h>
6 #include <kcolordlg.h>
7 #include “showcolor.h”
8 
9 int main(int argc,char **argv)
10 {
11     KCmdLineArgs::init(argc,argv,”showcolor”,
12         “Show Color”,”0.0”);
13     KApplication app;
14     ShowColor showcolor;
15     showcolor.show();
16     app.setMainWidget(&showcolor);

4682-1 ch11.f.qc  11/13/00  14:12  Page 246



247Chapter 11 ✦ Colors

17     return(app.exec());
18 }
19 ShowColor::ShowColor(QWidget *parent,const char *name)
20         : QWidget(parent,name)
21 {
22     QVBoxLayout *box = new QVBoxLayout(this,0,3);
23 
24     colorName = “#FF0000”;
25     color.setNamedColor(colorName);
26     label = new QLabel(colorName,this);
27     label->setFont(QFont(“Courier”,16));
28     label->setAlignment(Qt::AlignHCenter);
29     box->addWidget(label);
30 
31     widget = new QWidget(this);
32     widget->setFixedHeight(40);
33     widget->setBackgroundColor(color);
34     box->addWidget(widget);
35 
36     QPushButton *button = new QPushButton(“Select Color”,
37             this);
38     box->addWidget(button);
39     connect(button,SIGNAL(clicked()),
40             this,SLOT(popup()));
41 
42     resize(10,10);
43     box->activate();
44 }
45 void ShowColor::popup()
46 {
47     int cond = KColorDialog::getColor(color,this);
48     if(cond == KColorDialog::Accepted) {
49         colorName = color.name();
50         label->setText(colorName);
51         widget->setBackgroundColor(color);
52     }
53 }

For convenience, this source file includes both the main() function and the exe-
cutable code for the ShowColor class. The main() function, starting on line 7, 
simply creates a top-level window and inserts a ShowColor widget into it.

The ShowColor constructor, beginning on line 15, creates a vertical box and inserts
three widgets into it. Lines 24 and 25 set the initial color, which is red. The label
that displays the name is created on line 26. Line 27 calls the method setFont() so
the hexadecimal digits will be displayed in a fixed font. The call to setAlignment()
positions the text in the center, and the call to addWidget() on line 29 inserts the
label into the box.

4682-1 ch11.f.qc  11/13/00  14:12  Page 247



248 Part II ✦ Step by Step

The block of color displayed in the center of the window is a simple widget with
only its background color set. It is created on line 31, and has its height fixed to 
40 pixels on line 28. It is not necessary to set its width because the vertical box 
will control that. On line 33, a call is made to setBackgroundColor() to paint 
the otherwise blank widget.

Lines 36 through 40 create a button, insert it into the box, and connect it to the
popup() slot.

The popup() slot beginning on line 45 is executed whenever the button is clicked. It
begins by calling the static method getColor(), which displays the KColorDialog
window shown in Figure 11-4. This method does not return until the user has made a
selection or closes the dialog without making a selection. If a color selection is made,
the value of cond will be equal to the constant value KColorDialog::Accepted, indi-
cating that a color has been selected. If no color has been selected, there is nothing
to do. If a color has been selected, it will have been placed into the QColor object
that was passed to getColor() as its first argument. On line 49, the name of the 
new color is extracted and, on line 50, the name is inserted into the label. Line 51
calls setBackgroundColor() to update the color being displayed by the widget 
in the center.

Figure 11-4: The KColorDialog window

The call to getColor() on line 47 uses the QColor object as its first argument. 
The color passed in is the default color value, and it initializes the display of the
KColorDialog window. Because this example always passes in the color being 
displayed, the default color of the dialog is always the current color.

The KColorDialog widget can be used in more than one way to select the color. The
grouping in the upper left corner presents a collection of system colors — colors that
are defined as part of the KDE system and used by many of its components. These

4682-1 ch11.f.qc  11/13/00  14:12  Page 248



249Chapter 11 ✦ Colors

colors have the advantage of being “pure” in the sense that they look very much the
same on different computers. A color can also be selected by using the mouse on 
the two shaded boxes at the upper right. As you drag a cross-hair pointer around the
large box you will see the RGB and HSV values change at the lower right. The third
way to select a color is to use one of the custom colors you have stored in the 
collection at the lower left.

The custom colors, which are persistent for each user, are stored in the file ~/.
kde/share/config/kdeglobals and are retrieved whenever a KColorDialog
is popped up.

To add a custom color, first select one of the boxes in the collection of custom col-
ors. Next, using the mouse, select a color from either the system colors on the left
or by using the color pad on the right. Once selected, clicking the button labeled
Add to Custom Colors will insert it.

QColors in a QColorGroup 
Several colors can be involved in the drawing of a widget. For example, a pushbut-
ton has a background color, a top-shading color, a bottom-shading color, and a
color for the text. There must be a QColor object that the button can use to paint
all these colors. Other widgets have different requirements for sets of colors. And
the requirements can change from one moment to the next as a button is pressed
or the mouse passes over a sensitive widget.

The QColorGroup class is designed to encapsulate all of the colors a widget will
need into a single unit. With all of the different kinds of widgets, and the different
forms they can take, the QColorGroup needs to contain a wide color selection.
Table 11-2 lists the fourteen colors that are included in each QColorGroup.

Table 11-2
Colors Contained in a QColorGroup Object

Name Description

Background This color is used for the background of almost all widgets.

Base This is a background color for widgets that you would like to
be a lighter color than the one defined as Background. This 
is often white, but it’s always a light color.

BrightText This color can be used to make text show up when Dark is
used as the background.

Continued

Note

4682-1 ch11.f.qc  11/13/00  14:12  Page 249



250 Part II ✦ Step by Step

Table 11-2 (continued)

Name Description

Button This is the background color for a button. The widget is filled
with this color before the rest of it is drawn.

ButtonText This color can be used to make text show up when Button is
used as the background. 

Dark This color is darker than the Button color and is used with
Light for shading to give the button its 3-D appearance.

Foreground This color is used for any lettering or drawing on the face 
of the widget.

Highlight This is the background color used to paint a highlighted or
selected item.

HighlightedText This is a color that contrasts with Highlight as the background
in such a way that it is suitable for displaying text.

Light This color is lighter than the Button color and is used with
Dark for shading to give a widget the 3-D appearance.

Mid This color is between Button and Dark for widgets that
require more sophisticated shading.

Midlight This color is between Button and Light for widgets that
require more sophisticated shading.

Shadow This color is very dark and is used for pronounced shadowing.
It is often black.

Text This is the color used to paint text onto the face of the widget.
It is usually, but not always, the same as Foreground.

The following program retrieves the current QColorGroup of a widget and displays
all of the colors contained in it. Because this application makes no changes to 
the colors in the group, the default colors and values are displayed. As shown in
Figure 11-5, the program displays all fourteen colors, the color names, and the 
hexadecimal representation of each.

1 /* showgroup.cpp */
2 #include <kapp.h>
3 #include <qlabel.h>
4 #include <qpalette.h>
5 #include “showgroup.h”
6 
7 struct namelistStruct {
8     QString name;
9     QColorGroup::ColorRole value;

4682-1 ch11.f.qc  11/13/00  14:12  Page 250



251Chapter 11 ✦ Colors

10 } namelist[] = {
11     { “Background”, QColorGroup::Background },
12     { “Base”, QColorGroup::Base },
13     { “BrightText”, QColorGroup::BrightText },
14     { “Button”, QColorGroup::Button },
15     { “ButtonText”, QColorGroup::ButtonText },
16     { “Dark”, QColorGroup::Dark },
17     { “Foreground”, QColorGroup::Foreground },
18     { “Highlight”, QColorGroup::Highlight },
19     { “HighlightedText”, QColorGroup::HighlightedText },
20     { “Light”, QColorGroup::Light },
21     { “Mid”, QColorGroup::Mid },
22     { “Midlight”, QColorGroup::Midlight },
23     { “Shadow”, QColorGroup::Shadow },
24     { “Text”, QColorGroup::Text }
25 };
26 
27 int main(int argc,char **argv)
28 {
29     KApplication app(argc,argv,”showgroup”);
30     ShowGroup showgroup;
31     showgroup.show();
32     app.setMainWidget(&showgroup);
33     return(app.exec());
34 }
35 ShowGroup::ShowGroup(QWidget *parent,const char *name)
36         : QWidget(parent,name)
37 {
38     QHBoxLayout *hbox;
39     QVBoxLayout *vbox = new QVBoxLayout(this,0,3);
40     int size = sizeof(namelist)/sizeof(namelistStruct);
41     for(int i=0; i<size; i++) {
42         hbox = newColorLine(i);
43         vbox->addLayout(hbox);
44     }
45     resize(10,10);
46 }
47 QHBoxLayout *ShowGroup::newColorLine(int i)
48 {
49     QLabel *label;
50     QHBoxLayout *hbox = new QHBoxLayout();
51     QColorGroup group = colorGroup();
52     QColor color = group.color(namelist[i].value);
53 
54     label = new QLabel(“”,this);
55     label->setBackgroundColor(color);
56     label->setMinimumWidth(100);
57     hbox->addWidget(label);
58 
59     label = new QLabel(color.name(),this);
60     label->setFixedWidth(60);
61     label->setFont(QFont(“Courier”));

4682-1 ch11.f.qc  11/13/00  14:12  Page 251



252 Part II ✦ Step by Step

62     hbox->addWidget(label);
63 
64     label = new QLabel(namelist[i].name,this);
65     hbox->addWidget(label);
66 
67     return(hbox);
68 }

Figure 11-5: The KColorDialog window

Lines 7 through 25 declare the namelist array that contains the name of each color,
and the ColorRole value that is used to retrieve it from its QColorGroup. The array
was defined to simplify the code by allowing the processing to be done in a loop.

The constructor begins on line 35. The top-level container is a vertical box. The
loop, beginning on line 41, constructs one horizontal box for each member of the
namelist array. Storing each horizontal box in the vertical box, with the call to
addLayout() on line 43, creates the display shown in Figure 11-5.

The method newColorLine() beginning on line 47 is called once for each color. The
argument passed to it is used as an index into the namelist array. This method cre-
ates a horizontal box and stores three labels in it. The first label displays the color
itself, the second displays the hexadecimal value of the color, and the third displays
the QColorGroup name of the color.

Line 52 retrieves the QColor object from the QColorGroup by using an enumerated
value from the table in the call to the color() method. An alternative way to
retrieve a color would be to call one of the methods dedicated to a color. For 
example, the following lines of code could have been used to retrieve the Button
and Midlight colors:

QColor bcolor = group.button();
QColor mcolor = group.midlight();

Lines 54 through 57 create a label without text, but with its background set to the
currently indexed color in the namelist array. The color is inserted into the label
by the call to setBackgroundColor() on line 55.

4682-1 ch11.f.qc  11/13/00  14:12  Page 252



253Chapter 11 ✦ Colors

Lines 59 through 62 create the label that holds the hexadecimal name of the color.
The name is retrieved from the QColor object by the call to name() on line 59. In
order for the numbers to be displayed properly, the font had to be changed to
Courier, which is a fixed-width font.

Lines 64 and 65 create the third label containing the QColorGroup name of the color.

QColorGroups in a QPalette
A QPalette object is nothing more than a container holding three QColorGroups.
Every widget has one. Each widget uses its assigned QPalette object to draw itself.
Whenever a widget draws itself, it uses the QColorGroup that matches the current
state of the widget. The three widget states are described in Table 11-3.

Table 11-3
Three States of a Widget

Name Description

Normal This is the default state. The Normal state is assumed when the widget is
in neither of the other two states.

Active The widget that currently has the focus is in the Active state. The colors for
this state are usually the same as for the Normal state.

Disabled The widget is disabled. The QColorGroup for this state is normally
grayed, or otherwise subdued, to indicate the widget’s dormant state.

In the previous example program, a call was made to the QWidget method color
Group() on line 51 to retrieve the current QColorGroup. The actual QColorGroup
object returned could be any one of the three because it is determined by the cur-
rent state of the widget. The advantage of using the colorGroup() method is that
you don’t need to be concerned about which QColorGroup to use — just get the
color you want out of the current QColorGroup.

All three QColorGroup objects are available to a widget. The following code can be
used by a widget to retrieve a copy of all three:

QPalette myPalette = palette();
QColorGroup normalGroup = myPalette.normal();
QColorGroup activeGroup = myPalette.active();
QColorGroup disabledGroup = myPalette.disabled();

4682-1 ch11.f.qc  11/13/00  14:12  Page 253



254 Part II ✦ Step by Step

Setting Colors for a Few Widgets
There is a way to define colors for widgets that not only gives you complete control
over the colors of the widgets you write yourself, but also allows you to control all
of the colors used by each widget in your program. You can do this selectively by
setting the colors for a single widget, or for the widgets in a single widget tree, or
even for a selected set of widgets within a tree. And it’s relatively easy to do.

The key to this is writing your widgets so they use the colors in a QPalette. If you
write your widget so it always gets its colors from the QColorGroup returned from
the colorGroup() method, your program will be able to exercise complete control
over the colors and can change them at will. Virtually all of the widgets supplied
with KDE and Qt use the colors supplied in the QWidget’s QPalette for coloring 
its various parts.

Which widgets are affected depends on how you set up your program to propagate
the palette settings through your widgets. The options, which, by the way, affect
font settings as well as color settings, are listed in Table 11-4.

Table 11-4
How Palette and Font Changes Affect Child Widgets

Name Description

NoChildren Changing this widget’s palette or font will have no effect on 
its child widgets.

AllChildren Changing this widget’s palette or font will cause the same change 
to apply to all child widgets.

SamePalette Changing this widget’s palette or font will cause the same change to
apply to all child widgets for which no font or palette has been set.

SameFont Same as SamePalette.

If you have one widget that is going to need some special coloring, but you want 
to apply the colors to that single widget, you can create a special version of a
QPalette for it to use. You can create the whole thing from scratch by specifying
all 42 colors — the 14 colors for each of the three QColorGroups — but more than
likely you will want to just create a modified version of the existing QPalette. The
following example demonstrates how this can be done:

1 /* colorone.cpp */
2 #include <kapp.h>
3 #include <qlabel.h>
4 #include <qpushbutton.h>
5 #include <qcolor.h>
6 #include <qlayout.h>

4682-1 ch11.f.qc  11/13/00  14:12  Page 254



255Chapter 11 ✦ Colors

7 #include “colorone.h”
8 
9 int main(int argc,char **argv)
10 {
11     KApplication app(argc,argv,”colorone”);
12     ColorOne colorone;
13     colorone.show();
14     app.setMainWidget(&colorone);
15     return(app.exec());
16 }
17 ColorOne::ColorOne(QWidget *parent,const char *name)
18         : QWidget(parent,name)
19 {
20     QString str;
21     QLabel *label;
22     QPushButton *button;
23 
24     QPalette newPalette = palette().copy();
25 
26     QColorGroup normalGroup = newPalette.normal();
27     normalGroup.setColor(QColorGroup::ButtonText,
28             QColor(“white”));
29     normalGroup.setColor(QColorGroup::Button,
30             QColor(“blue”));
31     normalGroup.setColor(QColorGroup::Foreground,
32             QColor(“red”));
33     newPalette.setNormal(normalGroup);
34 
35     setPalettePropagation(AllChildren);
36     setPalette(newPalette,TRUE);
37 
38     QVBoxLayout *vbox = new QVBoxLayout(this,15);
39 
40     button = new QPushButton(“The Top Button”,this);
41     vbox->addWidget(button);
42 
43     label = new QLabel(“The Label in the Middle”,this);
44     vbox->addWidget(label);
45 
46     button = new QPushButton(“The Bottom Button”,this);
47     vbox->addWidget(button);
48 
49     resize(10,10);
50 }

The call to copy() on line 24 duplicates the currently active QPalette. This new
QPalette contains all of the color values of the original and can be modified with-
out having any effect on the original. The call to copy() creates a duplicate of the
palette. Because QPalette objects tend to be large, each widget retains a reference
to the palette it uses, instead of making its own private copy. Therefore, because
the palette() method returns the reference to a QPalette object (which could be
the one used in a number of widgets), and you want to limit your changes to only
those widgets you know about, it is best to make a copy of it using the copy()

4682-1 ch11.f.qc  11/13/00  14:12  Page 255



256 Part II ✦ Step by Step

method. This is a deep enough copy that you can consider it to be your own private
instance of QPalette.

The normal QColorGroup is retrieved from the new QPalette on line 26. Lines 27
through 32 call setColor() to replace three of the existing color definitions in the
color group. Two of these colors are specifically for buttons, while the other is set
to modify the foreground color for all widgets. The call to setNormal() on line 33
stores the modified color group as the normal color group in the new QPalette.

The call to setPalettePropagation() on line 35 configures the widget so that all
the child widgets will use the newly modified QPalette. The call to setPalette()
on line 36 establishes the new palette as the one to be used by this widget and all
its child widgets.

Lines 38 through 47 create the widget layout shown in Figure 11-6. The label uses
the normal foreground color for its text, so it becomes red. The pushbutton’s text is
painted in white, and the background of the button is blue. These colors remain for
the button until its state changes from normal (by the mouse entering the button). 

Figure 11-6: Changing the color of only the parent widget

If you specify the propagation to be SamePalette, which is the default, then 
all child widgets with the exact same palette as this one will have their palettes
changed to the updated one. This enables you to apply the new palette to some of
the child widgets, but leave others unaltered. To do this, create a new palette and
assign it to all the widgets you wish to be able to modify, and to a parent widget.
From then on, assigning a new palette to the parent widget using the SamePalette
setting will cause only those specified widgets to have their palettes changed.

Using the QPalette for Your Own Coloring
Whenever you create a widget of your own that performs some form of low-level
graphics, you will need to select the colors. If you wish, you can specify the exact
colors to be used, or you can extract the ones that are stored in the QPalette.
Using the predefined QPalette colors has the advantage that, as the colors are
changed in your application, the colors for you widget will change with them.

4682-1 ch11.f.qc  11/13/00  14:12  Page 256



257Chapter 11 ✦ Colors

The following example demonstrates how a widget can use the colors stored in 
the QPalette:

1 /* usepalette.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “usepalette.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”usepalette”);
9     UsePalette usepalette;
10     usepalette.show();
11     app.setMainWidget(&usepalette);
12     return(app.exec());
13 }
14 UsePalette::UsePalette(QWidget *parent,const
15         char *name) : QWidget(parent,name)
16 {
17     setFixedSize(375,250);
18 }
19 void UsePalette::paintEvent(QPaintEvent *)
20 {
21     QColorGroup group = colorGroup();
22     QColor midColor = group.color(QColorGroup::Mid);
23     QColor lightColor = group.color(QColorGroup::Light);
24     QBrush midBrush(midColor);
25     QBrush lightBrush(lightColor);
26     QPainter p;
27     p.begin(this);
28     p.fillRect(75,50,150,100,midBrush);
29     p.fillRect(150,100,150,100,lightBrush);
30     p.end();
31 }

Whenever the UsePalette widget needs to be painted, there is a call to
paintEvent() on line 19.

The call to the QWidget method colorGroup() on line 21 returns the current
QColorGroup. The actual color group returned will vary according to the state 
of the widget, so if you use the colors from the group, the colors of your widget 
will change to reflect its current state.

Lines 22 and 23 call the color() method of the QColorGroup to return the two
color objects that will be used to do the painting. The colors are then used on lines
24 and 25 to create a pair of QBrush objects (one for each color), which are used on
lines 28 and 29 to paint the rectangles shown in Figure 11-7. You can find more infor-
mation about this paintEvent() method, and using QPainter, in Chapter 12.

4682-1 ch11.f.qc  11/13/00  14:12  Page 257



258 Part II ✦ Step by Step

Figure 11-7: Examples of externally 
modifiable colors

Summary
By taking advantage of the special color classes defined in KDE and Qt, it can 
be quite straightforward to control, set, and modify the colorful appearance of 
a complete application. This chapter explained the following:

✦ The number of colors available depends on the hardware capabilities of 
a given system. Not only is a finite number of total colors available, but 
there is usually only a subset of them available at any one time.

✦ The QColor object contains fundamental color information for a color in 
such a way that it is hardware-independent. A QColor object’s appearance
will vary from one system to another, but the colors are close enough that 
the difference usually doesn’t matter.

✦ Colors are collected into groups, and the groups are collected into palettes, all
of which are configured to allow each widget in an application to easily select
the right color for drawing or painting each of its parts.

✦ The colors used in your application can be obtained from the set of defaults,
explicitly defined by red-green-blue numbers, extracted from the list of prede-
fined color names, or entered as part of the configuration by the user of your
application.

The next chapter expands on the topic of color by using colors in primitive graphic
operations. It demonstrates a special QPainter object that supplies methods that
can be used to draw lines and outlines, fill shapes, draw curves and circles, and
much more.

✦ ✦ ✦

4682-1 ch11.f.qc  11/13/00  14:12  Page 258



Drawing and
Painting with
QPainter

This is the first of two chapters discussing the mechanics
involved with creating graphics. This chapter contains

examples of the fundamental functions necessary to draw 
pixels, lines, curves, text, and filled regions.

The underlying graphics technology is, of course, the X11
graphics library. The Qt software wraps the X11 functions
inside a collection of C++ classes, so if you are familiar with
X11, all of this may seem a bit odd at first. No graphics con-
texts are used to draw to a window, but there is a QPainter
that can be used to draw directly to a QWidget.

Painting Pixels to a QPaintDevice
It is possible to use a QPainter object to draw and paint pix-
els into a QPaintDevice. The QPaintDevice is a base class
that is inherited by the classes described in Table 12-1.

A QPainter object does all the drawing and painting. The
QPainter object contains a QPen object and a QBrush object.
The QPen object is used for all pixel drawing, line drawing,
and to paint text. The QBrush object is used for area fills.
Although your program can change them from time to time,
only one QPen and one QBrush are contained inside a
QPainter object at any one time.

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Painting graphics
images using one
pixel at a time

Drawing and filling
shapes such as
rectangles and
ellipses

Drawing simple and
compound lines

Creating special
shapes such as 
arcs and rounded
rectangles

Copying pixmaps to
the display window 

✦ ✦ ✦ ✦

4682-1 ch12.f.qc  11/13/00  14:12  Page 259



260 Part II ✦ Step by Step

Table 12-1
Classes That Accept QPainter Graphic Commands

Class Description

QPicture A QPicture object accepts graphics command from the QPainter
and records them. The commands can subsequently be drawn on another
QPaintDevice object, and they can also be written to a file for later
recovery. You can find examples in Chapter 13.

QPixmap A QPainter can be used to draw and paint directly to a QPixmap
object. This can be done if you wish to modify an existing pixmap graphic
or if the graphic you need to draw is so complicated that you only want to
do it once.

QPrinter Graphics drawn to a QPrinter object will be converted to postscript 
and sent to the print spooler (lp, lpr, or whatever). Qprinter has some
methods for pagination — setting the page size, sending the current page
to the printer, setting the orientation, and so on. 

QWidget Every displayable object is a QWidget, so it is possible to paint and draw
directly to any displayed object. Empty widgets work best because if the
widget already has some graphics of its own (such as the text on a button),
the widget’s graphics could conflict with yours.

This chapter uses a QWidget object to demonstrate the graphics resulting from
calling the QPainter methods. The drawing itself is done inside a method named
paintEvent(), which is called whenever the widget needs to be painted (or
repainted). The method is called whenever the program starting to run exposes or
resizes the window, or removes an obscuring window. Whenever this method is
called, the window has already been cleared to the background color, so no erasing
is required. All your program has to do is render the drawing. Internally, the draw-
ing you make is buffered and copied to the display in such a way that there is no
flicker as the screen updates.

Some Rectangle Tricks
A number of shapes can be drawn using QPainter, and there are dozens of ways to
draw them. This section demonstrates the basics of Qt graphics by using examples
of some basic ways to draw and fill a simple rectangle. The following example pro-
gram creates a blank widget and draws a rectangle onto its window.

4682-1 ch12.f.qc  11/13/00  14:12  Page 260



261Chapter 12 ✦ Drawing and Painting with QPainter

DrawRectangle Header
1 /* drawrectangle.h */
2 #ifndef DRAWRECTANGLE_H
3 #define DRAWRECTANGLE_H
4 
5 #include <qwidget.h>
6 
7 class DrawRectangle: public QWidget
8 {
9 public:
10     DrawRectangle(QWidget *parent=0,const char *name=0);
11 protected:
12     virtual void paintEvent(QPaintEvent *);
13 };
14 
15 #endif

The DrawRectangle class is a widget that is used as the top-level widget of the
application. The virtual method paintEvent() overrides the one in the QWidget
class, and is called whenever there is a need to paint (or to repaint) the face of 
the widget.

DrawRectangle
1 /* drawrectangle.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “drawrectangle.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”drawrectangle”);
9     DrawRectangle drawrectangle;
10     drawrectangle.show();
11     app.setMainWidget(&drawrectangle);
12     return(app.exec());
13 }
14 DrawRectangle::DrawRectangle(QWidget *parent,const
15         char *name) : QWidget(parent,name)
16 {
17     setFixedSize(400,200);
18 }
19 void DrawRectangle::paintEvent(QPaintEvent *)
20 {
21     QPainter p;
22     p.begin(this);
23     p.drawRect(50,50,300,100);
24     p.end();
25 }

4682-1 ch12.f.qc  11/13/00  14:12  Page 261



262 Part II ✦ Step by Step

The constructor, beginning on line 14, creates a widget with a fixed-size window.
There is no drawing done by the constructor because graphics can only be put on
display after a window has been realized (that is, it actually has a place to store
pixel values).

The paintEvent() method is called any time the display needs to be refreshed.
That is, the window does not memorize what you have drawn and automatically
replace it. Your program must be prepared to draw the window again and again — it
should draw it from scratch every time this method is called. Normally, there is no
real cost to drawing the whole thing even if only part of the widget is exposed, but 
if the graphics get complicated and require some time to produce, it is possible to
limit your drawing to only the effected area. This kind of limitation is called clipping.

Internally, a QPainter object uses a QPen object to draw pixels and lines. The
default QPen is black and draws a line that is one pixel wide.

The method paintEvent() on line 19 draws the rectangle shown in Figure 12-1. 
A Qpainter object is created on line 21. This QPainter object cannot be used 
for painting because it has no window. The call to begin() on line 22 connects 
the QPainter, and the drawing of the rectangle occurs on line 23 with the call to
drawRect(). The arguments passed to drawRect() are the x and y coordinates of
the upper left corner of the rectangle, followed by its width and height. When the
image has been completely rendered (in this case, a simple rectangle), a call is
made to the end() method, which disassociates the Qpainter and the QWidget.

Figure 12-1: A rectangle drawn 
in the center of a window

While both the begin() and end() methods must be called, you can let the con-
structor and destructor do it by specifying the target for the drawing as a construc-
tor argument. The following method works exactly the same as the previous one —
which one you use is a matter of personal preference.

void DrawRectangle2::paintEvent(QPaintEvent *)
{

QPainter p(this);
p.drawRect(50,50,300,100);

}

4682-1 ch12.f.qc  11/13/00  14:12  Page 262



263Chapter 12 ✦ Drawing and Painting with QPainter

In this example, the call to begin() is made inside the constructor; and the call 
to end() is made in the destructor (which is called automatically when QPainter
goes out of scope at the end of the method).

Every time the begin() method is called, the QPainter object is completely ini-
tialized, so there is no way to preset QPainter with pens and brushes and then
use it to draw multiple widgets.

Filling a rectangle is a little different than drawing one. The following example uses
the same basic dimensions as those of the previous examples, but produces the
filled rectangle shown in Figure 12-2.

1 /* fillrectangle.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “fillrectangle.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”fillrectangle”);
9     DrawRectangle fillrectangle;
10     fillrectangle.show();
11     app.setMainWidget(&fillrectangle);
12     return(app.exec());
13 }
14 DrawRectangle::DrawRectangle(QWidget *parent,const
15         char *name) : QWidget(parent,name)
16 {
17     setFixedSize(400,200);
18 }
19 void DrawRectangle::paintEvent(QPaintEvent *)
20 {
21     QBrush brush(QColor(“black”));
22     QPainter p;
23     p.begin(this);
24     p.fillRect(50,50,300,100,brush);
25     p.end();
26 }

Figure 12-2: A filled rectangle 
in the center of a window 

Note

4682-1 ch12.f.qc  11/13/00  14:12  Page 263



264 Part II ✦ Step by Step

The drawing is executed in the paintEvent() method beginning on line 19. Whereas
drawing is done with a QPen object, and the default is a black pen, filling is done 
with a brush, and the default brush does no painting. Therefore, line 21 of the
paintEvent() method creates a QBrush object that can be used to fill all of an 
area with black pixels.

The QPainter object is created on line 22 and attached to the widget on line 23.
The call to fillRect() on line 24, as drawRect() earlier, requires the x and y
coordinates of the upper left corner of the rectangle, along with the rectangle’s
width and height. It also requires the brush that it uses to fill the rectangle.

It is possible to both draw and fill a rectangle. The following example first fills the
rectangle by painting with a white brush, and then outlines the white area with the
default black pen:

void FillRectangle2::paintEvent(QPaintEvent *)
{

QBrush brush(QColor(“white”));
QPainter p;
p.begin(this);
p.fillRect(50,50,300,100,brush);
p.drawRect(50,50,300,100);
p.end();

}

The result is shown in Figure 12-3. The rectangle must be filled before it is drawn
because the outer edge of the drawn rectangle matches exactly with the outer edge
of the filled rectangle, and the act of filling the rectangle erases anything that may
be already there.

Figure 12-3: Filling and outlining a rectangle

There is another approach. All of the draw methods can be used to both outline
and fill a shape. For the outline, the pen is used; for the fill, the brush is used. 
The rectangle shown in Figure 12-3 can also be produced by the following paint
Event() method:

void FillRectangle3::paintEvent(QPaintEvent *)
{

4682-1 ch12.f.qc  11/13/00  14:12  Page 264



265Chapter 12 ✦ Drawing and Painting with QPainter

QBrush brush(QColor(“white”));
QPainter p;
p.begin(this);
p.setBrush(brush);
p.drawRect(50,50,300,100);
p.end();

}

In this example, the default QPen (which is a black, thin line) is used to draw the
outline, but there is no default QBrush, so one must be created and assigned to the
QPainter before a figure can be filled. The call to drawRect() first fills the rectan-
gular area with the brush color and then outlines it with the pen.

Pens
In order for a QPen to draw a line, it must have three attributes: color, width, and a
dot/dash pattern. The default pen has a width of zero, which draws a hairline (a line
that is one pixel wide). This is almost, but not quite, the same as setting the line
width to 1. A line drawn with a pixel width of zero will always remain exactly one
pixel wide no matter how the drawing is scaled, whereas a line drawn one or more
pixels in width will have its thickness scaled to wider or narrower as the drawing
zooms in or out.

The following example displays the window shown in Figure 12-4. It draws a black,
two-pixel-wide line in each of the six available styles. The first style, the NoPen
style, does not draw anything. If you want to use a brush to, for example, fill a rect-
angle, but you don’t want to draw the rectangle’s outline, you can use the NoPen
style.

Figure 12-4: The six QPen line styles 

This example shows the different line styles using drawLine(), but the line styles
apply to all the draw methods, including drawArc(), drawRect(), and
drawPolyline().

Note

4682-1 ch12.f.qc  11/13/00  14:12  Page 265



266 Part II ✦ Step by Step

PenStyles Header
1 /* penstyles.h */
2 #ifndef PENSTYLES_H
3 #define PENSTYLES_H
4 
5 #include <qwidget.h>
6 #include <qlabel.h>
7 
8 class PenStyles: public QWidget
9 {
10 public:
11     PenStyles(QWidget *parent=0,const char *name=0);
12 private:
13     QLabel *label[6];
14     QWidget *widget[6];
15 protected:
16     virtual void paintEvent(QPaintEvent *);
17 };
18 
19 #endif

The PenStyles class contains arrays of labels and widgets that are used in the dis-
play. It is necessary to include the array of widgets as part of the class because the
paintEvent() callback method needs access to them.

PenStyles
1 /* penstyles.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <qlayout.h>
5 #include “penstyles.h”
6 
7 struct pstyleStruct {
8     QString name;
9     Qt::PenStyle style;
10 } pstyle[6] = {
11     { “NoPen”, Qt::NoPen },
12     { “SolidLine”, Qt::SolidLine },
13     { “DashLine”, Qt::DashLine },
14     { “DotLine”, Qt::DotLine },
15     { “DashDotLine”, Qt::DashDotLine },
16     { “DashDotDotLine”, Qt::DashDotDotLine }
17 };
18 
19 int main(int argc,char **argv)
20 {
21     KApplication app(argc,argv,”penstyles”);
22     PenStyles penstyles;
23     penstyles.show();

4682-1 ch12.f.qc  11/13/00  14:12  Page 266



267Chapter 12 ✦ Drawing and Painting with QPainter

24     app.setMainWidget(&penstyles);
25     return(app.exec());
26 }
27 PenStyles::PenStyles(QWidget *parent,const
28         char *name) : QWidget(parent,name)
29 {
30     QVBoxLayout *vbox = new QVBoxLayout(this,0,3);
31 
32     for(int i=0; i<6; i++) {
33         label[i] = new QLabel(pstyle[i].name,this);
34         vbox->addWidget(label[i]);
35         widget[i] = new QWidget(this);
36         widget[i]->setFixedHeight(20);
37         widget[i]->setFixedWidth(200);
38         vbox->addWidget(widget[i]);
39     }
40     resize(10,10);
41 }
42 void PenStyles::paintEvent(QPaintEvent *)
43 {
44     QColor black(“black”);
45     QPainter p;
46     for(int i=0; i<6; i++) {
47         p.begin(widget[i]);
48         QPen pen(black,2,pstyle[i].style);
49         p.setPen(pen);
50         p.drawLine(10,5,190,5);
51         p.end();
52     }
53 }

The array of structures on lines 7 through 17 is simply a convenience for holding the
names and values of the different line styles. The names of the styles are defined in
qnamespace.h, which defines the Qt class. There is almost never a need to explicitly
include this file because QObject and a few other fundamental classes inherit it.

The constructor, beginning on line 27, uses a vertical box to contain a column of 
12 widgets. There are 6 QLabel widgets and 6 plain QWidget widgets. The labels are
used to display the name of the line style, and the QWidget is used to display the
line. The loop beginning on line 32 creates both the labels and the widgets, sizes
them, adds them to the vertical box, and stores a reference to them in the arrays 
in the class.

The actual drawing of the lines is done in the paintEvent() method on line 42,
which is called whenever it is necessary to draw the window. The labels take care
of themselves, so all that is left to do is draw the lines. The loop beginning on line
46 draws a single line on the window of the six widgets. To enable drawing, a call is
made to begin() on line 47, which assigns the QPainter object to the widget that
is to receive the line. Line 48 creates a QPen of the appropriate style, and line 49

4682-1 ch12.f.qc  11/13/00  14:12  Page 267



268 Part II ✦ Step by Step

calls setPen() to establish the new pen as the one to be used to do all drawing.
The line is drawn with the call to drawLine() on line 50. At the bottom of the loop,
the end() method is called to disassociate the QPainter with this widget so it can
be used for the next widget in the array at the top of the loop.

The text for the QLabel widgets is inserted in the constructor, but none of the
lines are drawn. This is because nothing is drawn until the method paint
Event() is called. In fact, even though the program inserts text into the label, it
does not actually draw itself until there is a callback to its paintEvent(). 

Standard Brushes
In order for a QBrush to fill a region, it must have two attributes: color and fill pat-
tern. The default color is black and the default pattern is SolidPattern. A total of
15 predefined patterns are available, but you can also create your own. The follow-
ing program displays the predefined patterns, as shown in Figure 12-5.

Figure 12-5: The 15 pre-defined 
brush styles 

BrushStyles Header
1 /* brushstyles.h */
2 #ifndef BRUSHSTYLES_H
3 #define BRUSHSTYLES_H
4 
5 #include <qwidget.h>

Note

4682-1 ch12.f.qc  11/13/00  14:12  Page 268



269Chapter 12 ✦ Drawing and Painting with QPainter

6 
7 class BrushStyles: public QWidget
8 {
9 public:
10     BrushStyles(QWidget *parent=0,const char *name=0);
11 protected:
12     virtual void paintEvent(QPaintEvent *);
13 };
14 
15 #endif

The BrushStyles class is a blank widget, so it is possible to draw both text and
filled rectangles on its window.

BrushStyles
1 /* brushstyles.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <qlayout.h>
5 #include “brushstyles.h”
6 
7 struct bstyleStruct {
8     QString name;
9     Qt::BrushStyle style;
10 } bstyle[15] = {
11     { “NoBrush”, Qt::NoBrush },
12     { “SolidPattern”, Qt::SolidPattern },
13     { “Dense1Pattern”, Qt::Dense1Pattern },
14     { “Dense2Pattern”, Qt::Dense2Pattern },
15     { “Dense3Pattern”, Qt::Dense3Pattern },
16     { “Dense4Pattern”, Qt::Dense4Pattern },
17     { “Dense5Pattern”, Qt::Dense5Pattern },
18     { “Dense6Pattern”, Qt::Dense6Pattern },
19     { “Dense7Pattern”, Qt::Dense7Pattern },
20     { “HorPattern”, Qt::HorPattern },
21     { “VerPattern”, Qt::VerPattern },
22     { “CrossPattern”, Qt::CrossPattern },
23     { “BDiagPattern”, Qt::BDiagPattern },
24     { “FDiagPattern”, Qt::FDiagPattern },
25     { “DiagCrossPattern”, Qt::DiagCrossPattern }
26 };
27 
28 int main(int argc,char **argv)
29 {
30     KApplication app(argc,argv,”brushstyles”);
31     BrushStyles brushstyles;
32     brushstyles.show();
33     app.setMainWidget(&brushstyles);
34     return(app.exec());

4682-1 ch12.f.qc  11/13/00  14:12  Page 269



270 Part II ✦ Step by Step

35 }
36 BrushStyles::BrushStyles(QWidget *parent,const
37         char *name) : QWidget(parent,name)
38 {
39     setFixedSize(280,455);
40 }
41 void BrushStyles::paintEvent(QPaintEvent *)
42 {
43     int xText = 10;
44     int xFill = 130;
45     int yText = 25;
46     int yFill = 10;
47     QColor black(“black”);
48     QPainter p(this);
49     for(int i=0; i<15; i++) {
50         QBrush brush(black,bstyle[i].style);
51         p.setBrush(brush);
52         p.drawText(xText,yText,bstyle[i].name);
53         p.drawRect(xFill,yFill,130,20);
54         yText += 30;
55         yFill += 30;
56     }
57 }

The array of structures defined on lines 7 through 26 is a convenience for holding
the names and values of each of the 15 predefined styles. The style names are
defined in qnamespace.h.

The constructor, beginning on line 36, does nothing other than set the window to 
a fixed size that will contain all the text and rectangles drawn to it.

The paintEvent() method on lines 41 through 57 is called whenever the window
needs to be painted. The values xText and yText specify the starting point of the
line of text, while xFill and yFill determine the upper left corner of the rectangle
to be filled. The loop, beginning on line 49, executes once for each fill style. Line 50
creates a QBrush object based on one of the predefined styles, and line 51 installs it
into the QPainter. The name of the style is written as text by the call to drawText()
on line 52. The rectangular area is filled by the call to drawRect() on line 53. The
rectangle is both filled and outlined because the default black QPen is still in force,
and the new patterned QBrush has been added.

Creating Custom Brushes
To fill a region, the QBrush creates a small pixmap and tiles it into the window.
Therefore, it is a simple matter for you to specify your own fill pattern in the form
of a QPixmap. The following program uses a pixmap to fill a rectangular region of 
a window.

4682-1 ch12.f.qc  11/13/00  14:12  Page 270



271Chapter 12 ✦ Drawing and Painting with QPainter

BrushCustom
1 /* brushcustom.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <qlayout.h>
5 #include “brushcustom.h”
6 
7 static const char *mypattern[] = {
8 “16 16 4 1”,
9 “  c blue”,
10 “. c white”,
11 “x c red”,
12 “y c green”,
13 “yy....    ....yy”,
14 “yy....    ....yy”,
15 “......    ......”,
16 “......    ......”,
17 “......    ......”,
18 “......    ......”,
19 “ .....     x    “,
20 “  ....    xxx   “,
21 “   ...   xxxxx  “,
22 “    ..  xxxxxxx “,
23 “.    ..xxxxxxxxx”,
24 “..    ..........”,
25 “...    .........”,
26 “....    ........”,
27 “yy...    .....yy”,
28 “yy....    ....yy”
29 };
30 
31 int main(int argc,char **argv)
32 {
33     KApplication app(argc,argv,”brushcustom”);
34     BrushCustom brushcustom;
35     brushcustom.show();
36     app.setMainWidget(&brushcustom);
37     return(app.exec());
38 }
39 BrushCustom::BrushCustom(QWidget *parent,const
40         char *name) : QWidget(parent,name)
41 {
42     setFixedSize(220,120);
43 }
44 void BrushCustom::paintEvent(QPaintEvent *)
45 {
46     QBrush brush;
47     QPixmap pixmap(mypattern);
48     brush.setPixmap(pixmap);
49 

4682-1 ch12.f.qc  11/13/00  14:12  Page 271



272 Part II ✦ Step by Step

50     QPainter p(this);
51     p.setBrush(brush);
52     p.drawRect(20,20,180,80);
53 }

The pixmap to be used as a filler is in the XPM format on lines 7 through 29.

Chapter 9 explains the XPM format and how to use it.

The constructor, beginning on line 39, does nothing more than set the widget’s 
window to a fixed size of 220 pixels wide by 120 pixels high.

The drawing occurs in paintEvent() on line 44. Line 47 uses the pixmap data to
create a QPixmap object, and line 48 calls setPixmap() to install the pixmap into
the QBrush. Installing the pixmap sets the brush style to CustomPattern, a value
that was not included in the previous example because it is only used with a pixmap.
That’s all there is to it. The window this example produces is shown in Figure 12-6.
Once the brush is defined and installed in the Qpainter, it will be used for fill until
you change it to something else.

Figure 12-6: Using a custom brush 
to fill a rectangle

The tiling is done without regard to the location of the actual figure you are draw-
ing. The origin can be moved, as you will see later in this chapter, but the default
origin on the upper left corner is where the first tile is laid, and all the others are
tiled adjacent to it. It is not necessary for the origin tile to be visible, but, visible or
not, the position of all the other tiles are measured from it. If you look closely at
Figure 12-6 and compare it with the XPM data in the program, you can see that the
upper-left portion of the upper-left tile is clipped.

Every QPaintDevice Has Metrics
It often happens that graphics drawn into a window need to be resized or reori-
ented as the window changes size. The class QPaintDeviceMetrics can be used to
determine the current size (and some other information) of the QPaintDevice. The
following example program uses the information in a QPaintDeviceMetrics object
to vary the positions and sizes of things painted on the window. As shown in
Figures 12-7 and 12-8, the text spaces itself vertically at even intervals in the win-
dow, and the white rectangle in the background reshapes itself to fit the window.

Cross-
Reference

4682-1 ch12.f.qc  11/13/00  14:12  Page 272



273Chapter 12 ✦ Drawing and Painting with QPainter

Figure 12-7: Text moves closer 
together to fit the window 

Figure 12-8: Text moves further 
apart to fill the window

ShowMetrics Header
1 /* showmetrics.h */
2 #ifndef SHOWMETRICS_H
3 #define SHOWMETRICS_H
4 
5 #include <qwidget.h>
6 
7 class ShowMetrics: public QWidget
8 {
9 public:
10     ShowMetrics(QWidget *parent=0,const char *name=0);
11 protected:
12     virtual void paintEvent(QPaintEvent *);
13 };
14 
15 #endif

ShowMetrics
1 /* showmetrics.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <qpaintdevicemetrics.h>
5 #include “showmetrics.h”
6 
7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”showmetrics”);
10     ShowMetrics showmetrics;

4682-1 ch12.f.qc  11/13/00  14:12  Page 273



274 Part II ✦ Step by Step

11     showmetrics.show();
12     app.setMainWidget(&showmetrics);
13     return(app.exec());
14 }
15 ShowMetrics::ShowMetrics(QWidget *parent,const
16         char *name) : QWidget(parent,name)
17 {
18     resize(400,300);
19 }
20 void ShowMetrics::paintEvent(QPaintEvent *)
21 {
22     QString str;
23     QPaintDeviceMetrics metrics(this);
24     QBrush brush(QColor(“white”));
25     int yincr = metrics.height() / 9;
26     int y = yincr;
27     int x = 10;
28 
29     QPainter p(this);
30     if((metrics.width() > 40) && (metrics.height() > 40)) {
31         p.setPen(Qt::NoPen);
32         p.setBrush(brush);
33         p.drawRect(20,20,
34             metrics.width() - 40,metrics.height() - 40);
35         p.setPen(Qt::SolidLine);
36         p.setBrush(Qt::NoBrush);
37     }
38     str.sprintf(“%d  width in pixels”,
39             metrics.width());
40     p.drawText(x,y,str);
41     y += yincr;
42     str.sprintf(“%d  height in pixels”,
43             metrics.height());
44     p.drawText(x,y,str);
45     y += yincr;
46     str.sprintf(“%d  width in millimeters”,
47             metrics.widthMM());
48     p.drawText(x,y,str);
49     y += yincr;
50     str.sprintf(“%d  height in millimeters”,
51             metrics.heightMM());
52     p.drawText(x,y,str);
53     y += yincr;
54     str.sprintf(“%d  X dots per inch”,
55             metrics.logicalDpiX());
56     p.drawText(x,y,str);
57     y += yincr;
58     str.sprintf(“%d  Y dots per inch”,
59             metrics.logicalDpiY());
60     p.drawText(x,y,str);
61     y += yincr;

4682-1 ch12.f.qc  11/13/00  14:12  Page 274



275Chapter 12 ✦ Drawing and Painting with QPainter

62     str.sprintf(“%d  total number of colors”,
63             metrics.numColors());
64     p.drawText(x,y,str);
65     y += yincr;
66     str.sprintf(“%d  bits per pixel”,
67             metrics.depth());
68     p.drawText(x,y,str);
69 }

The paintEvent() method on line 20 is called whenever the window needs to be
painted. This will happen whenever the window first appears, whenever it is exposed
by having a window removed from in front of it, and, most important to this applica-
tion, whenever the size of the window changes.

The QPaintDeviceMetrics object is created on line 23, and it contains all of the
information we need to scale the graphics. There are two height and width values —
one is measured in pixels and the other is in millimeters. The one you should use
depends on the characteristics of the device being painted. For example, if you are
painting to a printer, the precise millimeter information can be very handy. Drawings
made to a displayed window, however, can vary widely in size (even at the same
pixel resolution), so it is best to work with pixel measurements. The same sort of 
situation applies to the vertical and horizontal dots-per-inch values.

Lines 25 through 27 set up the x and y coordinates of the first string to be displayed,
and calculate the increment by which the y value will change for spacing the strings
down the window. Eight strings are to be displayed, so, counting the top and bot-
tom, there are 9 vertical spaces — the overall height of the window is divided by 9 
to determine the distance between them.

The code on lines 30 through 37 draws a white rectangle that is sized to fit the win-
dow. The rectangle is drawn so that it is exactly 20 pixels from all four edges of the
window. The if statement on line 30 will skip the rectangle if there is not enough
room to draw one. To suppress rectangle outlining, the call to setPen() on line 31
removes the current pen. The call to setBrush() on line 32 installs the white brush
that will fill the rectangle, and the call to drawRect() on line 33 draws the rectan-
gle. The rectangle has its upper-left corner positioned 20 pixels from the edges of
the window, and its width and height are calculated so that the rectangle ends 20
pixels before reaching the opposite edges of the window. Lines 35 and 36 restore
the default pen and remove the white brush.

Lines 38 through 68 print the numbers and text on the window. The value of x does
not vary, which causes every string to begin at the same distance from the left side
of the window. After each line is printed, the value stored in yincr is added to y
so that each string will appear one-ninth of the total window height below the one
above it.

4682-1 ch12.f.qc  11/13/00  14:12  Page 275



276 Part II ✦ Step by Step

Pixel Drawing
The following program demonstrates drawing one pixel at a time by creating a grid
and drawing an amplified sine wave on it, as shown in Figure 12-9.

Figure 12-9: A curve and a grid 
drawn one pixel at a time

DrawPixel Header
1 /* drawpixel.h */
2 #ifndef DRAWPIXEL_H
3 #define DRAWPIXEL_H
4 
5 #include <qwidget.h>
6 
7 class DrawPixel: public QWidget
8 {
9 public:
10     DrawPixel(QWidget *parent=0,const char *name=0);
11 protected:
12     virtual void paintEvent(QPaintEvent *);
13 };
14 
15 #endif

DrawPixel
1 /* drawpixel.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “drawpixel.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”drawpixel”);
9     DrawPixel drawpixel;
10     drawpixel.show();
11     app.setMainWidget(&drawpixel);
12     return(app.exec());

4682-1 ch12.f.qc  11/13/00  14:12  Page 276



277Chapter 12 ✦ Drawing and Painting with QPainter

13 }
14 DrawPixel::DrawPixel(QWidget *parent,const
15         char *name) : QWidget(parent,name)
16 {
17     setFixedSize(400,200);
18 }
19 void DrawPixel::paintEvent(QPaintEvent *)
20 {
21     QPainter p(this);
22     p.setPen(QColor(“white”));
23     for(int x=20; x<400; x += 20) {
24         for(int y=20; y<200; y += 20) {
25             p.drawPoint(x-1,y);
26             p.drawPoint(x+1,y);
27             p.drawPoint(x,y-1);
28             p.drawPoint(x,y+1);
29         }
30     }
31     p.setPen(QColor(“red”));
32     for(double x=0; x<400; x++) {
33         double y = sin(x / 30);
34         y *= x / 4;
35         y += 100;
36         p.drawPoint((int)x,(int)y);
37     }
38 }

The paintEvent() method beginning on line 19 draws the grid points and the
curve. Points, by the way, are drawn with the QPen, normally used to draw lines.
You can think of a pixel as the shortest of all possible lines. Line 22 calls setPen()
to establish a white pen for drawing the points, and line 31 calls setPen() to estab-
lish the red pen for drawing the dots making up the curve.

The loop on lines 23 through 30 draws the collection of white points shown in
Figure 12-9. The points are drawn at 20-pixel intervals both vertically and horizon-
tally. Each point is drawn as four pixels — one above and one to each side of the
center point.

The loop on lines 32 through 37 draws a sine wave that increases in amplitude from
left to right. The variables x and y are declared as double to simplify the calcula-
tions. The window is fixed at 400 pixels wide, so the value of x varies from 0 to 400,
resulting in one painted pixel in each of the 400 “pixel columns.” Line 33 calculates
the sine, treating the value of x as a number of radians (using a divisor other than 30
here will change the number of cycles that appear in the window). Line 34 multiplies
the y value such that its magnitude becomes larger as x becomes larger. Line 35
adds 100 to the y value so it will be vertically centered in the window. The call to
drawPoint() on line 36 paints the pixel.

4682-1 ch12.f.qc  11/13/00  14:12  Page 277



278 Part II ✦ Step by Step

Drawing Arrays of Pixels
In the previous example, all of the points were calculated each time the window
was painted. Sometimes it is more convenient to calculate the points only once, or
load them from a file and store them in an array. The following example displays the
same window as the previous example, shown in Figure 12-9, but it calculates the
pixel locations only once and stores them in an array.

DrawPixel2 Header
1 /* drawpixel2.h */
2 #ifndef DRAWPIXEL_H
3 #define DRAWPIXEL_H
4 
5 #include <qwidget.h>
6 #include <qpointarray.h>
7 
8 class DrawPixel2: public QWidget
9 {
10 public:
11     DrawPixel2(QWidget *parent=0,const char *name=0);
12 private:
13     QPointArray *grid;
14     QPointArray *curve;
15 protected:
16     virtual void paintEvent(QPaintEvent *);
17 };
18 
19 #endif

Lines 13 and 14 declare pointers to a pair of QPointArray objects. The one named
curve is used to contain the points defining the trace, and the one named grid will
contain the locations of the white points in the background.

DrawPixel2
1 /* drawpixel2.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “drawpixel2.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”drawpixel2”);
9     DrawPixel2 drawpixel2;
10     drawpixel2.show();
11     app.setMainWidget(&drawpixel2);
12     return(app.exec());
13 }

4682-1 ch12.f.qc  11/13/00  14:12  Page 278



279Chapter 12 ✦ Drawing and Painting with QPainter

14 DrawPixel2::DrawPixel2(QWidget *parent,const
15         char *name) : QWidget(parent,name)
16 {
17     int index;
18     setFixedSize(400,200);
19 
20     grid = new QPointArray(4 * 20 * 10);
21     index = 0;
22     for(int x=20; x<400; x += 20) {
23         for(int y=20; y<200; y += 20) {
24             grid->setPoint(index++,x-1,y);
25             grid->setPoint(index++,x+1,y);
26             grid->setPoint(index++,x,y-1);
27             grid->setPoint(index++,x,y+1);
28         }
29     }
30     curve = new QPointArray(400);
31     index = 0;
32     for(double x=0; x<400; x++) {
33         double y = sin(x / 30);
34         y *= x / 4;
35         y += 100;
36         curve->setPoint(index++,(int)x,(int)y);
37     }
38 }
39 void DrawPixel2::paintEvent(QPaintEvent *)
40 {
41     QPainter p(this);
42     p.setPen(QColor(“white”));
43     p.drawPoints(*grid);
44     p.setPen(QColor(“red”));
45     p.drawPoints(*curve);
46 }

The constructor, beginning on line 14, does all of the calculation work and stores
the result in the arrays. The call to setFixedSize() on line 18 prohibits the win-
dow from being resized. 

The QPointArray object to contain the grid points is created on line 20. There is
one entry in the array for each of the points, so the total size of the array is the
product of 4 (the number of pixels in each grid point), 20 (the number of grid points
that will appear along the x axis), and 10 (the number of grid points that will appear
along the y axis). The loop on lines 22 through 29 inserts four pixel locations for
each of the grid points.

The QPointArray object to contain the trace of the curve is created on line 30. The
calculations, and the number of points, are the same as they were in the previous
example. There are 400 points calculated, and all 400 are stored in the array by the
call to setPoint() on line 36.

4682-1 ch12.f.qc  11/13/00  14:12  Page 279



280 Part II ✦ Step by Step

The paintEvent() method starting on line 39 has much less to do than in the 
previous example. A QPainter object is created, a white pen is used to draw the
points defined in grid, and a red pen is used to draw the points in curve.

Sometimes you need to recalculate the values under some circumstances, but not
under others. For example, if you wish to recalculate the values only when the win-
dow changes size, the top of your paintEvent() method — using the values in
QPaintDeviceMetrics— determines whether the window size has changed and, 
if so, calls the method that does the calculation.

Vector Line Drawing
Two methods can be used to implement vector drawing. They don’t do anything
that can’t be done with drawLine(), but they can be very convenient in the cre-
ation of certain kinds of drawings. The methods moveTo() and lineTo() are really
left over from the days when graphics were done using a pen plotter. Both methods
move the pen from one location to another, but only one of them holds the pen
down, causing a line to be drawn. The pen always has a position, so in order to
draw a line, it is only necessary to specify the other end of the line. Once the line
has been drawn, the pen assumes the new position.

The following example reads the drawing instructions from a file and uses them to
display the graphic shown in Figure 12-10. Each line of the input text file contains an
opcode (m for move and d for draw) and the coordinate point for the action to take
place. The file used in this example starts like this:

m 60 110
d 60 10
d 160 10
d 160 60
m 160 80
d 160 180
. . .

The first line is an instruction to move to the point (60,110). The second command
will draw a line from the pen’s position at (60,110) to a new location at (60,10).

Figure 12-10: A line drawing 
defined in a file

4682-1 ch12.f.qc  11/13/00  14:12  Page 280



281Chapter 12 ✦ Drawing and Painting with QPainter

1 /* drawvector.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <stdio.h>
5 #include “drawvector.h”
6 
7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”drawvector”);
10     DrawVector drawvector;
11     drawvector.show();
12     app.setMainWidget(&drawvector);
13     return(app.exec());
14 }
15 DrawVector::DrawVector(QWidget *parent,const
16         char *name) : QWidget(parent,name)
17 {
18     setFixedSize(230,190);
19 }
20 void DrawVector::paintEvent(QPaintEvent *)
21 {
22     FILE *fd;
23     char code[20];
24     int x;
25     int y;
26 
27     if((fd = fopen(“points.dat”,”r”)) !=  NULL) {
28         QPainter p(this);
29         while(fscanf(fd,”%s %d %d”,code,&x,&y) == 3) {
30             if(code[0] == ‘m’)
31                 p.moveTo(x,y);
32             else if(code[0] == ‘d’)
33                 p.lineTo(x,y);
34         }
35         fclose(fd);
36     }
37 }

All of the drawing is done in the loop on lines 28 through 34. Line 28 initializes
graphic operations by creating a QPainter object for this widget. The call to
fscanf() on line 29 reads a line of input data — the command, the x coordinate,
and the y coordinate. If the command is to move the current cursor, the method
moveTo() is called on line 31. If the command is to draw a line from the current 
cursor to this new location, a call is made to lineTo() on line 33.

4682-1 ch12.f.qc  11/13/00  14:12  Page 281



282 Part II ✦ Step by Step

Line Segments and Polygons
Some QPainter methods allow you to store a set of points in a QPointArray object
and then use the points to draw polygons. The following program demonstrates
some of the different ways a collection of line segments can be drawn:

1 /* drawpoly.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “drawpoly.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”drawpoly”);
9     DrawPoly drawpoly;
10     drawpoly.show();
11     app.setMainWidget(&drawpoly);
12     return(app.exec());
13 }
14 DrawPoly::DrawPoly(QWidget *parent,const
15         char *name) : QWidget(parent,name)
16 {
17     setFixedSize(500,100);
18 }
19 void DrawPoly::paintEvent(QPaintEvent *)
20 {
21     int offset = 0;
22     QPointArray parray(10);
23     QPainter p(this);
24 
25     setPoints(parray,offset);
26     p.drawLineSegments(parray);
27 
28     setPoints(parray,offset += 100);
29     p.drawPolyline(parray);
30 
31     setPoints(parray,offset += 100);
32     p.drawPolygon(parray);
33 
34     p.setBrush(QColor(“white”));
35     setPoints(parray,offset += 100);
36     p.drawPolygon(parray,TRUE);
37 
38     setPoints(parray,offset += 100);
39     p.drawPolygon(parray,FALSE);
40 }
41 void DrawPoly::setPoints(QPointArray &parray,int offset)
42 {
43     parray.setPoint(0,10+offset,50);
44     parray.setPoint(1,70+offset,50);
45     parray.setPoint(2,70+offset,30);

4682-1 ch12.f.qc  11/13/00  14:12  Page 282



283Chapter 12 ✦ Drawing and Painting with QPainter

46     parray.setPoint(3,50+offset,30);
47     parray.setPoint(4,50+offset,90);
48     parray.setPoint(5,30+offset,90);
49     parray.setPoint(6,30+offset,10);
50     parray.setPoint(7,90+offset,10);
51     parray.setPoint(8,90+offset,70);
52     parray.setPoint(9,10+offset,70);
53 }

The setPoints() method on line 41 inserts the points into the array. The same set
of points is used for each drawing, as shown in Figure 12-11, except the horizontal
position is shifted to the right by the amount of the offset. 

Figure 12-11: Five ways to draw a polygon

The call to drawLineSegments() on line 26 draws the version of the polygon
shown on the far left of Figure 12-11. The lines are not joined together because 
only line segments are drawn. That is, the first line is drawn between point[0] and
point[1], the second is drawn between point[2] and point[3], and so on. For every
line drawn, there must be two members in the array of points. Of course, you can
force the lines to join into a polygon by using the ending point of a line as the start-
ing point of the next.

The call to drawPolyLine() on line 32 uses the same input information as draw
LineSegments(), but it draws all the line segments by starting each new line seg-
ment at the point where the previous line segment left off. That is, the first line is
drawn between point[0] and point[1], the second is drawn between point[1] and
point[2], and so on. In the array of point data, the last point does not coincide with
the first point, so the polygon is not closed.

The call to drawPolygon() on line 32 draws the figure in the same way as drawLine
Sgemetns(), but it also draws a line from the end point back to the beginning,
resulting in a closed shape.

The call to drawPolygon() on line 36 draws the shape after a QBrush has been
stored in the QPainter object, and this results in the polygon being filled. Just as
with any of the other shapes, the area is filled before it is outlined, causing the out-
lining to appear on top of the fill. The second argument to the method call sets the
winding rule to TRUE, which means that all areas of the polygon will be filled with-
out regard to overlaps of itself.

4682-1 ch12.f.qc  11/13/00  14:12  Page 283



284 Part II ✦ Step by Step

The call to drawPolygon() on line 39 is the same as the previous one, except the
winding rule is set to FALSE. This setting means that the only regions of the poly-
gons that are filled are those covered with an odd number of layers. The rightmost
drawing in Figure 12-11 shows that the area where the shape overlaps itself is not
filled — that is, there are two layers of the shape at the overlap point. If the shape
were to overlap the same point with a third layer, it would be filled again.

Ellipses and Circles
The method drawEllipse() is used to render both circles and ellipses because 
a circle is simply an ellipse with equal height and width. The following program 
displays the window shown in Figure 12-12, containing two ellipses and a circle:

1 /* drawellipse.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “drawellipse.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”drawellipse”);
9     DrawEllipse drawellipse;
10     drawellipse.show();
11     app.setMainWidget(&drawellipse);
12     return(app.exec());
13 }
14 DrawEllipse::DrawEllipse(QWidget *parent,const
15         char *name) : QWidget(parent,name)
16 {
17     setFixedSize(260,140);
18 }
19 void DrawEllipse::paintEvent(QPaintEvent *)
20 {
21     QPainter p(this);
22 
23     p.drawEllipse(10,50,110,40);
24     p.setBrush(QColor(“white”));
25     p.drawEllipse(130,25,90,90);
26     p.setPen(NoPen);
27     p.drawEllipse(230,10,20,120);
28 }

Figure 12-12: Two ellipses and a circle

4682-1 ch12.f.qc  11/13/00  14:12  Page 284



285Chapter 12 ✦ Drawing and Painting with QPainter

The drawEllipse() method requires that you define a bounding box to specify the
four sides of the ellipse. The bounding box is defined by the x and y coordinates of
its upper-left corner, and the width and height of the box. For example, the ellipse
on the left in Figure 12-12 is drawn by the call to drawEllipse() on line 23, with its
upper-left corner 10 pixels from the left edge and 50 pixels from the top. The width
of the ellipse is 110 pixels and its height is 40 pixels.

A QBrush object is added to QPainter by the call to setBrush() on line 24, so the
rest of the ellipses are filled with the brush color. Line 26 calls setPen() to remove
the pen from QPainter, so the ellipse on the right has no outline.

It may happen that you need to draw a circle or an ellipse around a center point
instead of the upper left corner. To do this, simply subtract the radius from the 
center point (in each direction) to locate the upper-left corner:

p.drawEllipse(x - (w / 2),y - (h / 2),w,h);

Drawing Parts of Circles and Ellipses
There are three ways you can draw part of a circle or an ellipse. The process is the
same as drawing a circle or ellipse, as in the previous example, except you must
also specify a starting and ending angle.

To specify which part of the circle or ellipse is to be drawn, it is necessary to spec-
ify the starting and ending angles. The angles are measured in units of one-sixteenth
of a degree. If you are going to be entering hard-coded angles, Table 12-2 lists some
of the more commonly used values. 

Table 12-2
Comparison of Angle Measurement Units

Qt Units Degrees Radians

0 0 0

720 45 0.7854

1440 90 1.5708

2160 135 2.3562

2880 180 3.1416

3600 225 3.9270

4320 270 4.7124

5040 315 5.4978

5760 360 6.2832

4682-1 ch12.f.qc  11/13/00  14:12  Page 285



286 Part II ✦ Step by Step

If you are going to be calculating the angles, most math software utilities use either
degrees or radians; you will need to convert back and forth. The following state-
ments will convert degrees and radians to the Qt scale:

angle = degree * 16;
angle = (radian * 180) / PI;

And these statements will convert Qt scale values to degrees and radians:

degree = angle / 16;
radian = (angle * PI) / 180;

Positive rotation is counterclockwise. The zero-degree point is on the right. The
starting and ending angles are expressed in relative terms. That is, the starting
angle specifies the distance from the zero point that the drawing is to begin, and
the ending angle specifies the distance from the starting angle to the end of the
drawing. Both numbers can be either positive or negative. If the starting angle is
less than the ending angle, the drawing occurs in the positive (counterclockwise)
direction. If the starting angle is less than the ending angle, the drawing occurs in
the negative (clockwise) direction.

The following example demonstrates three different approaches to drawing an arc:

1 /* arcpiechord.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “arcpiechord.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”arcpiechord”);
9     ArcPieChord arcpiechord;
10     arcpiechord.show();
11     app.setMainWidget(&arcpiechord);
12     return(app.exec());
13 }
14 ArcPieChord::ArcPieChord(QWidget *parent,const
15         char *name) : QWidget(parent,name)
16 {
17     setFixedSize(260,420);
18 }
19 void ArcPieChord::paintEvent(QPaintEvent *)
20 {
21     QPainter p(this);
22 
23     p.drawArc(10,50,110,40,0,4000);
24     p.drawChord(10,190,110,40,0,4000);
25     p.drawPie(10,330,110,40,0,4000);
26     p.setBrush(QColor(“white”));

4682-1 ch12.f.qc  11/13/00  14:12  Page 286



287Chapter 12 ✦ Drawing and Painting with QPainter

27     p.drawArc(130,25,90,90,0,2000);
28     p.drawChord(130,165,90,90,0,2000);
29     p.drawPie(130,305,90,90,0,2000);
30     p.setPen(NoPen);
31     p.drawArc(230,10,20,120,720,4320);
32     p.drawChord(230,150,20,120,720,4320);
33     p.drawPie(230,290,20,120,720,4320);
34 }

The call to drawArc() on line 23 creates the shape in the upper-left corner of Figure
12-13. This shape is drawn using the default QPainter with a black pen and no
brush. The same bounding rectangle approach is used as is used with the ellipse.
That is, you choose the x and y coordinates of the upper-left corner of the bounding
box of the entire ellipse, even though you are only going to be drawing a portion of
it. The starting angle is 0 and the ending angle is 4000, which is almost 270 degrees.

Figure 12-13: Some ways to draw arcs, 
pies, and chords

The call to drawArc() on line 27 creates the shape in the center of the first row of
Figure 12-13. Even though this figure is drawn with a QPainter that has a brush,
there is no filling because an arc is not a closed figure. The call to drawArc() on
line 31 does not appear because the pen has been disabled and drawArc() does
not use the brush.

The call to drawChord() on line 24 draws the leftmost shape in the center row of
Figure 12-13. A chord is like an arc, except that it always draws a line between the
end points of the arc to create a closed figure. Because a chord is a closed figure,
the calls to drawChord() on lines 28 and 32 both fill the enclosed area with the
brush color.

4682-1 ch12.f.qc  11/13/00  14:12  Page 287



288 Part II ✦ Step by Step

The call to drawPie() on line 25 draws the leftmost shape of the bottom row of
Figure 12-13. A pie is like an arc, except that it always draws two lines between the
center and the two end points to create a closed figure. Because a pie is a closed
figure, the calls to drawPie() on lines 29 and 33 both fill the enclosed area with the
brush color.

Rectangles with Rounded Corners
The QPainter method drawRoundRect() can be used to draw rectangles with
varying degrees of rounding on the corners. The following example demonstrates
the flexibility of drawRoundRect(), which can be used to draw squares, rectangles,
circles, and ellipses as well as rounded-corner rectangles. The program draws a
number of shapes, as shown in Figure 12-14.

1 /* roundrectangle.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “roundrectangle.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”roundrectangle”);
9     RoundRectangle roundrectangle;
10     roundrectangle.show();
11     app.setMainWidget(&roundrectangle);
12     return(app.exec());
13 }
14 RoundRectangle::RoundRectangle(QWidget *parent,const
15         char *name) : QWidget(parent,name)
16 {
17     setFixedSize(190,370);
18 }
19 void RoundRectangle::paintEvent(QPaintEvent *)
20 {
21     QPainter p(this);
22     p.setBrush(QColor(“white”));
23 
24     p.drawRoundRect(10,10,50,50);
25     p.drawText(30,35,”1”);
26 
27     p.drawRoundRect(70,10,50,50,50,50);
28     p.drawText(90,35,”2”);
29 
30     p.drawRoundRect(130,10,50,50,100,100);
31     p.drawText(150,35,”3”);
32 
33     p.drawRoundRect(10,70,170,50);

4682-1 ch12.f.qc  11/13/00  14:12  Page 288



289Chapter 12 ✦ Drawing and Painting with QPainter

34     p.drawText(90,95,”4”);
35 
36     p.drawRoundRect(10,130,170,50,0,50);
37     p.drawText(90,155,”5”);
38 
39     p.drawRoundRect(10,190,170,50,50,80);
40     p.drawText(90,215,”6”);
41 
42     p.drawRoundRect(10,250,170,50,100,100);
43     p.drawText(90,275,”7”);
44 
45     p.drawRoundRect(10,310,170,50,9,30);
46     p.drawText(90,335,”8”);
47 }

Figure 12-14: Some of the many forms 
of rounded rectangles 

Calling one of the following two methods draws a rounded rectangle:

drawRoundRect(int x,int y,int w,int h)
drawRoundRect(int x,int y,int w,int h,

int xround,int yround)

The first four arguments define a rectangle. The last two arguments (which both
default to 25) specify the roundedness of the corners in both the vertical and hori-
zontal directions.

Rectangle 1 in Figure 12-14 is drawn by the call to drawRoundeRect() on line 24.
The first two arguments specify the x and y location of the upper left corner of
where the rectangle would be if it were not clipped off by being rounded. The figure
is a square that is 50 pixels on a side, and the roundedness of the corners was

4682-1 ch12.f.qc  11/13/00  14:12  Page 289



290 Part II ✦ Step by Step

allowed to default at 25 in both the x and y directions. This means that 25 percent
of the vertical distance and 25 percent of the horizontal distance will be used to
create the rounded corners.

Rectangle 2 is drawn by the call to drawRoundedRect() on line 27. Like rectangle 1,
this call also produces a square, but the horizontal and vertical roundedness amounts
have been set to 50 percent each instead of being allowed to default to 25 percent.

Rectangle 3 demonstrates that setting the height and width to the same values, and
setting the roundedness to 100 percent, causes the entire length of the sides to be
included in the curved portion; the result is a circle.

Rectangle 4 is drawn on line 33. The vertical and horizontal roundedness are both
allowed to default to 25 percent, but because the rectangle is wider than it is tall,
more pixels are involved in the horizontal direction than in the vertical direction,
resulting in a curve that is not symmetrical.

Rectangle 5 is drawn on line 36 to demonstrate the fact that setting one (or both) 
of the roundedness values to 0 percent will cause the corner to be square. In this
example, the vertical roundedness is set to 50 percent, but it cannot be used to
make a curve because the horizontal setting is 0 percent, which forces the horizon-
tal line to go all the way to the corner.

Rectangle 6 is created on line 39 by setting the vertical roundedness to 100 percent
and the horizontal roundedness to 30 percent.

Rectangle 7 is drawn on line 42 with both the horizontal and vertical roundedness
being set to 100 percent. The result is an ellipse.

Rectangle 8, drawn on line 45, is designed to have symmetrical roundedness — that
is, the same number of pixels are involved in the curve in both the vertical and hori-
zontal directions. Because roundedness is expressed as a percentage, it is necessary
to select a pixel value and then use it to determine the percent in each direction:

xround = (100 * pixels) / height;
yround = (100 * pixels) / width;

Drawing Pixmaps and Text
You can draw all or part of a pixmap and define the font to be used to draw any
text. The following example draws an entire pixmap, then part of a pixmap, and
then writes text on top of the drawing, as shown in Figure 12-15.

4682-1 ch12.f.qc  11/13/00  14:12  Page 290



291Chapter 12 ✦ Drawing and Painting with QPainter

Figure 12-15: Pixmap with text

DrawPixmap Header
1 /* drawpixmap.h */
2 #ifndef DRAWPIXMAP_H
3 #define DRAWPIXMAP_H
4 
5 #include <qwidget.h>
6 
7 class DrawPixmap: public QWidget
8 {
9 public:
10     DrawPixmap(QWidget *parent=0,const char *name=0);
11 private:
12     QPixmap logo;
13 protected:
14     virtual void paintEvent(QPaintEvent *);
15 };
16 
17 #endif

The QPixmap to be drawn is created from data, so it is only created once. It is
stored as logo on line 12, so it will be available for display later.

DrawPixmap
1 /* drawpixmap.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <qfont.h>
5 #include “drawpixmap.h”
6 
7 #include “logo.xpm”

4682-1 ch12.f.qc  11/13/00  14:12  Page 291



292 Part II ✦ Step by Step

8 
9 int main(int argc,char **argv)
10 {
11     KApplication app(argc,argv,”drawpixmap”);
12     DrawPixmap drawpixmap;
13     drawpixmap.show();
14     app.setMainWidget(&drawpixmap);
15     return(app.exec());
16 }
17 DrawPixmap::DrawPixmap(QWidget *parent,const
18         char *name) : QWidget(parent,name)
19 {
20     logo = QPixmap(magick);
21     setFixedSize(360,330);
22 }
23 void DrawPixmap::paintEvent(QPaintEvent *)
24 {
25     QPainter p(this);
26 
27     p.drawPixmap(10,10,logo);
28     p.drawPixmap(250,80,logo,50,50,100,100);
29 
30     QFont font = p.font();
31     font.setPointSize(18);
32     p.setFont(font);
33 
34     p.setPen(QColor(“white”));
35     p.drawText(200,250,”Penguin”);
36 }

The constructor, beginning on line 17, creates the logo pixmap from the data file
logo.xpm included on line 7. It then sets the display window to a fixed size.

The call to drawPixmap() on line 27 paints the entire logo pixmap. The upper-left
corner of the pixmap is located 10 pixels over and 10 pixels down from the upper-
left corner of the widgets. Because no other arguments were specified, the entire
pixmap is copied to the target location.

The call to drawPixmap() on line 28 paints only a portion of the logo pixmap. This
method first extracts a rectangular area from the pixmap and then paints the extrac-
tion to the target window. The last four method arguments determine the extracted
area by specifying the upper left corner and the height and width. The area to be
extracted is 60 pixels from the left and 50 pixels from the top of the pixmap, its width
is 100 pixels, and its height is 80 pixels. The first two arguments specify where the
pixmap is to be drawn — its upper left corner is placed 250 pixels from the left and
80 pixels from the top.

4682-1 ch12.f.qc  11/13/00  14:12  Page 292



293Chapter 12 ✦ Drawing and Painting with QPainter

Every QPainter object contains a QFont object that it uses to draw text. You can
use this default font, create a new font, or, as in this example, modify the existing
font. The call to font() on line 30 retrieves the QFont object from the QPainter
object. In this example, a call is made to setPointSize() on line 31 to make the
text a bit larger. The call to setFont() establishes the new font as the one that will
be used to paint all of QPainter text.

See Chapter 10 for more information about creating and modifying fonts.

Line 34 calls setPen() to make the text appear as white (instead of the default
black), and the call to drawText() on line 35 paints the text on the window, with
the left end of the text baseline 200 pixels from the left and 250 pixels from the top
of the window.

Summary
The QPainter methods described in this chapter should supply you with over 90
percent of the graphics you will ever need. With only two objects that render graph-
ics, a QPen and a QBrush, you can create anything you want. If you need extreme
flexibility, you can use the pixel-by-pixel approach to get exactly what you want.

This chapter explored QPainter methods that can be used to accomplish the 
following:

✦ Draw one pixel at a time to the window, or define objects to hold arrays of 
pixels and draw them all at once.

✦ Draw lines, in multiple colors and various widths, from any point to any other
point. Also, multisegmented lines can be drawn either one at a time or all at
once.

✦ Draw ellipses and circles in their entirety, or draw only a portion of the curve.
You can use different styles to fill and slice the circles and ellipses.

✦ Draw pixmaps — in their entirety or select a rectangular area.

The following chapter builds on the information in this chapter. Some methods in
the QPainter object can be used to manipulate graphics to change their shape,
angle, and colors. You can also use some very specialized graphics objects to do
things like record a sequence of graphics commands for later playback.

✦ ✦ ✦

Cross-
Reference

4682-1 ch12.f.qc  11/13/00  14:12  Page 293



4682-1 ch12.f.qc  11/13/00  14:12  Page 294



Graphics
Manipulation

The previous chapter demonstrated some of the funda-
mentals of drawing and painting graphics to windows,

and this chapter demonstrates some of the special capabili-
ties in KDE and Qt for manipulating graphics.

Because everything displayed in a widget is graphic, many of
the techniques described in this chapter can be used to mod-
ify any graphic content. Probably the most useful information
pertains to the processes for rotating and positioning images,
but there is quite a bit more. For one thing, depending on the
capabilities of your printer, it is a very simple process to print
a graphic image in color or in black and white. It is possible 
to reshape graphics scaling and shearing, or even to modify
images by making changes to bit values of each pixel. And ani-
mation can be performed by drawing one frame after another
and displaying the frames in a controlled, timed sequence.

Using a QPicture to Store Graphics
Anything that can be drawn to the window of a widget can
also be drawn to a QPicture object. The QPicture object can
then save the drawing instructions to a disk file, and another
QPicture object can read the file and execute the drawing
instructions. There are a number of uses for this, including
the capability to store complicated drawings and transmit
graphics from one system to another. The following program
creates a simple drawing and saves it to a disk file:

Record
1 /* record.cpp */
2 #include <iostream.h>
3 #include <kapp.h>
4 #include <qpainter.h>

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Storing sequences of
graphic instructions
and playing them
back later for display

Printing windows and
other graphics

Querying the printer
for graphic
capabilities

Scaling, clipping,
shearing, rotating,
and translating
graphics

Animating sequences
of drawn shapes and
figures

Manipulating pixel
colors at the bit level 

✦ ✦ ✦ ✦

4682-1 ch13.f.qc  11/13/00  14:12  Page 295



296 Part II ✦ Step by Step

5 #include <qpicture.h>
6 #include <qwidget.h>
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”record”);
11     QPainter paint;
12     QPicture pic;
13 
14     paint.begin(&pic);
15     paint.setBrush(QColor(“black”));
16     paint.drawRect(50,75,350,100);
17     paint.setBrush(QColor(“white”));
18     paint.drawEllipse(150,50,150,150);
19     paint.setPen(QWidget::NoPen);
20     paint.drawRect(100,100,250,50);
21     paint.end();
22     if(!pic.save(“recplay.qpic”))
23         cout << “Unable to create recplay.qpic” << endl;
24 }

This program creates graphics, but does not display a window. Instead, it uses a
QPicture object as the target of the drawing, and the QPicture object records all
of the instructions and then writes them to a disk file.

On line 10, the  KAapplication object app is created to define this as a KDE appli-
cation because a QPainter object can only be used inside a KDE application. Lines
11 and 12 create the QPainter object that is used to do the drawing, and the
QPicture object that records the QPainter instructions.

Line 14 begins the graphics session by calling begin(). The object of the drawing 
is the QPicture object, rather than a widget. Lines 15 through 20 set the QPainter
pen and brush values, and call the methods to do the actual drawing. The QPicture
object records each of these method calls. The drawing session is halted by the call
to end() on line 21. The call to save() on line 22 creates the file named recplay.
qpic that contains all of the drawing instructions.

Playback Header
1 /* playback.h */
2 #ifndef PLAYBACK_H
3 #define PLAYBACK_H
4 
5 #include <qwidget.h>
6 
7 class Playback: public QWidget
8 {
9 public:
10     Playback(QWidget *parent=0,const char *name=0);
11 protected:
12     virtual void paintEvent(QPaintEvent *);
13 };

4682-1 ch13.f.qc  11/13/00  14:12  Page 296



297Chapter 13 ✦ Graphics Manipulation

14 
15 #endif

Playback
1 /* playback.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <qpicture.h>
5 #include “playback.h”
6 
7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”playback”);
10     Playback playback;
11     playback.show();
12     app.setMainWidget(&playback);
13     return(app.exec());
14 }
15 Playback::Playback(QWidget *parent,const
16         char *name) : QWidget(parent,name)
17 {
18     setFixedSize(450,250);
19 }
20 void Playback::paintEvent(QPaintEvent *)
21 {
22     QPainter p(this);
23     QPicture picture;
24 
25     if(picture.load(“recplay.qpic”))
26         p.drawPicture(picture);
27 }

The paintEvent() method on line 20 creates a QPicture object to retrieve the
previously stored instructions. The call to load() on line 25 retrieves the list of
instructions and, if the call to load() is successful, the call to drawPicture() on
line 26 executes all of the instructions stored in the file. The result is the window
shown in Figure 13-1.

Figure 13-1: The playback of previously recorded 
graphics commands 

4682-1 ch13.f.qc  11/13/00  14:12  Page 297



298 Part II ✦ Step by Step

The previously recorded graphic instructions are painted using a QPainter object,
so there is nothing to prevent your program from embellishing the recorded instruc-
tions with some of your own. For example, the image shown in Figure 13-2 results
from changing the paint commands in the paintEvent() method to the following:

if(picture.load(“recplay.qpic”))
p.drawPicture(picture);

p.setBrush(QColor(“black”));
p.drawRect(110,110,230,30);

Figure 13-2: Combining playback and current 
graphics commands

Painting Graphics to a Printer
It is just as easy to paint pages on the printer as it is to paint windows on the display.
The following example program displays the same graphics window as the one previ-
ously shown in Figure 13-1, except for the addition of a Print button in the lower right
corner. Selecting the button will cause the dialog shown in Figure 13-3 to appear, allow-
ing the user to make decisions about the print. If the user selects the OK button, the
graphic is printed.

PrintGraphic Header
1 /* printgraphic.h */
2 #ifndef PRINTGRAPHIC_H
3 #define PRINTGRAPHIC_H
4 
5 #include <qwidget.h>
6 #include <qpushbutton.h>
7 
8 class PrintGraphic: public QWidget
9 {
10     Q_OBJECT

4682-1 ch13.f.qc  11/13/00  14:12  Page 298



299Chapter 13 ✦ Graphics Manipulation

11 public:
12     PrintGraphic(QWidget *parent=0,const char *name=0);
13 private:
14     QPushButton *printButton;
15 private slots:
16     void printSlot();
17 protected:
18     virtual void paintEvent(QPaintEvent *);
19 };
20 
21 #endif

PrintGraphic
1 /* printgraphic.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <qprinter.h>
5 #include “printgraphic.h”
6 
7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”printgraphic”);
10     PrintGraphic printgraphic;
11     printgraphic.show();
12     app.setMainWidget(&printgraphic);
13     return(app.exec());
14 }
15 PrintGraphic::PrintGraphic(QWidget *parent,const
16         char *name) : QWidget(parent,name)
17 {
18     setFixedSize(450,250);
19     printButton = new QPushButton(“Print”,this);
20     printButton->setGeometry(370,200,70,40);
21     connect(printButton,SIGNAL(clicked()),
22             this,SLOT(printSlot()));
23 }
24 void PrintGraphic::paintEvent(QPaintEvent *)
25 {
26     QPainter paint;
27 
28     paint.begin(this);
29     paint.setBrush(QColor(“black”));
30     paint.drawRect(50,75,350,100);
31     paint.setBrush(QColor(“white”));
32     paint.drawEllipse(150,50,150,150);
33     paint.setPen(QWidget::NoPen);
34     paint.drawRect(100,100,250,50);
35     paint.end();
36 }
37 void PrintGraphic::printSlot()
38 {

4682-1 ch13.f.qc  11/13/00  14:12  Page 299



300 Part II ✦ Step by Step

39     QPainter paint;
40     QPrinter printer;
41 
42     if(printer.setup(this)) {
43         paint.begin(&printer);
44         paint.setBrush(QColor(“black”));
45         paint.drawRect(50,75,350,100);
46         paint.setBrush(QColor(“white”));
47         paint.drawEllipse(150,50,150,150);
48         paint.setPen(QWidget::NoPen);
49         paint.drawRect(100,100,250,50);
50         paint.end();
51     }
52 }

Figure 13-3: The user options that control printing

The constructor, on line 15, sets the size of the window and installs a button in the
lower right corner. The slot method printSlot() is attached to the button.

The paintEvent() method on line 24 draws graphics on the window of the widget.

The slot method printSlot() on line 37 prompts the user for printer settings, and
if the user selects the OK button in the dialog shown in Figure 13-3, it draws the
graphics on a page of the printer. The call to setup() on line 42 pops up the dialog,

4682-1 ch13.f.qc  11/13/00  14:13  Page 300



301Chapter 13 ✦ Graphics Manipulation

and a return value of TRUE indicates that the print should proceed. Line 43 calls
begin() to attach the QPainter object to the printer. The graphics are then drawn
just as they would be if they were being drawn to the screen.

The call to end() on line 50 ends the drawing and sends the graphics instructions
on to the printer. This call also closes the output to the printer and sends the page
(or pages) to the spooler for printing. If, in the middle of your printing, you wish to
eject the current page and start with a new one, you can do so with the following
method call:

print.newPage();

At any point during the printing process, you can delete all the pages before they
are sent to the spooler as follows:

print.abort();

Printer Information and Control
While it is just as easy to draw to a printer as it is to a window, you need to be able
to find out information about things like the size of the page and the number of dots
per inch. The following example program displays some of the basic printer infor-
mation in the window shown in Figure 13-4. You can run this program and use the
pop-up dialog to modify the printer settings and see the values change.

Figure 13-4: Some of the values describing a printer

PrintMetrics Header
1 /* printmetrics.h */
2 #ifndef PRINTMETRICS_H
3 #define PRINTMETRICS_H
4 

4682-1 ch13.f.qc  11/13/00  14:13  Page 301



302 Part II ✦ Step by Step

5 #include <qwidget.h>
6 #include <qpushbutton.h>
7 #include <qprinter.h>
8 
9 class PrintMetrics: public QWidget
10 {
11     Q_OBJECT
12 public:
13     PrintMetrics(QWidget *parent=0,const char *name=0);
14 private:
15     QPrinter printer;
16     QPushButton *printButton;
17 private slots:
18     void printSetupSlot();
19 protected:
20     virtual void paintEvent(QPaintEvent *);
21 };
22 
23 #endif

A QPrinter object is included as part of the class. Because it is a class member,
any configuration changes made by the user will remain intact for the life of the
PrintMetrics object. 

PrintMetrics
1 /* printmetrics.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <qpaintdevicemetrics.h>
5 #include “printmetrics.h”
6 
7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”printmetrics”);
10     PrintMetrics printmetrics;
11     printmetrics.show();
12     app.setMainWidget(&printmetrics);
13     return(app.exec());
14 }
15 PrintMetrics::PrintMetrics(QWidget *parent,const
16         char *name) : QWidget(parent,name)
17 {
18     setFixedSize(450,250);
19     printButton = new QPushButton(“Printer Setup”,this);
20     printButton->setGeometry(340,200,90,40);
21     connect(printButton,SIGNAL(clicked()),
22             this,SLOT(printSetupSlot()));
23 }
24 void PrintMetrics::printSetupSlot()

4682-1 ch13.f.qc  11/13/00  14:13  Page 302



303Chapter 13 ✦ Graphics Manipulation

25 {
26     printer.setup(this);
27 }
28 void PrintMetrics::paintEvent(QPaintEvent *)
29 {
30     QPainter paint;
31     QPaintDeviceMetrics metrics(&printer);
32     QString string;
33 
34     paint.begin(this);
35 
36     QFontMetrics fm = paint.fontMetrics();
37     int x = 20;
38     int y = 20;
39 
40     string = “Printer name: “ + printer.printerName();
41     paint.drawText(x,y,string);
42     y += fm.height();
43 
44     if(printer.outputToFile()) {
45         string = “Output to file: “
46                 + printer.outputFileName();
47         paint.drawText(x,y,string);
48         y += fm.height();
49     }
50 
51     if(printer.orientation() == QPrinter::Portrait)
52         string = “Orientation: portrait”;
53     else
54         string = “Orientation: landscape”;
55     paint.drawText(x,y,string);
56     y += fm.height();
57 
58     string = “Number of copies: “;
59     string += QString::number(printer.numCopies());
60     paint.drawText(x,y,string);
61     y += fm.height();
62 
63     if(printer.colorMode() == QPrinter::GrayScale)
64         string = “Color mode: gray scale”;
65     else
66         string = “Color mode: color”;
67     paint.drawText(x,y,string);
68     y += fm.height();
69 
70     string = “Page width: “;
71     string += QString::number(metrics.width());
72     paint.drawText(x,y,string);
73     y += fm.height();
74 
75     string = “Page height: “;

4682-1 ch13.f.qc  11/13/00  14:13  Page 303



304 Part II ✦ Step by Step

76     string += QString::number(metrics.height());
77     paint.drawText(x,y,string);
78     y += fm.height();
79 
80     if(printer.fullPage())
81         string = “Full page: true”;
82     else
83         string = “Full page: false”;
84     paint.drawText(x,y,string);
85     y += fm.height();
86 
87     string = “Left and right margin width: “;
88     string += QString::number(printer.margins().width());
89     paint.drawText(x,y,string);
90     y += fm.height();
91 
92     string = “Top and bottom margin height: “;
93     string += QString::number(printer.margins().height());
94     paint.drawText(x,y,string);
95     y += fm.height();
96 
97     string = “Page width in millimeters: “;
98     string += QString::number(metrics.widthMM());
99     paint.drawText(x,y,string);
100     y += fm.height();
101 
102     string = “Page height in millimeters: “;
103     string += QString::number(metrics.heightMM());
104     paint.drawText(x,y,string);
105     y += fm.height();
106 
107     string = “Horizontal dots per inch: “;
108     string += QString::number(metrics.logicalDpiX());
109     paint.drawText(x,y,string);
110     y += fm.height();
111 
112     string = “Vertical dots per inch: “;
113     string += QString::number(metrics.logicalDpiY());
114     paint.drawText(x,y,string);
115     y += fm.height();
116 
117     string = “Number of colors (or shades of gray): “;
118     string += QString::number(metrics.numColors());
119     paint.drawText(x,y,string);
120     y += fm.height();
121 
122     string = “Number of bits per dot: “;
123     string += QString::number(metrics.depth());
124     paint.drawText(x,y,string);
125     y += fm.height();
126 
127     paint.end();
128 }

4682-1 ch13.f.qc  11/13/00  14:13  Page 304



305Chapter 13 ✦ Graphics Manipulation

The slot method printSetupSlot() on line 24 pops up a printer-configuration dia-
log, like the one shown previously in Figure 13-3, that can be used to modify the
user-configurable settings for the printer.

The paintEvent() method on line 24 creates a window that displays a list of the
current printer descriptive information and settings. Some of the information is
retrieved from a QPaintDeviceMetrics object, and some is retrieved directly from
the QPrinter object itself.

The printer name, on line 36, is the name the user selected from the list of available
printers. If the user has not selected a printer, a zero-length string is returned from
printerName() and any printed output will be directed to the default printer. If the
output has been directed to a file instead of a printer, the call to outputToFile()
on line 44 returns TRUE and a call to outputFileName() will return the name of the
file. When directed to a file, the printed data is sent to the file in postscript format.

The call to orientation() on line 51 indicates whether the output will be printed
in portrait or landscape mode. If portrait, the output is taller than it is wide. If land-
scape, it is wider than it is tall. The default is portrait.

The call to numCopies() on line 63 returns a count of the number of copies to be
printed. The default is 1.

The call to colorMode() on line 63 indicates whether the printing is to be done in
color or grayscale. This may not always be accurate, because many printers are
capable of accepting color print data, but will convert it to shades of gray for print-
ing. In any case, it is always safe to print color data because, if necessary, it will be
converted to shades of gray either by the printing software or by the printer itself.

The page width and height on lines 71 and 76 are a measure of the printable area. If
you need a height and width value to render graphics, as you would if painting graph-
ics to a window, you can use these numbers in conjunction with the margin values and
the full-page indicator. If the call to fullPage() on line 80 returns TRUE, the height
and width extend to the edges of the paper. If the fullPage() method returns FALSE,
the height and width are the measurements inside the margins. You can set the printer
to full-page mode by calling printer.setFullPage(TRUE), or you can set the page
size to adjust for margins (the default) by calling printer.setFullPage(FALSE).

The margin values, retrieved by calls to margins() on lines 88 and 93, are either
the actual margin values when not in full-page mode, or the suggested margins
when in full-page mode.

Unlike a window, which has no exact fixed width and height, a printer has a fixed
physical width and a fixed number of dots per inch, so these values can be deter-
mined. However, the numbers are not entirely trustworthy because your printer
may not report the values to your computer, or your printer configuration could be
in error, or the user could have chosen to print to a file. In any case, the width and
height of the page are reported in millimeters, on lines 98 and 103; and the number
of dots per inch is reported on lines 108 and 113.

4682-1 ch13.f.qc  11/13/00  14:13  Page 305



306 Part II ✦ Step by Step

The total number of colors (or number of shades of gray) per dot is returned from
the call to numColors() on line 118. The same information is also reported as the
number of bits per dot with the call to depth() on line 123.

Fitting a Drawing to a Window
You can establish your own coordinate system, use it to draw graphics in a window,
and have your coordinate system automatically translated to that of the actual win-
dow. The following example shows how this can be done:

FitWindow Header
1 /* fitwindow.h */
2 #ifndef FITWINDOW_H
3 #define FITWINDOW_H
4 
5 #include <qwidget.h>
6 
7 class FitWindow: public QWidget
8 {
9 protected:
10     virtual void paintEvent(QPaintEvent *);
11 };
12 
13 #endif

FitWindow
1 /* fitwindow.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “fitwindow.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”fitwindow”);
9     FitWindow fitwindow;
10     fitwindow.show();
11     app.setMainWidget(&fitwindow);
12     return(app.exec());
13 }
14 void FitWindow::paintEvent(QPaintEvent *)
15 {
16     QPainter p(this);
17 
18     p.setWindow(0,0,300,300);
19 
20     p.drawRoundRect(50,50,200,200,30,30);
21     p.setBrush(QColor(“black”));
22     p.drawEllipse(100,100,100,100);

4682-1 ch13.f.qc  11/13/00  14:13  Page 306



307Chapter 13 ✦ Graphics Manipulation

23     p.setBrush(QColor(“white”));
24     p.drawPie(50,50,100,100,270*16,90*16);
25     p.drawPie(150,150,100,100,90*16,90*16);
26 }

The call to setWindow() on line 18 establishes the upper left corner as the origin of
the coordinate system. It also establishes both the height and width of the window
as being 300. Whenever something is drawn to the window, the 300 ×300 size is
assumed for the sake of the drawing dimensions, but when the actual pixels are
drawn, they are mapped to the actual window size. Figure 13-5 shows the window
displayed from this program after being resized two different ways.

Figure 13-5: Resizing the window resizes the graphics.

Fitting a Drawing to a Subwindow
The setWindow() method of the previous example can be used in conjunction with
the setViewport() method to scale drawing and painting to subwindows within a
window. The following example maps the same drawing to four subwindows within
a window and results in the display shown in Figure 13-6.

Figure 13-6: The same graphic appearing 
four times in the same window

4682-1 ch13.f.qc  11/13/00  14:13  Page 307



308 Part II ✦ Step by Step

FitSubWindow Header
1 /* fitsubwindow.h */
2 #ifndef FITSUBWINDOW_H
3 #define FITSUBWINDOW_H
4 
5 #include <qwidget.h>
6 #include <qpainter.h>
7 
8 class FitSubWindow: public QWidget
9 {
10 public:
11     FitSubWindow(QWidget *parent=0,const char *name=0);
12 private:
13     void paintFigure(QPainter &);
14 protected:
15     virtual void paintEvent(QPaintEvent *);
16 };
17 
18 #endif

FitSubWindow
1 /* fitsubwindow.cpp */
2 #include <kapp.h>
3 #include “fitsubwindow.h”
4 
5 int main(int argc,char **argv)
6 {
7     KApplication app(argc,argv,”fitsubwindow”);
8     FitSubWindow fitsubwindow;
9     fitsubwindow.show();
10     app.setMainWidget(&fitsubwindow);
11     return(app.exec());
12 }
13 FitSubWindow::FitSubWindow(QWidget *parent,
14         const char *name) : QWidget(parent,name)
15 {
16     setFixedSize(300,200);
17 }
18 void FitSubWindow::paintEvent(QPaintEvent *)
19 {
20     QPainter p(this);
21 
22     p.setViewport(0,0,100,50);
23     paintFigure(p);
24     p.setViewport(100,0,200,50);
25     paintFigure(p);
26     p.setViewport(0,50,100,150);
27     paintFigure(p);
28     p.setViewport(100,50,200,150);
29     paintFigure(p);

4682-1 ch13.f.qc  11/13/00  14:13  Page 308



309Chapter 13 ✦ Graphics Manipulation

30 }
31 void FitSubWindow::paintFigure(QPainter &p)
32 {
33     p.setWindow(0,0,300,300);
34     p.setBrush(QColor(“white”));
35     p.drawRoundRect(50,50,200,200,30,30);
36     p.setBrush(QColor(“black”));
37     p.drawEllipse(100,100,100,100);
38     p.setBrush(QColor(“white”));
39     p.drawPie(50,50,100,100,270*16,90*16);
40     p.drawPie(150,150,100,100,90*16,90*16);
41 }

The constructor fixes the size of the window at 300 pixels wide and 200 pixels high
with the call to setFixedSize() on line 16. The paintEvent() method on line 18 is
called whenever the window is to be painted, and makes four calls to setViewport()
and paintFigure() to paint the window shown previously in Figure 13-6.

The call to setViewport() on line 22 specifies that all drawing is to be done in the
upper left corner, at location (0,0) in the window, and that the drawing is to be lim-
ited to an area 100 pixels wide by 50 pixels high. The call to paintFigure() on line
23 does the actual painting of the pixels. In the same fashion, three other shapes
are drawn to view ports (subwindows) by first calling setViewport() to specify a
subwindow and then calling paintFigure() to draw the graphics.

The method paintFigure() beginning on line 31 draws the graphic. It starts out 
by calling setWindow() on line 33 to specify that the window is to be drawn to a
square area with a scale of 300 ×300 pixels, with its origin at the upper-left corner.
The graphic is then built up in the 300 ×300 square by calling the primitive drawing
methods drawRoundRect(), drawEllipse(), and drawPie(). The physical loca-
tion of the pixels, and the aspect ratio of the resulting picture, was set by the call to
setViewport() before the call to paintFigure(). This allows the paintFigure()
method to calculate and render graphics independently of the actual pixel positions.

Clipping
It is possible to limit a drawing to a specific region. That is, everything drawn out-
side the region is clipped off and not drawn. The following example draws the same
ellipse using three different brushes, but the second and third ellipses are clipped
so that the original ellipse is still partially visible:

ClipArea
1 /* cliparea.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>

4682-1 ch13.f.qc  11/13/00  14:13  Page 309



310 Part II ✦ Step by Step

4 #include <qbrush.h>
5 #include <qpointarray.h>
6 #include “cliparea.h”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”cliparea”);
11     ClipArea cliparea;
12     cliparea.show();
13     app.setMainWidget(&cliparea);
14     return(app.exec());
15 }
16 ClipArea::ClipArea(QWidget *parent,
17         const char *name) : QWidget(parent,name)
18 {
19     setFixedSize(300,200);
20 }
21 void ClipArea::paintEvent(QPaintEvent *)
22 {
23     QPainter p(this);
24 
25     p.setBrush(QColor(“white”));
26     p.drawEllipse(25,25,250,150);
27 
28     p.setBrush(QBrush(QColor(“black”),Qt::VerPattern));
29     p.setClipRect(30,30,70,70);
30     p.drawEllipse(25,25,250,150);
31 
32     p.setBrush(QBrush(QColor(“black”),Qt::Dense5Pattern));
33     QPointArray pa;
34     pa.setPoints(3,100,140,200,50,220,180);
35     QRegion region(pa);
36     p.setClipRegion(region);
37     p.drawEllipse(25,25,250,150);
38 }

The call to setBrush() on line 25 and the call to drawEllipse() on line 26 draw
the white ellipse with the black outline shown in Figure 13-7.

Figure 13-7: An ellipse drawn with clipping and
different brushes

4682-1 ch13.f.qc  11/13/00  14:13  Page 310



311Chapter 13 ✦ Graphics Manipulation

Lines 28 through 30 draw the area of vertical lines in the upper-left corner of the
ellipse. The brush is set to a black VerPattern, resulting in the vertical lines; and
the call to setClipRect() on line 29 limits the drawing to only the rectangular area
that is 70 pixels wide by 70 pixels tall, and has its left corner at the location (30,30).
Although the call to drawEllipse() on line 30 attempts to draw the entire figure,
the actual drawing is restricted to the clipped area. Also, because the brush pattern
allows the background to show through, a portion of the original ellipse is also 
visible.

The same technique is used to paint the triangular area on the right side of the
ellipse. In this case, the clipping region is defined by the call to setClipRegion()
on line 36. The QPointArray named pa contains only the three points of a triangle,
but it could contain as complex a polygon as you would like to define.

Also, because you can define only one clipping region, defining a new clipping
region deletes the previous one. If you wish to disable the clipping region, you can
call the setClipping() method as follows:

p.setClipping(FALSE);

Scale
A drawing can be scaled to larger and smaller sizes by changing the coordinates in
QPainter prior to drawing the picture. The following example shows the result of
changing the scale and drawing a pixmap:

ScaleShape Header
1 /* scaleshape.h */
2 #ifndef SCALESHAPE_H
3 #define SCALESHAPE_H
4 
5 #include <qwidget.h>
6 
7 class ScaleShape: public QWidget
8 {
9 public:
10     ScaleShape(QWidget *parent=0,const char *name=0);
11 private:
12     QPixmap marble;
13 protected:
14     virtual void paintEvent(QPaintEvent *);
15 };
16 
17 #endif

4682-1 ch13.f.qc  11/13/00  14:13  Page 311



312 Part II ✦ Step by Step

ScaleShape
1 /* scaleshape.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “scaleshape.h”
5 
6 #include “bluemarble.xpm”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”scaleshape”);
11     ScaleShape scaleshape;
12     scaleshape.show();
13     app.setMainWidget(&scaleshape);
14     return(app.exec());
15 }
16 ScaleShape::ScaleShape(QWidget *parent,const
17         char *name) : QWidget(parent,name)
18 {
19     marble = QPixmap(magick);
20     setFixedSize(360,288);
21 }
22 void ScaleShape::paintEvent(QPaintEvent *)
23 {
24     QPainter p(this);
25 
26     p.drawPixmap(0,0,marble);
27     p.scale(2.0,2.0);
28     p.drawPixmap(36,0,marble);
29     p.scale(1.0,2.0);
30     p.drawPixmap(108,0,marble);
31 }

The XPM file included on line 6 is converted to a QPixmap on line 19. The pixmap is
72 ×72 pixels. The call to drawPixmap() on line 26 draws the pixmap in its normal
size in the upper-left corner of the window, as shown in Figure 13-8.

The default scale values are 1.0 along both the x and y axes. To change the value,
the scale() method is called with multipliers of both of the values. The call to
scale() on line 27 doubles the scale in both the x and y directions, so the call to
drawPixmap() on line 28 draws a pixmap twice as large as the first one. Notice
that, on the call to drawPixmap(), in order to offset the drawing 72 pixels to the
right, a coordinate value of 36 is needed because it is also being scaled to twice its
normal size. The call to scale() on line 29 makes no change to the scale along the
x axis because it multiplies the current scale setting by 1.0, leaving it at 2.0, but
doubles the scale along the y axis, causing the vertical scale factor to become 4.0.
The call to drawPixmap() on line 30 draws the pixmap twice as wide and four times
as high as the default.

4682-1 ch13.f.qc  11/13/00  14:13  Page 312



313Chapter 13 ✦ Graphics Manipulation

Figure 13-8: A pixmap drawn to three
different scales 

Shear
To shear a figure is to skew it so that the x axis no longer lies along the horizontal
plane, or the y axis is no longer vertical, or both. Increasing the shear value of the y
axis moves the bottom of the y axis to the right, while increasing the shear value of
the x axis moves its right end downward. The amount of the movement is deter-
mined by the size of the window. Negative shear factors move the axes in the oppo-
site directions. For example, if a window is 100 pixels wide, an x axis shear value of
0.5 will move the right side of any drawn figure 50 pixels down; a shear value of 1.0
will move the right side 100 pixels down; and a shear value of -1.0 will move the
right side up 100 pixels.

The following example shows the result of shearing in both the x and y directions.
Figure 13-9 shows the same figure drawn with (from left to right) an x shear factor
of 1.0, no shearing, and a y shear factor of 1.0. 

Figure 13-9: Vertical shear, no shear, and
horizontal shear

ShearShape Header
1 /* shearshape.h */
2 #ifndef SHEARSHAPE_H
3 #define SHEARSHAPE_H
4 

4682-1 ch13.f.qc  11/13/00  14:13  Page 313



314 Part II ✦ Step by Step

5 #include <qwidget.h>
6 
7 class ShearShape: public QWidget
8 {
9 public:
10     ShearShape(QWidget *parent=0,const char *name=0);
11 private:
12     QPixmap marble;
13 protected:
14     virtual void paintEvent(QPaintEvent *);
15 };
16 
17 #endif

ShearShape
1 /* shearshape.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “shearshape.h”
5 
6 #include “bluemarble.xpm”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”shearshape”);
11     ShearShape shearshape;
12     shearshape.show();
13     app.setMainWidget(&shearshape);
14     return(app.exec());
15 }
16 ShearShape::ShearShape(QWidget *parent,const
17         char *name) : QWidget(parent,name)
18 {
19     marble = QPixmap(magick);
20     setFixedSize(288,144);
21 }
22 void ShearShape::paintEvent(QPaintEvent *)
23 {
24     QPainter p(this);
25 
26     p.shear(1.0,0.0);
27     p.drawPixmap(0,0,marble);
28     p.shear(-1.0,0.0);
29     p.drawPixmap(72,0,marble);
30     p.shear(0.0,1.0);
31     p.drawPixmap(144,0,marble);
32 }

The XPM file included on line 6 is converted to a QPixmap on line 19. The call to
shear() on line 26 lowers the right end of the x axis so that all horizontal lines 
are drawn pointing down to the right by 45 degrees. The result of the call to
drawPixmap() on line 27 is the skewed pixmap at the left of Figure 13-9.

4682-1 ch13.f.qc  11/13/00  14:13  Page 314



315Chapter 13 ✦ Graphics Manipulation

The call to shear() on line 28 reverses the action of the previous call to shear()
and allows the figure to be drawn unsheared by the call to drawPixmap() on line
29. The call to shear() on line 30 adjusts the shear value of the y axis and causes
the call to drawPixmap() on line 31 to result in the pixmap shown at the right of
Figure 13-9.

Translate
The origin of drawing is normally at the upper-left corner of the window, but it can
be moved to any other location. Once moved, locations are still specified with
larger y values extending downward from the origin and larger x values extending to
the right, while locations above and to the left of the origin can be addressed with
negative coordinate values. The following example translates the origin to the cen-
ter of the window and displays pixmaps around it:

TranslateShape Header
1 /* translateshape.h */
2 #ifndef TRANSLATESHAPE_H
3 #define TRANSLATESHAPE_H
4 
5 #include <qwidget.h>
6 
7 class TranslateShape: public QWidget
8 {
9 public:
10     TranslateShape(QWidget *parent=0,const char *name=0);
11 private:
12     QPixmap marble;
13 protected:
14     virtual void paintEvent(QPaintEvent *);
15 };
16 
17 #endif

TranslateShape
1 /* translateshape.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “translateshape.h”
5 
6 #include “bluemarble.xpm”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”translateshape”);
11     TranslateShape translateshape;
12     translateshape.show();
13     app.setMainWidget(&translateshape);
14     return(app.exec());

4682-1 ch13.f.qc  11/13/00  14:13  Page 315



316 Part II ✦ Step by Step

15 }
16 TranslateShape::TranslateShape(QWidget *parent,const
17         char *name) : QWidget(parent,name)
18 {
19     marble = QPixmap(magick);
20     setFixedSize(180,180);
21 }
22 void TranslateShape::paintEvent(QPaintEvent *)
23 {
24     QPainter p(this);
25 
26     p.translate(90,90);
27     p.drawPixmap(-72,-72,marble);
28     p.drawPixmap(0,0,marble);
29 }

The XPM file included on line 6 is converted to a QPixmap on line 19. The call to
translate() on line 26 moves the origin of all drawing to the location (90,90)
in the window. With the origin translated, the call to drawPixmap() on line 27
places the upper-left corner of the pixmap at what would normally be the location
(18,18) in the window. The call to drawPixmap() on line 28 places the upper-left
corner of a pixmap at the new origin — the point that would normally be (90,90).
The resulting window is shown in Figure 13-10.

Figure 13-10: Positioning pixmaps from a new origin

Rotate
The entire coordinate system can be rotated around the origin. The default origin is
at the upper-left corner, and this is seldom a useful location for the center of rota-
tion. The following example uses origin translation to place the center of rotation 
in the center of a pixmap:

RotateShape Header
1 /* rotateshape.h */
2 #ifndef ROTATESHAPE_H
3 #define ROTATESHAPE_H
4 

4682-1 ch13.f.qc  11/13/00  14:13  Page 316



317Chapter 13 ✦ Graphics Manipulation

5 #include <qwidget.h>
6 
7 class RotateShape: public QWidget
8 {
9 public:
10     RotateShape(QWidget *parent=0,const char *name=0);
11 private:
12     QPixmap marble;
13 protected:
14     virtual void paintEvent(QPaintEvent *);
15 };
16 
17 #endif

RotateShape
1 /* rotateshape.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “rotateshape.h”
5 
6 #include “bluemarble.xpm”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”rotateshape”);
11     RotateShape rotateshape;
12     rotateshape.show();
13     app.setMainWidget(&rotateshape);
14     return(app.exec());
15 }
16 RotateShape::RotateShape(QWidget *parent,const
17         char *name) : QWidget(parent,name)
18 {
19     marble = QPixmap(magick);
20     setFixedSize(320,160);
21 }
22 void RotateShape::paintEvent(QPaintEvent *)
23 {
24     QPainter p(this);
25 
26     p.translate(80,80);
27     p.rotate(20.0);
28     p.drawPixmap(-36,-36,marble);
29     p.rotate(-20.0);
30     p.translate(80,0);
31     p.rotate(40.0);
32     p.drawPixmap(-36,-36,marble);
33     p.rotate(-40.0);
34     p.translate(80,0);
35     p.rotate(60.0);
36     p.drawPixmap(-36,-36,marble);
37 }

4682-1 ch13.f.qc  11/13/00  14:13  Page 317



318 Part II ✦ Step by Step

The XPM file included on line 6 is converted to a QPixmap on line 19. The call to
translate() on line 26 moves the origin to location (80,80) in the window. The
call to rotate() on line 27 rotates the coordinate system around the origin by 20
degrees. The call to drawPixmap() on line 28 draws the pixmap with its center at
the origin (because the pixmap is 72 pixel high and 72 pixels wide).

As shown in Figure 13-11, the second pixmap is centered directly to the right of the
first one. If the previous rotation setting were left in place, the translation call on
line 30 would move the origin to the right and downward at an angle of 20 degrees.
To prevent this, the call to rotate() on line 29 reverses the previous rotation by
setting the rotation value back to zero, causing the call to translate() on line 30
to move the origin directly to the right. After the origin has been moved, the call to
rotate() on line 31 sets the rotation to 40 degrees, which is the amount of rotation
of the second pixmap, drawn by the call to drawPixmap() on line 32. In the same
way, the rotation is removed on line 33 to allow the call to translate() on line 34
to move the origin to the right once more; then the rotation is set to 60 degrees on
line 35 for the final call to drawPixmap().

Figure 13-11: Rotating pixmaps around 
three origins

A Quadratic Bezier Curve
The QPointArray class has a method that can be used to produce a Bezier curve
from four points. Figure 13-12 shows the original points and the curve produced
from the following example.

Figure 13-12: A Bezier curve produced from 
four points

4682-1 ch13.f.qc  11/13/00  14:13  Page 318



319Chapter 13 ✦ Graphics Manipulation

QuadBezier
1 /* quadbezier.cpp */
2 #include <kapp.h>
3 #include <qpen.h>
4 #include “quadbezier.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”quadbezier”);
9     QuadBezier quadbezier;
10     quadbezier.show();
11     app.setMainWidget(&quadbezier);
12     return(app.exec());
13 }
14 QuadBezier::QuadBezier(QWidget *parent,
15         const char *name) : QWidget(parent,name)
16 {
17     setFixedSize(300,200);
18 }
19 void QuadBezier::paintEvent(QPaintEvent *)
20 {
21     static QCOORD points[] =
22         { 20,20, 80,180, 210,20, 280,100 };
23     QPointArray pa(4,points);
24     QPainter p(this);
25 
26     p.setPen(QColor(“white”));
27     paintPoints(p,pa);
28     QPointArray bpa = pa.quadBezier();
29     p.setPen(QColor(“black”));
30     p.drawPolyline(bpa);
31 }
32 void QuadBezier::paintPoints(QPainter &p,QPointArray &pa)
33 {
34     int x;
35     int y;
36 
37     for(int i=0; i<pa.size(); i++) {
38         pa.point(i,&x,&y);
39         p.drawLine(x-5,y,x+5,y);
40         p.drawLine(x,y-5,x,y+5);
41     }
42 }

On line 23, the QPointArray object named “pa” is created to contain four points.
Line 26 specifies a white pen, so the call to paintPoints() on line 27 will indicate
the point positions in white. The call to quadBezier() on line 28 uses the original
four points to create a new QPointArray object that contains a collection of points
representing the trace of a quadratic Bezier curve between the first and fourth

4682-1 ch13.f.qc  11/13/00  14:13  Page 319



320 Part II ✦ Step by Step

points, being shaped by the two middle points. The calls to setPen() and
drawPolyline() on lines 29 and 30 draw the curve in black.

The paintPoints() method on line 32 places a small cross, 10 pixels high by 10
pixels wide, at the location of each point in the QPointArray. In the loop, a call is
made to point() to return the x and y values for a point, and then drawLine() is
called twice — once to draw a vertical line and again to draw a horizontal line — to
mark the point. 

Animation with Pixmap Sequences
Performing animation is a matter of displaying one frame after another. These
frames can be a sequence of images loaded from files (sort of like a movie), or they
can be drawn using the normal graphics functions. The following example uses a
pixmap to draw and animate the collection of bouncing balls shown in Figure 13-13.

Figure 13-13: Animated bouncing balls

Ball Header
1 /* ball.h */
2 #ifndef BALL_H
3 #define BALL_H
4 
5 #include <qcolor.h>
6 
7 #define RADIUS 7
8 
9 class Ball
10 {
11 public:
12     Ball(int width,int height);
13 private:
14     double x;
15     double y;

4682-1 ch13.f.qc  11/13/00  14:13  Page 320



321Chapter 13 ✦ Graphics Manipulation

16     double xVelocity;
17     double yVelocity;
18     QColor *color;
19 public:
20     double getDiameter() { return(RADIUS * 2.0); }
21     double getX() { return(x); }
22     double getY() { return(y); }
23     double getXVelocity() { return(xVelocity); }
24     double getYVelocity() { return(yVelocity); }
25     QColor &getColor() { return(*color); }
26     void setXVelocity(double value) { xVelocity = value; }
27     void setYVelocity(double value) { yVelocity = value; }
28     void nextPosition();
29 };
30 
31 #endif

Each ball has the same radius, as defined on line 7. At any given moment, the loca-
tion of the ball in the window is specified the values x and y on lines 14 and 15. The
horizontal velocity of the ball is specified by xVelocity, with movement to the
right being positive and movement to the left being negative. The vertical velocity
value of yVelocity is positive if the ball is moving down, and negative if it is mov-
ing up. Each ball has its own color, as defined on line 18.

The methods defined on lines 20 through 25 provide access to the values stored in
the Ball class. The methods setXVelocity() and setYVelocity() on lines 26
and 27 can be used to set the velocity of the ball.

Ball
1 /* ball.cpp */
2 #include <stdlib.h> 
3 #include “ball.h”
4 
5 Ball::Ball(int width,int height)
6 {
7     x = (((double)rand()*width)/RAND_MAX);
8     y = (((double)rand()*height)/RAND_MAX) - height;
9     yVelocity = 0.0;
10     do {
11         xVelocity = (((double)rand()*4)/RAND_MAX) - 2;
12     } while(fabs(xVelocity) < 0.5);
13     color = new QColor(rand() % 255,
14                     rand() % 255,
15                     rand() % 255);
16 }
17 void Ball::nextPosition()
18 {
19     x += xVelocity;
20     y += yVelocity;
21 }

4682-1 ch13.f.qc  11/13/00  14:13  Page 321



322 Part II ✦ Step by Step

The constructor on line 5 initializes the position, velocity, and color of the ball to
random settings. The ball is positioned horizontally between the two edges of the
window and vertically at some location above the window, but no higher than twice
the height of the visible window space. The vertical velocity is set to zero because
gravity will accelerate it downward. The loop on line 10 makes certain that the hori-
zontal velocity is sufficient to ensure that the ball will not bounce vertically long
enough to come to rest within the window. The color is set to a random RGB value.

The nextPosition() method on line 17 is called to move the ball from its current
position to its next position. This is done by simply adding the velocity amount to
the current position. The magnitude of the velocity determines how far the ball will
travel, and the sign of the velocity determines its direction.

Bounce Header
1 /* bounce.h */
2 #ifndef BOUNCE_H
3 #define BOUNCE_H
4 
5 #include <qwidget.h>
6 #include <qtimer.h>
7 #include <qpixmap.h>
8 #include “ball.h”
9 
10 #define BOUNCE_HEIGHT 250
11 #define BOUNCE_WIDTH 450
12 #define BALL_COUNT 10
13 #define GRAVITY 0.2
14 
15 class Bounce: public QWidget
16 {
17     Q_OBJECT
18 public:
19     Bounce(QWidget *parent=0,const char *name=0);
20 private:
21     QTimer *timer;
22     QPixmap *pixmap;
23     Ball *ball[BALL_COUNT];
24 private slots:
25     void frameSlot();
26 protected:
27     virtual void paintEvent(QPaintEvent *);
28 };
29 
30 #endif

The Bounce class is the widget that contains that window used to display the balls.
The constant values defined on lines 10 through 13 determine the height and width
of the window, the number of balls, and the force of gravity to accelerate the balls
downward.

4682-1 ch13.f.qc  11/13/00  14:13  Page 322



323Chapter 13 ✦ Graphics Manipulation

The QTimer defined on line 21 is used to specify the amount of time between
frames. The QPixmap on line 22 is used to paint each frame before displaying it in
the window. Line 23 declares an array of pointers — one for each ball that is bounc-
ing in the window.

Bounce
1 /* bounce.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “bounce.h”
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”bounce”);
9     Bounce bounce;
10     bounce.show();
11     app.setMainWidget(&bounce);
12     return(app.exec());
13 }
14 Bounce::Bounce(QWidget *parent,const
15         char *name) : QWidget(parent,name)
16 {
17     setFixedSize(BOUNCE_WIDTH,BOUNCE_HEIGHT);
18     timer = new QTimer(this,”clock”);
19     connect(timer,SIGNAL(timeout()),
20             this,SLOT(frameSlot()));
21     timer->start(20);
22     for(int i=0; i<BALL_COUNT; i++)
23         ball[i] = new Ball(BOUNCE_WIDTH,BOUNCE_HEIGHT);
24     pixmap = new QPixmap(BOUNCE_WIDTH,BOUNCE_HEIGHT);
25 }
26 void Bounce::paintEvent(QPaintEvent *)
27 {
28     QPainter paint;
29     Ball *b;
30 
31     paint.begin(pixmap);
32     paint.eraseRect(0,0,BOUNCE_WIDTH,BOUNCE_HEIGHT);
33     for(int i=0; i<BALL_COUNT; i++) {
34         b = ball[i];
35         paint.setBrush(b->getColor());
36         paint.drawEllipse(b->getX(),b->getY(),
37             b->getDiameter(),b->getDiameter());
38     }
39     paint.end();
40     bitBlt(this,0,0,pixmap,0,0,
41             BOUNCE_WIDTH,BOUNCE_HEIGHT,CopyROP);
42 }
43 void Bounce::frameSlot()

4682-1 ch13.f.qc  11/13/00  14:13  Page 323



324 Part II ✦ Step by Step

44 {
45     Ball *b;
46 
47     for(int i=0; i<BALL_COUNT; i++) {
48         b = ball[i];
49         if((b->getX() >= BOUNCE_WIDTH) ||
50                 (b->getX() < -b->getDiameter())) { 
51             delete b;
52             ball[i] = new Ball(BOUNCE_WIDTH,BOUNCE_HEIGHT);
53             continue;
54         }
55         if(b->getY() + b->getDiameter() >= BOUNCE_HEIGHT) {
56             if(b->getYVelocity() > 0)
57                 b->setYVelocity(-b->getYVelocity() * 0.9);
58         } else {
59             b->setYVelocity(b->getYVelocity() + GRAVITY);
60         }
61         b->nextPosition();
62     }
63     repaint(0,0,BOUNCE_WIDTH,BOUNCE_HEIGHT,FALSE);
64 }

The Bounce constructor, beginning on line 14, creates all of the objects that will be
used for the animation. The QTimer that will control the rate of speed of animation —
the amount of time that is to elapse between frames — is created on line 18. The call
to connect() on line 19 connects the timer to the slot method frameSlot() so it
will be called each time the timer expires. The call to start() on line 20 starts the
timer running so that it will call the slot method once every 20 milliseconds (0.20 sec-
onds). The loop on line 22 creates the balls used in the animation, and a working
pixmap is created on line 24.

The call to paintEvent() draws each of the balls on the window in its current
position. The drawing is done to the pixmap, not directly to the widget’s window. 
A call is made to eraseRect() on line 32 to clear the pixmap. The detailed drawing
of each ball is done in the loop beginning on line 32. The setBrush() call on line 35
sets the current brush to the color of the ball, and the call to drawEllipse() uses
the information in the ball object to draw a filled circle at the appropriate location.

The call to a function with the unlikely name bitBlt() on line 40 copies the entire
pixmap directly to the window of the widget. The detailed painting could have been
done directly onto the widget window but clearing and repainting the window
would cause it to flicker. Clearing a pixmap and copying the pixels as a block elimi-
nates the flicker. The first three arguments passed to bitBlt() specify the source,
the next three the destination, and the next two the size of the rectangle to be
copied. The last argument specifies the method of transferring the pixel data — the
CopyROP option specifies that each destination pixel be simply overwritten by its
corresponding source pixel. There are many other options, as listed in Table 13-1.

4682-1 ch13.f.qc  11/13/00  14:13  Page 324



325Chapter 13 ✦ Graphics Manipulation

Table 13-1
Raster Operations Available for Copying Pixels with bitBlt()

Name Destination Becomes...

AndNotROP Source AND (NOT Destination)

AndROP Source AND Destination

ClearROP 0

CopyROP Source

NandROP NOT (Source AND Destination)

NopROP Destination

NorROP NOT (Source OR Destination)

NotAndROP (NOT Source) AND Destination

NotCopyROP NOT Source

NotOrROP (NOT Source) AND Destination

NotROP NOT Destination

NotXorROP (NOT Source) XOR Destination

OrNotROP Source OR (NOT Destination)

OrROP Source OR Destination

SetROP 1

XorROP Source XOR Destination

The slot method frameSlot() is called whenever the timer expires. This method
does not actually draw a new window, but it does calculate the next position of
each of the balls and then schedules a call to paintEvent() by calling repaint()
on line 63. The call to repaint() specifies the rectangle to be painted (this infor-
mation is passed to the paintEvent() method inside the QPaintEvent argument),
and also specifies whether the window is to be erased first. For animation, the win-
dow clearing option is set to FALSE because doing so would reintroduce the flicker-
ing we are trying to avoid.

The loop beginning on line 47 determines the next position of each ball. If the condi-
tional on line 49 is TRUE, the ball has moved outside of the window to either the
right or left, so it is deleted and replaced with a new one. The test on line 55 deter-
mines whether the ball is at the bottom of the window and if it is moving downward
(that is, its vertical velocity is positive); if so, the velocity is reversed so the ball
will start back up. The velocity is reduced by 10 percent (friction loss of energy) so
the ball will bounce a bit lower each time. If the ball is in flight within the window,

4682-1 ch13.f.qc  11/13/00  14:13  Page 325



326 Part II ✦ Step by Step

the expression on line 59 adjusts the velocity downward by the amount of the force
of gravity. Finally, the call to nextPosition() on line 61 adjusts the x and y loca-
tion of the ball according to its current velocity.

Accessing Pixel Values with QImage
A QImage object can be used to hold image information and provide low-level
access to individual pixel information. The following example creates a QPixmap,
converts it to a QImage to modify the pixel color values, and converts it back to a
QPixmap for display. There are three forms of a QImage— it can contain 1 bit per
pixel, 8 bits per pixel, or 32 bits per pixel.

If a QImage object contains only 1 bit per pixel, then the QImage contains only black
and white graphic information. Actually, the one-bit value is used as an index into a
color map that normally contains the colors black and white, but it can contain any
two colors. Although you can apply the color methods and flags to a QImage object
of this type, they will have no effect.

Depending on the color model being used, a QImage object may store the actual
color data in a color map, or directly in each pixel location, as described in Chapter
11. Your program is capable of modifying the colors in either case. If a color map is
used, you can modify the index into the color map, or the contents of the color map
itself. If a color map is not used, you can modify each individual pixel.

ImageModify Header
1 /* imagemodify.h */
2 #ifndef IMAGEMODIFY_H
3 #define IMAGEMODIFY_H
4 
5 #include <qwidget.h>
6 
7 class ImageModify: public QWidget
8 {
9 public:
10     ImageModify(QWidget *parent=0,const char *name=0);
11 private:
12     QPixmap logo;
13     QPixmap modlogo;
14     QRgb rgbModify(QRgb rgb);
15 protected:
16     virtual void paintEvent(QPaintEvent *);
17 };
18 
19 #endif

4682-1 ch13.f.qc  11/13/00  14:13  Page 326



327Chapter 13 ✦ Graphics Manipulation

The logo pixmap on line 12 is used to hold the original pixmap, and modlogo on
line 13 is used to hold the modified pixmap.

ImageModify
1 /* imagemodify.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <qimage.h>
5 #include <qcolor.h>
6 #include “imagemodify.h”
7 
8 #include “logo.xpm”
9 
10 int main(int argc,char **argv)
11 {
12     KApplication app(argc,argv,”imagemodify”);
13     ImageModify imagemodify;
14     imagemodify.show();
15     app.setMainWidget(&imagemodify);
16     return(app.exec());
17 }
18 ImageModify::ImageModify(QWidget *parent,const
19         char *name) : QWidget(parent,name)
20 {
21     logo = QPixmap(magick);
22     QImage image = logo.convertToImage();
23     if(image.numColors() > 0) {
24         for(int i=0; i<image.numColors(); i++) {
25             QRgb rgbOrig = image.color(i);
26             QRgb rgbMod = rgbModify(rgbOrig);
27             image.setColor(i,rgbMod);
28         }
29     } else {
30         for(int x=0; x<image.width(); x++) {
31             for(int y=0; y<image.height(); y++) {
32                 QRgb rgbOrig = image.pixel(x,y);
33                 QRgb rgbMod = rgbModify(rgbOrig);
34                 image.setPixel(x,y,rgbMod);
35             }
36         }
37     }
38     modlogo.convertFromImage(image,ThresholdDither);
39     setFixedSize(514,303);
40 }
41 QRgb ImageModify::rgbModify(QRgb rgb) {
42     int alpha = rgb & 0xFF000000;
43     QRgb rgbMod = qRgb(qGreen(rgb) & 0xC0,
44             qRed(rgb) & 0xC0,
45             qBlue(rgb) & 0xC0);
46     rgbMod |= alpha;

4682-1 ch13.f.qc  11/13/00  14:13  Page 327



328 Part II ✦ Step by Step

47     return(rgbMod);
48 }
49 void ImageModify::paintEvent(QPaintEvent *)
50 {
51     QPainter p(this);
52 
53     p.drawPixmap(0,0,logo);
54     p.drawPixmap(257,0,modlogo);
55 }

The constructor, beginning on line 18, creates two pixmaps. The pixmap named
logo is created on line 21 from the XPM data included on line 8. The call to
convertToImage() on line 22 uses the contents of the QPixmap object to create 
a QImage object.

The test on line 23 determines the color model. The value returned from the
method numColors() is a count of the number of colors stored in the color map. If
the number is zero, there is no color map and the pixel colors are to be modified
directly.

The loop beginning on line 24 executes once for each entry in the color map. The
method color() on line 25 retrieves the color pixel value as a QRgb value. The QRgb
data type is an unsigned integer that contains the pixel information (described in
detail in Chapter 11). That is, the leftmost byte holds the alpha (transparency) value,
and each of the other three bytes holds one of the three color values. The call to
rgbModify() on line 26 uses the QRgb value from the image to create, and return, a
new QRgb value. The call to setColor() on line 27 stores a modified version of color
values at the same index location in the color table. Because you have direct access
to the color values stored in the color map, your program can make any changes
you like.

If there is no color map, the colors are stored directly in each pixel of the QImage.
The nest loop on lines 30 and 31 uses the height and width values of the QImage to
loop through all the pixels. The actual conversion is done using the rgbModify()
method — the same method is used to convert the members of both color models.
The color values are read from the QImage object by the call to pixel() on line 32,
and the modified QRgb values are written to the QImage object by the call to
setPixel() on line 34.

The call to convertFromImage() on line 38 converts the modified image data back
into a pixmap so it can be displayed later. The first argument to the method is the
QImage object, and the second method is a set of flags that control the conversion pro-
cess. The flags can be a combination of one each from tables 13-2, 13-3, 13-4, and 13-5.

4682-1 ch13.f.qc  11/13/00  14:13  Page 328



329Chapter 13 ✦ Graphics Manipulation

Table 13-2
Color Preference Flags for Creating a QPixmap

Flag Name Description

AutoColor This is the default. If there is 1 bit per pixel, the resulting QPixmap is black
and white; otherwise, it is dithered and converted to the native color depth. 

ColorOnly The QPixmap will be dithered and converted to the native color depth. 

MonoOnly The resulting QPixmap is black and white.

Table 13-3
Dithering Preference Flags for Creating a QPixmap

Flag Name Description

DiffuseDither This is the default. This is a dithering algorithm designed to produce
a high-quality result.

OrderedDither This is a dithering algorithm designed for speed and efficiency.

ThresholdDither This algorithm has no dithering. The closest color is used. 

Table 13-4
Alpha Channel Dithering Mode Preference Flags for 

Creating a QPixmap

Flag Name Description

DiffuseAlphaDither This is a dithering algorithm designed to produce a high-
quality result.

OrderedAlphaDither This is a dithering algorithm designed for speed and
efficiency.

ThresholdAlphaDither This is the default, which is no dithering.

4682-1 ch13.f.qc  11/13/00  14:13  Page 329



330 Part II ✦ Step by Step

Table 13-5
Color Production Preference Flags for Creating a QPixmap

Flag Name Description

PreferDither This is the default. Always dither 32-bit images when they are
being converted to 8-bit images. 

AvoidDither Only dither 32-bit images that contain more than 256 colors that
are being converted to 8-bit images. 

The method rgbModify() on line 41 performs the actual color conversion. The
alpha value is stored in the first byte of a color value, and this conversion method
saves the value in the variable alpha so it can restore the value to the modified
color later. This is necessary only if you wish to retain existing transparency infor-
mation. The three macros qGreen, qRed, and qBlue are convenient for extracting
each of the three color values. Each of the colors is modified (by a bitwise ANDing
with the value 0xC0), and the macro qRgb() packs the three separate color values
back into a single QRgb data type named rgbMod. The original alpha value is added
back in. This example simply clears all but the first two bits from each color value,
effectively reducing the total color resolution to six bits (two for each color). Also,
the values of red and green are swapped. Figure 13-14 shows the window displaying
the original pixmap on the left and the modified pixmap on the right.

Figure 13-14: Individual pixels can be modified using 
a QImage

There is no limit to the variation that can be applied to an image. For example, to
remove all the color information and have the figure appear in shades of gray, it is
simply a matter of creating each shade of gray by averaging the red, green, and blue

4682-1 ch13.f.qc  11/13/00  14:13  Page 330



331Chapter 13 ✦ Graphics Manipulation

values. The following rgbModify() method retains any alpha transparency, and
produces an image in shades of gray:

QRgb ImageModify2::rgbModify(QRgb rgb) {
int alpha = rgb & 0xFF000000;
int average = qGreen(rgb) + qRed(rgb) + qBlue(rgb);
average /= 3;
QRgb rgbMod = qRgb(average,average,average);
rgbMod |= alpha;
return(rgbMod);

}

Using an Icon Provider in a QFileDialog
There is a facility built into QFileDialog that you can use to customize the icons
for each of the file types. To do this, create a QFileIconProvider to supply the
icons, and attach it to the dialog. The following example demonstrates defining cus-
tom icons for files with certain suffixes attached to their names. Figure 13-15 shows
the icons chosen for files that end with .png, .o, and .cpp.

Figure 13-15: Custom icons to indicate file types

MyIcons Header
1 /* myicons.h */
2 #ifndef MYICONS_H
3 #define MYICONS_H
4 
5 #include <qfiledialog.h>
6 
7 class MyIcons: public QFileIconProvider
8 {
9 public:
10     MyIcons(QWidget *parent=0,const char *name=0);
11     ~MyIcons();

4682-1 ch13.f.qc  11/13/00  14:13  Page 331



332 Part II ✦ Step by Step

12     const QPixmap *pixmap(const QFileInfo &);
13     const QPixmap *pixmap(const QUrlInfo &);
14 private:
15     const QPixmap *selectPixmap(QString &);
16 private:
17     QPixmap *cppPixmap;
18     QPixmap *oPixmap;
19     QPixmap *pngPixmap;
20     QPixmap *filePixmap;
21     QPixmap *directoryPixmap;
22 };
23 
24 #endif

The MyIcons class, which inherits from the QFileIconProvider base class, con-
tains all of the pixmaps that will be used to indicate the different file types. The two
methods named pixmap(), declared on lines 12 and 13, override virtual methods in
the base class. These two methods are used by QFileDialog to retrieve an appro-
priate pixmap for each file.

MyIcons
1 /* myicons.cpp */
2 #include <qfiledialog.h>
3 #include “myicons.h”
4 
5 static const char *file_xpm[]={
6 “22 22 6 1”,
7 “  c Gray0”,
8 “. c Gray51”,
9 “X c Gray65”,
10 “o c #dfdfdf”,
11 “O c Gray100”,
12 “+ c None”,
13 “++++++++++++++++++++++”,
14 “++++++++++++++++++++++”,
15 “++++++++++++++++++++++”,
16 “+++        +++++++++++”,
17 “+++ OOOOOOo ++++++++++”,
18 “+++ OOOOOO+o +++++++++”,
19 “+++ OOOOOO+Oo ++++++++”,
20 “+++ OOOOOO+    +++++++”,
21 “+++ OOOOOOOOO+ +++++++”,
22 “+++ OOOOOOO    +++++++”,
23 “+++ OOOOOO .++. ++++++”,
24 “+++ OOOOO .XX+.. +++++”,
25 “+++ OOOOO +X++.+ +++++”,
26 “+++ OOOOO ++++.+ +++++”,
27 “+++ OOOOO .++X.. +++++”,
28 “+++ OOOOOO .++. .+++++”,

4682-1 ch13.f.qc  11/13/00  14:13  Page 332



333Chapter 13 ✦ Graphics Manipulation

29 “+++ OOOOOOO    .  ++++”,
30 “+++ OOOOOOOOOO +   +++”,
31 “+++            ++  +++”,
32 “++++++++++++++++++++++”,
33 “++++++++++++++++++++++”,
34 “++++++++++++++++++++++”
35 };
36 
37 static const char *directory_xpm[]={
38     “15 15 6 1”,
39     “. c None”,
40     “b c #ffff00”,
41     “d c #000000”,
42     “* c #999999”,
43     “a c #cccccc”,
44     “c c #ffffff”,
45     “...............”,
46     “..*****........”,
47     “.*ababa*.......”,
48     “*abababa******.”,
49     “*cccccccccccc*d”,
50     “*cbababababab*d”,
51     “*cabababababa*d”,
52     “*cbababababab*d”,
53     “*cabababababa*d”,
54     “*cbababababab*d”,
55     “*cabababababa*d”,
56     “*cbababababab*d”,
57     “**************d”,
58     “.dddddddddddddd”,
59     “...............”};
60 
61 MyIcons::MyIcons(QWidget *parent,const char *name)
62         : QFileIconProvider(parent,name)
63 {
64     cppPixmap = new QPixmap(“idea.png”);
65     oPixmap = new QPixmap(“up.png”);
66     pngPixmap = new QPixmap(“flag.png”);
67     filePixmap = new QPixmap(file_xpm);
68     directoryPixmap = new QPixmap(directory_xpm);
69 }
70 MyIcons::~MyIcons()
71 {
72     delete cppPixmap;
73     delete oPixmap;
74     delete pngPixmap;
75     delete filePixmap;
76     delete directoryPixmap;
77 }
78 const QPixmap *MyIcons::pixmap(const QFileInfo &inf)
79 {

4682-1 ch13.f.qc  11/13/00  14:13  Page 333



334 Part II ✦ Step by Step

80     QString name = inf.fileName();
81     const QPixmap *qpixmap = selectPixmap(name);
82     if(qpixmap == NULL) {
83         if(inf.isDir())
84             return(directoryPixmap);
85         else
86             return(filePixmap);
87     }
88     return(qpixmap);
89 }
90 const QPixmap *MyIcons::pixmap(const QUrlInfo &inf)
91 {
92     QString name = inf.name();
93     const QPixmap *qpixmap = selectPixmap(name);
94     if(qpixmap == NULL) {
95         if(inf.isDir())
96             return(directoryPixmap);
97         else
98             return(filePixmap);
99     }
100     return(qpixmap);
101 }
102 const QPixmap *MyIcons::selectPixmap(QString &name)
103 {
104     if(name.right(4) == “.cpp”)
105         return(cppPixmap);
106     if(name.right(2) == “.o”)
107         return(oPixmap);
108     if(name.right(4) == “.png”)
109         return(pngPixmap);
110     return(NULL);
111 }

The constructor, beginning on line 61, uses the XPM data to create the set of pixmaps
to be associated with the filenames. Two pixmaps are defined as XPM data on lines 5
and 37. These are the default pixmaps — the ones that are used whenever no specific
pixmap is assigned to a file.

The two methods named pixmap(), declared on lines 78 and 90, are called with the
description of a file to determine the pixmap that should be displayed in associa-
tion with the file. The two methods do exactly the same thing, but accept slightly
different arguments. The call to selectPixmap() on lines 81 and 93 is used to
choose a pixmap for the file, but if a pixmap is not returned from selectPixmap(),
one of the two default pixmaps is selected.

The method selectPixmap() on line 102 examines the filenames and determines
whether a pixmap has been assigned to them. This example simply looks at the file-
name, but the examination could go as far as to check the magic number contained
in the file to determine its type. For more information on magic numbers, see the
man page for file.

4682-1 ch13.f.qc  11/13/00  14:13  Page 334



335Chapter 13 ✦ Graphics Manipulation

ShowFile Header
1 /* showfile.h */
2 #ifndef SHOWFILE_H
3 #define SHOWFILE_H
4 
5 #include <qwidget.h>
6 #include <qlabel.h>
7 #include <qstring.h>
8 
9 class ShowFile: public QWidget
10 {
11     Q_OBJECT
12 public:
13     ShowFile(QWidget *parent=0,const char *name=0);
14 private:
15     QLabel *filelabel;
16     QString filename;
17 private slots:
18     void popupOpen();
19 };
20 
21 #endif

ShowFile
1 /* showfile.cpp */
2 #include <kapp.h>
3 #include <qpushbutton.h>
4 #include <qlayout.h>
5 #include <qfiledialog.h>
6 #include “showfile.h”
7 #include “myicons.h”
8 
9 int main(int argc,char **argv)
10 {
11     KApplication app(argc,argv,”showfile”);
12     QFileIconProvider *provider = new MyIcons();
13     QFileDialog::setIconProvider(provider);
14     ShowFile showfile;
15     showfile.show();
16     app.setMainWidget(&showfile);
17     return(app.exec());
18 }
19 ShowFile::ShowFile(QWidget *parent,const char *name)
20         : QWidget(parent,name)
21 {
22     QPushButton *button;
23     QVBoxLayout *box = new QVBoxLayout(this,0,3);
24 
25     filelabel = new QLabel(“”,this);
26     filelabel->setAlignment(Qt::AlignHCenter);

4682-1 ch13.f.qc  11/13/00  14:13  Page 335



336 Part II ✦ Step by Step

27     box->addWidget(filelabel);
28 
29     button = new QPushButton(“Select File to Open”,this);
30     box->addWidget(button);
31     connect(button,SIGNAL(clicked()),
32             this,SLOT(popupOpen()));
33 
34     resize(10,10);
35     box->activate();
36 }
37 void ShowFile::popupOpen()
38 {
39     QString name = QFileDialog::getOpenFileName(“”,
40             NULL,this);
41     if(!name.isEmpty()) {
42         filename = name;
43         filelabel->setText(filename);
44     }
45 }

This program associates the icon provider with the file dialog, and provides a button
that can be used to pop up the dialog.

The icon provider is created on line 12. The call to the static method setIcon
Provider() on line 13 assigns the MyIcon object as the icon provider for all
QFileDialog objects. This mechanism replaces the default icon provider with a
new one. You could have a number of icon providers and, using this technique,
change them as often as you like.

Whenever the button is pressed, the slot method popupOpen() on line 17 is called.
A QFileDialog window is popped up with the call to getOpenFilename() on line
39. The test on line 41 determines whether a filename has been selected and, if so,
the name of the file is displayed.

Summary
This chapter covered some very special graphics operations. The facilities included
as part of the KDE and Qt API make it possible for you to do just about anything
you would like to do with a graphic image:

✦ The same API that is used to draw pixels on a window can be used to paint
pixels to a printed page.

✦ The step-by-step instructions required to create a graphic image, or part of a
graphic image, can be recorded and played back any number of times.

4682-1 ch13.f.qc  11/13/00  14:13  Page 336



337Chapter 13 ✦ Graphics Manipulation

✦ A graphic object can be scaled to fit a window either larger or smaller than
the one for which it was originally intended.

✦ A number of operations can be performed on a graphic object, including scal-
ing, clipping, shearing, translating, and rotating.

✦ Animation can be achieved by using a sequence of graphic frames and a timer.

The next chapter covers a very specialized area of a graphical user interface — drag
and drop. It is a fairly simply matter to drag and drop objects within an application,
but when things from one program are dropped onto the window of another, the
receiving application needs to also be supplied with information about the object
being dropped.

✦ ✦ ✦

4682-1 ch13.f.qc  11/13/00  14:13  Page 337



4682-1 ch13.f.qc  11/13/00  14:13  Page 338



Drag and Drop

Standard data transfer capabilities can enable applications
that have no awareness of one another to interact in such

a way that they seem, to the user, to be fully integrated. This
interaction is commonly achieved in two ways. Using the
mouse to drag a graphic object from one window to another
can cause data to be transferred from one application to
another. Another approach is to enable the user to copy data
to a system clipboard and have another application read the
data from the clipboard.

While dragging and dropping are very useful for communicat-
ing among applications, they can also be quite useful for oper-
ations limited to a single application. The user can move
things from one form to another within an application, or
change the position of things within a single window.

This chapter is all about the sequence of events that must
occur in a drag-and-drop operation: the application recognizes
that a drag operation has been requested, the data must be
packaged for dragging, the drop target must recognize that a
drop has occurred, and the package of data must be opened
and dealt with.

A Simple Text Drag and Drop
The following program implements dragging and dropping 
of text from one label to another. Any widget can act as the
source of a drag operation, the target of a drop operation, or
both. The mainline of the program is not involved — all drag
and drop operations are controlled directly by the source and
target widgets themselves.

DragDrop Header
1 /* dragdrop.h */
2 #ifndef DRAGDROP_H
3 #define DRAGDROP_H

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Dragging and
dropping text within
an application

Dragging and
dropping text and
graphics among
applications

Cutting and pasting
graphics using the
system clipboard

✦ ✦ ✦ ✦

4682-1 ch14.f.qc  11/20/00  15:42  Page 339



340 Part II ✦ Step by Step

4 
5 #include <qwidget.h>
6 #include <qstring.h>
7 #include “dragfrom.h”
8 #include “dropto.h”
9 
10 class DragDrop: public QWidget
11 {
12 public:
13     DragDrop(QWidget *parent=0,const char *name=0);
14 private:
15     DragFrom *apples;
16     DragFrom *oranges;
17     DropTo *target;
18 };
19 
20 #endif

The two widgets, apples, and oranges on lines 15 and 16, act as sources for text
drag operations, and the widget target can be used as the target of a text drop
operation.

DragDrop
1 /* dragdrop.cpp */
2 #include <kapp.h>
3 #include <qlayout.h>
4 #include <qlabel.h>
5 #include “dragdrop.h”
6 
7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”dragdrop”);
10     DragDrop dragdrop;
11     dragdrop.show();
12     app.setMainWidget(&dragdrop);
13     return(app.exec());
14 }
15 
16 DragDrop::DragDrop(QWidget *parent,const char *name)
17         : QWidget(parent,name)
18 {
19     QVBoxLayout *box = new QVBoxLayout(this,30);
20     box->addSpacing(30);
21 
22     target = new DropTo(“target”,this);
23     box->addWidget(target);
24 
25     apples = new DragFrom(“apples”,this);
26     box->addWidget(apples);

4682-1 ch14.f.qc  11/20/00  15:42  Page 340



341Chapter 14 ✦ Drag and Drop

27 
28     oranges = new DragFrom(“oranges”,this);
29     box->addWidget(oranges);
30 
31     box->activate();
32 }

The DragDrop window is the host of three widgets that are drag-and-drop enabled.
The target of the drop operation is added to the vertical box layout on lines 22 and
23. The two text drag source widgets are added to the main window on lines 25
through 29. Figure 14-1 shows the window after text from the apples widget has
been dragged and dropped on the target.

Figure 14-1: Text can be dragged from 
the bottom and dropped at the top.

DragFrom Header
1 /* dragfrom.h */
2 #ifndef DRAGFROM_H
3 #define DRAGFROM_H
4 
5 #include <qlabel.h>
6 #include <qstring.h>
7 
8 class DragFrom: public QLabel
9 {
10 public:
11     DragFrom(const char *text,QWidget *parent=0);
12 private:
13     QString string;
14 protected:
15     virtual void mousePressEvent(QMouseEvent *);
16 };
17 
18 #endif

4682-1 ch14.f.qc  11/20/00  15:42  Page 341



342 Part II ✦ Step by Step

DragFrom
1 /* dragfrom.cpp */
2 #include <qlabel.h>
3 #include <qfont.h>
4 #include <qdragobject.h>
5 #include “dragfrom.h”
6 
7 DragFrom::DragFrom(const char *text,QWidget *parent)
8         : QLabel(parent)
9 {
10     string = text;
11     QString label(“Source for “);
12     label.append(text);
13     setText(label);
14     setAlignment(Qt::AlignHCenter);
15     QFont font(“Courier”,18,QFont::Bold,FALSE);
16     setFont(font);
17 }
18 void DragFrom::mousePressEvent(QMouseEvent *)
19 {
20     QDragObject *textdrag = new QTextDrag(string,this);
21     textdrag->dragCopy();
22 }

The DragFrom widget uses the QLabel widget as its base class. The text supplied to
the constructor on line 7 is the text that can be dragged from this widget, by being
stored into string on line 10, while the displayed text is preceded by “Source for”
on lines 11 through 13. Lines 14 through 16 center the text and specify its font.

The method mousePressEvent() is called whenever a mouse button is pressed,
and a QTextDrag object is created on line 20. The call to dragCopy() causes the
QTextDrag object to follow the mouse. The object will be deleted by the drag-and-
drop operation (when the mouse button is released, whether or not it reaches its
destination), so you should not delete it in your program. This program can create
and send any number of QTextDrag objects, but it will never be notified of the final
disposition of any of them.

DropTo Header
1 /* dropto.h */
2 #ifndef DROPTO_H
3 #define DROPTO_H
4 
5 #include <qlabel.h>
6 #include <qevent.h>
7 #include <qstring.h>
8 
9 class DropTo: public QLabel
10 {

4682-1 ch14.f.qc  11/20/00  15:42  Page 342



343Chapter 14 ✦ Drag and Drop

11 public:
12     DropTo(const char *text,QWidget *parent=0);
13 protected:
14     void dragEnterEvent(QDragEnterEvent *e);
15     void dropEvent(QDropEvent *e);
16 };
17 
18 #endif

The methods dragEnterEvent() and dropEvent() override the method declara-
tions in the QWidget base class. These methods are called during the drag-and-drop
operations when the mouse is searching for a place to make the drop.

DropTo
1 /* dropto.cpp */
2 #include <qlabel.h>
3 #include <qfont.h>
4 #include <qdragobject.h>
5 #include “dropto.h”
6 
7 DropTo::DropTo(const char *text,QWidget *parent)
8         : QLabel(text,parent)
9 {
10     setAlignment(Qt::AlignHCenter);
11     QFont font(“Courier”,18,QFont::Bold,FALSE);
12     setFont(font);
13     setAcceptDrops(TRUE);
14 }
15 void DropTo::dragEnterEvent(QDragEnterEvent *e)
16 {
17     e->accept(QTextDrag::canDecode(e));
18 }
19 void DropTo::dropEvent(QDropEvent *e)
20 {
21     QString text;
22 
23     if(QTextDrag::decode(e,text))
24         setText(text);
25 }

The base class of the DropTo class is QLabel, making it capable of displaying the
text that is dropped on it. Lines 10 through 12 of the constructor specify the align-
ment and the font of the displayed text.

The call to setAcceptDrops() on line 13 activates this widget as the target of
mouse drag-and-drop operations. Whenever the mouse is performing a drag opera-
tion and the mouse pointer enters this widget, the method dragEnterEvent() will
be called with information about the data being dragged. Also, the dropEvent()
method will be called if the data is dropped within this widget.

4682-1 ch14.f.qc  11/20/00  15:42  Page 343



344 Part II ✦ Step by Step

The dragEnterEvent() on line 15 is called whenever a mouse drag enters the
boundary of this widget. The purpose of this method is to determine whether or not
this widget is willing to accept the drop. You can perform any test you would like,
but this example simply calls the static canDecode() method of the QTextDrag
class to determine whether the dragged data can be converted into text. If it can, the
call accept() is made with a TRUE argument; otherwise, it is made with FALSE.

The method dropEvent() on line 19 is called only if a certain sequence of events
have occurred. Only if the mouse is in a drag-and-drop operation, and it has entered
this widget, and the dragEnterEvent() method called the accept() method of
the event with TRUE, will this method be called. This example only accepts text —
line 23 makes a call to the static decode() method of the QTextDrag class, and the
resulting decoded text is used to set the text of the label. The drag-and-drop opera-
tion has completed successfully.

Drag and Drop of Both Text and Image Data
The following pair of programs demonstrates dragging and dropping objects from
one application to another, and the capability of the receiving program to deter-
mine the type of data that is being dropped. There are two drag sources — one for
text and one for images — but there is only one drop target. The drop target deter-
mines the incoming data type and acts accordingly.

DateImage Header
1 /* dateimage.h */
2 #ifndef DATEIMAGE_H
3 #define DATEIMAGE_H
4 
5 #include <qwidget.h>
6 #include <qlabel.h>
7 #include <qdragobject.h>
8 
9 class DateImage: public QWidget
10 {
11 public:
12     DateImage(QWidget *parent=0,const char *name=0);
13 };
14 
15 class DateSource: public QLabel
16 {
17 public:
18     DateSource(QWidget *parent=0);
19 protected:
20     virtual void mousePressEvent(QMouseEvent *);
21 };

4682-1 ch14.f.qc  11/20/00  15:42  Page 344



345Chapter 14 ✦ Drag and Drop

22 
23 class ImageSource: public QLabel
24 {
25 public:
26     ImageSource(QWidget *parent=0);
27 protected:
28     virtual void mousePressEvent(QMouseEvent *);
29 };
30 
31 #endif

This header file contains the definition of the classes that are the source of dragged
data. The DateImage class is a top-level window that, when displayed, contains both
a DateSource object and an ImageSource object. Both the DateSource and the
ImageSource classes are subclasses of QLabel, so they both display text and can be
used as the source of a drag-and-drop operation. The data dragged from DateSource
is a text string, and data dragged from ImageSource is a QImage object.

DateImage
1 /* dateimage.cpp */
2 #include <kapp.h>
3 #include <qlayout.h>
4 #include <qlabel.h>
5 #include <qfont.h>
6 #include <time.h>
7 #include “dateimage.h”
8 
9 #include “bluemarble.xpm”
10 
11 int main(int argc,char **argv)
12 {
13     KApplication app(argc,argv,”dateimage”);
14     DateImage dateimage;
15     dateimage.show();
16     app.setMainWidget(&dateimage);
17     return(app.exec());
18 }
19 
20 DateImage::DateImage(QWidget *parent,const char *name)
21         : QWidget(parent,name)
22 {
23     QVBoxLayout *box = new QVBoxLayout(this,30);
24 
25     DateSource *ds = new DateSource(this);
26     box->addWidget(ds);
27 
28     ImageSource *is = new ImageSource(this);
29     box->addWidget(is);
30 

4682-1 ch14.f.qc  11/20/00  15:42  Page 345



346 Part II ✦ Step by Step

31     box->activate();
32 }
33 
34 DateSource::DateSource(QWidget *parent)
35         : QLabel(“Date”,parent)
36 {
37     setAlignment(Qt::AlignHCenter);
38     QFont font(“Courier”,18,QFont::Bold,FALSE);
39     setFont(font);
40 }
41 void DateSource::mousePressEvent(QMouseEvent *)
42 {
43     time_t t;
44     char *ct;
45 
46     t = time((time_t *)0);
47     ct = ctime(&t);
48     QString string(ct);
49     QDragObject *textdrag = new QTextDrag(string,this);
50     textdrag->dragCopy();
51 }
52 
53 
54 ImageSource::ImageSource(QWidget *parent)
55         : QLabel(“Image”,parent)
56 {
57     setAlignment(Qt::AlignHCenter);
58     QFont font(“Courier”,18,QFont::Bold,FALSE);
59     setFont(font);
60 }
61 void ImageSource::mousePressEvent(QMouseEvent *)
62 {
63     QImage image(magick);
64     QDragObject *imagedrag = new QImageDrag(image,this);
65     imagedrag->dragCopy();
66 }

The DateImage constructor on line 20 uses a vertical box to contain a DateSource
object and an ImageSource object. Both DateSource and ImageSource use
QLabel as their base classes, resulting in a window that looks like the one shown 
in Figure 14-2.

Figure 14-2: Sources of text and 
image drag operations

4682-1 ch14.f.qc  11/20/00  15:42  Page 346



347Chapter 14 ✦ Drag and Drop

The DateSource constructor on line 34 sets its own font and text alignment. The
initialization of the QLabel base class on line 35 specifies “Date” as the displayed
text. The mousePressEvent() on line 41 creates a character string containing the
current system time and uses it to construct a QTextDrag object on line 49. The
call to dragCopy() on line 50 attaches the QTextDrag object to the mouse and
sends it on its way.

The ImageSource constructor on line 54 sets its own font and text alignment. The
initialization of the QLabel base class on line 55 specifies “Image” as the displayed
text. The mousePressEvent() on line 61 creates a QImage object from the XPM
data included on line 9. The QImage object is used in the creation of a QImageDrag
object on line 64. The call to dragCopy() on line 65 attaches the QImageDrag
object to the mouse so it can be dragged away.

Target Header
1 /* target.h */
2 #ifndef TARGET_H
3 #define TARGET_H
4 
5 #include <qwidget.h>
6 #include “target.h”
7 
8 class Target: public QWidget
9 {
10 public:
11     Target(QWidget *parent=0,const char *name=0);
12 protected:
13     void dragEnterEvent(QDragEnterEvent *e);
14     void dropEvent(QDropEvent *e);
15 };
16 
17 #endif

The target of the drop is the top-level window of a widget. To accomplish this, it 
is necessary to override the QWidget virtual methods dragEnterEvent() and
dropEvent().

Target
1 /* target.cpp */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include <qdragobject.h>
5 #include “target.h”
6 
7 int main(int argc,char **argv)
8 {
9     KApplication app(argc,argv,”target”);

4682-1 ch14.f.qc  11/20/00  15:42  Page 347



348 Part II ✦ Step by Step

10     Target target;
11     target.show();
12     app.setMainWidget(&target);
13     return(app.exec());
14 }
15 
16 Target::Target(QWidget *parent,const char *name)
17         : QWidget(parent,name)
18 {
19     setFixedSize(400,300);
20     setAcceptDrops(TRUE);
21 }
22 void Target::dragEnterEvent(QDragEnterEvent *e)
23 {
24     e->accept(QTextDrag::canDecode(e) ||
25             QImageDrag::canDecode(e));
26 }
27 void Target::dropEvent(QDropEvent *e)
28 {
29     QString text;
30     QImage image;
31 
32     if(QTextDrag::decode(e,text)) {
33         drawText(e->pos(),text);
34     }
35     if(QImageDrag::decode(e,image)) {
36         QPainter *p = new QPainter(this);
37         p->drawImage(e->pos(),image);
38     }
39 }

The constructor, on line 16, fixes the size of the main window and calls setAccept
Drops() to enable this window as a drop target.

The dragEnterEvent() on line 22 is called whenever a dragging mouse enters 
the boundaries of this window. A call is made to the accept() method of the
QDragEnterEvent object with TRUE if this window can accept the data type being
dragged, or FALSE if it cannot. This window can accept both text and image data, 
so the ability to decode either of these will result in TRUE.

If the mouse drops the data on this widget, a call is made to dropEvent() on line 27.
On line 32, a call to decode() of QTextDrag is made to attempt to retrieve the data.
If the decoding succeeds, the data is stored in text, and the call to drawText() on
line 33 paints the text on the window. The exact location of the text on the local win-
dow is determined by the location of the dropping mouse pointer, which is retrieved
as a QPoint object from the call to pos() of the QDropEvent object. The decoding
procedure is repeated by calling the decode() method of the QImageDrag class. If
an image is successfully decoded, a QPainter object is used to paint the image on
the window at the location of the drop. Figure 14-3 shows the target window after
several text and image drops have been made.

4682-1 ch14.f.qc  11/20/00  15:42  Page 348



349Chapter 14 ✦ Drag and Drop

Figure 14-3: Both text and image 
data can be dropped onto the 
same window.

Two other methods can optionally be used by the drop target widget in case you
want to display some special graphics. The following method would be called when-
ever a dragging mouse leaves the window without having dropped anything:

void Target::dragExitEvent(QDragExitEvent *e)

You can use this method to supply more feedback to the user. For example, this
method, in combination with dragEnterEvent(),highlights the target widget when-
ever a dragging mouse is hovering over the window. This can be useful when several
small target windows are next to one another. You could also track the potential loca-
tion of a drop with this next method, which is called whenever the mouse changes
positions inside the target window:

void Target::dragMoveEvent(QDragMoveEvent *e)

One example of using this method would be to place crosshairs, or some other 
indicator, at the location of the potential drop.

Cut and Paste
The same underlying mechanism used for dragging and dropping is used for cutting
and pasting. Dragging an object from one application to another is the same as copy-
ing it to or from the clipboard, so the only real difference is in the user interface.

The following program is capable of using cut, copy, and paste operations to move
image data between itself and the clipboard. Figure 14-4 shows the program’s win-
dow and the buttons it uses to transfer a pixmap to and from the KDE clipboard.

4682-1 ch14.f.qc  11/20/00  15:42  Page 349



350 Part II ✦ Step by Step

Figure 14-4: An image can be copied to 
and from the KDE clipboard.

CutPaste Header
1 /* cutpaste.h */
2 #ifndef CUTPASTE_H
3 #define CUTPASTE_H
4 
5 #include <qwidget.h>
6 #include <qpixmap.h>
7 
8 class CutPaste: public QWidget
9 {
10     Q_OBJECT
11 public:
12     CutPaste(QWidget *parent=0,const char *name=0);
13 private:
14     QWidget *widget;
15     QPixmap *pixmap;
16 private slots:
17     void loadButton();
18     void copyButton();
19     void cutButton();
20     void pasteButton();
21 };
22 
23 #endif

The QWidget on line 14 is used to display a QPixmap. The QPixmap on line 15 is the
one currently being displayed. The four slot methods are the ones that respond to
the pushbuttons.

CutPaste
1 /* cutpaste.cpp */
2 #include <kapp.h>
3 #include <qlayout.h>
4 #include <qimage.h>

4682-1 ch14.f.qc  11/20/00  15:42  Page 350



351Chapter 14 ✦ Drag and Drop

5 #include <qdragobject.h>
6 #include <qclipboard.h>
7 #include <qpushbutton.h>
8 #include “cutpaste.h”
9 
10 int main(int argc,char **argv)
11 {
12     KApplication app(argc,argv,”cutpaste”);
13     CutPaste *cutpaste = new CutPaste();
14     cutpaste->show();
15     app.setMainWidget(cutpaste);
16     return(app.exec());
17 }
18 
19 CutPaste::CutPaste(QWidget *parent,const char *name)
20     : QWidget(parent,name)
21 {
22     QPushButton *button;
23     QHBoxLayout *hlayout = new QHBoxLayout(this,5);
24     QVBoxLayout *vlayout = new QVBoxLayout();
25 
26     pixmap = NULL;
27 
28     button = new QPushButton(“Load”,this);
29     connect(button,SIGNAL(clicked()),
30             this,SLOT(loadButton()));
31     vlayout->addWidget(button);
32 
33     button = new QPushButton(“Copy”,this);
34     connect(button,SIGNAL(clicked()),
35             this,SLOT(copyButton()));
36     vlayout->addWidget(button);
37 
38     button = new QPushButton(“Cut”,this);
39     connect(button,SIGNAL(clicked()),
40             this,SLOT(cutButton()));
41     vlayout->addWidget(button);
42 
43     button = new QPushButton(“Paste”,this);
44     connect(button,SIGNAL(clicked()),
45             this,SLOT(pasteButton()));
46     vlayout->addWidget(button);
47 
48     widget = new QWidget(this);
49     widget->setFixedSize(257,303);
50     widget->setBackgroundColor(QColor(“white”));
51 
52     hlayout->addWidget(widget);
53     hlayout->addLayout(vlayout);
54 
55     resize(10,10);
56     hlayout->activate();
57 }

4682-1 ch14.f.qc  11/20/00  15:42  Page 351



352 Part II ✦ Step by Step

58 void CutPaste::loadButton()
59 {
60     if(pixmap != NULL)
61         delete pixmap;
62     pixmap = new QPixmap(“logo.xpm”);
63     widget->setBackgroundPixmap(*pixmap);
64 }
65 void CutPaste::copyButton()
66 {
67     if(pixmap != NULL) {
68         QImage image = pixmap->convertToImage();
69         QDragObject *drag = new QImageDrag(image,this);
70         QClipboard *clipboard = QApplication::clipboard();
71         clipboard->setData(drag);
72     }
73 }
74 void CutPaste::cutButton()
75 {
76     if(pixmap != NULL) {
77         copyButton();
78         widget->setBackgroundColor(QColor(“white”));
79         delete pixmap;
80         pixmap = NULL;
81     }
82 }
83 void CutPaste::pasteButton()
84 {
85     QClipboard *clipboard = QApplication::clipboard();
86     QMimeSource *mime = clipboard->data();
87     QImage image;
88     if(QImageDrag::decode(mime,image)) {
89         QPixmap *newPixmap = new QPixmap();
90         if(newPixmap->convertFromImage(image)) {
91             if(pixmap != NULL)
92                 delete pixmap;
93             pixmap = newPixmap;
94             widget->setBackgroundPixmap(*pixmap);
95         }
96     }
97 }

The constructor, beginning on line 19, initializes the data and creates the display by
inserting a set of buttons into a vertical box, and then inserts the vertical box and a
widget into a horizontal box. No initial pixmap is being displayed, so it is initialized
to NULL on line 26. The graphic display widget is created on line 48, and it is initial-
ized with a solid white background.

The slot method loadButton() on line 58 loads a new pixmap from a file. Lines 60
and 61 delete any previously existing pixmap, and the call to setBackground
Pixmap() on line 63 displays the newly loaded pixmap.

4682-1 ch14.f.qc  11/20/00  15:42  Page 352



353Chapter 14 ✦ Drag and Drop

The slot method copyButton() on line 65 tests whether a pixmap exists and, if so,
copies it to the clipboard. The call to convertToImage() on line 68 converts the
pixmap to a QImage, because that is the form of the graphic required by QImageDrag.
The address of the QClipboard object is returned from the call to the clipboard()
method on line 70, and the data is stored in the clipboard with the call to setData()
on line 71.

The slot method cutButton() on line 74 tests whether a pixmap exists and, if so,
copies it to the clipboard and deletes it locally. The call to copyButton() copies
the pixmap to the clipboard. The call to setBackgroundColor() clears the pixmap
from the window, and lines 79 and 80 remove the pixmap from memory.

The slot method pasteButton() on line 83 reads a pixmap from the clipboard to 
this application. The call to the static method clipboard() on line 85 retrieves the
address of the system clipboard. The clipboard holds data as a QMineSource object,
which is retrieved by the call to data() on line 86. Several different types of data can
be stored on the clipboard, so the Boolean return value from the call to decode()
on line 88 must be checked to ensure that the data was successfully converted to a
QImage object. If the conversion succeeded, the call to convertFromImage() on 
line 90 creates a pixmap from the data, and lines 91 through 94 replace the existing
pixmap with the new one, and store it in the widget as the new display background.

Summary
Dragging data from one location to another, or cutting data from one location and
pasting it into another, requires that both the sender and the receiver agree on the
type of the data and how it is packaged. From the application’s point of view, trans-
mitting and receiving data is not much more than simply making a function call.
This chapter described the fundamentals of dragging and dropping data, including:

✦ To drag data to another location, it first must be encapsulated in a QDrag
Object. For a window to receive a dropped object, it must be prepared to
decode the data in the QDragObject.

✦ A call to setAcceptDrops() must be made before a widget will accept
dropped data.

✦ The cut and paste operations are fundamentally the same as drag and drop,
except that the system QClipboard object is used as an intermediary to store
the data.

The next chapter discusses applets — the small icon-like windows that appear on
the panel at the bottom (or some other edge) of the main window in the KDE envi-
ronment.The chapter also discusses some other methods of passing data from one
application to another.

✦ ✦ ✦

4682-1 ch14.f.qc  11/20/00  15:42  Page 353



4682-1 ch14.f.qc  11/20/00  15:42  Page 354



Interprocess
Communications
and Applets

There are two basic ways that data are passed from one
program to another. At startup, arguments can be sup-

plied on the command line, and during execution, blocks 
of data can be generated by one application and passed to
another process that is expecting it. KDE has made some spe-
cial provisions for both of these communications methods.

There is a command-line class that analyzes and stores infor-
mation from the command line. More than that, it provides
access to the KDE option flags that, to some extent, standard-
ize the settings available to the applications. That is, by using
this object, different applications can be programmed to
respond in a standard way to a standard set of flags.

The interprocess communications model requires a server run-
ning in the background to handle messages. This server is 
sort of like a post office. Each application gets a P.O. box that 
is identified by a name, and other applications can store 
messages in it.

An applet is a special application that displays its window as
an icon in the KDE panel (sometimes call the KDE kicker) that
is present at one edge of the main KDE window. An applet has
the disadvantage of having a very small window as its top-
level window, but it has the advantage of always being visible
to the user.

This chapter explains the various ways that your program can
take advantage of these data-exchange methods and applets.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Passing arguments on
the command line

Sending blocks 
of data from one
running application
to another

Providing user access
through applets on
the panel

Guaranteeing that
only one instance of a
process is in execution
at any one time

✦ ✦ ✦ ✦

4682-1 ch15.f.qc  11/13/00  14:13  Page 355



356 Part II ✦ Step by Step

The DCOP Communications Model
The DCOP (Desktop Communications Protocol) software was developed to provide
a very simple method of establishing interprocess communications among a group
of processes. All communications pass through a daemon process called dcop
server. A process wishing to send or receive messages first registers its name 
with dcopserver, and other processes can then address messages to it by 
sending them to that name in care of the dcopserver.

DCOP is actually a simple form of an RPC (Remote Procedure Call) mechanism. 
A message is sent in the form of a function call that may or may not require 
arguments, and may or may not return a value.

The following example consists of three programs. The program named wilbur
registers itself with dcopserver and waits for a message to arrive. The program
tellwilbur sends a message to wilbur and does not wait for a response, while
askwilbur sends a message and waits for the response.

Wilbur Header
1 /* wilbur.h */
2 #ifndef WILBUR_H
3 #define WILBUR_H
4 
5 #include <qmultilineedit.h>
6 #include <dcopobject.h>
7 
8 class WilReceiver: public QMultiLineEdit, public DCOPObject
9 {
10 public:
11     WilReceiver(const char *name=0);
12     bool process(const QCString &function,
13         const QByteArray &data,QCString &replyType,
14         QByteArray &replyData);
15     double cubeRoot(double value);
16 private:
17 };
18 
19 #endif

The WilReceiver is a DCOPObject, so it is capable of receiving messages, execut-
ing a local procedure, and returning the result to the originator of the message.
WilReceiver is also a widget because it inherits from the QMultiLineEdit widget.

The method process(), declared on line 12, is required because it is a pure virtual
method in the DCOPObject class. It is the method that is called whenever a message
is received from another process. The method cubeRoot() declared on line 15 is the
one that can be called from other processes. 

4682-1 ch15.f.qc  11/13/00  14:13  Page 356



357Chapter 15 ✦ Interprocess Communications and Applets

Wilbur
1 /* wilbur.cpp */
2 #include <kapp.h>
3 #include <qcstring.h>
4 #include <qmultilineedit.h>
5 #include <dcopclient.h>
6 #include <math.h>
7 #include “wilbur.h”
8 
9 int main(int argc,char **argv)
10 {
11     QString str;
12     KApplication app(argc,argv,”wilbur”);
13 
14     DCOPClient *client = app.dcopClient();
15     QCString dcopID = client->registerAs(app.name(),FALSE);
16 
17     WilReceiver *wilbur = new WilReceiver(“wilreceiver”);
18     app.setMainWidget(wilbur);
19 
20     str.sprintf(“wilbur registered as \”%s\””,
21             dcopID.data());
22     wilbur->insertLine(str);
23 
24     int returnValue = app.exec();
25     client->detach();
26     return(returnValue);
27 }
28 WilReceiver::WilReceiver(const char *name)
29         : DCOPObject(name)
30 {
31     setReadOnly(TRUE);
32     show();
33 }
34 bool WilReceiver::process(const QCString &function,
35         const QByteArray &data,
36         QCString &replyType,
37         QByteArray &replyData)
38 {
39     if(function == “cubeRoot(double)”) {
40         double inValue;
41         double outValue;
42         QDataStream inStream(data,IO_ReadOnly);
43         inStream >> inValue;
44         outValue = cubeRoot(inValue);
45         QDataStream outStream(replyData,IO_WriteOnly);
46         outStream << outValue;
47         replyType = “double”;
48         return(TRUE);
49     } else {

4682-1 ch15.f.qc  11/13/00  14:13  Page 357



358 Part II ✦ Step by Step

50         QString string;
51         string.sprintf(“call to unknown function %s”,
52                 function.data());
53         insertLine(string);
54         return(FALSE);
55     }
56 }
57 double WilReceiver::cubeRoot(double value)
58 {
59     QString string;
60     double root = cbrt(value);
61     string.sprintf(“Cube root of %g is %g”,value,root);
62     insertLine(string);
63     return(root);
64 }

This program uses a WilReceiver object as its top-level widget. This gives it the
ability to both display text and respond to incoming messages.

Every process that is to communicate through the dcopserver must register itself
as a client. The call to dcopClient() on line 14 creates a local DCOPClient object
and returns its address. The call to registerAs() on line 15 registers the name of
this client with the dcopserver daemon. The name of this application — specified
on line 12 — is “wilbur”, so from now on, any message sent to “wilbur” will come to
this application. The actual registration name is the return value stored as a string
in dcopID on line 15.

No two processes can be registered by the same name, so the dcopserver detects
collisions and modifies the registration name The first collision will result in the reg-
istration name being “wilbur-2,” the next will be “wilbur-3,” and so on. Alternatively,
you can choose to generate unique registration names by using TRUE as the second
argument to registerAs(), causing the process ID number to be appended as part
of the name. For example, if the process ID of an instance wilbur is 34212, the regis-
tration name would be “wilbur-34212.” This is guaranteed to always produce a
unique registration name.

The top-level widget is established on lines 17 and 18. The name assigned to the
widget is “wilreceiver.” It is perfectly valid for a single process to contain more 
than one DCOPObject, and each one of them can be used to receive messages, 
so it is necessary to supply a name for each one.

Lines 20 through 22 display the registered name of this DCOPClient.

The main loop of the GUI application is executed by the call to exec() on line 24. The
call to detach() on line 25 is made to remove the registration from dcopserver. This
is not strictly necessary because the registration is removed automatically whenever
a process ceases execution.

4682-1 ch15.f.qc  11/13/00  14:13  Page 358



359Chapter 15 ✦ Interprocess Communications and Applets

The constructor of WilReceiver on line 28 sets the QMultiLineEdit window to
read-only, which means that the text displayed there cannot be edited.

The process() method on line 34 is called whenever a message arrives from the
dcopserver. There are four arguments to the method:

const QCString function The name and argument types of the 
procedure to be called 

const QByteArray &data The arguments to be passed to the 
called procedure

QCString &replyType The data type of the value returned from
the procedure

QByteArray &replyData The returned value 

The if statement on line 39 verifies that the function and data type match the one
that is available. A number of local procedures can be available — it is only necessary
to add a test for each one to determine which is to be called.

The terminology tends to get a bit confusing with remote procedure calls. The
remote process requests a call to a procedure named cubeRoot(double), which
could be either a function or a method. Or it could be simply an inline execution, or
even implemented in an entirely different language. As long as the interface is con-
sistent, and the results are achieved, the details of the actual process don’t matter.

The argument (or arguments) to be passed to the procedure arrive packed into a
QByteArray, so it is necessary to use the QDataStream created on line 42 to extract
the actual values. In this example, there is only one argument, and it is extracted into
inValue on line 43. The method cubeRoot() is called on line 44, with the results
stored in outValue. The return value is packed into replyData on line 46 using 
the output stream created on line 45. The data type of the return value is stored 
in replyType on line 47. The return value of TRUE is used to indicate success.

If the code required to respond to a message seems a bit clumsy, that is because
it has been designed for automatic generation. This entire process should all be
simplified in the near future because there is a project underway to have the con-
tents of the process() method automatically generated by a compiler, much like
the MOC compiler generates the code for signals and slots.

The cubeRoot() method on line 57 accepts a double value as an argument and
returns its cube root. It also displays the incoming number, and its root, as a line 
of text in the window. This method is called remotely, but it is a normal method 
and could be called locally as well.

Note

Note

4682-1 ch15.f.qc  11/13/00  14:13  Page 359



360 Part II ✦ Step by Step

TellWilbur
1 /* tellwilbur.cpp */
2 #include <kapp.h>
3 #include <qcstring.h>
4 #include <dcopclient.h>
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”tellwilbur”);
9 
10     DCOPClient *client = app.dcopClient();
11     QCString dcopID = client->registerAs(app.name());
12 
13     QByteArray params;
14     QDataStream stream(params,IO_WriteOnly);
15     stream << (double)999.0;
16     if(!client->send(“wilbur”,”wilreceiver”,
17             “cubeRoot(double)”,params)) {
18         qDebug(“Well, that didn’t work!”);
19     }
20 
21     client->detach();
22     return(0);
23 }

This program sends a message to wilbur, but does not wait for the response.

To be able to communicate using DCOP, it is necessary to register with dcopserver.
This means that it is necessary to create a KApplication object, use it to retrieve
the address of the local DCOPClient, and then call registerAs() with the name 
of this application.

Because the arguments to the remote procedure are sent packed into a QByteArray,
it is necessary to create a QDataStream object on line 14 and store a double argu-
ment value in it on line 15. The call to send() on line 16 sends the message, but does
not wait for an answer. The first argument is “wilbur”, which is the registered name
of the application to receive the message. The second argument is “wilreceiver”,
which is the name of a DCOPObject inside the application. The procedure to be
called is named “cubeRoot(double)”. The final argument, params, contains the
argument values to be passed to the procedure.

As described earlier, the registration name may have a number appended to it, such
as “wilbur-29003.” To discover what the actual name is, your application may need
to call registeredApplications() of the DCOPClient class. This method
returns a QCStringList object containing all of the registered names, and your
application can search it to find the name (or names) you need.

Note

4682-1 ch15.f.qc  11/13/00  14:13  Page 360



361Chapter 15 ✦ Interprocess Communications and Applets

The send() method does not wait for the answer, so there is no provision for a
return value. All that is left to do is the call to detach() on line 21 that removes 
the registration from dcopserver.

AskWilbur
1 /* askwilbur.cpp */
2 #include <kapp.h>
3 #include <qcstring.h>
4 #include <dcopclient.h>
5 
6 int main(int argc,char **argv)
7 {
8     KApplication app(argc,argv,”askwilbur”);
9 
10     DCOPClient *client = app.dcopClient();
11     QCString dcopID = client->registerAs(app.name());
12 
13     QByteArray params;
14     QByteArray reply;
15     QCString replyType;
16     QDataStream stream(params,IO_WriteOnly);
17     stream << (double)888.0;
18     if(!client->call(“wilbur”,”wilreceiver”,
19             “cubeRoot(double)”,params,
20             replyType,reply)) {
21         qDebug(“Well, that didn’t work!”);
22     } else {
23         QDataStream inStream(reply,IO_ReadOnly);
24         if(replyType == “double”) {
25             double root;
26             inStream >> root;
27             QString str;
28             str.sprintf(“The return value is %g”,root);
29             qDebug(str);
30         }
31     }
32 
33     client->detach();
34     return(0);
35 }

This example does the same thing the previous one does, except this one waits for
and displays a result.

The call to call() on line 18 sends the message and waits for the result. The call is
the same as send() in the previous example, except for the two return-value argu-
ments on line 20. The replyType argument returns with the data type of the return
value, and the reply argument contains the actual return value.

4682-1 ch15.f.qc  11/13/00  14:13  Page 361



362 Part II ✦ Step by Step

If the call to call() succeeds, the QDataStream on line 23 is created to read the
values from the returned QByteArray. The data type of the returned value is veri-
fied on line 24, and is extracted into the local variable root on line 26. It is used 
to build the string named str, and then displayed. The output looks like this:

The return value is 9.61179

Figure 15-1 shows the window displayed by wilbur after one message has been
received from tellwilbur and another from askwilbur.

Figure 15-1: Wilbur after receiving two messages

Command-Line Arguments
The KCmdLineArgs class not only handles most of the work of validating and parsing
the command-line arguments, it also does it in such a way that the command-line
arguments for all KDE applications will be consistent. The following simple program
demonstrates the basics of using KCmdLineArgs.

CommandLine
1 /* commandline.cpp */
2 #include <kcmdlineargs.h>
3 #include <iostream.h>
4 
5 static KCmdLineOptions options[] = {
6     {“x”,”A binary option”,0},
7     {“o <name>”,”An option with data”,”/dev/null”},
8     {“longbin”,”A binary option”,0},
9     {“longdata <name>”,”An option with data”,”/dev/null”},
10     {“t”,0,0},
11     {“twoforms”,”Two forms of a binary option”,0},
12     {0,0,0}
13 };
14 
15 int main(int argc,char **argv)
16 {
17     QCString option;
18     KCmdLineArgs::init(argc,argv,
19             “commandline”,

4682-1 ch15.f.qc  11/13/00  14:13  Page 362



363Chapter 15 ✦ Interprocess Communications and Applets

20             “Example of command line parsing”,
21             “Version 0.0”);
22     KCmdLineArgs::addCmdLineOptions(options);
23     KCmdLineArgs *pargs = KCmdLineArgs::parsedArgs();
24 
25     if(pargs->isSet(“x”))
26         cout << “  -x is set” << endl;
27     else
28         cout << “  -x is not set” << endl;
29     option = pargs->getOption(“o”);
30     cout << “  -o is set to “ << option << endl;
31     if(pargs->isSet(“longbin”))
32         cout << “  --longbin is set” << endl;
33     else
34         cout << “  --longbin is not set” << endl;
35     option = pargs->getOption(“longdata”);
36     cout << “  --longdata is set to “ << option << endl;
37 
38     pargs->clear();
39     return(0);
40 }

The available command-line arguments are defined as an array of KCmdLineOptions
objects on line 5. Each option definition consists of three strings. The first string is
the letter (or letters) that appear on the command line, the second is a brief descrip-
tion of the option, and the third is an optional initial value string. The array of options
is terminated by an entry containing three null strings on line 12.

The call to the static method init() on line 18 initializes the static data of the
KCmdLineArgs class. The first two arguments are the standard argc and argv vari-
ables from the C++ command line. These are followed by the name of the program,
a brief description of the program, and the program’s current version number.

The call to addCmdLineOptions() on line 22 stores the KCmdLineOptions table
information inside the KCmdLineArgs class. This list of options, along with the 
predefined ones inside the KCmdLineArgs class, is all the information needed 
to determine the value for all the possible option settings.

The call to the static method parseArgs() on line 23 validates the command line
against the defined options. If there are no errors, this method returns a pointer 
to a KCmdLineArgs object with the argument values prepared for retrieval by 
your program. If an invalid argument is found on the command line, the program
displays an error message and halts the program.

The -x option, defined on line 6, is a binary flag. That is, it carries no information
other than whether or not it appeared on the command line. The call to isSet()
on line 25 will return TRUE if the value appeared on the line, and return FALSE if not. 

4682-1 ch15.f.qc  11/13/00  14:13  Page 363



364 Part II ✦ Step by Step

The -o option, defined on line 7, is an option requiring that a value follow it on 
the command line. The definition supplies the default value string that will be 
used if one is not supplied on the command line. The call to getOption() on 
line 29 retrieves the argument value, whether or not it is the default.

If the name of an option is more than one character in length, it requires a double
dash on the command line. The --longbin option defined on line 8 is a binary flag
that is tested by the call to isSet() on line 31. The --longdata option requires
that data accompany it, and its value is returned by the call to getOption() on 
line 35.

Lines 10 and 11 are an example of defining two flags that mean the same thing. 
By leaving both the second and third arguments as null pointers, the -t option
becomes a synonym for the --twoforms option. You can use either one on the
command line, and inside the program. 

The call to clear() on line 38 is not really necessary in this example because 
the program is about to exit, but you may find this method useful to free allocated
memory in cases where the argument data is very large.

With this example, the following command line specifies two of the flags:

commandline -x --longdata /mnt/fred

The text displayed by the program looks like this:

-x is set
-o is set to /dev/null
--longbin is not set
--longdata is set to /mnt/fred

If there is an error, the call to parseArgs() on line 23 halts the program and displays
a message. For example, the following command line specifies an unknown flag:

commandline -x -j

The output includes the name of the program and specifies the unknown option 
like this:

commandline: Unknown option ‘-j’.
commandline: Use --help to get a list of available

command line options.

Using the --help option results in a complete list of the available options:

Usage: commandline [Qt-options] [KDE-options] [options] 

Example of command line parsing

4682-1 ch15.f.qc  11/13/00  14:13  Page 364



365Chapter 15 ✦ Interprocess Communications and Applets

Generic options:
--help                    Show help about options
--help-qt                 Show Qt specific options
--help-kde                Show KDE specific options
--help-all                Show all options
--author                  Show author information
-V, --version             Show version information
--                        End of options

Options:
-x                        A binary option
-o <name>                 An option with data [/dev/null]
--longbin                 A binary option
--longdata <name>         An option with data [/dev/null]
-t, --twoforms            Two forms of a binary option

A Unique Application
Certain applications need to guard against having more than one copy of them-
selves being executed at any one time. This is achieved by having an application
attempt to register with the DCOP server and, if it finds itself already registered,
assume that another copy of itself is already running. The following example uses
KUniqueApplication instead of KApplication to guarantee that there will never
be more than one instance of the program:

Unique
1 /* unique.cpp */
2 
3 #include <kuniqueapp.h>
4 #include <kaboutdata.h>
5 #include <kcmdlineargs.h>
6 #include <qlabel.h>
7 #include <iostream.h>
8 
9 static KCmdLineOptions options[] = {
10     {“x”,”A Binary option”,0},
11     {0,0,0}
12 };
13 
14 int main(int argc,char **argv)
15 {
16     KAboutData about(“unique”,
17         “Example of unique application”,
18         “0.1”);
19     KCmdLineArgs::init(argc,argv,&about);
20     KCmdLineArgs::addCmdLineOptions(options);
21     KUniqueApplication::addCmdLineOptions();
22 
23     if(!KUniqueApplication::start()) {
24         cout << “Unique is already running” << endl;

4682-1 ch15.f.qc  11/13/00  14:13  Page 365



366 Part II ✦ Step by Step

25         exit(0);
26     }
27 
28     KUniqueApplication kuapp;
29     QLabel *label = new QLabel(“Unique”,0);
30     label->setAlignment(Qt::AlignVCenter
31             | Qt::AlignHCenter);
32     label->show();
33     kuapp.setMainWidget(label);
34     return(kuapp.exec());
35 }

The call to the init() method of KCmdLineArgs on line 19 parses and stores any
command-line arguments. The KAboutData object contains the basic application
definition strings — the program name, a brief descriptive name, and the version
number. The call to addCmdLineOptions() on line 20 is used to define the options
declared in the table declared on line 9, and the call to addCmdLineOptions() on
line 21 includes any options that are specified to the KUniqueApplication class.

The call to start() on line 23 is only necessary if you need to know whether this
instance of the program is going to run, or if it is going to be terminated because it
is not unique. If you don’t make the call to start(), and a copy of the program is
already running, this program will silently halt when the attempt is made to create
the KUniqueApplication object on line 28.

The KUniqueApplication class uses KApplication as a base class, so the kuapp
object created on line 28 can be treated as if it were a KApplication object. A
QLabel widget is created and installed as the main window widget on lines 29
through 33, and the application’s execution loop is invoked on line 34.

An Example Applet
An applet is a program that displays a single small window; and the window is in
the KDE panel, or kicker, that normally appears at the bottom of the display. Other
that this windowing limitation, an applet can be as large and as complicated as any
other program.

The follow example applet displays a panel window containing some text, and it
responds to a mouse button by starting the kmail application. This is a very simple
applet. To be useful, it would be necessary to add safeguards to prevent the applica-
tion from being accidentally started several times, and supply some sort of feedback
so the user will know that the applet is responding to the mouse.

Because the panel can be configured to show itself either vertically or horizontally,
and because the window sizing rules are slightly different between the two orienta-
tions, it is necessary for the applet to tell the panel what its size is for each of 
the orientations. 

4682-1 ch15.f.qc  11/13/00  14:13  Page 366



367Chapter 15 ✦ Interprocess Communications and Applets

MailApplet Header
1 /* mailapplet.h */
2 #ifndef MAILAPPLET_H
3 #define MAILAPPLET_H
4 
5 #include <qfontmetrics.h>
6 #include <kpanelapplet.h>
7 
8 class MailApplet: public KPanelApplet
9 {
10     Q_OBJECT
11 public:
12     MailApplet(QWidget *parent=0,const char *name=0);
13     int widthForHeight(int height);
14     int heightForWidth(int width);
15     void about();
16     void help();
17     void preferences();
18 protected:
19     void paintEvent(QPaintEvent *e);
20     void mousePressEvent(QMouseEvent *e);
21 };
22 
23 #endif

The base class of an applet is KPanelApplet. Because KPanelApplet uses QWidget
as one of its base classes, your code will have direct access to the window. The
macro Q_OBJECT on line 10 is used by the MOC compiler, just as with any other 
KDE windowing application, so you can use the standard form of slots and signals.
The methods widthForHeight() and heightForWidth() are declared as virtual
methods in the base class, so they must be implemented by the applet.

MailApplet
1 /* mailapplet.cpp */
2 #include <kapp.h>
3 #include <kcmdlineargs.h>
4 #include <kmessagebox.h>
5 #include <kaboutdialog.h>
6 #include <qpainter.h>
7 #include <stdlib.h>
8 #include “mailapplet.h”
9 
10 #define vText “VERT”
11 #define hText “HORIZ”
12 
13 int main(int argc,char **argv)
14 {
15     KCmdLineArgs::init(argc,argv,
16         “mailapplet”,

4682-1 ch15.f.qc  11/13/00  14:13  Page 367



368 Part II ✦ Step by Step

17         “Mail Applet Example”,
18         “Version 0.0”);
19     KApplication app;
20     MailApplet *applet = new MailApplet(0,”mailapplet”);
21     app.setMainWidget(applet);
22     applet->init(argc,argv);
23     return(app.exec());
24 }
25 MailApplet::MailApplet(QWidget *parent,const char *name)
26         : KPanelApplet(parent,name)
27 {
28     setActions(About | Help | Preferences);
29     setFont(QFont(“Courier”,16,QFont::Bold));
30 }
31 void MailApplet::about()
32 {
33     KAboutDialog *about = new KAboutDialog(0,”mailapplet”);
34     about->exec();
35 }
36 void MailApplet::help()
37 {
38     KMessageBox::information(0,
39             “The MailApplet Help Dialog”);
40 }
41 void MailApplet::preferences()
42 {
43     KMessageBox::information(0,
44             “The MailApplet Preferences Dialog”);
45 }
46 int MailApplet::heightForWidth(int width)
47 {
48     QFontMetrics fm = fontMetrics();
49     return(fm.height());
50 }
51 int MailApplet::widthForHeight(int height)
52 {
53     QFontMetrics fm = fontMetrics();
54     return(fm.width(hText));
55 }
56 void MailApplet::paintEvent(QPaintEvent *e)
57 {
58     QPainter p(this);
59     QFontMetrics fm = fontMetrics();
60     if(orientation() == Vertical) {
61         int y = height() / 2;
62         y += (fm.ascent() - fm.descent()) / 2;
63         int x = (width() - fm.width(vText)) / 2;
64         p.drawText(x,y,vText);
65     } else {
66         int y = height() / 2;
67         y += (fm.ascent() - fm.descent()) / 2;

4682-1 ch15.f.qc  11/13/00  14:13  Page 368



369Chapter 15 ✦ Interprocess Communications and Applets

68         int x = (width() - fm.width(hText)) / 2;
69         p.drawText(x,y,hText);
70     }
71 }
72 void MailApplet::mousePressEvent(QMouseEvent *e)
73 {
74     system(“kmail &”);
75 }

An applet is very much like any other application. The main difference is that the
main widget uses the KPanelApplet class for its base class (which, in turn, uses
QWidget as its base class).

The mainline of the applet, beginning on line 13, uses KCmdLineArgs to read any
command-line information and to initialize the descriptive text information. On line
19, a KApplication object is created without arguments because it uses the global
information stored by the init() method of KCmdLineArgs. The main widget of this
application is created on lines 20 and 21. On line 22, the call to the init() method
of the KPanelApplet base class of the MailApplet passes any command-line 
arguments to the applet.

The MailApplet constructor on line 25 passes the parent widget and the applet
name to the KPanelApplet constructor. The call to setActions() on line 28 speci-
fies which of the three optional menu items are to be included on the applet menu.
(To make this menu appear, use the right mouse button on the bar that moves an
applet.) In this example, all three of the optional menu items will appear. The call 
to setFont() on line 29 sets the default font of the widget.

Because the About option was specified by setActions() on line 28, the about()
method on line 31 is called whenever the user selects “About” from the menu. This
example simply displays an empty About box. In the same way, the “Help” and
“Preferences” menu items cause the help() and preference() methods, on lines
36 and 41, to be called because both Help and Preference were specified in the
call to setActions().

When the panel is oriented horizontally, all of the applets have a fixed height, but
can vary in width. To determine the width, a call is made to the method widthFor
Height() on line 51. In case your applet needs it to make size determinations, 
the value of the height is supplied and this method must calculate and return 
the width. In this example, the width is simply the horizontal extent of the text, 
as shown in Figure 15-2.

Figure 15-2: An applet with the panel oriented horizontally

4682-1 ch15.f.qc  11/13/00  14:13  Page 369



370 Part II ✦ Step by Step

When the panel is oriented vertically, the applets all have a fixed width, but each
one can specify its own height. To do this, the method heightForWidth() on line
46 is called. In this example, the height is that of the text being displayed, as shown
in Figure 15-3. 

Figure 15-3: An applet with the panel oriented vertically

The paintEvent() method, on line 56, is called whenever the widget needs 
to be drawn. The orientation() method on line 60 returns either Vertical
or Horizontal depending on the orientation of the panel. In this example, text is
chosen that describes the orientation, and the position of the text is calculated 
so it will appear in the center of the applet window.

This example implements the mousePressEvent() method on line 72 and responds
to any mouse click by starting the kmail application.

Summary
Ease of communications among applications can be very important in systems that
are complex enough to require more than one running program. Furthermore, using 
a standard method enables communication with applications written as part of other
projects. This chapter explored the following:

✦ KDE sends and receives interprocess messages though the intermediate 
background process named dcopserver.

✦ Using the KCmdLineArgs class to read and process command-line arguments
simplifies the task of programming command-line parsing, and standardizes
the argument format for all KDE applications.

✦ Using KUniqueApplication in place of KApplication ensures that only one
copy of your program is running at any one time.

The following chapter describes a few general utility classes that you can employ 
to handle tasks such as read and writing files, and manipulating date and time 
information.

✦ ✦ ✦

4682-1 ch15.f.qc  11/13/00  14:13  Page 370



Some General
Utility Classes

A long with the classes used for creating a GUI interface
are some utility classes that come in handy for some

other tasks. In particular, the ability to quickly and efficiently
work with strings of characters can be very important. With
so much string manipulation involved in displaying and
retrieving data, programming the string handling can be very
time-consuming without some facilities to make the job easier.

Another issue that often arises in programming an application
is the ability to handle calendar and clock arithmetic. While
there is always an operating system call that will return the
time in some form or another, the ability to perform sophisti-
cated operations on the time values can take a lot of program-
ming — for example, if you have a pair of dates, how can you
determine how many days are between them?

Most large data files are given over to a database package for
storage and retrieval, but most programs of any size use small
text files to contain special data. Although the C and C++ stan-
dard languages supply some very simple ways to read and
write these files, there is still the problem of formatting and
unformatting the data they contain.

This chapter covers some very handy classes that go a long
way toward solving these problems. While it is by no means a
complete list of all the classes available in Qt, it covers a col-
lection of some of the core classes — some of the most obvi-
ously useful ones.

The String Classes
A lot of programming involves string manipulation. This is
true of all programming, but it is particularly true of program-
ming for a user interface. The data is converted into strings to

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Manipulating strings
by using the string
classes

Running a timer that
notifies your program
when it expires

Marking the current
time and checking for
elapsed time later

Performing date and
calendar arithmetic

Reading text from 
a file

Writing text to a file

✦ ✦ ✦ ✦

4682-1 ch16.f.qc  11/13/00  14:13  Page 371



372 Part II ✦ Step by Step

be displayed, and the data entered by the user is converted from strings of charac-
ters to some internal data form. Making all of this easier to handle are some special
string handling classes.

Examining a QString
The QString class is probably the most fundamental string class, and the one you
should probably be using. The QString class has a large number of methods that
can be used for string manipulation, and it stores the data internally as Unicode.

There is no incompatibility between Unicode and the ASCII character set, except
that Unicode contains a lot more characters. The standard 7-bit ASCII character set
is limited to 127 characters, which include the Latin alphabet, digits, punctuation,
and a few control characters (such as Carriage Return and Escape). The Unicode
standard uses 16-bit characters, so it can contain up to 65,536 unique characters.
However, the first 127 characters of the Unicode character set (numeric values 0
through 127) are the same as the ASCII character set, so it is trivial to convert ASCII
into Unicode. It is also trivial to convert Latin character Unicode into ASCII.

For more information about using Unicode, see Chapter 17.

The following example shows some of the methods available to locate and extract
sections of a string:

1 /* stringexamine.cpp */
2 #include <qstring.h>
3 #include <iostream.h>
4 
5 int main(int argc,char **argv)
6 {
7     QString qstring;
8     QChar qchar;
9 
10     qstring =
11       “There is much more to KDE than just a pretty face.”;
12 
13     cout << qstring << endl;
14     cout << “The string contains “
15             << qstring.length() << “ characters.” << endl;
16     qchar = qstring[4];
17     cout << “The 5th charater is ‘“
18             << (char)qchar.unicode() << “‘.” << endl;
19     cout << “The first ‘u’ is at “
20             << qstring.find(‘u’) << “.” << endl;
21     cout << “The last ‘u’ is at “
22             << qstring.findRev(‘u’) << “.” << endl;

Cross-
Reference

4682-1 ch16.f.qc  11/13/00  14:13  Page 372



373Chapter 16 ✦ Some General Utility Classes

23     cout << “The first ‘re’ is at “
24             << qstring.find(“re”) << “.” << endl;
25     cout << “The last ‘re’ is at “
26             << qstring.findRev(“re”) << “.” << endl;
27     cout << “There are “
28             << qstring.contains(‘e’) << “ ‘e’s.” << endl;
29     cout << “There are “
30             << qstring.contains(“re”) << “ ‘re’s.” << endl;
31     cout << “The leading 7 characters are ‘“
32             << qstring.left(7) << “‘.” << endl;
33     cout << “The trailing 7 characters are ‘“
34             << qstring.right(7) << “‘.” << endl;
35     cout << “The 8 characters at index 22 are ‘“
36             << qstring.mid(22,8) << “‘.” << endl;
37 
38     return(0);
39 }

The output from this program looks like the following:

There is much more to KDE than just a pretty face.
The string contains 50 characters.
The 5th charater is ‘e’.
The first ‘u’ is at 10.
The last ‘u’ is at 32.
The first ‘re’ is at 3.
The last ‘re’ is at 39.
There are 5 ‘e’s.
There are 3 ‘re’s.
The leading 7 characters are ‘There i’.
The trailing 7 characters are ‘y face.’.
The 8 characters at index 22 are ‘KDE than’.

There are a variety of constructors that can be used to create a QString. A QString
can be created from a simple char array, a QByteArray, a QChar, an array of QChar
objects, another QString, or by specifying nothing at all (resulting in a string of zero
length). A QChar object is a wrapper for a single Unicode character, and is described
in more detail in the next chapter.

There are a few overloaded operators that provide string manipulation. On lines 10
and 11 of this example, the assignment operator is used to convert a character
string to Unicode and store it in the QString object. There are also assignment
operator overloads for QString, QCString, QChar, and char. Similarly, the +=
operator can be used to append a QString, QChar, or char onto the end of an
existing QString.

The find() methods on lines 20 and 23 scan from the beginning of the string to
find the first occurrence of a character, or a string of characters, and return the
index to the start of the located substring. The findRev() methods on lines 22 

4682-1 ch16.f.qc  11/13/00  14:13  Page 373



374 Part II ✦ Step by Step

and 26 scan from the end of the string to find the last occurrence, and return the
index of the start of the substring. The contains() methods on lines 28 and 30
scan the entire string and return a count of the number of occurrences of a charac-
ter or a substring.

The methods left() and right() on lines 32 and 34 return a QString containing
the specified number of characters found at the beginning or end of a string. The
mid() method on line 36 returns a QString containing the specified number of
characters from an index point of the string. (In this example, the index is 22 and
the character count is 8.)

Modifying a QString
A number of methods can be used to modify the contents of a QString. The follow-
ing example demonstrates some of the more useful ones:

1 /* stringmodify.cpp */
2 #include <qstring.h>
3 #include <iostream.h>
4 
5 QString init(QString str)
6 {
7     str = “There is more to KDE than a pretty face.”;
8     return(str);
9 }
10 
11 int main(int argc,char **argv)
12 {
13     QString qstring;
14 
15     cout << “Unchanged: “
16             << init(qstring) << endl;
17     cout << “Uppper case: “
18             << init(qstring).upper() << endl;
19     cout << “Lower case: “
20             << init(qstring).lower() << endl;
21     cout << “Insert ‘X’: “
22             << init(qstring).insert(10,’X’) << endl;
23     cout << “Insert ‘ABC’: “
24             << init(qstring).insert(10,”ABC”) << endl;
25     cout << “Prepend ‘X’: “
26             << init(qstring).prepend(‘X’) << endl;
27     cout << “Prepend ‘ABC’: “
28             << init(qstring).prepend(“ABC”) << endl;
29     cout << “Append ‘X’: “
30             << init(qstring).append(‘X’) << endl;
31     cout << “Append ‘ABC’: “
32             << init(qstring).append(“ABC”) << endl;
33     cout << “Remove 10: “
34             << init(qstring).remove(15,10) << endl;

4682-1 ch16.f.qc  11/13/00  14:13  Page 374



375Chapter 16 ✦ Some General Utility Classes

35     cout << “Replace 10: “
36             << init(qstring).replace(15,10,”ABC”) << endl;
37 
38     return(0);
39 }

The output looks like this:

Unchanged: There is more to KDE than a pretty face.
Uppper case: THERE IS MORE TO KDE THAN A PRETTY FACE.
Lower case: there is more to kde than a pretty face.
Insert ‘X’: There is mXore to KDE than a pretty face.
Insert ‘ABC’: There is mABCore to KDE than a pretty face.
Prepend ‘X’: XThere is more to KDE than a pretty face.
Prepend ‘ABC’: ABCThere is more to KDE than a pretty face.
Append ‘X’: There is more to KDE than a pretty face.X
Append ‘ABC’: There is more to KDE than a pretty face.ABC
Remove 10: There is more t a pretty face.
Replace 10: There is more tABC a pretty face.

This example uses the init() function on line 5 to initialize the string because
each of the QString methods modifies the contents of the QString object.

The upper() and lower() methods on lines 18 and 20 convert every alphabetical
character in a string to either uppercase or lowercase. There is no change to any
characters other than those that are alphabetical and are the opposite case of the
method.

The insert() methods on lines 22 and 24 lengthen the string by shifting a portion
of the string to the right by the number of characters to be inserted. The character,
or characters, passed as arguments are then inserted into the hole left in the string.

The prepend() methods on lines 26 and 28 lengthen the string by shifting all of the
characters of the string to the right by the number of characters to be inserted. The
character, or characters, passed as arguments are then inserted into the hole left at
the front of the string.

The append() methods on lines 30 and 32 lengthen the string by the number of
characters to be inserted, and then store the character in the hole left at the right
end of the string.

The remove() method on line 34 shortens the line by shifting the right end of the
string left by the number of specified characters. This overwrites a group of charac-
ters in the middle, effectively removing them from the string. In this example, the
index is 15 and the number of characters removed is 10.

The replace() method on line 36 can be used to lengthen the string, shorten it, 
or leave it the same length. In any case, some of the characters in the string are
replaced. The process is functionally the same as a remove() followed by an

4682-1 ch16.f.qc  11/13/00  14:13  Page 375



376 Part II ✦ Step by Step

insert(). The characters to the right of the index point (in this example, 15) are
shifted to the right or left depending on the number of characters to be inserted
and removed (in this example, the shift is to the left by 7 characters because 10 are
to be removed and 3 inserted). The specified string is then used to overwrite the
line at the point of the index.

QString Number Conversion
Included as part of the QString class are some direct conversion methods between
numbers and character representations of numeric values. The following example
demonstrates how they work:

1 /* stringnumber.cpp */
2 #include <qstring.h>
3 #include <iostream.h>
4 
5 int main(int argc,char **argv)
6 {
7     QString qstring;
8     bool Ok;
9 
10     int inum = 9421;
11     qstring.setNum(inum);
12     cout << “Short string: “ << qstring << endl;
13     inum = qstring.toInt(&Ok);
14     cout << “Short value: “ << inum << endl;
15 
16     double dnum = 2813.8282190;
17     qstring.setNum(dnum);
18     cout << “Double string at 6: “ << qstring << endl;
19     dnum = qstring.toDouble(&Ok);
20     cout << “Double value at 6: “ << dnum << endl;
21 
22     dnum = 2813.8282190;
23     qstring.setNum(dnum,’g’,9);
24     cout << “Double string at 9: “ << qstring << endl;
25     dnum = qstring.toDouble(&Ok);
26     cout << “Double value at 9: “ << dnum << endl;
27 
28     ulong ulnum = 0xCFA90B2;
29     qstring.setNum(ulnum,16);
30     cout << “Ulong string: “ << qstring << endl;
31     ulnum = qstring.toULong(&Ok,16);
32     cout << “Ulong value: “ << ulnum << endl;
33 
34     qstring.sprintf(“The int is %d and the long is %lu”,
35             inum,ulnum);
36     cout << qstring << endl;

4682-1 ch16.f.qc  11/13/00  14:13  Page 376



377Chapter 16 ✦ Some General Utility Classes

37 
38     return(0);
39 }

The output from this program looks like the following:

Short string: 9421
Short value: 9421
Double string at 6: 2813.83
Double value at 6: 2813.83
Double string at 9: 2813.82822
Double value at 9: 2813.83
Ulong string: cfa90b2
Ulong value: 217747634
The int is 9421 and the long is 217747634

This example shows just a few of the data types. Along with the int, double, and
ulong data types shown here, the same technique can be used for long, uint,
short, ushort, char, and QChar.

The call to setNum() on line 11 converts the value of an int into a string of charac-
ters, as displayed by cout on line 12. The call to toInt() on line 13 reads the char-
acters of the QString and converts them to an int value, as displayed on line 14.
The bool argument passed to toInt() will result in TRUE if the conversion was suc-
cessful, or FALSE if it was not (for example, if there were no digits in the string).

The call to setNum() on line 17 converts the double value into a string. The default
is for the number to contain six digits, as shown by the cout statement on line 18.
Notice that to reduce the number of digits, the value is rounded instead of simply
truncated. When converted back from a string to its numeric form by the call 
to toDouble() on line 19, it only contains the six digits that were stored in the
character string.

Lines 22 through 26 use the same double value as before, but this time the number
of digits is set to 9, resulting in a longer string and a bit more accuracy. The letter g
is used to format the string. This is the default, but the standard sprintf() real
number options are available; that is, f, F, e, E, g, or G.

As shown by the call to setNum() on line 29, it is possible to convert values in
bases other than 10. This example converts a 32-bit hexadecimal number from a
ulong type to a string. Calling toULong() on line 31 converts the string of hexadec-
imal characters back into the binary form. The setNum() method converts the
numbers into all lowercase letters, but toULong() will convert back from both 
lowercase and uppercase.

The traditional sprintf() function is available, as shown on line 34. The format of
the arguments is the same as in standard C, and the resulting string is stored inside
the QString object.

4682-1 ch16.f.qc  11/13/00  14:13  Page 377



378 Part II ✦ Step by Step

The QString Translator
The built-in translator can be very convenient for constructing strings that are to
be displayed as the text of a dialog, or as the text of a button or label. It is similar to
the sprintf() function, but it is somewhat easier to use because it automatically
detects different data types. The following example shows how it works with a pair
of int values:

1 /* stringargs.cpp */
2 #include <kapp.h>
3 #include <qlabel.h>
4 
5 class StringArgs: public QWidget
6 {
7 public:
8     StringArgs(QWidget *parent=0,const char *name=0);
9 };
10 int main(int argc,char **argv)
11 {
12     KApplication app(argc,argv,”stringargs”);
13     StringArgs stringargs;
14     app.setMainWidget(&stringargs);
15     stringargs.show();
16     return(app.exec());
17 }
18 
19 StringArgs::StringArgs(QWidget *parent,const char *name)
20         : QWidget(parent,name)
21 {
22     int y = 60;
23     int x = 210;
24     QString str;
25 
26     resize(x,y);
27     str = tr(“Width is %1 and height is %2”).arg(x).arg(y);
28     QLabel *label = new QLabel(str,this);
29     label->setGeometry(20,20,170,20);
30 }

The tr() method on line 27 creates a QString object and uses the two arg()
methods to convert data to strings and insert the strings at the positions tagged as
%1 and %2. There can be as many of the arg() methods as necessary to convert all
the data. The arg() methods are positional, with the first one corresponding to %1,
the second to %2, and so on. The window displayed by this program is shown in
Figure 16-1.

Figure 16-1: Data conversion 
and formatting

4682-1 ch16.f.qc  11/13/00  14:13  Page 378



379Chapter 16 ✦ Some General Utility Classes

Other than the int data types in this example, there are overloaded arg() meth-
ods for long, ulong, uint, short, ushort, char, QChar, QString, and double.
This kind of translation can only be used inside an object that inherits from
QObject because the translation method is QObject::tr().

The White Space of a QString
In character strings, the whitespace characters are tab (\t), newline (\n), form feed
(\f), carriage return (\r), and the space character. There are a couple of handy
methods for cleaning up the white space in a character string. The following string
is an example:

“    This has\t tabs \nand\nnewlines in it    \n    “

The white space can be removed from the front and back of the string as follows:

str.stripWhiteSpace();

The result looks like this:

“This has\t tabs \nand\nnewlines in it”

The white space from the interior of the line, as well as the front and back, can be
cleaned up as follows:

str.simplifyWhiteSpace();

The front and back are trimmed, and multiple internal whitespace characters are
reduced to single spaces. The result looks like this:

“This has tabs and newlines in it”

QStringList
A QStringList object is a variable length array of QString objects. You can per-
form some special operations on it that can make it very useful. The following
example demonstrates ways to insert strings into the array, and some ways that 
the strings can be manipulated:

1 /* stringlist.cpp */
2 #include <qstringlist.h>
3 #include <iostream.h>
4 
5 int main(int argc,char **argv)
6 {
7     QStringList list;
8 

4682-1 ch16.f.qc  11/13/00  14:13  Page 379



380 Part II ✦ Step by Step

9     list.append(“First”);
10     list += “Second”;
11     list << “Third” << “Fourth” << “Fifth”;
12     for(int i=0; i<list.count(); i++)
13         cout << list[i] << endl;
14 
15     QString joined = list.join(“^”);
16     cout << endl << joined << endl;
17     
18     list << “Apple” << “apple”;
19     list.sort();
20     cout << endl;
21     for(int i=0; i<list.count(); i++)
22         cout << list[i] << endl;
23 
24     list = list.grep(“e”);
25     cout << endl;
26     for(int i=0; i<list.count(); i++)
27         cout << list[i] << endl;
28 
29     list = QStringList::split(“|”,”Make|a|list|from|this”);
30     cout << endl;
31     for(int i=0; i<list.count(); i++)
32         cout << list[i] << endl;
33 
34     list[1] = “This replaces the ‘a’ string”;
35     cout << endl;
36     for(int i=0; i<list.count(); i++)
37         cout << list[i] << endl;
38 
39     return(0);
40 }

The output from this program looks like the following:

First
Second
Third
Fourth
Fifth

First^Second^Third^Fourth^Fifth

Apple
Fifth
First
Fourth
Second
Third
apple

4682-1 ch16.f.qc  11/13/00  14:13  Page 380



381Chapter 16 ✦ Some General Utility Classes

Apple
Second
apple

Make
a
list
from
this

Make
This replaces the ‘a’ string
list
from
this

Lines 9 through 11 show the different ways a string can be appended to the end of
the array. The append() method and the += operator can both be used to add a
string at the end of the array. The << operator can be used for the same thing; it can
also be used to add several strings as a single operation. You can see from the out-
put that the strings are stored in the order they are appended to the code. The []
operator is overloaded to retrieve strings according to their index value.

The join() method on line 15 creates one long string from all the members of the
array by inserting the specified separator string between them.

Two more members are appended to the end of the array on line 18. The sort()
method on line 19 sorts the array of strings using the numeric values of the charac-
ters. This is a very fast sort, and it can be useful in many instances, but there are
times when the order may not be what you want. For example, as shown in the 
output, uppercase letters always come before lowercase letters.

The call to grep() on line 24 creates a new QStringList object that contains only
the characters matched by the specified expression on the method call. In this
example, only strings containing the letter e are stored in the new QStringList
object.

A QStringList object can be created from a single string by breaking it up using a
specified delimiter string. There is a third argument (not used in the example) that
is set to TRUE if two back-to-back delimiters should be considered as one, or set to
FALSE if the zero-length strings should be allowed. The default is TRUE.

The use of the [] operator on line 34 shows that it is possible to replace an existing
string by using its index. Care must be taken, however, that the subscript value is
valid — the size of the array cannot be modified this way.

4682-1 ch16.f.qc  11/13/00  14:13  Page 381



382 Part II ✦ Step by Step

Running a Timer
The bouncer program in Chapter 13 includes an example of using a QTimer object
to implement a one-shot interval timer, but there is another (possibly simpler) way
to run a continuous timer, one that uses events instead of signals. The following
example shows how you can implement continuous timers by using the methods 
in the QObject class:

1 /* stringlist.cpp */
2 #include <qapplication.h>
3 #include <iostream.h>
4 
5 class TwoTimer: public QObject
6 {
7 public:
8     TwoTimer(QObject *parent=0,const char *name=0);
9 private:
10     int ID1;
11     int ID2;
12     bool timer2;
13 protected:
14     void timerEvent(QTimerEvent *event);
15 };
16 
17 TwoTimer::TwoTimer(QObject *parent,const char *name)
18         : QObject(parent,name)
19 {
20     ID1 = startTimer(2000);
21 }
22 void TwoTimer::timerEvent(QTimerEvent *event)
23 {
24     if(event->timerId() == ID1) {
25         cout << “Timer 1” << endl;
26         if(timer2) {
27             killTimer(ID2);
28             timer2 = FALSE;
29         } else {
30             ID2 = startTimer(200);
31             timer2 = TRUE;
32         }
33     } else if(event->timerId() == ID2) {
34         cout << “Timer 2” << endl;
35     }
36 }
37 
38 int main(int argc,char **argv)
39 {
40     QApplication app(argc,argv);
41     TwoTimer *to = new TwoTimer();
42     return(app.exec());
43 }

4682-1 ch16.f.qc  11/13/00  14:13  Page 382



383Chapter 16 ✦ Some General Utility Classes

You can run as many simultaneous timers as you need. Each timer, while it is run-
ning, is assigned a unique ID number. The TwoTimer class in this example runs two
timers and stores the ID numbers in ID1 and ID2 on lines 10 and 11.

The constructor, beginning on line 17, starts one of the timers running by calling
startTimer() on line 20. This timer is set to trigger every 2,000 milliseconds (two
seconds), and has its ID number stored as ID1.

The method timerEvent() is a protected method defined in the QObject class,
and is overridden on line 22 of this example. Every timer calls this same event
method. The QTimerEvent object contains the ID number of the timer, so it is rela-
tively simple to determine which timer has expired and caused the method call.

In this example, whenever the first timer expires, the second timer is either started
or stopped. On line 26, the Boolean timer2 is tested. If it is TRUE, the second timer
is running; and it is stopped by calling killTimer(). If it is FALSE, the second timer
is started with a call to startTimer(), with an interval time of 200 milliseconds
(2/10 of a second).

The mainline of the program, beginning on line 38, creates a QApplication object,
which initializes the Qt system that will control the timers. After the timer is cre-
ated, a call is made to the exec() method of QApplication object. The timing is 
all managed inside the exec() loop.

There is one other method that deals with timers, but it is not used in this example.
A call to the method killTimers() will stop all timers.

The QDate Class
The following example demonstrates the QDate class, which is capable of containing
any date from 1752 to about the year 8000. The reason why 1752 is the lower limit is
because that is the year marking the beginning of the Gregorian calendar, with the
leap year pattern we use today. (To see how the calendar was adjusted in that year,
enter cal 1752 from the command line and take a look at September.) The year can
also be entered into a QDate object as a two-digit value (00 to 99), and the century
1900 will be assumed. I suppose there was some solution to the Y2K problem that
required that it be this way, but it just means you need to be careful now.

1 /* showdate.cpp */
2 #include <qdatetime.h>
3 #include <qstring.h>
4 #include <iostream.h>
5 
6 int main(int argc,char **argv)
7 {

4682-1 ch16.f.qc  11/13/00  14:13  Page 383



384 Part II ✦ Step by Step

8     if(argc != 4) {
9         cout << “Usage: showdate <yy> <mm> <dd>” << endl;
10         return(1);
11     }
12     QString yy = argv[1];
13     QString mm = argv[2];
14     QString dd = argv[3];
15     QDate date(yy.toInt(),mm.toInt(),dd.toInt());
16     if(!date.isValid()) {
17         cout << “Invalid date” << endl;
18         return(2);
19     }
20 
21     cout << “Date: “ << date.toString() << endl;
22     cout << “yyyy/mm/dd: “ << date.year() << “/”
23         << date.month() << “/” << date.day() << endl;
24     cout << “Day of week: “ << date.dayOfWeek() << “ (“
25         << date.dayName(date.dayOfWeek()) << “)” << endl;
26     cout << “Month name: “
27         << date.monthName(date.month()) << endl;
28     cout << “Day of year: “ << date.dayOfYear() << endl;
29     cout << “Days in month: “
30         << date.daysInMonth() << endl;
31     cout << “Days in year: “ << date.daysInYear() << endl;
32 
33     return(0);
34 }

To run this program, enter the year, month, and day on the command line:

showdate 1964 3 12

The output from the program looks like the following:

Date: Thu Mar 12 1964
yyyy/mm/dd: 1964/3/12
Day of week: 4 (Thu)
Month name: Mar
Day of year: 72
Days in month: 31
Days in year: 366

There are two ways to store a date into a QDate object. One way is to specify the
year, month, and day values on the constructor, as shown in this example. The
other way is to specify the year, month, and day values in a call to setYMD(). Care
must be taken to ensure that the date is valid before you use the information from a
QDate object. As shown on line 16 of this example, a call to isValid() is all that is
required. Also, the setYMD() method returns a bool value indicating whether the
date is valid.

4682-1 ch16.f.qc  11/13/00  14:13  Page 384



385Chapter 16 ✦ Some General Utility Classes

You can use a static method to create a QDate object containing the current date:

QDate qdate = QDate::currentDate();

You can also adjust a date by specifying a number of days to move forward or back-
ward. For example, use the following line to move the date 15 days into the future:

QDate date2 = date.addDays(15);

If the number of days is negative, the new QDate object will contain a date 15 days
in the past, instead of the future. This is the only date adjustment needed. It is a
simple matter to use the other available values to adjust the date to any specific
point. For example, the following will move the date to the first day of the following
month:

QDate date2 = date.addDays(date.daysInMonth()-date.day()+1);

The number of days, positive or negative, from one date to another can be deter-
mined as follows:

int days = date.daysTo(date2);

Finally, the following group of comparison operators can determine the relationship
between two dates:

if(date1 == date2) . . .
if(date1 != date2) . . .
if(date1 < date2) . . .
if(date1 > date2) . . .
if(date1 <= date2) . . .
if(date1 >= date2) . . .

The QTime Class
The QTime class is simpler than the QDate class in the sense that the counting is
more regular (unlike months and years, hours and minutes all have the same length).
However, the fact that it can be used as an elapsed timer adds some complexity the
QTime class. Here’s an example:

1 /* showtime.cpp */
2 #include <qdatetime.h>
3 #include <iostream.h>
4 #include <unistd.h>
5 
6 int main(int argc,char **argv)
7 {
8     if(argc != 5) {

4682-1 ch16.f.qc  11/13/00  14:13  Page 385



386 Part II ✦ Step by Step

9         cout << “Usage: showtime <hh> <mm> <ss> <ms>”
10             << endl;
11         return(1);
12     }
13     QString hh = argv[1];
14     QString mm = argv[2];
15     QString ss = argv[3];
16     QString ms = argv[4];
17     QTime qtime(hh.toInt(),mm.toInt(),
18             ss.toInt(),ms.toInt());
19     if(!qtime.isValid()) {
20         cout << “Invalid time” << endl;
21         return(2);
22     }
23 
24     cout << “Time: “ << qtime.toString() << endl;
25     cout << “hh:mm:ss.ms: “ << qtime.hour() << “:”
26         << qtime.minute() << “:” << qtime.second() << “.”
27         << qtime.msec() << endl;
28 
29     qtime.start();
30     cout << “Start time: “ << qtime.toString() << endl;
31     sleep(2);
32     int milliseconds = qtime.restart();
33     cout << “Restart time: “ << qtime.toString()
34         << “ (after “ << milliseconds << “ milliseconds)”
35         << endl;
36     for(int i=0; i<5; i++) {
37         cout << “Elapsed: “ << qtime.elapsed() << endl;
38         sleep(1);
39     }
40 
41     return(0);
42 }

The output from this program looks like the following:

Time: 15:04:22
hh:mm:ss.ms: 15:4:22.431
Start time: 08:42:07
Restart time: 08:42:09 (after 2010 milliseconds)
Elapsed: 1
Elapsed: 1010
Elapsed: 2020
Elapsed: 3030
Elapsed: 4040

The QTime constructor has a fourth argument that is the fractional part of a second
in milliseconds (from 0 to 999). This fourth argument is optional and defaults to 0.
To avoid entering a number that is outside the normal range for hours, minutes,

4682-1 ch16.f.qc  11/13/00  14:13  Page 386



387Chapter 16 ✦ Some General Utility Classes

and seconds, you should call the isValid() method to make sure the time is valid
before you try to use the QTime object.

The start() method on line 29 does two things: It loads the QTime object with the
current time and sets an elapsed timer value to 0. You can also create a new QTime
object that contains the current time by calling the static method currentTime():

QTime qtime = QTime::currentTime();

The call to the restart() method on line 32 also sets the QTime object to the cur-
rent time and restarts the elapsed timer, but it returns the value of the elapsed timer,
which is the count of the number of milliseconds since the last call to start() or
restart(). As you can see from the sample output, the elapsed time is 2 seconds
(2,000 milliseconds) plus another 10 milliseconds of overhead before the value is
displayed.

The loop beginning on line 36 makes repeated elapsed() calls and pauses for 
1 second. From the output, you can see that the elapsed time continues to count
upward, and there is a 10-millisecond delay to read and display the elapsed timer.

The elapsed timer is only good for 24 hours, at which time it will automatically
reset to 0. Also, the current time of QTime is based on your computer’s system
clock, so changing the system clock in any way will have an effect on the elapsed
timer. This includes the automatic switching to and from daylight saving time.

You can use either of two methods to adjust the time into the future or the past.
They both operate by creating a new QTime object that contains the new time value:

QTime qtime2 = qtime.addSecs(int seconds);
QTime qtime2 = qtime.addMSecs(int milliseconds);

A negative value will adjust the time into the past, and a positive value will adjust it
into the future. It is valid to add or subtract values sufficient to cause the time to
advance beyond midnight. For example, if the current time is 23:59:45 and you add
30 seconds, the result will be 00:00:15.

The following group of comparison operators can determine the relationship
between two times:

if(time1 == time2) . . .
if(time1 != time2) . . .
if(time1 < time2) . . .
if(time1 > time2) . . .
if(time1 <= time2) . . .
if(time1 >= time2) . . .

Note

4682-1 ch16.f.qc  11/13/00  14:13  Page 387



388 Part II ✦ Step by Step

The QDateTime Class
The QDateTime class is basically a wrapper around a combination of a QDate class
and a QTime class. It has some methods that enable you to operate on the two as if
they were one. The following example demonstrates the basic operations available
in the QDateTime class:

1 /* showtime.cpp */
2 #include <qdatetime.h>
3 #include <iostream.h>
4 #include <time.h>
5 
6 int main(int argc,char **argv)
7 {
8     time_t bintime;
9 
10     QDate qdate(2002,5,12);
11     QTime qtime(04,32,58);
12     QDateTime dt(qdate,qtime);
13     if(!dt.isValid()) {
14         cout << “Invalid QDateTime” << endl;
15         return(2);
16     }
17 
18     cout << “Date and Time: “ << dt.toString() << endl;
19     QDate d = dt.date();
20     cout << “Date: “ << d.toString() << endl;
21     QTime t = dt.time();
22     cout << “Time: “ << t.toString() << endl;
23 
24     QDateTime current;
25     bintime = time((time_t *)0);
26     current.setTime_t(bintime);
27     cout << “Current date and time: “
28         << current.toString() << endl;
29     cout << “Days between: “
30         << current.daysTo(dt) << endl;
31     cout << “Seconds between: “
32         << current.secsTo(dt) << endl;
33 
34     return(0);
35 }

The output from this program looks like the following:

Date and Time: Sun May 12 04:32:58 2002
Date: Sun May 12 2002
Time: 04:32:58
Current date and time: Wed Jun 28 09:51:26 2000
Days between: 683
Seconds between: 58992092

4682-1 ch16.f.qc  11/13/00  14:13  Page 388



389Chapter 16 ✦ Some General Utility Classes

Lines 10 through 12 show the construction of a QDateTime object using both a
QDate and QTime object. There is also a constructor that requires only a QDate
object — internally it constructs a QTime object set to 00:00:00.

The QDate object can be extracted by the call to date(), as shown on line 19. There
is also a setDate() method that can be used to insert a new QDate object. The
same is true for the QTime object with the methods time() (as shown on line 21),
and setTime().

Both the time and date values can be set from the 32-bit system time number, which
is the count of seconds from January 1, 1970. The system call to the time() function
on line 25 returns the value, and the call to the setTime_t() method of QDateTime
is used on line 26 to set the date and time of the QDateTime object.

The call to daysTo() on line 30 returns a count of the number of days between two
dates. In the same way, the call to secsTo() on line 32 returns the count of seconds
for the same period of time.

The following comparison operators can determine the relationship between two
points in time:

if(datetime1 == datetime2) . . .
if(datetime1 != datetime2) . . .
if(datetime1 < datetime2) . . .
if(datetime1 > datetime2) . . .
if(datetime1 <= datetime2) . . .
if(datetime1 >= datetime2) . . .

Writing to a File
The following example uses a QFile object to create a new file and write two lines
of text to it:

1 /* writefile.cpp */
2 #include <qfile.h>
3 
4 int main(int argc,char **argv)
5 {
6     char line1[] = “The first line\n”;
7     char line2[] = “The second line\n”;
8 
9     QFile qfile(“rwfile.txt”);
10     if(qfile.open(IO_WriteOnly)) {
11         for(int i=0; i<strlen(line1); i++)
12             qfile.putch(line1[i]);
13         for(int i=0; i<strlen(line2); i++)
14             qfile.putch(line2[i]);
15         qfile.close();
16     }

4682-1 ch16.f.qc  11/13/00  14:13  Page 389



390 Part II ✦ Step by Step

17 
18     return(0);
19 }

The constructor on line 9 creates the QFile object without making a reference to
the disk drive. At this point, the file may or may not exist.

The QFile class inherits from the QIODevice class, which means that it can be
used to stream input and output. For most purposes, using a QDataStream or
QTextStream object is simpler than using the QFile object directly.

The open() method on line 10 opens the file for write-only, and returns TRUE if suc-
cessful or FALSE if opening the file fails. Opening a file for write-only will create the
file if it does not exist, or truncate it to zero length if it does. The file opening modes
are shown in Table 16-1. These flags can be combined by using the OR operator
between them. For example, to write without buffering, a file could be opened as
IO_Raw | WriteOnly.

Table 16-1
Modes Available for Opening a File

Mode Description

IO_Raw The file is opened without buffering. The default is to use buffering.

IO_ReadOnly The file is opened for reading. If the file does not exist, it is created.

IO_WriteOnly The file is opened for writing only. The file is truncated to zero length,
or a new zero-length file is created.

IO_ReadWrite The file is opened for both reading and writing. An existing file will
not be truncated. A non-existent file will be created.

IO_Append The file is opened for writing, with the next write position being the
end of the file. An existing file will not be truncated. A non-existent
file will be created.

IO_Truncate Truncates the file to zero length.

IO_Translate Files will be translated to and from the DOS format. Writing a newline
character will cause both a carriage return and line feed to be written
to the file. The reading of a carriage return and line feed will be
translated to a single newline character.

All writing is done one byte at a time. The putch() method on lines 12 and 14
writes one character at a time to the file. The close() method on line 15 should be
called when the writing is done — this flushes the buffers to make sure the data gets
written to disk.

Note

4682-1 ch16.f.qc  11/13/00  14:13  Page 390



391Chapter 16 ✦ Some General Utility Classes

Reading from a File
The following example uses the methods of a QFile object to read the lines of text
from an ASCII file:

1 /* readfile.cpp */
2 #include <qfile.h>
3 #include <iostream.h>
4 
5 int main(int argc,char **argv)
6 {
7     char line[80];
8 
9     QFile qfile(“rwfile.txt”);
10     if(qfile.open(IO_ReadOnly)) {
11         while(!qfile.atEnd()) {
12             if(qfile.readLine(line,strlen(line)) > 0)
13                 cout << line;
14         }
15         qfile.close();
16     }
17 
18     return(0);
19 }

The file is opened for reading on line 10. The method atEnd() on line 11 will con-
tinue to return FALSE until the end of the file is reached. The call to readLine() on
line 12 reads a single line of text from the file and stores it into the line character
array. The readLine() method returns a count of the number of characters actu-
ally read. The maximum number of characters read is determined by the second
argument — the total capacity of the line array. If there is an error (or the end-of-
the file is reached), a count of -1 is returned.

You can use other methods to read data from a file directly through a QFile object.
The characters can be read one at a time by calling getch(), which returns the
ASCII character as an int value, and -1 if there is an error (or the end-of-the file is
reached). The following method can be used to read a block of raw (non-text) data:

int count;
char block[1024];
count = qfile.readBlock(block,1024);

This method will transfer up to 1,024 bytes from the file directly into the block. The
return value is the count of actual bytes read, or -1 if there was an error condition.

4682-1 ch16.f.qc  11/13/00  14:13  Page 391



392 Part II ✦ Step by Step

Streaming Text to a File
Writing text to a file is simplified by wrapping the output QFile object in a
QTextStream object. The following example writes three lines of text to a file:

1 /* streamtextout.cpp */
2 #include <qfile.h>
3 #include <qtextstream.h>
4 
5 int main(int argc,char **argv)
6 {
7     char line1[] = “The first line”;
8     char line2[] = “The second line”;
9 
10     QFile qfile(“rwfile.txt”);
11     if(qfile.open(IO_WriteOnly)) {
12         QTextStream stream(&qfile);
13         stream << line1 << endl;
14         stream << line2 << “ and a bit more” << endl;
15         stream << “Multiplying “ << 34 << “ by “ << 86
16             << “ gives “ << 34*86 << endl;
17         qfile.close();
18     }
19 
20     return(0);
21 }

On lines 10 and 11, the QFile object is created and the output file is opened. On
line 12, the QTextStream object is created containing the QFile object. Because
the file is open for output, the output methods and operators of the QTextStream
class can be used to actually write the data.

In this example, the << operator is used to output text to the stream. The output
commands on lines 15 and 16 convert integer values into character strings before
writing them to the file. The resulting output looks like the following:

The first line
The second line and a bit more
Multiplying 34 by 86 gives 2924

Streaming Text from a File
If you wish to read complete lines of text from a file, you probably should use the
readLine() method, as was done with QFile earlier in this chapter. However, you
may want to use a QTextStream if you are reading ASCII data and want to convert it

4682-1 ch16.f.qc  11/13/00  14:13  Page 392



393Chapter 16 ✦ Some General Utility Classes

from character to numeric format, and you know the format of the file. The follow-
ing is an example of formatted text in a file:

orange 255 127 80 72.81 J

The following example reads the line of text while converting each word on the line
into an appropriate data type, and then displays data by re-creating the format of
the input line:

1 /* streamtextin.cpp */
2 #include <qfile.h>
3 #include <qtextstream.h>
4 #include <iostream.h>
5 
6 int main(int argc,char **argv)
7 {
8     QString name;
9     int r;
10     int g;
11     int b;
12     double percent;
13     char code;
14 
15     QFile qfile(“strext.txt”);
16     if(qfile.open(IO_ReadOnly)) {
17         QTextStream stream(&qfile);
18         stream >> name;
19         stream >> r >> g >> b;
20         stream >> percent;
21         stream >> code;
22         cout << name << “ “
23             << r << “ “ << g << “ “ << b << “ “
24             << percent << “ “ << code << endl;
25         qfile.close();
26     }
27 
28     return(0);
29 }

The file is opened for input as a QFile object on lines 15 and 16. The QTextStream
object is created as a wrapper of the QFile object on line 17. The >> operator on
line 18 reads all the characters up until the space is encountered, and stores them
in the QString object named name. The three int values are read by a single state-
ment on line 19. These values could have been read by using three separate state-
ments. Or, you can have your code read the entire line in one statement simply by
chaining the >> operators. After reading the double and char values on lines 20
and 21, the original input line is re-created and written to the standard output on
lines 22 through 24.

4682-1 ch16.f.qc  11/13/00  14:13  Page 393



394 Part II ✦ Step by Step

Summary
The classes described in this chapter are all very useful. Any program of any size
will require some facet of almost everything covered in this chapter. While these
are not the classes that grab the glory by displaying themselves, the work they do
is essential. In this chapter you discovered:

✦ The QString class is very flexible, and is used so much by the other classes
that it becomes one of the most fundamental classes in Qt and KDE software
development.

✦ Because every class inherits from QObject, there is an interval timer available
inside every object. It can be started, stopped, and set to trigger at any spe-
cific interval. It notifies your program when it expires by issuing an event.

✦ The classes QDate, QTime, and QDateTime provide a number of methods that
can be used for calendar and clock arithmetic.

✦ A QFile object can be used to read and write any kind of data to and from 
a file.

✦ A QTextStream object can be used to read and write formatted data to and
from a file.

Among other things, the next chapter includes a description of Unicode and the
QChar class. The QChar class is almost as fundamental as the QString class
described in this chapter. Because the strings and string manipulation utilities of 
Qt and KDE are based on Unicode, supplying multiple translations for an applica-
tion is a very straightforward process.

✦ ✦ ✦

4682-1 ch16.f.qc  11/13/00  14:13  Page 394



Internationalization
and Configuration

The acronym i18n is short for “i-eighteen-letters-n” and
represents the term internationalization. Built into the

KDE development system are some facilities that make pro-
gramming international versions of KDE applications quite
simple. If you follow some basic rules as you write your pro-
gram, preparing translation tables for your application
becomes a straightforward process. Once these tables are cre-
ated, your program will instantly translate itself when it starts
running. You will also find some utilities that not only facili-
tate the initial translation into other languages, but also facili-
tate updating the translations that follow any future changes
to the software.

This chapter explains how you can also set up configuration
files that enable each user to customize an application. These
files can be maintained globally, so every user gets the same
configuration; or locally, so each user can have individual con-
figuration settings.

A Translatable Application
It is remarkably simple to create a KDE application that can be
translated into multiple languages as it runs. By following a few
rules in declaring text that is to be displayed and/or printed,
and having your application test for the presence of a transla-
tion file, your application will be capable of translating itself
into almost any language.

The following example demonstrates how you can write an
application and create translation files for it.

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Marking source text
for translation

Manipulating
translated string text

Creating multiple
language translation
files for a single
application

Understanding
Unicode and how it
can be manipulated

Defining
configuration settings
for customizing an
application

✦ ✦ ✦ ✦

4682-1 ch17.f.qc  11/13/00  14:13  Page 395



396 Part II ✦ Step by Step

TriLang Header
1 /* trilang.h */
2 #ifndef TRILANG_H
3 #define TRILANG_H
4 
5 #include <qwidget.h>
6 #include <qlabel.h>
7 
8 class TriLang: public QWidget
9 {
10     Q_OBJECT
11 public:
12     TriLang(QWidget *parent=0,const char *name=0);
13 private:
14     QLabel *label;
15     enum ButtonChoice { Rock, Paper, Scissors,
16             Clear, Exit };
17     QString emptyString;
18 private slots:
19     void slotButton(int ID);
20 };
21 
22 #endif

This header defines the TriLang widget that is to be displayed as the top-level win-
dow. It includes the enum value definitions used to determine which button has
been clicked.

Every string to be displayed is declared inside a tr() method call, which does the
actual translation. In this example, if a language code is specified on the command
line, an attempt is made to read a file by that name. If text is found, it is translated.
If it is not found, a message window pops up and the program continues to run
without translation.

TriLang
1 /* trilang.cpp */
2 #include <kapp.h>
3 #include <qlayout.h>
4 #include <qhbuttongroup.h>
5 #include <qpushbutton.h>
6 #include <qmessagebox.h>
7 #include <qfileinfo.h>
8 #include “trilang.h”
9 
10 int main(int argc,char **argv)
11 {
12     KApplication app(argc,argv,”trilang”);
13 

4682-1 ch17.f.qc  11/13/00  14:13  Page 396



397Chapter 17 ✦ Internationalization and Configuration

14     QString lang = argv[1];
15     QString langFile = “trilang_” + lang + “.qm”;
16     QFileInfo finfo(langFile);
17     if(finfo.exists()) {
18         QTranslator *qtranslator = new QTranslator(0);
19         qtranslator->load(langFile,”.”);
20         app.installTranslator(qtranslator);
21     } else {
22         QMessageBox::warning(0,”Language File”,
23             “Unable to open language file “ + langFile);
24     }
25 
26     TriLang *trilang = new TriLang();
27     trilang->show();
28     app.setMainWidget(trilang);
29     return(app.exec());
30 }
31 
32 TriLang::TriLang(QWidget *parent,const char *name)
33     : QWidget(parent,name)
34 {
35     QPushButton *button;
36     QVBoxLayout *layout = new QVBoxLayout(this,5);
37 
38     QHButtonGroup *group = new QHButtonGroup(this,”group”);
39     button = new QPushButton(tr(“Rock”),group);
40     group->insert(button,Rock);
41     button = new QPushButton(tr(“Paper”),group);
42     group->insert(button,Paper);
43     button = new QPushButton(tr(“Scissors”),group);
44     group->insert(button,Scissors);
45     button = new QPushButton(tr(“Clear”),group);
46     group->insert(button,Clear);
47     button = new QPushButton(tr(“Exit”),group);
48     group->insert(button,Exit);
49     connect(group,SIGNAL(clicked(int)),
50             this,SLOT(slotButton(int)));
51     layout->addWidget(group);
52 
53     emptyString = tr(“-0-”);
54     label = new QLabel(emptyString,this);
55     label->setAlignment(AlignVCenter | AlignHCenter);
56     layout->addWidget(label);
57 
58     resize(10,10);
59     layout->activate();
60 }
61 void TriLang::slotButton(int ID)
62 {
63     switch(ID) {
64     case Rock:

4682-1 ch17.f.qc  11/13/00  14:13  Page 397



398 Part II ✦ Step by Step

65         label->setText(tr(“Rock breaks scissors”));
66         break;
67     case Paper:
68         label->setText(tr(“Paper covers rock”));
69         break;
70     case Scissors:
71         label->setText(tr(“Scissors cut paper”));
72         break;
73     case Clear:
74         label->setText(emptyString);
75         break;
76     case Exit:
77         kapp->exit(0);
78     }
79 }

Lines 14 through 16 construct the name of a translation file from the code supplied
on the command line. This is normally a two-character code, such as de for German
and en for English, but there is no inherent requirement. However, many applica-
tions follow the naming convention presented here — application name, under-
score, two-letter language code, and a suffix of qm— so it would normally be
prudent for your application to do the same.

The text on line 17 determines whether the file exists. If it does, a QTranslator object
is created on line 18. A QTranslator object is capable of loading and containing trans-
lation tables. Once the QTranslator is loaded, the find() method can be used to
translate a known set of words and phrases. The load() method on line 19 reads the
translation tables stored in the file that was selected by the code on the command
line. The call to installTranslator() on line 20 establishes this new QTranslator
as the one to be used to translate all the strings for this application.

If there is no translation file, the QMessageBox on line 22 notifies the user, but the
program continues with execution. A missing translation file is not an error as far 
as the program is concerned — it will run normally, but without any translations.

A horizontal button group is created on line 38 of the TriLang constructor. The
widget is assigned the internal name “group,” and this name will not be translated.
You could translate it, but there is no need to translate strings that are for internal
use. The only strings that need to be translated are the ones to be displayed.

A QPushButton is created on line 39. The label for the button is declared as “Rock”
and, to make the label translatable, the label is declared as an argument to the
method tr(). Because it is declared inside tr(), this string is subject to transla-
tion. The labels for the other buttons, on lines 41 through 47, are all declared the
same way.

On line 53, the QString object named emptyString is assigned its initial value.
Again, the quoted literal string is defined as an argument passed to tr(), so it is
also subject to translation.

4682-1 ch17.f.qc  11/13/00  14:13  Page 398



399Chapter 17 ✦ Internationalization and Configuration

The slotButton() method, beginning on line 61, sets the text to one of several 
values. In each case, the literal string is defined inside a call to tr(). The call to
setText() on line 75 uses emptyString, but it doesn’t have to be translated
because the value that was stored in emptyString has already been translated.

If you run this program without translation (by either not specifying a file or speci-
fying a file that doesn’t exist), the window looks like the one shown in Figure 17-1.

Figure 17-1: Running TriLang without a
translation file

There are two translation files (described in detail in the following sections) that
cause the same application to look very different. A translation file doesn’t have to
change every string displayed. Figure 17-2 shows the appearance of the same win-
dow with only two or three of the strings translated.

Figure 17-2: Running TriLang with minimal
translation

It is possible to change every string displayed. Figure 17-3 shows a result of trans-
lating everything available in the translation file.

Figure 17-3: Running TriLang with full translation

Declaring Translatable Strings
Other than loading the translation file, about all your application will need to do is
make sure that the things you want to translate are declared as an argument to the
tr() method. The tr() method is available to every object that inherits QObject.
This includes all QWidget objects, so it should be available almost everywhere you
are working with displayable text.

4682-1 ch17.f.qc  11/13/00  14:13  Page 399



400 Part II ✦ Step by Step

The tr() method returns a QString object, so anywhere you would normally use
QString, you can use tr(). For example, let’s say you have a QLabel declaration
that looks like the following:

QLabel *label = new QLabel(“Select”,this);

To make it translatable, you would change the code to enclose the string as an argu-
ment in a tr() call:

QLabel *label = new QLabel(tr(“Select”),this);

It is possible that you find yourself without access to a tr() method, where you are
declaring the string is outside of an object inheriting from QObject. There are still
some things you can do. The most obvious solution is to borrow tr() from another
widget. For example, if you are working inside a function and want to create a label
to be used later, you can use the QLabel’s parent widget as follows:

QLabel *label = new QLabel(parent::tr(“Select”),parent);

If you need to declare a static string, two macros can be used. One is for use inside
the method of a class. For example:

TriLang::fstr() {
static char *f = QT_TR_NOOP(“String text”);

}

The QT_TR_NOOP macro doesn’t contain any executable code, but it does mark the
string in the source code for translation. This string will be translated as a member
of the TriLang class, because it is declared inside a method that is a member of
that class. If you need to make a static declaration outside of a class, a slightly dif-
ferent macro is needed:

static char *f QT_TRANSLATE_NOOP(“TriLang”,”String text”);

Because the declaration is outside of a class, the name of a class is also required.
This is because the class name is used internally as a key for the translation pro-
cess, as described later in this chapter. You can use the name of any class. Again,
this macro doesn’t do anything except mark the text for translation.

Manipulating Translated Strings
If you are going to be formatting strings in any way, always do it using QString.
Never use an array of char or the QCString class to manipulate displayable
strings. If you are going to be working with individual characters, use QChar
because it provides all the functionality you need to work with a Unicode character.
(There is more information about Unicode and QChar later in this chapter.)

4682-1 ch17.f.qc  11/13/00  14:13  Page 400



401Chapter 17 ✦ Internationalization and Configuration

If you are going to format data into a string, use the arg() facility of QString. For
example, say you want to use an int and a double value to display the following line:

Step 3 is 34.6 percent complete.

The following is the correct way to format this string:

QString report;
report = tr(“Step %1 is %2 percent complete.”)

.arg(step).arg(percent);

This way, the string presented to the person doing the translation is the following:

“Step %1 is %2 percent complete.”

Translation may require that the values be inserted in a different order. This gives
the translator the freedom to re-order the values if necessary. For example, the
statement could be simply reworded this way:

“Completion now at %2 percent of step %1”

Constructing the Translation Files
Once the application has been written and all the character strings have been
defined properly for translation, it is time to construct the translation files.

The findtr utility is used to create a file containing all the strings to be translated.
In the example we are using in this chapter, there is the untranslated version in
English, and two other versions devised just for this example. To create the starter
files, the following commands are entered:

findtr *.cpp *.h >trilang.po
cp trilang.po trilang_en.po
cp trilang.po trilang_sh.po
cp trilang.po trilang_sl.po

All three of the translation files start off with the same contents. The findtr utility
creates the file with some header information at the top, but the active portion of
the file looks like this:

#: trilang.cpp:53
msgid “TriLang::-0-”
msgstr “”

#: trilang.cpp:45
msgid “TriLang::Clear”
msgstr “”

4682-1 ch17.f.qc  11/13/00  14:13  Page 401



402 Part II ✦ Step by Step

#: trilang.cpp:47
msgid “TriLang::Exit”
msgstr “”

#: trilang.cpp:68
msgid “TriLang::Paper covers rock”
msgstr “”

#: trilang.cpp:41
msgid “TriLang::Paper”
msgstr “”

#: trilang.cpp:65
msgid “TriLang::Rock breaks scissors”
msgstr “”

#: trilang.cpp:39
msgid “TriLang::Rock”
msgstr “”

#: trilang.cpp:71
msgid “TriLang::Scissors cut paper”
msgstr “”

#: trilang.cpp:43
msgid “TriLang::Scissors”
msgstr “”

The msgid string is the key used to search for translations. Each msgid entry is the
string as it appears in the original program. Each string is preceded by the name of
the class that contains it, and a pair of colons. The msgstr is to contain the trans-
lated string. If the translated string is left empty, as in this example, no translation will
take place. All of the files start off containing the same thing, and only the msgstr
entries need to be changed for each entry. For example, the file trilang_sh.po file
contains the following:

#: trilang.cpp:53
msgid “TriLang::-0-”
msgstr “***”

#: trilang.cpp:45
msgid “TriLang::Clear”
msgstr “Erase”

#: trilang.cpp:47
msgid “TriLang::Exit”
msgstr “”

#: trilang.cpp:68
msgid “TriLang::Paper covers rock”

4682-1 ch17.f.qc  11/13/00  14:13  Page 402



403Chapter 17 ✦ Internationalization and Configuration

msgstr “Sheet covers rock”

#: trilang.cpp:41
msgid “TriLang::Paper”
msgstr “Sheet”

#: trilang.cpp:65
msgid “TriLang::Rock breaks scissors”
msgstr “”

#: trilang.cpp:39
msgid “TriLang::Rock”
msgstr “”

#: trilang.cpp:71
msgid “TriLang::Scissors cut paper”
msgstr “Scissors cut sheet”

#: trilang.cpp:43
msgid “TriLang::Scissors”
msgstr “”

The name of the class is not included as part of the translated string in msgstr. It 
is included as part of the msgid only as a key to match the strings with the transla-
tions. Also, it is not necessary to do anything at all with entries that are not to be
translated.

Once you have created and edited the .po files, it is necessary to convert them into
the .qm files that are used by the application. The utility msg2qm is used to convert
the three files in this example as follows:

msg2qm trilang_en.po trilang_en.qm
msg2qm trilang_sh.po trilang_sh.qm
msg2qm trilang_sl.po trilang_sl.qm

That’s it. When the program runs, it reads and uses the appropriate .qm file. If you
need to modify the translation in any way, it is simply a matter of editing the .po
file and using it to create a new .qm file.

If you change your program so that the strings it contains are changed in some way,
you don’t have to start over. The mergetr utility enables you to retain the work you
have already done and merge the information into it. You will need to generate a
new .po file and merge the changes as follows:

findtr *.cpp *.h >trilang.po
mergetr trilang_en.po trilang.po
mergetr trilang_sh.po trilang.po
mergetr trilang_sl.po trilang.po

4682-1 ch17.f.qc  11/13/00  14:13  Page 403



404 Part II ✦ Step by Step

This will give you three updated .po files with all of the previous information intact,
and with the changes merged in. If one of the entries was changed in the original
code, requiring a change to a previously translated string, the previous translation
is included as a comment so the translator will have something to start with when
updating the files.

Unicode and QChar
The standard character set of KDE and Qt is Unicode. Each character is represented
by 16 bits, which means that there can be as many as 65,536 distinct characters.
Thus far, this has been enough space to contain every possible character from
every language in the world.

Unicode has been able to represent every character handed to it, and will continue
to do so in the foreseeable future. It even includes the complete Klingon alphabet.
However, there is speculation that, in the not-too-distant future, each Unicode
character may need to be expanded to 32 bits to include characters yet to come.

The Unicode values 0 through 127 represent the same characters as the ASCII char-
acter set (in which each character is a 7-bit value in the range 0 to 127). This makes
mapping a character from ASCII to Unicode trivial, but mapping from Unicode to
ASCII will require some translation. In any case, this allows you to write your pro-
grams in ASCII and have things automatically converted to Unicode as necessary.

When working with text, it is often necessary to be able to recognize spaces, punc-
tuation, case, and other character attributes. In ASCII, this is easy to do because
there are so few characters. Unicode is another matter, and new characters can be
added at any time. To handle this, each Unicode character is assigned a set of
attributes. Your program can check a character for some specific attribute and
determine whether it is, say, an uppercase letter or a digit. Each category is repre-
sented by a two-letter code. Table 17-1 lists the Normative categories — which are
descriptive of the basic nature of the character in its linguistic origin. Table 17-2
lists the Informative categories — which are descriptive of things about the charac-
ter other than its basic linguistic origin.

Table 17-1
Unicode Normative Categories

Name Code

Mark_Enclosing Me

Mark_NonSpacing Mn

Mark_SpacingCombining Mc

Note

4682-1 ch17.f.qc  11/13/00  14:13  Page 404



405Chapter 17 ✦ Internationalization and Configuration

Name Code

Number_Letter Nl

Number_Other No

Other_Control Cc

Other_Format Cf

Other_NotAssigned Cn

Other_PrivateUse Co

Other_Surrogate Cs

Separator_Line Zl

Separator_Paragraph Zp

Separator_Space Zs

Table 17-2
Unicode Informative Categories

Name Code

Letter_Uppercase Lu

Letter_Lowercase Ll

Letter_Titlecase Lt

Letter_Modifier Lm

Letter_Other Lo

Punctuation_Connector Pc

Punctuation_Dash Pd

Punctuation_Open Ps

Punctuation_Close Pe

Punctuation_InitialQuote Pi

Punctuation_FinalQuote Pf

Punctuation_Other Po

Symbol_Math Sm

Symbol_Currency Sc

Symbol_Modifier Sk

Symbol_Other So

4682-1 ch17.f.qc  11/13/00  14:13  Page 405



406 Part II ✦ Step by Step

All of this means that, if you are working with internationalization, determining
whether a character is a letter, digit, punctuation, or some kind of white space is 
a bit more difficult than using the traditional isspace() and isupper() macros
defined in C for ASCII. To simplify things, the class contains a single Unicode char-
acter and provides a number of methods that manipulate it and provide informa-
tion about its characteristics.

The following constructors can be used to create a QChar object:

QChar()
QChar(char c)
QChar(uchar c)
QChar(uchar cell, uchar row)
QChar(const QChar &c)
QChar(ushort rc)
QChar(short rc)
QChar(uint rc)
QChar(int rc)

All of these use the numeric value passed in as the 16-bit Unicode character. If no
argument is supplied, the Unicode null character 0x0000 is used. The two construc-
tors that accept 8-bit values assume that the value is an ASCII character and set the
most significant byte to 0. The constructor expecting two 8-bit values uses the
value of cell for the least significant byte, and row as the most significant.

The following Boolean methods can be used to determine basic characteristics of
the characters:

bool isDigit() const
bool isLetter() const
bool isLetterOrNumber() const
bool isMark() const
bool isNull() const
bool isNumber() const
bool isPrint() const
bool isPunct() const
bool isSpace() const

Each method determines its return value by looking at the characteristics of the char-
acter. For example, isNumber() will return TRUE if the character is a digit in any lan-
guage — that is, if it is either a Number_Letter or Number_Other from Table 17-1.

If you need more detailed information, the following method returns an enumerated
type that contains an entry for each of the types named in Tables 17-1 and 17-2:

Category category() const

4682-1 ch17.f.qc  11/13/00  14:13  Page 406



407Chapter 17 ✦ Internationalization and Configuration

The most common character conversion is changing its case, which can be done
with the following methods:

QChar lower() const
QChar upper() const

The following methods can be used to return the numeric value of the Unicode
character:

ushort unicode() const
char latin1() const
uchar &cell()
uchar cell() const
uchar &row()
uchar row() const
int digitValue() const

The unicode() method returns the 16-bit value of the character. The latin1()
method returns the 8-bit value of an ASCII character — if the character is not 
ASCII, the method returns 0. The cell value is the least significant byte; the row
value is the most significant. The digitValue() method does not return the 
character — if the character is a digit, the method returns the numeric value of 
the digit as an int.

Configuration
The KConfig class can be used to save environment settings from one invocation 
of the program to the next. The settings are saved in text files with a special format.
Each setting is saved as a keyword andvalue pair, and these pairs can be optionally
divided into groups. The following example demonstrates how this works by dis-
playing a window that can be moved and resized, and retains its size and position
even when you stop the process and start it over again.

Remember Header
1 /* remember.h */
2 #ifndef REMEMBER_H
3 #define REMEMBER_H
4 
5 #include <qwidget.h>
6 
7 class Remember: public QWidget
8 {
9 public:
10     void configure();
11 private:

4682-1 ch17.f.qc  11/13/00  14:13  Page 407



408 Part II ✦ Step by Step

12     QSize windowSize;
13     QPoint windowPosition;
14 protected:
15     virtual void paintEvent(QPaintEvent *);
16     virtual void resizeEvent(QResizeEvent *);
17     virtual void moveEvent(QMoveEvent *);
18     virtual void closeEvent(QCloseEvent *);
19 };
20 
21 #endif

The Remember widget is the toplevel window of the application. The windowSize
and windowPosition values on lines 12 and 13 hold the continuously updated
geography information for the window.

Remember
1 /* remember.cpp */
2 #include <kapp.h>
3 #include <kconfig.h>
4 #include <qpainter.h>
5 #include <qdir.h>
6 #include “remember.h”
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”remember”);
11     Remember remember;
12     remember.configure();
13     remember.show();
14     app.setMainWidget(&remember);
15     return(app.exec());
16 }
17 void Remember::paintEvent(QPaintEvent *)
18 {
19     QPainter p(this);
20 
21     p.setWindow(0,0,300,300);
22     p.drawRoundRect(50,50,200,200,30,30);
23     p.setBrush(QColor(“white”));
24     p.drawEllipse(100,100,100,100);
25 }
26 void Remember::resizeEvent(QResizeEvent *event)
27 {
28     windowSize = event->size();
29 }
30 void Remember::moveEvent(QMoveEvent *event)
31 {
32     windowPosition = event->pos();

4682-1 ch17.f.qc  11/13/00  14:13  Page 408



409Chapter 17 ✦ Internationalization and Configuration

33 }
34 void Remember::closeEvent(QCloseEvent *event)
35 {
36     QString str;
37 
38     KConfig *config =
39         new KConfig(QDir::homeDirPath() + “/.remember”);
40     config->setGroup(“Geometry”);
41     config->writeEntry(“width”,
42             str.setNum(windowSize.width()));
43     config->writeEntry(“height”,
44             str.setNum(windowSize.height()));
45     config->writeEntry(“xPosition”,
46             str.setNum(windowPosition.x()));
47     config->writeEntry(“yPosition”,
48             str.setNum(windowPosition.y()));
49     config->sync();
50     delete config;
51 
52     event->accept();
53 }
54 void Remember::configure()
55 {
56     int width;
57     int height;
58     int x;
59     int y;
60     QString str;
61 
62     KConfig *config =
63         new KConfig(QDir::homeDirPath() + “/.remember”);
64     config->setGroup(“Geometry”);
65     width = config->readNumEntry(“width”,100);
66     height = config->readNumEntry(“height”,100);
67     x = config->readNumEntry(“xPosition”,10);
68     y = config->readNumEntry(“yPosition”,10);
69 
70     windowSize = QSize(width,height);
71     windowPosition = QPoint(x,y);
72 
73     resize(windowSize);
74     move(windowPosition);
75 }

The main() function of the program begins on line 8. It creates a Remember widget
to be used as the top-level window. On line 12, before the window is displayed,
there is a call to the configure() method to read the configuration data and set
the window size and position.

4682-1 ch17.f.qc  11/13/00  14:13  Page 409



410 Part II ✦ Step by Step

The paintEvent() method on line 17 uses a QPainter object that automatically
rescales its drawing to fit the actual window size. To do this, you call setWindow()
to establish the maximum values of the width and height, and use those dimensions
to fill the rectangle with graphics. Figure 17-4 shows the Remember window in dif-
ferent sizes.

Figure 17-4: The window remembers its size
and position.

The Remember widget keeps continuous track of its current size and location. The
resizeEvent() method on line 26 is called whenever the size of the window
changes, and the moveEvent() on line 30 is called whenever the window is moved.
This pair of methods constantly updates the values stored in windowSize and
windowPosition.

The closeEvent() method on line 34 is called whenever the application is being
closed. To save the current configuration settings, a KConfig object is created by
opening a file named .remember in the user’s home directory. The static method
QDir::homeDirPath() returns the complete path to the current user’s home direc-
tory, which means that each user will have a separate configuration file for this 
program.

The call to setGroup() on line 40 specifies the group name — inside the file — that
will contain the configuration information. There can be any number of groups in a
file, and the same key value can appear in any number of the groups. At any one
time, the KConfig object can only address one group, but you can switch from one
group to another by calling setGroup(). Each of the calls to writeEntry(), on
lines 41 through 48, writes a single entry into the configuration. Each entry consists
of a value string and the key that is used to find it. The text written to the file by
this example looks like the following:

[Geometry]
height=170
width=406
xPosition=346
yPosition=130

4682-1 ch17.f.qc  11/13/00  14:13  Page 410



411Chapter 17 ✦ Internationalization and Configuration

In the file, the group names are included in square brackets, and all the key and
value pairs following it are within the group.

The writeEntry() method does not write directly to the file. When the KConfig
object was created, it read the file (if any) and loaded all the definitions from it. The
calls to writeEntry() on lines 41 through 48 simply update the RAM-resident list
of keys and values. That’s why it is necessary to call the sync() method on line 49.
The sync() method synchronizes the RAM data with the file data by writing every-
thing to the file.

You can actually use the closeEvent() method to prevent the application from
closing. In this example, the call to accept() on line 52 indicates that this applica-
tion accepts the request to close, so the system should go ahead and close the win-
dow. If this method were not called, the application would not close, and the default
closeEvent() method simply calls accept().

The call to configure() on line 54 reads the previous configuration setting (if any) and
uses the data to configure the current application. A KConfig object is created on lines
62 and 63, just is it was in the closeEvent() method, which loads all the configuration
information from the file. The call to setGroup() on line 64 specifies that the data be
read from the group named “Geometry”. The calls to readNumEntry() on lines 65
through 68 are given the keys and return the int values associated with each one. The
second argument in the call is the default value returned if the key value is not found.
Having a default value in the function call simplifies error handling— if the key is not
found, the default value will be used. On lines 70 and 71, these values are stored locally,
so they will be saved, changed, or unchanged when the application closes. The calls to
resize() and move() on lines 73 and 74 configure the window itself.

Summary
With the advent of the Internet and international distribution of software, it is more
important than ever that software be made portable across languages. The facilities
built into KDE greatly simplify the process of creating and maintaining software inter-
faces that can be translated. This chapter discussed portability items such as:

✦ Enclosing literal strings as an argument to the tr() method of QObject will
cause the strings to be translated as the program runs.

✦ The translation of statically declared strings that are outside of methods
requires that they be enclosed in special macros that cause them to be
marked for translation when the program runs.

4682-1 ch17.f.qc  11/13/00  14:13  Page 411



412 Part II ✦ Step by Step

✦ There are simple utilities to scan the source code of a program and create
translation files that can be easily edited by the person doing the actual trans-
lations. The content of these files is then read, and substitutions are made for
the actual translation process.

✦ Configuration data can be stored in text files in a format that organizes the
settings into groups and assigns each one a key with which it can be located.

This chapter completes Part II of the book. The next chapter begins Part III, which
primarily consists of reference material, but also includes information needed in
some special circumstances. The first chapter of Part III is an alphabetical listing,
with brief descriptions, of all the Qt widgets.

✦ ✦ ✦

4682-1 ch17.f.qc  11/13/00  14:13  Page 412



The Widgets 
of Qt

Awidget is a class that contains a displayable window. In
Qt, all classes that have a displayable window inherit

the window capabilities from the QWidget class.

This chapter contains an alphabetical listing of all of the wid-
gets. Each widget is listed with the name of its header file, the
names of all the superclasses, the names of all the Qt and KDE
subclasses, and the public methods, slots, signals, and enu-
merated types. 

There is at least one example program for each widget, and each
example creates a displayable form of the widget. Some of the
widgets are demonstrated by being assigned as the top-level
widget and displayed as the main window. Some special-pur-
pose widgets, however, are included in a specific environment.
In many cases, the widgets are more complicated than can be
demonstrated in a simple example, so there are references to
locations elsewhere in this book where the widget is used in an
example.

QButton
This widget is displayed as a raised rectangle containing text
that will respond to the mouse by changing its appearance
and issuing a signal.

File
#include <qbutton.h>

Base Classes
QObject QPaintDevice QWidget Qt 

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Determining the
footprint of the
constructors for 
each widget

Determining the
header file required
for each widget

Determining the
superclasses and
subclasses of each
widget

Determining the slots
and signals available
in each widget

Determining all of 
the public methods
available in each
widget

Getting started with a
small sample of each
widget

✦ ✦ ✦ ✦

4682-1 ch18.f.qc  11/20/00  15:43  Page 415



416 Part III ✦ Reference and Mechanics

Inherited By
KColorButton KDialogBaseButton KDirectionButton 

KDockButton_Private KIconButton KKeyButton KTabButton 
KToolBarButton QCheckBox QPushButton QRadioButton 
QToolButton 

Constructors
QButton(QWidget *parent = 0, const char *name = 0,

WFlags f = 0);

Methods
int accel() const;
bool autoRepeat() const;
bool autoResize() const;
bool focusNextPrevChild(bool next);
QButtonGroup *group() const;
bool isDown() const;
bool isExclusiveToggle() const;
bool isOn() const;
bool isToggleButton() const;
const QPixmap *pixmap() const;
virtual void setAccel(int);
virtual void setAutoRepeat(bool);
virtual void setAutoResize(bool);
virtual void setDown(bool);
virtual void setPixmap(const QPixmap &);
virtual void setText(const QString &);
ToggleState state() const;
QString text() const;
ToggleType toggleType() const;

Slots
void animateClick();
void toggle();

Signals
void clicked();
void pressed();
void released();
void stateChanged(int);
void toggled(bool);

Enums
enum ToggleType { SingleShot, Toggle, Tristate };
enum ToggleState { Off, NoChange, On };

There is an example of the QButton widget in Chapter 7.Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 416



417Chapter 18 ✦ The Widgets of Qt

QButtonGroup
This widget is a container of a collection of buttons organized either horizontally or
vertically.

File
#include <qbuttongroup.h>

Base Classes
QFrame QGroupBox QObject QPaintDevice QWidget Qt 

Inherited By
QHButtonGroup QVButtonGroup 

Constructors
QButtonGroup(QWidget *parent = 0, const char *name = 0);
QButtonGroup(const QString &title, QWidget *parent = 0,

const char *name = 0);
QButtonGroup(int columns, Orientation o, QWidget *parent = 0,

const char *name = 0);
QButtonGroup(int columns, Orientation o, const QString &title,

QWidget *parent = 0, const char *name = 0);

Methods
int count() const;
QButton *find(int id) const;
int id(QButton *) const;
int insert(QButton *, int id = - 1);
bool isExclusive() const;
bool isRadioButtonExclusive() const;
virtual void moveFocus(int);
void remove(QButton *);
QButton *selected();
virtual void setButton(int id);
virtual void setExclusive(bool);
virtual void setRadioButtonExclusive(bool);

Signals
void clicked(int id);
void pressed(int id);
void released(int id);

This class is not meant to be used directly.

You can find examples of QHButtonGroup and QVButtonGroup in Chapter 7.Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 417



418 Part III ✦ Reference and Mechanics

QCheckBox
This widget is a single check box. A box check can be toggled on and off by the
mouse and always displays its current state.

File
#include <qcheckbox.h>

Base Classes
QButton QObject QPaintDevice QWidget Qt 

Constructors
QCheckBox(QWidget *parent, const char *name = 0);
QCheckBox(const QString &text, QWidget *parent,

const char *name = 0)

Methods
bool isChecked() const;
void setChecked(bool check);
void setNoChange();
void setTristate(bool y = TRUE);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;

Chapter 7 contains a number of examples of the QCheckBox widget being used
in vertical and horizontal button groups.

QColorDialog
This class is a collection of static methods that can be used to pop up a dialog
prompting the user to select a color.

File
#include <qcolordialog.h>

Base Classes
QDialog QObject QPaintDevice QWidget Qt 

Methods
static QRgb customColor(int);
static int customCount();
static QColor getColor(QColor, QWidget *parent = 0,

const char *name = 0);
static QRgb getRgba(QRgb, bool *ok = 0, QWidget *parent = 0,

const char *name = 0);
static void setCustomColor(int, QRgb);

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 418



419Chapter 18 ✦ The Widgets of Qt

The following example uses red as the default selection and prompts the user to
either accept that color or select a different one. The dialog is shown in Figure 18-1.

/* showcolordialog.cpp */
#include <qapplication.h>
#include <qcolordialog.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QColor seedColor(“red”);
QColor newColor;
newColor = QColorDialog::getColor(seedColor);
return(app.exec());

}

Figure 18-1: A QColorDialog widget

QComboBox
This widget uses a button to enable the user to make a selection from a list. It
always displays the current selection.

File
#include <qcombobox.h>

Base Classes
QObject QPaintDevice QWidget Qt 

4682-1 ch18.f.qc  11/20/00  15:43  Page 419



420 Part III ✦ Reference and Mechanics

Inherited By
KColorCombo KComboBox KFileComboBox KFileFilter KURLComboBox 

Constructors
QComboBox(QWidget *parent = 0, const char *name = 0);
QComboBox(bool rw, QWidget *parent = 0, const char *name = 0);

Methods
bool autoCompletion() const;
bool autoResize() const;
void changeItem(const QString &text, int index);
void changeItem(const QPixmap &pixmap, int index);
void changeItem(const QPixmap &pixmap, const QString &text,

int index);
void clear();
int count() const;
int currentItem() const;
QString currentText() const;
bool duplicatesEnabled() const;
bool eventFilter(QObject *object, QEvent *event);
void insertItem(const QString &text, int index = - 1);
void insertItem(const QPixmap &pixmap, int index = - 1);
void insertItem(const QPixmap &pixmap, const QString &text,

int index = - 1);
void insertStrList(const QStrList &, int index = - 1);
void insertStrList(const QStrList *, int index = - 1);
void insertStrList(const char **, int numStrings = - 1,

int index = - 1);
void insertStringList(const QStringList &, int index = - 1);
Policy insertionPolicy() const;
QLineEdit *lineEdit() const;
QListBox *listBox() const;
int maxCount() const;
const QPixmap *pixmap(int index) const;
void removeItem(int index);
virtual void setAutoCompletion(bool);
virtual void setAutoResize(bool);
virtual void setBackgroundColor(const QColor &);
virtual void setCurrentItem(int index);
void setDuplicatesEnabled(bool enable);
virtual void setEnabled(bool);
virtual void setFont(const QFont &);
virtual void setInsertionPolicy(Policy policy);
virtual void setListBox(QListBox *);
virtual void setMaxCount(int);
virtual void setPalette(const QPalette &);
virtual void setSizeLimit(int);
virtual void setValidator(const QValidator *);
QSize sizeHint() const;
int sizeLimit() const;
virtual QSizePolicy sizePolicy() const;

4682-1 ch18.f.qc  11/20/00  15:43  Page 420



421Chapter 18 ✦ The Widgets of Qt

QString text(int index) const;
const QValidator *validator() const;

Slots
void clearEdit();
void clearValidator();
virtual void setEditText(const QString &);

Signals
void activated(int index);
void activated(const QString &);
void highlighted(int index);
void highlighted(const QString &);
void textChanged(const QString &);

Enums
enum Policy { NoInsertion, AtTop, AtCurrent, AtBottom,

AfterCurrent, BeforeCurrent };

The following example creates a QComboBox with four selections. Figure 18-2 shows
the widget after the mouse has been used to pop up the list, and with the second
selection as the default.

/* showcombobox.cpp */
#include <qapplication.h>
#include <qcombobox.h>

const char *list[] = {
“First Selection”,
“Second Selection”,
“Third Selection”,
“Fourth Selection”

};

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QComboBox *combobox = new QComboBox();
combobox->insertStrList(list,4);
combobox->show();
app.setMainWidget(combobox);
return(app.exec());

}

Figure 18-2: A QComboBox widget with four selections

4682-1 ch18.f.qc  11/20/00  15:43  Page 421



422 Part III ✦ Reference and Mechanics

QDialog
This widget is the base class for dialogs. It can be used as a base class, or it can be
instantiated and populated with widgets to dynamically construct a dialog.

File
#include <qdialog.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Inherited By
KAboutDialog KAboutKDE KBugReport KColorDialog KCookieWin 

KDialog KDialogBase KEdFind KEdGotoLine KEdReplace 
KEditToolbar KFileDialog KFileDialogConfigureDlg 
KFontDialog KIconDialog KKeyDialog KLineEditDlg 
KOpenWithDlg KPasswordDialog KTextPrintDialog 
KURLRequesterDlg KWizard KabAPI QColorDialog QFileDialog 
QFontDialog QInputDialog QMessageBox QPrintDialog 
QTabDialog QWizard 

Constructors
QDialog(QWidget *parent = 0, const char *name = 0,

bool modal = FALSE, WFlags f = 0);

Methods
int exec();
void hide();
void move(int x, int y);
void move(const QPoint &p);
void resize(int w, int h);
void resize(const QSize &);
int result() const;
void setGeometry(int x, int y, int w, int h);
void setGeometry(const QRect &);
void show();

Enums
enum DialogCode { Rejected, Accepted };

There are examples of using a QDialog widget to construct dialog windows in
Chapter 4.

QFileDialog
This dialog pops up to prompt the user for the name and location of a file.

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 422



423Chapter 18 ✦ The Widgets of Qt

File
#include <qfiledialog.h>

Base Classes
QDialog QObject QPaintDevice QWidget Qt 

Constructors
QFileDialog(const QString &dirName,

const QString &filter = QString::null, QWidget *parent = 0,
const char *name = 0, bool modal = FALSE);

QFileDialog(QWidget *parent = 0, const char *name = 0,
bool modal = FALSE);

Methods
const QDir *dir() const;
QString dirPath() const;
bool eventFilter(QObject *, QEvent *);
static QString getExistingDirectory(

const QString &dir = QString::null, QWidget *parent = 0,
const char *name = 0);

static QString getExistingDirectory(const QString &dir,
QWidget *parent, const char *name, const QString &caption);

static QString getOpenFileName(
const QString &initially = QString::null,
const QString &filter = QString::null, QWidget *parent = 0,
const char *name = 0);

static QString getOpenFileName(const QString &initially,
const QString &filter, QWidget *parent, const char *name,
const QString &caption);

static QStringList getOpenFileNames(
const QString &filter = QString::null,
const QString &dir = QString::null, QWidget *parent = 0,
const char *name = 0);

static QStringList getOpenFileNames(const QString &filter,
const QString &dir, QWidget *parent, const char *name,
const QString &caption);

static QString getSaveFileName(
const QString &initially = QString::null,
const QString &filter = QString::null, QWidget *parent = 0,
const char *name = 0);

static QString getSaveFileName(const QString &initially,
const QString &filter, QWidget *parent, const char *name,
const QString &caption);

static QFileIconProvider *iconProvider();
bool isContentsPreviewEnabled() const;
bool isInfoPreviewEnabled() const;
Mode mode() const;
PreviewMode previewMode() const;
void rereadDir();
void resortDir();
void selectAll(bool b);

4682-1 ch18.f.qc  11/20/00  15:43  Page 423



424 Part III ✦ Reference and Mechanics

QString selectedFile() const;
QStringList selectedFiles() const;
QString selectedFilter() const;
void setContentsPreview(QWidget *w, QFilePreview *preview);
void setContentsPreviewEnabled(bool);
void setDir(const QDir &);
static void setIconProvider(QFileIconProvider *);
void setInfoPreview(QWidget *w, QFilePreview *preview);
void setInfoPreviewEnabled(bool);
void setMode(Mode);
void setPreviewMode(PreviewMode m);
void setSelection(const QString &);
void setShowHiddenFiles(bool s);
void setViewMode(ViewMode m);
bool showHiddenFiles() const;
QUrl url() const;
ViewMode viewMode() const;

Slots
void setDir(const QString &);
void setFilter(const QString &);
void setFilters(const QString &);
void setFilters(const char **);
void setFilters(const QStringList &);
void setUrl(const QUrlOperator &url);

Signals
void dirEntered(const QString &);
void fileHighlighted(const QString &);
void fileSelected(const QString &);

Enums
enum Mode { AnyFile, ExistingFile, Directory, ExistingFiles };
enum ViewMode { Detail, List };
enum PreviewMode { NoPreview, Contents, Info };

You can find several examples of QFileDialog in Chapter 5.

QFontDialog
This class consists of static methods that pop up a dialog prompting the user for 
a font.

File
#include <qfontdialog.h>

Base Classes
QDialog QObject QPaintDevice QWidget Qt 

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 424



425Chapter 18 ✦ The Widgets of Qt

Methods
static QFont getFont(bool *ok, const QFont &def,

QWidget *parent = 0, const char *name = 0);
static QFont getFont(bool *ok, QWidget *parent = 0,

const char *name = 0);

Signals
void fontHighlighted(const QFont &font);
void fontSelected(const QFont &font);

There are a number of examples of QFontDialog in Chapter 10.

QFrame
This is a base class of widgets that are surrounded by a frame. Also, because it is an
empty widget, it can be instantiated and populated with other widgets.

File
#include <qframe.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Inherited By
KAboutContainer KAboutContributor KAccelMenu KAnimWidget 

KApplicationTree KCharSelect KCharSelectTable 
KColorCells KColorPatch KCombiView KContainerLayout 
KDateInternalMonthPicker KDatePicker KDateTable 
KDockWidgetAbstractHeader KDockWidgetAbstractHeaderDrag 
KDockWidgetHeader KDockWidgetHeaderDrag KDockWindow 
KEdit KFileDetailView KFileIconView KFilePreview 
KFormulaToolBar KHTMLView KIconCanvas KIconView 
KImageTrackLabel KIntSpinBox KListBox KListView KMenuBar 
KPopupMenu KPopupMenu KProgress KRuler KSeparator 
KSplitList KStatusBarLabel KTextBrowser KToolBar 
KURLLabel KURLRequester QButtonGroup QCanvasView QGrid 
QGroupBox QHBox QHButtonGroup QHGroupBox QIconView 
QLCDNumber QLabel QListBox QListView QMenuBar 
QMultiLineEdit QPopupFrame QPopupMenu QProgressBar 
QScrollView QSpinBox QSplitter QTableView QTextBrowser 
QTextView QVBox QVButtonGroup QVGroupBox QWellArray 
QWidgetStack 

Constructors
QFrame(QWidget *parent = 0, const char *name = 0, WFlags f = 0,

bool = TRUE);

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 425



426 Part III ✦ Reference and Mechanics

Methods
QRect contentsRect() const;
QRect frameRect() const;
Shadow frameShadow() const;
Shape frameShape() const;
int frameStyle() const;
int frameWidth() const;
bool lineShapesOk() const;
int lineWidth() const;
int margin() const;
int midLineWidth() const;
virtual void setFrameRect(const QRect &);
void setFrameShadow(Shadow);
void setFrameShape(Shape);
virtual void setFrameStyle(int);
virtual void setLineWidth(int);
virtual void setMargin(int);
virtual void setMidLineWidth(int);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;

Enums
enum Shape { NoFrame=0, Box=0x0001, Panel=0x0002,

WinPanel=0x0003, HLine=0x0004, VLine=0x0005,
StyledPanel=0x0006, PopupPanel=0x0007, MShape=0x000f };

enum Shadow { Plain=0x0010, Raised=0x0020, Sunken=0x0030,
MShadow=0x00f0 };

There are a number of examples that use the QFrame widget in Chapter 7.

QGrid
This layout manager sizes and positions its child widgets according to coordinate
positions on an internally maintained grid.

File
#include <qgrid.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Constructors
QGrid(int n, QWidget *parent = 0, const char *name = 0,

WFlags f = 0);
QGrid(int n, Direction, QWidget *parent = 0,

const char *name = 0, WFlags f = 0);

Methods
void setSpacing(int);
QSize sizeHint() const;

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 426



427Chapter 18 ✦ The Widgets of Qt

Enums
enum Direction { Horizontal, Vertical };

There are a number of examples of QGrid in Chapter 3.

QGroupBox
This widget is capable of containing other widgets and providing them with a bor-
der and a title.

File
#include <qgroupbox.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Inherited By
QButtonGroup QHButtonGroup QHGroupBox QVButtonGroup 

QVGroupBox 

Constructors
QGroupBox(QWidget *parent = 0, const char *name = 0);
QGroupBox(const QString &title, QWidget *parent = 0,

const char *name = 0);
QGroupBox(int columns, Orientation o, QWidget *parent = 0,

const char *name = 0);
QGroupBox(int columns, Orientation o, const QString &title,

QWidget *parent = 0, const char *name = 0);

Methods
void addSpace(int);
int alignment() const;
int columns() const;
Orientation orientation() const;
virtual void setAlignment(int);
virtual void setColumnLayout(int columns, Orientation o);
void setColumns(int);
void setOrientation(Orientation);
virtual void setTitle(const QString &);
QString title() const;

The following example uses a QGroupBox widget for its top level window. It has no
contents, but it is given a title string, as shown in Figure 18-3.

/* showgroupbox.cpp */
#include <qapplication.h>
#include <qgroupbox.h>

int main(int argc,char **argv)
{

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 427



428 Part III ✦ Reference and Mechanics

QApplication app(argc,argv);
QGroupBox *groupbox = new QGroupBox();
groupbox->setTitle(“Group Title”);
groupbox->show();
app.setMainWidget(groupbox);
return(app.exec());

}

Figure 18-3: A QGroupBox as a top-level widget

QHBox
The QHBox widget is a simple container that organizes widgets side by side.

File
#include <qhbox.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Inherited By
KCharSelect KURLRequester QVBox 

Constructors
QHBox(QWidget *parent = 0, const char *name = 0, WFlags f = 0,

bool allowLines = TRUE);

Methods
void setSpacing(int);
bool setStretchFactor(QWidget *, int stretch);
QSize sizeHint() const;

The following example uses a QHBox as the top-level widget. It has four QLabel wid-
gets as its child widgets. As shown in Figure 18-4, each label is displayed side by
side, with a 5-pixel-wide space between them.

/* showhbox.cpp */
#include <qapplication.h>
#include <qhbox.h>
#include <qlabel.h>

int main(int argc,char **argv)

4682-1 ch18.f.qc  11/20/00  15:43  Page 428



429Chapter 18 ✦ The Widgets of Qt

{
QApplication app(argc,argv);
QHBox *hbox = new QHBox();
new QLabel(“First”,hbox);
new QLabel(“Second”,hbox);
new QLabel(“Third”,hbox);
new QLabel(“Fourth”,hbox);
hbox->setSpacing(5);
hbox->show();
app.setMainWidget(hbox);
return(app.exec());

}

Figure 18-4: Labels displayed by a QHBox

QHButtonGroup
The QHButtonGroup is a container widget that organizes a collection of buttons in a
horizontal row.

File
#include <qhbuttongroup.h>

Base Classes
QButtonGroup QFrame QGroupBox QObject QPaintDevice QWidget 

Qt 

Constructors
QHButtonGroup(QWidget *parent = 0, const char *name = 0);
QHButtonGroup(const QString &title, QWidget *parent = 0,

const char *name = 0);

You can find example programs that use QHButtonGroup in Chapter 7.

QHeader
The QHeader widget is a container that controls the size and position of a number
of column headings.

File
#include <qheader.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 429



430 Part III ✦ Reference and Mechanics

Constructors
QHeader(QWidget *parent = 0, const char *name = 0);
QHeader(int, QWidget *parent = 0, const char *name = 0);

Methods
int addLabel(const QString &, int size = - 1);
int addLabel(const QIconSet &, const QString &,

int size = - 1);
int cellAt(int) const;
int cellPos(int) const;
int cellSize(int) const;
int count() const;
QIconSet *iconSet(int section) const;
bool isClickEnabled(int section = - 1) const;
bool isMovingEnabled() const;
bool isResizeEnabled(int section = - 1) const;
QString label(int section) const;
int mapToActual(int) const;
int mapToIndex(int section) const;
int mapToLogical(int) const;
int mapToSection(int index) const;
virtual void moveCell(int, int);
void moveSection(int section, int toIndex);
int offset() const;
Orientation orientation() const;
void removeLabel(int section);
void resizeSection(int section, int s);
int sectionAt(int pos) const;
int sectionPos(int section) const;
int sectionSize(int section) const;
virtual void setCellSize(int, int);
virtual void setClickEnabled(bool, int section = - 1);
virtual void setLabel(int, const QString &, int size = - 1);
virtual void setLabel(int, const QIconSet &, const QString &,

int size = - 1);
virtual void setMovingEnabled(bool);
virtual void setOrientation(Orientation);
virtual void setResizeEnabled(bool, int section = - 1);
void setSortIndicator(int section, bool increasing = TRUE);
virtual void setTracking(bool enable);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
bool tracking() const;

Slots
virtual void setOffset(int pos);

Signals
void clicked(int section);
void indexChange(int section, int fromIndex, int toIndex);
void moved(int, int);
void pressed(int section);

4682-1 ch18.f.qc  11/20/00  15:43  Page 430



431Chapter 18 ✦ The Widgets of Qt

void released(int section);
void sectionClicked(int);
void sizeChange(int section, int oldSize, int newSize);

The following example creates a QHeader with four columns, with text of differing
lengths. The size of each column head can be adjusted by using the mouse. The head-
ings all maintain the width assigned to them, even if some of the text is obscured. 
As shown in Figure 18-5, the header may extend beyond the right end of the window,
and one header label may be sized to overlap another. Column headings can also be
expanded beyond the size required to display the text. A group of signals issued by
the QHeader widget can be used to maintain the size and status of the columns
beneath the headings.

/* showheader.cpp */
#include <qapplication.h>
#include <qheader.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QHeader *header = new QHeader();
header->addLabel(“Column One”);
header->addLabel(“Two”);
header->addLabel(“Three”);
header->addLabel(“Fourth Column”);
header->show();
app.setMainWidget(header);
return(app.exec());

}

Figure 18-5: A QHeader widget containing four
column headings

QHGroupBox
The QHGroupBox is a container widget that organizes a collection of widgets in a
horizontal row.

File
#include <qhgroupbox.h>

Base Classes
QFrame QGroupBox QObject QPaintDevice QWidget Qt 

Constructors
QHGroupBox(QWidget *parent = 0, const char *name = 0);
QHGroupBox(const QString &title, QWidget *parent = 0,

const char *name = 0);

4682-1 ch18.f.qc  11/20/00  15:43  Page 431



432 Part III ✦ Reference and Mechanics

The following example contains four labels inside a QHGroupBox widget. As shown
in Figure 18-6, the QHGroupBox widget inherits from QFrame, so it displays a border
around the contained widgets, and can optionally display a title.

/* showhgroupbox.cpp */
#include <qapplication.h>
#include <qhgroupbox.h>
#include <qlabel.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QHGroupBox *hgroupbox = new QHGroupBox();
new QLabel(“First”,hgroupbox);
new QLabel(“Second”,hgroupbox);
new QLabel(“Third”,hgroupbox);
new QLabel(“Fourth”,hgroupbox);
hgroupbox->setTitle(“Group Box Title”);
hgroupbox->show();
app.setMainWidget(hgroupbox);
return(app.exec());

}

Figure 18-6: Four buttons contained by a QHGroupBox

QIconView
The QIconView widget displays a collection of icons and enables the user to make
a selection.

File
#include <qiconview.h>

Base Classes
QFrame QObject QPaintDevice QScrollView QWidget Qt 

Inherited By
KFileIconView KIconCanvas KIconView 

Constructors
QIconView(QWidget *parent = 0, const char *name = 0,

WFlags f = 0);

Methods
Arrangement arrangement() const;
bool autoArrange() const;
virtual void clear();

4682-1 ch18.f.qc  11/20/00  15:43  Page 432



433Chapter 18 ✦ The Widgets of Qt

virtual void clearSelection();
uint count() const;
QIconViewItem *currentItem() const;
void ensureItemVisible(QIconViewItem *item);
bool eventFilter(QObject *o, QEvent *);
QIconViewItem *findFirstVisibleItem(const QRect &r) const;
QIconViewItem *findItem(const QPoint &pos) const;
QIconViewItem *findItem(const QString &text) const;
QIconViewItem *findLastVisibleItem(const QRect &r) const;
QIconViewItem *firstItem() const;
int gridX() const;
int gridY() const;
int index(const QIconViewItem *item) const;
virtual void insertItem(QIconViewItem *item,

QIconViewItem *after = 0L);
virtual void invertSelection();
QBrush itemTextBackground() const;
ItemTextPos itemTextPos() const;
bool itemsMovable() const;
QIconViewItem *lastItem() const;
int maxItemTextLength() const;
int maxItemWidth() const;
QSize minimumSizeHint() const;
virtual void repaintItem(QIconViewItem *item);
ResizeMode resizeMode() const;
virtual void selectAll(bool select);
SelectionMode selectionMode() const;
virtual void setArrangement(Arrangement am);
virtual void setAutoArrange(bool b);
virtual void setCurrentItem(QIconViewItem *item);
virtual void setFont(const QFont &);
virtual void setGridX(int rx);
virtual void setGridY(int ry);
virtual void setItemTextBackground(const QBrush &b);
virtual void setItemTextPos(ItemTextPos pos);
virtual void setItemsMovable(bool b);
virtual void setMaxItemTextLength(int w);
virtual void setMaxItemWidth(int w);
virtual void setPalette(const QPalette &);
virtual void setResizeMode(ResizeMode am);
virtual void setSelected(QIconViewItem *item, bool s,

bool cb = FALSE);
virtual void setSelectionMode(SelectionMode m);
virtual void setShowToolTips(bool b);
void setSorting(bool sort, bool ascending = TRUE);
virtual void setSpacing(int sp);
virtual void setWordWrapIconText(bool b);
virtual void showEvent(QShowEvent *);
bool showToolTips() const;
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
virtual void sort(bool ascending = TRUE);
bool sortDirection() const;
bool sorting() const;

4682-1 ch18.f.qc  11/20/00  15:43  Page 433



434 Part III ✦ Reference and Mechanics

int spacing() const;
virtual void takeItem(QIconViewItem *item);
bool wordWrapIconText() const;

Slots
virtual void arrangeItemsInGrid(const QSize &grid,

bool update = TRUE);
virtual void arrangeItemsInGrid(bool update = TRUE);
virtual void setContentsPos(int x, int y);
virtual void updateContents();

Signals
void clicked(QIconViewItem *);
void clicked(QIconViewItem *, const QPoint &);
void currentChanged(QIconViewItem *item);
void doubleClicked(QIconViewItem *item);
void dropped(QDropEvent *e,

const QValueList < QIconDragItem > &lst);
void itemRenamed(QIconViewItem *item, const QString &);
void itemRenamed(QIconViewItem *item);
void mouseButtonClicked(int button, QIconViewItem *item,

const QPoint &pos);
void mouseButtonPressed(int button, QIconViewItem *item,

const QPoint &pos);
void moved();
void onItem(QIconViewItem *item);
void onViewport();
void pressed(QIconViewItem *);
void pressed(QIconViewItem *, const QPoint &);
void returnPressed(QIconViewItem *item);
void rightButtonClicked(QIconViewItem *item, const QPoint
&pos);
void rightButtonPressed(QIconViewItem *item, const QPoint
&pos);
void selectionChanged();
void selectionChanged(QIconViewItem *item);

Enums
enum SelectionMode { Single=0, Multi, Extended, NoSelection };
enum Arrangement { LeftToRight=0, TopToBottom };
enum ResizeMode { Fixed=0, Adjust };
enum ItemTextPos { Bottom=0, Right };

The following example displays the five icons shown in Figure 18-7. The first icon
has no pixmap and no text, so it uses the default pixmap and has no label. The
next two icons also use the default pixmap, but they both have text for labels. 
The last two icons have both pixmaps and labels, and the icon labeled “Flag” 
has been selected by the mouse.

/* showiconview.cpp */
#include <qapplication.h>
#include <qiconview.h>

int main(int argc,char **argv)

4682-1 ch18.f.qc  11/20/00  15:43  Page 434



435Chapter 18 ✦ The Widgets of Qt

{
QIconViewItem *item;
QApplication app(argc,argv);
QIconView *iconview = new QIconView();
item = new QIconViewItem(iconview);
item = new QIconViewItem(iconview,”Icon Label”);
item = new QIconViewItem(iconview,”Icon With\nLong Label”);
QPixmap flag(“flag.png”);
item = new QIconViewItem(iconview,”Flag”,flag);
QPixmap idea(“idea.png”);
item = new QIconViewItem(iconview,”Idea”,idea);
iconview->show();
app.setMainWidget(iconview);
return(app.exec());

}

Figure 18-7: A QIconView widget displaying five icons

QInputDialog
The QInputDialog widget is a collection of static methods, each of which pops up
a dialog that prompts the user for input.

File
#include <qinputdialog.h>

Base Classes
QDialog QObject QPaintDevice QWidget Qt 

Methods
static double getDouble(const QString &caption,

const QString &label, double num = 0,
double from = - 2147483647, double to = 2147483647,
int step = 1, bool *ok = 0, QWidget *parent = 0,
const char *name = 0);

static int getInteger(const QString &caption,
const QString &label, int num = 0, int from = - 2147483647,
int to = 2147483647, int step = 1, bool *ok = 0,
QWidget *parent = 0, const char *name = 0);

static QString getItem(const QString &caption,
const QString &label, const QStringList &list,
int current = 0, bool editable = TRUE, bool *ok = 0,
QWidget *parent = 0, const char *name = 0);

4682-1 ch18.f.qc  11/20/00  15:43  Page 435



436 Part III ✦ Reference and Mechanics

static QString getText(const QString &caption,
const QString &label, const QString &text = QString::null,
bool *ok = 0, QWidget *parent = 0, const char *name = 0);

The following example prompts the user for a double value from 1.0 to 10.0. If 
the user selects the OK button, the Boolean value OK will be set to true; other-
wise, it will be set to false. As shown in Figure 18-8, the arguments passed to
getDouble() also set the caption at the top of the window and display a 
prompt immediately above the text window.

/* showcolordialog.cpp */
#include <qapplication.h>
#include <qinputdialog.h>
#include <iostream.h>

int main(int argc,char **argv)
{

bool OK;
QApplication app(argc,argv);
double value = QInputDialog::getDouble(

“A Double Value”,
“Enter a number from 1.0 to 10.0”,
8.902,
1.0,10.0,
1,&OK);

if(OK)
cout << “The value is: “ << value <<  endl;

else
cout << “No data entered.” << endl;

return(app.exec());
}

Figure 18-8: A QInputDialog dialog 
prompting for a double value

QLCDNumber
The QLCDNumber widget displays a number using a font that looks like the digits of
an LCD display.

File
#include <qlcdnumber.h>

4682-1 ch18.f.qc  11/20/00  15:43  Page 436



437Chapter 18 ✦ The Widgets of Qt

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Constructors
QLCDNumber(QWidget *parent = 0, const char *name = 0);
QLCDNumber(uint numDigits, QWidget *parent = 0,

const char *name = 0);

Methods
bool checkOverflow(double num) const;
bool checkOverflow(int num) const;
int intValue() const;
Mode mode() const;
int numDigits() const;
SegmentStyle segmentStyle() const;
virtual void setMode(Mode);
virtual void setNumDigits(int nDigits);
virtual void setSegmentStyle(SegmentStyle);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
bool smallDecimalPoint() const;
double value() const;

Slots
void display(int num);
void display(double num);
void display(const QString &str);
virtual void setBinMode();
virtual void setDecMode();
virtual void setHexMode();
virtual void setOctMode();
virtual void setSmallDecimalPoint(bool);

Signals
void overflow();

Enums
enum Mode { Hex, HEX=Hex, Dec, DEC=Dec, Oct, OCT=Oct, Bin,

BIN=Bin };
enum SegmentStyle { Outline, Filled, Flat };

You can find an example of the QLCDNumber widget in Chapter 3.

QLabel
The QLabel widget displays unadorned text in any font.

File
#include <qlabel.h>

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 437



438 Part III ✦ Reference and Mechanics

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Inherited By
KDockWindow KImageTrackLabel KStatusBarLabel KURLLabel 

Constructors
QLabel(QWidget *parent, const char *name = 0, WFlags f = 0);
QLabel(const QString &text, QWidget *parent,

const char *name = 0, WFlags f = 0);
QLabel(QWidget *buddy, const QString &, QWidget *parent,

const char *name = 0, WFlags f = 0);

Methods
int alignment() const;
bool autoResize() const;
QWidget *buddy() const;
int heightForWidth(int) const;
int indent() const;
QSize minimumSizeHint() const;
QMovie *movie() const;
QPixmap *pixmap() const;
virtual void setAlignment(int);
void setAutoMask(bool);
virtual void setAutoResize(bool);
virtual void setBuddy(QWidget *);
void setIndent(int);
void setTextFormat(TextFormat);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
QString text() const;
TextFormat textFormat() const;

Slots
void clear();
virtual void setMovie(const QMovie &);
virtual void setNum(int);
virtual void setNum(double);
virtual void setPixmap(const QPixmap &);
virtual void setText(const QString &);

Beginning with Chapter 2, there are many of examples of QLabel throughout 
the book.

QLineEdit
A QLineEdit widget is a simple one-line text editor used primarily for data entry.

File
#include <qlineedit.h>

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 438



439Chapter 18 ✦ The Widgets of Qt

Base Classes
QObject QPaintDevice QWidget Qt 

Inherited By
KAccelInput KDateInternalYearSelector KLineEdit 

KPasswordEdit KRestrictedLine 

Constructors
QLineEdit(QWidget *parent, const char *name = 0);
QLineEdit(const QString &, QWidget *parent,

const char *name = 0);

Methods
int alignment() const;
void backspace();
void copy() const;
void cursorLeft(bool mark, int steps = 1);
int cursorPosition() const;
void cursorRight(bool mark, int steps = 1);
void cursorWordBackward(bool mark);
void cursorWordForward(bool mark);
void cut();
void del();
QString displayText() const;
EchoMode echoMode() const;
bool edited() const;
void end(bool mark);
bool frame() const;
bool hasMarkedText() const;
void home(bool mark);
bool isReadOnly() const;
QString markedText() const;
int maxLength() const;
QSize minimumSizeHint() const;
void paste();
void setAlignment(int flag);
virtual void setCursorPosition(int);
virtual void setEchoMode(EchoMode);
void setEdited(bool);
virtual void setEnabled(bool);
virtual void setFont(const QFont &);
virtual void setFrame(bool);
virtual void setMaxLength(int);
virtual void setPalette(const QPalette &);
void setReadOnly(bool);
virtual void setSelection(int, int);
virtual void setValidator(const QValidator *);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
QString text() const;
bool validateAndSet(const QString &, int, int, int);
const QValidator *validator() const;

4682-1 ch18.f.qc  11/20/00  15:43  Page 439



440 Part III ✦ Reference and Mechanics

Slots
void clear();
void clearValidator();
void deselect();
void insert(const QString &);
void selectAll();
virtual void setText(const QString &);

Signals
void returnPressed();
void textChanged(const QString &);

Enums
enum EchoMode { Normal, NoEcho, Password };

There are examples of using the QLineEdit widget in Chapter 4.

QListBox
The QListBox widget displays a list of items that are selectable by the mouse.

File
#include <qlistbox.h>

Base Classes
QFrame QObject QPaintDevice QScrollView QWidget Qt 

Inherited By
KListBox KSplitList 

Constructors
QListBox(QWidget *parent = 0, const char *name = 0,

WFlags f = 0);

Methods
bool autoBottomScrollBar() const;
bool autoScroll() const;
bool autoScrollBar() const;
bool autoUpdate() const;
bool bottomScrollBar() const;
int cellHeight(int i) const;
int cellHeight() const;
int cellWidth() const;
int cellWidth(int i) const;
void centerCurrentItem();
void changeItem(const QListBoxItem *, int index);
void changeItem(const QString &text, int index);
void changeItem(const QPixmap &pixmap, int index);
void changeItem(const QPixmap &pixmap, const QString &text,

int index);
void clear();

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 440



441Chapter 18 ✦ The Widgets of Qt

LayoutMode columnMode() const;
uint count() const;
int currentItem() const;
QString currentText() const;
bool dragSelect() const;
QListBoxItem *findItem(const QString &text) const;
QListBoxItem *firstItem() const;
void inSort(const QListBoxItem *);
void inSort(const QString &text);
int index(const QListBoxItem *) const;
void insertItem(const QListBoxItem *, int index = - 1);
void insertItem(const QListBoxItem *,

const QListBoxItem *after);
void insertItem(const QString &text, int index = - 1);
void insertItem(const QPixmap &pixmap, int index = - 1);
void insertItem(const QPixmap &pixmap, const QString &text,

int index = - 1);
void insertStrList(const QStrList *, int index = - 1);
void insertStrList(const QStrList &, int index = - 1);
void insertStrList(const char **, int numStrings = - 1,

int index = - 1);
void insertStringList(const QStringList &, int index = - 1);
bool isMultiSelection() const;
bool isSelected(int) const;
bool isSelected(const QListBoxItem *) const;
QListBoxItem *item(int index) const;
QListBoxItem *itemAt(QPoint) const;
int itemHeight(int index = 0) const;
QRect itemRect(QListBoxItem *item) const;
bool itemVisible(int index);
bool itemVisible(const QListBoxItem *);
long maxItemWidth() const;
QSize minimumSizeHint() const;
int numCols() const;
int numColumns() const;
int numItemsVisible() const;
int numRows() const;
const QPixmap *pixmap(int index) const;
void removeItem(int index);
LayoutMode rowMode() const;
bool scrollBar() const;
SelectionMode selectionMode() const;
void setAutoBottomScrollBar(bool enable);
void setAutoScroll(bool);
void setAutoScrollBar(bool enable);
void setAutoUpdate(bool);
virtual void setBottomItem(int index);
void setBottomScrollBar(bool enable);
virtual void setColumnMode(LayoutMode);
virtual void setColumnMode(int);
virtual void setCurrentItem(int index);
virtual void setCurrentItem(QListBoxItem *);
void setDragSelect(bool);
void setFixedVisibleLines(int lines);

4682-1 ch18.f.qc  11/20/00  15:43  Page 441



442 Part III ✦ Reference and Mechanics

virtual void setFont(const QFont &);
void setMultiSelection(bool multi);
virtual void setRowMode(LayoutMode);
virtual void setRowMode(int);
void setScrollBar(bool enable);
virtual void setSelected(QListBoxItem *, bool);
void setSelected(int, bool);
virtual void setSelectionMode(SelectionMode);
void setSmoothScrolling(bool);
virtual void setTopItem(int index);
virtual void setVariableHeight(bool);
virtual void setVariableWidth(bool);
QSize sizeHint() const;
bool smoothScrolling() const;
void sort(bool ascending = TRUE);
void takeItem(const QListBoxItem *);
QString text(int index) const;
int topItem() const;
void triggerUpdate(bool doLayout);
bool variableHeight() const;
bool variableWidth() const;
void viewportPaintEvent(QPaintEvent *);

Slots
virtual void clearSelection();
virtual void ensureCurrentVisible();
void invertSelection();
void selectAll(bool select);

Signals
void clicked(QListBoxItem *);
void clicked(QListBoxItem *, const QPoint &);
void currentChanged(QListBoxItem *);
void doubleClicked(QListBoxItem *);
void highlighted(int index);
void highlighted(const QString &);
void highlighted(QListBoxItem *);
void mouseButtonClicked(int, QListBoxItem *, const QPoint &);
void mouseButtonPressed(int, QListBoxItem *, const QPoint &);
void onItem(QListBoxItem *item);
void onViewport();
void pressed(QListBoxItem *);
void pressed(QListBoxItem *, const QPoint &);
void returnPressed(QListBoxItem *);
void rightButtonClicked(QListBoxItem *, const QPoint &);
void rightButtonPressed(QListBoxItem *, const QPoint &);
void selected(int index);
void selected(const QString &);
void selected(QListBoxItem *);
void selectionChanged();
void selectionChanged(QListBoxItem *);

Enums
enum SelectionMode { Single, Multi, Extended, NoSelection };

4682-1 ch18.f.qc  11/20/00  15:43  Page 442



443Chapter 18 ✦ The Widgets of Qt

enum LayoutMode { FixedNumber, FitToWidth,
FitToHeight=FitToWidth, Variable };

There are examples of the QListBox widget in Chapters 3 and 8.

QListView
The QListView widget displays nested lists of items in the form of a tree, and
allows for browsing through the resulting tree with the mouse.

File
#include <qlistview.h>

Base Classes
QFrame QObject QPaintDevice QScrollView QWidget Qt 

Inherited By
KApplicationTree KFileDetailView KListView 

Constructors
QListView(QWidget *parent = 0, const char *name = 0);

Methods
virtual int addColumn(const QString &label, int size = - 1);
virtual int addColumn(const QIconSet &iconset,

const QString &label, int size = - 1);
bool allColumnsShowFocus() const;
int childCount() const;
virtual void clear();
virtual void clearSelection();
int columnAlignment(int) const;
QString columnText(int column) const;
int columnWidth(int column) const;
WidthMode columnWidthMode(int column) const;
int columns() const;
QListViewItem *currentItem() const;
void ensureItemVisible(const QListViewItem *);
bool eventFilter(QObject *o, QEvent *);
QListViewItem *firstChild() const;
QHeader *header() const;
virtual void insertItem(QListViewItem *);
bool isMultiSelection() const;
bool isOpen(const QListViewItem *) const;
bool isSelected(const QListViewItem *) const;
QListViewItem *itemAt(const QPoint &screenPos) const;
int itemMargin() const;
int itemPos(const QListViewItem *);
QRect itemRect(const QListViewItem *) const;
QSize minimumSizeHint() const;
void removeColumn(int index);

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 443



444 Part III ✦ Reference and Mechanics

virtual void removeItem(QListViewItem *);
void repaintItem(const QListViewItem *) const;
bool rootIsDecorated() const;
QListViewItem *selectedItem() const;
SelectionMode selectionMode() const;
virtual void setAllColumnsShowFocus(bool);
virtual void setColumnAlignment(int, int);
virtual void setColumnText(int column, const QString &label);
virtual void setColumnText(int column, const QIconSet &iconset,

const QString &label);
virtual void setColumnWidth(int column, int width);
virtual void setColumnWidthMode(int column, WidthMode);
virtual void setCurrentItem(QListViewItem *);
virtual void setFont(const QFont &);
virtual void setItemMargin(int);
virtual void setMultiSelection(bool enable);
virtual void setOpen(QListViewItem *, bool);
virtual void setPalette(const QPalette &);
virtual void setRootIsDecorated(bool);
virtual void setSelected(QListViewItem *, bool);
void setSelectionMode(SelectionMode mode);
void setShowSortIndicator(bool show);
virtual void setSorting(int column, bool increasing = TRUE);
virtual void setTreeStepSize(int);
void show();
bool showSortIndicator() const;
QSize sizeHint() const;
void sort();
virtual void takeItem(QListViewItem *);
int treeStepSize() const;

Slots
void invertSelection();
void selectAll(bool select);
void setContentsPos(int x, int y);
void triggerUpdate();

Signals
void clicked(QListViewItem *);
void clicked(QListViewItem *, const QPoint &, int);
void collapsed(QListViewItem *item);
void currentChanged(QListViewItem *);
void doubleClicked(QListViewItem *);
void expanded(QListViewItem *item);
void mouseButtonClicked(int, QListViewItem *, const QPoint &,

int);
void mouseButtonPressed(int, QListViewItem *, const QPoint &,

int);
void onItem(QListViewItem *item);
void onViewport();
void pressed(QListViewItem *);

4682-1 ch18.f.qc  11/20/00  15:43  Page 444



445Chapter 18 ✦ The Widgets of Qt

void pressed(QListViewItem *, const QPoint &, int);
void returnPressed(QListViewItem *);
void rightButtonClicked(QListViewItem *, const QPoint &, int);
void rightButtonPressed(QListViewItem *, const QPoint &, int);
void selectionChanged();
void selectionChanged(QListViewItem *);

Enums
enum WidthMode { Manual, Maximum };
enum SelectionMode { Single, Multi, Extended, NoSelection };

The tree, or trees, displayed by the QListView widget are multilevel, and its sub-
trees can be opened and closed with the mouse. The trees can be several layers
deep, and a node of a tree can be one of a number of widget types. By creating dif-
ferent columns, there can be a number of trees. Scrollbars will appear on the bot-
tom and right as necessary, and, if multiple columns are used, each tree can be
resized by changing the size of the column headers.

The following example creates a single tree, with each leaf node represented by a
check box. Each internal tree node (one that is capable of controlling child nodes) is a
QListViewItem object. The QValueList template is used to create a list containing a
collection of QListViewItem objects. The append() method of the QValueList is
used to insert each of the QListViewItem objects. The inner loop creates five QCheck
ListItem objects, each of which encloses a QCheckBox for each of the parent tree
nodes. Figure 18-9 shows the resulting tree: Two of the parent nodes are open, one of
the members of the first parent is currently selected, and three of the check boxes
have been selected by the mouse.

/* showlistiew.cpp */
#include <qapplication.h>
#include <qlistview.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);

QListView *listview = new QListView(0);
listview->show();
listview->addColumn(“Column Heading”);
listview->setRootIsDecorated(TRUE);

QValueList<QListViewItem *> valuelist;
for(int i=1; i<6; i++) {

QListViewItem *viewitem = new QListViewItem(listview,
QString(“Parent %1”).arg(i));

valuelist.append(viewitem);
for(int j=1; j<6; j++) {

new QCheckListItem(viewitem,
QString(“Child %1 of Parent %2”).arg(j).arg(i),

4682-1 ch18.f.qc  11/20/00  15:43  Page 445



446 Part III ✦ Reference and Mechanics

QCheckListItem::CheckBox);
}

}

listview->show();
app.setMainWidget(listview);
return(app.exec());

}

Figure 18-9: A QListView with five parent nodes

QMainWindow
The QMainWindow is typically used as a top-level window that supplies things the
main window of an application requires. It provides a menu bar, toolbars, and a sta-
tus bar.

File
#include <qmainwindow.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
QMainWindow(QWidget *parent = 0, const char *name = 0,

WFlags f = WType_TopLevel);

Methods
void addToolBar(QToolBar *, ToolBarDock = Top,

bool newLine = FALSE);
void addToolBar(QToolBar *, const QString &label,

ToolBarDock = Top, bool newLine = FALSE);
QWidget *centralWidget() const;
bool eventFilter(QObject *, QEvent *);
bool getLocation(QToolBar *tb, ToolBarDock &dock, int &index,

bool &nl, int &extraOffset) const;
bool isDockEnabled(ToolBarDock dock) const;

4682-1 ch18.f.qc  11/20/00  15:43  Page 446



447Chapter 18 ✦ The Widgets of Qt

bool isDockEnabled(QToolBar *tb, ToolBarDock dock) const;
bool isDockMenuEnabled() const;
void lineUpToolBars(bool keepNewLines = FALSE);
QMenuBar *menuBar() const;
QSize minimumSizeHint() const;
void moveToolBar(QToolBar *, ToolBarDock = Top);
void moveToolBar(QToolBar *, ToolBarDock, bool nl, int index,

int extraOffset = - 1);
bool opaqueMoving() const;
void removeToolBar(QToolBar *);
bool rightJustification() const;
virtual void setCentralWidget(QWidget *);
virtual void setDockEnabled(ToolBarDock dock, bool enable);
void setDockEnabled(QToolBar *tb, ToolBarDock dock,

bool enable);
void show();
QSize sizeHint() const;
QStatusBar *statusBar() const;
QList<QToolBar> toolBars(ToolBarDock dock) const;
bool toolBarsMovable() const;
QToolTipGroup *toolTipGroup() const;
bool usesBigPixmaps() const;
bool usesTextLabel() const;

Slots
void setDockMenuEnabled(bool);
void setOpaqueMoving(bool);
virtual void setRightJustification(bool);
void setToolBarsMovable(bool);
virtual void setUsesBigPixmaps(bool);
void setUsesTextLabel(bool);
void whatsThis();

Signals
void endMovingToolBar(QToolBar *);
void pixmapSizeChanged(bool);
void startMovingToolBar(QToolBar *);
void toolBarPositionChanged(QToolBar *);
void usesTextLabelChanged(bool);

Enums
enum ToolBarDock { Unmanaged, TornOff, Top, Bottom, Right,

Left, Minimized };

The following example shows how to set up a QMainWindow widget as the top-level
window of your application. The QMainWindow widget acts as a container for other
components (which can be accessed through the methods of QMainWindow). These
components include QMenuBar, QStatusBar, QToolTipGroup, and a list of QToolBar
objects. It also contains a QWidget at its center, which is intended to become the
main display window of your application.

/* showmainwindow.cpp */
#include <qapplication.h>
#include <qmainwindow.h>

4682-1 ch18.f.qc  11/20/00  15:43  Page 447



448 Part III ✦ Reference and Mechanics

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QMainWindow *mainwindow = new QMainWindow();
mainwindow->show();
app.setMainWidget(mainwindow);
return(app.exec());

}

QMenuBar
A QMenuBar is a horizontal bar that is capable of managing the relationships among
a group of pop-up menus.

File
#include <qmenubar.h>

Base Classes
QFrame QMenuData QObject QPaintDevice QWidget Qt 

Inherited By
KMenuBar 

Constructors
QMenuBar(QWidget *parent = 0, const char *name = 0);

Methods
bool customWhatsThis() const;
bool eventFilter(QObject *, QEvent *);
int heightForWidth(int) const;
void hide();
bool isDefaultUp() const;
QSize minimumSize() const;
QSize minimumSizeHint() const;
Separator separator() const;
void setDefaultUp(bool);
virtual void setSeparator(Separator when);
void show();
QSize sizeHint() const;
void updateItem(int id);

Signals
void activated(int itemId);
void highlighted(int itemId);

Enums
enum Separator { Never=0, InWindowsStyle=1 };

The following example shows a QMenuBar that contains two pop-up menus. Each
pop-up menu contains a single menu item. Figure 18-10 shows the menu bar with
the second pop-up menu activated.

4682-1 ch18.f.qc  11/20/00  15:43  Page 448



449Chapter 18 ✦ The Widgets of Qt

/* showmenubar.cpp */
#include <qapplication.h>
#include <qmenubar.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QMenuBar *menubar = new QMenuBar();
menubar->setSeparator(QMenuBar::InWindowsStyle);
QPopupMenu* filePopup = new QPopupMenu();
filePopup->insertItem(“&Quit”,&app,SLOT(quit()));
menubar->insertItem(“&File”,filePopup);
QPopupMenu* editPopup = new QPopupMenu();
editPopup->insertItem(“&Paste”);
menubar->insertItem(“E&dit”,editPopup);
menubar->show();
app.setMainWidget(menubar);
return(app.exec());

}

Figure 18-10: A QMenuBar with two pop-up menus

QMessageBox
A QMessageBox is a dialog that pops up to display information to the user and
waits for a response. It has a number of configurations, including various icons 
and optional buttons.

File
#include <qmessagebox.h>

Base Classes
QDialog QObject QPaintDevice QWidget Qt 

Constructors
QMessageBox(QWidget *parent = 0, const char *name = 0);
QMessageBox(const QString &caption, const QString &text,

Icon icon, int button0, int button1, int button2,
QWidget *parent = 0, const char *name = 0,
bool modal = TRUE, WFlags f = WStyle_DialogBorder);

Methods
static void about(QWidget *parent, const QString &caption,

const QString &text);
static void aboutQt(QWidget *parent,

const QString &caption = QString::null);
void adjustSize();

4682-1 ch18.f.qc  11/20/00  15:43  Page 449



450 Part III ✦ Reference and Mechanics

QString buttonText(int button) const;
static int critical(QWidget *parent, const QString &caption,

const QString &text, int button0, int button1,
int button2 = 0);

static int critical(QWidget *parent, const QString &caption,
const QString &text,
const QString &button0Text = QString::null,
const QString &button1Text = QString::null,
const QString &button2Text = QString::null,
int defaultButtonNumber = 0, int escapeButtonNumber = - 1);

Icon icon() const;
const QPixmap *iconPixmap() const;
static int information(QWidget *parent, const QString &caption,

const QString &text, int button0, int button1 = 0,
int button2 = 0);

static int information(QWidget *parent, const QString &caption,
const QString &text,
const QString &button0Text = QString::null,
const QString &button1Text = QString::null,
const QString &button2Text = QString::null,
int defaultButtonNumber = 0, int escapeButtonNumber = - 1);

static int message(const QString &caption, const QString &text,
const QString &buttonText = QString::null,
QWidget *parent = 0, const char *name = 0);

static bool query(const QString &caption, const QString &text,
const QString &yesButtonText = QString::null,
const QString &noButtonText = QString::null,
QWidget *parent = 0, const char *name = 0);

void setButtonText(int button, const QString &);
void setIcon(Icon);
void setIcon(const QPixmap &);
void setIconPixmap(const QPixmap &);
void setText(const QString &);
void setTextFormat(TextFormat);
static QPixmap standardIcon(Icon icon, GUIStyle style);
QString text() const;
TextFormat textFormat() const;
static int warning(QWidget *parent, const QString &caption,

const QString &text, int button0, int button1,
int button2 = 0);

static int warning(QWidget *parent, const QString &caption,
const QString &text,
const QString &button0Text = QString::null,
const QString &button1Text = QString::null,
const QString &button2Text = QString::null,
int defaultButtonNumber = 0, int escapeButtonNumber = - 1);

Enums
enum Icon { NoIcon=0, Information=1, Warning=2, Critical=3 };
enum (anon) { Ok=1, Cancel=2, Yes=3, No=4, Abort=5, Retry=6,

Ignore=7, ButtonMask=0x07, Default=0x100, Escape=0x200,
FlagMask=0x300 };

4682-1 ch18.f.qc  11/20/00  15:43  Page 450



451Chapter 18 ✦ The Widgets of Qt

The following example uses one of the static methods to pop up a preconfigured
QMessageBox. Figure 18-11 shows the message box as it appears with the informa-
tion icon.

/* showmessgebox.cpp */
#include <qapplication.h>
#include <qmessagebox.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QMessageBox::information(0,

“The Caption of an Informaton Box”,
“This is a QMessageBox that is configured\n”
“to display information to the user and\n”
“wait for a response.”);

return(app.exec());
}

Figure 18-11: A QMessageBox using the
information icon

QMultiLineEdit
The QMultiLineEdit widget is a text editor that can be used to enable the user to
input text and make modifications to existing text.

File
#include <qmultilineedit.h>

Base Classes
QFrame QObject QPaintDevice QTableView QWidget Qt 

Inherited By
KEdit 

Constructors
QMultiLineEdit(QWidget *parent = 0, const char *name = 0);

Methods
int alignment() const;
bool atBeginning() const;
bool atEnd() const;
bool autoUpdate() const;
void cursorPosition(int *line, int *col) const;
void cursorWordBackward(bool mark);

4682-1 ch18.f.qc  11/20/00  15:43  Page 451



452 Part III ✦ Reference and Mechanics

void cursorWordForward(bool mark);
static int defaultTabStop();
EchoMode echoMode() const;
bool edited() const;
void getCursorPosition(int *line, int *col) const;
int hMargin() const;
virtual void insertAt(const QString &s, int line, int col,

bool mark = FALSE);
virtual void insertLine(const QString &s, int line = - 1);
bool isOverwriteMode() const;
bool isReadOnly() const;
bool isUndoEnabled() const;
int length() const;
int maxLength() const;
int maxLineLength() const;
int maxLineWidth() const;
int maxLines() const;
QSize minimumSizeHint() const;
int numLines() const;
virtual void removeLine(int line);
void setAlignment(int flags);
virtual void setAutoUpdate(bool);
virtual void setCursorPosition(int line, int col,

bool mark = FALSE);
static void setDefaultTabStop(int ex);
virtual void setEchoMode(EchoMode);
void setEdited(bool);
virtual void setFixedVisibleLines(int lines);
virtual void setFont(const QFont &font);
virtual void setHMargin(int);
void setMaxLength(int);
virtual void setMaxLineLength(int);
virtual void setMaxLines(int);
virtual void setSelection(int row_from, int col_from,

int row_to, int col_t);
void setUndoDepth(int);
void setUndoEnabled(bool);
virtual void setValidator(const QValidator *);
void setWordWrap(WordWrap mode);
void setWrapColumnOrWidth(int);
void setWrapPolicy(WrapPolicy policy);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
QString text() const;
QString textLine(int line) const;
int undoDepth() const;
const QValidator *validator() const;
WordWrap wordWrap() const;
int wrapColumnOrWidth() const;
WrapPolicy wrapPolicy() const;

Slots
void append(const QString &);
void clear();

4682-1 ch18.f.qc  11/20/00  15:43  Page 452



453Chapter 18 ✦ The Widgets of Qt

void copy() const;
void copyText() const;
void cut();
void deselect();
void insert(const QString &);
void paste();
void redo();
void selectAll();
virtual void setOverwriteMode(bool);
virtual void setReadOnly(bool);
virtual void setText(const QString &);
void undo();

Signals
void redoAvailable(bool);
void returnPressed();
void textChanged();
void undoAvailable(bool);

Enums
enum EchoMode { Normal, NoEcho, Password };
enum WordWrap { NoWrap, WidgetWidth, FixedPixelWidth,

FixedColumnWidth };
enum WrapPolicy { AtWhiteSpace, Anywhere };

Chapter 8 contains examples of using a QMultiLineEdit widget.

QPopupMenu
The QPopupMenu widget is a menu that pops up. It normally appears as a member
of a menu bar or a parent pop-up menu.

File
#include <qpopupmenu.h>

Base Classes
QFrame QMenuData QObject QPaintDevice QWidget Qt 

Inherited By
KAccelMenu KPopupMenu KPopupMenu 

Constructors
QPopupMenu(QWidget *parent = 0, const char *name = 0);

Methods
bool customWhatsThis() const;
int exec();
int exec(const QPoint &pos, int indexAtPoint = 0);
void hide();
int idAt(int index) const;
int idAt(const QPoint &pos) const;

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 453



454 Part III ✦ Reference and Mechanics

int insertTearOffHandle(int id = - 1, int index = - 1);
bool isCheckable() const;
void popup(const QPoint &pos, int indexAtPoint = 0);
virtual void setActiveItem(int);
virtual void setCheckable(bool);
void setFont(const QFont &);
void show();
QSize sizeHint() const;
void updateItem(int id);

Signals
void aboutToShow();
void activated(int itemId);
void activatedRedirect(int itemId);
void highlighted(int itemId);
void highlightedRedirect(int itemId);

You can find a number of examples of QPopupMenu in Chapter 6.

QPrintDialog
The QprintDialog widget is an interface that enables a user to configure and control
printing by an application.

File
#include <qprintdialog.h>

Base Classes
QDialog QObject QPaintDevice QWidget Qt 

Constructors
QPrintDialog(QPrinter *, QWidget *parent = 0,

const char *name = 0);

Methods
void addButton(QPushButton *but);
static bool getPrinterSetup(QPrinter *);
QPrinter *printer() const;
void setPrinter(QPrinter *, bool = FALSE);

The following example of QPrintDialog uses a QPrinter object to pop up the dia-
log window shown in Figure 18-12.

/* showprintdialog.cpp */
#include <qapplication.h>
#include <qprintdialog.h>
#include <qprinter.h>
#include <iostream.h>

int main(int argc,char **argv)

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 454



455Chapter 18 ✦ The Widgets of Qt

{
QApplication app(argc,argv);
QPrinter *printer = new QPrinter();
bool OK = QPrintDialog::getPrinterSetup(printer);
if(OK)

cout << “Printer configuration set.” << endl;
else

cout << “Printer configuration not set.” << endl;
return(app.exec());

}

Figure 18-12: A QPrintDialog window

QProgressBar
The QProgressBar is a horizontal progress bar.

File
#include <qprogressbar.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Constructors
QProgressBar(QWidget *parent = 0, const char *name = 0,

WFlags f = 0);
QProgressBar(int totalSteps, QWidget *parent = 0,

4682-1 ch18.f.qc  11/20/00  15:43  Page 455



456 Part III ✦ Reference and Mechanics

const char *name = 0, WFlags f = 0);

Methods
bool centerIndicator() const;
bool indicatorFollowsStyle() const;
QSize minimumSizeHint() const;
int progress() const;
void setCenterIndicator(bool on);
void setIndicatorFollowsStyle(bool);
void show();
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
int totalSteps() const;

Slots
void reset();
virtual void setProgress(int progress);
virtual void setTotalSteps(int totalSteps);

The following example creates the progress bar shown in Figure 18-13, which has a
total of 200 steps, with 122 of them complete. That is equivalent to a completion of
61 percent.

/* showprogressbar.cpp */
#include <qapplication.h>
#include <qprogressbar.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QProgressBar *progressbar = new QProgressBar();
progressbar->setTotalSteps(200);
progressbar->setProgress(122);
progressbar->show();
app.setMainWidget(progressbar);
return(app.exec());

}

Figure 18-13: A QProgressBar showing a completion
percentage

QProgressDialog
The QProgressBar is a horizontal progress bar with a Cancel button. Note that this
is a widget, not a pop-up window that inherits from QDialog.

File
#include <qprogressdialog.h>

4682-1 ch18.f.qc  11/20/00  15:43  Page 456



457Chapter 18 ✦ The Widgets of Qt

Base Classes
QObject QPaintDevice QSemiModal QWidget Qt 

Constructors
QProgressDialog(QWidget *parent = 0, const char *name = 0,

bool modal = FALSE, WFlags f = 0);
QProgressDialog(const QString &labelText,

const QString &cancelButtonText, int totalSteps,
QWidget *parent = 0, const char *name = 0,
bool modal = FALSE, WFlags f = 0);

Methods
bool autoClose() const;
bool autoReset() const;
QString labelText() const;
int minimumDuration() const;
int progress() const;
void setAutoClose(bool b);
void setAutoReset(bool b);
void setBar(QProgressBar *);
void setCancelButton(QPushButton *);
void setLabel(QLabel *);
QSize sizeHint() const;
int totalSteps() const;
bool wasCancelled() const;

Slots
void cancel();
void reset();
void setCancelButtonText(const QString &);
void setLabelText(const QString &);
void setMinimumDuration(int ms);
void setProgress(int progress);
void setTotalSteps(int totalSteps);

Signals
void cancelled();

The following example creates the progress bar shown in Figure 18-14, which also
has a total of 200 steps, with 122 (or 61 percent) of them complete. The Cancel but-
ton issues the cancelled() signal and closes the window.

/* showprogressdialog.cpp */
#include <qapplication.h>
#include <qprogressdialog.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QProgressDialog *progressdialog = new QProgressDialog();
progressdialog->setTotalSteps(200);
progressdialog->setProgress(122);
progressdialog->show();

4682-1 ch18.f.qc  11/20/00  15:43  Page 457



458 Part III ✦ Reference and Mechanics

app.setMainWidget(progressdialog);
return(app.exec());

}

Figure 18-14: A QProgressDialog showing the progress
and a Cancel button

QPushButton
A QPushButton is a widget with a beveled edge that responds to the mouse by
changing its appearance.

File
#include <qpushbutton.h>

Base Classes
QButton QObject QPaintDevice QWidget Qt 

Inherited By
KColorButton KDialogBaseButton KDockButton_Private 

KIconButton KKeyButton 

Constructors
QPushButton(QWidget *parent, const char *name = 0);
QPushButton(const QString &text, QWidget *parent,

const char *name = 0);
QPushButton(const QIconSet &icon, const QString &text,

QWidget *parent, const char *name = 0);

Methods
bool autoDefault() const;
QIconSet *iconSet() const;
bool isDefault() const;
bool isMenuButton() const;
void move(int x, int y);
void move(const QPoint &p);
QPopupMenu *popup() const;
void resize(int w, int h);
void resize(const QSize &);
virtual void setAutoDefault(bool autoDef);
virtual void setDefault(bool def);
virtual void setGeometry(int x, int y, int w, int h);
virtual void setGeometry(const QRect &);
void setIconSet(const QIconSet &);
virtual void setIsMenuButton(bool);
void setPopup(QPopupMenu *popup);

4682-1 ch18.f.qc  11/20/00  15:43  Page 458



459Chapter 18 ✦ The Widgets of Qt

virtual void setToggleButton(bool);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;

Slots
virtual void setOn(bool);
void toggle();

There are many examples of the QPushButton throughout the book.

QRadioButton
A QRadioButton is a button that can be toggled on or off by the mouse. When
included in a group with other radio buttons, only one of them can be toggled 
on at any one time.

File
#include <qradiobutton.h>

Base Classes
QButton QObject QPaintDevice QWidget Qt 

Constructors
QRadioButton(QWidget *parent, const char *name = 0);
QRadioButton(const QString &text, QWidget *parent,

const char *name = 0);

Methods
bool isChecked() const;
virtual void setChecked(bool check);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;

There are a number of examples of the QRadioButton in Chapter 7.

QScrollBar
The QScrollBar widget can be configured as either a vertical or horizontal scrollbar.

File
#include <qscrollbar.h>

Base Classes
QObject QPaintDevice QRangeControl QWidget Qt 

Constructors
QScrollBar(QWidget *parent, const char *name = 0);

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 459



460 Part III ✦ Reference and Mechanics

QScrollBar(Orientation, QWidget *parent, const char *name = 0);
QScrollBar(int minValue, int maxValue, int LineStep,

int PageStep, int value, Orientation, QWidget *parent,
const char *name = 0);

Methods
bool draggingSlider() const;
int lineStep() const;
int maxValue() const;
int minValue() const;
Orientation orientation() const;
int pageStep() const;
void setLineStep(int);
void setMaxValue(int);
void setMinValue(int);
virtual void setOrientation(Orientation);
void setPageStep(int);
virtual void setPalette(const QPalette &);
virtual void setTracking(bool enable);
void setValue(int);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
bool tracking() const;
int value() const;

Signals
void nextLine();
void nextPage();
void prevLine();
void prevPage();
void sliderMoved(int value);
void sliderPressed();
void sliderReleased();
void valueChanged(int value);

Unlike most widgets, every constructor of a QScrollBar widget requires a parent
widget. The following example creates a pair of QScrollBar objects. One is ori-
ented horizontally and the other vertically. As shown in Figure 18-15, the geometry
of the parent widget and the two scrollbars are fixed so that the scrollbars appear
in the normal position at the bottom and on the right of the window.

/* showscrollbar.cpp */
#include <qapplication.h>
#include <qscrollbar.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QWidget *widget = new QWidget();
QScrollBar *vscrollbar =

new QScrollBar(Qt::Vertical,widget);
vscrollbar->setGeometry(200,0,30,200);
QScrollBar *hscrollbar =

4682-1 ch18.f.qc  11/20/00  15:43  Page 460



461Chapter 18 ✦ The Widgets of Qt

new QScrollBar(Qt::Horizontal,widget);
hscrollbar->setGeometry(0,200,200,30);
widget->setFixedSize(230,230);
widget->show();
app.setMainWidget(widget);
return(app.exec());

}

Figure 18-15: One horizontal and one vertical QScrollBar

QScrollView
The QScrollView widget is a container widget that holds a single child widget and
is capable of displaying a portion of it. It supplies scrollbars, as necessary, to allow
the mouse to select which portion of the contained widget is visible.

File
#include <qscrollview.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Inherited By
KApplicationTree KFileDetailView KFileIconView KHTMLView 

KIconCanvas KIconView KListBox KListView KSplitList 
KTextBrowser QCanvasView QIconView QListBox QListView 
QTextBrowser QTextView 

Constructors
QScrollView(QWidget *parent = 0, const char *name = 0,

WFlags f = 0);

Methods
virtual void addChild(QWidget *child, int x = 0, int y = 0);
bool childIsVisible(QWidget *child);
int childX(QWidget *child);
int childY(QWidget *child);
QWidget *clipper() const;
int contentsHeight() const;

4682-1 ch18.f.qc  11/20/00  15:43  Page 461



462 Part III ✦ Reference and Mechanics

void contentsToViewport(int x, int y, int &vx, int &vy);
QPoint contentsToViewport(const QPoint &);
int contentsWidth() const;
int contentsX() const;
int contentsY() const;
QWidget *cornerWidget() const;
bool dragAutoScroll() const;
void enableClipper(bool y);
ScrollBarMode hScrollBarMode() const;
QScrollBar *horizontalScrollBar() const;
QSize minimumSizeHint() const;
virtual void moveChild(QWidget *child, int x, int y);
void removeChild(QWidget *child);
void removeChild(QObject *child);
void repaintContents(int x, int y, int w, int h,

bool erase = TRUE);
void repaintContents(const QRect &r, bool erase = TRUE);
void resize(int w, int h);
void resize(const QSize &);
ResizePolicy resizePolicy() const;
virtual void setCornerWidget(QWidget *);
void setDragAutoScroll(bool b);
virtual void setHScrollBarMode(ScrollBarMode);
virtual void setResizePolicy(ResizePolicy);
virtual void setVScrollBarMode(ScrollBarMode);
void show();
void showChild(QWidget *child, bool yes = TRUE);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
void updateContents(int x, int y, int w, int h);
void updateContents(const QRect &r);
ScrollBarMode vScrollBarMode() const;
QScrollBar *verticalScrollBar() const;
QWidget *viewport() const;
QSize viewportSize(int, int) const;
void viewportToContents(int vx, int vy, int &x, int &y);
QPoint viewportToContents(const QPoint &);
int visibleHeight() const;
int visibleWidth() const;

Slots
void center(int x, int y);
void center(int x, int y, float xmargin, float ymargin);
void ensureVisible(int x, int y);
void ensureVisible(int x, int y, int xmargin, int ymargin);
virtual void resizeContents(int w, int h);
void scrollBy(int dx, int dy);
virtual void setContentsPos(int x, int y);
void setEnabled(bool enable);
void updateScrollBars();

Signals
void contentsMoving(int x, int y);

4682-1 ch18.f.qc  11/20/00  15:43  Page 462



463Chapter 18 ✦ The Widgets of Qt

Enums
enum ResizePolicy { Default, Manual, AutoOne };
enum ScrollBarMode { Auto, AlwaysOff, AlwaysOn };

The following example inserts a QLCDNumber widget into a QScrollView widget.
Figure 18-16 shows how a portion of the contained widget appears, with the scroll-
bars that can be used to control which portion of the QLCDNumber widget is visible.

/* showscrollview.cpp */
#include <qapplication.h>
#include <qscrollview.h>
#include <qlcdnumber.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QScrollView *scrollview = new QScrollView();
QLCDNumber *number = new QLCDNumber();
number->setNumDigits(8);
number->display(982.89021);
number->setMinimumSize(600,400);
scrollview->addChild(number);
scrollview->show();
app.setMainWidget(scrollview);
return(app.exec());

}

Figure 18-16: A QScrollView widget displaying a 
portion of its child widget

QSemiModal
A QSemiModal widget adds exclusivity to QWidget by prohibiting mouse access to
any other window in the same application.

File
#include <qsemimodal.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Inherited By
QProgressDialog 

4682-1 ch18.f.qc  11/20/00  15:43  Page 463



464 Part III ✦ Reference and Mechanics

Constructors
QSemiModal(QWidget *parent = 0, const char *name = 0,

bool modal = FALSE, WFlags f = 0);

Methods
void move(int x, int y);
void move(const QPoint &p);
void resize(int w, int h);
void resize(const QSize &);
virtual void setGeometry(int x, int y, int w, int h);
virtual void setGeometry(const QRect &);
void show();

A QSemiModal widget is simply a QWidget with the one added feature: If the third
argument on the constructor is TRUE, no other window in this application will
respond to the mouse or keyboard. The following example demonstrates that
QSemiModal can be used just like any other widget; and, as shown in Figure 18-17, it
is capable of containing other widgets. Also, it is often important for modal widgets
to provide the user with some means of escape, which in this example is the Exit
button.

/* showsemimodal.cpp */
#include <qapplication.h>
#include <qpushbutton.h>
#include <qsemimodal.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QSemiModal *semimodal = new QSemiModal(0,”semimodal”,TRUE);
QPushButton *button = new QPushButton(“Exit”,semimodal);
QObject::connect(button,

SIGNAL(clicked()),&app,SLOT(quit()));
semimodal->show();
app.setMainWidget(semimodal);
return(app.exec());

}

Figure 18-17: A QSemiModal widget containing a QPushButton

QSizeGrip
The QSizeGrip widget is a resizing handle designed for the lower-right corner of a
window.

File
#include <qsizegrip.h>

4682-1 ch18.f.qc  11/20/00  15:43  Page 464



465Chapter 18 ✦ The Widgets of Qt

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
QSizeGrip(QWidget *parent, const char *name = 0);

Methods
QSize sizeHint() const;
QSizePolicy sizePolicy() const;

The following example demonstrates that a QSizeHandle can be added to any wid-
get, and dragging it with the mouse will resize the containing widget. Figure 18-18
shows the normal position of the QResizeGrip widget in the lower-right corner.

/* showsizegrip.cpp */
#include <qapplication.h>
#include <qsizegrip.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QWidget *widget = new QWidget();
widget->setMinimumSize(200,150);
QSizeGrip *sizegrip = new QSizeGrip(widget);
sizegrip->setGeometry(170,120,30,30);
widget->show();
app.setMainWidget(widget);
return(app.exec());

}

Figure 18-18: A QSIzeGrip in the lower right corner 
of a window

QSlider
A QSlider widget displays a track and a movable thumb that can be used with the
mouse to adjust a value between two extremes.

File
#include <qslider.h>

Base Classes
QObject QPaintDevice QRangeControl QWidget Qt 

4682-1 ch18.f.qc  11/20/00  15:43  Page 465



466 Part III ✦ Reference and Mechanics

Constructors
QSlider(QWidget *parent, const char *name = 0);
QSlider(Orientation, QWidget *parent, const char *name = 0);
QSlider(int minValue, int maxValue, int pageStep, int value,

Orientation, QWidget *parent, const char *name = 0);

Methods
int lineStep() const;
int maxValue() const;
int minValue() const;
QSize minimumSizeHint() const;
Orientation orientation() const;
int pageStep() const;
void setLineStep(int);
void setMaxValue(int);
void setMinValue(int);
virtual void setOrientation(Orientation);
void setPageStep(int);
virtual void setPalette(const QPalette &);
virtual void setTickInterval(int);
virtual void setTickmarks(TickSetting);
virtual void setTracking(bool enable);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
QRect sliderRect() const;
int tickInterval() const;
TickSetting tickmarks() const;
bool tracking() const;
int value() const;

Slots
void addStep();
virtual void setValue(int);
void subtractStep();

Signals
void sliderMoved(int value);
void sliderPressed();
void sliderReleased();
void valueChanged(int value);

Enums
enum TickSetting { NoMarks=0, Above=1, Left=Above, Below=2,

Right=Below, Both=3 };

The following example, shown in Figure 18-19, displays one vertical and one hori-
zontal slider, with optional tick marks on both.

/* showslider.cpp */
#include <qapplication.h>
#include <qslider.h>

int main(int argc,char **argv)
{

4682-1 ch18.f.qc  11/20/00  15:43  Page 466



467Chapter 18 ✦ The Widgets of Qt

QApplication app(argc,argv);
QWidget *widget = new QWidget();
QSlider *vslider =

new QSlider(Qt::Vertical,widget);
vslider->setTickmarks(QSlider::Left);
vslider->setGeometry(200,0,30,200);
QSlider *hslider =

new QSlider(Qt::Horizontal,widget);
hslider->setTickmarks(QSlider::Above);
hslider->setGeometry(0,200,200,30);
widget->setFixedSize(230,230);
widget->show();
app.setMainWidget(widget);
return(app.exec());

}

Figure 18-19: One horizontal and one vertical QSLider

QSpinBox
The QSpinBox widget displays a text window with a current value or setting, along
with a pair of buttons that enables the user to switch from one value or setting to
the next.

File
#include <qspinbox.h>

Base Classes
QFrame QObject QPaintDevice QRangeControl QWidget Qt 

Inherited By
KIntSpinBox 

Constructors
QSpinBox(QWidget *parent = 0, const char *name = 0);
QSpinBox(int minValue, int maxValue, int step = 1,

QWidget *parent = 0, const char *name = 0);

4682-1 ch18.f.qc  11/20/00  15:43  Page 467



468 Part III ✦ Reference and Mechanics

Methods
ButtonSymbols buttonSymbols() const;
virtual QString cleanText() const;
int lineStep() const;
int maxValue() const;
int minValue() const;
virtual QString prefix() const;
void setButtonSymbols(ButtonSymbols);
void setLineStep(int);
void setMaxValue(int);
void setMinValue(int);
virtual void setSpecialValueText(const QString &text);
virtual void setValidator(const QValidator *v);
virtual void setWrapping(bool on);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
QString specialValueText() const;
virtual QString suffix() const;
QString text() const;
const QValidator *validator() const;
int value() const;
bool wrapping() const;

Slots
virtual void setEnabled(bool);
virtual void setPrefix(const QString &text);
virtual void setSuffix(const QString &text);
virtual void setValue(int value);
virtual void stepDown();
virtual void stepUp();

Signals
void valueChanged(int value);
void valueChanged(const QString &valueText);

Enums
enum ButtonSymbols { UpDownArrows, PlusMinus };

The following example creates the spin box shown in Figure 18-20. The numeric val-
ues can range from 10 to 100, and selecting one of the arrow buttons will adjust the
value by 10. It is possible to customize the displayed value with prefixes and suf-
fixes, or the displayed string can be replaced completely with a call to
setSpecialValueText().

/* showspinbox.cpp */
#include <qapplication.h>
#include <qspinbox.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);

4682-1 ch18.f.qc  11/20/00  15:43  Page 468



469Chapter 18 ✦ The Widgets of Qt

QSpinBox *spinbox = new QSpinBox(10,100,5);
spinbox->show();
app.setMainWidget(spinbox);
return(app.exec());

}

Figure 18-20: A QSpinBox used to select an integer value

QSplitter
The QSplitter widget contains a pair of windows with on-demand scrollbars, and
enables the relative size of each to be adjusted with the mouse.

File
#include <qsplitter.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Inherited By
KCombiView KFilePreview 

Constructors
QSplitter(QWidget *parent = 0, const char *name = 0);
QSplitter(Orientation, QWidget *parent = 0,

const char *name = 0);

Methods
QSize minimumSizeHint() const;
void moveToFirst(QWidget *);
void moveToLast(QWidget *);
bool opaqueResize() const;
Orientation orientation() const;
void refresh();
virtual void setOpaqueResize(bool = TRUE);
virtual void setOrientation(Orientation);
virtual void setResizeMode(QWidget *w, ResizeMode);
void setSizes(QValueList < int >);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
QValueList<int> sizes() const;

Enums
enum ResizeMode { Stretch, KeepSize, FollowSizeHint };

You can find examples of QSplitter in Chapters 7 and 8.Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 469



470 Part III ✦ Reference and Mechanics

QStatusBar
The QStatusBar widget displays a line of text that can be dynamically set and
cleared. It also contains a QSizeGrip widget used to resize itself and its parent
window.

File
#include <qstatusbar.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Inherited By
KStatusBar 

Constructors
QStatusBar(QWidget *parent = 0, const char *name = 0);

Methods
void addWidget(QWidget *, int stretch = 0, bool = FALSE);
bool isSizeGripEnabled() const;
void removeWidget(QWidget *);
void setSizeGripEnabled(bool);

Slots
void clear();
void message(const QString &);
void message(const QString &, int);

The following example displays the window containing the QStatusBar widget
shown in Figure 18-21. A widget of this sort is normally included at the bottom of 
a window.

/* showstatusbar.cpp */
#include <qapplication.h>
#include <qstatusbar.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QStatusBar *statusbar = new QStatusBar();
statusbar->setSizeGripEnabled(TRUE);
statusbar->message(“The QSatusBar widget”);
statusbar->show();
app.setMainWidget(statusbar);
return(app.exec());

}

Figure 18-21: A QStatusBar widget with the QSizeGrip
widget enabled

4682-1 ch18.f.qc  11/20/00  15:43  Page 470



471Chapter 18 ✦ The Widgets of Qt

QTabBar
The QTabBar widget displays a row of tabs that can be individually selected with
the mouse.

File
#include <qtabbar.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
QTabBar(QWidget *parent = 0, const char *name = 0);

Methods
virtual int addTab(QTab *);
int currentTab() const;
virtual int insertTab(QTab *, int index = - 1);
bool isTabEnabled(int) const;
int keyboardFocusTab() const;
virtual void layoutTabs();
virtual void removeTab(QTab *);
virtual void setShape(Shape);
virtual void setTabEnabled(int, bool);
Shape shape() const;
void show();
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
QTab *tab(int);

Slots
virtual void setCurrentTab(int);
virtual void setCurrentTab(QTab *);

Signals
void selected(int);

Enums
enum Shape { RoundedAbove, RoundedBelow, TriangularAbove,

TriangularBelow };

The following example creates the QTabBar with four tabs, as shown in Figure
18-22. At the right end of the bar is a spin button that appears whenever the parent
window is not wide enough to contain all the tabs. The call to the addTab()
method returns an integer ID number that is used to issue the selected() signal
whenever the tab is selected.

/* showtabbar.cpp */
#include <qapplication.h>
#include <qtabbar.h>

int main(int argc,char **argv)

4682-1 ch18.f.qc  11/20/00  15:43  Page 471



472 Part III ✦ Reference and Mechanics

{
QApplication app(argc,argv);
QTabBar *tabbar = new QTabBar();
tabbar->addTab(new QTab(“First”));
tabbar->addTab(new QTab(“Second”));
tabbar->addTab(new QTab(“Third”));
tabbar->addTab(new QTab(“Fourth”));
tabbar->show();
app.setMainWidget(tabbar);
return(app.exec());

}

Figure 18-22: A QTabBar with four tabs and a horizontal
spin button

QTabDialog
The QTabDialog widget is the container that stacks the contained widgets and
allows for the selection of the current by using the tabs at the top.

File
#include <qtabdialog.h>

Base Classes
QDialog QObject QPaintDevice QWidget Qt 

Constructors
QTabDialog(QWidget *parent = 0, const char *name = 0,

bool modal = FALSE, WFlags f = 0);

Methods
void addTab(QWidget *, const QString &);
void addTab(QWidget *child, const QIconSet &iconset,

const QString &label);
void addTab(QWidget *, QTab *);
void changeTab(QWidget *, const QString &);
void changeTab(QWidget *child, const QIconSet &iconset,

const QString &label);
QWidget *currentPage() const;
bool hasApplyButton() const;
bool hasCancelButton() const;
bool hasDefaultButton() const;
bool hasHelpButton() const;
bool hasOkButton() const;
void insertTab(QWidget *, const QString &, int index = - 1);
void insertTab(QWidget *child, const QIconSet &iconset,

const QString &label, int index = - 1);
void insertTab(QWidget *, QTab *, int index = - 1);

4682-1 ch18.f.qc  11/20/00  15:43  Page 472



473Chapter 18 ✦ The Widgets of Qt

bool isTabEnabled(QWidget *) const;
bool isTabEnabled(const char *) const;
void removePage(QWidget *);
void setApplyButton(const QString &text);
void setApplyButton();
void setCancelButton(const QString &text);
void setCancelButton();
void setDefaultButton(const QString &text);
void setDefaultButton();
void setFont(const QFont &font);
void setHelpButton(const QString &text);
void setHelpButton();
void setOKButton(const QString &text = QString::null);
void setOkButton(const QString &text);
void setOkButton();
void setTabEnabled(QWidget *, bool);
void setTabEnabled(const char *, bool);
void show();
void showPage(QWidget *);
QString tabLabel(QWidget *);

Signals
void aboutToShow();
void applyButtonPressed();
void cancelButtonPressed();
void defaultButtonPressed();
void helpButtonPressed();
void selected(const QString &);

See Chapter 5 for an example of the QTabDialog widget.

QTabWidget
A QTabWidget displays a row of tabs that can be individually selected with the
mouse.

File
#include <qtabwidget.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
QTabWidget(QWidget *parent, const char *name, WFlags f);
QTabWidget(QWidget *parent = 0, const char *name = 0);

Methods
void addTab(QWidget *, const QString &);
void addTab(QWidget *child, const QIconSet &iconset,

const QString &label);

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 473



474 Part III ✦ Reference and Mechanics

void addTab(QWidget *, QTab *);
void changeTab(QWidget *, const QString &);
void changeTab(QWidget *child, const QIconSet &iconset,

const QString &label);
QWidget *currentPage() const;
void insertTab(QWidget *, const QString &, int index = - 1);
void insertTab(QWidget *child, const QIconSet &iconset,

const QString &label, int index = - 1);
void insertTab(QWidget *, QTab *, int index = - 1);
bool isTabEnabled(QWidget *) const;
int margin() const;
QSize minimumSizeHint() const;
void removePage(QWidget *);
void setMargin(int);
void setTabEnabled(QWidget *, bool);
void setTabPosition(TabPosition);
void showPage(QWidget *);
QSize sizeHint() const;
QString tabLabel(QWidget *);
TabPosition tabPosition() const;

Signals
void selected(const QString &);

Enums
enum TabPosition { Top, Bottom };

The following example creates a QTabWidget container with four widgets, as shown
in Figure 18-23. At the right end of the bar is a spin button that appears whenever
the parent window is not wide enough to contain all the tabs.

/* showtabwidget.cpp */
#include <qapplication.h>
#include <qtabwidget.h>
#include <qlabel.h>

int main(int argc,char **argv)
{

QLabel *label;
QApplication app(argc,argv);
QTabWidget *tabwidget = new QTabWidget();
label = new QLabel(“The First Widget Label”,tabwidget);
tabwidget->addTab(label,”First”);
label = new QLabel(“The Second Widget Label”,tabwidget);
tabwidget->addTab(label,”Second”);
label = new QLabel(“The Third Widget Label”,tabwidget);
tabwidget->addTab(label,”Third”);
label = new QLabel(“The Fourth Widget Label”,tabwidget);
tabwidget->addTab(label,”Fourth”);
tabwidget->show();
app.setMainWidget(tabwidget);
return(app.exec());

}

4682-1 ch18.f.qc  11/20/00  15:43  Page 474



475Chapter 18 ✦ The Widgets of Qt

Figure 18-23: A QTabWidget with four tabs and a
horizontal spin button

QTextBrowser
A QTextBrowser widget displays text in a window and provides a set of positioning
methods. The basic text display is inherited from QTextView. Highlighted sections
can be extracted.

File
#include <qtextbrowser.h>

Base Classes
QFrame QObject QPaintDevice QScrollView QTextView QWidget Qt 

Inherited By
KTextBrowser 

Constructors
QTextBrowser(QWidget *parent = 0, const char *name = 0);

Methods
void scrollToAnchor(const QString &name);
virtual void setSource(const QString &name);
void setText(const QString &contents,

const QString &context = QString::null);
QString source() const;

Slots
virtual void backward();
virtual void forward();
virtual void home();

Signals
void backwardAvailable(bool);
void forwardAvailable(bool);
void highlighted(const QString &);
void textChanged();

The following example displays some lines of text, as shown in Figure 18-24.

/* showtextbrowser.cpp */
#include <qapplication.h>
#include <qtextbrowser.h>

char text[] =
“This is the text being displayed\n”
“by the text browser. Both vertical\n”
“and horizontal scroll bars will\n”
“appear as necessary.”;

4682-1 ch18.f.qc  11/20/00  15:43  Page 475



476 Part III ✦ Reference and Mechanics

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QTextBrowser *textbrowser = new QTextBrowser();
textbrowser->show();
textbrowser->setText(QString(text));
app.setMainWidget(textbrowser);
return(app.exec());

}

Figure 18-24: A QTextBrowser widget displaying text

QTextView
A QTextView widget displays text in a window.

File
#include <qtextview.h>

Base Classes
QFrame QObject QPaintDevice QScrollView QWidget Qt 

Inherited By
KTextBrowser QTextBrowser 

Constructors
QTextView(QWidget *parent = 0, const char *name = 0);
QTextView(const QString &text,

const QString &context = QString::null,
QWidget *parent = 0, const char *name = 0);

Methods
void append(const QString &text);
virtual QString context() const;
QString documentTitle() const;
bool hasSelectedText() const;
int heightForWidth(int w) const;
const QColor & linkColor() const;
bool linkUnderline() const;
QMimeSourceFactory *mimeSourceFactory() const;
const QBrush & paper();
const QBrush & paper() const;

4682-1 ch18.f.qc  11/20/00  15:43  Page 476



477Chapter 18 ✦ The Widgets of Qt

const QColorGroup & paperColorGroup() const;
QString selectedText() const;
void setLinkColor(const QColor &);
void setLinkUnderline(bool);
void setMimeSourceFactory(QMimeSourceFactory *factory);
void setPaper(const QBrush &pap);
void setPaperColorGroup(const QColorGroup &colgrp);
void setStyleSheet(QStyleSheet *styleSheet);
virtual void setText(const QString &text,

const QString &context);
void setText(const QString &text);
void setTextFormat(TextFormat);
QStyleSheet *styleSheet() const;
virtual QString text() const;
TextFormat textFormat() const;

Slots
void copy();
void selectAll();

The following example displays a block of text, as shown in Figure 18-25.

/* showtextview.cpp */
#include <qapplication.h>
#include <qtextview.h>

char text[] =
“This is the text being displayed\n”
“by the text view. Both vertical\n”
“and horizontal scroll bars will\n”
“appear as necessary.”;

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QTextView *textview = new QTextView(text);
textview->show();
app.setMainWidget(textview);
return(app.exec());

}

Figure 18-25: A QTextView widget displaying text

4682-1 ch18.f.qc  11/20/00  15:43  Page 477



478 Part III ✦ Reference and Mechanics

QToolBar
The QToolBar widget is a panel that contains controls. A toolbar control can be any
widget, but is most commonly a small button with an icon instead of text.

File
#include <qtoolbar.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
QToolBar(const QString &label, QMainWindow *,

QMainWindow::ToolBarDock = QMainWindow::Top,
bool newLine = FALSE, const char *name = 0);

QToolBar(const QString &label, QMainWindow *, QWidget *,
bool newLine = FALSE, const char *name = 0, WFlags f = 0);

QToolBar(QMainWindow *parent = 0, const char *name = 0);

Methods
void addSeparator();
void clear();
bool event(QEvent *e);
bool eventFilter(QObject *, QEvent *);
void hide();
bool isHorizontalStretchable() const;
bool isVerticalStretchable() const;
QString label() const;
QMainWindow *mainWindow();
QSize minimumSize() const;
QSize minimumSizeHint() const;
Orientation orientation() const;
void setHorizontalStretchable(bool b);
virtual void setLabel(const QString &);
virtual void setOrientation(Orientation);
virtual void setStretchableWidget(QWidget *);
void setVerticalStretchable(bool b);
void show();

Signals
void orientationChanged(Orientation);

The following example creates a QToolBar and attaches it to a QMainWindow wid-
get. Figure 18-26 shows the toolbar at the top, but the QMainWindow widget allows
the toolbar to be docked on any of the four sides. This toolbar is populated by a
normal QPushButton widget and three QToolButton widgets. One of the QTool
Button widgets displays an arrow, while the other two display pixmaps. They were
omitted to keep this example simple, but the buttons would normally be assigned
slot methods that would be called when a button is activated.

/* showtoolbar.cpp */
#include <qapplication.h>

4682-1 ch18.f.qc  11/20/00  15:43  Page 478



479Chapter 18 ✦ The Widgets of Qt

#include <qmainwindow.h>
#include <qtoolbar.h>
#include <qtoolbutton.h>
#include <qpushbutton.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QMainWindow *mainwindow = new QMainWindow();
QToolBar *toolbar = new QToolBar(“Bar”,mainwindow);
new QPushButton(“Button”,toolbar);
QPixmap idea(“idea.png”);
new QToolButton(idea,”Idea”,”Group”,0,0,toolbar);
QPixmap flag(“flag.png”);
new QToolButton(flag,”Flag”,”Group”,0,0,toolbar);
new QToolButton(Qt::UpArrow,toolbar);
mainwindow->show();
app.setMainWidget(mainwindow);
return(app.exec());

}

Figure 18-26: A QToolBar with four buttons

QToolButton
A QToolButton widget is a special button designed to be included as a member of a
toolbar. It can be displayed as text, a pixmap, or both.

File
#include <qtoolbutton.h>

Base Classes
QButton QObject QPaintDevice QWidget Qt 

Constructors
QToolButton(QWidget *parent, const char *name = 0);
QToolButton(const QPixmap &pm, const QString &textLabel,

const QString &grouptext, QObject *receiver,
const char *slot, QToolBar *parent, const char *name = 0);

QToolButton(const QIconSet &s, const QString &textLabel,
const QString &grouptext, QObject *receiver,
const char *slot, QToolBar *parent, const char *name = 0);

QToolButton(ArrowType type, QWidget *parent,
const char *name = 0);

4682-1 ch18.f.qc  11/20/00  15:43  Page 479



480 Part III ✦ Reference and Mechanics

Methods
bool autoRaise() const;
QIconSet iconSet(bool on = FALSE) const;
QIconSet offIconSet() const;
QIconSet onIconSet() const;
QPopupMenu *popup() const;
int popupDelay() const;
void setAutoRaise(bool enable);
virtual void setIconSet(const QIconSet &, bool on = FALSE);
void setOffIconSet(const QIconSet &);
void setOnIconSet(const QIconSet &);
void setPopup(QPopupMenu *popup);
void setPopupDelay(int delay);
QSize sizeHint() const;
QSizePolicy sizePolicy() const;
QString textLabel() const;
bool usesBigPixmap() const;
bool usesTextLabel() const;

Slots
virtual void setOn(bool enable);
virtual void setTextLabel(const QString &, bool);
void setTextLabel(const QString &);
virtual void setToggleButton(bool enable);
virtual void setUsesBigPixmap(bool enable);
virtual void setUsesTextLabel(bool enable);
void toggle();

For an example of a QToolButton, see the entry for QToolBar in this chapter.

QVBox
A QVBox is a simple container that organizes its child widgets one above the other.

File
#include <qvbox.h>

Base Classes
QFrame QHBox QObject QPaintDevice QWidget Qt 

Inherited By
KCharSelect 

Constructors
QVBox(QWidget *parent = 0, const char *name = 0, WFlags f = 0,

bool allowLines = TRUE);

The following example uses a QVBox as the top-level widget. It has four QLabel
widgets as its child widgets. As shown in Figure 18-27, each label is displayed one
above the other, with a 5-pixel-wide space between them.

4682-1 ch18.f.qc  11/20/00  15:43  Page 480



481Chapter 18 ✦ The Widgets of Qt

/* showvbox.cpp */
#include <qapplication.h>
#include <qvbox.h>
#include <qlabel.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QVBox *vbox = new QVBox();
new QLabel(“First”,vbox);
new QLabel(“Second”,vbox);
new QLabel(“Third”,vbox);
new QLabel(“Fourth”,vbox);
vbox->setSpacing(5);
vbox->show();
app.setMainWidget(vbox);
return(app.exec());

}

Figure 18-27: Labels displayed by a QVBox

QVButtonGroup
The QVButtonGroup is a container widget that organizes a collection of buttons in a
vertical column.

File
#include <qvbuttongroup.h>

Base Classes
QButtonGroup QFrame QGroupBox QObject QPaintDevice QWidget 

Qt 

Constructors
QVButtonGroup(QWidget *parent = 0, const char *name = 0);
QVButtonGroup(const QString &title, QWidget *parent = 0,

const char *name = 0);

You can find an example of QVButtonGroup in Chapter 7.

QVGroupBox
The QVGroupBox is a container widget that organizes a collection of widgets in a
vertical column.

Cross-
Reference

4682-1 ch18.f.qc  11/20/00  15:43  Page 481



482 Part III ✦ Reference and Mechanics

File
#include <qvgroupbox.h>

Base Classes
QFrame QGroupBox QObject QPaintDevice QWidget Qt 

Constructors
QVGroupBox(QWidget *parent = 0, const char *name = 0);
QVGroupBox(const QString &title, QWidget *parent = 0,

const char *name = 0);

The following example contains four labels inside a QVGroupBox widget. As shown
in Figure 18-28, the QVGroupBox widget inherits from QFrame, so it displays a bor-
der around the contained widgets, and can optionally display a title.

/* showvgroupbox.cpp */
#include <qapplication.h>
#include <qvgroupbox.h>
#include <qlabel.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
QVGroupBox *vgroupbox = new QVGroupBox();
new QLabel(“First”,vgroupbox);
new QLabel(“Second”,vgroupbox);
new QLabel(“Third”,vgroupbox);
new QLabel(“Fourth”,vgroupbox);
vgroupbox->setTitle(“Group Box Title”);
vgroupbox->show();
app.setMainWidget(vgroupbox);
return(app.exec());

}

Figure 18-28: Four buttons contained by a QVGroupBox

QWidget
The QWidget class is the base class of all user interface classes.

File
#include <qwidget.h>

Base Classes
QObject QPaintDevice Qt 

4682-1 ch18.f.qc  11/20/00  15:43  Page 482



483Chapter 18 ✦ The Widgets of Qt

Inherited By
Every widget in Qt and KDE use QWidget as a base class.

Constructors
QWidget(QWidget *parent = 0, const char *name = 0,

WFlags f = 0);

Methods
bool acceptDrops() const;
virtual void adjustSize();
bool autoMask() const;
const QColor & backgroundColor() const;
BackgroundMode backgroundMode() const;
BackgroundOrigin backgroundOrigin() const;
const QPixmap *backgroundPixmap() const;
QSize baseSize() const;
QString caption() const;
QRect childrenRect() const;
QRegion childrenRegion() const;
void clearMask();
virtual bool close(bool alsoDelete);
const QColorGroup & colorGroup() const;
const QCursor & cursor() const;
virtual bool customWhatsThis() const;
void drawText(int x, int y, const QString &);
void drawText(const QPoint &, const QString &);
void erase();
void erase(int x, int y, int w, int h);
void erase(const QRect &);
void erase(const QRegion &);
static QWidget *find(WId);
FocusPolicy focusPolicy() const;
QWidget *focusProxy() const;
QWidget *focusWidget() const;
QFont font() const;
QFontInfo fontInfo() const;
QFontMetrics fontMetrics() const;
PropagationMode fontPropagation() const;
const QColor & foregroundColor() const;
QRect frameGeometry() const;
QSize frameSize() const;
const QRect & geometry() const;
void grabKeyboard();
void grabMouse();
void grabMouse(const QCursor &);
bool hasFocus() const;
bool hasMouseTracking() const;
int height() const;
virtual int heightForWidth(int) const;
const QPixmap *icon() const;
QString iconText() const;
bool isActiveWindow() const;
bool isDesktop() const;

4682-1 ch18.f.qc  11/20/00  15:43  Page 483



484 Part III ✦ Reference and Mechanics

bool isEnabled() const;
bool isEnabledTo(QWidget *) const;
bool isEnabledToTLW() const;
bool isFocusEnabled() const;
bool isMinimized() const;
bool isModal() const;
bool isPopup() const;
bool isTopLevel() const;
bool isUpdatesEnabled() const;
bool isVisible() const;
bool isVisibleTo(QWidget *) const;
bool isVisibleToTLW() const;
static QWidget *keyboardGrabber();
QLayout *layout() const;
QPoint mapFromGlobal(const QPoint &) const;
QPoint mapFromParent(const QPoint &) const;
QPoint mapToGlobal(const QPoint &) const;
QPoint mapToParent(const QPoint &) const;
int maximumHeight() const;
QSize maximumSize() const;
int maximumWidth() const;
QRect microFocusHint() const;
int minimumHeight() const;
QSize minimumSize() const;
virtual QSize minimumSizeHint() const;
int minimumWidth() const;
static QWidget *mouseGrabber();
const QPalette & palette() const;
PropagationMode palettePropagation() const;
QWidget *parentWidget() const;
QPoint pos() const;
void recreate(QWidget *parent, WFlags f, const QPoint &p,

bool showIt = FALSE);
QRect rect() const;
void releaseKeyboard();
void releaseMouse();
virtual void reparent(QWidget *parent, WFlags, const QPoint &,

bool showIt = FALSE);
void reparent(QWidget *parent, const QPoint &,

bool showIt = FALSE);
void scroll(int dx, int dy);
void scroll(int dx, int dy, const QRect &);
virtual void setAcceptDrops(bool on);
virtual void setActiveWindow();
virtual void setAutoMask(bool);
virtual void setBackgroundColor(const QColor &);
virtual void setBackgroundMode(BackgroundMode);
void setBackgroundOrigin(BackgroundOrigin);
virtual void setBackgroundPixmap(const QPixmap &);
void setBaseSize(const QSize &);
void setBaseSize(int basew, int baseh);
virtual void setCursor(const QCursor &);
void setFixedHeight(int h);
void setFixedSize(const QSize &);

4682-1 ch18.f.qc  11/20/00  15:43  Page 484



485Chapter 18 ✦ The Widgets of Qt

void setFixedSize(int w, int h);
void setFixedWidth(int w);
virtual void setFocusPolicy(FocusPolicy);
virtual void setFocusProxy(QWidget *);
virtual void setFont(const QFont &);
void setFont(const QFont &, bool iReallyMeanIt);
virtual void setFontPropagation(PropagationMode);
virtual void setMask(const QBitmap &);
virtual void setMask(const QRegion &);
void setMaximumHeight(int maxh);
void setMaximumSize(const QSize &);
virtual void setMaximumSize(int maxw, int maxh);
void setMaximumWidth(int maxw);
void setMinimumHeight(int minh);
void setMinimumSize(const QSize &);
virtual void setMinimumSize(int minw, int minh);
void setMinimumWidth(int minw);
void setName(const char *name);
virtual void setPalette(const QPalette &);
void setPalette(const QPalette &, bool iReallyMeanIt);
virtual void setPalettePropagation(PropagationMode);
void setSizeIncrement(const QSize &);
virtual void setSizeIncrement(int w, int h);
void setStyle(QStyle *);
static void setTabOrder(QWidget *, QWidget *);
QSize size() const;
virtual QSize sizeHint() const;
QSize sizeIncrement() const;
virtual QSizePolicy sizePolicy() const;
QStyle & style() const;
bool testWFlags(WFlags n) const;
bool testWState(uint n) const;
QWidget *topLevelWidget() const;
virtual void unsetCursor();
void unsetFont();
void unsetPalette();
void updateGeometry();
QRect visibleRect() const;
int width() const;
WId winId() const;
static QWidgetMapper *wmapper();
int x() const;
int y() const;

Slots
void clearFocus();
bool close();
void constPolish() const;
virtual void hide();
void iconify();
void lower();
virtual void move(int x, int y);
void move(const QPoint &);
virtual void polish();

4682-1 ch18.f.qc  11/20/00  15:43  Page 485



486 Part III ✦ Reference and Mechanics

void raise();
void repaint();
void repaint(bool erase);
void repaint(int x, int y, int w, int h, bool erase = TRUE);
void repaint(const QRect &, bool erase = TRUE);
void repaint(const QRegion &, bool erase = TRUE);
virtual void resize(int w, int h);
void resize(const QSize &);
virtual void setCaption(const QString &);
virtual void setEnabled(bool);
virtual void setFocus();
virtual void setGeometry(int x, int y, int w, int h);
virtual void setGeometry(const QRect &);
virtual void setIcon(const QPixmap &);
virtual void setIconText(const QString &);
virtual void setMouseTracking(bool enable);
virtual void setUpdatesEnabled(bool enable);
virtual void show();
void showFullScreen();
virtual void showMaximized();
virtual void showMinimized();
virtual void showNormal();
void update();
void update(int x, int y, int w, int h);
void update(const QRect &);

Enums
enum BackgroundMode { FixedColor, FixedPixmap, NoBackground,

PaletteForeground, PaletteButton, PaletteLight,
PaletteMidlight, PaletteDark, PaletteMid, PaletteText,
PaletteBrightText, PaletteBase, PaletteBackground,
PaletteShadow, PaletteHighlight, PaletteHighlightedText

};
enum PropagationMode { NoChildren, AllChildren, SameFont,

SamePalette=SameFont };
enum FocusPolicy { NoFocus=0, TabFocus=0x1, ClickFocus=0x2,

StrongFocus=0x3, WheelFocus=0x7 };
enum BackgroundOrigin { WidgetOrigin, ParentOrigin };

Throughout the book, you can find a number of examples using QWidget, both as a
standalone widget and as a base class.

QWidgetStack
The QWidgetStack widget is a container that displays only one widget at a time.

File
#include <qwidgetstack.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

4682-1 ch18.f.qc  11/20/00  15:43  Page 486



487Chapter 18 ✦ The Widgets of Qt

Constructors
QWidgetStack(QWidget *parent = 0, const char *name = 0);

Methods
void addWidget(QWidget *, int);
int id(QWidget *) const;
QSize minimumSizeHint() const;
void removeWidget(QWidget *);
void setFrameRect(const QRect &);
void show();
QSize sizeHint() const;
QWidget *visibleWidget() const;
QWidget *widget(int) const;

Slots
void raiseWidget(int);
void raiseWidget(QWidget *);

Signals
void aboutToShow(int);
void aboutToShow(QWidget *);

The following example creates and adds three QPushButton widgets to a
QWidgetStack. As shown in Figure 18-29, the only widget displayed is the one 
that had its ID number used in a call to raiseWidget().

/* showwidgetstack.cpp */
#include <qapplication.h>
#include <qwidgetstack.h>
#include <qpushbutton.h>

int main(int argc,char **argv)
{

QPushButton *button;
QApplication app(argc,argv);
QWidgetStack *widgetstack = new QWidgetStack();
button = new QPushButton(“First Button”,widgetstack);
widgetstack->addWidget(button,1);
button = new QPushButton(“Second Button”,widgetstack);
widgetstack->addWidget(button,2);
button = new QPushButton(“Third Button”,widgetstack);
widgetstack->addWidget(button,3);
widgetstack->raiseWidget(2);
widgetstack->show();
app.setMainWidget(widgetstack);
return(app.exec());

}

Figure 18-29: A QWidgetStack widget displaying one of its widgets

4682-1 ch18.f.qc  11/20/00  15:43  Page 487



488 Part III ✦ Reference and Mechanics

QWizard
The QWizard widget can be used to create a dialog that guides the user through a
sequence of steps. Each step consists of a single window. The QWizard widget pro-
vides the paging mechanism and the control buttons.

File
#include <qwizard.h>

Base Classes
QDialog QObject QPaintDevice QWidget Qt 

Inherited By
KWizard 

Constructors
QWizard(QWidget *parent = 0, const char *name = 0,

bool modal = FALSE, WFlags f = 0);

Methods
virtual void addPage(QWidget *, const QString &);
virtual bool appropriate(QWidget *) const;
QPushButton *backButton() const;
QPushButton *cancelButton() const;
QWidget *currentPage() const;
bool eventFilter(QObject *, QEvent *);
QPushButton *finishButton() const;
QPushButton *helpButton() const;
QPushButton *nextButton() const;
QWidget *page(int pos) const;
int pageCount() const;
virtual void removePage(QWidget *);
virtual void setAppropriate(QWidget *, bool);
void setFont(const QFont &font);
void show();
virtual void showPage(QWidget *);
QString title(QWidget *) const;

Slots
virtual void setBackEnabled(QWidget *, bool);
virtual void setFinish(QWidget *, bool);
virtual void setFinishEnabled(QWidget *, bool);
virtual void setHelpEnabled(QWidget *, bool);
virtual void setNextEnabled(QWidget *, bool);

Signals
void helpClicked();

4682-1 ch18.f.qc  11/20/00  15:43  Page 488



489Chapter 18 ✦ The Widgets of Qt

The following example displays the empty QWizard widget shown in Figure 18-30.

/* showwizard.cpp */
#include <qapplication.h>
#include <qwizard.h>

int main(int argc,char **argv)
{

QPushButton *button;
QApplication app(argc,argv);
QWizard *wizard = new QWizard();
wizard->show();
app.setMainWidget(wizard);
return(app.exec());

}

Figure 18-30: The QWizard widget

Summary
This chapter provided an alphabetical listing of every Qt widget. Each widget was
listed along with the following:

✦ The constructor, or constructors, that can be used to create instances of the
widget

✦ The name of the header file in which the widget is defined

✦ All of the superclasses from which the widget inherits capabilities

✦ All of the subclasses that derive the capabilities of the widget

✦ The slots and signals that are used to connect an event in one widget to a
method call in another

✦ The public methods available to your application

The next chapter lists the KDE widgets. A KDE widget is any KDE class that inherits
from QWidget.

✦ ✦ ✦

4682-1 ch18.f.qc  11/20/00  15:43  Page 489



4682-1 ch18.f.qc  11/20/00  15:43  Page 490



The Widgets 
of KDE

This chapter consists of an alphabetical listing of all the
widgets. A widget is a class that contains a displayable

window. In KDE, all classes that have a displayable window
inherit the window capabilities from the QWidget class.
Furthermore, many of the widgets are dialogs — that is, they
inherit from QDialog which, in turn, inherits from QWidget.
The only difference is that a widget must have a parent and 
be displayed inside another window, and a dialog has its own
top-level window.

Each widget is listed with the name of its header file, the
names of all the superclasses, the names of all the KDE and 
Qt subclasses, the public methods, slots, signals, and the 
enumerated types. 

There are examples of all the widgets except for some of the
base and helper classes. The example code provided for each
widget creates a displayable form of the widget. Some of the
widgets are assigned as the top-level widget and displayed as
the main window. Some special purpose widgets, however, are
included in a specific environment. In many cases, the widgets
are more complicated than can be demonstrated in a simple
example, so there are references to locations elsewhere in 
this book where the widget is used in an example.

KAboutContainer
The KAboutContainer is a skeleton widget that allows you to
construct your own About box.

File
#include <kaboutdialog.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Determining 
the footprint 
of the constructors 
for each widget

Determining the
header file required
for each widget

Determining the
superclasses and
subclasses of 
each widget

Determining the slots
and signals available
in each widget

Determining all 
of the public 
methods available 
in each widget

Getting started with 
a small sample for
the widget

✦ ✦ ✦ ✦

4682-1 ch19.f.qc  11/20/00  15:44  Page 491



492 Part III ✦ Reference and Mechanics

Constructors
KAboutContainer(QWidget *parent = 0, const char *name = 0,

int margin = 0, int spacing = 0,
int childAlignment = AlignCenter,
int innerAlignment = AlignCenter);

Methods
void addImage(const QString &fileName,

int alignment = AlignLeft);
void addPerson(const QString &name, const QString &email,

const QString &url, const QString &task,
bool showHeader = false, bool showframe = false,
bool showBold = false);

void addTitle(const QString &title, int alignment = AlignLeft,
bool showframe = false, bool showBold = false);

void addWidget(QWidget *widget);
virtual QSize minimumSizeHint(void) const;
virtual QSize sizeHint(void) const;

Signals
void mailClick(const QString &name, const QString &address);
void urlClick(const QString &url);

The KAboutContainer widget displays nothing in its window by default, but 
provides a collection of methods that allows your application to add as many 
elements as you would like to it. The following example creates the window 
shown in Figure 19-1 by adding a block of centered text and the information 
about an individual.

/* showaboutcontainer.cpp */
#include <kapp.h>
#include <kaboutdialog.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”aboutcontainer”);
KAboutContainer *aboutcontainer = new KAboutContainer();
aboutcontainer->addTitle(

“A title is a line (or block)\n”
“of text that is stored in the window.\n”,
Qt::AlignCenter);

aboutcontainer->addPerson(“Phillip Space”,
“phil@nobody.com”,”http://www.belugalake.com”,
“Responsible for coloring pixels”);

aboutcontainer->show();
app.setMainWidget(aboutcontainer);
return(app.exec());

}

4682-1 ch19.f.qc  11/20/00  15:44  Page 492



493Chapter 19 ✦ The Widgets of KDE

Figure 19-1: A KAboutContainer 
widget displaying two items

KAboutContainerBase
The KAboutContainerBase widget is capable of positioning and displaying one 
or more KAboutContainer widgets.

File
#include <kaboutdialog.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
KAboutContainerBase(int layoutType, QWidget *parent = 0,

char *name = 0);

Methods
KAboutContainer *addContainer(int childAlignment,

int innerAlignment);
KAboutContainer *addContainerPage(const QString &title,

int childAlignment = AlignCenter,
int innerAlignment = AlignCenter);

QFrame *addEmptyPage(const QString &title);
QFrame *addTextPage(const QString &title, const QString &text,

bool richText = false, int numLines = 10);
void setImage(const QString &fileName);
void setImageBackgroundColor(const QColor &color);
void setImageFrame(bool state);
void setProduct(const QString &appName, const QString &version,

const QString &author, const QString &year);
void setTitle(const QString &title);
virtual void show(void);
virtual QSize sizeHint(void) const;

Slots
virtual void slotMailClick(const QString &name,

const QString &address);
virtual void slotMouseTrack(int mode, const QMouseEvent *e);
virtual void slotUrlClick(const QString &url);

4682-1 ch19.f.qc  11/20/00  15:44  Page 493



494 Part III ✦ Reference and Mechanics

Signals
void mailClick(const QString &name, const QString &address);
void mouseTrack(int mode, const QMouseEvent *e);
void urlClick(const QString &url);

Enums
enum LayoutType { AbtPlain=0x0001, AbtTabbed=0x0002,

AbtTitle=0x0004, AbtImageLeft=0x0008,
AbtImageRight=0x0010, AbtImageOnly=0x0020,
AbtProduct=0x0040,
AbtKDEStandard=AbtTabbed|AbtTitle|AbtImageLeft,
AbtAppStandard=AbtTabbed|AbtTitle|AbtProduct,
AbtImageAndTitle=AbtPlain|AbtTitle|AbtImageOnly };

There are examples of using the KAboutContainerBase widget (inside a
KAboutDialog) in Chapter 5.

KAboutContributor
The KAboutContributor widget uses a standard format to present the name and
other information about an individual contributor for display inside an About box.

File
#include <kaboutdialog.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Constructors
KAboutContributor(QWidget *parent = 0, const char *name = 0,

const QString &username = QString::null,
const QString &email = QString::null,
const QString &url = QString::null,
const QString &work = QString::null,
bool showHeader = false, bool showFrame = true,
bool showBold = false);

Methods
QString getEmail(void);
QString getName(void);
QString getURL(void);
QString getWork(void);
void setEmail(const QString &text,

const QString &header = QString::null, bool update = true);
void setName(const QString &text,

const QString &header = QString::null, bool update = true);
void setURL(const QString &text,

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 494



495Chapter 19 ✦ The Widgets of KDE

const QString &header = QString::null, bool update = true);
void setWork(const QString &text,

const QString &header = QString::null, bool update = true);
virtual QSize sizeHint(void) const;

Signals
void openURL(const QString &url);
void sendEmail(const QString &name, const QString &email);

The following example creates and displays the KAboutContributor widget shown
in Figure 19-2:

/* showaboutcontributor.cpp */
#include <kapp.h>
#include <kaboutdialog.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”aboutcontributor”);
KAboutContributor *aboutcontributor =

new KAboutContributor(0,0,
“Phillip Space”,
“phil@nobody.com”,”http://www.belugalake.com”,
“Responsible for coloring pixels”);

aboutcontributor->show();
app.setMainWidget(aboutcontributor);
return(app.exec());

}

Figure 19-2: A KAboutContributor widget displays
information about a single individual.

KAboutDialog
The KAboutDialog widget is a pop-up dialog that displays information about 
the application.

File
#include <kaboutdialog.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

Inherited By
KAboutKDE 

4682-1 ch19.f.qc  11/20/00  15:44  Page 495



496 Part III ✦ Reference and Mechanics

Constructors
KAboutDialog(QWidget *parent = 0, const char *name = 0,

bool modal = true);
KAboutDialog(int dialogLayout, const QString &caption,

int buttonMask, ButtonCode defaultButton,
QWidget *parent = 0, const char *name = 0,
bool modal = false, bool separator = false,
const QString &user1 = QString::null,
const QString &user2 = QString::null,
const QString &user3 = QString::null);

Methods
KAboutContainer *addContainer(int childAlignment,

int innerAlignment);
KAboutContainer *addContainerPage(const QString &title,

int childAlignment = AlignCenter,
int innerAlignment = AlignCenter);

void addContributor(const QString &name, const QString &email,
const QString &url, const QString &work);

QFrame *addPage(const QString &title);
QFrame *addTextPage(const QString &title, const QString &text,

bool richText = false, int numLines = 10);
void adjust();
static void imageURL(QWidget *parent, const QString &caption,

const QString &path, const QColor &imageColor,
const QString &url);

void setAuthor(const QString &name, const QString &email,
const QString &url, const QString &work);

void setImage(const QString &fileName);
void setImageBackgroundColor(const QColor &color);
void setImageFrame(bool state);
void setLogo(const QPixmap &);
void setMaintainer(const QString &name, const QString &email,

const QString &url, const QString &work);
void setProduct(const QString &appName, const QString &version,

const QString &author, const QString &year);
void setTitle(const QString &title);
void setVersion(const QString &name);
virtual void show(void);
virtual void show(QWidget *centerParent);

Signals
void openURL(const QString &url);
void sendEmail(const QString &name, const QString &email);

Enums
enum LayoutType { AbtPlain=0x0001, AbtTabbed=0x0002,

AbtTitle=0x0004, AbtImageLeft=0x0008,
AbtImageRight=0x0010, AbtImageOnly=0x0020,
AbtProduct=0x0040,
AbtKDEStandard=AbtTabbed|AbtTitle|AbtImageLeft,
AbtAppStandard=AbtTabbed|AbtTitle|AbtProduct,
AbtImageAndTitle=AbtPlain|AbtTitle|AbtImageOnly };

4682-1 ch19.f.qc  11/20/00  15:44  Page 496



497Chapter 19 ✦ The Widgets of KDE

You can find examples of KAboutDialog in Chapter 5.

KAboutKDE
The KAboutKDE dialog is based on the KAboutDialog, and is configured to display
in the standard KDE format.

File
#include <kaboutkde.h>

Base Classes
KAboutDialog KDialog KDialogBase QDialog QObject 

QPaintDevice QWidget Qt 

Constructors
KAboutKDE(QWidget *parent = 0, const char *name = 0,

bool modal = true);

Examples showing the KDE standard form of the KAboutDialog can be found in
Chapter 5.

KAboutWidget
The KAboutWidget uses one of several formats to display information about an
application. It provides a collection of methods that can be used to insert informa-
tion to be displayed. This is the main widget of KAboutDialog.

File
#include <kaboutdialog.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
KAboutWidget(QWidget *parent = 0, const char *name = 0);

Methods
void addContributor(const QString &name, const QString &email,

const QString &url, const QString &work);
void adjust();
void setAuthor(const QString &name, const QString &email,

const QString &url, const QString &work);
void setLogo(const QPixmap &);
void setMaintainer(const QString &name, const QString &email,

const QString &url, const QString &work);
void setVersion(const QString &name);

Cross-
Reference

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 497



498 Part III ✦ Reference and Mechanics

Signals
void openURL(const QString &url);
void sendEmail(const QString &name, const QString &email);

Chapter 5 provides examples of using KAboutWidget as the main widget of
KAboutDialog. 

KAccelMenu
The KAccelMenu widget is a helper class for simplifying the use of KAccel
and KKeyDialog.

File
#include <kaccelmenu.h>

Base Classes
QFrame QMenuData QObject QPaintDevice QPopupMenu QWidget Qt 

Constructors
KAccelMenu(KAccel *k, QWidget *parent = 0,

const char *name = 0);

Methods
int insItem(const QPixmap &pixmap, const char *text,

const char *action, const QObject *receiver,
const char *member, const char *accel = 0);

int insItem(const char *text, const char *action,
const QObject *receiver, const char *member,
const char *accel = 0);

int insItem(const QPixmap &pixmap, const char *text,
const char *action, const QObject *receiver,
const char *member, KStdAccel::StdAccel accel);

int insItem(const char *text, const char *action,
const QObject *receiver, const char *member,
KStdAccel::StdAccel accel);

KAnimWidget
The KAnimWidget produces animation by displaying individual pixmaps in a
sequence.

File
#include <kanimwidget.h>

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 498



499Chapter 19 ✦ The Widgets of KDE

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Constructors
KAnimWidget(const QStringList &icons, int size = 0,

QWidget *parent = 0L, const char *name = 0L);
KAnimWidget(QWidget *parent = 0L, const char *name = 0L);

Methods
void setIcons(const QStringList &icons);
void setSize(int size);
void start();
void stop();

Signals
void clicked();

The following example displays the window shown in Figure 19-3 by loading the
pixmaps named flag1.png through flag4.png and displaying them as an ani-
mated sequence of frames, one after the other. It will look for the icon files in the
share/icons/small directories and in the pics directory for the application. 
This example will look for the files in ~/.kde/animwidget/pics.

/* showanimwidget.cpp */
#include <kapp.h>
#include <kanimwidget.h>
#include <qstringlist.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”animwidget”);
QStringList icons;
QWidget *widget = new QWidget();
icons.append(“flag1”);
icons.append(“flag2”);
icons.append(“flag3”);
icons.append(“flag4”);
KAnimWidget *kanimwidget = new KAnimWidget(icons,0,widget);
kanimwidget->start();
widget->show();
app.setMainWidget(widget);
return(app.exec());

}

Figure 19-3: One frame of an animated 
sequence controlled by a KAnimWidget

4682-1 ch19.f.qc  11/20/00  15:44  Page 499



500 Part III ✦ Reference and Mechanics

KAuthIcon
The KAuthIcon widget is the base class of widgets designed to indicate whether 
a user has (or is denied) the capability to perform some action.

File
#include <kauthicon.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Inherited By
KRootPermsIcon KWritePermsIcon 

Constructors
KAuthIcon(QWidget *parent = 0, const char *name = 0);

Methods
virtual QSize sizeHint() const;
virtual bool status() const = 0;

Slots
virtual void updateStatus() = 0;

Signals
void authChanged(bool authorized);

KBugReport
The KBugReport is the base class for dialogs that accept bug reports from the 
user. You should not need to create one of these because KHelpMenu creates a
KBugReport dialog for you.

File
#include <kbugreport.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

Constructors
KBugReport(QWidget *parent = 0L, bool modal = true,

const KAboutData *aboutData = 0L);

KButtonBox
The KButtonBox is a container holding a group of buttons organized either vertically
or horizontally.

4682-1 ch19.f.qc  11/20/00  15:44  Page 500



501Chapter 19 ✦ The Widgets of KDE

File
#include <kbuttonbox.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
KButtonBox(QWidget *parent, int _orientation = HORIZONTAL,

int border = 0, int _autoborder = 6);

Methods
QPushButton *addButton(const QString &text,

bool noexpand = FALSE);
void addStretch(int scale = 1);
void layout();
virtual void resizeEvent(QResizeEvent *);
virtual QSize sizeHint() const;

Enums
enum (anon) { VERTICAL=1, HORIZONTAL=2 };

You can find examples of KButtonBox in Chapter 7.

KCharSelect
The KCharSelect widget enables the user to select a font, and then select a single
character from the font.

File
#include <kcharselect.h>

Base Classes
QFrame QHBox QObject QPaintDevice QVBox QWidget Qt 

Constructors
KCharSelect(QWidget *parent, const char *name,

const QString &font = QString::null, const QChar &chr =  ,
int tableNum = 0);

Methods
virtual QChar chr();
virtual void enableFontCombo(bool e);
virtual void enableTableSpinBox(bool e);
virtual QString font();
virtual bool isFontComboEnabled();
virtual bool isTableSpinBoxEnabled();
virtual void setChar(const QChar &chr);

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 501



502 Part III ✦ Reference and Mechanics

virtual void setFont(const QString &font);
virtual void setTableNum(int tableNum);
virtual QSize sizeHint() const;
virtual int tableNum();

Signals
void activated(const QChar &c);
void activated();
void focusItemChanged();
void focusItemChanged(const QChar &c);
void fontChanged(const QString &_font);
void highlighted(const QChar &c);
void highlighted();

The following example displays the KCharSelect window shown in Figure 19-4:

/* showcharselect.cpp */
#include <kapp.h>
#include <kcharselect.h>
#include <qstring.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showcharselect”);
QWidget *widget = new QWidget();
KCharSelect *kcharselect =

new KCharSelect(widget,”charselect”);
kcharselect->resize(kcharselect->sizeHint());
widget->resize(kcharselect->sizeHint());
widget->show();
app.setMainWidget(widget);
return(app.exec());

}

Figure 19-4: A KCharSelect widget with both a font and character selected

4682-1 ch19.f.qc  11/20/00  15:44  Page 502



503Chapter 19 ✦ The Widgets of KDE

KCharSelectTable
The KCharSelectTable widget is the character-display portion of the
KCharSelect widget.

File
#include <kcharselect.h>

Base Classes
QFrame QObject QPaintDevice QTableView QWidget Qt 

Constructors
KCharSelectTable(QWidget *parent, const char *name,

const QString &_font, const QChar &_chr, int _tableNum);

Methods
virtual QChar chr();
virtual void setChar(const QChar &_chr);
virtual void setFont(const QString &_font);
virtual void setTableNum(int _tableNum);
virtual QSize sizeHint() const;

Signals
void activated(const QChar &c);
void activated();
void focusItemChanged();
void focusItemChanged(const QChar &c);
void highlighted(const QChar &c);
void highlighted();
void tableDown();
void tableUp();

For an example, see KCharSelect.

KCModule
The KCModule widget is the base class of all of the control modules. The resulting
widget appears as one of the kcontrol windows, and can be used to adjust 
configuration settings.

File
#include <kcmodule.h>

Base Classes
QObject QPaintDevice QWidget Qt 

4682-1 ch19.f.qc  11/20/00  15:44  Page 503



504 Part III ✦ Reference and Mechanics

Constructors
KCModule(QWidget *parent = 0, const char *name = 0) : QWidget

( parent , name ) , _btn ( Help | Default | Reset |
Cancel | Apply | Ok );

Methods
int buttons();
virtual void defaults();
static void init();
virtual void load();
virtual QString quickHelp();
virtual void save();
virtual void sysdefaults();

Signals
void changed(bool state);

Enums
enum Button { Help=1, Default=2, Reset=4, Cancel=8, Apply=16,

Ok=32, SysDefault=64 };

KColorButton
The KColorButton widget is a pushbutton filled with a color instead of text; 
when selected, it pops up a dialog that enables the user to select another color.

File
#include <kcolorbtn.h>

Base Classes
QButton QObject QPaintDevice QPushButton QWidget Qt 

Constructors
KColorButton(QWidget *parent, const char *name = 0L);
KColorButton(const QColor &c, QWidget *parent,

const char *name = 0L);

Methods
const QColor color() const;
void setColor(const QColor &c);

Signals
void changed(const QColor &newColor);

The following example creates a KColorButton using red. As shown in Figure 19-5,
selecting the button causes the dialog to appear. The user can then select another
color, which will both change the color of the KColorButton and emit the changed()
signal.

4682-1 ch19.f.qc  11/20/00  15:44  Page 504



505Chapter 19 ✦ The Widgets of KDE

/* showcolorbutton.cpp */
#include <kapp.h>
#include <kcolorbtn.h>
#include <qcolor.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showcolorbutton”);
KColorButton *colorbutton =

new KColorButton(0,”colorbutton”);
colorbutton->setColor(QColor(“red”));
colorbutton->resize(colorbutton->sizeHint());
colorbutton->show();
app.setMainWidget(colorbutton);
return(app.exec());

}

Figure 19-5: The KColorButton pops up a dialog 
for color selection.

KColorCells
The KColorCells widget displays a collection of colors and enables the user to
select one of them.File

#include <kcolordlg.h>

Base Classes
QFrame QObject QPaintDevice QTableView QWidget Qt 

4682-1 ch19.f.qc  11/20/00  15:44  Page 505



506 Part III ✦ Reference and Mechanics

Constructors
KColorCells(QWidget *parent, int rows, int cols);

Methods
QColor color(int indx);
int getSelected();
int numCells();
void setAcceptDrags(bool _acceptDrags);
void setColor(int colNum, const QColor &col);
void setShading(bool _shade);

Signals
void colorSelected(int col);

The following example displays the list of color cells shown in Figure 19-6:

/* showcolorcells.cpp */
#include <kapp.h>
#include <kcolordlg.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showcolorcells”);
KColorCells *colorcells =

new KColorCells(0,1,5);
colorcells->setColor(0,QColor(“magenta”));
colorcells->setColor(1,QColor(“red”));
colorcells->setColor(2,QColor(“blue”));
colorcells->setColor(3,QColor(“green”));
colorcells->setColor(4,QColor(“cyan”));
colorcells->show();
app.setMainWidget(colorcells);
return(app.exec());

}

Figure 19-6: A KColorCells widget displaying 
a row of five colors

KColorCombo
The KColorCombo widget displays a pull-down list of colors for selection with 
the mouse.

4682-1 ch19.f.qc  11/20/00  15:44  Page 506



507Chapter 19 ✦ The Widgets of KDE

File
#include <kcolordlg.h>

Base Classes
QComboBox QObject QPaintDevice QWidget Qt 

Constructors
KColorCombo(QWidget *parent, const char *name = 0L);

Methods
void setColor(const QColor &col);

Slots
void slotActivated(int index);
void slotHighlighted(int index);

Signals
void activated(const QColor &col);
void highlighted(const QColor &col);

The following example displays a KColorCombo widget. Figure 19-7 shows the
KColorCombo widget after it has been pulled down and a color selection made.

/* showcolorcombo.cpp */
#include <kapp.h>
#include <kcolordlg.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showcolorcombo”);
KColorCombo *colorcombo = new KColorCombo(0,”colorcombo”);
colorcombo->show();
app.setMainWidget(colorcombo);
return(app.exec());

}

Figure 19-7: A KColorCombo widget 
enables color selection from a list.

4682-1 ch19.f.qc  11/20/00  15:44  Page 507



508 Part III ✦ Reference and Mechanics

KColorDialog
The KColorDialog is a color selection dialog with several features, including 
custom colors.

File
#include <kcolordlg.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

Constructors
KColorDialog(QWidget *parent = 0L, const char *name = 0L,

bool modal = FALSE);

Methods
QColor color();
static int getColor(QColor &theColor, QWidget *parent = 0L);
static QColor grabColor(const QPoint &p);

Slots
void setColor(const QColor &col);

Signals
void colorSelected(const QColor &col);

You can find an example of the KColorDialog widget in Chapter 11.

KColorPatch
The KColorPatch widget displays a rectangular region of color and responds to
being selected with the mouse.

File
#include <kcolordlg.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Constructors
KColorPatch(QWidget *parent);

Methods
void setColor(const QColor &col);

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 508



509Chapter 19 ✦ The Widgets of KDE

Signals
void colorChanged(const QColor &);

The following example uses a KColorPatch widget as the top-level window to 
display a region of color, as shown in Figure 19-8.

/* showcolorpatch.cpp */
#include <kapp.h>
#include <kcolordlg.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showcolorpatch”);
KColorPatch *colorpatch = new KColorPatch(0);
colorpatch->setColor(QColor(“blue”));
colorpatch->show();
app.setMainWidget(colorpatch);
return(app.exec());

}

Figure 19-8: A KColorPatch displaying a region of color

KComboBox
The KComboBox widget is a button that allows the user to make a selection from 
a list. It always displays the current selection at its top.

File
#include <kcombobox.h>

Base Classes
KCompletionBase QComboBox QObject QPaintDevice QWidget Qt 

Inherited By
KFileComboBox KFileFilter KURLComboBox 

Constructors
KComboBox(QWidget *parent = 0, const char *name = 0);
KComboBox(bool rw, QWidget *parent = 0, const char *name = 0);

Methods
bool autoCompletion() const;
int cursorPosition() const;

4682-1 ch19.f.qc  11/20/00  15:44  Page 509



510 Part III ✦ Reference and Mechanics

bool isContextMenuEnabled() const;
bool isEditable() const;
virtual void setAutoCompletion(bool autocomplete);
virtual void setEnableContextMenu(bool showMenu);

Slots
void rotateText(KeyBindingType);

Signals
void completion(const QString &);
void nextMatch(KeyBindingType);
void previousMatch(KeyBindingType);
void returnPressed();
void returnPressed(const QString &);
void rotateDown(KeyBindingType);
void rotateUp(KeyBindingType);

The following example creates a KComboBox with four selections. Figure 19-9 shows
the widget after the mouse has been used to pop up the list, and with the third
selection as the default.

/* showcombobox.cpp */
#include <kapp.h>
#include <kcombobox.h>

const char *list[] = {
“First Selection”,
“Second Selection”,
“Third Selection”,
“Fourth Selection”

};

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showcombobox”);
KComboBox *combobox = new KComboBox();
combobox->insertStrList(list,4);
combobox->show();
app.setMainWidget(combobox);
return(app.exec());

}

Figure 19-9: A KComboBox with the third 
list member selected

4682-1 ch19.f.qc  11/20/00  15:44  Page 510



511Chapter 19 ✦ The Widgets of KDE

KContainerLayout
The KContainerLayout widget is a layout manager that can be configured to manage
widget positions and sizes in a number of ways.

File
#include <kcontainer.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Constructors
KContainerLayout(QWidget *parent = 0, const char *name = 0,

int orientation = KContainerLayout::Horizontal,
bool homogeneos = FALSE, int spacing = 5, WFlags f = 0,
bool allowLines = TRUE);

KContainerLayoutItem(QWidget *w, bool e = FALSE,
bool f = FALSE, int p = 0);

Methods
const int endOffset() const;
const bool expand() const;
const bool fill() const;
int getNumberOfWidgets() const;
const bool homogeneos() const;
const int orientation() const;
int packEnd(QWidget *w, bool e = FALSE, bool f = FALSE,

int p = 1);
int packStart(QWidget *w, bool e = FALSE, bool f = FALSE,

int p = 1);
const int padding() const;
void setEndOffset(int i);
void setExpand(bool b);
void setFill(bool b);
void setHomogeneos(bool b);
void setOrientation(int i);
void setPadding(int i);
void setSpacing(int i);
void setStartOffset(int i);
void sizeToFit();
const int spacing() const;
const int startOffset() const;
QWidget *widget();

Enums
enum (anon) { Horizontal=0, Vertical };

4682-1 ch19.f.qc  11/20/00  15:44  Page 511



512 Part III ✦ Reference and Mechanics

Example programs that use KContainerLayout can be found in Chapters 3 and 6.

KDatePicker
The KDatePicker presents a calendar to the user and enables a date to be selected
with the mouse.

File
#include <kdatepik.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Constructors
KDatePicker(QWidget *parent = 0, QDate = QDate::currentDate ()

, const char * name = 0 );

Methods
const QDate & getDate();
bool setDate(const QDate &);
void setEnabled(bool);
void setFontSize(int);
QSize sizeHint() const;

Signals
void dateChanged(QDate);
void dateEntered(QDate);
void dateSelected(QDate);
void tableClicked();

The following example displays a KDatePicker widget as the top-level window. 
As shown in Figure 19-10, the left and right arrows at the top allow the mouse to 
be used to change the month and year. A date is selected from the calendar. If the
KDatePicker window is resized, each part of the calendar and its controls are 
also resized, so all of the parts maintain their aspects.

/* showdatepicker.cpp */
#include <kapp.h>
#include <kdatepik.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showdatepicker”);
KDatePicker *datepicker = new KDatePicker();
datepicker->resize(datepicker->sizeHint());
datepicker->show();

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 512



513Chapter 19 ✦ The Widgets of KDE

app.setMainWidget(datepicker);
return(app.exec());

}

Figure 19-10: A KDatePicker widget

KDateTable
A KDateTable displays a single month and enables the user to select a day with 
the mouse.

File
#include <kdatetbl.h>

Base Classes
QFrame QObject QPaintDevice QTableView QWidget Qt 

Constructors
KDateTable(QWidget *parent = 0,

QDate date = QDate::currentDate () , const char * name =
0 , WFlags f = 0 );

Methods
const QDate & getDate();
bool setDate(const QDate &);
void setFontSize(int size);
QSize sizeHint() const;

Signals
void dateChanged(QDate);
void tableClicked();

The KDateTable widget is not a standalone date selector, but is meant to be a com-
ponent in another widget, such as the KDatePicker. For one thing, the name of the
month is not displayed, as you can see in Figure 19-11.

/* showdatetable.cpp */
#include <kapp.h>
#include <kdatetbl.h>

4682-1 ch19.f.qc  11/20/00  15:44  Page 513



514 Part III ✦ Reference and Mechanics

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showdatetable”);
KDateTable *datetable = new KDateTable();
datetable->show();
app.setMainWidget(datetable);
return(app.exec());

}

Figure 19-11: A KDateTable widget

KDialog
The KDialog widget is a base class for modeless KDE widgets. It extends QDialog
to include a set of standard KDE methods for dialogs. It is the base class on which
KDialogBase is built.

File
#include <kdialog.h>

Base Classes
QDialog QObject QPaintDevice QWidget Qt 

Inherited By
KAboutDialog KAboutKDE KBugReport KColorDialog KCookieWin 

KDialogBase KEdFind KEdGotoLine KEdReplace KEditToolbar 
KFileDialog KFileDialogConfigureDlg KFontDialog 
KIconDialog KKeyDialog KLineEditDlg KPasswordDialog 
KTextPrintDialog KURLRequesterDlg KabAPI 

Constructors
KDialog(QWidget *parent = 0, const char *name = 0,

bool modal = false, WFlags f = 0);

Methods
static int marginHint();
static void resizeLayout(QWidget *widget, int margin,

int spacing);
static void resizeLayout(QLayoutItem *lay, int margin,

4682-1 ch19.f.qc  11/20/00  15:44  Page 514



515Chapter 19 ✦ The Widgets of KDE

int spacing);
static int spacingHint();

Slots
virtual void setCaption(const QString &caption);
virtual void setPlainCaption(const QString &caption);

Signals
void layoutHintChanged();

KDialogBase
The KDialogBase is the base class for building dialogs in KDE. Among other things,
it contains the standard set of KDE buttons for dialogs.

File
#include <kdialogbase.h>

Base Classes
KDialog QDialog QObject QPaintDevice QWidget Qt 

Inherited By
KAboutDialog KAboutKDE KBugReport KColorDialog KCookieWin 

KEdFind KEdGotoLine KEdReplace KEditToolbar KFileDialog 
KFileDialogConfigureDlg KFontDialog KIconDialog 
KKeyDialog KLineEditDlg KPasswordDialog KTextPrintDialog 
KURLRequesterDlg KabAPI 

Constructors
KDialogBase(QWidget *parent = 0, const char *name = 0,

bool modal = true, const QString &caption = QString::null,
int buttonMask = Ok | Apply | Cancel,
ButtonCode defaultButton = Ok, bool separator = false,
const QString &user1 = QString::null,
const QString &user2 = QString::null,
const QString &user3 = QString::null);

KDialogBase(int dialogFace, const QString &caption,
int buttonMask, ButtonCode defaultButton,
QWidget *parent = 0, const char *name = 0,
bool modal = true, bool separator = false,
const QString &user1 = QString::null,
const QString &user2 = QString::null,
const QString &user3 = QString::null);

KDialogBase(const QString &caption,
int buttonMask = Yes | No | Cancel,
ButtonCode defaultButton = Yes,
ButtonCode escapeButton = Cancel, QWidget *parent = 0,
const char *name = 0, bool modal = true,

4682-1 ch19.f.qc  11/20/00  15:44  Page 515



516 Part III ✦ Reference and Mechanics

bool separator = false, QString yes = QString::null,
QString no = QString::null, QString cancel =

QString::null);

Methods
QPushButton *actionButton(ButtonCode id);
int activePageIndex() const;
QGrid *addGridPage(int n, QGrid::Direction dir,

const QString &itemName,
const QString &header = QString::null,
const QPixmap &pixmap = QPixmap () );

QHBox *addHBoxPage(const QString &itemName,
const QString &header = QString::null,
const QPixmap &pixmap = QPixmap () );

QFrame *addPage(const QString &item,
const QString &header = QString::null,
const QPixmap &pixmap = QPixmap () );

QVBox *addVBoxPage(const QString &itemName,
const QString &header = QString::null,
const QPixmap &pixmap = QPixmap () );

virtual void adjustSize();
QSize calculateSize(int w, int h);
void delayedDestruct();
void disableResize();
void enableButtonSeparator(bool state);
static const QPixmap *getBackgroundTile();
void getBorderWidths(int &ulx, int &uly, int &lrx, int &lry)

const;
QRect getContentsRect();
QWidget *getMainWidget();
static bool haveBackgroundTile();
QString helpLinkText();
void incInitialSize(const QSize &s, bool noResize = false);
QGrid *makeGridMainWidget(int n, QGrid::Direction dir);
QHBox *makeHBoxMainWidget();
QFrame *makeMainWidget();
QVBox *makeVBoxMainWidget();
int pageIndex(QWidget *widget) const;
QFrame *plainPage();
static void setBackgroundTile(const QPixmap *pix);
void setButtonApplyText(const QString &text = QString::null,

const QString &tooltip = QString::null,
const QString &quickhelp = QString::null);

void setButtonCancelText(const QString &text = QString::null,
const QString &tooltip = QString::null,
const QString &quickhelp = QString::null);

void setButtonOKText(const QString &text = QString::null,
const QString &tooltip = QString::null,
const QString &quickhelp = QString::null);

void setButtonText(ButtonCode id, const QString &text);
void setButtonTip(ButtonCode id, const QString &text);
void setButtonWhatsThis(ButtonCode id, const QString &text);

4682-1 ch19.f.qc  11/20/00  15:44  Page 516



517Chapter 19 ✦ The Widgets of KDE

void setIconListAllVisible(bool state);
void setInitialSize(const QSize &s, bool noResize = false);
void setMainWidget(QWidget *widget);
void setTreeListAutoResize(bool state);
void showButton(ButtonCode id, bool state);
void showButtonApply(bool state);
void showButtonCancel(bool state);
void showButtonOK(bool state);
bool showPage(int index);
void showTile(bool state);

Slots
void enableButton(ButtonCode id, bool state);
void enableButtonApply(bool state);
void enableButtonCancel(bool state);
void enableButtonOK(bool state);
void enableLinkedHelp(bool state);
void helpClickedSlot(const QString &);
void setHelp(const QString &path, const QString &topic);
void setHelpLinkText(const QString &text);
void updateBackground();

Signals
void apply();
void applyClicked();
void backgroundChanged();
void cancelClicked();
void closeClicked();
void defaultClicked();
void helpClicked();
void hidden();
void noClicked();
void okClicked();
void tryClicked();
void user1Clicked();
void user2Clicked();
void user3Clicked();
void yesClicked();

Enums
enum ButtonCode { Help=0x00000001, Default=0x00000002,

Ok=0x00000004, Apply=0x00000008, Try=0x00000010,
Cancel=0x00000020, Close=0x00000040, User1=0x00000080,
User2=0x00000100, User3=0x00000200, No=0x00000080,
Yes=0x00000100, Stretch=0x80000000 };

enum ActionButtonStyle { ActionStyle0=0, ActionStyle1,
ActionStyle2, ActionStyle3, ActionStyle4,
ActionStyleMAX };

enum DialogType { TreeList=KJanusWidget::TreeList,
Tabbed=KJanusWidget::Tabbed, Plain=KJanusWidget::Plain,
Swallow=KJanusWidget::Swallow,
IconList=KJanusWidget::IconList };

4682-1 ch19.f.qc  11/20/00  15:44  Page 517



518 Part III ✦ Reference and Mechanics

There are several examples of using KDialogBase to build dialogs in Chapter 4.

KDialogBaseButton
The KDialogBaseButton is used internally by KDialogBase to add the unique 
button ID numbers that are used in the callback methods.

File
#include <kdialogbase.h>

Base Classes
QButton QObject QPaintDevice QPushButton QWidget Qt 

Constructors
KDialogBaseButton(const QString &text, int key,

QWidget *parent = 0, const char *name = 0);

Methods
inline int id();

There are several examples of using KDialogBase to build dialogs in Chapter 4.

KDirectionButton
The KDirectionButton is a QButton widget that is displayed as an up, down, left,
or right arrow.

File
#include <kdbtn.h>

Base Classes
QButton QObject QPaintDevice QWidget Qt 

Inherited By
KTabButton 

Constructors
KDirectionButton(QWidget *parent = 0, const char *name = 0);
KDirectionButton(ArrowType d, QWidget *parent = 0,

const char *name = 0);

Methods
ArrowType direction();
void setDirection(ArrowType d);

Cross-
Reference

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 518



519Chapter 19 ✦ The Widgets of KDE

The following example displays the right pointing arrow shown in Figure 19-12. The
arrow direction names are UpArrow, DownArrow, LeftArrow, and RightArrow.

/* showdirectionbutton.cpp */
#include <kapp.h>
#include <kdbtn.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showdirectionbutton”);
KDirectionButton *directionbutton =

new KDirectionButton(Qt::RightArrow);
directionbutton->show();
app.setMainWidget(directionbutton);
return(app.exec());

}

Figure 19-12: A KDirectionButton widget with a right-pointing arrow

KDockMainWindow
The KDockMainWindow is a special version of KTMainWindow that allows
KDockWidgets to be docked along its edges.

File
#include <kdockwidget.h>

Base Classes
KTMainWindow KXMLGUIBuilder KXMLGUIClient QObject 

QPaintDevice QWidget Qt 

Constructors
KDockMainWindow(const char *name = 0L);

Methods
void activateDock();
KDockWidget *createDockWidget(const QString &name,

const QPixmap &pixmap, QWidget *parent = 0L);
QPopupMenu *dockHideShowMenu();
KDockWidget *getMainDockWidget();
void makeDockInvisible(KDockWidget *dock);
void makeDockVisible(KDockWidget *dock);
void makeWidgetDockVisible(QWidget *widget);

4682-1 ch19.f.qc  11/20/00  15:44  Page 519



520 Part III ✦ Reference and Mechanics

KDockManager *manager();
void readDockConfig(KConfig *c = 0L,

QString group = QString::null);
void setMainDockWidget(KDockWidget *);
void setView(QWidget *);
void writeDockConfig(KConfig *c = 0L,

QString group = QString::null);

The following example uses a KDockMainWindow as the top-level widget shown in
Figure 19-13:

/* showdockmainwindow.cpp */
#include <kapp.h>
#include <kdockwidget.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showdatetable”);
KDockMainWindow *dockmainwindow = new KDockMainWindow();
dockmainwindow->setBackgroundColor(QColor(“blue”));
dockmainwindow->show();
app.setMainWidget(dockmainwindow);
return(app.exec());

}

Figure 19-13: A KDockMainWindow 
widget used as a top-level window

For an example of adding dockable widgets, see KDockWidget.

KDockWidget
A KDockWidget is a special container widget that can hold any widget that you
would like to be one of the dockable widgets in a KDockMainWindow widget.

File
#include <kdockwidget.h>

Base Classes
QObject QPaintDevice QWidget Qt 

4682-1 ch19.f.qc  11/20/00  15:44  Page 520



521Chapter 19 ✦ The Widgets of KDE

Constructors
KDockWidget(KDockManager *dockManager, const char *name,

const QPixmap &pixmap, QWidget *parent = 0L);

Methods
KDockManager *dockManager();
int dockSite();
int enableDocking();
virtual bool event(QEvent *);
QWidget *getWidget();
bool isDockBackPossible();
void makeDockVisible();
KDockWidget *manualDock(KDockWidget *target,

DockPosition dockPos, int spliPos = 50,
QPoint pos = QPoint ( 0) , bool check = false );

bool mayBeHide();
bool mayBeShow();
void setDockSite(int pos);
void setEnableDocking(int pos);
void setHeader(KDockWidgetAbstractHeader *ah);
void setToolTipString(const QString &ttStr);
void setWidget(QWidget *w);
virtual void show();
const QString & toolTipString();

Slots
void changeHideShowState();
void dockBack();
void undock();

Signals
void docking(KDockWidget *dw, KDockWidget::DockPosition dp);
void headerCloseButtonClicked();
void headerDockbackButtonClicked();
void iMBeingClosed();
void setDockDefaultPos();

Enums
enum DockPosition { DockNone=0, DockTop=0x0001,

DockLeft=0x0002, DockRight=0x0004, DockBottom=0x0008,
DockCenter=0x0010, DockDesktop=0x0020,
DockCorner=DockTop|DockLeft|DockRight|DockBottom,
DockFullSite=DockCorner|DockCenter,
DockFullDocking=DockFullSite|DockDesktop };

The following example uses three KDockWidget widgets to add three widgets to a
KDockMainWindow. As shown in Figure 19-14, the widgets are displayed in a paneled
window. The entire window can be configured using a mouse. Also, in addition to
the bars between the widgets that can be used to expand and contract the window
sizes, there is a control bar (which is also dockable) that can be used to enable or

4682-1 ch19.f.qc  11/20/00  15:44  Page 521



522 Part III ✦ Reference and Mechanics

disable the appearance of each docked widgets. The call to setMainDockWidget()
specifies the widget that is to appear in the space left by the widgets docked on the
edges — in this example, it is the area in the upper-right corner.

/* showdockwidget.cpp */
#include <kapp.h>
#include <kdockwidget.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showdatetable”);
KDockMainWindow *dockmainwindow = new KDockMainWindow();

QPixmap pixmap(“idea.png”);

KDockWidget *mainDock =
dockmainwindow->createDockWidget(“Main Dock”,pixmap);

QWidget *actualMain = new QWidget(mainDock);
actualMain->setBackgroundColor(QColor(“green”));
actualMain->setMinimumSize(200,200);
dockmainwindow->setView(mainDock);
dockmainwindow->setMainDockWidget(mainDock);

KDockWidget *leftDock =
dockmainwindow->createDockWidget(“Left Dock”,pixmap);

QWidget *actualLeft = new QWidget(leftDock);
actualLeft->setBackgroundColor(QColor(“blue”));
actualLeft->setMinimumSize(200,200);
leftDock->manualDock(mainDock,

KDockWidget::DockLeft,20);

KDockWidget *bottomDock =
dockmainwindow->createDockWidget(“Bottom Dock”,pixmap);

QWidget *actualBottom = new QWidget(bottomDock);
actualBottom->setBackgroundColor(QColor(“red”));
actualBottom->setMinimumSize(200,200);
bottomDock->manualDock(mainDock,

KDockWidget::DockBottom,20);

dockmainwindow->activateDock();
app.setMainWidget(dockmainwindow);
return(app.exec());

}

Figure 19-14: KDockWidgets used to dock 
three widgets in a KDockMainWindow

4682-1 ch19.f.qc  11/20/00  15:44  Page 522



523Chapter 19 ✦ The Widgets of KDE

KDoubleNumInput
The KDoubleNumInput widget is designed to input and verify user input of floating
point numbers.

File
#include <knuminput.h>

Base Classes
KNumInput QObject QPaintDevice QWidget Qt 

Constructors
KDoubleNumInput(double value, QWidget *parent = 0,

const char *name = 0);
KDoubleNumInput(KNumInput *below, double value,

QWidget *parent = 0, const char *name = 0);

Methods
virtual QSize minimumSizeHint() const;
void setFormat(const char *format);
virtual void setLabel(QString label,

int a = AlignLeft | AlignTop);
void setRange(double lower, double upper, double step = 1,

bool slider = true);
void setSpecialValueText(const QString &text);
double value() const;

Slots
void setPrefix(QString prefix);
void setSuffix(QString suffix);
void setValue(double);

Signals
void valueChanged(double);

As shown in Figure 19-15, the input window can be accompanied by a slider that
can be used to select the value. If a step value is specified but the slider is not
selected, a spin button will be used instead.

/* showdoublenuminput.cpp */
#include <kapp.h>
#include <knuminput.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showdoublenuminput”);
KDoubleNumInput *doublenuminput = new KDoubleNumInput(980);
doublenuminput->setRange(100.0,1000.0,10,true);
doublenuminput->show();
app.setMainWidget(doublenuminput);
return(app.exec());

}

4682-1 ch19.f.qc  11/20/00  15:44  Page 523



524 Part III ✦ Reference and Mechanics

Figure 19-15: A KDoubleNumInput widget with a slider

KDualColorButton
The KDualColorButton widget displays a pair of overlapping buttons, each in a
different color, and responds to the mouse by reporting the color when the user
selects a button.

File
#include <kdualcolorbtn.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
KDualColorButton(QWidget *parent = 0, const char *name = 0);
KDualColorButton(const QColor &fgColor, const QColor &bgColor,

QWidget *parent = 0, const char *name = 0);

Methods
QColor background();
DualColor current();
QColor currentColor();
QColor foreground();
virtual QSize sizeHint() const;

Slots
void slotSetBackground(const QColor &c);
void slotSetCurrent(KDualColorButton::DualColor s);
void slotSetCurrentColor(const QColor &c);
void slotSetForeground(const QColor &c);

Signals
void bgChanged(const QColor &c);
void currentChanged(KDualColorButton::DualColor s);
void fgChanged(const QColor &c);

Enums
enum DualColor { Foreground, Background };

The following example presents the pair of color buttons depicted in Figure 19-16. A
double-click on one of the buttons will bring up a color dialog window that enables
the user to change the color.

/* showdualcolorbutton.cpp */
#include <kapp.h>
#include <kdualcolorbtn.h>

4682-1 ch19.f.qc  11/20/00  15:44  Page 524



525Chapter 19 ✦ The Widgets of KDE

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showdualcolorbutton”);
KDualColorButton *dualcolorbutton = new KDualColorButton(

QColor(“red”),QColor(“green”));
dualcolorbutton->show();
app.setMainWidget(dualcolorbutton);
return(app.exec());

}

Figure 19-16: A KDualColorButton widget 
enables the selection of one of two colors.

KEdFind
The KEdFind is a dialog that will accept a string, along with a couple of parameters,
that can be used to start a search through the text.

File
#include <keditcl.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

Constructors
KEdFind(QWidget *parent = 0, const char *name = 0,

bool modal = true);

Methods
bool case_sensitive();
QString getText();
bool get_direction();
void setText(QString string);

Signals
void done();
void search();

The following example displays the KEdFind dialog shown in Figure 19-17:

/* showedfind.cpp */
#include <kapp.h>
#include <keditcl.h>

int main(int argc,char **argv)
{

4682-1 ch19.f.qc  11/20/00  15:44  Page 525



526 Part III ✦ Reference and Mechanics

KApplication app(argc,argv,”showedfind”);
KEdFind *edfind = new KEdFind();
edfind->setText(“The search string”);
edfind->show();
return(app.exec());

}

Figure 19-17: The KEdFind dialog prompts for 
the necessary information to do a string search.

KEdGotoLine
The KEdGotoLine widget is a text display or text editor’s request for a line number.

File
#include <keditcl.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

Constructors
KEdGotoLine(QWidget *parent = 0, const char *name = 0,

bool modal = true);

Methods
int getLineNumber();

Slots
void selected(int);

The following example displays the KEdGotoLine dialog shown in Figure 19-18:

/* showedgotoline.cpp */
#include <kapp.h>
#include <keditcl.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showedgotoline”);
KEdGotoLine *edgotoline = new KEdGotoLine();
edgotoline->show();
return(app.exec());

}

4682-1 ch19.f.qc  11/20/00  15:44  Page 526



527Chapter 19 ✦ The Widgets of KDE

Figure 19-18: The KEdGotoLine dialog 
prompts for a line number in the text.

KEdit
The KEdit widget is a simple text editor.

File
#include <keditcl.h>

Base Classes
QFrame QMultiLineEdit QObject QPaintDevice QTableView 

QWidget Qt 

Constructors
KEdit(QWidget *_parent = NULL, const char *name = NULL);

Methods
void cleanWhiteSpace();
int currentColumn();
int currentLine();
void doGotoLine();
void insertText(QTextStream *);
void installRBPopup(QPopupMenu *);
bool isModified();
QString markedText();
bool repeatSearch();
void replace();
void saveText(QTextStream *);
void search();
void selectFont();
void setModified(bool = true);
void spellcheck_start();
void spellcheck_stop();

Slots
void computePosition();
void corrected(QString originalword, QString newword,

unsigned pos);
void misspelling(QString word, QStringList *, unsigned pos);
void repaintAll();
void replace_all_slot();
void replace_search_slot();
void replace_slot();
void replacedone_slot();

4682-1 ch19.f.qc  11/20/00  15:44  Page 527



528 Part III ✦ Reference and Mechanics

void search_slot();
void searchdone_slot();

Signals
void CursorPositionChanged();
void gotUrlDrop(QDropEvent *e);
void toggle_overwrite_signal();

Enums
enum (anon) { NONE, FORWARD, BACKWARD };

The following example displays the edit window shown in Figure 19-19:

/* showedit.cpp */
#include <kapp.h>
#include <keditcl.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showedit”);
KEdit *edit = new KEdit();
edit->show();
app.setMainWidget(edit);
return(app.exec());

}

Figure 19-19: The KEdit widget is a 
fundamental text editor.

KEdReplace
The KEdReplace widget is the search-and-replace dialog of a text editor.

File
#include <keditcl.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

Constructors
KEdReplace(QWidget *parent = 0, const char *name = 0,

bool modal = true);

4682-1 ch19.f.qc  11/20/00  15:44  Page 528



529Chapter 19 ✦ The Widgets of KDE

Methods
bool case_sensitive();
QString getReplaceText();
QString getText();
bool get_direction();
void setText(QString);

Signals
void done();
void find();
void replace();
void replaceAll();

The following example displays the KEdReplace dialog shown in Figure 19-20:

/* showedreplace.cpp */
#include <kapp.h>
#include <keditcl.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showedreplace”);
KEdReplace *edreplace = new KEdReplace();
edreplace->show();
return(app.exec());

}

Figure 19-20: The KEdReplace
dialog prompts for search-and-
replace strings.

KFileDialog
The KFileDialog widget is a dialog used to browse and select files.

File
#include <kfiledialog.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

4682-1 ch19.f.qc  11/20/00  15:44  Page 529



530 Part III ✦ Reference and Mechanics

Constructors
KFileDialog(const QString &urlName, const QString &filter,

QWidget *parent, const char *name, bool modal);

Methods
KURL baseURL() const;
QString currentFilter() const;
static QString getExistingDirectory(

const QString &url = QString::null, QWidget *parent = 0,
const QString &caption = QString::null);

static QString getOpenFileName(
const QString &dir = QString::null,
const QString &filter = QString::null, QWidget *parent = 0,
const QString &caption = QString::null);

static QStringList getOpenFileNames(
const QString &dir = QString::null,
const QString &filter = QString::null, QWidget *parent = 0,
const QString &caption = QString::null);

static KURL getOpenURL(const QString &url = QString::null,
const QString &filter = QString::null, QWidget *parent = 0,
const QString &caption = QString::null);

List getOpenURLs(const QString &url = QString::null,
const QString &filter = QString::null, QWidget *parent = 0,
const QString &caption = QString::null);

static QString getSaveFileName(
const QString &dir = QString::null,
const QString &filter = QString::null, QWidget *parent = 0,
const QString &caption = QString::null);

static KURL getSaveURL(const QString &url = QString::null,
const QString &filter = QString::null, QWidget *parent = 0,
const QString &caption = QString::null);

Mode mode() const;
QString selectedFile() const;
QStringList selectedFiles() const;
KURL selectedURL() const;
List selectedURLs() const;
void setFilter(const QString &filter);
void setLocationLabel(const QString &text);
void setMode(KFile::Mode m);
void setPreviewWidget(const QWidget *w);
void setSelection(const QString &name);
void setURL(const KURL &url, bool clearforward = true);
virtual void show();
KToolBar *toolBar() const;

Signals
void fileHighlighted(const QString &);
void fileSelected(const QString &);
void filterChanged(const QString &filter);
void historyUpdate(bool, bool);

The following example displays the file dialog window shown in Figure 19-21. The
first argument to the constructor is the name of the directory in which the file

4682-1 ch19.f.qc  11/20/00  15:44  Page 530



531Chapter 19 ✦ The Widgets of KDE

search is to begin. If a NULL directory is specified, as in this example, the current
working directory will be used until a file has been chosen; from then on, the 
last directory in which a file has been chosen will be used at startup. The second
argument is the filter that determines which files are to be included in the list.
Directories are always included, but files are included only if their names match 
the currently selected regular expression filter.

/* showfiledialog.cpp */
#include <kapp.h>
#include <kfiledialog.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showfiledialog”);
QString filter(

“*.cpp|C++ Source Files\n”
“*.h|C and C++ Header Files\n”
“*.awk\n”
“*.o|Object files\n”
“*|All Files”);

KFileDialog *filedialog = new KFileDialog(0,filter,
0,”filedialog”,FALSE);

filedialog->show();
return(app.exec());

}

Figure 19-21: The KFileDialog widget displaying a list of files and the available filters

4682-1 ch19.f.qc  11/20/00  15:44  Page 531



532 Part III ✦ Reference and Mechanics

KFontChooser
The KFontChooser is a widget that enables the user to interactively select a font.

File
#include <kfontdialog.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
KFontChooser(QWidget *parent = 0L, const char *name = 0L,

bool onlyFixed = false,
const QStringList &fontList = QStringList () , bool
makeFrame = true , int visibleListSize = 8 );

Methods
void enableColumn(int column, bool state);
QFont font();
static void getFontList(QStringList &list, const char
*pattern);
static QString getXLFD(const QFont &theFont);
QString sampleText();
void setFont(const QFont &font, bool onlyFixed = false);
void setSampleText(const QString &text);
virtual QSize sizeHint(void) const;

Signals
void fontSelected(const QFont &font);

Enums
enum FontColumn { FamilyList=0x01, StyleList=0x02,

SizeList=0x04 };

You can find an example that uses the KFontChooser in Chapter 5.

KFontDialog
The KFontDialog is a dialog that allows the user to interactively select a font.

File
#include <kfontdialog.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 532



533Chapter 19 ✦ The Widgets of KDE

Constructors
KFontDialog(QWidget *parent = 0L, const char *name = 0,

bool modal = false, bool onlyFixed = false,
const QStringList &fontlist = QStringList () , bool
makeFrame = true );

Methods
QFont font();
static int getFont(QFont &theFont, bool onlyFixed = false,

QWidget *parent = 0L, bool makeFrame = true);
static int getFontAndText(QFont &theFont, QString &theString,

bool onlyFixed = false, QWidget *parent = 0L,
bool makeFrame = true);

void setFont(const QFont &font, bool onlyFixed = false);

Signals
void fontSelected(const QFont &font);

Examples that use KFontDialog can be found in Chapter 10.

KFormulaEdit
This KFormulaEdit widget can be used to display and edit formulas.

File
#include <kformulaedit.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
KFormulaEdit(QWidget *parent = 0, const char *name = 0,

WFlags f = 0, bool restricted = false);

Methods
void enableSizeHintSignal(bool b);
KFormula *getFormula() const;
void redraw(int all = 1);
void setExtraChars(QString c);
void setText(QString text);
void setUglyForm(QString ugly);
virtual QSize sizeHint() const;
virtual QSizePolicy sizePolicy() const;
QString text() const;
QString uglyForm() const;

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 533



534 Part III ✦ Reference and Mechanics

Slots
void insertChar(int c);

Signals
void formulaChanged(const QString &);
void sizeHint(QSize);

The following example uses the KFormulaEdit widget to display the formula
shown in Figure 19-22. The formula was formatted from a C-type expression (the
“ugly” form) by the fromUgly method of KFormula. The formula can be edited —
setting the restricted flag to TRUE on the constructor limits the editing to only
expressions that can be evaluated.

/* showformulaedit.cpp */
#include <kapp.h>
#include <kformulaedit.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showformulaedit”);
KFormulaEdit *formulaedit = new KFormulaEdit(0,0,0,TRUE);
QString fn = KFormula::fromUgly(“44.2 - k*(99.2 + 544)”);
formulaedit->setText(fn);
formulaedit->show();
app.setMainWidget(formulaedit);
return(app.exec());

}

Figure 19-22: A KFormulaEdit 
widget displaying a formula

KFormulaToolBar
The KFormulaToolBar is a toolbar widget that provides special formatting and
character input to the KFormulaEdit widget.

File
#include <kformulatoolbar.h>

4682-1 ch19.f.qc  11/20/00  15:44  Page 534



535Chapter 19 ✦ The Widgets of KDE

Base Classes
KToolBar QFrame QObject QPaintDevice QWidget Qt 

Constructors
KFormulaToolBar(QWidget *parent = 0L, const char *name = 0L,

int _item_size = - 1);

Methods
void connectToFormula(KFormulaEdit *formula);

The following example displays the KFormulaToolBar shown in Figure 19-23:

/* showformulatoolbar.cpp */
#include <kapp.h>
#include <kformulatoolbar.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showformulatoolbar”);
KFormulaToolBar *formulatoolbar = new KFormulaToolBar();
formulatoolbar->show();
app.setMainWidget(formulatoolbar);
return(app.exec());

}

Figure 19-23: A KFormulaToolbar widget

KGradientSelector
The KGradientSelector widget displays levels of gradients between two colors. 
It enables the mouse to be used to select a color between the extremes.

File
#include <kselect.h>

Base Classes
KSelector QObject QPaintDevice QRangeControl QWidget Qt 

Constructors
KGradientSelector(Orientation o, QWidget *parent = 0L,

const char *name = 0L);

4682-1 ch19.f.qc  11/20/00  15:44  Page 535



536 Part III ✦ Reference and Mechanics

Methods
void setColors(const QColor &col1, const QColor &col2);
void setText(const QString &t1, const QString &t2);

The following example shows the colors of the gradients between red and white, as
shown in Figure 19-24. It also displays two lines of text to demonstrate the contrast
between the two extremes. At the bottom of the figure is the pointer inherited from
QRangeControl that marks the point of the current selection.

/* showgradientselector.cpp */
#include <kapp.h>
#include <kselect.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showgradientselector”);
KGradientSelector *gradientselector =

new KGradientSelector(KSelector::Horizontal);
gradientselector->setColors(QColor(“red”),QColor(“white”));
gradientselector->setText(“White on Red”,”Red on White”);
gradientselector->show();
app.setMainWidget(gradientselector);
return(app.exec());

}

Figure 19-24: A KGradientSelector
widget showing both color gradient
and text

KHSSelector
The KHSSelector widget enables the user to make a color selection by choosing 
a hue and/or saturation with the mouse.

File
#include <kcolordlg.h>

Base Classes
KXYSelector QObject QPaintDevice QWidget Qt 

Constructors
KHSSelector(QWidget *parent);

4682-1 ch19.f.qc  11/20/00  15:44  Page 536



537Chapter 19 ✦ The Widgets of KDE

The following example displays the multicolored window shown in Figure 19-25.
The color selection is made with the mouse by positioning the indicator inherited
from KXYSelector.

/* showhsselector.cpp */
#include <kapp.h>
#include <kcolordlg.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showhsselector”);
KHSSelector *hsselector = new KHSSelector(0);
hsselector->show();
app.setMainWidget(hsselector);
return(app.exec());

}

Figure 19-25: A KHSSelector widget showing
the currently selected color point

KHTMLView
The KHTMLView widget can be used to display a Web page.

File
#include <khtmlview.h>

Base Classes
QFrame QObject QPaintDevice QScrollView QWidget Qt 

Constructors
KHTMLView(KHTMLPart *part, QWidget *parent,

const char *name = 0);

Methods
bool dndEnabled() const;
int frameWidth() const;
bool gotoNextLink();
bool gotoPrevLink();
bool hasSelection() const;
void layout(bool force = false);
int marginHeight();
int marginWidth() const;
KHTMLPart *part() const;

4682-1 ch19.f.qc  11/20/00  15:44  Page 537



538 Part III ✦ Reference and Mechanics

void print();
QString selectedText() const;
void setDNDEnabled(bool b);
void setMarginHeight(int y);
void setMarginWidth(int x);
void setURLCursor(const QCursor &c);
void toggleActLink(bool);
const QCursor & urlCursor() const;
static const QList<KHTMLView> *viewList();

Signals
void selectionChanged();

The following example uses a KHTMLView object to display the Web page shown in
Figure 19-26. It does this by creating a KURL object that is a wrapper for a URL. In
this example, the URL is on the local disk, but it could be anywhere on the Internet.
The KURL object is used by a KHTMLPart object to open the actual Web page.
Instead of using a standalone constructor, the view() method of the KHTMLPart
object is called on to return a KHTMLView object, which is already set to display the
page. The size of the KHTMLView is set and, when the widget is displayed, the page
itself is displayed.

/* showhtmlview.cpp */
#include <kapp.h>
#include <iostream.h>
#include <kurl.h>
#include <khtml_part.h>
#include <khtmlview.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showhtmlview”);
KURL kurl = “file:/home/testpage.html”;
KHTMLPart *part = new KHTMLPart();
if(!part->openURL(kurl))

cout << “The URL failed to open” << endl;
KHTMLView *htmlview = part->view();
htmlview->resize(400,200);
htmlview->show();
app.setMainWidget(htmlview);
return(app.exec());

}

Figure 19-26: A KHTMLVIew widget
from a KHTMLPart object displays a
Web page.

4682-1 ch19.f.qc  11/20/00  15:44  Page 538



539Chapter 19 ✦ The Widgets of KDE

KIconButton
The KIconButton is a button widget that pops up a KIconDialog window and then
displays the selected icon.

File
#include <kicondialog.h>

Base Classes
QButton QObject QPaintDevice QPushButton QWidget Qt 

Constructors
KIconButton(QWidget *parent = 0L, const char *name = 0L);
KIconButton(KIconLoader *loader, QWidget *parent,

const char *name = 0L);

Methods
const QString icon();
void setIcon(QString icon);
void setIconType(int group, int context, bool user = false);

Signals
void iconChanged(QString icon);

The following example displays a KIconButton containing an icon. This example
specifies a starting icon by calling setIcon(), as shown in Figure 19-27. If no icon
were specified, the button would initially be blank, and remain that way until an
icon were chosen from the KIconDialog.

/* showiconbutton.cpp */
#include <kapp.h>
#include <kicondialog.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showiconbutton”);
KIconButton *iconbutton = new KIconButton();
iconbutton->setIcon(“go”);
iconbutton->show();
app.setMainWidget(iconbutton);
return(app.exec());

}

Figure 19-27: A KIconButton displaying the 
currently selected icon

4682-1 ch19.f.qc  11/20/00  15:44  Page 539



540 Part III ✦ Reference and Mechanics

KIconDialog
The KIconDialog widget is a dialog that can be used to make icon selections.

File
#include <kicondialog.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

Constructors
KIconDialog(QWidget *parent = 0L, const char *name = 0L);
KIconDialog(KIconLoader *loader, QWidget *parent = 0,

const char *name = 0);

Methods
QString selectIcon(int group = KIcon::Desktop,

int context = KIcon::Application, bool user = false);

The following example displays a KIconDialog window. The one shown in Figure
19-28 is displaying the icons of the system applications.

/* showicondialog.cpp */
#include <kapp.h>
#include <kicondialog.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showicondialog”);
KIconDialog *icondialog = new KIconDialog();
icondialog->show();
return(app.exec());

}

Figure 19-28: A KIconDialog
displaying the system application
icons 

4682-1 ch19.f.qc  11/20/00  15:44  Page 540



541Chapter 19 ✦ The Widgets of KDE

KIconView
The KIconView widget displays a collection of icons from which the user can make
a selection. This widget extends QIconView to use the standard KDE settings for
handling mouse buttons and making selections.

File
#include <kiconview.h>

Base Classes
QFrame QIconView QObject QPaintDevice QScrollView QWidget Qt 

Inherited By
KFileIconView KIconCanvas 

Constructors
KIconView(QWidget *parent = 0, const char *name = 0,

WFlags f = 0);

Signals
void doubleClicked(QIconViewItem *item, const QPoint &pos);
void executed(QIconViewItem *item);
void executed(QIconViewItem *item, const QPoint &pos);

The following example displays the five icons shown in Figure 19-29. The first icon
has no pixmap and no text, so it uses the default pixmap and has no label. The 
next two icons also use the default pixmap, but they both have text for labels. 
The last two icons have both pixmaps and labels, and the icon labeled “Flag” 
has been selected by the mouse.

/* showiconview.cpp */
#include <kapp.h>
#include <kiconview.h>

int main(int argc,char **argv)
{

QIconViewItem *item;
KApplication app(argc,argv,”showiconview”);
KIconView *iconview = new KIconView();
item = new QIconViewItem(iconview);
item = new QIconViewItem(iconview,”Icon Label”);
item = new QIconViewItem(iconview,”Icon With\nLong Label”);
QPixmap flag(“flag.png”);
item = new QIconViewItem(iconview,”Flag”,flag);
QPixmap idea(“idea.png”);
item = new QIconViewItem(iconview,”Idea”,idea);
iconview->show();
app.setMainWidget(iconview);
return(app.exec());

}

4682-1 ch19.f.qc  11/20/00  15:44  Page 541



542 Part III ✦ Reference and Mechanics

Figure 19-29: A KIconView widget 
displaying five icons

KImageTrackLabel
The KImageTrackLabel widget extends the QLabel to add the capability to track
and monitor mouse activities.

File
#include <kaboutdialog.h>

Base Classes
QFrame QLabel QObject QPaintDevice QWidget Qt 

Constructors
KImageTrackLabel(QWidget *parent, const char *name = 0,

WFlags f = 0);

Signals
void mouseTrack(int mode, const QMouseEvent *e);

Enums
enum MouseMode { MousePress=1, MouseRelease, MouseDoubleClick,

MouseMove };

The following example displays a KImageTrackLabel widget as the simple text wid-
get shown in Figure 19-30. If a slot were attached to the mouseTrack() slot, every
mouse action would be reported.

/* showimagetracklabel.cpp */
#include <kapp.h>
#include <kaboutdialog.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showimagetracklabel”);
KImageTrackLabel *imagetracklabel =

new KImageTrackLabel(0);
imagetracklabel->setText(“Mouse Tracking Label”);
imagetracklabel->show();
app.setMainWidget(imagetracklabel);
return(app.exec());

}

4682-1 ch19.f.qc  11/20/00  15:44  Page 542



543Chapter 19 ✦ The Widgets of KDE

Figure 19-30: A KImageTrackLabel is a label 
that tracks the mouse.

KIntNumInput
The KIntNumInput widget is designed to accept and verify user input of integer 
values.

File
#include <knuminput.h>

Base Classes
KNumInput QObject QPaintDevice QWidget Qt 

Constructors
KIntNumInput(int value, QWidget *parent = 0, int base = 10,

const char *name = 0);
KIntNumInput(KNumInput *below, int value, QWidget *parent = 0,

int base = 10, const char *name = 0);

Methods
virtual QSize minimumSizeHint() const;
virtual void setLabel(QString label,

int a = AlignLeft | AlignTop);
void setRange(int lower, int upper, int step = 1,

bool slider = true);
void setSpecialValueText(const QString &text);
int value() const;

Slots
void setEditFocus(bool mark = true);
void setPrefix(QString prefix);
void setSuffix(QString suffix);
void setValue(int);

Signals
void valueChanged(int);

As shown in Figure 19-31, the input window can be accompanied by both a slider
and a spin button, which can both be used to select the value. Also, the value can
be typed directly into the data window.

/* showintnuminput.cpp */
#include <kapp.h>
#include <knuminput.h>

int main(int argc,char **argv)
{

4682-1 ch19.f.qc  11/20/00  15:44  Page 543



544 Part III ✦ Reference and Mechanics

KApplication app(argc,argv,”showintnuminput”);
KIntNumInput *intnuminput = new KIntNumInput(980);
intnuminput->setRange(100,1000,10,true);
intnuminput->show();
app.setMainWidget(intnuminput);
return(app.exec());

}

Figure 19-31: A KIntNumInput widget 
with both a spin button and a slider

KIntSpinBox
The KIntSpinBox widget is designed to accept and verify user input of integer values.

File
#include <knuminput.h>

Base Classes
QFrame QObject QPaintDevice QRangeControl QSpinBox QWidget 

Qt 

Constructors
KIntSpinBox(int lower, int upper, int step, int value,

int base = 10, QWidget *parent = 0, const char *name = 0);

Methods
void setEditFocus(bool mark);

The following example creates the KIntSpinBox shown in Figure 19-32. The value
can be set by either using the spin box to change the number by the step value or
by typing the value directly into the data window.

/* showintspinbox.cpp */
#include <kapp.h>
#include <knuminput.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showintspinbox”);
KIntSpinBox *intspinbox = new KIntSpinBox(100,1000,10,980);
intspinbox->show();
app.setMainWidget(intspinbox);
return(app.exec());

}

Figure 19-32: A KIntSpinBox widget with its spin button

4682-1 ch19.f.qc  11/20/00  15:44  Page 544



545Chapter 19 ✦ The Widgets of KDE

KKeyButton
The KKeyButton widget is a QButton that looks likea keyboard button.

File
#include <kkeydialog.h>

Base Classes
QButton QObject QPaintDevice QPushButton QWidget Qt 

Constructors
KKeyButton(const char *name = 0, QWidget *parent = 0);

Methods
void setEdit(bool edit);
void setText(const QString &text);

The following example program uses a KKeyButton widget as its top-level widget
and is shown in Figure 19-33:

/* showkeybutton.cpp */
#include <kapp.h>
#include <kkeydialog.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showkeybutton”);
KKeyButton *keybutton = new KKeyButton();
keybutton->setText(“Key Button”);
keybutton->show();
app.setMainWidget(keybutton);
return(app.exec());

}

Figure 19-33: A KKeyButton widget is a raised button.

KLed
The KLed widget is displayed as an LED that can be used as an indicator in different
shapes and colors.

File
#include <kled.h>

Base Classes
QObject QPaintDevice QWidget Qt 

4682-1 ch19.f.qc  11/20/00  15:44  Page 545



546 Part III ✦ Reference and Mechanics

Constructors
KLed(const QColor &col = Qt::green, QWidget *parent = 0,

const char *name = 0);
KLed(const QColor &col, KLed::State st, KLed::Look look,

KLed::Shape shape, QWidget *parent = 0,
const char *name = 0);

Methods
const QColor color() const;
int getDarkFactor() const;
Look look() const;
void setColor(const QColor &color);
void setDarkFactor(int darkfactor);
void setLook(Look look);
void setShape(Shape s);
void setState(State state);
State state() const;
void toggleState();

Slots
void off();
void on();
void toggle();

Enums
enum State { Off, On, NoOfStates };
enum Shape { NoShape, Rectangular, Circular,

NoOfShapes=Circular };
enum Look { NoLook, Flat, Raised, Sunken, NoOfLooks=Sunken };

The following KLed example is shown in Figure 19-34. It is a round indicator that
looks raised and as if it were turned on. It is in the default color, which is green.

/* showled.cpp */
#include <kapp.h>
#include <kled.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showled”);
KLed *led = new KLed();
led->setLook(KLed::Raised);
led->setShape(KLed::Circular);
led->setState(KLed::On);
led->resize(10,10);
led->show();
app.setMainWidget(led);
return(app.exec());

}

Figure 19-34: A round, raised KLed widget

4682-1 ch19.f.qc  11/20/00  15:44  Page 546



547Chapter 19 ✦ The Widgets of KDE

KLineEdit
The KLineEdit widget is a single-line text editor.

File
#include <klineedit.h>

Base Classes
KCompletionBase QLineEdit QObject QPaintDevice QWidget Qt 

Inherited By
KRestrictedLine 

Constructors
KLineEdit(const QString &string, QWidget *parent,

const char *name = 0);
KLineEdit(QWidget *parent = 0, const char *name = 0);

Methods
void cursorAtEnd();
bool isContextMenuEnabled() const;
virtual void setCompletionMode(

KGlobalSettings::Completion mode);
virtual void setEnableContextMenu(bool showMenu);

Slots
void rotateText(KeyBindingType);

Signals
void completion(const QString &);
void nextMatch(KeyBindingType);
void previousMatch(KeyBindingType);
void returnPressed(const QString &);

The following example creates and displays the KLineEdit window shown in 
Figure 19-35. The KLineEdit widget is based on the QlineEdit widget. The features
KLineEdit adds include optional text completion and configurable key bindings./*
showlineedit.cpp */

#include <kapp.h>
#include <klineedit.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showlineedit”);
KLineEdit *lineedit = new KLineEdit();
lineedit->show();
app.setMainWidget(lineedit);
return(app.exec());

}

4682-1 ch19.f.qc  11/20/00  15:44  Page 547



548 Part III ✦ Reference and Mechanics

Figure 19-35: The KLineEdit widget inherits from QlineEdit.

See Chapter 4 for examples of the QLineEdit widget.

KLineEditDlg
The KLineEditDlg is a dialog that contains a QLineEdit widget for editing a single
line of text.

File
#include <klineeditdlg.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

Constructors
KLineEditDlg(const QString &_text, const QString &_value,

QWidget *parent);

Methods
static QString getText(const QString &_text,

const QString &_value, bool *ok, QWidget *parent);
QString text();

Slots
void slotClear();

The following example displays a KLineEditDlg window with a caption string and
default text, as shown in Figure 19-36:

/* showlineeditdlg.cpp */
#include <kapp.h>
#include <klineeditdlg.h>

int main(int argc,char **argv)
{

bool OK;
QString str;
KApplication app(argc,argv,”showlineeditdlg”);
str = KLineEditDlg::getText(

“The caption”,
“The editable text”,
&OK,
0);

if(OK) {
// The OK button was selected

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 548



549Chapter 19 ✦ The Widgets of KDE

} else {
// The CANCEL button was selected

}
return(app.exec());

}

Figure 19-36: The KLineEditDlg dialog
contains a QLineEdit widget.

KListBox
The KListBox widget displays a list of items that the user can select with the
mouse. This widget extends QListBox to use the standard KDE settings for 
handling mouse buttons and making selections.

File
#include <klistbox.h>

Base Classes
QFrame QListBox QObject QPaintDevice QScrollView QWidget Qt 

Inherited By
KSplitList 

Constructors
KListBox(QWidget *parent = 0, const char *name = 0,

WFlags f = 0);

Signals
void doubleClicked(QListBoxItem *item, const QPoint &pos);
void executed(QListBoxItem *item);
void executed(QListBoxItem *item, const QPoint &pos);

The following example displays the KListBox window shown in Figure 19-37:

/* showlistbox.cpp */
#include <kapp.h>
#include <klistbox.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showlistbox”);
KListBox *listbox = new KListBox();
for(int i=0; i<20; i++) {

QString str;

4682-1 ch19.f.qc  11/20/00  15:44  Page 549



550 Part III ✦ Reference and Mechanics

str.sprintf(“Selection %d\n”,i);
listbox->insertItem(str);

}
listbox->setMinimumWidth(120);
listbox->show();
app.setMainWidget(listbox);
return(app.exec());

}

Figure 19-37: The KListBox widget 
displaying a currently selected item

KListView
The KListView widget displays nested lists of items, in the form of a tree, which
the user can browse through with the mouse. This widget extends QListView to
use the standard KDE settings for handling mouse buttons and making selections.

File
#include <klistview.h>

Base Classes
QFrame QListView QObject QPaintDevice QScrollView QWidget Qt 

Inherited By
KApplicationTree KFileDetailView 

Constructors
KListView(QWidget *parent = 0, const char *name = 0);

Methods
virtual bool isExecuteArea(const QPoint &point);

Signals
void doubleClicked(QListViewItem *item, const QPoint &pos,

int c);
void executed(QListViewItem *item);
void executed(QListViewItem *item, const QPoint &pos, int c);

This class is a simple extension of QListView and works much the same way.

4682-1 ch19.f.qc  11/20/00  15:44  Page 550



551Chapter 19 ✦ The Widgets of KDE

You can see an example that uses QListView in Chapter 18.

KMenuBar
A KMenuBar is a horizontal bar that is capable of managing the relationship among
a group of pop-up menus. This widget extends QMenuBar to use the standard KDE
settings for handling mouse buttons and making selections.

File
#include <kmenubar.h>

Base Classes
QFrame QMenuBar QMenuData QObject QPaintDevice QWidget Qt 

Constructors
KMenuBar(QWidget *parent = 0, const char *name = 0);

The following example shows a KMenuBar that contains two pop-up menus. Each
pop-up menu contains a single menu item. Figure 19-38 shows the menu bar with
the second pop-up menu activated.

/* showmenubar.cpp */
#include <kapp.h>
#include <kmenubar.h>
#include <kpopupmenu.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showmenubar”);

KMenuBar *menubar = new KMenuBar();
menubar->setSeparator(KMenuBar::InWindowsStyle);
KPopupMenu* filePopup = new KPopupMenu();
filePopup->insertItem(“&Quit”,&app,SLOT(quit()));
menubar->insertItem(“&File”,filePopup);
KPopupMenu* editPopup = new KPopupMenu();
editPopup->insertItem(“&Paste”);
menubar->insertItem(“E&dit”,editPopup);
menubar->show();
app.setMainWidget(menubar);
return(app.exec());

}

Figure 19-38: The KMenuBar showing a pop-up menu

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 551



552 Part III ✦ Reference and Mechanics

KNumInput
The KNumInput widget is a base class that can be used to implement a numeric
input widget.

File
#include <knuminput.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Inherited By
KDoubleNumInput KIntNumInput 

Constructors
KNumInput(QWidget *parent = 0, const char *name = 0);
KNumInput(KNumInput *below, QWidget *parent = 0,

const char *name = 0);

Methods
virtual void setLabel(QString label,

int a = AlignLeft | AlignTop);
void setSteps(int minor, int major);
virtual QSize sizeHint() const;
QSizePolicy sizePolicy() const;

KPaletteTable
The KPaletteTable widget enables the user to select a color.

File
#include <kcolordlg.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
KPaletteTable(QWidget *parent, int minWidth = 210,

int cols = 16);

Methods
void addToCustomColors(const QColor &);
void addToRecentColors(const QColor &);
QString palette();

Slots
void setPalette(const QString &paletteName);

Signals
void colorSelected(const QColor &, const QString &);

4682-1 ch19.f.qc  11/20/00  15:44  Page 552



553Chapter 19 ✦ The Widgets of KDE

The following example displays a KPaletteTable widget. As shown in Figure 19-39,
there is more than one way to select a color. On the left of the figure, the KPalette
Table widget presents a rectangular selection of colors, while the KPaletteTable
widget on the right presents a list of colors by their names.

/* showpalettetable.cpp */
#include <kapp.h>
#include <kcolordlg.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showpalettetable”);
KPaletteTable *palettetable = new KPaletteTable(0);
palettetable->show();
app.setMainWidget(palettetable);
return(app.exec());

}

Figure 19-39: A pair of KPaletteTable widgets showing 
two ways to select a color

KPanelApplet
The KPanelApplet is a base class that can be used to create KDE applets.

File
#include <kpanelapplet.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
KPanelApplet(QWidget *parent = 0, const char *name = 0);

Methods
virtual void about();
int actions();
bool flags();
virtual int heightForWidth(int width);
virtual void help();
void init(int &argc, char **argv);
Orientation orientation() const;

4682-1 ch19.f.qc  11/20/00  15:44  Page 553



554 Part III ✦ Reference and Mechanics

Position position() const;
virtual void preferences();
bool process(const QCString &fun, const QByteArray &data,

QCString &replyType, QByteArray &replyData);
virtual void removedFromPanel();
void setActions(int a);
void setFlags(int f);
void updateLayout();
virtual int widthForHeight(int height);

Enums
enum Actions { About=1, Help=2, Preferences=4 };
enum Flags { Stretch=1, TopLevel=2 };
enum Position { Left=0, Right, Top, Bottom };

There is an example of using the KPanelApplet class to create an applet in
Chapter 15.

KPasswordDialog
The KPasswordDialog widget can be used for entry of a password or for the 
verification process of establishing a new password.

File
#include <kpassdlg.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

Constructors
KPasswordDialog(int type, QString prompt,

bool enableKeep = false, int extraBttn = 0);

Methods
void addLine(QString key, QString value);
static void disableCoreDumps();
static int getNewPassword(QCString &password, QString prompt);
static int getPassword(QCString &password, QString prompt,

int *keep = 0L);
bool keep() const;
const char *password() const;
void setPrompt(QString prompt);

Enums
enum Types { Password, NewPassword };

The following example demonstrates how the KPasswordDialog widget can be
used to request a password from the user. As shown in Figure 19-40, the entered
string appears as a row of asterisks. If the method getNewPassword() is used
instead of getPassword(), the password must be entered twice for verification.

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 554



555Chapter 19 ✦ The Widgets of KDE

/* showpassworddialog.cpp */
#include <kapp.h>
#include <kpassdlg.h>

int main(int argc,char **argv)
{

int code;
QCString password;
QString prompt = “Enter your password”;
KApplication app(argc,argv,”showpassworddialog”);
code = KPasswordDialog::getPassword(password,prompt);
if(code == QDialog::Accepted) {

// A password was entered
} else if(code == QDialog::Rejected) {

// A password was not entered
}
return(app.exec());

}

Figure 19-40: A KPasswordDialog widget
with an obscured password entered

KPasswordEdit
The KPasswordEdit widget is a single-line editor that obscures the text so it can be
used as a password.

File
#include <kpassdlg.h>

Base Classes
QLineEdit QObject QPaintDevice QWidget Qt 

Constructors
KPasswordEdit(QWidget *parent = 0, const char *name = 0);

Methods
void erase();
const char *password();

Enums
enum EchoModes { OneStar, ThreeStars, NoEcho };

4682-1 ch19.f.qc  11/20/00  15:44  Page 555



556 Part III ✦ Reference and Mechanics

The following example displays the KPasswordEdit widget shown in Figure 19-41:

/* showpasswordedit.cpp */
#include <kapp.h>
#include <kpassdlg.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showpasswordedit”);
KPasswordEdit *passwordedit = new KPasswordEdit();
passwordedit->show();
app.setMainWidget(passwordedit);
return(app.exec());

}

Figure 19-41: A KPasswordEdit widget 
with obscured text entered

KPopupMenu
The KPopupMenu widget is used in combination with a KMenuBar and other
KPopupMenu objects to create the KDE standard menu forms. This widget extends
QPopupMenu to use the standard KDE settings for handling mouse buttons and 
making selections.

File
#include <kpopmenu.h>

Base Classes
QFrame QMenuData QObject QPaintDevice QPopupMenu QWidget Qt 

Constructors
KPopupMenu(QWidget *parent = 0, const char *name = 0);
KPopupMenu(const QString &title, QWidget *parent = 0,

const char *name = 0);

Methods
void changeTitle(int id, const QString &text);
void changeTitle(int id, const QPixmap &icon,

const QString &text);
int insertTitle(const QString &text, int id = - 1,

int index = - 1);
int insertTitle(const QPixmap &icon, const QString &text,

int id = - 1, int index = - 1);
void setTitle(const QString &title);
QString title(int id = - 1);
QPixmap titlePixmap(int id);

4682-1 ch19.f.qc  11/20/00  15:44  Page 556



557Chapter 19 ✦ The Widgets of KDE

For an example of using a KPopupMenu with a KMenuBar, see the KMenuBar
entry in this chapter. You can find examples of using a QPopupMenu in Chapter 6.

KProgress
The KProgress widget is a progress bar that can be oriented horizontally or vertically.

File
#include <kprogress.h>

Base Classes
QFrame QObject QPaintDevice QRangeControl QWidget Qt 

Constructors
KProgress(QWidget *parent = 0, const char *name = 0);
KProgress(Orientation, QWidget *parent = 0,

const char *name = 0);
KProgress(int minValue, int maxValue, int value, Orientation,

QWidget *parent = 0, const char *name = 0);

Methods
const QColor & barColor() const;
const QPixmap *barPixmap() const;
BarStyle barStyle() const;
QString format() const;
Orientation orientation() const;
void setBarColor(const QColor &);
void setBarPixmap(const QPixmap &);
void setBarStyle(BarStyle style);
void setFormat(const QString &format);
void setOrientation(Orientation);
void setTextEnabled(bool);
virtual QSize sizeHint() const;
virtual QSizePolicy sizePolicy() const;
bool textEnabled() const;

Slots
void advance(int prog);
void setValue(int);

Signals
void percentageChanged(int);

Enums
enum Orientation { Horizontal, Vertical };
enum BarStyle { Solid, Blocked };

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 557



558 Part III ✦ Reference and Mechanics

The following example displays the horizontal KProgress widget shown in 
Figure 19-42. A number of methods can be used to change the appearance and 
style of the progress bar. 

/* showprogress.cpp */
#include <kapp.h>
#include <kprogress.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showprogress”);
KProgress *progress = new KProgress(0,500,350,

KProgress::Horizontal);
progress->show();
app.setMainWidget(progress);
return(app.exec());

}

Figure 19-42: A KProgress widget
showing a percentage of completion

KRestrictedLine
The KRestrictedLine widget accepts a single line of text as input, and limits the
input to only a set of specified characters.

File
#include <krestrictedline.h>

Base Classes
KCompletionBase KLineEdit QLineEdit QObject QPaintDevice 

QWidget Qt 

Constructors
KRestrictedLine(QWidget *parent = 0, const char *name = 0,

const QString &valid = QString::null);

Methods
void setValidChars(const QString &valid);

Signals
void invalidChar(int);

4682-1 ch19.f.qc  11/20/00  15:44  Page 558



559Chapter 19 ✦ The Widgets of KDE

The following example displays the KRestrictedLine widget shown in Figure 19-43.
The call to setValidChars() limits the input to uppercase and lowercase vowels,
and the uppercase letter Y. Any other character entered will not be accepted, and
will result in the invalidChar() signal.

/* showrestrictedline.cpp */
#include <kapp.h>
#include <krestrictedline.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showrestrictedline”);
KRestrictedLine *restrictedline = new KRestrictedLine();
restrictedline->setValidChars(“aeiouAEIOUY”);
restrictedline->show();
app.setMainWidget(restrictedline);
return(app.exec());

}

Figure 19-43: A KRestricedLine widget 
showing some of the allowed characters

KRootPermsIcon
The KRootPermissions widget displays an icon to indicate whether the current
user has root permissions.

File
#include <kauthicon.h>

Base Classes
KAuthIcon QObject QPaintDevice QWidget Qt 

Constructors
KRootPermsIcon(QWidget *parent = 0, const char *name = 0);

Methods
bool status() const;

Slots
void updateStatus();

The following example uses a KRootPermsIcon widget as its top-level window and
will display one of the two icons shown in Figure 19-44, depending on whether the
user has root permissions.

4682-1 ch19.f.qc  11/20/00  15:44  Page 559



560 Part III ✦ Reference and Mechanics

/* showrootpermsicon.cpp */
#include <kapp.h>
#include <kauthicon.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showrootpermsicon”);
KRootPermsIcon *rootpermsicon = new KRootPermsIcon();
rootpermsicon->show();
app.setMainWidget(rootpermsicon);
return(app.exec());

}

Figure 19-44: The two forms of the
KRootPermsIcon widget display

KRuler
The KRuler widget displays a vertical or horizontal window that is marked and
labeled like a ruler.

File
#include <kruler.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Constructors
KRuler(KRuler::direction dir, QWidget *parent = 0,

const char *name = 0, WFlags f = 0, bool allowLines =
TRUE);
KRuler(KRuler::direction dir, int widgetWidth,

QWidget *parent = 0, const char *name = 0, WFlags f = 0,
bool allowLines = TRUE);

Methods
inline int getBigMarkDistance() const;
int getEndOffset() const;
int getLength() const;
bool getLengthFix() const;
inline int getLittleMarkDistance() const;
inline int getMaxValue() const;
inline int getMediumMarkDistance() const;
metric_style getMetricRulerStyle() const;
inline int getMinValue() const;
inline int getOffset() const;
paint_style getPaintRulerStyle() const;

4682-1 ch19.f.qc  11/20/00  15:44  Page 560



561Chapter 19 ✦ The Widgets of KDE

inline double getPixelPerMark() const;
bool getShowBigMarks() const;
bool getShowEndMarks() const;
bool getShowLittleMarks() const;
bool getShowMediumMarks() const;
bool getShowPointer() const;
bool getShowTinyMarks() const;
paint_style getTickStyle() const;
inline int getTinyMarkDistance() const;
inline int getValue() const;
void setBigMarkDistance(int);
void setEndLabel(const QString &);
void setLength(int);
void setLengthFix(bool fix);
void setLittleMarkDistance(int);
void setMaxValue(int);
void setMediumMarkDistance(int);
void setMinValue(int);
void setOffset(int offset);
void setPixelPerMark(double);
void setRange(int min, int max);
void setRulerStyle(KRuler::metric_style);
void setRulerStyle(KRuler::paint_style);
void setTickStyle(KRuler::paint_style);
void setTinyMarkDistance(int);
void setValue(int);
void setValuePerBigMark(int);
void setValuePerLittleMark(int);
void setValuePerMediumMark(int);
void showBigMarkLabel(bool);
void showBigMarks(bool);
void showEndLabel(bool);
void showEndMarks(bool);
void showLittleMarkLabel(bool);
void showLittleMarks(bool);
void showMediumMarkLabel(bool);
void showMediumMarks(bool);
void showPointer(bool);
void showTinyMarks(bool);
void slidedown(int count = 1);
void slideup(int count = 1);

Slots
void slotEndOffset(int);
void slotNewOffset(int);
void slotNewValue(int);

Enums
enum direction { horizontal, vertical };
enum metric_style { custom=0, pixel, inch, millimetres,

centimetres, metres };
enum paint_style { flat, raised, sunken };

4682-1 ch19.f.qc  11/20/00  15:44  Page 561



562 Part III ✦ Reference and Mechanics

The following example program displays the KRuler shown in Figure 19-45:

/* showruler.cpp */
#include <kapp.h>
#include <kruler.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showruler”);
KRuler *ruler = new KRuler(KRuler::horizontal);
ruler->setRulerStyle(KRuler::pixel);
ruler->setLength(1000);
ruler->setValue(750);
ruler->showBigMarks(TRUE);
ruler->showTinyMarks(FALSE);
ruler->showMediumMarks(FALSE);
ruler->showLittleMarks(FALSE);
ruler->showEndMarks(FALSE);
ruler->showEndLabel(FALSE);
ruler->show();
app.setMainWidget(ruler);
return(app.exec());

}

Figure 19-45: A simple KRuler

KSelector
The KSelector widget is a base class that can be used to create a widget for selecting
a horizontal or vertical position within a window.

File
#include <kselect.h>

Base Classes
QObject QPaintDevice QRangeControl QWidget Qt 

Inherited By
KGradientSelector KValueSelector 

Constructors
KSelector(Orientation o, QWidget *parent = 0L,

const char *name = 0L);

4682-1 ch19.f.qc  11/20/00  15:44  Page 562



563Chapter 19 ✦ The Widgets of KDE

Methods
QRect contentsRect();
bool indent() const;
Orientation orientation() const;
void setIndent(bool i);

Signals
void valueChanged(int value);

Enums
enum Orientation { Horizontal, Vertical };

The following example displays a horizontal KSelector widget, as shown in 
Figure 19-46. The indicator in the bottom border of the window can be moved 
by the mouse, causing the valueChanged() signal to be emitted.

/* showselector.cpp */
#include <kapp.h>
#include <kselect.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showselector”);
KSelector *selector = new KSelector(KSelector::Horizontal);
selector->show();
app.setMainWidget(selector);
return(app.exec());

}

Figure 19-46: A horizontal KSelector widget 
showing the selection indicator at the bottom

KSeparator
The KSeparator widget is the standard KDE separator widget. It is used in menus
and other windows to create logical groupings.

File
#include <kseparator.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

4682-1 ch19.f.qc  11/20/00  15:44  Page 563



564 Part III ✦ Reference and Mechanics

Constructors
KSeparator(QWidget *parent = 0, const char *name = 0,

WFlags f = 0);
KSeparator(int orientation, QWidget *parent = 0,

const char *name = 0, WFlags f = 0);

Methods
int orientation() const;
void setOrientation(int);
virtual QSize sizeHint() const;

The following example displays the horizontal KSeparator widget shown in 
Figure 19-47:

/* showseparator.cpp */
#include <kapp.h>
#include <kseparator.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showseparator”);
KSeparator *separator = new KSeparator(Qt::Horizontal);
separator->show();
app.setMainWidget(separator);
return(app.exec());

}

Figure 19-47: A horizontal KSeparator widget

KSpellConfig
The KSpellConfig widget serves as a dialog that configures the operation of the
spell checker for the user.

File
#include <ksconfig.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
KSpellConfig(QWidget *parent = 0, const char *name = 0,

KSpellConfig *spellConfig = 0, bool addHelpButton = true);
KSpellConfig(const KSpellConfig &);

4682-1 ch19.f.qc  11/20/00  15:44  Page 564



565Chapter 19 ✦ The Widgets of KDE

Methods
int client() const;
bool dictFromList() const;
const QString dictionary() const;
int encoding() const;
QStringList ignoreList() const;
bool noRootAffix() const;
bool runTogether() const;
void setClient(int client);
void setDictFromList(bool dfl);
void setDictionary(const QString qs);
void setEncoding(int enctype);
void setIgnoreList(QStringList _ignorelist);
void setNoRootAffix(bool);
void setRunTogether(bool);
bool writeGlobalSettings();

Slots
void activateHelp(void);

The following example displays, as the top-level window, the KSpellConfig window
shown in Figure 19-48:

/* showspellconfig.cpp */
#include <kapp.h>
#include <ksconfig.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showspellconfig”);
KSpellConfig *spellconfig = new KSpellConfig();
spellconfig->show();
app.setMainWidget(spellconfig);
return(app.exec());

}

Figure 19-48: The KSpellConfig widget

4682-1 ch19.f.qc  11/20/00  15:44  Page 565



566 Part III ✦ Reference and Mechanics

KSpellDlg
The KSpellDlg widget displays a misspelled word and a list of suggestions for 
corrections, and responds to buttons specifying the action to be taken.

File
#include <kspelldlg.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Constructors
KSpellDlg(QWidget *parent, const char *name,

bool _progressbar = FALSE, bool _modal = FALSE);

Methods
void init(const QString &_word, QStringList *_sugg);
inline QString replacement();
void standby();

Slots
void slotProgress(unsigned int p);

Signals
void command(int);

The following example of KSpellDlg initializes the display with the misspelled word
and list of suggestions, as shown in Figure 19-49. The init() method inserts the
data and enables all the buttons, and the standby() method disables the buttons.

/* showspelldlg.cpp */
#include <kapp.h>
#include <kspelldlg.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showspelldlg”);
QString word = “tehn”;
QStringList *suggestion = new QStringList();
suggestion->append(“the”);
suggestion->append(“then”);
suggestion->append(“ten”);
KSpellDlg *spelldlg = new KSpellDlg(0,”spelldlg”);
spelldlg->init(word,suggestion);
spelldlg->show();
app.setMainWidget(spelldlg);
return(app.exec());

}

4682-1 ch19.f.qc  11/20/00  15:44  Page 566



567Chapter 19 ✦ The Widgets of KDE

Figure 19-49: The KSpellDlg widget

KSplitList
The KSplitList widget is a KlistBox that uses a signal to report its current 
width. This enables each item to adjust itself to fit, such as for a multicolumn 
format (a split list).

File
#include <kkeydialog.h>

Base Classes
KListBox QFrame QListBox QObject QPaintDevice QScrollView 

QWidget Qt 

Constructors
KSplitList(QWidget *parent = 0, const char *name = 0);

Methods
int getId(int index);
void setVisibleItems(int numItem);

Signals
void newWidth(int newWidth);

The following example displays the KSplitList widget shown in Figure 19-50:

/* showsplitlist.cpp */
#include <kapp.h>
#include <kkeydialog.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showsplitlist”);
KSplitList *splitlist = new KSplitList();
for(int i=0; i<20; i++) {

QString str;
str.sprintf(“Selection %d\n”,i);
splitlist->insertItem(str);

}

4682-1 ch19.f.qc  11/20/00  15:44  Page 567



568 Part III ✦ Reference and Mechanics

splitlist->show();
app.setMainWidget(splitlist);
return(app.exec());

}

Figure 19-50: The KSplitList widget

KStatusBar
The KStatusBar widget is included as part of the display of KTMainWindow. It can
be used to display status as text, graphics, or a custom widget.

File
#include <kstatusbar.h>

Base Classes
QObject QPaintDevice QStatusBar QWidget Qt 

Constructors
KStatusBar(QWidget *parent = 0L, const char *name = 0L);

Methods
void changeItem(const QString &text, int id);
inline void insertFixedItem(const QString &text, int ID,

bool permanent = false);
void insertItem(const QString &text, int ID, int stretch = 0,

bool permanent = false);
void removeItem(int id);
void setItemAlignment(int id, int align);
void setItemFixed(int id, int width = - 1);

Signals
void pressed(int);
void released(int);

Enums
enum BarStatus { Toggle, Show, Hide };

4682-1 ch19.f.qc  11/20/00  15:44  Page 568



569Chapter 19 ✦ The Widgets of KDE

Chapter 6 includes examples that use KStatusBar.

KStatusBarLabel
The KStatusBarLabel is a special mouse-sensitive label designed for use inside
the KStatusBar widget.

File
#include <kstatusbar.h>

Base Classes
QFrame QLabel QObject QPaintDevice QWidget Qt 

Constructors
KStatusBarLabel(const QString &text, int _id,

KStatusBar *parent = 0L, const char *name = 0L);

Signals
void itemPressed(int id);
void itemReleased(int id);

The following example creates and displays the KStatusBarLabel widget shown in
Figure 19-51. The constructor includes not only the label text, but also the ID num-
ber provided with the signals.

/* showstatusbarlabel.cpp */
#include <kapp.h>
#include <kstatusbar.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showstatusbarlabel”);
KStatusBarLabel *statusbarlabel =

new KStatusBarLabel(“Label text”,4);
statusbarlabel->show();
app.setMainWidget(statusbarlabel);
return(app.exec());

}

Figure 19-51: The KStatusBarLabel widget 
is a QLabel that is sensitive to the mouse.

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 569



570 Part III ✦ Reference and Mechanics

KTextBrowser
The KTextBrowser widget is a text browser that has the added capability to recog-
nize and respond to URL and e-mail links.

File
#include <ktextbrowser.h>

Base Classes
QFrame QObject QPaintDevice QScrollView QTextBrowser 

QTextView QWidget Qt 

Constructors
KTextBrowser(QWidget *parent = 0, const char *name = 0,

bool notifyClick = false);

Methods
void setNotifyClick(bool notifyClick);

Signals
void mailClick(const QString &name, const QString &address);
void urlClick(const QString &url);

The following example displays the text shown in Figure 19-52. The URL and e-mail
response can be activated and deactivated by calling setNotifyClick().

/* showtextbrowser.cpp */
#include <kapp.h>
#include <ktextbrowser.h>

char text[] =
“This is the text being displayed\n”
“by the text browser. Both vertical\n”
“and horizontal scroll bars will\n”
“appear as necessary.”;

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showtextbrowser”);
KTextBrowser *textbrowser = new KTextBrowser();
textbrowser->show();
textbrowser->setText(QString(text));
app.setMainWidget(textbrowser);
return(app.exec());

}

4682-1 ch19.f.qc  11/20/00  15:44  Page 570



571Chapter 19 ✦ The Widgets of KDE

Figure 19-52: The KTextBrowswer widget displays text.

KTextPrintDialog
The KTextPrintDialog is a user interface that can be used to modify the contents
of a KTextPrintConfig object.

File
#include <ktextprint.h>

Base Classes
KDialog KDialogBase QDialog QObject QPaintDevice QWidget Qt 

Constructors
KTextPrintDialog(QWidget *parent, KTextPrintConfig &);

Methods
ColorMode colorMode();
void getData(KTextPrintConfig &);
Orientation orientation();
void setData(KTextPrintConfig &);

Slots
void setDest(int);

The following example of KTextPrintDialog displays the contents of the default
KTextPrintDialog object, as shown in Figure 19-53:

/* showtextprintdialog.cpp */
#include <kapp.h>
#include <ktextprint.h>

int main(int argc,char **argv)
{

KApplication app(argc,argv,”showtextprintdialog”);
KTextPrintConfig textprintconfig;
KTextPrintDialog *textprintdialog =

new KTextPrintDialog(0,textprintconfig);
textprintdialog->show();
return(app.exec());

}

4682-1 ch19.f.qc  11/20/00  15:44  Page 571



572 Part III ✦ Reference and Mechanics

Figure 19-53: The default printer settings 
shown in a KTextPrintDialog window

KTMainWindow
The KTMainWindow widget is the standard KDE top-level window.

File
#include <ktmainwindow.h>

Base Classes
KXMLGUIBuilder KXMLGUIClient QObject QPaintDevice QWidget Qt 

Inherited By
KDockMainWindow 

Constructors
KTMainWindow(const char *name = 0L,

WFlags f = WDestructiveClose);

Methods
int addToolBar(KToolBar *toolbar, int index = - 1);
static bool canBeRestored(int number);
static const QString classNameOfToplevel(int number);
virtual void createGUI(

const QString &xmlfile = QString::null);
void enableStatusBar(

KStatusBar::BarStatus stat = KStatusBar::Toggle);
void enableToolBar(

4682-1 ch19.f.qc  11/20/00  15:44  Page 572



573Chapter 19 ✦ The Widgets of KDE

KToolBar::BarStatus stat = KToolBar::Toggle, int id = 0);
virtual KXMLGUIFactory *guiFactory();
bool hasMenuBar();
bool hasStatusBar();
bool hasToolBar(int ID = 0);
QPopupMenu *helpMenu(

const QString &aboutAppText = QString::null,
bool showWhatsThis = true);

QWidget *indicator();
QRect mainViewGeometry() const;
KMenuBar *menuBar();
bool restore(int number);
void setEnableToolBar(

KToolBar::BarStatus stat = KToolBar::Toggle,
const QString &name = mainToolBar);

void setFrameBorderWidth(int);
void setIndicatorWidget(QWidget *indicator);
void setMaximumToolBarWraps(unsigned int wraps);
void setMenu(KMenuBar *menuBar);
void setStatusBar(KStatusBar *statusBar);
void setView(QWidget *view, bool show_frame = TRUE);
virtual void show();
QSize sizeHint() const;
KStatusBar *statusBar();
KToolBar *toolBar(int ID = 0);
KToolBar *toolBar(const QString &name);
QWidget *view() const;

Slots
void appHelpActivated(void);
virtual void setCaption(const QString &caption);
virtual void setPlainCaption(const QString &caption);

You can find examples of the KTMainWindow widget in Chapter 6.

KToolBar
The KtoolBar widget is a toolbar that can contain several different kinds of tool
widgets, and can be dragged and docked in several locations.

File
#include <ktoolbar.h>

Base Classes
QFrame QObject QPaintDevice QWidget Qt 

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 573



574 Part III ✦ Reference and Mechanics

Inherited By
KFormulaToolBar 

Constructors
KToolBar(QWidget *parent = 0L, const char *name = 0L,

bool _honor_mode = false);

Methods
void addConnection(int id, const char *signal,

const QObject *receiver, const char *slot);
void alignItemRight(int id, bool right = true);
KAnimWidget *animatedWidget(int id);
BarPosition barPos() const;
void changeComboItem(int id, const QString &text,

int index = - 1);
void clear();
void clearCombo(int id);
bool contextMenuEnabled() const;
int count();
bool enable(BarStatus stat);
void enableFloating(bool arrrrrrgh);
void enableMoving(bool flag = true);
bool fullSize() const;
KToolBarButton *getButton(int id);
QComboBox *getCombo(int id);
QString getComboItem(int id, int index = - 1);
KLineEdit *getLined(int id);
QString getLinedText(int id);
QWidget *getWidget(int id);
virtual int heightForWidth(int width) const;
void hideItem(int id);
int iconSize() const;
IconText iconText() const;
int insertAnimatedWidget(int id, QObject *receiver,

const char *slot, const QStringList &icons,
int index = - 1);

int insertButton(const QString &icon, int id,
bool enabled = true, const QString &text = QString::null,
int index = - 1);

int insertButton(const QString &icon, int id,
const char *signal, const QObject *receiver,
const char *slot, bool enabled = true,
const QString &text = QString::null, int index = - 1);

int insertButton(const QPixmap &pixmap, int id,
bool enabled = true, const QString &text = QString::null,
int index = - 1);

int insertButton(const QPixmap &pixmap, int id,
const char *signal, const QObject *receiver,
const char *slot, bool enabled = true,
const QString &text = QString::null, int index = - 1);

int insertButton(const QPixmap &pixmap, int id,

4682-1 ch19.f.qc  11/20/00  15:44  Page 574



575Chapter 19 ✦ The Widgets of KDE

QPopupMenu *popup, bool enabled, const QString &_text,
int index = - 1);

int insertCombo(QStrList *list, int id, bool writable,
const char *signal, const QObject *receiver,
const char *slot, bool enabled = true,
const QString &tooltiptext = QString::null, int size = 70,
int index = - 1,
QComboBox::Policy policy = QComboBox::AtBottom);

int insertCombo(const QStringList &list, int id, bool writable,
const char *signal, const QObject *receiver,
const char *slot, bool enabled = true,
const QString &tooltiptext = QString::null, int size = 70,
int index = - 1,
QComboBox::Policy policy = QComboBox::AtBottom);

int insertCombo(const QString &text, int id, bool writable,
const char *signal, QObject *recevier, const char *slot,
bool enabled = true,
const QString &tooltiptext = QString::null, int size = 70,
int index = - 1,
QComboBox::Policy policy = QComboBox::AtBottom);

void insertComboItem(int id, const QString &text, int index);
void insertComboList(int id, QStrList *list, int index);
void insertComboList(int id, const QStringList &list,

int index);
int insertLineSeparator(int index = - 1);
int insertLined(const QString &text, int ID,

const char *signal, const QObject *receiver,
const char *slot, bool enabled = true,
const QString &toolTipText = QString::null, int size = 70,
int index = - 1);

int insertSeparator(int index = - 1);
int insertWidget(int id, int width, QWidget *_widget,

int index = - 1);
bool isButtonOn(int id);
int maxHeight();
int maxWidth();
virtual QSize maximumSizeHint() const;
virtual QSize minimumSizeHint() const;
void removeComboItem(int id, int index);
void removeItem(int id);
void saveState();
void setAutoRepeat(int id, bool flag = true);
void setBarPos(BarPosition bpos);
void setButton(int id, bool flag);
void setButtonIcon(int id, const QString &_icon);
void setButtonPixmap(int id, const QPixmap &_pixmap);
void setCurrentComboItem(int id, int index);
void setDelayedPopup(int id, QPopupMenu *_popup,

bool toggle = false);
void setEnableContextMenu(bool enable = true);
void setFlat(bool flag);

4682-1 ch19.f.qc  11/20/00  15:44  Page 575



576 Part III ✦ Reference and Mechanics

void setFullSize(bool flag = true);
void setIconSize(int size);
void setIconSize(int size, bool update);
void setIconText(IconText it);
void setIconText(IconText it, bool update);
void setItemAutoSized(int id, bool yes = true);
void setItemEnabled(int id, bool enabled);
void setItemNoStyle(int id, bool no_style = true);
void setLinedText(int id, const QString &text);
void setMaxHeight(int h);
void setMaxWidth(int dw);
void setTitle(const QString &_title);
void setToggle(int id, bool flag = true);
void setXML(const QString &xmlfile, const QDomDocument &xml);
void showItem(int id);
virtual QSize sizeHint() const;
virtual QSizePolicy sizePolicy() const;
void toggleButton(int id);
void updateRects(bool resize = false);
virtual int widthForHeight(int height) const;

Signals
void clicked(int id);
void doubleClicked(int id);
void highlighted(int id, bool isHighlighted);
void highlighted(int id);
void modechange();
void moved(BarPosition);
void pressed(int);
void released(int);
void toggled(int);

Enums
enum IconText { IconOnly=0, IconTextRight, TextOnly,

IconTextBottom };
enum BarStatus { Toggle, Show, Hide };
enum BarPosition { Top=0, Left, Right, Bottom, Floating,

Flat };

There are several examples of the KToolBar widget in Chapter 6.

KToolBarButton
The KToolBarButton widget is used internally by the KToolBar widget to display
buttons that respond to the mouse.

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 576



577Chapter 19 ✦ The Widgets of KDE

The KToolBarButton is constructed by calling one of the insertButton() meth-
ods of KToolBar. Using the ID number, a call to the KToolBar method getButton()
can be used to retrieve a pointer to the button, making the methods listed here 
available.

File
#include <ktoolbarbutton.h>

Base Classes
QButton QObject QPaintDevice QWidget Qt 

Constructors
KToolBarButton(const QString &icon, int id, QWidget *parent,

const char *name = 0L, const QString &txt = QString::null);
KToolBarButton(const QPixmap &pixmap, int id, QWidget *parent,

const char *name = 0L, const QString &txt = QString::null);
KToolBarButton(QWidget *parent = 0L, const char *name = 0L);

Methods
void on(bool flag = true);
QPopupMenu *popup();
virtual void setDefaultIcon(const QString &icon);
virtual void setDefaultPixmap(const QPixmap &pixmap);
void setDelayedPopup(QPopupMenu *p, bool toggle = false);
virtual void setDisabledIcon(const QString &icon);
virtual void setDisabledPixmap(const QPixmap &pixmap);
void setEnabled(bool enable = true);
virtual void setIcon(const QString &icon);
virtual void setIcon(const QString &icon, bool generate);
void setNoStyle(bool no_style = true);
virtual void setPixmap(const QPixmap &pixmap);
virtual void setPixmap(const QPixmap &pixmap, bool generate);
void setPopup(QPopupMenu *p);
void setRadio(bool f = true);
virtual void setText(const QString &text);
void setToggle(bool toggle = true);
void toggle();

Slots
void modeChange();

Signals
void clicked(int);
void doubleClicked(int);
void highlighted(int, bool);
void pressed(int);
void released(int);
void toggled(int);

4682-1 ch19.f.qc  11/20/00  15:44  Page 577



578 Part III ✦ Reference and Mechanics

Chapter 6 includes examples of creating KToolBarButton widgets inside a
KToolBar.

KWizard
The KWizard widget can be used to create a dialog that guides the user through a
sequence of steps. Each step consists of a single window. The KWizard widget pro-
vides the paging mechanism and the control buttons. This widget extends QWizard
to include a set of standard KDE methods for dialogs. It is the base class on which
KDialogBase is built.

File
#include <kwizard.h>

Base Classes
QDialog QObject QPaintDevice QWidget QWizard Qt 

Constructors
KWizard(QWidget *parent = 0, const char *name = 0,

bool modal = false, WFlags f = 0);

The following example displays the empty KWizard widget shown in Figure 19-54:

/* showwizard.cpp */
#include <kapp.h>
#include <kwizard.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
KWizard *wizard = new KWizard();
wizard->show();
app.setMainWidget(wizard);
return(app.exec());

}

Figure 19-54: The KWizard widget

Cross-
Reference

4682-1 ch19.f.qc  11/20/00  15:44  Page 578



579Chapter 19 ✦ The Widgets of KDE

KXYSelector
The KXYSelector widget is a base class that can be used in place of QWidget, and
it adds the capability of using the mouse to select a point on the face of the widget.

File
#include <kselect.h>

Base Classes
QObject QPaintDevice QWidget Qt 

Inherited By
KHSSelector 

Constructors
KXYSelector(QWidget *parent = 0L, const char *name = 0L);

Methods
QRect contentsRect();
void setRange(int _minX, int _minY, int _maxX, int _maxY);
void setValues(int _xPos, int _yPos);
int xValue();
int yValue();

Signals
void valueChanged(int _x, int _y);

The following example of the KXZWidget displays the cross hairs position indicator
shown in Figure 19-55:

/* showxyselector.cpp */
#include <kapp.h>
#include <kselect.h>

int main(int argc,char **argv)
{

QApplication app(argc,argv);
KXYSelector *xyselector = new KXYSelector();
xyselector->show();
app.setMainWidget(xyselector);
return(app.exec());

}

Figure 19-55: The KXYSelector widget 
with its cross hairs position indicator

4682-1 ch19.f.qc  11/20/00  15:44  Page 579



580 Part III ✦ Reference and Mechanics

Summary
This chapter provided an alphabetical listing of each KDE widget. Each widget was
listed along with the following:

✦ The constructor, or constructors, that can be used to create instances 
of the widget

✦ The name of the header file in which the widget is defined

✦ All of the superclasses from which the widget inherits its capabilities

✦ All of the subclasses that derive the capabilities of the widget

✦ The slots and signals that are used to connect an event in one widget 
to a method call in another

✦ The public methods available to your application

This chapter and the previous one include many examples of programs that run in
the KDE environment. While there are many differences between these programs
and those written for other systems, there are also many similarities. The next
chapter contains a point-by-point comparison of the basic structure of a simple
KDE program and the same program written for Windows.

✦ ✦ ✦

4682-1 ch19.f.qc  11/20/00  15:44  Page 580



Comparative
Anatomy of
Windowing
Programs

If you are familiar with programming using the Win32 API,
this chapter can help you understand the structure of a

KDE/Qt application. At the lowest levels, the two program-
ming models are very similar. They both operate using a main
loop that waits for events to arrive; and when an event does
arrive, a function is called to notify the application.

To make the comparison as simple as possible, this chapter
implements the same short program for both Win32 and KDE.

The comparison in this chapter has nothing to do with which
windowing system is “better.” Moreover, no attempt is made
to use any kind of standard optimal programming techniques.
These two programs are contrived to be as much alike as pos-
sible, so a person who understands one of them can easily
understand the structure of the other.

A Win32 Program
The following example is a Windows program that fills a win-
dow with concentric boxes. Whenever the window resizes, the
boxes also resize to fit it. The resulting window looks like the
one shown in Figure 20-1.

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Writing a simple
Win32 program that
draws squares on 
a window

Writing a simple KDE
program that draws
squares on a window

Writing a simple
GNOME program
that draws squares
on a window

Comparing the 
KDE and Win32
programs point 
by point

✦ ✦ ✦ ✦

4682-1 ch20.f.qc  11/13/00  14:16  Page 581



582 Part III ✦ Reference and Mechanics

BoxBox
1 /* boxbox.c  (win32) */
2 #include <windows.h>
3 
4 #define STEP 3
5 
6 static char name[] = “BoxBox”;
7 static int xBox1;
8 static int yBox1;
9 static int xBox2;
10 static int yBox2;
11 
12 LRESULT CALLBACK callback(HWND,UINT,WPARAM,LPARAM);
13 
14 int WINAPI WinMain(HINSTANCE instance,
15         HINSTANCE prev,PSTR commandLine,int showCommand)
16 {
17     HWND window;
18     MSG message;
19     WNDCLASSEX winclass;
20 
21     winclass.cbSize = sizeof (winclass);
22     winclass.style = CS_HREDRAW | CS_VREDRAW;
23     winclass.lpfnWndProc = callback;
24     winclass.cbClsExtra = 0;
25     winclass.cbWndExtra = 0;
26     winclass.hInstance = instance;
27     winclass.hIcon = LoadIcon(NULL,IDI_APPLICATION);
28     winclass.hCursor = LoadCursor(NULL,IDC_ARROW);
29     winclass.lpszMenuName = NULL;
30     winclass.lpszClassName = name;
31     winclass.hIconSm = LoadIcon(NULL,IDI_APPLICATION);
32     winclass.hbrBackground =
33             (HBRUSH)GetStockObject(WHITE_BRUSH);
34 
35     RegisterClassEx(&winclass);
36     window = CreateWindow (name,”Boxes in Boxes”,
37             WS_OVERLAPPEDWINDOW,
38             CW_USEDEFAULT,CW_USEDEFAULT,
39             CW_USEDEFAULT,CW_USEDEFAULT,
40             NULL,NULL,instance,NULL);
41     ShowWindow(window,showCommand);
42     UpdateWindow (window);
43 
44     while(GetMessage(&message,NULL,0,0)) {
45         TranslateMessage(&message);
46         DispatchMessage(&message);
47     }
48     return(message.wParam);
49 }
50 
51 LRESULT CALLBACK callback(HWND window,UINT messageType,
52         WPARAM wParam,LPARAM lParam)

4682-1 ch20.f.qc  11/13/00  14:16  Page 582



583Chapter 20 ✦ Comparative Anatomy of Windowing Programs

53 {
54     int x1;
55     int y1;
56     int x2;
57     int y2;
58     HDC hdc;
59     PAINTSTRUCT ps;
60 
61     switch (messageType) {
62     case WM_SIZE:
63         xBox1 = 10;
64         yBox1 = 10;
65         xBox2 = LOWORD(lParam) - 10;
66         yBox2 = HIWORD(lParam) - 10;
67         return(0);
68     case WM_PAINT:
69         hdc = BeginPaint(window,&ps);
70         SetViewportOrgEx(hdc,0,0,NULL);
71         x1 = xBox1;
72         x2 = xBox2;
73         y1 = yBox1;
74         y2 = yBox2;
75         while((x1 < x2) && (y1 < y2)) {
76             MoveToEx(hdc,x1,y1,NULL);
77             LineTo(hdc,x2,y1);
78             LineTo(hdc,x2,y2);
79             LineTo(hdc,x1,y2);
80             LineTo(hdc,x1,y1);
81             x1 += STEP;
82             y1 += STEP;
83             x2 -= STEP;
84             y2 -= STEP;
85         }
86         EndPaint(window,&ps);
87         return(0);
88     case WM_DESTROY:
89         PostQuitMessage(0);
90         return(0);
91     }
92     return(DefWindowProc(window,messageType,
93             wParam,lParam));
94 }

Figure 20-1: A Win32 main window

4682-1 ch20.f.qc  11/13/00  14:16  Page 583



584 Part III ✦ Reference and Mechanics

The program has only two functions. The function WinMain(), beginning on line 14,
is the original one called by the operating system to start the program. The func-
tion callback(), on line 51, is called by the operating system whenever an event
arrives.

A KDE Program
The following example is a KDE program that fills a window with concentric boxes.
If the size of the window changes, the size of the boxes also changes. The window
looks like the one shown in Figure 20-2. The example is in two files: a header file
that defines the BoxBox widget, and a C++ source file that contains a mainline for
the program as well as the bodies of the methods of the BoxBox class.

BoxBox Header
1 /* boxbox.h (KDE) */
2 #ifndef BOXBOX_H
3 #define BOXBOX_H
4 
5 #include <qwidget.h>
6 
7 class BoxBox: public QWidget
8 {
9 public:
10     BoxBox(QWidget *parent=0,const char *name=0);
11 private:
12     int xBox1;
13     int yBox1;
14     int xBox2;
15     int yBox2;
16 protected:
17     virtual void paintEvent(QPaintEvent *);
18     virtual void resizeEvent(QResizeEvent *);
19 };
20 
21 #endif

BoxBox
1 /* boxbox.cpp (KDE) */
2 #include <kapp.h>
3 #include <qpainter.h>
4 #include “boxbox.h”
5 
6 #define STEP 3
7 
8 int main(int argc,char **argv)
9 {
10     KApplication app(argc,argv,”boxbox”);
11     BoxBox boxbox;

4682-1 ch20.f.qc  11/13/00  14:16  Page 584



585Chapter 20 ✦ Comparative Anatomy of Windowing Programs

12     boxbox.show();
13     app.setMainWidget(&boxbox);
14     return(app.exec());
15 }
16 BoxBox::BoxBox(QWidget *parent,const
17         char *name) : QWidget(parent,name)
18 {
19     resize(400,200);
20 }
21 void BoxBox::paintEvent(QPaintEvent *)
22 {
23     QPainter p;
24 
25     int x1 = xBox1;
26     int y1 = yBox1;
27     int x2 = xBox2;
28     int y2 = yBox2;
29 
30     p.begin(this);
31     while((x1 < x2) && (y1 < y2)) {
32         p.moveTo(x1,y1);
33         p.lineTo(x2,y1);
34         p.lineTo(x2,y2);
35         p.lineTo(x1,y2);
36         p.lineTo(x1,y1);
37         x1 += STEP;
38         y1 += STEP;
39         x2 -= STEP;
40         y2 -= STEP;
41     }
42     p.end();
43 }
44 void BoxBox::resizeEvent(QResizeEvent *e)
45 {
46     QSize size = e->size();
47     xBox1 = 10;
48     yBox1 = 10;
49     xBox2 = size.width() - 10;
50     yBox2 = size.height() - 10;
51 }

Figure 20-2: A KDE top-level window

4682-1 ch20.f.qc  11/13/00  14:16  Page 585



586 Part III ✦ Reference and Mechanics

This program has a main() function that is used to initialize the KDE environment,
create the widget to be displayed, set up the widget as the top-level window, and go
into an execution loop. Besides the constructor, there are two methods, each of
which executes on the arrival of a specific event.

A Point-by-Point Win32 and KDE Comparison
This section describes the similarities and differences between the KDE and Win32
programs by detailing some specifics. As you will see, the difference lies in the
details, not in the underlying technology.

Initialization
Line 10 of the KDE program constructs a KApplication object, which also initial-
izes the GUI interface and other parts of the underlying graphics software. There is
no counterpart to this function in the Win32 program because the Win32 API is part
of the operating system and is already initialized. However, KDE is not a part of the
operating system, so it is necessary to initialize windowing software.

This construction of the KApplication object assigns the program its name, which,
by default, is used as a title that appears at the top of the window. The parallel
action in the Win32 version is the call to CreateWindow() on line 36. 

The Main Window
Line 11 of the KDE program creates a BoxBox object, which is to be the top-level
window of the application. Lines 21 through 33 of the Win32 version define the main
window, and the call to RegisterClassEx() on line 35 registers it with the operat-
ing system. As you can see, a lot more setup is required to create a Win32 top-level
window than a KDE top-level window. This is because all of the settings must be
specified up front for Win32; whereas KDE uses a standard set of defaults for every-
thing and has functions available so your program can change things after the win-
dow is built.

Responding to Events
Both the KDE and Win32 programs are event-driven. In other words, once both pro-
grams are initialized and their windows are displayed, KDE and Win32 wait until an
event (mouse, keyboard, or whatever) occurs. When an event does occur, a function
is called to pass the information from the system to the application. Both of the pro-
grams need to respond to two specific events: when the size of the window changes,
and when all or part of the window has been exposed and should be drawn.

On line 21, the KDE program overrides the inherited QWidget virtual method
paintEvent() that is to be called whenever the window needs to be drawn. 

4682-1 ch20.f.qc  11/13/00  14:16  Page 586



587Chapter 20 ✦ Comparative Anatomy of Windowing Programs

This function draws the set of nested boxes using the size and location values that
were retrieved from the latest call to resizeEvent(). The Win32 program achieves
the same thing with the case statement on line 68.

On line 44, the KDE program overrides the inherited QWidget virtual method
resizeEvent() that is to be called whenever the window first appears, and when-
ever it changes size. The same thing is achieved in the callback() function of the
Win32 program with the case statement on line 62. In both cases, the new size
information is stored in the local variables named xBox1, yBox1, xBox2, and yBox2.

These two methods of handling events are more alike than they are different. A KDE
application specifies a different callback method for each event. In the Win32 pro-
gram, the single callback function can be used as a dispatcher that contains separate
case statements for each event— thus calling a separate function for each event.

The Main Loop
The KDE program calls exec() on line 14. This function does not return until it is
time for the program to exit. It has the job of waiting for events and then causing
the appropriate method (or methods) to be called. The main loop of the Win32 pro-
gram is on lines 44 through 47. The function GetMessage() waits until it receives
an event, and then it returns. The call to TranslateMessage() translates keyboard
codes into characters, and DispatchMessage() forwards the event to the correct
window.

Program Shutdown
When shutting down the Win32 program, the callback function is called with a
WM_DESTROY message. A call to PostQuitMessage() is made on line 89, which
places a quit message in the input queue; when it is read, the program terminates.
This gives you the opportunity to clean things up before shutting down, or (by fail-
ure to post the quit message) refuse to quit.

The KDE application shutdown is built into the environment that is set up during
the initialization process of the KApplication object. Closing the top-level window
closes the application. Also, exiting the application will close the top-level window.
The title bar at the top of the window is connected to the shutdown process so that
the mouse can be used to close the window.

Global Data
Because the Win32 program is written in C, it requires the use of global storage to
hold values that will remain between calls to the callback function. Of course, the
Win32 version could be written in C++ and objects could be devised that would
encapsulate the global data, but that approach is not a part of the API itself. In this
example, global data is stored in the variables xBox1, yBox1, xBox2, and yBox2 on
lines 7 through 10.

Note

4682-1 ch20.f.qc  11/13/00  14:16  Page 587



588 Part III ✦ Reference and Mechanics

KDE, being written in C++, has the capability of storing data inside each individual
class. In this example, the corners of the outermost rectangle are stored in xBox1,
yBox1, xBox2, and yBox2, defined in lines 12 through 15 of the header file.

A GNOME Program
Just for the sake of further comparison, the following example is a GNOME/GTK+
program that also fills a window with concentric boxes. As with the previous exam-
ples, if the size of the window changes, the size of the boxes also changes. The win-
dow looks like the one shown in Figure 20-3.

1 /** boxbox.c (Gnome) **/
2 #include <gnome.h>
3 
4 gint eventDelete(GtkWidget *widget,
5         GdkEvent *event,gpointer data);
6 gint eventDestroy(GtkWidget *widget,
7         GdkEvent *event,gpointer data);
8 gboolean eventExpose(GtkWidget *widget,
9         GdkEvent *event,gpointer data);
10 gint eventConfigure(GtkWidget *widget,
11         GdkEventConfigure *event,gpointer data);
12 
13 #define STEP 3
14 
15 static char name[] = “BoxBox”;
16 static int xBox1;
17 static int yBox1;
18 static int xBox2;
19 static int yBox2;
20 
21 int main(int argc,char *argv[])
22 {
23     GtkWidget *app;
24     GtkWidget *area;
25 
26     gnome_init(name,”1.0”,argc,argv);
27     app = gnome_app_new(name,”Boxes in Boxes”);
28     gtk_signal_connect(GTK_OBJECT(app),”delete_event”,
29             GTK_SIGNAL_FUNC(eventDelete),NULL);
30     gtk_signal_connect(GTK_OBJECT(app),”destroy”,
31             GTK_SIGNAL_FUNC(eventDestroy),NULL);
32 
33     area = gtk_drawing_area_new();
34     gnome_app_set_contents(GNOME_APP(app),area);
35 
36     gtk_signal_connect(GTK_OBJECT(area),”expose_event”,
37             GTK_SIGNAL_FUNC(eventExpose),NULL);
38     gtk_signal_connect(GTK_OBJECT(area),”configure_event”,
39             GTK_SIGNAL_FUNC(eventConfigure),NULL);

4682-1 ch20.f.qc  11/13/00  14:16  Page 588



589Chapter 20 ✦ Comparative Anatomy of Windowing Programs

40 
41     gtk_widget_show_all(app);
42     gtk_main();
43     exit(0);
44 }
45 gboolean eventExpose(GtkWidget *widget,
46         GdkEvent *event,gpointer data) {
47     int x1;
48     int y1;
49     int x2;
50     int y2;
51 
52     x1 = xBox1;
53     y1 = yBox1;
54     x2 = xBox2;
55     y2 = yBox2;
56     while((x1 < x2) && (y1 < y2)) {
57         gdk_draw_line(widget->window,
58                 widget->style->black_gc,
59                 x1,y1,x2,y1);
60         gdk_draw_line(widget->window,
61                 widget->style->black_gc,
62                 x2,y1,x2,y2);
63         gdk_draw_line(widget->window,
64                 widget->style->black_gc,
65                 x2,y2,x1,y2);
66         gdk_draw_line(widget->window,
67                 widget->style->black_gc,
68                 x1,y2,x1,y1);
69         x1 += STEP;
70         y1 += STEP;
71         x2 -= STEP;
72         y2 -= STEP;
73     }
74     return(TRUE);
75 }
76 gint eventConfigure(GtkWidget *widget,
77         GdkEventConfigure *event,gpointer data)
78 {
79     xBox1 = 10;
80     yBox1 = 10;
81     xBox2 = event->width - 10;
82     yBox2 = event->height - 10;
83     return(TRUE);
84 }
85 gint eventDelete(GtkWidget *widget,
86         GdkEvent *event,gpointer data) {
87     return(FALSE);
88 }
89 gint eventDestroy(GtkWidget *widget,
90         GdkEvent *event,gpointer data) {
91     gtk_main_quit();
92     return(0);
93 }

4682-1 ch20.f.qc  11/13/00  14:16  Page 589



590 Part III ✦ Reference and Mechanics

Figure 20-3: A GNOME main window

This program has a main() function that is used to initialize GNOME, create the
window to be displayed, specify the callbacks, and go into an execution loop. There
are four other functions, each of which executes on the arrival of a specific event.

As you can see, a bit more effort is required here to get things set up to respond to
events. The calls to gtk_signal_connect() on lines 36 and 38 are required in order
for the program to receive the events that set the size of the window and draw it. It
is also necessary to set up callbacks to respond to the mouse so that the application
can be halted by the user — this is done with the calls to gtk_signal_connect()
on lines 28 and 30.

Summary
The underlying architecture of a Win32 application and a KDE application is the
same. Both are based on events. A GNOME application also has similar features.

The comparison in this chapter showed the following:

✦ Win32, KDE, and GNOME all use the concept of an infinite loop waiting for the
arrival of events.

✦ They all require about the same amount of code, but one may require more
detail in a particular area that another.

✦ All three applications share the concept of a top-level window as the main 
display, and all top-level windows are capable of receiving events.

✦ They all supply a method for guaranteeing that an application closes down
cleanly.

This chapter concludes the third, and final, part of the book. The appendixes that
follow serve two purposes. Appendixes A and B explain where and how to load and
install the software. Appendixes C through G are some cross-reference listings that
can be quite handy when programming KDE/Qt.

✦ ✦ ✦

4682-1 ch20.f.qc  11/13/00  14:16  Page 590



What’s on the
CD-ROM?

This appendix provides you with information on the 
contents of the CD-ROM that accompanies this book.

There are four utility programs included on this CD:

✦ autoconf 2.13

✦ automake 1.4

✦ gcc 2.95.2

✦ bzip 1.0.1 source and bzip 1.0.0 binary

The source code of KDE 2.0 is on the CD, which includes:

✦ KDE Software Development environment

✦ KDE’s GUI Desktop

✦ Konquerer web browser

✦ KOffice

✦ A number of games and utilities

Also included are the source code examples from the book,
and an electronic, searchable version of the book that can 
be viewed with Adobe Acrobat Reader.

System Requirements
To install this software, you will need a Linux system with a
CD-ROM drive and at least 30 megabytes of free disk space
(depending on your installation choices).

AAA P P E N D I X

✦ ✦ ✦ ✦

4682-1 appA.f.qc  11/13/00  14:16  Page 591



592 Appendixes

Installing the Utilities from the CD
To use any of the files on the CD, it is necessary for it to be mounted. It is normally
mounted on the /mnt/cdrom directory. Depending on your version of Linux, the
mounting occurs automatically when you insert the CD, or you may need to use 
the mount command.

To install autoconf from the CD to your hard drive, follow these steps:

1. You only need to install autoconf if you do not have a current version already
installed. The version on the CD is 2.13. To test whether your version is current,
enter this command:

autoconf --version

2. Change to the directory named /usr/local.

3. Enter the following command, which will create the directory /usr/local/
autoconf-2.13, and fill it with the source files:

tar xvzf /mnt/cdrom/utilities/autoconf-2.13.tar.gz

4. Change to the new directory and read the file named INSTALL for detailed
installation instructions.

To install automake from the CD to your hard drive, follow these steps:

1. You only need to install automake if you do not have a current version already
installed. The version on the CD is 1.4. To test whether your version is current,
enter this command:

automake --version

2. Change to the directory named /usr/local.

3. Enter the following command, which will create the directory /usr/local/
automake-1.4, and fill it with the source files:

tar xvzf /mnt/cdrom/utilities/automake-1.4.tar.gz

4. Change to the new directory and read the file named INSTALL for detailed
installation instructions.

To install the gcc from the CD to your hard drive, follow these steps:

1. You only need to install gcc if you do not have a current version already
installed. The version on the CD is 2.95.2. To test whether your version is 
current, enter the following command:

gcc --version

2. Change to the directory named /usr/local.

4682-1 appA.f.qc  11/13/00  14:16  Page 592



593Appendix A ✦ What’s on the CD-ROM?

3. Enter the following command, which will create the directory /usr/local/
gcc-2.95.2, and fill it with the source files:

tar xvzf /mnt/cdrom/utilities/gcc-2.95.2.tar.gz

4. Change to the new directory and either read either the file named install/
INDEX or use your Web browser on install/index.html for detailed instal-
lation instructions.

To install the bunzip2 from the CD to your hard drive, follow these steps:

1. There is no need to install bunzip2 on your system if one is already there. 
To determine the installed version, enter the following command:

bunzip2 --version

2. Change to the directory named /usr/local.

3. Enter the following command, which will create the directory /usr/local/
bzip2-1.0.1, and fill it with the source files:

tar xvzf /mnt/cdrom/utilities/bzip2-1.0.1.tar.gz

4. Change to the new directory and read the file named README for detailed
installation instructions.

Installing KDE 2 from the CD
To install the KDE2 from the CD to your hard drive, follow these steps:

1. Create a new directory to hold the KDE installation. For example, it could be
/usr/local/kde2, /opt/kde2, /usr/local/kde, or another location if you
prefer.

2. In the new directory, enter this sequence of commands to create the qt direc-
tory and compile the qt libraries:

tar xvzf /mnt/cdrom/kde/qt-x11-2.2.1.tar
cd qt-2.2.1
exort QTDIR=$PWD
./configure -sm -gif -system-jpeg -no-opengl
make

3. Set the KDEDIR environment variable to the installation directory you created
in step 1 with a command like this:

export KDEDIR=/opt/kde2

4. Compile the kdesupport package with these commands:

cp /mnt/cdrom/kde/kdesupport-2.0.tar.bz2 .
bunzip2 kdesupport-2.0.tar.bz2

4682-1 appA.f.qc  11/13/00  14:16  Page 593



594 Appendixes

tar xvf kdsupport-2.0.tar
cd kdesupport-2.0
./configure
make all
make install

5. In the same way, compile the kdelibs package with these commands:

cp /mnt/cdrom/kde/kdelibs-2.0.tar.bz2 .
bunzip2 kdelibs-2.0.tar.bz2
tar xvf kdlibs-2.0.tar
cd kdelibs-2.0
./configure
make all
make install

6. Finally, using the same sequence of commands as in the previous steps, com-
pile all the rest of the packages in the /mnt/cdrom/kde directory. These may
be compiled in any order. (Note: The packages named kde-i18n- are for
internationalization and do not need to be included.) The generalized form 
of the command sequence looks like the following:

cp /mnt/cdrom/kde/<package>.tar.bz2 .
bunzip2 <package>.tar.bz2
tar xvf <package>.tar
cd <package>
./configure
make all
make install

Installing the Adobe Acrobat 
Reader from the CD

Included in the Acrobat tar file is a file named INSTGUID.TXT, which contains
detailed information on the installation process. To get to this file, you will need 
to extract all of the files, which you can do with the following command:

tar xvzf linux-ar-405.tar.gz

This will create a subdirectory named ILINXR.install containing a set of 
installation files. Follow the instructions in the INSTGUID.TXT installation guide 
to install the reader.

To get versions of the Acrobat Reader for other flavors of UNIX, or to check for 
version upgrades, go to http://www.adobe.com/products/acrobat.

4682-1 appA.f.qc  11/13/00  14:16  Page 594



595Appendix A ✦ What’s on the CD-ROM?

What’s on the CD
The CD-ROM contains source code examples, applications, and an electronic ver-
sion of the book. Following is a summary of the contents of the CD-ROM, arranged
by category.

Source Code
Every program in any listing in the book is on the CD in the directory named 
examples. In the kde directory you will find the complete source of KDE and all of
its standard utilities and programs. The utilities directory contains the source
of some utilities that are necessary for compiling KDE and KDE applications.

Electronic version of KDE/Qt Programming Bible
The complete (and searchable) text of this book is on the CD-ROM in Adobe’s
Portable Document Format (PDF), readable with the Adobe Acrobat Reader (also
included). For more information on Adobe Acrobat Reader, go to www.adobe.com.

Troubleshooting
If you have difficulty installing or using the CD-ROM programs, try the following
solutions:

✦ Read the README and other text files. There is a lot of documentation that
comes with each of the parts of KDE, and with the utilities. You may have to
look through a few of them to find one that addresses your particular question.

✦ Visit the appropriate Web site for the latest information. Software is con-
stantly being updated and existing problems are being overcome. The Web
site not only contains the latest version of the software, it will also have the
latest version of the documentation. Also, there is usually a FAQ that is
updated whenever a new problem is discovered.

If you still have trouble with the CD, please call the IDG Books Worldwide Customer
Service phone number: (800) 762-2974. Outside the United States, call (317) 572-3993.
IDG Books will provide technical support only for installation and other general
quality control items; for technical support on the applications themselves, consult
the program’s vendor or author.

✦ ✦ ✦

4682-1 appA.f.qc  11/13/00  14:16  Page 595



4682-1 appA.f.qc  11/13/00  14:16  Page 596



Setting Up 
for Software
Development

You need to install a number of software components
before you can write a KDE/Qt application. If you have 

a relatively recent Linux CD, you certainly have a lot of what
you need — and you may have it all. 

This appendix can serve as a sort of checklist to make sure
you have everything you need. However, keep in mind that —
like everything else in the world of open source — things are
subject to change, including the names and URLs of items
listed here. Furthermore, a newer version of something may
operate differently and have slightly different requirements
than those outlined in this appendix.

Linux
If you do not have Linux, you probably will purchase a CD. A
commercial CD has the advantages of containing most of the
items you need, being easier to install than a downloaded ver-
sion, and providing telephone support to get you started.

If, however, you want to get a copy of Linux over the Internet,
be careful which version you choose. Mainly, you don’t want
to get an experimental version. A Linux version number indi-
cates whether it is a stable or developmental version. Unless
you are working on the Linux kernel itself, use a stable ver-
sion. If the second digit following the version number is even
(2.0, 2.2, and so on), it is a stable version. There may be a
third number in the version number (like 2.2.8) that indicates
bug fixes. To get the latest version of the kernel, get the high-
est even-numbered version.

BBA P P E N D I X

✦ ✦ ✦ ✦

4682-1 appB.f.qc  11/13/00  14:16  Page 597



598 Appendixes

Table B-1 lists some of the more popular Linux distributions. Any one of them can
run KDE successfully and can be used as a KDE development platform. This list is
certainly not complete — there are a number of other excellent distributors of
Linux, with more appearing every day.

Table B-1
Some of the More Common Linux Distributions

Distribution URL

Caldera http://www.caldera.com

Corel http://linux.corel.com

Debian http://www.debian.org/

LinuxPro http://www.wgs.com

Mandrake http://www.mandrake.com

Red Hat http://www.redhat.com

Slackware http://www.slackware.com

StormLinux http://stormlinux.com

SuSE http://www.suse.com

TurboLinux http://www.turbolinux.com

gcc (egcs)
This is the C compiler that you need to compile your programs. In April 1999,
because of future plans, the Free Software Foundation appointed the egcs Steering
Committee to maintain gcc. At that time, the name was changed from gcc to egcs.
However, the executable of the program is still named gcc because it has to work
with all of the existing make files.

There certainly will be a version of the gcc compiler included in your Linux distri-
bution. But new features are added from time to time, so you need to make sure you
have a version that is as current as your KDE software. You can get the latest ver-
sion from a number of locations on the Internet. Following is the home page of the
compiler:

http://www.gnu.ai.mit.edu/software/gcc/gcc.html

4682-1 appB.f.qc  11/13/00  14:16  Page 598



599Appendix B ✦ Setting Up for Software Development

XFree86
This is the low-level windowing software used by Qt. All Linux distributions include
this software, and install it during normal installation. This is very stable software,
but there are occasional releases (as of this writing, the latest version is X11R6.4). If
you find that you need to get a new version (or need to find out more information
about it), the XFree86 home page is as follows:

http://www.xfree86.org

autoconf and automake
If you compile the GNOME distribution source code, you need these utility pro-
grams. These utilities are used to automatically create the make files and then 
compile the programs. If you have some difficulty with the compilation process,
you should make sure you have the latest versions. If they are not available in 
your Linux distribution, you can download them from the following:

ftp://ftp.gnu.org/pub/gnu/automake/
ftp://ftp.gnu.org/pub/gnu/autoconf/

You can use these utility programs to compile your own programs. In fact, if you
intend to write a large application, it is a good idea.

KDE and Qt
Conveniently, whenever you get a copy of KDE, a matching version of Qt comes
with it. Because both KDE and Qt are constantly changing, it is important to use 
the version of Qt that is supplied along with KDE to guarantee compatibility.

To locate a place to download the software, go to the following Web site:

http://www.kde.org/mirrors.html

This site provides a list of mirror sites that maintain versions of the software. Some of
them only provide the stable (released) versions, while others will also provide the
unstable (developmental) versions. You need to decide whether you would prefer to
use a released version of KDE, or if you would like to go for the latest developmental
version. Deciding which to choose really depends on what you are trying to do.

If you choose to go with a stable version, you will need to choose one of the mirror
sites, follow the instructions in the README files, and choose the directories that
are right for your version of Linux. Quite a few different packaging options are 
available for KDE. There are RPM files for Red Hat, DEB files for Debian, and tar 

4682-1 appB.f.qc  11/13/00  14:16  Page 599



600 Appendixes

files for general installation. Just find the one that matches your system and follow
the instructions.

Obtaining and Installing the Latest Version
If you want to get the latest version of the software and keep it updated, you can
download all of the source code in such a way that you can continuously download
upgrades that only include the things that have changed since the last time you
downloaded. Once you have implemented the procedure described in this appendix,
the process of updating your version of the source is automatic and simple.

CVS Software
CVS (Concurrent Version System) is a source code control system that keeps track
of changes to the source files of programs. All of KDE and Qt are managed by CVS.

You need to have the utility named cvs installed on your system. It is probably
already there, or on your CD, but if not, you can get a copy of it from the following:

http://www.cvshome.org/

If you are going to be doing software development, the CVS software is worth getting
to know. This is especially true if more than one person is going to be modifying the
software because CVS can be used to check source code modules in and out, pre-
venting problems caused by having multiple versions of the same source code.

Creating a CVS Configuration File
Before you run CVS, a couple of things need to be preset. In your home directory,
create a text file named .cvsrc with the following content:

cvs -z4 -q
diff -u3 -p
update -dP
checkout -P

Make sure you get the cases right for the letter p on the option settings. On the diff
line it is lowercase, and on both the update and checkout lines, it is uppercase.

Setting the CVSROOT Environment Variable
You need to set an environment variable that tells CVS where to find the source on
the remote site. Enter the following:

export CVSROOT=:pserver:anonymous@anoncvs.kde.org:/home/kde

4682-1 appB.f.qc  11/13/00  14:16  Page 600



601Appendix B ✦ Setting Up for Software Development

Logging in to the Remote CVS Server
Create the directory that you want to be the parent directory of your source tree.
Each portion of KDE that you check out will create a subdirectory, so change to the
new directory and enter the following command:

cvs login

You may be prompted for a password; if you are, just press Return or Enter. It
could take some time for the server to respond, so you may have to wait a couple
of minutes.

Downloading a Copy of the Source Files
You can choose which parts you download and which parts you don’t, but you
need to enter a separate command for each. The following list of commands (which
can be edited into a script and executed all at once) will download all of the source.
You may not want it all, so you can omit some of these commands.

cvs checkout kde-qt-addon
cvs checkout qt-copy
cvs checkout kdelibs
cvs checkout kde-i18n
cvs checkout kdeadmin
cvs checkout kdebase
cvs checkout kdegames
cvs checkout kdegraphics
cvs checkout kdemultimedia
cvs checkout kdenetwork
cvs checkout kdesdk
cvs checkout kdesupport
cvs checkout kdetoys
cvs checkout kdeutils
cvs checkout kdevelop
cvs checkout kdoc
cvs checkout kfte
cvs checkout klyx
cvs checkout kmusic
cvs checkout koffice
cvs checkout korganizer
cvs checkout ksite
cvs checkout kdepim

Keeping Up with Changes
You can grab a new copy of the source code whenever you want by downloading
only the source that has changed since your last download. You do everything the

4682-1 appB.f.qc  11/13/00  14:16  Page 601



602 Appendixes

same as you did for the original download, except use update instead of checkout
on the cvs command line. For example, to download the latest version of the 
qt-copy directory, enter the following command:

cvs update qt-copy

If you want to stay updated with the latest versions of everything, use the same
script you used with checkout, but change all the commands to update instead.
You can run the script again and again to stay current.

Compiling the Code
Each of the directories of source code will need to be compiled separately. The first
one to compile is the qt-copy directory, because almost all of the other directories
depend on it being there. Change to the qt-copy directory and enter the following
four commands:

make -f Makefile.cvs
./configure -sm -gif -system-libpng -system-jpeg
make
make install

Then, in each of the other directories, use these four commands:

make -f Makefile.cvs
./configure
make
make install

There are some interdependencies among the libraries produced by the different
directories. Some directories have to be compiled before others will compile suc-
cessfully. Once you have qt-copy compiled, the next ones should be kde-qt-
addon, kdebase, and kdelibs.

You may find that you have to switch back and forth among the directories before
you get a clean compile on all of them. The first two of the four commands only
need to be entered once. If you have to restart a directory, start with the third 
command.

✦ ✦ ✦

4682-1 appB.f.qc  11/13/00  14:16  Page 602



Methods

This appendix contains an alphabetical list of all the pub-
lic methods in all the KDE and Qt widgets. Because slots

are actually methods that can be called directly, they are also
included. Signals, on the other hand, are not callable, so they
are not in the list.

You can use this list to determine whether a certain method is
available somewhere in the heritage of a widget you are using.
It often happens that you can remember the name of a method
(or the approximate name of a method) but can’t recall exactly
where it is located. If you come across some code that is using
an otherwise unknown method, you can use this list as a refer-
ence to determine where the code is located in the heritage.
Also, if the same method appears in more than one class in the
inheritance of a widget, you can determine (by looking in this
list and examining the order of inheritance) which method is
actually being called.

The list contains some of the nonwidget classes, but only the
ones that are used as a base class for at least one widget.
Private and protected methods are not included.

KDE/Qt Public Methods
abort()  QPrinter
aborted()  QPrinter
about()  QMessageBox KPanelApplet
aboutApplication()  KHelpMenu
aboutData()  KInstance
aboutKDE()  KHelpMenu
aboutQt()  QMessageBox
accel()  KAction QButton QMenuData
accelCount()  KWCommand
accelString()  KWCommand
accept()  QWheelEvent QKeyEvent QCloseEvent 

QDropEvent
QDragMoveEvent

acceptAction()  QDropEvent
acceptDrop()  QIconViewItem
acceptDrops()  QWidget
acceptSlave()  KLauncher

CCA P P E N D I X

✦ ✦ ✦ ✦

4682-1 appC.f.qc  11/20/00  15:39  Page 603



604 Appendixes

accum()  QGLFormat
ackRead()  KProcIO
action()  QDropEvent KActionCollection KXMLGUIClient
actionButton()  KDialogBase
actionCollection()  KXMLGUIClient KEditToolbarWidget

KDirOperator
actions()  KActionCollection KPanelApplet
activate()  QLayout KAction KDockManager KDockSplitter
activateDir()  KFileViewSignaler
activateDock()  KDockMainWindow
activateFile()  KFileViewSignaler
activateHelp()  KSpellConfig
activateMenu()  KFileViewSignaler
active()  QCanvasItem
activeModalWidget()  QApplication
activePageIndex()  KDialogBase
activePopupWidget()  QApplication
activeTabLine()  KThemeBase
activeTextColor()  KApplication
activeTitleColor()  KApplication
activeWindow()  QApplication QWorkspace
add()  QToolTip QWhatsThis QLayout KFileBookmarkManager

KabAPI
addAccel()  KWCommand
addAnimation()  QCanvas
addBottomMenuBar()  KTMLayout
addBottomToolBar()  KTMLayout
addButton()  KToolBarRadioGroup QPrintDialog KButtonBox
addChild()  QScrollView
addCmdLineOptions()  KApplication KUniqueApplication
addColSpacing()  QGridLayout
addColumn()  QListView
addCommand()  KWCommandGroup
addConnection()  KToolBar
addContainer()  KAboutDialog KAboutContainerBase
addContainerPage()  KAboutDialog KAboutContainerBase
addContributor()  KAboutDialog KAboutWidget
addCookies()  KCookieServer
addDefaultURL()  KURLComboBox
addDesktopGroup()  KApplicationTree
addDir()  KDirWatch
addEmptyPage()  KAboutContainerBase
addFactory()  KSycoca
addFlatBar()  KTMLayout
addGridPage()  KDialogBase
addGroup()  KWCommandDispatcher
addHBoxPage()  KDialogBase
addHotSpot()  KToolBoxManager
addImage()  KAboutContainer
addIndicatorWidget()  KTMLayout
addItem()  QLayout QGridLayout QBoxLayout KTMLayout QCanvas

KCompletion
addItemList()  KFileView
addItemToChunk()  QCanvas

4682-1 appC.f.qc  11/20/00  15:39  Page 604



605Appendix C ✦ Methods

addItemToChunkContaining()  QCanvas
addKipcEventMask()  KApplication
addLabel()  QHeader
addLayout()  QGridLayout QBoxLayout
addLeftToolBar()  KTMLayout
addLine()  KPasswordDialog QRangeControl
addMainItem()  KTMLayout
addMultiCell()  QGridLayout
addMultiCellWidget()  QGridLayout
addOperation()  QNetworkProtocol
addPage()  KPropertiesDialog QWizard KDialogBase KAboutDialog

QRangeControl
addPath()  QUrl
addPerson()  KAboutContainer
addPersonal()  KSpell
addressbook()  KabAPI
addRightToolBar()  KTMLayout
addRowSpacing()  QGridLayout
addSeparator()  QToolBar
addSpace()  QGroupBox
addSpacing()  QBoxLayout
addStatusBar()  KTMLayout
addStep()  QSlider
addStretch()  QBoxLayout KButtonBox
addStrut()  QBoxLayout
addTab()  QTabDialog QTabBar QTabWidget KTabCtl
addTextPage()  KAboutDialog KAboutContainerBase
addTitle()  KAboutContainer
addToCustomColors()  KPaletteTable
addToolBar()  KTMainWindow QMainWindow
addTopMenuBar()  KTMLayout
addTopToolBar()  KTMLayout
addToRecentColors()  KPaletteTable
addURL()  KRecentFilesAction
addVBoxPage()  KDialogBase
addView()  QCanvas
addWidget()  KAboutContainer QGridLayout QBoxLayout

QStatusBar QWidgetStack
adjust()  KAboutDialog KAboutWidget
adjustSize()  QWidget QMessageBox KDialogBase
advance()  QCanvasItem QCanvas KProgress
advice()  KCookieWin
alignItemRight()  KToolBar
alignment()  QStyleSheetItem QLayoutItem QLineEdit QGroupBox

QLabel QMultiLineEdit
allColumnsShowFocus()  QListView
allDefault()  KKeyChooser
allItems()  QCanvas
allMatches()  KCompletion
allocateJavaServer()  KJavaAppletServer
allocCell()  QPixmap
allowedInContext()  QStyleSheetItem
allowsErrorInteraction()  QSessionManager
allowsInteraction()  QSessionManager

4682-1 appC.f.qc  11/20/00  15:39  Page 605



606 Appendixes

allWidgets()  QApplication
alpha()  QGLFormat
angleLength()  QCanvasEllipse
angleStart()  QCanvasEllipse
animateClick()  QButton
animated()  QCanvasItem
animatedWidget()  KToolBar
answerRect()  QDragMoveEvent
append()  QIconDrag QTextView QMultiLineEdit
appHelpActivated()  KHelpMenu KTMainWindow
appletClass()  KJavaApplet KJavaAppletWidget
appletId()  KJavaApplet
appletName()  KJavaApplet KJavaAppletWidget
applyChanges()  KPropsPage KFilePropsPage

KFilePermissionsPropsPage KExecPropsPage
KURLPropsPage KApplicationPropsPage KBindingPropsPage
KDevicePropsPage

applyConfigFile()  KThemeBase
appropriate()  QWizard
areaPoints()  QCanvasPolygonalItem QCanvasRectangle

QCanvasPolygon QCanvasEllipse
areaPointsAdvanced()  QCanvasPolygonalItem
arg()  QNetworkOperation QNPInstance
argc()  QApplication KApplication QNPInstance
argn()  QNPInstance
args()  KProcess
argv()  QApplication QNPInstance
arrangeItemsInGrid()  QIconView
arrangement()  QIconView
arrowType()  KThemeBase
ascii()  QKeyEvent
atBeginning()  QMultiLineEdit
atEnd()  QMultiLineEdit
autoAdd()  QLayout
autoArrange()  QIconView
autoBottomScrollBar()  QListBox
autoClose()  QProgressDialog
autoCompletion()  QComboBox KComboBox
autoDefault()  QPushButton
autoDelete()  QNetworkProtocol KRun
autoMask()  QWidget
autoRaise()  QToolButton
autoRepeat()  QButton
autoReset()  QProgressDialog
autoResize()  QButton QComboBox QLabel
autoScroll()  QListBox
autoScrollBar()  QListBox
autoUpdate()  KFileReader QListBox QMultiLineEdit
back()  KDirOperator
backButton()  QWizard
background()  KDualColorButton
backgroundColor()  QWidget QPainter QCanvas
backgroundMode()  QWidget QPainter
backgroundOrigin()  QWidget

4682-1 appC.f.qc  11/20/00  15:39  Page 606



607Appendix C ✦ Methods

backgroundPixmap()  QWidget QCanvas
backspace()  QLineEdit
backward()  QTextBrowser
barColor()  KProgress
barPixmap()  KProgress
barPos()  KToolBar
barStyle()  KProgress
base()  KIntValidator
baseSize()  QWidget
baseURL()  KJavaApplet KFileDialog KJavaAppletWidget
beep()  QApplication
begin()  QPainter
bevelContrast()  KThemeBase
blockSignals()  QObject
border()  KThemePixmap
borderPixmap()  KThemeBase
borderWidth()  KThemeBase
bottom()  QIntValidator QDoubleValidator KIntValidator

KFloatValidator KWriteView
bottom_end()  KWriteView
bottomOfView()  KWriteView
bottomScrollBar()  QListBox
bound()  QRangeControl
boundingRect()  QPainter QCanvasItem QCanvasSprite

QCanvasPolygonalItem QCanvasText
boundingRectAdvanced()  QCanvasItem
brush()  QPainter QCanvasPolygonalItem
brushOrigin()  QPainter
buddy()  QLabel
build()  Kded
builderInstance()  KXMLGUIBuilder
button()  QMouseEvent KURLRequester
buttonRect()  QPlatinumStyle KDEStyle KThemeStyle KStepStyle
buttons()  KCModule
buttonSymbols()  QSpinBox
buttonText()  QMessageBox
buttonXShift()  KThemeBase
buttonYShift()  KThemeBase
calculateSize()  KDialogBase
canBeRestored()  KTMainWindow
cancel()  QSessionManager QProgressDialog
cancelButton()  QWizard
canDecode()  QUriDrag QColorDrag KColorDrag QTextDrag

QImageDrag QIconDrag
canDisplay()  KPropertiesDialog
canvas()  QCanvasItem QCanvasView
capStyle()  QPen
caption()  QWidget KApplication
cascade()  QWorkspace
case_sensitive()  KEdFind KEdReplace
cdUp()  QUrlOperator QUrl KDirOperator
cellAt()  QHeader
cellBrush()  QWellArray
cellContent()  QWellArray

4682-1 appC.f.qc  11/20/00  15:39  Page 607



608 Appendixes

cellGeometry()  QGridLayout
cellHeight()  QListBox
cellPos()  QHeader
cellSize()  QHeader
cellWidth()  QListBox
center()  QScrollView
centerCurrentItem()  QListBox
centerIndicator()  QProgressBar
centralWidget()  QMainWindow
changeComboItem()  KToolBar
changeHideShowState()  KDockWidget
changeInterval()  QTimer
changeItem()  KSelectAction QComboBox KStatusBar QMenuData

QListBox
changeMenuAccel()  KAccel
changeSize()  QSpacerItem
changeTab()  QTabDialog QTabWidget
changeTitle()  KPopupMenu
charsets()  KInstance
check()  KSpell
checkAvailable()  KRootPixmap
checkColorTable()  KPixmap
checkCookies()  KCookieServer
checkFileChanged()  QConfigDB
checkList()  KSpell
CheckLockFile()  QConfigDB
checkOverflow()  QLCDNumber
checkRecoverFile()  KApplication
checkWord()  KSpell
child()  QObject QChildEvent
childClients()  KXMLGUIClient
childCount()  QListViewItem QListView
childIsVisible()  QScrollView
children()  QObject
childrenRect()  QWidget
childrenRegion()  QWidget
childX()  QScrollView
childY()  QScrollView
chr()  KCharSelect KCharSelectTable
chunkSize()  QCanvas
className()  QObject
classNameOfToplevel()  KTMainWindow
CleanLockFiles()  QConfigDB
cleanText()  QSpinBox
cleanup()  QPainter KDialogBaseTile
cleanUp()  KSpell
cleanWhiteSpace()  KEdit
clear()  QAccel KAccel QClipboard QTranslator KCompletion

KGlobalAccel KSelectAction KPanelMenu QComboBox
QLineEdit KAccelInput QStatusBar QToolBar QConfigDB
QLabel QMenuData QIconView KFileView KCombiView
KFilePreview QListView QListBox QMultiLineEdit
KToolBar

clearArguments()  KProcess

4682-1 appC.f.qc  11/20/00  15:39  Page 608



609Appendix C ✦ Methods

clearCombo()  KToolBar
clearEdit()  QComboBox
clearFocus()  QWidget
clearItem()  KAccel
clearMask()  QWidget
clearOperationQueue()  QNetworkProtocol
clearSelection()  QIconView KFileIconView KFileView

KCombiView KFilePreview KFileDetailView QListView
QListBox

clearURLList()  KRecentFilesAction
clearValidator()  QComboBox QLineEdit
clearView()  KFileIconView KFileView KCombiView KFilePreview

KFileDetailView
client()  QIOWatch QTimeWatch KSpellConfig
clientBuilder()  KXMLGUIClient
clipboard()  QApplication
clipper()  QScrollView
clipRegion()  QPainter
close()  QWidget KDirOperator QPopupFrame
close_xim()  QApplication
closeAllWindows()  QApplication
closeStderr()  KProcess
closeStdin()  KProcess
closeStdout()  KProcess
closingDown()  QApplication
codeBase()  KJavaApplet KJavaAppletWidget
collidesWith()  QCanvasItem QCanvasSprite

QCanvasPolygonalItem QCanvasRectangle QCanvasEllipse
QCanvasText

collisions()  QCanvasItem QCanvas
color()  QBrush QPen QStyleSheetItem QCanvasText KColorDialog

KColorButton KLed KColorCells
colorGroup()  QWidget KThemeBase
colorMode()  QPrinter QApplication KTextPrintDialog
colorSpec()  QApplication
colspan()  QTextTableCell
colStretch()  QGridLayout
column()  QTextTableCell
columnAlignment()  QListView
columnMode()  QListBox
columns()  QGroupBox QListView
columnText()  QListView
columnWidth()  QListView
columnWidthMode()  QListView
comboButtonFocusRect()  QCommonStyle QMotifStyle

QWindowsStyle QPlatinumStyle KDEStyle KStepStyle
comboButtonRect()  QCommonStyle QMotifStyle QWindowsStyle

QPlatinumStyle KDEStyle KStepStyle
comboWidth()  KSelectAction
commitData()  QApplication KApplication
compare()  QIconViewItem
completionMode()  KCompletion KCompletionBase
completionObject()  KCompletionBase KDirOperator
component()  KAction

4682-1 appC.f.qc  11/20/00  15:39  Page 609



610 Appendixes

computePosition()  KEdit
config()  KInstance
configGlobal()  KAccel
configGroup()  KAccel KGlobalAccel
configModule()  KURIFilterPlugin
configName()  KURIFilterPlugin
configurable()  KAccel
configureKeys()  KKeyDialog
connect()  QObject
connectHighlight()  KActionCollection
connectItem()  QAccel KAccel KGlobalAccel QMenuData
connectToFormula()  KFormulaToolBar
constPolish()  QWidget
container()  KAction
containerCount()  KAction
containerStates()  KXMLGUIClient
containerTags()  KXMLGUIBuilder
contains()  QIconViewItem QTranslator KDirWatch
contentsHeight()  QScrollView
contentsRect()  QFrame KSelector KXYSelector
contentsToViewport()  QScrollView
contentsWidth()  QScrollView
contentsX()  KWriteView QScrollView
contentsY()  KWriteView QScrollView
context()  QGLWidget QTextView
contextHelpActivated()  KHelpMenu
contextId()  KJavaAppletContext
contextMenuEnabled()  KToolBar
contexts()  QStyleSheetItem
contrast()  KApplication
convertFromImage()  QPixmap KPixmap
convertFromPlainText()  QStyleSheet
convertToImage()  QPixmap
cookiesPending()  KCookieServer
copy()  QUrlOperator QLineEdit QTextView QMultiLineEdit
copyText()  QMultiLineEdit
cornerWidget()  QScrollView
corrected()  KEdit
count()  QKeyEvent QAccel KAccel KGlobalAccel

KActionCollection KFileReader QComboBox QHeader
QButtonGroup QMenuData QIconView KFileView QListBox
KToolBar

create()  KLibFactory KJavaApplet KJavaAppletContext
QGLContext KJavaAppletWidget

create_xim()  QApplication
createApplet()  KJavaAppletServer
createContainer()  KXMLGUIBuilder
createContext()  KJavaAppletServer
createCustomElement()  KXMLGUIBuilder
createDockWidget()  KDockMainWindow
createGUI()  KTMainWindow
createHeuristicMask()  QPixmap
createSection()  QConfigDB
creator()  QPrinter

4682-1 appC.f.qc  11/20/00  15:39  Page 610



611Appendix C ✦ Methods

critical()  QMessageBox
ctime()  KDirWatch
current()  QListBoxItem KDualColorButton
currentColor()  KDualColorButton
currentColumn()  KEdit
currentContents()  KFileReader
currentContext()  QGLContext
currentDesktop()  KWinModule
currentDir()  KPropertiesDialog
currentFilter()  KFileDialog KFileFilter
currentItem()  KSelectAction KListAction QComboBox QIconView

QListView QListBox
currentKey()  KAccel KGlobalAccel
currentLine()  KEdit
currentPage()  QTabDialog QWizard QTabWidget
currentTab()  QTabBar KDockTabBar
currentText()  KSelectAction KListAction QComboBox QListBox
cursor()  QWidget
cursorAtEnd()  KLineEdit
cursorDown()  KWriteView
cursorFlashTime()  QApplication
cursorLeft()  QLineEdit KWriteView
cursorPageDown()  KWriteView
cursorPageUp()  KWriteView
cursorPosition()  KComboBox QLineEdit QMultiLineEdit
cursorRight()  QLineEdit KWriteView
cursorUp()  KWriteView
cursorWordBackward()  QLineEdit QMultiLineEdit
cursorWordForward()  QLineEdit QMultiLineEdit
customColor()  QColorDialog
customCount()  QColorDialog
customTags()  KXMLGUIBuilder
customWhatsThis()  QWidget QMenuBar QPopupMenu
cut()  QLineEdit QMultiLineEdit
data()  QDropEvent QCustomEvent QPicture QClipboard
date()  KDateValidator
dcopClient()  KApplication KUniqueApplication
deactivate()  KDockSplitter
decimals()  QDoubleValidator
decode()  QUriDrag QColorDrag KColorDrag QTextDrag QImageDrag

QUrl
decodeLocalFiles()  QUriDrag
decodeToUnicodeUris()  QUriDrag
decoWidth()  KThemeBase
defaultBorder()  QLayout
defaultCodec()  QApplication
defaultDepth()  QPixmap
defaultFormat()  QGLFormat
defaultFrameWidth()  QCommonStyle QCDEStyle KDEStyle

KThemeStyle
defaultKey()  KAccel KGlobalAccel
defaultName()  KPropertiesDialog
defaultOptimization()  QPixmap
defaultOverlayFormat()  QGLFormat

4682-1 appC.f.qc  11/20/00  15:39  Page 611



612 Appendixes

defaults()  KCModule
defaultSheet()  QStyleSheet
defaultTabStop()  QMultiLineEdit
definesFontItalic()  QStyleSheetItem
definesFontUnderline()  QStyleSheetItem
del()  QLineEdit
delay()  QToolTipGroup
delayedDestruct()  KDialogBase
deleteEntry()  KSimpleConfig
deleteGroup()  KSimpleConfig
delta()  QWheelEvent
depth()  QPixmap QListViewItem QGLFormat
description()  KAccel
deselect()  QLineEdit QMultiLineEdit
desktop()  QApplication
desktopSettingsAware()  QApplication
destroy()  KJavaAppletContext
destroyApplet()  KJavaAppletServer
destroyContext()  KJavaAppletServer
detach()  QPixmap
determineRelativePath()  KSycoca
device()  QPainter QGLContext
devType()  QPaintDevice
dialog()  KPropertiesDialog
dictFromList()  KSpellConfig
dictionary()  KSpellConfig
dir()  KURLCompletion QFileDialog
dirCompletionObject()  KDirOperator
dirCount()  KFileReader
direction()  QBoxLayout KDirectionButton
directRendering()  QGLFormat
dirOnlyMode()  KDirLister
dirPath()  QUrl QFileDialog
dirs()  KInstance
disableCoreDumps()  KPasswordDialog
disableResize()  KDialogBase
disableSessionManagement()  KApplication
disableSignals()  KCompletionBase
disableSounds()  KCompletion
discardCommand()  QSessionManager
disconnect()  QObject
disconnectHighlight()  KActionCollection
disconnectItem()  QAccel KAccel KGlobalAccel QMenuData
display()  QLCDNumber
displayMode()  QStyleSheetItem
displayText()  QLineEdit
dlgResult()  KSpell
dndEnabled()  KHTMLView
do_mouse_down()  QApplication
dockBack()  KDockWidget
dockHideShowMenu()  KDockManager KDockMainWindow
dockManager()  KDockWidget
dockSite()  KDockWidget
dockWidget()  KDockWidgetAbstractHeaderDrag

4682-1 appC.f.qc  11/20/00  15:39  Page 612



613Appendix C ✦ Methods

dockWindows()  KWinModule
docName()  QPrinter
document()  KXMLGUIClient
documentTitle()  QTextView
doCursorCommand()  KWriteView
doEditCommand()  KWriteView
doGotoLine()  KEdit
doMove()  KToolBoxManager
doResize()  KToolBoxManager
doubleBuffer()  QGLWidget QGLFormat
doubleClickInterval()  QApplication
doXResize()  KToolBoxManager
doYResize()  KToolBoxManager
drag()  QDragObject
dragAccepted()  QDragResponseEvent
dragAutoScroll()  QScrollView
dragCopy()  QDragObject
dragEnabled()  QIconViewItem
draggingSlider()  QScrollBar
dragMove()  QDragObject
dragSelect()  QListBox
draw()  QCanvasItem QTextTableCell
drawArc()  QPainter
drawArea()  QCanvas
drawArrow()  QMotifStyle QCDEStyle QWindowsStyle KDEStyle

KThemeStyle KStepStyle
drawBaseButton()  KThemeStyle
drawBaseMask()  KThemeStyle
drawBevelButton()  QMotifStyle QWindowsStyle QPlatinumStyle

KDEStyle KThemeStyle KStepStyle
drawButton()  QMotifStyle QWindowsStyle QPlatinumStyle

KDEStyle KThemeStyle KStepStyle
drawButtonMask()  KDEStyle KThemeStyle
drawCheckMark()  QMotifStyle QWindowsStyle QPlatinumStyle

KThemeStyle
drawChord()  QPainter
drawComboButton()  QCommonStyle QMotifStyle QWindowsStyle

QPlatinumStyle KDEStyle KThemeStyle KStepStyle
drawComboButtonMask()  QCommonStyle KDEStyle KThemeStyle
drawEllipse()  QPainter
drawExclusiveIndicator()  QMotifStyle QCDEStyle QWindowsStyle

QPlatinumStyle KDEStyle KThemeStyle KStepStyle
drawExclusiveIndicatorMask()  QMotifStyle QWindowsStyle

KDEStyle KThemeStyle KStepStyle
drawFocusRect()  QMotifStyle QWindowsStyle KDEStyle

KThemeStyle KStepStyle
drawImage()  QPainter
drawIndicator()  QMotifStyle QCDEStyle QWindowsStyle

QPlatinumStyle KDEStyle KThemeStyle KStepStyle
drawIndicatorMask()  QPlatinumStyle KDEStyle KThemeStyle

KStepStyle
drawKBarHandle()  KStyle KDEStyle KThemeStyle KStepStyle
drawKickerAppletHandle()  KStyle KDEStyle
drawKickerHandle()  KStyle

4682-1 appC.f.qc  11/20/00  15:39  Page 613



614 Appendixes

drawKickerTaskButton()  KStyle
drawKMenuBar()  KStyle KDEStyle KThemeStyle KStepStyle
drawKMenuItem()  KStyle KDEStyle KThemeStyle KStepStyle
drawKProgressBlock()  KStyle KDEStyle KThemeStyle KStepStyle
drawKToolBar()  KStyle KDEStyle KThemeStyle KStepStyle
drawKToolBarButton()  KStyle KDEStyle KThemeStyle KStepStyle
drawLine()  QPainter
drawLineSegments()  QPainter
drawPalette()  KValueSelector
drawPanel()  QWindowsStyle KDEStyle
drawPicture()  QPainter
drawPie()  QPainter
drawPixmap()  QPainter
drawPoint()  QPainter
drawPoints()  QPainter
drawPolygon()  QPainter
drawPolyline()  QPainter
drawPopupMenuItem()  QMotifStyle QWindowsStyle QPlatinumStyle

KDEStyle KThemeStyle KStepStyle
drawPopupPanel()  QWindowsStyle QPlatinumStyle
drawPushButton()  QMotifStyle QWindowsStyle QPlatinumStyle

KDEStyle KThemeStyle KStepStyle
drawPushButtonLabel()  QCommonStyle QPlatinumStyle KDEStyle

KThemeStyle KStepStyle
drawQuadBezier()  QPainter
drawRect()  QPainter
drawRoundRect()  QPainter
drawScrollBarControls()  QMotifStyle QWindowsStyle

QPlatinumStyle KDEStyle KThemeStyle KStepStyle
drawScrollBarGroove()  KThemeStyle
drawShade()  KThemeStyle
drawSlider()  QMotifStyle QWindowsStyle QPlatinumStyle

KDEStyle KThemeStyle KStepStyle
drawSliderGroove()  QMotifStyle QWindowsStyle QPlatinumStyle

KThemeStyle KStepStyle
drawSliderGrooveMask()  QCommonStyle
drawSliderMask()  QCommonStyle QWindowsStyle QPlatinumStyle

KDEStyle KThemeStyle
drawSplitter()  QMotifStyle QWindowsStyle KDEStyle

KThemeStyle
drawTab()  QCommonStyle QMotifStyle QWindowsStyle KThemeStyle
drawTabMask()  QCommonStyle QMotifStyle QWindowsStyle

KThemeStyle
drawText()  QWidget QPainter
drawTiledPixmap()  QPainter
drawWinFocusRect()  QPainter
dropEnabled()  QIconViewItem
dumpObjectInfo()  QObject
dumpObjectTree()  QObject
duplicatesEnabled()  QComboBox
echoMode()  QLineEdit QMultiLineEdit
edited()  QLineEdit QMultiLineEdit
embed()  QXEmbed

4682-1 appC.f.qc  11/20/00  15:39  Page 614



615Appendix C ✦ Methods

embedClientIntoWindow()  QXEmbed
embeddedWinId()  QXEmbed
emitAccelString()  KWCommand
emitSignals()  KCompletionBase
empty()  QConfigDB
enable()  KToolBar
enableButton()  KDialogBase
enableButtonApply()  KDialogBase
enableButtonCancel()  KDialogBase
enableButtonOK()  KDialogBase
enableButtonSeparator()  KDialogBase
enableClipper()  QScrollView
enableColumn()  KFontChooser
enabled()  QToolTip QCanvasItem QToolTipGroup
enableDocking()  KDockWidget
enableFloating()  KToolBar
enableFontCombo()  KCharSelect
enableLinkedHelp()  KDialogBase
enableMoving()  KToolBar
enableRead()  KSocket
enableReadSignals()  KProcIO
enableSignals()  KCompletionBase
enableSizeHintSignal()  KFormulaEdit
enableSounds()  KCompletion
enableStatusBar()  KTMainWindow
enableStyles()  KApplication
enableTableSpinBox()  KCharSelect
enableToolBar()  KTMainWindow
enableWrite()  KSocket
encode()  QUrl
encodedData()  QDropEvent QMimeSource QStoredDrag QTextDrag

QImageDrag QIconDrag
encodedPathAndQuery()  QUrl
encoding()  KSpellConfig
end()  QPainter QLineEdit KWriteView
endOffset()  KContainerLayout
ensureCurrentVisible()  QListBox
ensureItemVisible()  QIconView KFileIconView KFileView

KCombiView KFilePreview KFileDetailView QListView
ensureVisible()  QScrollView
enter_loop()  QApplication
enterInstance()  QNPWidget
enterWhatsThisMode()  QWhatsThis
entryMap()  KConfigBase KConfig
erase()  QWidget KPasswordEdit
erased()  QPaintEvent
eraseRect()  QPainter
error()  QStyleSheet
errorCode()  QNetworkOperation
event()  QObject KNotifyClient QToolBar KDockWidget

KDockSplitter
eventFilter()  QObject KDEStyle KStepStyle KDockManager

QFileDialog QWizard QComboBox QMainWindow QToolBar
KDockTabCtl KDockSplitter QXEmbed QMenuBar QIconView

4682-1 appC.f.qc  11/20/00  15:39  Page 615



616 Appendixes

QListView
exclusiveGroup()  KToggleAction
exclusiveIndicatorSize()  QMotifStyle QWindowsStyle

QPlatinumStyle KDEStyle KThemeStyle KStepStyle
exec()  QApplication QDialog KabAPI QPopupMenu QPopupFrame
exit()  QApplication
exit_loop()  QApplication
exitStatus()  KProcess
expand()  QGridLayout KContainerLayout
expanding()  QLayout QLayoutItem QSpacerItem QWidgetItem

QTextTableCell QGridLayout QBoxLayout
extraPopupMenuItemWidth()  QMotifStyle QWindowsStyle

QPlatinumStyle
factory()  KLibrary KLibLoader KXMLGUIClient
fgets()  KProcIO
fileDialog()  KURLRequester
fileInfo()  KFileIconViewItem KFileListViewItem
fileName()  QUrl
filename()  KDesktopFile
fileName()  KLibrary QConfigDB
fileReader()  KDirOperator
fill()  QPixmap KContainerLayout
fill0s()  KShred
fill1s()  KShred
fillbyte()  KShred
fillpattern()  KShred
fillrandom()  KShred
fillRect()  QPainter
filterURI()  KURIFilterPlugin
find()  QWidget QTranslator KDirLister QButtonGroup
findEntry()  KSycoca
findFactory()  KSycoca
findFirstVisibleItem()  QIconView
findItem()  QMenuData QIconView QListBox
findKey()  QAccel KAccel KGlobalAccel
findLastVisibleItem()  QIconView
findWidget()  QBoxLayout
findWidgetParentDock()  KDockManager
finishButton()  QWizard
firstChild()  QListViewItem QListView
firstItem()  QIconView KFileView QListBox
fixup()  QValidator KIntValidator KFloatValidator
flags()  KPanelApplet
flush()  QPainter
flushX()  QApplication
focusNextPrevChild()  QButton
focusOffset()  KThemeBase
focusPolicy()  QWidget
focusProxy()  QWidget
focusWidget()  QWidget QApplication
font()  QWidget QPainter QToolTip QCanvasText QApplication

KFontAction KFontDialog KFontChooser KCharSelect
fontFamily()  QStyleSheetItem
fontInfo()  QWidget QPainter

4682-1 appC.f.qc  11/20/00  15:39  Page 616



617Appendix C ✦ Methods

fontItalic()  QStyleSheetItem
fontMetrics()  QWidget QPainter QApplication
fontPropagation()  QWidget
fontSize()  QStyleSheetItem KFontSizeAction
fontUnderline()  QStyleSheetItem
fontWeight()  QStyleSheetItem
foreground()  KDualColorButton
foregroundColor()  QWidget
format()  QDropEvent QMimeSource QStoredDrag QTextDrag

QImageDrag QIconDrag KProgress QGLWidget QGLContext
forward()  KDirOperator QTextBrowser
foundMimeType()  KHTMLRun
fputs()  KProcIO
frame()  QCanvasSprite QLineEdit
frameCount()  QCanvasSprite
frameGeometry()  QWidget
frameRect()  QFrame
frameShadow()  QFrame
frameShape()  QFrame
frameSize()  QWidget
frameStyle()  QFrame
frameWidth()  QFrame KThemeBase KHTMLView
free()  QNetworkOperation
freeCell()  QPixmap
freeJavaServer()  KJavaAppletServer
freeze()  QLayout
fromPage()  QPrinter
fullPage()  QPrinter
fullSize()  KToolBar
fullSpan()  QCustomMenuItem
geometry()  QWidget QLayout QLayoutItem QSpacerItem

QWidgetItem QTextTableCell
get()  QUrlOperator KDialogBaseTile QConfigDB
get_direction()  KEdFind KEdReplace
getAnother()  KDockSplitter
getBackgroundTile()  KDialogBase
getBigMarkDistance()  KRuler
getBookmark()  KFileBookmarkManager
getBorderWidths()  KDialogBase
getButton()  KToolBar
getButtonShift()  QCommonStyle QWindowsStyle QPlatinumStyle

KThemeStyle
getColor()  QColorDialog KColorDialog
getCombo()  KToolBar
getComboItem()  KToolBar
getConfigState()  KConfigBase
getContentsRect()  KDialogBase
getCurrent()  KIconCanvas
getCursorPosition()  QMultiLineEdit
getDarkFactor()  KLed
getData()  KTextPrintConfig KWCommand KWCommandGroup

KWCommandDispatcher KTextPrintDialog
getDate()  KDateTable KDatePicker
getDefaultContext()  KJavaAppletContext

4682-1 appC.f.qc  11/20/00  15:39  Page 617



618 Appendixes

getDefaultFile()  KNotifyClient
getDefaultPresentation()  KNotifyClient
getDisplay()  KApplication
getDockWidgetFromName()  KDockManager
getDouble()  QInputDialog
getEmail()  KAboutContributor
getEndOffset()  KRuler
getEntries()  KabAPI
getEntry()  KabAPI
getEntryByName()  KabAPI
getExistingDirectory()  QFileDialog KFileDialog
getFile()  KNotifyClient
getFirst()  KDockSplitter
getFirstPage()  KDockTabCtl
getFont()  QFontDialog KFontDialog
getFontAndText()  KFontDialog
getFontList()  KFontChooser
getFormula()  KFormulaEdit
getId()  KSplitListItem KSplitList
getInteger()  QInputDialog
getItem()  QInputDialog
getJavaPeer()  QNPInstance
getKeyBinding()  KCompletionBase
getKeyCode1()  KAccelInput
getKeyCode2()  KAccelInput
getKickerBackground()  KStyle
getKProgressBackground()  KStyle KThemeStyle
getLast()  KDockSplitter
getLastPage()  KDockTabCtl
getLength()  KRuler
getLengthFix()  KRuler
getLined()  KToolBar
getLinedText()  KToolBar
getLineNumber()  KEdGotoLine
getLittleMarkDistance()  KRuler
getLocation()  QMainWindow
getMainDockWidget()  KDockMainWindow
getMainWidget()  KDialogBase
getMaxValue()  KRuler
getMediumMarkDistance()  KRuler
getMetricRulerStyle()  KRuler
getMinValue()  KRuler
getName()  KAboutContributor
getNetworkProtocol()  QNetworkProtocol
getNewPassword()  KPasswordDialog
getNextPage()  KDockTabCtl
getNumberOfWidgets()  KContainerLayout
getOffset()  KRuler
getOpenFileName()  QFileDialog KFileDialog
getOpenFileNames()  QFileDialog KFileDialog
getOpenURL()  KFileDialog
getOpenURLs()  KFileDialog
getPaintRulerStyle()  KRuler
getPassword()  KPasswordDialog

4682-1 appC.f.qc  11/20/00  15:39  Page 618



619Appendix C ✦ Methods

getPid()  KProcess
getPixelPerMark()  KRuler
getPresentation()  KNotifyClient
getPrevPage()  KDockTabCtl
getPrinterSetup()  QPrintDialog
getReplaceText()  KEdReplace
getResult()  KDateInternalMonthPicker
getRgba()  QColorDialog
getRoot()  KFileBookmarkManager
getSaveFileName()  QFileDialog KFileDialog
getSaveURL()  KFileDialog
getSBExtent()  KThemeBase
getSelected()  KColorCells
getShowBigMarks()  KRuler
getShowEndMarks()  KRuler
getShowLittleMarks()  KRuler
getShowMediumMarks()  KRuler
getShowPointer()  KRuler
getShowTinyMarks()  KRuler
getTabPos()  KDockTabCtl
getText()  QInputDialog KEdFind KEdReplace KLineEditDlg
getTickStyle()  KRuler
getTinyMarkDistance()  KRuler
getToolButtonID()  KAction
getURL()  QNPInstance KURLRequesterDlg KAboutContributor
getURLNotify()  QNPInstance
getValue()  KRuler
getWidget()  KDockWidget KToolBar
getWork()  KAboutContributor
getXLFD()  KFontChooser
getYear()  KDateInternalYearSelector
globalPos()  QMouseEvent QWheelEvent
globalX()  QMouseEvent QWheelEvent
globalY()  QMouseEvent QWheelEvent
gotFocus()  QFocusEvent
gotoNextLink()  KHTMLView
gotoPrevLink()  KHTMLView
grabColor()  KColorDialog
grabKey()  KGlobalAccel
grabKeyboard()  QWidget
grabMouse()  QWidget
grabWidget()  QPixmap
grabWindow()  QPixmap
gradientHint()  KThemeBase
gridX()  QIconView
gridY()  QIconView
group()  QToolTip KConfigBase KAction QButton
groupList()  KConfigBase KConfig
groups()  KActionCollection
guiFactory()  KTMainWindow
GUIStyle()  QStyle
handle()  QPainter QPaintDevice QSessionManager
handleSignals()  KCompletionBase
hasActionGroup()  KDesktopFile

4682-1 appC.f.qc  11/20/00  15:39  Page 619



620 Appendixes

hasApplicationType()  KDesktopFile
hasApplyButton()  QTabDialog
hasCancelButton()  QTabDialog
hasClipping()  QPainter
hasDefaultButton()  QTabDialog
hasDeviceType()  KDesktopFile
hasError()  KRun
hasFinished()  KRun
hasFocus()  QWidget
hasGlobalMouseTracking()  QApplication
hasGroup()  KConfigBase KConfig
hasHeightForWidth()  QLayoutItem QWidgetItem QTextTableCell

QGridLayout QBoxLayout
hasHelpButton()  QTabDialog
hasHost()  QUrl
hasIconSet()  KAction
hasKey()  KConfigBase KConfig
hasLinkType()  KDesktopFile
hasMarkedText()  QLineEdit
hasMenuBar()  KTMainWindow
hasMimeTypeType()  KDesktopFile
hasMouseTracking()  QWidget
hasMultipleMatches()  KCompletion
hasOkButton()  QTabDialog
hasOnlyLocalFileSystem()  QNetworkProtocol
hasOpenGL()  QGLFormat
hasOpenGLOverlays()  QGLFormat
hasOverlay()  QGLFormat
hasPassword()  QUrl
hasPath()  QUrl
hasRef()  QUrl
hasSelectedText()  QTextView
hasSelection()  KHTMLView
hasStatusBar()  KTMainWindow
hasToolBar()  KTMainWindow
hasUser()  QUrl
hasViewXForm()  QPainter
hasWId()  KWinModule
hasWorldXForm()  QPainter
haveBackgroundTile()  KDialogBase
hbm()  QPixmap
header()  QListView
height()  QWidget QPixmap QIconViewItem QListViewItem

QCanvasRectangle QCanvasEllipse QCanvas QListBoxItem
QListBoxText QListBoxPixmap KToolBoxManager

heightDlg()  KSpell
heightForWidth()  QWidget QLayoutItem QWidgetItem

QTextTableCell QGridLayout QBoxLayout KPanelApplet
QLabel QMenuBar QTextView KToolBar

help()  KPanelApplet
helpButton()  QWizard
helpClickedSlot()  KDialogBase
helpLinkText()  KDialogBase
helpMenu()  KTMainWindow

4682-1 appC.f.qc  11/20/00  15:39  Page 620



621Appendix C ✦ Methods

hide()  QWidget QToolTip QCanvasItem KSpell QDialog QToolBar
QMenuBar QPopupMenu

hideItem()  KToolBar
hideModeChanger()  KCompletionBase
highlightFile()  KFileViewSignaler
highlightingEnabled()  KActionCollection
highlightWidth()  KThemeBase
highPriority()  QObject
hMargin()  QMultiLineEdit
home()  QLineEdit KDirOperator KWriteView QTextBrowser
homogeneos()  KContainerLayout
horizontalPixmap()  KThemeCache
horizontalScrollBar()  QScrollView
host()  QUrl
hScrollBarMode()  QScrollView
icon()  QWidget KApplication QMessageBox KIconButton

KPopupTitle
iconify()  QWidget
iconLoader()  KInstance
iconName()  KAction
iconPixmap()  QMessageBox
iconProvider()  QFileDialog
iconSet()  KAction QPushButton QToolButton QHeader QMenuData
iconSize()  KFileIconView KToolBar
iconText()  QWidget KToolBar
iconView()  QIconViewItem
id()  KWCommand KDialogBaseButton KDockTabCtl QButtonGroup

QWidgetStack
idAt()  QMenuData QPopupMenu
idleTimeout()  KLauncher
ignore()  QWheelEvent QKeyEvent QCloseEvent QDropEvent

QDragMoveEvent KSpell
ignoreList()  KSpellConfig
ignoreWhatsThis()  QAccel
image()  QClipboard
imageFormat()  QPixmap
imageURL()  KAboutDialog
inactiveTabLine()  KThemeBase
inactiveTextColor()  KApplication
inactiveTitleColor()  KApplication
incInitialSize()  KDialogBase
indent()  KSelector QLabel
index()  QIconViewItem QIconView QListBox
indexOf()  QMenuData
indicator()  KTMainWindow
indicatorFollowsStyle()  QProgressBar
indicatorSize()  QMotifStyle QWindowsStyle QPlatinumStyle

KDEStyle KThemeStyle KStepStyle
info()  QUrlOperator
information()  QMessageBox
inherits()  QObject
init()  KabAPI KCModule KPanelApplet KSpellDlg
initialize()  QPainter QXEmbed
initSockaddr()  KSocket

4682-1 appC.f.qc  11/20/00  15:39  Page 621



622 Appendixes

insert()  QStyleSheet QTranslator KActionMenu
KActionCollection KContextMenuManager KThemeCache
QLineEdit QButtonGroup QMultiLineEdit

insertAnimatedWidget()  KToolBar
insertAt()  QMultiLineEdit
insertButton()  KToolBar
insertChar()  KFormulaEdit
insertChild()  QObject
insertChildClient()  KXMLGUIClient
insertCombo()  KToolBar
insertComboItem()  KToolBar
insertComboList()  KToolBar
inserted()  QChildEvent
insertFixedItem()  KStatusBar
insertionPolicy()  QComboBox
insertItem()  QListViewItem QAccel KAccel KGlobalAccel

KPanelMenu QComboBox KStatusBar QMenuData QIconView
KFileIconView KFileView KCombiView KFilePreview
KFileDetailView QListView QListBox

insertLayout()  QBoxLayout
insertLine()  QMultiLineEdit
insertLined()  KToolBar
insertLineSeparator()  KToolBar
insertMenu()  KPanelMenu
insertPage()  KDockTabCtl
insertSeparator()  QMenuData KToolBar
insertSorted()  KFileView KCombiView
insertSpacing()  QBoxLayout
insertStdItem()  KAccel
insertStretch()  QBoxLayout
insertStringList()  QComboBox QListBox
insertStrList()  QComboBox QListBox
insertTab()  QTabDialog QTabBar QTabWidget KDockTabBar
insertTearOffHandle()  QPopupMenu
insertText()  KEdit
insertTitle()  KPopupMenu
insertWidget()  QBoxLayout KToolBar
insItem()  KAccelMenu
inSort()  QListBox
installEventFilter()  QObject
installRBPopup()  KEdit
installTranslator()  QApplication
installX11EventFilter()  KApplication
instance()  KActionCollection KXMLGUIClient QNPWidget
instanceName()  KInstance
intermediateBuffer()  KSpell
intersects()  QIconViewItem
intValue()  QLCDNumber
invalidate()  QLayout QLayoutItem QGridLayout QBoxLayout
invalidateHeight()  QListViewItem KJanusWidget
invertSelection()  QIconView KFileView QListView QListBox
invokeBrowser()  KApplication
invokeHTMLHelp()  KApplication
invokeMailer()  KApplication

4682-1 appC.f.qc  11/20/00  15:39  Page 622



623Appendix C ✦ Methods

inWhatsThisMode()  QWhatsThis
ipv4_addr()  KSocket KServerSocket
is3DFocus()  KThemeBase
isA()  QObject
isAccepted()  QWheelEvent QKeyEvent QCloseEvent QDropEvent
isActionAccepted()  QDropEvent
isActive()  QPainter QTimer
isActiveWindow()  QWidget QXtWidget
isAnchor()  QStyleSheetItem
isAutoRepeat()  QKeyEvent
isAvailable()  KSharedPixmap
isBuilding()  KSycoca
isButtonOn()  KToolBar
isCheckable()  QPopupMenu
isChecked()  KToggleAction QCheckBox QRadioButton
isClickEnabled()  QHeader
isColor()  KThemeBase
isCompletionObjectAutoDeleted()  KCompletionBase
isContentsPreviewEnabled()  QFileDialog
isContextMenuEnabled()  KComboBox KLineEdit
isCreated()  KJavaApplet
isDefault()  QPushButton
isDefaultUp()  QMenuBar
isDesktop()  QWidget
isDesktopFile()  KDesktopFile KPropsPage
isDir()  QUrlOperator
isDirty()  KConfigBase KPropsPage
isDockBackPossible()  KDockWidget
isDockEnabled()  QMainWindow
isDockMenuEnabled()  QMainWindow
isDollarExpansion()  KConfigBase
isDown()  QButton
isEditable()  KSelectAction KComboBox
isEmpty()  QLayout QLayoutItem QSpacerItem QWidgetItem

QTextTableCell
isEnabled()  QWidget QAccel KAccel QSocketNotifier

KGlobalAccel KAction
isEnabledTo()  QWidget
isEnabledToTLW()  QWidget
isExclusive()  QButtonGroup
isExclusiveToggle()  QButton
isExecuteArea()  KListView
isExpandable()  QListViewItem
isExtDev()  QPaintDevice
isFocusEnabled()  QWidget
isFontComboEnabled()  KCharSelect
isGlobal()  KNotify
isHorizontalStretchable()  QToolBar
isInfoPreviewEnabled()  QFileDialog
isItemChecked()  QMenuData
isItemEnabled()  QAccel KAccel KGlobalAccel QMenuData
isLocalFile()  QUrl
IsLocked()  QConfigDB
isMenuButton()  QPushButton

4682-1 appC.f.qc  11/20/00  15:39  Page 623



624 Appendixes

isMinimized()  QWidget
isModal()  QWidget
isModeChangerVisible()  KCompletionBase
isModified()  KEdit
isMovingEnabled()  QHeader
isMultiCellPixmap()  QPixmap
isMultiSelection()  QListView QListBox
isNull()  QPixmap QPicture
isOK()  KJavaProcess
isOld()  KThemePixmap
isOn()  QCheckListItem QButton
isOpen()  QListViewItem QListView
isOverwriteMode()  QMultiLineEdit
isPageEnabled()  KDockTabCtl
isPhase2()  QSessionManager
isPixmap()  KThemeBase
isPlugged()  KAction
isPopup()  QWidget
isQBitmap()  QPixmap
isRadioButtonExclusive()  QButtonGroup
isReadable()  KFileReader
isReadOnly()  KConfigBase QLineEdit QMultiLineEdit
isRelativeUrl()  QUrl
isResizeEnabled()  QHeader
isRestored()  KApplication
isReversed()  KFileView
isRO()  QConfigDB
isRoot()  KFileReader KDirOperator
isRunning()  KURLCompletion KProcess KJavaProcess
isSelectable()  QIconViewItem QListViewItem QListBoxItem
isSelected()  QIconViewItem QListViewItem KDirOperator

KFileIconView KFileView KCombiView KFilePreview
KFileDetailView QListView QListBox

isSeparator()  QCustomMenuItem
isSessionRestored()  QApplication
isSharing()  QGLWidget QGLContext
isShowTabIcon()  KDockTabBar KDockTabCtl
isSizeGripEnabled()  QStatusBar
isSorted()  KCompletion
isSoundsEnabled()  KCompletion
isTabEnabled()  QTabDialog QTabBar QTabWidget KDockTabBar

KTabCtl
isTableSpinBoxEnabled()  KCharSelect
isToggleButton()  QButton
isTopLevel()  QWidget QLayout
isUndoEnabled()  QMultiLineEdit
isUpdatesEnabled()  QWidget
isValid()  QUrl QGLWidget QGLContext
isVerticalStretchable()  QToolBar
isVisible()  QWidget
isVisibleTo()  QWidget
isVisibleToTLW()  QWidget
isWidgetType()  QObject
item()  QStyleSheet KPropertiesDialog QListBox

4682-1 appC.f.qc  11/20/00  15:39  Page 624



625Appendix C ✦ Methods

itemAbove()  QListViewItem
itemAt()  QListView QListBox
itemBelow()  QListViewItem
itemHeight()  QListBox
itemMargin()  QListView
itemParameter()  QMenuData
itemPos()  QListViewItem QListView
itemRect()  QListView QListBox
items()  KCompletion KDirLister KSelectAction

KPropertiesDialog KFileView
itemsMovable()  QIconView
itemTextBackground()  QIconView
itemTextPos()  QIconView
itemVisible()  QListBox
iterator()  QLayout QLayoutItem QGridLayout QBoxLayout

KTMLayout
jarFile()  KJavaApplet KJavaAppletWidget
job()  KDirLister
joinStyle()  QPen
kApplication()  KApplication
kdeFonts()  KApplication
keep()  KPasswordDialog
key()  QKeyEvent QIconViewItem QListViewItem QAccel
keyboardFocusTab()  QTabBar
keyboardGrabber()  QWidget
keyDict()  KAccel KGlobalAccel KActionCollection
keyToString()  QAccel KAccel
kfsstnd_prefixes()  KSycoca
kill()  KProcess
killTimer()  QObject
killTimers()  QObject
ksConfig()  KSpell
kstyle()  KApplication
kurl()  KPropertiesDialog
label()  QHeader QToolBar
labelText()  QProgressDialog
lastItem()  QIconView
lastMatch()  KCompletion
lastPosition()  KSpell
launcher()  KApplication
layout()  QWidget QLayout QLayoutItem KButtonBox KHTMLView
layoutTabs()  QTabBar
leaveInstance()  QNPWidget
leaveWhatsThisMode()  QWhatsThis
length()  QMultiLineEdit
library()  KLibLoader
lineEdit()  QComboBox KURLRequester
lineShapesOk()  QFrame
lineStep()  QScrollBar QRangeControl QSlider QSpinBox
lineTo()  QPainter
lineUpToolBars()  QMainWindow
lineWidth()  QFrame
linkColor()  QTextView
linkUnderline()  QTextView

4682-1 appC.f.qc  11/20/00  15:39  Page 625



626 Appendixes

listBox()  QListBoxItem QComboBox
listChildren()  QUrlOperator
listContents()  KFileReader
listStyle()  QStyleSheetItem
listSync()  KKeyChooser
listView()  QListViewItem
load()  QPixmap QPicture KPixmap QTranslator QConfigDB

KCModule
loadConfig()  KDockWidgetAbstractHeader KDockWidgetHeader
loadEntries()  KRecentFilesAction
loadFiles()  KIconCanvas
loadFromData()  QPixmap
loadFromShared()  KSharedPixmap
locale()  KConfigBase
localFileToUri()  QUriDrag
lock()  QConfigDB
logicalFontSize()  QStyleSheetItem
logicalFontSizeStep()  QStyleSheetItem
look()  KLed
loopLevel()  QApplication
lostFocus()  QFocusEvent
lower()  QWidget
macEventFilter()  QApplication
macProcessEvent()  QApplication
mainViewGeometry()  KTMainWindow
mainWidget()  QLayout QApplication
mainWindow()  QToolBar
makeCompletion()  KCompletion KURLCompletion KShellCompletion

KDirOperator
makeCurrent()  QGLWidget QGLContext
makeDirCompletion()  KDirOperator
makeDockInvisible()  KDockMainWindow
makeDockVisible()  KDockMainWindow KDockWidget
makeDrag()  KColorDrag
makeGridMainWidget()  KDialogBase
makeHBoxMainWidget()  KDialogBase
makeMainWidget()  KDialogBase
makeOverlayCurrent()  QGLWidget
makeStdCaption()  KApplication
makeVBoxMainWidget()  KDialogBase
makeWidgetDockVisible()  KDockManager KDockMainWindow
manager()  KDockMainWindow
manualDock()  KDockWidget
map()  QSignalMapper
mapFromGlobal()  QWidget
mapFromParent()  QWidget
mapToActual()  QHeader
mapToGlobal()  QWidget
mapToIndex()  QHeader
mapToLogical()  QHeader
mapToParent()  QWidget
mapToSection()  QHeader
margin()  QFrame QStyleSheetItem QLayout QTabWidget
marginHeight()  KHTMLView

4682-1 appC.f.qc  11/20/00  15:39  Page 626



627Appendix C ✦ Methods

marginHint()  KDialog
margins()  QPrinter
marginWidth()  KHTMLView
markedText()  QLineEdit KEdit
mask()  QPixmap
match()  KFileReader
matchesFilter()  KDirLister
maxCount()  QComboBox
maxHeight()  KToolBar
maximumHeight()  QWidget
maximumSize()  QWidget QLayout QLayoutItem QSpacerItem

QWidgetItem QTextTableCell QGridLayout QBoxLayout
maximumSizeHint()  KToolBar
maximumSliderDragDistance()  QCommonStyle QWindowsStyle

QPlatinumStyle
maximumWidth()  QWidget
maxItems()  KRecentFilesAction KURLComboBox
maxItemTextLength()  QIconView
maxItemWidth()  QIconView QListBox
maxLength()  QLineEdit QMultiLineEdit
maxLineLength()  QMultiLineEdit
maxLines()  QMultiLineEdit
maxLineWidth()  QMultiLineEdit
maxPage()  QPrinter
maxValue()  QScrollBar QRangeControl QSlider QSpinBox
maxWidth()  KToolBar
mayBeHide()  KDockWidget
mayBeShow()  KDockWidget
menu()  KHelpMenu
menuBar()  QLayout KTMainWindow QMainWindow
message()  QMessageBox QStatusBar
metaObject()  QObject
microFocusHint()  QWidget
midLineWidth()  QFrame
mightBeRichText()  QStyleSheet
mimeSourceFactory()  QTextView
miniIcon()  KApplication
minimumDuration()  QProgressDialog
minimumHeight()  QWidget
minimumSize()  QWidget QLayout QLayoutItem QSpacerItem

QWidgetItem QTextTableCell QGridLayout QBoxLayout
KTMLayout QToolBar QMenuBar

minimumSizeHint()  KAboutContainer QWidget QLineEdit
QMainWindow QSlider QTabWidget QToolBar KIntNumInput
KDoubleNumInput QXEmbed QLabel QMenuBar QProgressBar
QScrollView QIconView QSplitter QListView QListBox
QMultiLineEdit QWidgetStack KToolBar

minimumWidth()  QWidget
minPage()  QPrinter
minValue()  QScrollBar QRangeControl QSlider QSpinBox
misspelling()  KEdit
mkdir()  QUrlOperator KDirOperator
modalCheck()  KSpell
mode()  QNPInstance KURLCompletion QFileDialog KFileDialog

4682-1 appC.f.qc  11/20/00  15:39  Page 627



628 Appendixes

KDirOperator QLCDNumber
modeChange()  KToolBarButton
mouseGrabber()  QWidget
mouseX()  KToolBoxManager
mouseY()  KToolBoxManager
move()  QWidget QIconViewItem QCanvasItem QCanvasSprite

QDialog QSemiModal QPushButton
moveBy()  QIconViewItem QCanvasItem QCanvasPolygon

QCanvasText
moveCell()  QHeader
moveChild()  QScrollView
moveDlg()  KSpell
moveDown()  KFileBookmarkManager
moveFocus()  QButtonGroup
moveSection()  QHeader
moveTo()  QPainter
moveToFirst()  QSplitter
moveToLast()  QSplitter
moveToolBar()  QMainWindow
moveUp()  KFileBookmarkManager
movie()  QLabel
multiCellBitmap()  QPixmap
multiCellHandle()  QPixmap
multiCellOffset()  QPixmap
name()  QObject QStyleSheetItem KLibrary KURIFilterPlugin

KWCommand KWCommandGroup
nameFilter()  QUrlOperator
needUpdate()  Kded
newIconLoader()  KInstance
newInstance()  KUniqueApplication KCookieServer
newPage()  QPrinter
newStream()  QNPInstance
newStreamCreated()  QNPInstance
newWindow()  QNPInstance
next()  QListBoxItem
nextButton()  QWizard
nextItem()  QIconViewItem
nextMatch()  KCompletion
nextSibling()  QListViewItem
normalExit()  KProcess
noRootAffix()  KSpellConfig
notify()  QApplication QIOWatch QTimeWatch
notifyURL()  QNPInstance
numberOfColumns()  QStyleSheetItem
numCells()  KColorCells
numCols()  QGridLayout QListBox QWellArray
numColumns()  QListBox
numCopies()  QPrinter
numDigits()  QLCDNumber
numDirs()  KDirOperator KFileView
numFiles()  KDirOperator KFileView
numItemsVisible()  QListBox
numLines()  QMultiLineEdit
numRows()  QGridLayout QListBox QWellArray

4682-1 appC.f.qc  11/20/00  15:39  Page 628



629Appendix C ✦ Methods

object()  QGuardedPtrPrivate
objectTrees()  QObject
off()  KLed
offIconSet()  QToolButton
offset()  QHeader
offsetX()  QCanvasPixmap
offsetY()  QCanvasPixmap
oldPos()  QMoveEvent
oldSize()  QResizeEvent
on()  KToolBarButton KLed
onIconSet()  QToolButton
opaqueMoving()  QMainWindow
opaqueResize()  QSplitter
openURL()  KDirLister
operation()  QNetworkOperation
operationInProgress()  QNetworkProtocol
optimization()  QPixmap
orientation()  QPrinter KTextPrintDialog QHeader QScrollBar

QSlider KProgress KSelector QToolBar KPanelApplet
QGroupBox QSplitter KContainerLayout KSeparator

outputFileName()  QPrinter
outputToFile()  QPrinter
overlayContext()  QGLWidget
overlayTransparentColor()  QGLContext
overrideCursor()  QApplication
packEnd()  KContainerLayout
packStart()  KContainerLayout
padding()  KContainerLayout
page()  QWizard KDockTabCtl
pageCaption()  KDockTabCtl
pageCount()  QWizard KDockTabCtl
pageDown()  KWriteView
pageIndex()  KDialogBase
pageOrder()  QPrinter
pageSize()  QPrinter
pageStep()  QScrollBar QRangeControl QSlider
pageUp()  KWriteView
paint()  QCustomMenuItem
paintBranches()  QListViewItem
paintCell()  QListViewItem QCheckListItem
paintFocus()  QListViewItem QCheckListItem
paintingActive()  QPaintDevice
palette()  QWidget QToolTip QApplication KPaletteTable
palettePropagation()  QWidget
paper()  QTextView
paperColorGroup()  QTextView
parameter()  KJavaApplet KJavaAppletWidget
parent()  QObject QListViewItem
parentClient()  KXMLGUIClient
parentCollection()  KAction
parentWidget()  QWidget QToolTip
part()  KHTMLView
password()  QUrl KPasswordDialog KPasswordEdit
paste()  QLineEdit QMultiLineEdit

4682-1 appC.f.qc  11/20/00  15:39  Page 629



630 Appendixes

path()  QUrl
pen()  QPainter QCanvasPolygonalItem
pixBorderWidth()  KThemeBase
pixmap()  QBrush QDragObject QIconViewItem QListViewItem

QFileIconProvider QClipboard KAction QListBoxItem
QListBoxPixmap KThemeCache QButton QComboBox QLabel
KURLLabel QMenuData QListBox

pixmapBrush()  KThemeBase
pixmapHotSpot()  QDragObject
pixmapRect()  QIconViewItem
plainPage()  KDialogBase
plainText()  KAction
plane()  QGLFormat
play()  QPicture KAudioPlayer
plug()  KAction KToggleAction KSelectAction KFontAction

KActionMenu KActionSeparator
plugAccel()  KAction
plugActionList()  KXMLGUIClient
points()  QCanvasPolygon
polish()  QWidget QApplication QMotifStyle KDEStyle

KThemeStyle KStepStyle
polishPopupMenu()  QMotifStyle QWindowsStyle QPlatinumStyle

KDEStyle
popup()  KActionMenu QPushButton QToolButton KToolBarButton

QPopupMenu
popupDelay()  QToolButton
popupMenu()  KSelectAction KActionMenu
popupMenuItemHeight()  QMotifStyle QWindowsStyle

QPlatinumStyle KDEStyle KThemeStyle
popupSubmenuIndicatorWidth()  QCommonStyle
port()  QUrl KServerSocket
pos()  QWidget QMouseEvent QWheelEvent QMoveEvent QDropEvent

QPainter QIconViewItem
position()  KPanelApplet
postApplyChanges()  KFilePropsPage
postEvent()  QApplication
postURL()  QNPInstance
preferences()  KPanelApplet
prefix()  QSpinBox
prev()  QListBoxItem
previewMode()  QFileDialog
previousMatch()  KCompletion
prevItem()  QIconViewItem
print()  QNPInstance KTextPrintConfig KHTMLView
printer()  QPrintDialog
printerName()  QPrinter
printerSelectionOption()  QPrinter
printFullPage()  QNPInstance
printProgram()  QPrinter
priority()  KURIFilterPlugin
process()  KUniqueApplication KCookieServer KSycoca

KBuildSycoca KPanelMenu KPanelApplet
processClientCmdline()  QXEmbed
processEvents()  QApplication

4682-1 appC.f.qc  11/20/00  15:39  Page 630



631Appendix C ✦ Methods

processOneEvent()  QApplication
progress()  QProgressDialog QProgressBar
propagateSessionManager()  KApplication
property()  QObject
protocol()  QUrl
protocolDetail()  QNetworkOperation
provides()  QDropEvent QMimeSource
put()  QUrlOperator
qglClearColor()  QGLWidget
qglColor()  QGLWidget
QString()  QUrl
query()  QUrl KTrader QMessageBox
queryList()  QObject
quickHelp()  KCModule
quit()  QApplication KJavaAppletServer
raise()  QWidget
raiseWidget()  QWidgetStack
random()  KApplication
randomString()  KApplication
rasterOp()  QPainter
rawArg()  QNetworkOperation
read()  KFileBookmarkManager
readActions()  KDesktopFile
readBoolEntry()  KConfigBase
readColorEntry()  KConfigBase
readComment()  KDesktopFile
readConfig()  KDockManager KTextPrintConfig KWCommand

KWCommandGroup KWCommandDispatcher KDirOperator
readDateTimeEntry()  KConfigBase
readDockConfig()  KDockMainWindow
readDoubleNumEntry()  KConfigBase
readEntry()  KConfigBase
readFontEntry()  KConfigBase
readIcon()  KDesktopFile
readIntListEntry()  KConfigBase
readListEntry()  KConfigBase
readln()  KProcIO
readLongNumEntry()  KConfigBase
readName()  KDesktopFile
readNumEntry()  KConfigBase
readPath()  KDesktopFile
readPointEntry()  KConfigBase
readPropertyEntry()  KConfigBase
readRectEntry()  KConfigBase
readSettings()  KAccel KGlobalAccel
readSizeEntry()  KConfigBase
readType()  KDesktopFile
readUnsignedLongNumEntry()  KConfigBase
readUnsignedNumEntry()  KConfigBase
readURL()  KDesktopFile
realize()  QTextTableCell
reason()  QFocusEvent
recreate()  QWidget KBuildSycoca Kded
rect()  QWidget QPaintEvent QPixmap QIconViewItem

4682-1 appC.f.qc  11/20/00  15:39  Page 631



632 Appendixes

QCanvasRectangle
redirect()  QPainter
redo()  QMultiLineEdit
redraw()  KFormulaEdit
ref()  QUrl
refresh()  QSplitter
region()  QPaintEvent
registerNetworkProtocol()  QNetworkProtocol
release()  QSessionManager
releaseKeyboard()  QWidget
releaseMouse()  QWidget
reloadXML()  KXMLGUIClient
remove()  QToolTip QWhatsThis QTranslator QUrlOperator

KActionMenu KActionCollection KFileBookmarkManager
KabAPI QButtonGroup

removeAnimation()  QCanvas
removeButton()  KToolBarRadioGroup
removeChild()  QObject QScrollView
removeChildClient()  KXMLGUIClient
removeColumn()  QListView
removeComboItem()  KToolBar
removeContainer()  KXMLGUIBuilder
removeCustomElement()  KXMLGUIBuilder
removed()  QChildEvent
removeDeletedMenu()  KAccel
removedFromPanel()  KPanelApplet
removeDir()  KDirWatch
removeEventFilter()  QObject
removeHotSpot()  KToolBoxManager
removeItem()  QListViewItem QAccel KAccel QCanvas KCompletion

KGlobalAccel QComboBox KStatusBar QMenuData QListView
QListBox KToolBar

removeItemAt()  QMenuData
removeItemFromChunk()  QCanvas
removeItemFromChunkContaining()  QCanvas
removeKipcEventMask()  KApplication
removeLabel()  QHeader
removeLine()  QMultiLineEdit
removeMappings()  QSignalMapper
removePage()  QTabDialog QWizard QTabWidget KDockTabCtl
removePostedEvents()  QApplication
removeTab()  QTabBar KDockTabBar
removeToolBar()  QMainWindow
removeTranslator()  QApplication
removeURL()  KRecentFilesAction KURLComboBox
removeView()  QCanvas
removeWidget()  QStatusBar QWidgetStack
rename()  QIconViewItem QUrlOperator KFileBookmarkManager

KPropertiesDialog
renameEnabled()  QIconViewItem
renderPixmap()  QGLWidget
repaint()  QWidget QIconViewItem QListViewItem KRootPixmap

QTableView
repaintAll()  KEdit

4682-1 appC.f.qc  11/20/00  15:39  Page 632



633Appendix C ✦ Methods

repaintContents()  QScrollView
repaintItem()  QIconView QListView
repairEventFilter()  QAccel
reparent()  QWidget
reparseConfiguration()  KConfigBase KConfig
repeatSearch()  KEdit
replace()  KEdit
replace_all_slot()  KEdit
replace_search_slot()  KEdit
replace_slot()  KEdit
replacedone_slot()  KEdit
replaceEnv()  KURLCompletion
replaceHome()  KURLCompletion
replacement()  KSpellDlg
reportBug()  KHelpMenu
representative()  KAction
requestPhase2()  QSessionManager
requestShutDown()  KApplication
reread()  KFileBookmarkManager
rereadDir()  QFileDialog KDirOperator
reset()  QProgressDialog QGLContext QProgressBar
resetAll()  KProcIO
resetReason()  QFocusEvent
resetXForm()  QPainter
resize()  QWidget QPixmap QCanvas KToolBoxManager QDialog

QSemiModal QPushButton KJavaAppletWidget QScrollView
resizeContents()  QScrollView
resizeEvent()  KButtonBox QPopupFrame
resizeLayout()  KDialog
resizeMode()  QLayout QIconView
resizePolicy()  QScrollView
resizeSection()  QHeader
resortDir()  QFileDialog
resource()  KDesktopFile
restartCommand()  QSessionManager
restartDirScan()  KDirWatch
restartHint()  QSessionManager
restore()  QPainter KTMainWindow
restoreOverrideCursor()  QApplication
restoreWorldMatrix()  QPainter
result()  QDialog
resume()  KProcess
retune()  QCanvas
rgba()  QGLFormat
richText()  QTextTableCell
rightJustification()  QMainWindow
rollback()  KConfigBase KConfig
rootIsDecorated()  QListView
rootItem()  KDirLister
rotate()  QPainter
rotateText()  KComboBox KLineEdit
roundButton()  KThemeBase
roundComboBox()  KThemeBase
roundSlider()  KThemeBase

4682-1 appC.f.qc  11/20/00  15:39  Page 633



634 Appendixes

row()  QTextTableCell
rowMode()  QListBox
rowspan()  QTextTableCell
rowStretch()  QGridLayout
rtti()  QCanvasItem QCanvasSprite QCanvasPolygonalItem

QCanvasRectangle QCanvasPolygon QCanvasLine
QCanvasEllipse QCanvasText

run()  KRun
runOldApplication()  KRun
runTogether()  KSpellConfig
sameChunk()  QCanvas
sampleText()  KFontChooser
save()  QPainter QPixmap QPicture QTranslator

KEditToolbarWidget KabAPI QConfigDB KCModule
saveConfig()  KDirOperator KDockWidgetAbstractHeader

KDockWidgetHeader
saveConfiguration()  KFileDialogConfigure
saveEntries()  KRecentFilesAction
saveState()  QApplication KApplication KToolBar
saveText()  KEdit
saveURL()  KHTMLPopupGUIClient
saveWorldMatrix()  QPainter
scale()  QPainter
scaleFont()  QStyleSheet
scaleHint()  KThemeBase
scalePixmap()  KThemeBase
scroll()  QWidget
scrollBar()  QListBox
scrollBarLayout()  KThemeBase
scrollBarMetrics()  QMotifStyle QWindowsStyle QPlatinumStyle

KDEStyle KThemeStyle KStepStyle
scrollBarPointOver()  QCommonStyle QPlatinumStyle KDEStyle

KThemeStyle KStepStyle
scrollBy()  QScrollView
scrollDown()  KWriteView
scrollToAnchor()  QTextBrowser
scrollUp()  KWriteView
search()  KEdit
search_slot()  KEdit
searchdone_slot()  KEdit
sectionAt()  QHeader
sectionPos()  QHeader
sectionSize()  QHeader
segmentStyle()  QLCDNumber
selectAll()  QFileDialog QLineEdit QIconView KFileView

QListView QListBox QTextView QMultiLineEdit
selected()  QCanvasItem QListBoxItem KEdGotoLine QButtonGroup
selectedColumn()  QWellArray
selectedFile()  QFileDialog KFileDialog
selectedFiles()  QFileDialog KFileDialog
selectedFilter()  QFileDialog
selectedItem()  QListView
selectedItems()  KDirOperator KFileView
selectedRow()  QWellArray

4682-1 appC.f.qc  11/20/00  15:39  Page 634



635Appendix C ✦ Methods

selectedText()  QTextView KHTMLView
selectedURL()  KFileDialog KURLRequesterDlg
selectedURLs()  KFileDialog
selectFont()  KEdit
selectIcon()  KIconDialog
selectionMode()  QIconView KFileView QListView QListBox
self()  KLibLoader KDirWatch KSycoca KTrader
selfMask()  QPixmap
selfNesting()  QStyleSheetItem
send()  KNotifyClient KJavaProcess
sendEvent()  QApplication
sendPostedEvents()  QApplication
separator()  QMenuBar
separatorPos()  KDockSplitter
serialNumber()  QPixmap
service()  KOpenWithDlg
sessionConfig()  KApplication
sessionId()  QApplication QSessionManager
set()  KDialogBaseTile
setAccel()  KAction QButton QMenuData
setAcceptDrags()  KColorCells
setAcceptDrops()  QWidget
setAccum()  QGLFormat
setAction()  QDropEvent
setActionGroup()  KDesktopFile
setActions()  KPanelApplet
setActive()  QCanvasItem
setActiveItem()  QPopupMenu
setActiveWindow()  QWidget QXtWidget
setAdvancePeriod()  QCanvas
setAlignment()  QStyleSheetItem QLayoutItem QLineEdit

QGroupBox QLabel QMultiLineEdit
setAllChanged()  QCanvas
setAllColumnsShowFocus()  QListView
setAlpha()  QGLFormat
setAltPixmap()  KURLLabel
setAnchor()  QStyleSheetItem
setAngles()  QCanvasEllipse
setAnimated()  QCanvasItem
setAppletClass()  KJavaApplet KJavaAppletWidget
setAppletId()  KJavaApplet
setAppletName()  KJavaApplet KJavaAppletWidget
setApplyButton()  QTabDialog
setAppropriate()  QWizard
setArg()  QNetworkOperation
setArrangement()  QIconView
setAuthor()  KAboutDialog KAboutWidget
setAutoAdd()  QLayout
setAutoArrange()  QIconView
setAutoBottomScrollBar()  QListBox
setAutoClose()  QProgressDialog
setAutoCompletion()  QComboBox KComboBox
setAutoDefault()  QPushButton
setAutoDelete()  QNetworkProtocol KRun KSpell

4682-1 appC.f.qc  11/20/00  15:39  Page 635



636 Appendixes

setAutoDeleteCompletionObject()  KCompletionBase
setAutoMask()  QWidget QLabel
setAutoRaise()  QToolButton
setAutoRepeat()  QButton KToolBar
setAutoReset()  QProgressDialog
setAutoResize()  QButton QComboBox QLabel
setAutoScroll()  QListBox
setAutoScrollBar()  QListBox
setAutoUpdate()  KFileReader KFileIconView KFileDetailView

QListBox QMultiLineEdit
setBackEnabled()  QWizard
setBackgroundColor()  QWidget QPainter QCanvas QComboBox

KURLLabel QTableView
setBackgroundMode()  QWidget QPainter
setBackgroundOrigin()  QWidget
setBackgroundPixmap()  QWidget QCanvas
setBackgroundTile()  KDialogBase
setBar()  QProgressDialog
setBarColor()  KProgress
setBarPixmap()  KProgress
setBarPos()  KToolBar
setBarStyle()  KProgress
setBase()  KIntValidator
setBaseSize()  QWidget
setBaseURL()  KJavaApplet KJavaAppletWidget
setBigMarkDistance()  KRuler
setBinMode()  QLCDNumber
setBorder()  KThemePixmap KTabCtl
setBottom()  QIntValidator QDoubleValidator
setBottomItem()  QListBox
setBottomScrollBar()  QListBox
setBrush()  QPainter QCanvasPolygonalItem
setBrushOrigin()  QPainter
setBuddy()  QLabel
setBuilderInstance()  KXMLGUIBuilder
setButton()  QButtonGroup KToolBar
setButtonApplyText()  KDialogBase
setButtonCancelText()  KDialogBase
setButtonIcon()  KToolBar
setButtonOKText()  KDialogBase
setButtonPixmap()  KToolBar
setButtonSymbols()  QSpinBox
setButtonText()  QMessageBox KDialogBase
setButtonTip()  KDialogBase
setButtonWhatsThis()  KDialogBase
setCancelButton()  QTabDialog QProgressDialog
setCancelButtonText()  QProgressDialog
setCanvas()  QCanvasItem QCanvasView
setCapStyle()  QPen
setCaption()  QWidget KTMainWindow KDialog
setCellBrush()  QWellArray
setCellSize()  QHeader QWellArray
setCenterIndicator()  QProgressBar
setCentralWidget()  QMainWindow

4682-1 appC.f.qc  11/20/00  15:39  Page 636



637Appendix C ✦ Methods

setChanged()  QCanvas
setChangedChunk()  QCanvas
setChangedChunkContaining()  QCanvas
setChar()  KCharSelect KCharSelectTable
setCheckable()  QPopupMenu
setChecked()  KToggleAction QCheckBox QRadioButton
setClassArgs()  KJavaProcess
setClickEnabled()  QHeader
setClient()  KSpellConfig
setClientBuilder()  KXMLGUIClient
setClipping()  QPainter
setClipRect()  QPainter
setClipRegion()  QPainter
setCodeBase()  KJavaApplet KJavaAppletWidget
setColor()  QBrush QColorDrag KColorDrag QPen QStyleSheetItem

QCanvasText KColorDialog KColorButton KColorCombo
KLed KColorCells KColorPatch

setColorMode()  QPrinter QApplication
setColors()  KGradientSelector
setColorSpec()  QApplication
setCols()  KTextPrintPreview
setColStretch()  QGridLayout
setColumnAlignment()  QListView
setColumnLayout()  QGroupBox
setColumnMode()  QListBox
setColumns()  QGroupBox
setColumnText()  QListView
setColumnWidth()  QListView
setColumnWidthMode()  QListView
setComboWidth()  KSelectAction
setCompletion()  KFileComboBox
setCompletionMode()  KCompletion KCompletionBase KLineEdit
setCompletionObject()  KCompletionBase
setComponent()  KAction
setConfigGlobal()  KAccel
setConfigGroup()  KAccel KGlobalAccel
setContainerStates()  KXMLGUIClient
setContentsPos()  QScrollView QIconView QListView
setContentsPreview()  QFileDialog
setContentsPreviewEnabled()  QFileDialog
setContext()  QGLWidget
setContextId()  KJavaAppletContext
setContexts()  QStyleSheetItem
setCornerWidget()  QScrollView
setCreator()  QPrinter
setCurrentComboItem()  KToolBar
setCurrentItem()  KSelectAction KListAction QComboBox

KDirOperator QIconView KFileView QListView QListBox
setCurrentTab()  QTabBar KDockTabBar
setCursor()  QWidget
setCursorFlashTime()  QApplication
setCursorPosition()  QLineEdit QMultiLineEdit
setCustomColor()  QColorDialog
setDarkFactor()  KLed

4682-1 appC.f.qc  11/20/00  15:39  Page 637



638 Appendixes

setData()  QCustomEvent QPicture QClipboard KTextPrintConfig
KWCommand KWCommandGroup KWCommandDispatcher
KTextPrintDialog

setDate()  KDateTable KDatePicker
setDecimals()  QDoubleValidator
setDecMode()  QLCDNumber
setDefault()  QPushButton
setDefaultButton()  QTabDialog
setDefaultCodec()  QApplication
setDefaultFormat()  QGLFormat
setDefaultIcon()  KToolBarButton
setDefaultOptimization()  QPixmap
setDefaultOverlayFormat()  QGLFormat
setDefaultPixmap()  KToolBarButton
setDefaults()  KURLComboBox
setDefaultSheet()  QStyleSheet
setDefaultTabStop()  QMultiLineEdit
setDefaultUp()  QMenuBar
setDelay()  QToolTipGroup
setDelayedPopup()  KToolBarButton KToolBar
setDepth()  QGLFormat
setDescription()  KAccel
setDesktopGroup()  KConfigBase
setDesktopSettingsAware()  QApplication
setDest()  KTextPrintDialog
setDictFromList()  KSpellConfig
setDictionary()  KSpellConfig
setDimension()  QWellArray
setDir()  KURLCompletion QFileDialog
setDirection()  QBoxLayout KDirectionButton
setDirectRendering()  QGLFormat
setDirOnlyMode()  KDirLister
setDirty()  KPropsPage
setDisabledIcon()  KToolBarButton
setDisabledPixmap()  KToolBarButton
setDiscardCommand()  QSessionManager
setDisplayMode()  QStyleSheetItem
setDNDEnabled()  KHTMLView
setDockEnabled()  QMainWindow
setDockMenuEnabled()  QMainWindow
setDockSite()  KDockWidget
setDocName()  QPrinter
setDollarExpansion()  KConfigBase
setDoubleBuffer()  QGLFormat
setDoubleBuffering()  QCanvas
setDoubleClickInterval()  QApplication
setDown()  QButton
setDragAutoScroll()  QScrollView
setDragEnabled()  QIconViewItem
setDragSelect()  QListBox
setDropEnabled()  QIconViewItem
setDuplicatesEnabled()  QComboBox
setEchoMode()  QLineEdit QMultiLineEdit
setEdit()  KKeyButton

4682-1 appC.f.qc  11/20/00  15:39  Page 638



639Appendix C ✦ Methods

setEditable()  KSelectAction
setEdited()  QLineEdit QMultiLineEdit
setEditFocus()  KIntSpinBox KIntNumInput
setEditText()  QComboBox
setEmail()  KAboutContributor
setEnableContextMenu()  KComboBox KLineEdit KToolBar
setEnabled()  QWidget QToolTip QCanvasItem QAccel KAccel

QSocketNotifier QToolTipGroup KGlobalAccel KAction
KActionMenu KWCommandDispatcher KToolBarButton
QComboBox QLineEdit QSpinBox KDockTabCtl QScrollView
KDatePicker

setEnableDocking()  KDockWidget
setEnableToolBar()  KTMainWindow
setEncodedData()  QStoredDrag
setEncodedPathAndQuery()  QUrl
setEncoding()  KSpellConfig
setEndLabel()  KRuler
setEndOffset()  KContainerLayout
setErrorCode()  QNetworkOperation
setExclusive()  QButtonGroup
setExclusiveGroup()  KToggleAction
setExecutable()  KProcess
setExpand()  KContainerLayout
setExpandable()  QListViewItem
setExtraArgs()  KJavaProcess
setExtraChars()  KFormulaEdit
setFactory()  KXMLGUIClient
setFadeEffect()  KRootPixmap
setFileDirty()  KDirWatch
setFileName()  QUrl QConfigDB KWritePermsIcon
setFilenames()  QUriDrag
setFill()  KContainerLayout
setFilter()  QFileDialog KFileDialog KFileFilter
setFilters()  QFileDialog
setFinish()  QWizard
setFinishEnabled()  QWizard
setFixedHeight()  QWidget
setFixedSize()  QWidget
setFixedVisibleLines()  QListBox QMultiLineEdit
setFixedWidth()  QWidget
setFlags()  KPanelApplet
setFlat()  KToolBar
setFloat()  KURLLabel
setFocus()  QWidget
setFocusPolicy()  QWidget
setFocusProxy()  QWidget
setFont()  QWidget QPainter QCustomMenuItem QToolTip

QCanvasText QApplication KFontAction QTabDialog
QWizard KFontDialog QComboBox QLineEdit KDockTabBar
KFontChooser KTabCtl KCharSelect KURLLabel QPopupMenu
QIconView QListView QListBox QMultiLineEdit
KCharSelectTable

setFontFamily()  QStyleSheetItem
setFontItalic()  QStyleSheetItem

4682-1 appC.f.qc  11/20/00  15:39  Page 639



640 Appendixes

setFontPropagation()  QWidget
setFontSize()  QStyleSheetItem KFontSizeAction KDateTable

KDatePicker
setFontUnderline()  QStyleSheetItem
setFontWeight()  QStyleSheetItem
setFormat()  KProgress QGLWidget QGLContext KDoubleNumInput
setFrame()  QCanvasSprite QLineEdit
setFrameBorderWidth()  KTMainWindow
setFrameRect()  QFrame QWidgetStack
setFrameShadow()  QFrame
setFrameShape()  QFrame
setFrameStyle()  QFrame
setFromTo()  QPrinter
setFTPProxy()  KJavaProcess
setFullPage()  QPrinter
setFullSize()  KToolBar
setGeometry()  QWidget QLayout QLayoutItem QSpacerItem

QWidgetItem QTextTableCell QGridLayout QBoxLayout
KTMLayout KToolBoxManager QDialog QSemiModal
QPushButton

setGlobalMouseTracking()  QApplication
setGlow()  KURLLabel
setGridX()  QIconView
setGridY()  QIconView
setGroup()  KConfigBase KAction
setHandleSignals()  KCompletionBase
setHeader()  KDockWidget
setHelp()  KDialogBase
setHelpButton()  QTabDialog
setHelpEnabled()  QWizard
setHelpLinkText()  KDialogBase
setHexMode()  QLCDNumber
setHighlightedColor()  KURLLabel
setHighlightingEnabled()  KActionCollection
setHMargin()  QMultiLineEdit
setHomogeneos()  KContainerLayout
setHorizontalStretchable()  QToolBar
setHost()  QUrl
setHScrollBarMode()  QScrollView
setHTTPProxy()  KJavaProcess
setHue()  KValueSelector
setIcon()  QWidget KAction QMessageBox KIconButton

KToolBarButton
setIconListAllVisible()  KDialogBase
setIconPixmap()  QMessageBox
setIconProvider()  QFileDialog
setIcons()  KAnimWidget
setIconSet()  KAction QPushButton QToolButton
setIconSize()  KFileIconView KToolBar
setIconText()  QWidget KToolBar
setIconType()  KIconButton
setId()  QMenuData
setIgnoreList()  KSpellConfig
setIgnoreWhatsThis()  QAccel

4682-1 appC.f.qc  11/20/00  15:39  Page 640



641Appendix C ✦ Methods

setImage()  QImageDrag QClipboard KAboutDialog
KAboutContainerBase

setImageBackgroundColor()  KAboutDialog KAboutContainerBase
setImageFrame()  KAboutDialog KAboutContainerBase
setIndent()  KSelector QLabel
setIndicatorFollowsStyle()  QProgressBar
setIndicatorWidget()  KTMainWindow
setInfoPreview()  QFileDialog
setInfoPreviewEnabled()  QFileDialog
setInitialSize()  KDialogBase
setInsertionPolicy()  QComboBox
setInstance()  KActionCollection
setIsMenuButton()  QPushButton
setItemAlignment()  KStatusBar
setItemAutoSized()  KToolBar
setItemChecked()  QMenuData
setItemEnabled()  QAccel KAccel KGlobalAccel QMenuData

KToolBar
setItemFixed()  KStatusBar
setItemMargin()  QListView
setItemNoStyle()  KToolBar
setItemParameter()  QMenuData
setItems()  KCompletion KSelectAction
setItemsMovable()  QIconView
setItemTextBackground()  QIconView
setItemTextPos()  QIconView
setJARFile()  KJavaApplet KJavaAppletWidget
setJoinStyle()  QPen
setJVMPath()  KJavaProcess
setJVMVersion()  KJavaProcess
setKey()  QIconViewItem
setKeyBinding()  KCompletionBase
setKeyDict()  KAccel KGlobalAccel KActionCollection
setLabel()  QProgressDialog QHeader QToolBar KNumInput

KIntNumInput KDoubleNumInput
setLabelText()  QProgressDialog
setLength()  KRuler
setLengthFix()  KRuler
setLinedText()  KToolBar
setLineStep()  QScrollBar QSlider QSpinBox
setLineWidth()  QFrame
setLinkColor()  QTextView
setLinkUnderline()  QTextView
setListBox()  QComboBox
setListStyle()  QStyleSheetItem
setLittleMarkDistance()  KRuler
setLocationLabel()  KFileDialog
setLogicalFontSize()  QStyleSheetItem
setLogicalFontSizeStep()  QStyleSheetItem
setLogo()  KAboutDialog KAboutWidget
setLook()  KLed
setMainClass()  KJavaProcess
setMainDockWidget()  KDockMainWindow
setMaintainer()  KAboutDialog KAboutWidget

4682-1 appC.f.qc  11/20/00  15:39  Page 641



642 Appendixes

setMainWidget()  QApplication KDialogBase QPopupFrame
setMapping()  QSignalMapper
setMargin()  QFrame QStyleSheetItem QLayout QTabWidget
setMarginHeight()  KHTMLView
setMarginWidth()  KHTMLView
setMask()  QWidget QPixmap
setMaxCount()  QComboBox
setMaxHeight()  KToolBar
setMaximumHeight()  QWidget
setMaximumSize()  QWidget
setMaximumToolBarWraps()  KTMainWindow
setMaximumWidth()  QWidget
setMaximumWraps()  KTMLayout
setMaxItems()  KRecentFilesAction KURLComboBox
setMaxItemTextLength()  QIconView
setMaxItemWidth()  QIconView
setMaxLength()  QLineEdit QMultiLineEdit
setMaxLineLength()  QMultiLineEdit
setMaxLines()  QMultiLineEdit
setMaxValue()  QScrollBar QSlider QSpinBox KRuler
setMaxWidth()  KToolBar
setMediumMarkDistance()  KRuler
setMenu()  KTMainWindow
setMenuBar()  QLayout
setMidLineWidth()  QFrame
setMimeSourceFactory()  QTextView
setMinimumDuration()  QProgressDialog
setMinimumHeight()  QWidget
setMinimumSize()  QWidget
setMinimumWidth()  QWidget
setMinMax()  QPrinter
setMinValue()  QScrollBar QSlider QSpinBox KRuler
setMode()  KURLCompletion QFileDialog KFileDialog

KDirOperator QLCDNumber
setModified()  KEdit
setMouseTracking()  QWidget
setMovie()  QLabel KURLLabel
setMovingEnabled()  QHeader
setMultiSelection()  QListView QListBox
setName()  QWidget QObject KAboutContributor
setNameFilter()  QUrlOperator KDirLister KFileReader

KDirOperator
setNextEnabled()  QWizard
setNoChange()  QCheckBox
setNoRootAffix()  KSpellConfig
setNoStyle()  KToolBarButton
setNotifyClick()  KTextBrowser
setNum()  QLabel
setNumberOfColumns()  QStyleSheetItem
setNumCopies()  QPrinter
setNumDigits()  QLCDNumber
setOctMode()  QLCDNumber
setOffIconSet()  QToolButton
setOffset()  QCanvasPixmap QHeader KRuler

4682-1 appC.f.qc  11/20/00  15:39  Page 642



643Appendix C ✦ Methods

setOKButton()  QTabDialog
setOkButton()  QTabDialog
setOn()  QCheckListItem QPushButton QToolButton
setOnIconSet()  QToolButton
setOpaqueMoving()  QMainWindow
setOpaqueResize()  QSplitter
setOpen()  QListViewItem QListView
setOperator()  KFileView
setOptimization()  QPixmap
setOption()  QGLFormat
setOrient()  KTextPrintPreview
setOrientation()  QPrinter QHeader QScrollBar QSlider

KProgress QToolBar QGroupBox QSplitter
KContainerLayout KSeparator

setOrigin()  QGridLayout
setOutputFileName()  QPrinter
setOutputToFile()  QPrinter
setOverlay()  QGLFormat
setOverrideCursor()  QApplication
setOverwriteMode()  QMultiLineEdit
setPadding()  KContainerLayout
setPageCaption()  KDockTabCtl
setPageEnabled()  KDockTabCtl
setPageNumbers()  KTextPrintPreview
setPageOrder()  QPrinter
setPageSize()  QPrinter
setPageStep()  QScrollBar QSlider
setPalette()  QWidget QToolTip QApplication QComboBox

QLineEdit QScrollBar QSlider KPaletteTable QIconView
QListView QTableView

setPalettePropagation()  QWidget
setPaper()  QTextView
setPaperColorGroup()  QTextView
setParameter()  KJavaApplet KJavaAppletContext

KJavaAppletServer KJavaAppletWidget
setPassword()  QUrl
setPath()  QUrlOperator QUrl
setPen()  QPainter QCanvasPolygonalItem QCanvasLine
setPixelPerMark()  KRuler
setPixmap()  QBrush QDragObject QIconViewItem QListViewItem

QClipboard QButton KToolBarButton KDockTabBar
KDockTabCtl QLabel KURLLabel

setPlainCaption()  KTMainWindow KDialog
setPlane()  QGLFormat
setPoint()  QDropEvent
setPoints()  QCanvasPolygon QCanvasLine
setPopup()  QPushButton QToolButton KToolBarButton
setPopupDelay()  QToolButton
setPort()  QUrl
setPrefix()  QSpinBox KIntNumInput KDoubleNumInput
setPreviewMode()  QFileDialog
setPreviewWidget()  KFileDialog KDirOperator KFilePreview
setPrinter()  QPrintDialog
setPrinterName()  QPrinter

4682-1 appC.f.qc  11/20/00  15:39  Page 643



644 Appendixes

setPrinterSelectionOption()  QPrinter
setPrintProgram()  QPrinter
setProduct()  KAboutDialog KAboutContainerBase
setProgress()  QProgressDialog QProgressBar
setProgressResolution()  KSpell
setPrompt()  KPasswordDialog
setProperty()  QObject QSessionManager
setProtocol()  QUrl
setProtocolDetail()  QNetworkOperation
setQuery()  QUrl
setRadio()  KToolBarButton
setRadioButtonExclusive()  QButtonGroup
setRange()  QIntValidator QDoubleValidator KIntValidator

KFloatValidator QRangeControl KIntNumInput
KDoubleNumInput KXYSelector KRuler

setRasterOp()  QPainter
setRawArg()  QNetworkOperation
setReadOnly()  KConfigBase QLineEdit QMultiLineEdit
setReason()  QFocusEvent
setRef()  QUrl
setRenameEnabled()  QIconViewItem
setReplaceEnv()  KURLCompletion
setReplaceHome()  KURLCompletion
setResizeEnabled()  QHeader
setResizeMode()  QLayout QIconView QSplitter
setResizePolicy()  QScrollView
setRestartCommand()  QSessionManager
setRestartHint()  QSessionManager
setRgba()  QGLFormat
setRight()  KCombiView
setRightJustification()  QMainWindow
setRootIsDecorated()  QListView
setRowMode()  QListBox
setRows()  KTextPrintPreview
setRowStretch()  QGridLayout
setRulerStyle()  KRuler
setRunTogether()  KSpellConfig
setSampleText()  KFontChooser
setSaturation()  KValueSelector
setScrollBar()  QListBox
setSegmentStyle()  QLCDNumber
setSelectable()  QIconViewItem QListViewItem QListBoxItem
setSelected()  QIconViewItem QListViewItem QCanvasItem

QIconView KFileIconView KFileView KCombiView
KFilePreview KFileDetailView QListView QListBox
QWellArray

setSelectedColor()  KURLLabel
setSelection()  QFileDialog KFileDialog QLineEdit

QMultiLineEdit
setSelectionMode()  QIconView KFileIconView KFileView

KCombiView KFilePreview KFileDetailView QListView
QListBox

setSelectModifiers()  KWCommandGroup
setSelfNesting()  QStyleSheetItem

4682-1 appC.f.qc  11/20/00  15:39  Page 644



645Appendix C ✦ Methods

setSender()  QSenderObject
setSeparator()  QMenuBar
setSeparatorPos()  KDockSplitter
setSequence()  QCanvasSprite
setShading()  KColorCells
setShape()  QTabBar KLed KTabCtl
setShortText()  KAction
setShowAll()  KJanusWidget
setShowHiddenFiles()  KFileReader QFileDialog KDirOperator
setShowingDotFiles()  KDirLister
setShowLocalProtocol()  KURLRequester
setShowSortIndicator()  QListView
setShowToolTips()  QIconView
setSize()  QCanvasRectangle QCanvasEllipse KJavaApplet

KAnimWidget
setSizeGripEnabled()  QStatusBar
setSizeIncrement()  QWidget
setSizeLimit()  QComboBox
setSizes()  QSplitter
setSmallDecimalPoint()  QLCDNumber
setSmoothScrolling()  QListBox
setSorted()  KCompletion
setSortIndicator()  QHeader
setSorting()  KDirOperator QIconView KFileView KCombiView

KFileDetailView QListView
setSortMode()  KFileView
setSource()  QTextBrowser
setSpacing()  QLayout QGrid QHBox QIconView KContainerLayout
setSpecialValueText()  QSpinBox KIntNumInput KDoubleNumInput
setStartDragDistance()  QApplication
setStartDragTime()  QApplication
setStartOffset()  KContainerLayout
setState()  QNetworkOperation KLed
setStatusBar()  KTMainWindow
setStencil()  QGLFormat
setSteps()  QRangeControl KNumInput
setStereo()  QGLFormat
setStretchableWidget()  QToolBar
setStretchFactor()  QBoxLayout QHBox
setStyle()  QWidget QBrush QPen QApplication
setStyleSheet()  QTextView
setSubtype()  QTextDrag
setSuffix()  QSpinBox KIntNumInput KDoubleNumInput
setSystemProperty()  KJavaProcess
setTabArray()  QPainter
setTabCaption()  KDockTabBar
setTabEnabled()  QTabDialog QTabBar QTabWidget KDockTabBar

KTabCtl
setTabFont()  KDockTabCtl KTabCtl
setTableNum()  KCharSelect KCharSelectTable
setTabOrder()  QWidget
setTabPos()  KDockTabBar KDockTabCtl
setTabPosition()  QTabWidget
setTabStops()  QPainter

4682-1 appC.f.qc  11/20/00  15:39  Page 645



646 Appendixes

setTabTextColor()  KDockTabCtl
setTarget()  QDragObject
setText()  QTextDrag QIconViewItem QListViewItem QCanvasText

QClipboard KAction QMessageBox KEdFind KEdReplace
QButton KKeyButton KToolBarButton QLineEdit
KGradientSelector KFormulaEdit QLabel KURLLabel
QTextView QTextBrowser QMultiLineEdit

setTextAlignment()  KURLLabel
setTextColor()  KDockTabBar
setTextEnabled()  KProgress
setTextFlags()  QCanvasText
setTextFormat()  QMessageBox QLabel QTextView
setTextLabel()  QToolButton
setTickInterval()  QSlider
setTickmarks()  QSlider
setTickStyle()  KRuler
setTile()  QCanvas
setTinyMarkDistance()  KRuler
setTipText()  KURLLabel
setTitle()  KFileBookmarkManager KAboutDialog

KAboutContainerBase KPopupTitle KTextPrintPreview
QGroupBox KPopupMenu KToolBar

setToggle()  KToolBarButton KToolBar
setToggleButton()  QPushButton QToolButton
setToolBarsMovable()  QMainWindow
setToolTip()  KAction KDockTabBar KDockTabCtl
setToolTipString()  KDockWidget
setTop()  QIntValidator QDoubleValidator
setTopItem()  QListBox
setTopLevel()  KDockWidgetAbstractHeader KDockWidgetHeader
setTopWidget()  KApplication
setTotalSteps()  QProgressDialog QProgressBar
setTracking()  QHeader QScrollBar QSlider
setTransparentMode()  KURLLabel
setTreeListAutoResize()  KDialogBase
setTreeStepSize()  QListView
setTristate()  QCheckBox
setUglyForm()  KFormulaEdit
setUnderline()  KURLLabel
setUndoDepth()  QMultiLineEdit
setUndoEnabled()  QMultiLineEdit
setUnicodeUris()  QUriDrag
setup()  QPrinter QListViewItem QCheckListItem
setUpdatePeriod()  QCanvas
setUpdatesEnabled()  QWidget
setUris()  QUriDrag
setUrl()  QNetworkProtocol
setURL()  KFileReader
setUrl()  QFileDialog
setURL()  KFileDialog KURLComboBox KDirOperator KURLRequester

KURLLabel KAboutContributor
setURLCursor()  KHTMLView
setURLs()  KURLComboBox
setUseCursor()  KURLLabel

4682-1 appC.f.qc  11/20/00  15:39  Page 646



647Appendix C ✦ Methods

setUseHighlightColors()  QMotifStyle
setUser()  QUrl
setUsesBigPixmap()  QToolButton
setUsesBigPixmaps()  QMainWindow
setUsesTextLabel()  QToolButton QMainWindow
setUseTips()  KURLLabel
setValidator()  QComboBox QLineEdit QSpinBox QMultiLineEdit
setValidChars()  KRestrictedLine
setValue()  QScrollBar QRangeControl QSlider QSpinBox

KProgress KIntNumInput KDoubleNumInput KRuler
setValuePerBigMark()  KRuler
setValuePerLittleMark()  KRuler
setValuePerMediumMark()  KRuler
setValues()  KXYSelector
setVariableHeight()  QListBox
setVariableWidth()  QListBox
setVelocity()  QCanvasItem
setVersion()  KAboutDialog KAboutWidget
setVerticalStretchable()  QToolBar
setView()  KTMainWindow KDockMainWindow KDirOperator
setViewMode()  QFileDialog KFileView
setViewName()  KFileView
setViewport()  QPainter
setViewXForm()  QPainter
setVisible()  QCanvasItem
setVisibleItems()  KSplitList
setVisiblePage()  KDockTabCtl
setVScrollBarMode()  QScrollView
setWhatsThis()  QAccel KAction QMenuData
setWheelScrollLines()  QApplication
setWhiteSpaceMode()  QStyleSheetItem
setWidget()  KDockWidget
setWidth()  QPen KSplitListItem
setWindow()  QPainter QNPWidget
setWinStyleHighlightColor()  QApplication
setWordWrap()  QMultiLineEdit
setWordWrapIconText()  QIconView
setWork()  KAboutContributor
setWorldMatrix()  QPainter
setWorldXForm()  QPainter
setWrapColumnOrWidth()  QMultiLineEdit
setWrapping()  QSpinBox
setWrapPolicy()  QMultiLineEdit
setX()  QCanvasItem
setXML()  KToolBar
setXVelocity()  QCanvasItem
setY()  QCanvasItem
setYear()  KDateInternalYearSelector
setYVelocity()  QCanvasItem
setZ()  QCanvasItem
shade()  KThemeBase
shape()  QTabBar
shear()  QPainter
shortcutKey()  QAccel

4682-1 appC.f.qc  11/20/00  15:39  Page 647



648 Appendixes

shortText()  KAction
show()  QWidget QCanvasItem KJavaApplet KJavaAppletContext

KTMainWindow QDialog QTabDialog QWizard KAboutDialog
KFileDialog QSemiModal QMainWindow QTabBar QToolBar
KAboutContainerBase KDockTabBar KDockTabCtl
KDockWidget KTabCtl KJavaAppletWidget QMenuBar
QPopupMenu QProgressBar QScrollView QListView
QTableView QWidgetStack

showApplet()  KJavaAppletServer
showBigMarkLabel()  KRuler
showBigMarks()  KRuler
showButton()  KDialogBase
showButtonApply()  KDialogBase
showButtonCancel()  KDialogBase
showButtonOK()  KDialogBase
showChild()  QScrollView
showEndLabel()  KRuler
showEndMarks()  KRuler
showEvent()  QIconView
showFullScreen()  QWidget
showHiddenFiles()  KFileReader QFileDialog KDirOperator
showItem()  KToolBar
showLittleMarkLabel()  KRuler
showLittleMarks()  KRuler
showLocalProtocol()  KURLRequester
showMaximized()  QWidget
showMediumMarkLabel()  KRuler
showMediumMarks()  KRuler
showMinimized()  QWidget
showModeChanger()  KCompletionBase
showNormal()  QWidget
showOnButtonPress()  KContextMenuManager
showPage()  QTabDialog QWizard KDialogBase QTabWidget
showPointer()  KRuler
showSortIndicator()  QListView
showTabIcon()  KDockTabBar KDockTabCtl
showTile()  KDialogBase
showTinyMarks()  KRuler
showToolTips()  QIconView
shred()  KShred
signalsBlocked()  QObject
singleShot()  QTimer
size()  QWidget QResizeEvent QPixmap QPicture QIconViewItem

QCanvasRectangle QCanvas KJavaApplet
sizeHint()  KAboutContainer QFrame QWidget QCustomMenuItem

QLayoutItem QSpacerItem QWidgetItem QTextTableCell
QGridLayout QBoxLayout KTMLayout KTMainWindow
QProgressDialog QSizeGrip QCheckBox QPushButton
QRadioButton QToolButton QComboBox QLineEdit QHeader
QMainWindow QScrollBar QSlider QSpinBox KProgress
QTabBar QTabWidget QWorkspace KAboutContainerBase
KAuthIcon KButtonBox KDualColorButton KFontChooser
KNumInput KPopupTitle KTabCtl QXEmbed KFormulaEdit
QGrid QHBox KCharSelect QLabel KURLLabel QLCDNumber

4682-1 appC.f.qc  11/20/00  15:39  Page 648



649Appendix C ✦ Methods

QMenuBar QPopupMenu QProgressBar QScrollView
QIconView QSplitter QListView QListBox QMultiLineEdit
QWellArray KCharSelectTable KDateInternalMonthPicker
KDateTable QWidgetStack KAboutContributor KDatePicker
KSeparator KToolBar

sizeIncrement()  QWidget
sizeLimit()  QComboBox
sizePolicy()  QFrame QWidget QSizeGrip QCheckBox QPushButton

QRadioButton QToolButton QComboBox QLineEdit QHeader
QScrollBar QSlider QSpinBox KProgress QTabBar
QWorkspace KNumInput QXEmbed KFormulaEdit QLabel
QLCDNumber QProgressBar QScrollView QIconView
QSplitter QMultiLineEdit KToolBar

sizes()  QSplitter
sizeToFit()  KContainerLayout
slidedown()  KRuler
sliderButtonLength()  KThemeBase
sliderLength()  QMotifStyle QWindowsStyle QPlatinumStyle

KDEStyle KThemeStyle KStepStyle
sliderRect()  QSlider
slideup()  KRuler
slotAccept()  KServerSocket
slotActivated()  KColorCombo
slotAddExtension()  KApplicationPropsPage
slotApply()  KPropertiesDialog
slotAppRegistered()  KLauncher
slotBrowseExec()  KExecPropsPage
slotCancel()  KPropertiesDialog
slotClear()  KLineEditDlg KOpenWithDlg
slotDelExtension()  KApplicationPropsPage
slotDequeue()  KLauncher
slotDoHousekeeping()  KProcessController
slotEndOffset()  KRuler
slotHighlighted()  KOpenWithDlg KColorCombo
slotItemHighlighted()  KApplicationTree
slotKInitData()  KLauncher
slotMailClick()  KAboutContainerBase
slotMakeCompletion()  KCompletion
slotMouseTrack()  KAboutContainerBase
slotNewOffset()  KRuler
slotNewValue()  KRuler
slotNextMatch()  KCompletion
slotOK()  KOpenWithDlg
slotPreviousMatch()  KCompletion
slotProgress()  KSpellDlg
slotRead()  KSocket
slotSave()  KCookieServer
slotSelected()  KOpenWithDlg
slotSelectionChanged()  KApplicationTree
slotSetBackground()  KDualColorButton
slotSetCurrent()  KDualColorButton
slotSetCurrentColor()  KDualColorButton
slotSetForeground()  KDualColorButton
slotSlaveGone()  KLauncher

4682-1 appC.f.qc  11/20/00  15:39  Page 649



650 Appendixes

slotToggled()  KToolBarRadioGroup
slotUrlClick()  KAboutContainerBase
slotWrite()  KSocket
smallDecimalPoint()  QLCDNumber
smoothScrolling()  QListBox
socket()  QSocketNotifier KSocket KServerSocket
sort()  QListViewItem QIconView QListView QListBox
sortChildItems()  QListViewItem
sortDirection()  QIconView
sorting()  KDirOperator QIconView KFileView
sortMode()  KFileView
sortReversed()  KFileView KCombiView KFileDetailView
source()  QDropEvent QDragObject QTextBrowser
spacerItem()  QLayoutItem QSpacerItem
spacing()  QLayout QIconView KContainerLayout
spacingHint()  KDialog
specialValueText()  QSpinBox
spellcheck_start()  KEdit
spellcheck_stop()  KEdit
splitterWidth()  QMotifStyle QWindowsStyle KDEStyle

KThemeStyle
splitWidth()  KThemeBase
spontaneous()  QShowEvent QHideEvent
squeeze()  QTranslator
standardIcon()  QMessageBox
standby()  KSpellDlg
start()  KUniqueApplication QTimer KProcess KShellProcess

KProcIO KRootPixmap KJavaApplet KJavaAppletContext
KJavaAppletWidget KAnimWidget

startApplet()  KJavaAppletServer
startDragDistance()  QApplication
startDragTime()  QApplication
startingUp()  QApplication
startJava()  KJavaProcess
startOffset()  KContainerLayout
startScan()  KDirWatch
startServiceByDesktopName()  KApplication
startServiceByDesktopPath()  KApplication
startServiceByName()  KApplication
startTimer()  QObject
state()  QMouseEvent QWheelEvent QKeyEvent QNetworkOperation

QButton KLed
stateAfter()  QMouseEvent QKeyEvent
status()  QNPInstance KSpell KAuthIcon KRootPermsIcon

KWritePermsIcon
statusBar()  KTMainWindow QMainWindow
stencil()  QGLFormat
stepDown()  QSpinBox
stepUp()  QSpinBox
stereo()  QGLFormat
stop()  QNetworkProtocol QTimer QUrlOperator KURLCompletion

KDirLister KRootPixmap KToolBoxManager KJavaApplet
KJavaAppletContext KJavaAppletWidget KAnimWidget

stopApplet()  KJavaAppletServer

4682-1 appC.f.qc  11/20/00  15:39  Page 650



651Appendix C ✦ Methods

stopDirScan()  KDirWatch
stopJava()  KJavaProcess
stopScan()  KDirWatch
storeContainerStateBuffer()  KXMLGUIClient
storeFileAge()  QConfigDB
streamAsFile()  QNPInstance
streamDestroyed()  QNPInstance
stretch()  QTextTableCell
stringToKey()  QAccel KAccel
style()  QWidget QBrush QPen QApplication
styleSheet()  QStyleSheetItem QTextView
subtractLine()  QRangeControl
subtractPage()  QRangeControl
subtractStep()  QSlider
suffix()  QSpinBox
suggestions()  KSpell
superClasses()  QObject
supportedOperations()  QNetworkProtocol QLocalFs
supports()  KFilePropsPage KFilePermissionsPropsPage

KExecPropsPage KURLPropsPage KApplicationPropsPage
KBindingPropsPage KDevicePropsPage

supportsMargin()  QLayout
suspend()  KProcess
swapBuffers()  QGLWidget QGLContext
symbol()  KLibrary
sync()  KConfigBase KSimpleConfig
syncX()  QApplication
sysdefaults()  KCModule
tab()  QTabBar
tabArray()  QPainter
tabbarMetrics()  QCommonStyle QMotifStyle QWindowsStyle

KThemeStyle
tabCaption()  KDockTabBar
tabFont()  KDockTabCtl
tabLabel()  QTabDialog QTabWidget
table()  QTextTableCell
tableNum()  KCharSelect
tabName()  KPropsPage
tabPosition()  QTabWidget
tabStops()  QPainter
tabTextColor()  KDockTabCtl
tag()  QStyleSheet
take()  KActionCollection
takeContainerStateBuffer()  KXMLGUIClient
takeItem()  QListViewItem QIconView QListView QListBox
target()  QDragObject
tempSaveName()  KApplication
testOption()  QGLFormat
testWFlags()  QWidget
testWState()  QWidget
text()  QKeyEvent QIconViewItem QListViewItem QCheckListItem

QWhatsThis QCanvasText QClipboard KAction
QListBoxItem QMessageBox KLineEditDlg KOpenWithDlg
QButton QComboBox QLineEdit QSpinBox KFormulaEdit

4682-1 appC.f.qc  11/20/00  15:39  Page 651



652 Appendixes

QLabel KURLLabel QMenuData QListBox QTextView
QMultiLineEdit

textColor()  KDockTabBar
textEnabled()  KProgress
textFlags()  QCanvasText
textFor()  QWhatsThis
textFormat()  QMessageBox QLabel QTextView
textLabel()  QToolButton
textLine()  QMultiLineEdit
textRect()  QIconViewItem
tickInterval()  QSlider
tickmarks()  QSlider
tile()  QCanvas QWorkspace
tileHeight()  QCanvas
tilesHorizontally()  QCanvas
tilesVertically()  QCanvas
tileWidth()  QCanvas
timerId()  QTimerEvent
title()  QWizard KPopupTitle QGroupBox KPopupMenu
titlePixmap()  KPopupMenu
toggle()  QButton QPushButton QToolButton KToolBarButton KLed
toggleActLink()  KHTMLView
toggleButton()  KToolBar
toggleState()  KLed
toggleType()  QButton
toolBar()  KTMainWindow KFileDialog
toolBars()  QMainWindow
toolBarsMovable()  QMainWindow
toolTip()  KAction
toolTipGroup()  QMainWindow
toolTipString()  KDockWidget
top()  QIntValidator QDoubleValidator KIntValidator

KFloatValidator KWriteView
top_home()  KWriteView
toPage()  QPrinter
topItem()  QListBox
topLevelWidget()  QWidget
topLevelWidgets()  QApplication
topOfView()  KWriteView
toString()  QUrl
totalHeight()  QListViewItem
totalHeightForWidth()  QLayout
totalMaximumSize()  QLayout
totalMinimumSize()  QLayout
totalSizeHint()  QLayout
totalSteps()  QProgressDialog QProgressBar
tr()  QObject
tracking()  QHeader QScrollBar QSlider
translate()  QPainter QApplication
treeStepSize()  QListView
triggerUpdate()  QListView QListBox
trueMatrix()  QPixmap
tryExec()  KDesktopFile
type()  QEvent QCheckListItem QSocketNotifier QIOWatch

4682-1 appC.f.qc  11/20/00  15:39  Page 652



653Appendix C ✦ Methods

uglyForm()  KFormulaEdit
uncached()  KThemeBase
undo()  QMultiLineEdit
undock()  KDockWidget
undoDepth()  QMultiLineEdit
ungrabKey()  KGlobalAccel
unicodeUriToUri()  QUriDrag
unloadLibrary()  KLibLoader
unlock()  QConfigDB
unplug()  KAction KActionMenu KActionSeparator
unplugAccel()  KAction
unplugActionList()  KXMLGUIClient
unPolish()  KDEStyle KThemeStyle KStepStyle
unsetCursor()  QWidget
unsetFont()  QWidget
unsetPalette()  QWidget
unsetWindow()  QNPWidget
unsqueeze()  QTranslator
update()  QWidget QCanvas KAction
updateAccelList()  KWKeyConfigTab
updateAccessed()  KThemePixmap
updateBackground()  KDialogBase
updateContents()  QScrollView QIconView
updateDirectory()  KDirLister
updateGeometry()  QWidget
updateGL()  QGLWidget
updateItem()  KAccel QMenuBar QMenuData QPopupMenu
updateLayout()  KPanelApplet
updateMinimumHeight()  KJanusWidget
updateName()  KDockSplitter
updateOverlayGL()  QGLWidget
updateRects()  KToolBar
updateScrollBars()  QScrollView
updateStatus()  KAuthIcon KRootPermsIcon KWritePermsIcon
updateUrl()  KPropertiesDialog
updateView()  KFileIconView KFileView KCombiView KFilePreview

KFileDetailView
uriToLocalFile()  QUriDrag
uriToUnicodeUri()  QUriDrag
url()  QNetworkProtocol KDirLister QFileDialog KDirOperator

KURLRequester KURLLabel
urlCursor()  KHTMLView
urls()  KURLComboBox
useGlobalKeyBindings()  KCompletionBase
useHighlightColors()  QMotifStyle
user()  QUrl
userAgent()  QNPInstance
userEvent()  KNotifyClient
usesBigPixmap()  QToolButton
usesBigPixmaps()  QMainWindow
usesTextLabel()  QToolButton QMainWindow
validate()  QValidator QIntValidator QDoubleValidator

KDateValidator KIntValidator KFloatValidator
validateAndSet()  QLineEdit

4682-1 appC.f.qc  11/20/00  15:39  Page 653



654 Appendixes

validator()  QComboBox QLineEdit QSpinBox QMultiLineEdit
value()  QScrollBar QRangeControl QSlider QSpinBox

KIntNumInput KDoubleNumInput QLCDNumber
variableHeight()  QListBox
variableWidth()  QListBox
version()  QConfigDB
verticalPixmap()  KThemeCache
verticalScrollBar()  QScrollView
view()  KTMainWindow KDirOperator
viewList()  KHTMLView
viewMode()  QFileDialog KFileView
viewName()  KFileView
viewport()  QPainter QScrollView
viewportPaintEvent()  QListBox
viewportSize()  QScrollView
viewportToContents()  QScrollView
visible()  QCanvasItem
visibleHeight()  QScrollView
visiblePage()  KDockTabCtl
visiblePageId()  KDockTabCtl
visibleRect()  QWidget
visibleWidget()  QWidgetStack
visibleWidth()  QScrollView
vScrollBarMode()  QScrollView
wakeUpGuiThread()  QApplication
warning()  QMessageBox
wasCancelled()  QProgressDialog
watch()  QConfigDB
whatsThis()  QAccel KAction QMainWindow QMenuData
whatsThisButton()  QWhatsThis
wheelScrollLines()  QApplication
whiteSpaceMode()  QStyleSheetItem
widget()  QLayoutItem QWidgetItem QNPInstance KFileIconView

KFileView KCombiView KFilePreview KFileDetailView
QWidgetStack KContainerLayout

widgetAt()  QApplication
width()  QWidget QPen QPixmap QIconViewItem QListViewItem

QCheckListItem QCanvasRectangle QCanvasEllipse
QCanvas QListBoxItem QListBoxText QListBoxPixmap
KToolBoxManager

widthChanged()  QListViewItem
widthDlg()  KSpell
widthForHeight()  KPanelApplet KToolBar
window()  QPainter
windowList()  QWorkspace
windows()  KWinModule
windowsSorted()  KWinModule
winEventFilter()  QApplication
winFocus()  QApplication
winId()  QWidget
winMouseButtonUp()  QApplication

4682-1 appC.f.qc  11/20/00  15:39  Page 654



655Appendix C ✦ Methods

winStyleHighlightColor()  QApplication
winVersion()  QApplication
wmapper()  QWidget
wordLeft()  KWriteView
wordRight()  KWriteView
wordWrap()  QMultiLineEdit
wordWrapIconText()  QIconView
worldMatrix()  QPainter
wrapColumnOrWidth()  QMultiLineEdit
wrapping()  QSpinBox
wrapPolicy()  QMultiLineEdit
write()  QNPInstance KFileBookmarkManager
writeConfig()  KDockManager KTextPrintConfig KWCommand

KWCommandGroup KWCommandDispatcher
writeDockConfig()  KDockMainWindow
writeEntry()  KConfigBase
writeGlobalSettings()  KSpellConfig
writeReady()  QNPInstance
writeSettings()  KAccel KGlobalAccel
writeStdin()  KProcess KProcIO
x()  QWidget QMouseEvent QWheelEvent QIconViewItem

QCanvasItem KToolBoxManager
x11AppCells()  QPaintDevice
x11AppColormap()  QPaintDevice
x11AppDefaultColormap()  QPaintDevice
x11AppDefaultVisual()  QPaintDevice
x11AppDepth()  QPaintDevice
x11AppDisplay()  QPaintDevice
x11AppDpiX()  QPaintDevice
x11AppDpiY()  QPaintDevice
x11AppScreen()  QPaintDevice
x11AppVisual()  QPaintDevice
x11Cells()  QPaintDevice
x11ClientMessage()  QApplication
x11Colormap()  QPaintDevice
x11DefaultColormap()  QPaintDevice
x11DefaultVisual()  QPaintDevice
x11Depth()  QPaintDevice
x11Display()  QPaintDevice
x11EventFilter()  QApplication KGlobalAccel
x11ProcessEvent()  QApplication
x11Screen()  QPaintDevice
x11SetAppDpiX()  QPaintDevice
x11SetAppDpiY()  QPaintDevice
x11Visual()  QPaintDevice
xForm()  QPainter QPixmap QBitmap
xFormDev()  QPainter
xioErrhandler()  KApplication
xmlFile()  KXMLGUIClient
xtWidget()  QXtWidget
xValue()  KXYSelector

4682-1 appC.f.qc  11/20/00  15:39  Page 655



656 Appendixes

xVelocity()  QCanvasItem
y()  QWidget QMouseEvent QWheelEvent QIconViewItem

QCanvasItem KToolBoxManager
yearEnteredSlot()  KDateInternalYearSelector
yValue()  KXYSelector
yVelocity()  QCanvasItem
z()  QCanvasItem

✦ ✦ ✦

4682-1 appC.f.qc  11/20/00  15:39  Page 656



Returned By

Objects are normally constructed by directly calling the
constructor for the class, but objects can also be pro-

duced by calling either a static method of some class or a
method of an object.

There are different reasons for returning objects from a
method call. It is common to return an object just to contain a
collection of returned values. Sometimes the returned value is
an object that is being used internally by the object producing
it, and sometimes the method acts as a kind of factory that
creates an object using information that has been stored in
the parent object.

This appendix lists all of the methods that return objects,
with three exceptions. The methods that return QString,
QCString, and QSize objects are not included in this list;
there are several hundred methods that return each of these
objects, making such a listing virtually useless.

Methods that Return Objects
KAboutContainer

KAboutContainerBase::addContainer()
KAboutContainerBase::addContainerPage()
KAboutDialog::addContainer()
KAboutDialog::addContainerPage()

KAboutData
KInstance::aboutData()

KAction
KActionCollection::action()
KActionCollection::take()
KStdAction::aboutApp()
KStdAction::aboutKDE()
KStdAction::action()
KStdAction::actualSize()
KStdAction::addBookmark()
KStdAction::back()
KStdAction::close()
KStdAction::configureToolbars()

DDA P P E N D I X

✦ ✦ ✦ ✦

4682-1 appD.f.qc  11/13/00  14:16  Page 657



658 Appendixes

KStdAction::copy()
KStdAction::cut()
KStdAction::editBookmarks()
KStdAction::find()
KStdAction::findNext()
KStdAction::findPrev()
KStdAction::firstPage()
KStdAction::fitToHeight()
KStdAction::fitToPage()
KStdAction::fitToWidth()
KStdAction::forward()
KStdAction::goTo()
KStdAction::gotoLine()
KStdAction::gotoPage()
KStdAction::help()
KStdAction::helpContents()
KStdAction::home()
KStdAction::keyBindings()
KStdAction::lastPage()
KStdAction::mail()
KStdAction::next()
KStdAction::open()
KStdAction::openNew()
KStdAction::paste()
KStdAction::preferences()
KStdAction::print()
KStdAction::printPreview()
KStdAction::prior()
KStdAction::quit()
KStdAction::redisplay()
KStdAction::redo()
KStdAction::replace()
KStdAction::reportBug()
KStdAction::revert()
KStdAction::save()
KStdAction::saveAs()
KStdAction::saveOptions()
KStdAction::selectAll()
KStdAction::spelling()
KStdAction::undo()
KStdAction::up()
KStdAction::whatsThis()
KStdAction::zoom()
KStdAction::zoomIn()
KStdAction::zoomOut()
KXMLGUIClient::action()

KActionCollection
KAction::parentCollection()
KEditToolbarWidget::actionCollection()
KXMLGUIClient::actionCollection()
KDirOperator::actionCollection()

4682-1 appD.f.qc  11/13/00  14:16  Page 658



659Appendix D ✦ Returned By

KAnimWidget
KToolBar::animatedWidget()

KApplication
KApplication::kApplication()

KCModule
KURIFilterPlugin::configModule()

KCharsets
KGlobal::charsets()
KInstance::charsets()

KCmdLineArgs
KCmdLineArgs::parsedArgs()

KColorDrag
KColorDrag::makeDrag()

KCompTreeNode
KCompTreeNode::childAt()
KCompTreeNode::find()
KCompTreeNode::firstChild()
KCompTreeNode::insert()
KCompTreeNode::lastChild()

KCompletion
KCompletionBase::completionObject()
KDirOperator::completionObject()
KDirOperator::dirCompletionObject()

KConfig
KApplication::sessionConfig()
KGlobal::config()
KInstance::config()

KConfigBase
KConfigGroupSaver::config()

KCookieList
KCookieJar::getCookieList()

KDialogBase
KPropertiesDialog::dialog()

KDirWatch
KDirWatch::self()

KDockManager
KDockWidget::dockManager()
KDockMainWindow::manager()

4682-1 appD.f.qc  11/13/00  14:16  Page 659



660 Appendixes

KDockWidget
KDockWidgetAbstractHeaderDrag::dockWidget()
KDockWidget::manualDock()
KDockManager::findWidgetParentDock()
KDockManager::getDockWidgetFromName()
KDockMainWindow::createDockWidget()
KDockMainWindow::getMainDockWidget()

KFileBookmark
KFileBookmarkManager::getBookmark()
KFileBookmarkManager::getRoot()

KFileDialog
KURLRequester::fileDialog()

KFileItem
KDirLister::find()
KDirLister::rootItem()
KPropertiesDialog::item()

KFileManager
KFileManager::getFileManager()

KFileReader
KDirOperator::fileReader()

KFileView
KDirOperator::view()

KFileViewItem
KFileListViewItem::fileInfo()
KFileIconViewItem::fileInfo()
KFileView::firstItem()
KFileViewItemList::findByName()
KFileViewItem::next()

KFileViewItemList
KDirOperator::selectedItems()
KFileReader::currentContents()
KFileView::items()
KFileView::selectedItems()

KFormula
KFormulaEdit::getFormula()

KHTMLPart
KHTMLPart::parentPart()
KHTMLView::part()

KHTMLPartBrowserExtension
KHTMLPart::browserExtension()

4682-1 appD.f.qc  11/13/00  14:16  Page 660



661Appendix D ✦ Returned By

KHTMLSettings
KHTMLFactory::defaultHTMLSettings()

KHTMLView
KHTMLPart::view()

KIcon
KIconTheme::iconPath()

KIconLoader
KGlobal::iconLoader()
KInstance::iconLoader()

KIconTheme
KIconLoader::theme()

KInstance
KGlobal::instance()
KActionCollection::instance()
KXMLGUIBuilder::builderInstance()
KXMLGUIClient::instance()
KHTMLFactory::instance()
KWriteFactory::instance()

KJSProxy
KHTMLPart::jScript()

KJavaAppletContext
KJavaAppletContext::getDefaultContext()

KJavaAppletServer
KJavaAppletServer::allocateJavaServer()

KLibFactory
KLibrary::factory()
KLibLoader::factory()

KLibLoader
KLibLoader::self()

KLibrary
KLibLoader::library()

KLineEdit
KToolBar::getLined()
KURLRequester::lineEdit()

KLocale
KGlobal::locale()

KMenuBar
KTMainWindow::menuBar()

4682-1 appD.f.qc  11/13/00  14:16  Page 661



662 Appendixes

KMimeMagic
KMimeMagic::self()

KMimeMagicResult
KMimeMagic::findBufferFileType()
KMimeMagic::findBufferType()
KMimeMagic::findFileType()

KOpenWithHandler
KOpenWithHandler::getOpenWithHandler()

KPanelMenu
KPanelMenu::insertMenu()

KPixmap
KPixmapEffect::blend()
KPixmapEffect::channelIntensity()
KPixmapEffect::contrast()
KPixmapEffect::createTiled()
KPixmapEffect::desaturate()
KPixmapEffect::dither()
KPixmapEffect::fade()
KPixmapEffect::gradient()
KPixmapEffect::hash()
KPixmapEffect::intensity()
KPixmapEffect::pattern()
KPixmapEffect::toGray()
KPixmapEffect::unbalancedGradient()

KProtocolManager
KProtocolManager::self()

KRecentFilesAction
KStdAction::openRecent()

KServiceGroup
KBuildServiceGroupFactory::addNewEntry()
KBuildServiceGroupFactory::createEntry()

KServiceType
KBuildServiceTypeFactory::findServiceTypeByName()

KServiceTypeProfile
KServiceTypeProfile::serviceTypeProfile()

KSpellConfig
KSpell::ksConfig()
KWrite::ksConfig()

KStandardDirs
KGlobal::dirs()
KInstance::dirs()

4682-1 appD.f.qc  11/13/00  14:16  Page 662



663Appendix D ✦ Returned By

KStatusBar
KTMainWindow::statusBar()

KStyle
KApplication::kstyle()

KSycoca
KSycoca::self()

KSycocaEntry
KBuildServiceFactory::createEntry()
KBuildServiceTypeFactory::createEntry()
KBuildImageIOFactory::createEntry()
KSycocaFactory::createEntry()

KSycocaResourceList
KSycocaFactory::resourceList()

KTarDirectory
KTarBase::directory()

KTarEntry
KTarDirectory::entry()

KThemePixmap
KThemeCache::horizontalPixmap()
KThemeCache::pixmap()
KThemeCache::verticalPixmap()
KThemeBase::borderPixmap()
KThemeBase::scalePixmap()
KThemeBase::uncached()

KToggleAction
KStdAction::showMenubar()
KStdAction::showStatusbar()
KStdAction::showToolbar()

KToolBar
KTMainWindow::toolBar()
KFileDialog::toolBar()

KToolBarButton
KToolBar::getButton()

KTrader
KTrader::self()

KURIFilter
KURIFilter::self()

KURL
KCmdLineArgs::makeURL()
KCmdLineArgs::url()

4682-1 appD.f.qc  11/13/00  14:16  Page 663



664 Appendixes

KDirLister::url()
KFileItem::url()
KURIFilterData::uri()
KURIFilter::filteredURI()
KDirOperator::url()
KFileDialog::baseURL()
KFileDialog::getOpenURL()
KFileDialog::getSaveURL()
KFileDialog::selectedURL()
KPropertiesDialog::currentDir()
KPropertiesDialog::kurl()
KURLRequesterDlg::getURL()
KURLRequesterDlg::selectedURL()
KHTMLPart::baseURL()
KHTMLPart::completeURL()

KWCommand
KWCommandGroup::addCommand()

KWCommandData
KWCommandGroupData::command()
KWCommandGroupData::containsAccel()

KWCommandGroup
KWCommandDispatcher::addGroup()

KWCommandGroupData
KWKeyData::group()

KWCursor
KWBookmark::cursor()

KWLineAttribute
KWLineAttributeList::first()
KWLineAttributeList::next()

KWriteDoc
KWrite::doc()

KWriteView
KWrite::view()

KWriteWidget
KWrite::widget()

KXMLGUIBuilder
KXMLGUIClient::clientBuilder()

KXMLGUIClient
KXMLGUIClient::parentClient()

4682-1 appD.f.qc  11/13/00  14:16  Page 664



665Appendix D ✦ Returned By

KXMLGUIFactory
KTMainWindow::guiFactory()
KXMLGUIClient::factory()

KeyValueMap
QConfigDB::get()

QBaseBucket
QBaseBucket::getNext()

QBitArray
QBitArray::~()
QBitArray::copy()

QBitmap
QBitmap::xForm()
QCursor::bitmap()
QCursor::mask()
QPixmap::createHeuristicMask()
QPixmap::mask()
QVariant::asBitmap()
QVariant::toBitmap()

QBrush
QPainter::brush()
QColorGroup::brush()
QPalette::brush()
QVariant::asBrush()
QVariant::toBrush()
QIconView::itemTextBackground()
QTextView::paper()
QWellArray::cellBrush()
QCanvasPolygonalItem::brush()
KThemeBase::pixmapBrush()

QButton
QButtonGroup::find()
QButtonGroup::selected()

QButtonGroup
QButton::group()

QCanvas
QCanvasItem::canvas()
QCanvasView::canvas()

QCanvasItemList
QCanvasItem::collisions()
QCanvas::allItems()
QCanvas::collisions()

4682-1 appD.f.qc  11/13/00  14:16  Page 665



666 Appendixes

QCanvasPixmap
QCanvasPixmapArray::image()

QChar
QChar::lower()
QChar::mirroredChar()
QChar::upper()
QString::at()
KCharsets::fromEntity()
KCharSelectTable::chr()
KCharSelect::chr()

QClipboard
QApplication::clipboard()

QColor
QColorDialog::getColor()
QApplication::winStyleHighlightColor()
QBrush::color()
QColor::dark()
QColor::light()
QMovie::backgroundColor()
QPainter::backgroundColor()
QColorGroup::background()
QColorGroup::base()
QColorGroup::brightText()
QColorGroup::button()
QColorGroup::buttonText()
QColorGroup::color()
QColorGroup::dark()
QColorGroup::foreground()
QColorGroup::highlight()
QColorGroup::highlightedText()
QColorGroup::light()
QColorGroup::mid()
QColorGroup::midlight()
QColorGroup::shadow()
QColorGroup::text()
QPalette::color()
QPen::color()
QTextCharFormat::color()
QStyleSheetItem::color()
QVariant::asColor()
QVariant::toColor()
QWidget::backgroundColor()
QWidget::foregroundColor()
QTextView::linkColor()
QGLContext::overlayTransparentColor()
QCanvas::backgroundColor()
QCanvasText::color()
KApplication::activeTextColor()
KApplication::activeTitleColor()
KApplication::inactiveTextColor()

4682-1 appD.f.qc  11/13/00  14:16  Page 666



667Appendix D ✦ Returned By

KApplication::inactiveTitleColor()
KColorGroup::background()
KColorGroup::base()
KColorGroup::dark()
KColorGroup::foreground()
KColorGroup::light()
KColorGroup::mid()
KColorGroup::text()
KConfigBase::readColorEntry()
KGlobalSettings::toolBarHighlightColor()
KPalette::color()
KRootProp::readColorEntry()
KColorButton::color()
KColorCells::color()
KColorDialog::color()
KColorDialog::grabColor()
KDockTabBar::textColor()
KDockTabCtl::tabTextColor()
KDualColorButton::background()
KDualColorButton::currentColor()
KDualColorButton::foreground()
KLed::color()
KProgress::barColor()
KFormula::getBackColor()
KFormula::getForeColor()
KHTMLSettings::bgColor()
KHTMLSettings::linkColor()
KHTMLSettings::textColor()
KHTMLSettings::vLinkColor()
KWriteDoc::colors()

QColorGroup
QPalette::active()
QPalette::disabled()
QPalette::inactive()
QPalette::normal()
QVariant::asColorGroup()
QVariant::toColorGroup()
QWidget::colorGroup()
QTextView::paperColorGroup()
KThemeBase::colorGroup()

QComboBox
KToolBar::getCombo()

QCursor
QApplication::overrideCursor()
QVariant::asCursor()
QVariant::toCursor()
QWidget::cursor()
KCursor::arrowCursor()
KCursor::blankCursor()
KCursor::crossCursor()

4682-1 appD.f.qc  11/13/00  14:16  Page 667



668 Appendixes

KCursor::handCursor()
KCursor::ibeamCursor()
KCursor::sizeAllCursor()
KCursor::sizeBDiagCursor()
KCursor::sizeFDiagCursor()
KCursor::sizeHorCursor()
KCursor::sizeVerCursor()
KCursor::upArrowCursor()
KCursor::waitCursor()
KHTMLPart::urlCursor()
KHTMLView::urlCursor()

QCustomMenuItem
QMenuItem::custom()

QDataStream
QDataStream::readBytes()
QDataStream::readRawBytes()
QDataStream::writeBytes()
QDataStream::writeRawBytes()
QGDict::read()
QGDict::write()
QGList::read()
QGList::write()
QGVector::read()
QGVector::write()
KSaveFile::dataStream()
KTempFile::dataStream()
KSycoca::findEntry()
KSycoca::findFactory()

QDate
QDate::addDays()
QDateTime::date()
KLocale::readDate()
KDatePicker::getDate()
KDateTable::getDate()

QDateTime
QUrlInfo::lastModified()
QUrlInfo::lastRead()
QDateTime::addDays()
QDateTime::addSecs()
QDateTime::currentDateTime()
QFileInfo::lastModified()
QFileInfo::lastRead()
KConfigBase::readDateTimeEntry()
KTarEntry::datetime()

QDir
QFileDialog::dir()
QDir::current()

4682-1 appD.f.qc  11/13/00  14:16  Page 668



669Appendix D ✦ Returned By

QDir::home()
QDir::root()
QFileInfo::dir()

QDomAttr
QDomNode::toAttr()
QDomDocument::createAttribute()
QDomElement::attributeNode()
QDomElement::removeAttributeNode()
QDomElement::setAttributeNode()

QDomCDATASection
QDomNode::toCDATASection()
QDomDocument::createCDATASection()

QDomCharacterData
QDomNode::toCharacterData()

QDomComment
QDomDocument::createComment()

QDomDocument
QDomNode::ownerDocument()
QDomNode::toDocument()
KXMLGUIClient::document()

QDomDocumentFragment
QDomNode::toDocumentFragment()
QDomDocument::createDocumentFragment()

QDomDocumentType
QDomNode::toDocumentType()
QDomDocument::doctype()

QDomElement
QDomNode::toElement()
QDomDocument::createElement()
QDomDocument::documentElement()

QDomEntity
QDomNode::toEntity()

QDomEntityReference
QDomNode::toEntityReference()
QDomDocument::createEntityReference()

QDomImplementation
QDomDocument::implementation()

QDomMimeSourceFactory
QDomDocument::mimeSourceFactory()
QDomMimeSourceFactory::defaultDomFactory()

4682-1 appD.f.qc  11/13/00  14:16  Page 669



670 Appendixes

QDomNamedNodeMap
QDomNode::attributes()
QDomDocumentType::entities()
QDomDocumentType::notations()
QDomElement::attributes()

QDomNode
QDomNode::appendChild()
QDomNode::cloneNode()
QDomNode::firstChild()
QDomNode::insertAfter()
QDomNode::insertBefore()
QDomNode::lastChild()
QDomNode::namedItem()
QDomNode::nextSibling()
QDomNode::parentNode()
QDomNode::previousSibling()
QDomNode::removeChild()
QDomNode::replaceChild()
QDomNodeList::item()
QDomNamedNodeMap::item()
QDomNamedNodeMap::namedItem()
QDomNamedNodeMap::removeNamedItem()
QDomNamedNodeMap::setNamedItem()

QDomNodeList
QDomNode::childNodes()
QDomDocument::elementsByTagName()

QDomNotation
QDomNode::toNotation()

QDomProcessingInstruction
QDomNode::toProcessingInstruction()
QDomDocument::createProcessingInstruction()

QDomText
QDomNode::toText()
QDomDocument::createTextNode()
QDomText::splitText()

QFile
KSaveFile::file()
KTempFile::file()

QFileIconProvider
QFileDialog::iconProvider()

QFont
QFontDialog::getFont()
QApplication::font()
QFontDatabase::font()
QFont::defaultFont()

4682-1 appD.f.qc  11/13/00  14:16  Page 670



671Appendix D ✦ Returned By

QFontInfo::font()
QPainter::font()
QTextCharFormat::font()
QVariant::asFont()
QVariant::toFont()
QWidget::font()
QToolTip::font()
QCanvasText::font()
QDomElement::toFont()
KCharsets::fontForChar()
KConfigBase::readFontEntry()
KGlobal::fixedFont()
KGlobal::generalFont()
KGlobal::menuFont()
KGlobal::toolBarFont()
KRootProp::readFontEntry()
KDockTabCtl::tabFont()
KFontChooser::font()
KFontDialog::font()
KFormula::getFont()

QFontInfo
QPainter::fontInfo()
QWidget::fontInfo()

QFontMetrics
QApplication::fontMetrics()
QPainter::fontMetrics()
QWidget::fontMetrics()

QFrame
KAboutContainerBase::addEmptyPage()
KAboutContainerBase::addTextPage()
KAboutDialog::addPage()
KAboutDialog::addTextPage()
KDialogBase::addPage()
KDialogBase::makeMainWidget()
KDialogBase::plainPage()

QGLContext
QGLContext::currentContext()
QGLWidget::context()
QGLWidget::overlayContext()

QGLFormat
QGLFormat::defaultFormat()
QGLFormat::defaultOverlayFormat()
QGLContext::format()
QGLWidget::format()

QGrid
KDialogBase::addGridPage()
KDialogBase::makeGridMainWidget()

4682-1 appD.f.qc  11/13/00  14:16  Page 671



672 Appendixes

QHBox
KDialogBase::addHBoxPage()
KDialogBase::makeHBoxMainWidget()

QHeader
QListView::header()

QIODevice
QImageIO::ioDevice()
QPNGImageWriter::device()
QDataStream::device()
QTextStream::device()

QIconSet
QVariant::asIconSet()
QVariant::toIconSet()
QHeader::iconSet()
QMenuItem::iconSet()
QMenuData::iconSet()
QPushButton::iconSet()
QTab::iconSet()
QToolButton::iconSet()
QToolButton::offIconSet()
QToolButton::onIconSet()
KAction::iconSet()

QIconView
QIconViewItem::iconView()

QIconViewItem
QIconViewItem::nextItem()
QIconViewItem::prevItem()
QIconView::currentItem()
QIconView::findFirstVisibleItem()
QIconView::findItem()
QIconView::findLastVisibleItem()
QIconView::firstItem()
QIconView::lastItem()

QImage
QImageDecoder::image()
QClipboard::image()
QImage::convertBitOrder()
QImage::convertDepth()
QImage::convertDepthWithPalette()
QImage::copy()
QImage::createAlphaMask()
QImage::createHeuristicMask()
QImage::mirror()
QImage::smoothScale()
QImage::swapRGB()
QImageIO::image()

4682-1 appD.f.qc  11/13/00  14:16  Page 672



673Appendix D ✦ Returned By

QPixmap::convertToImage()
QVariant::asImage()
QVariant::toImage()
KIconEffect::apply()
KIconEffect::doublePixels()
KImageEffect::blend()
KImageEffect::channelIntensity()
KImageEffect::contrast()
KImageEffect::desaturate()
KImageEffect::dither()
KImageEffect::fade()
KImageEffect::flatten()
KImageEffect::gradient()
KImageEffect::hash()
KImageEffect::intensity()
KImageEffect::modulate()
KImageEffect::toGray()
KImageEffect::unbalancedGradient()
KPixmapIO::convertToImage()
KPixmapIO::getImage()

QImageFormat
QImageFormatType::decoderFor()

QImageFormatType
QImageDecoder::format()

QJpUnicodeConv
QJpUnicodeConv::newConverter()

QLayout
QLayoutItem::layout()
QLayout::layout()
QWidget::layout()

QLayoutItem
QGLayoutIterator::current()
QGLayoutIterator::next()
QGLayoutIterator::takeCurrent()
KTMLayoutIterator::current()
KTMLayoutIterator::next()
KTMLayoutIterator::takeCurrent()

QLayoutIterator
QLayoutItem::iterator()
QLayout::iterator()
QGridLayout::iterator()
QBoxLayout::iterator()
KTMLayout::iterator()

QLineEdit
QComboBox::lineEdit()

4682-1 appD.f.qc  11/13/00  14:16  Page 673



674 Appendixes

QListBox
QComboBox::listBox()
QListBoxItem::listBox()

QListBoxItem
QListBox::findItem()
QListBox::firstItem()
QListBox::item()
QListBox::itemAt()
QListBoxItem::next()
QListBoxItem::prev()

QListView
QListViewItem::listView()

QListViewItem
QListViewItem::firstChild()
QListViewItem::itemAbove()
QListViewItem::itemBelow()
QListViewItem::nextSibling()
QListViewItem::parent()
QListView::currentItem()
QListView::firstChild()
QListView::itemAt()
QListView::selectedItem()
QListViewItemIterator::current()

QMainWindow
QToolBar::mainWindow()

QMenuBar
QLayout::menuBar()
QMainWindow::menuBar()

QMenuItem
QMenuData::findItem()

QMetaObject
QMetaObject::new_metaobject()
QMetaObject::superClass()
QObject::metaObject()

QMetaProperty
QMetaObject::new_metaproperty()
QMetaObject::property()

QMimeSource
QClipboard::data()
QMimeSourceFactory::data()

QMimeSourceFactory
QMimeSourceFactory::defaultFactory()
QTextView::mimeSourceFactory()

4682-1 appD.f.qc  11/13/00  14:16  Page 674



675Appendix D ✦ Returned By

QMovie
QLabel::movie()

QNPInstance
QNPStream::instance()
QNPWidget::instance()
QNPlugin::newInstance()

QNPStream
QNPInstance::newStream()

QNPWidget
QNPInstance::newWindow()
QNPInstance::widget()

QNPlugin
QNPlugin::actual()
QNPlugin::create()

QNetworkOperation
QNetworkProtocol::operationInProgress()
QUrlOperator::get()
QUrlOperator::listChildren()
QUrlOperator::mkdir()
QUrlOperator::put()
QUrlOperator::remove()
QUrlOperator::rename()

QNetworkProtocol
QNetworkProtocolFactoryBase::createObject()
QNetworkProtocolFactory::createObject()
QNetworkProtocol::getNetworkProtocol()

QObject
QConnection::object()
QChildEvent::child()
QGuardedPtrPrivate::object()
QObject::child()
QObject::parent()
KLibFactory::create()
KAction::component()

QObjectList
QObject::children()
QObject::objectTrees()
QObject::queryList()

QPaintDevice
QPainter::device()
QGLContext::device()

QPalette
QApplication::palette()
QPalette::copy()

4682-1 appD.f.qc  11/13/00  14:16  Page 675



676 Appendixes

QVariant::asPalette()
QVariant::toPalette()
QWidget::palette()
QToolTip::palette()

QPen
QPainter::pen()
QCanvasPolygonalItem::pen()
QDomElement::toPen()

QPixmap
QFileIconProvider::pixmap()
QMessageBox::iconPixmap()
QMessageBox::standardIcon()
QBrush::pixmap()
QClipboard::pixmap()
QDragObject::pixmap()
QIconSet::pixmap()
QMovie::framePixmap()
QPixmapCache::find()
QPixmap::grabWidget()
QPixmap::grabWindow()
QPixmap::xForm()
QVariant::asPixmap()
QVariant::toPixmap()
QWidget::backgroundPixmap()
QWidget::icon()
QButton::pixmap()
QComboBox::pixmap()
QIconViewItem::pixmap()
QLabel::pixmap()
QListBox::pixmap()
QListBoxItem::pixmap()
QListBoxPixmap::pixmap()
QListViewItem::pixmap()
QMenuItem::pixmap()
QMenuData::pixmap()
QGLWidget::renderPixmap()
QCanvas::backgroundPixmap()
QDomMimeSourceFactory::pixmap()
KApplication::icon()
KApplication::miniIcon()
KIconEffect::apply()
KIconLoader::loadIcon()
KWM::icon()
KWM::miniIcon()
KFileItem::pixmap()
KMimeType::pixmap()
KMimeType::pixmapForURL()
KService::pixmap()
KAction::pixmap()
KDialogBaseTile::get()
KDialogBase::getBackgroundTile()
KPixmapIO::convertToPixmap()

4682-1 appD.f.qc  11/13/00  14:16  Page 676



677Appendix D ✦ Returned By

KPopupTitle::icon()
KPopupMenu::titlePixmap()
KPopupTitle::icon()
KPopupMenu::titlePixmap()
KProgress::barPixmap()
KThemePixmap::border()
KURLLabel::pixmap()
KFileViewItem::pixmap()

QPoint
QCursor::hotSpot()
QCursor::pos()
QDragObject::pixmapHotSpot()
QMouseEvent::globalPos()
QMouseEvent::pos()
QWheelEvent::globalPos()
QWheelEvent::pos()
QMoveEvent::oldPos()
QMoveEvent::pos()
QDropEvent::pos()
QImage::offset()
QPainter::brushOrigin()
QPainter::pos()
QPainter::xForm()
QPainter::xFormDev()
QPoint::*()
QRect::bottomLeft()
QRect::bottomRight()
QRect::center()
QRect::topLeft()
QRect::topRight()
QVariant::asPoint()
QVariant::toPoint()
QWidget::mapFromGlobal()
QWidget::mapFromParent()
QWidget::mapToGlobal()
QWidget::mapToParent()
QWidget::pos()
QWMatrix::map()
QIconViewItem::pos()
QScrollView::contentsToViewport()
QScrollView::viewportToContents()
QDomElement::toPoint()
KConfigBase::readPointEntry()

QPointArray
QPainter::xForm()
QPainter::xFormDev()
QVariant::asPointArray()
QVariant::toPointArray()
QWMatrix::map()
QCanvasPolygonalItem::areaPoints()
QCanvasPolygonalItem::areaPointsAdvanced()
QCanvasRectangle::areaPoints()

4682-1 appD.f.qc  11/13/00  14:16  Page 677



678 Appendixes

QCanvasPolygon::areaPoints()
QCanvasPolygon::points()
QCanvasEllipse::areaPoints()

QPopupMenu
QMenuItem::popup()
QPushButton::popup()
QToolButton::popup()
KSelectAction::popupMenu()
KActionMenu::popupMenu()
KDockManager::dockHideShowMenu()
KDockMainWindow::dockHideShowMenu()
KHelpMenu::menu()
KTMainWindow::helpMenu()
KToolBarButton::popup()

QPrinter
QPrintDialog::printer()

QPushButton
QWizard::backButton()
QWizard::cancelButton()
QWizard::finishButton()
QWizard::helpButton()
QWizard::nextButton()
KButtonBox::addButton()
KDialogBase::actionButton()

QRect
QLayoutItem::geometry()
QSpacerItem::geometry()
QWidgetItem::geometry()
QLayout::geometry()
QPaintEvent::rect()
QDragMoveEvent::answerRect()
QFontMetrics::boundingRect()
QImage::rect()
QGridLayout::cellGeometry()
QMovie::getValidRect()
QPainter::boundingRect()
QPainter::viewport()
QPainter::window()
QPainter::xForm()
QPainter::xFormDev()
QPixmap::rect()
QRect::&()
QRect::intersect()
QRect::normalize()
QRect::unite()
QRegion::boundingRect()
QRichTextFormatter::lineGeometry()
QTextTableCell::geometry()
QRichTextIterator::lineGeometry()
QVariant::asRect()

4682-1 appD.f.qc  11/13/00  14:16  Page 678



679Appendix D ✦ Returned By

QVariant::toRect()
QWidget::childrenRect()
QWidget::frameGeometry()
QWidget::geometry()
QWidget::microFocusHint()
QWidget::rect()
QWidget::visibleRect()
QWMatrix::map()
QFrame::contentsRect()
QFrame::frameRect()
QCommonStyle::comboButtonFocusRect()
QCommonStyle::comboButtonRect()
QIconViewItem::pixmapRect()
QIconViewItem::rect()
QIconViewItem::textRect()
QListBox::itemRect()
QListView::itemRect()
QMotifStyle::comboButtonFocusRect()
QMotifStyle::comboButtonRect()
QPlatinumStyle::buttonRect()
QPlatinumStyle::comboButtonFocusRect()
QPlatinumStyle::comboButtonRect()
QSlider::sliderRect()
QTab::rect()
QWindowsStyle::comboButtonFocusRect()
QWindowsStyle::comboButtonRect()
QCanvasItem::boundingRect()
QCanvasItem::boundingRectAdvanced()
QCanvasSprite::boundingRect()
QCanvasPolygonalItem::boundingRect()
QCanvasRectangle::rect()
QCanvasText::boundingRect()
QDomElement::toRect()
KConfigBase::readRectEntry()
KDEStyle::buttonRect()
KDEStyle::comboButtonFocusRect()
KDEStyle::comboButtonRect()
KWin::clientArea()
KWin::edgeClientArea()
KWM::geometry()
KWM::geometryRestore()
KWM::iconGeometry()
KWM::setProperties()
KWM::windowRegion()
KDialogBase::getContentsRect()
KXYSelector::contentsRect()
KSelector::contentsRect()
KThemeStyle::buttonRect()
KTMainWindow::mainViewGeometry()
KFormula::getCursorPos()
KStepStyle::buttonRect()
KStepStyle::comboButtonFocusRect()
KStepStyle::comboButtonRect()
KStepStyle::buttonRect()

4682-1 appD.f.qc  11/13/00  14:16  Page 679



680 Appendixes

KStepStyle::comboButtonFocusRect()
KStepStyle::comboButtonRect()

QRegion
QPaintEvent::region()
QPainter::clipRegion()
QRegion::&()
QRegion::eor()
QRegion::intersect()
QRegion::subtract()
QRegion::unite()
QVariant::asRegion()
QVariant::toRegion()
QWidget::childrenRegion()

QRichText
QTextTableCell::richText()

QScrollBar
QScrollView::horizontalScrollBar()
QScrollView::verticalScrollBar()

QSignal
QMenuItem::signal()

QSizePolicy
QSizeGrip::sizePolicy()
QWidget::sizePolicy()
QFrame::sizePolicy()
QCheckBox::sizePolicy()
QComboBox::sizePolicy()
QHeader::sizePolicy()
QIconView::sizePolicy()
QLabel::sizePolicy()
QLCDNumber::sizePolicy()
QLineEdit::sizePolicy()
QMultiLineEdit::sizePolicy()
QProgressBar::sizePolicy()
QPushButton::sizePolicy()
QRadioButton::sizePolicy()
QScrollBar::sizePolicy()
QScrollView::sizePolicy()
QSlider::sizePolicy()
QSpinBox::sizePolicy()
QSplitter::sizePolicy()
QTabBar::sizePolicy()
QToolButton::sizePolicy()
QWorkspace::sizePolicy()
KNumInput::sizePolicy()
KProgress::sizePolicy()
KToolBar::sizePolicy()
QXEmbed::sizePolicy()
KFormulaEdit::sizePolicy()

4682-1 appD.f.qc  11/13/00  14:16  Page 680



681Appendix D ✦ Returned By

QSpacerItem
QLayoutItem::spacerItem()
QSpacerItem::spacerItem()

QStatusBar
QMainWindow::statusBar()

QStrList
QImageDecoder::inputFormats()
QImage::inputFormats()
QImage::outputFormats()
QImageIO::inputFormats()
QImageIO::outputFormats()
QMetaProperty::enumKeys()
QMetaProperty::valueToKeys()
QMetaObject::propertyNames()
QMetaObject::signalNames()
QMetaObject::slotNames()
QDir::encodedEntryList()
KProcess::args()

QStringList
QFileDialog::getOpenFileNames()
QFileDialog::selectedFiles()
QFontDatabase::charSets()
QFontDatabase::families()
QFontDatabase::styles()
QFont::substitutions()
QImage::inputFormatList()
QImage::outputFormatList()
QImage::textKeys()
QImage::textLanguages()
QMimeSourceFactory::filePath()
QObject::superClasses()
QSessionManager::discardCommand()
QSessionManager::restartCommand()
QVariant::asStringList()
QVariant::toStringList()
QDir::entryList()
QStringList::fromStrList()
QStringList::grep()
QStringList::split()
KCharsets::availableCharsetNames()
KCompletion::allMatches()
KCompletion::items()
KConfig::groupList()
KConfigBase::groupList()
KConfigBase::readListEntry()
KDesktopFile::readActions()
KIconLoader::loadAnimated()
KIconLoader::queryIcons()
KIconTheme::inherits()
KIconTheme::list()
KIconTheme::queryIcons()

4682-1 appD.f.qc  11/13/00  14:16  Page 681



682 Appendixes

KLocale::languageList()
KPalette::getPaletteList()
KProtocolManager::listing()
KProtocolManager::protocols()
KRootProp::listEntries()
KStandardDirs::allTypes()
KStandardDirs::findAllResources()
KStandardDirs::findDirs()
KStandardDirs::resourceDirs()
KStringHandler::capwords()
KStringHandler::reverse()
KStringHandler::split()
KCookieJar::getDomainList()
KImageIO::mimeTypes()
KImageIO::types()
KMimeType::patterns()
KMimeType::propertyNames()
KService::libraryDependencies()
KService::propertyNames()
KService::serviceTypes()
KServiceType::propertyDefNames()
KServiceType::propertyNames()
KTarDirectory::entries()
KSelectAction::items()
KActionCollection::groups()
KXMLGUIBuilder::containerTags()
KXMLGUIBuilder::customTags()
KFileDialog::getOpenFileNames()
KFileDialog::selectedFiles()
KURLComboBox::urls()
KHTMLPart::frameNames()
KHTMLPartBrowserHostExtension::frameNames()
KSpellConfig::ignoreList()
KSpell::suggestions()

QStyle
QApplication::style()
QWidget::style()

QStyleSheet
QStyleSheetItem::styleSheet()
QStyleSheet::defaultSheet()
QTextView::styleSheet()

QStyleSheetItem
QStyleSheet::item()

QTab
QTabBar::tab()

QTextCharFormat
QTextCharFormat::formatWithoutCustom()
QTextCharFormat::makeTextFormat()
QTextFormatCollection::registerFormat()

4682-1 appD.f.qc  11/13/00  14:16  Page 682



683Appendix D ✦ Returned By

QTextRichString::formatAt()
QRichTextFormatter::format()
QRichTextIterator::format()

QTextCodec
QApplication::defaultCodec()
QTextCodec::codecForContent()
QTextCodec::codecForIndex()
QTextCodec::codecForLocale()
QTextCodec::codecForMib()
QTextCodec::codecForName()
QTextCodec::loadCharmap()
QTextCodec::loadCharmapFile()

QTextCustomItem
QTextCharFormat::customItem()
QTextRichString::customItemAt()
QStyleSheet::tag()

QTextDecoder
QBig5Codec::makeDecoder()
QEucJpCodec::makeDecoder()
QEucKrCodec::makeDecoder()
QGbkCodec::makeDecoder()
QJisCodec::makeDecoder()
QSjisCodec::makeDecoder()
QTextCodec::makeDecoder()
QUtf8Codec::makeDecoder()
QUtf16Codec::makeDecoder()

QTextEncoder
QTextCodec::makeEncoder()
QUtf16Codec::makeEncoder()

QTextFlow
QTextParagraph::flow()

QTextParagraph
QTextParagraph::lastChild()
QTextParagraph::nextInDocument()
QTextParagraph::prevInDocument()
QRichTextIterator::outmostParagraph()
QRichText::getParBefore()

QTextStream
QTextStream::readRawBytes()
QTextStream::writeRawBytes()
KSaveFile::textStream()
KTempFile::textStream()

QTime
QTime::addMSecs()
QTime::addSecs()
QDateTime::time()

4682-1 appD.f.qc  11/13/00  14:16  Page 683



684 Appendixes

QToolButton
QWhatsThis::whatsThisButton()
KURLRequester::button()

QToolTipGroup
QMainWindow::toolTipGroup()
QToolTip::group()

QUrl
QFileDialog::url()

QUrlInfo
QUrlOperator::info()

QUrlOperator
QNetworkProtocol::url()

QVBox
KDialogBase::addVBoxPage()
KDialogBase::makeVBoxMainWidget()

QValidator
QComboBox::validator()
QLineEdit::validator()
QMultiLineEdit::validator()
QSpinBox::validator()

QVariant
QObject::property()
QVariant::asMap()
QVariant::mapBegin()
QVariant::mapEnd()
QVariant::mapFind()
QVariant::toMap()
KConfigBase::readPropertyEntry()
KMimeType::property()
KService::property()
KServiceType::property()

QWMatrix
QPainter::worldMatrix()
QPixmap::trueMatrix()
QWMatrix::invert()
QWMatrix::rotate()
QWMatrix::scale()
QWMatrix::shear()
QWMatrix::translate()

QWidget
QTabDialog::currentPage()
QWizard::currentPage()
QWizard::page()
QLayoutItem::widget()
QWidgetItem::widget()

4682-1 appD.f.qc  11/13/00  14:16  Page 684



685Appendix D ✦ Returned By

QLayout::mainWidget()
QApplication::activeModalWidget()
QApplication::activePopupWidget()
QApplication::activeWindow()
QApplication::desktop()
QApplication::focusWidget()
QApplication::mainWidget()
QApplication::widgetAt()
QDragObject::source()
QDragObject::target()
QDropEvent::source()
QFocusData::focusWidget()
QFocusData::home()
QFocusData::next()
QFocusData::prev()
QWidget::find()
QWidget::focusProxy()
QWidget::focusWidget()
QWidget::keyboardGrabber()
QWidget::mouseGrabber()
QWidget::parentWidget()
QWidget::topLevelWidget()
QLabel::buddy()
QMainWindow::centralWidget()
QMenuItem::widget()
QScrollView::clipper()
QScrollView::cornerWidget()
QScrollView::viewport()
QTabWidget::currentPage()
QToolTip::parentWidget()
QWidgetStack::visibleWidget()
QWidgetStack::widget()
QWorkspace::activeWindow()
KAction::container()
KAction::representative()
KContainerLayout::widget()
KDialogBase::getMainWidget()
KDockTabCtl::getFirstPage()
KDockTabCtl::getLastPage()
KDockTabCtl::getNextPage()
KDockTabCtl::getPrevPage()
KDockTabCtl::page()
KDockTabCtl::visiblePage()
KDockWidget::getWidget()
KDockSplitter::getAnother()
KDockSplitter::getFirst()
KDockSplitter::getLast()
KTMainWindow::indicator()
KTMainWindow::view()
KToolBar::getWidget()
KXMLGUIFactory::container()
KXMLGUIBuilder::createContainer()
KCombiView::widget()
KFileDetailView::widget()

4682-1 appD.f.qc  11/13/00  14:16  Page 685



686 Appendixes

KFileIconView::widget()
KFilePreview::widget()
KFileView::widget()

QWidgetList
QApplication::allWidgets()
QApplication::topLevelWidgets()
QWorkspace::windowList()

QWindowsMime
QWindowsMime::convertor()

QtTriple
QRichTextFormatter::position()
QRichTextIterator::position()

✦ ✦ ✦

4682-1 appD.f.qc  11/13/00  14:16  Page 686



Enumerated
Types

Enumerated types are named constants inside classes.
They are usually used to specify the value of optional

configuration settings for an object.

This appendix lists the enumerated types alphabetically by
their names. There are a few anonymous enumerated types,
and these are listed first. There are also several of the enu-
merated types that have the same name but are found in dif-
ferent classes. To use one of these, you must refer to it by its
fully qualified name. For example, there are five enumerated
types named Orientation. To refer to an Orientation value
in the KSelector class, you would code it as follows:

KSelector::Vertical

To refer to an Orientation value of the QPrinter class, you
would code it this way:

QPrinter::Portrait;

Because defining a named set of enumerations is also defining
a type, these type names can be used to specify argument
types passed to methods. This way, the compiler effectively
has the capability to verify that a valid value is being passed
to a method; because if the value is of the correct enumerated
type, it must be one of the known values. There are a few
anonymous enumerations, and they are listed first.

KDE/Qt Enumerated Types
(anonymous)

KApplication::(anon) { SETTINGS_MOUSE,
SETTINGS_COMPLETION,

SETTINGS_PATHS, SETTINGS_POPUPMENU };
KButtonBox::(anon) { VERTICAL=1,

HORIZONTAL=2 };

EEA P P E N D I X

✦ ✦ ✦ ✦

4682-1 appE.f.qc  11/20/00  15:40  Page 687



688 Appendixes

KContainerLayout::(anon) { Horizontal=0, Vertical };
KEdit::(anon) { NONE, FORWARD, BACKWARD };
KFileBookmark::(anon) { URL, Folder };
KKeyChooser::(anon) { NoKey=1, DefaultKey, CustomKey };
KMessageBox::(anon) { Ok=1, Cancel=2, Yes=3, No=4,
Continue=5 };

KNotifyClient::(anon) { Default=-1, None=0, Sound=1,
Messagebox=2, Logfile=4, Stderr=8 };

KWActionGroup::(anon) { ugNone, ugPaste, ugDelBlock,
ugIndent, ugUnindent, ugReplace, ugSpell, ugInsChar,
ugDelChar, ugInsLine, ugDelLine };

KWM::(anon) { noDecoration=0, normalDecoration=1,
tinyDecoration=2, noFocus=256, standaloneMenuBar=512,
desktopIcon=1024, staysOnTop=2048 };

KWM::(anon) { horizontal=1, vertical=2, fullscreen=3 };
QLayout::(anon) { unlimited=QWIDGETSIZE_MAX };
QMessageBox::(anon) { Ok=1, Cancel=2, Yes=3, No=4, Abort=5,
Retry=6, Ignore=7, ButtonMask=0x07, Default=0x100,
Escape=0x200, FlagMask=0x300 };

QPaintDeviceMetrics::(anon) { PdmWidth=1, PdmHeight,
PdmWidthMM, PdmHeightMM, PdmNumColors, PdmDepth, PdmDpiX,
PdmDpiY };

QTextStream::(anon) { skipws=0x0001, left=0x0002,
right=0x0004, internal=0x0008, bin=0x0010, oct=0x0020,
dec=0x0040, hex=0x0080, showbase=0x0100,
showpoint=0x0200, uppercase=0x0400, showpos=0x0800,
scientific=0x1000, fixed=0x2000 };

Action
KWAction::Action { replace, wordWrap, wordUnWrap, newLine,
delLine, insLine, killLine };

QDropEvent::Action { Copy, Link, Move, Private,
UserAction=100 };

ActionButtonStyle
KDialogBase::ActionButtonStyle { ActionStyle0=0,
ActionStyle1, ActionStyle2, ActionStyle3, ActionStyle4,
ActionStyleMAX };

Actions
KPanelApplet::Actions { About=1, Help=2, Preferences=4 };

AdditionalStyleValues
QStyleSheetItem::AdditionalStyleValues { Undefined=-1 };

AlignmentFlags
Qt::AlignmentFlags { AlignLeft=0x0001, AlignRight=0x0002,
AlignHCenter=0x0004, AlignTop=0x0008, AlignBottom=0x0010,
AlignVCenter=0x0020,
AlignCenter=AlignVCenter|AlignHCenter, SingleLine=0x0040,
DontClip=0x0080, ExpandTabs=0x0100, ShowPrefix=0x0200,
WordBreak=0x0400, DontPrint=0x1000 };

4682-1 appE.f.qc  11/20/00  15:40  Page 688



689Appendix E ✦ Enumerated Types

AnchorEdge
KWin::AnchorEdge { Top, Bottom, Left, Right };

Arrangement
QIconView::Arrangement { LeftToRight=0, TopToBottom };

ArrowStyle
KThemeBase::ArrowStyle { MotifArrow, LargeArrow,
SmallArrow };

ArrowType
Qt::ArrowType { UpArrow, DownArrow, LeftArrow, RightArrow 
};

BackgroundMode
QWidget::BackgroundMode { FixedColor, FixedPixmap,
NoBackground, PaletteForeground, PaletteButton,
PaletteLight, PaletteMidlight, PaletteDark, PaletteMid,
PaletteText, PaletteBrightText, PaletteBase,
PaletteBackground, PaletteShadow, PaletteHighlight,
PaletteHighlightedText };

BackgroundOrigin
QWidget::BackgroundOrigin { WidgetOrigin, ParentOrigin };

BarPosition
KToolBar::BarPosition { Top=0, Left, Right, Bottom,
Floating, Flat };

BarStatus
KStatusBar::BarStatus { Toggle, Show, Hide };
KToolBar::BarStatus { Toggle, Show, Hide };

BarStyle
KProgress::BarStyle { Solid, Blocked };

BGMode
Qt::BGMode { TransparentMode, OpaqueMode };

BorderType
KThemePixmap::BorderType { Top=0, Bottom, Left, Right,
TopLeft, TopRight, BottomLeft, BottomRight };

BrushStyle
Qt::BrushStyle { NoBrush, SolidPattern, Dense1Pattern,
Dense2Pattern, Dense3Pattern, Dense4Pattern,
Dense5Pattern, Dense6Pattern, Dense7Pattern, HorPattern,
VerPattern, CrossPattern, BDiagPattern, FDiagPattern,
DiagCrossPattern, CustomPattern=24 };

Button
KCModule::Button { Help=1, Default=2, Reset=4, Cancel=8,
Apply=16, Ok=32, SysDefault=64 };

4682-1 appE.f.qc  11/20/00  15:40  Page 689



690 Appendixes

ButtonCode
KDialogBase::ButtonCode { Help=0x00000001,
Default=0x00000002, Ok=0x00000004, Apply=0x00000008,
Try=0x00000010, Cancel=0x00000020, Close=0x00000040,
User1=0x00000080, User2=0x00000100, User3=0x00000200,
No=0x00000080, Yes=0x00000100, Stretch=0x80000000 };

ButtonState
Qt::ButtonState { NoButton=0x00, LeftButton=0x01,
RightButton=0x02, MidButton=0x04, MouseButtonMask=0x07,
ShiftButton=0x08, ControlButton=0x10, AltButton=0x20,
KeyButtonMask=0x38 };

ButtonSymbols
QSpinBox::ButtonSymbols { UpDownArrows, PlusMinus };

ByteOrder
QDataStream::ByteOrder { BigEndian, LittleEndian };

CaptionLayout
KApplication::CaptionLayout { CaptionAppLast=1,
CaptionAppFirst, CaptionNoApp };

Category
QChar::Category { NoCategory, Mark_NonSpacing,
Mark_SpacingCombining, Mark_Enclosing,
Number_DecimalDigit, Number_Letter, Number_Other,
Separator_Space, Separator_Line, Separator_Paragraph,
Other_Control, Other_Format, Other_Surrogate,
Other_PrivateUse, Other_NotAssigned, Letter_Uppercase,
Letter_Lowercase, Letter_Titlecase, Letter_Modifier,
Letter_Other, Punctuation_Connector, Punctuation_Dask,
Punctuation_Open, Punctuation_Close,
Punctuation_InitialQuote, Punctuation_FinalQuote,
Punctuation_Other, Symbol_Math, Symbol_Currency,
Symbol_Modifier, Symbol_Other };

CharSet
QFont::CharSet { ISO_8859_1, Latin1=ISO_8859_1, AnyCharSet,
ISO_8859_2, Latin2=ISO_8859_2, ISO_8859_3,
Latin3=ISO_8859_3, ISO_8859_4, Latin4=ISO_8859_4,
ISO_8859_5, ISO_8859_6, ISO_8859_7, ISO_8859_8,
ISO_8859_9, Latin5=ISO_8859_9, ISO_8859_10,
Latin6=ISO_8859_10, ISO_8859_11, ISO_8859_12,
ISO_8859_13, Latin7=ISO_8859_13, ISO_8859_14,
Latin8=ISO_8859_14, ISO_8859_15, Latin9=ISO_8859_15,
KOI8R, Set_Ja, Set_1=Set_Ja, Set_Ko, Set_Th_TH, Set_Zh,
Set_Zh_TW, Set_N=Set_Zh_TW, Unicode, Set_GBK, Set_Big5 };

Clear
QTextCustomItem::Clear { ClearNone, ClearLeft, ClearRight,
ClearBoth };

4682-1 appE.f.qc  11/20/00  15:40  Page 690



691Appendix E ✦ Enumerated Types

ColorGroup
QPalette::ColorGroup { Normal, Disabled, Active, Inactive,
NColorGroups };

ColorMode
KPixmap::ColorMode { Auto, Color, Mono, LowColor, WebColor 
};
KTextPrint::ColorMode { Color, GrayScal, BlackWhite };
QApplication::ColorMode { NormalColors, CustomColors };
QPixmap::ColorMode { Auto, Color, Mono };
QPrinter::ColorMode { GrayScale, Color };

ColorRole
QColorGroup::ColorRole { Foreground, Button, Light,
Midlight, Dark, Mid, Text, BrightText, ButtonText, Base,
Background, Shadow, Highlight, HighlightedText,
NColorRoles };

ColorSpec
QApplication::ColorSpec { NormalColor=0, CustomColor=1,
ManyColor=2 };

Communication
KProcess::Communication { NoCommunication=0, Stdin=1,
Stdout=2, Stderr=4, AllOutput=6, All=7, NoRead };

Completion
KGlobalSettings::Completion { CompletionNone=1,
CompletionAuto, CompletionMan, CompletionShell };

ConfigState
KConfigBase::ConfigState { NoAccess, ReadOnly, ReadWrite };

ConnectionState
QNetworkProtocol::ConnectionState { ConHostFound,
ConConnected, ConClosed };

ConstructorFlags
KWrite::ConstructorFlags { kBrowser=1, kHandleOwnDND=2 };

Context
KIcon::Context { Any, Action, Application, Device,
FileSystem, MimeType };

Corner
QGridLayout::Corner { TopLeft, TopRight, BottomLeft,
BottomRight };

DCOPServiceType_t
KService::DCOPServiceType_t { DCOP_None=0, DCOP_Unique,
DCOP_Multi };

4682-1 appE.f.qc  11/20/00  15:40  Page 691



692 Appendixes

Decomposition
QChar::Decomposition { Single, Canonical, Font, NoBreak,
Initial, Medial, Final, Isolated, Circle, Super, Sub,
Vertical, Wide, Narrow, Small, Square, Compat, Fraction 
};

DialogCode
QDialog::DialogCode { Rejected, Accepted };

DialogType
KDialogBase::DialogType { ,
TreeList=KJanusWidget::TreeList,
Tabbed=KJanusWidget::Tabbed, Plain=KJanusWidget::Plain,
Swallow=KJanusWidget::Swallow,
IconList=KJanusWidget::IconList };

direction
KRuler::direction { horizontal, vertical };

Direction
QBoxLayout::Direction { LeftToRight, RightToLeft,
TopToBottom, BottomToTop, Down=TopToBottom,
Up=BottomToTop };

QChar::Direction { DirL, DirR, DirEN, DirES, DirET, DirAN,
DirCS, DirB, DirS, DirWS, DirON, DirLRE, DirLRO, DirAL,
DirRLE, DirRLO, DirPDF, DirNSM, DirBN };

QGrid::Direction { Horizontal, Vertical };

DisplayMode
QStyleSheetItem::DisplayMode { DisplayBlock, DisplayInline,
DisplayListItem, DisplayNone };

DisposalMethod
QPNGImageWriter::DisposalMethod { Unspecified, NoDisposal,
RestoreBackground, RestoreImage };

DockPosition
KDockWidget::DockPosition { DockNone=0, DockTop=0x0001,
DockLeft=0x0002, DockRight=0x0004, DockBottom=0x0008,
DockCenter=0x0010, DockDesktop=0x0020,
DockCorner=DockTop|DockLeft|DockRight|DockBottom,
DockFullSite=DockCorner|DockCenter,
DockFullDocking=DockFullSite|DockDesktop };

DragMode
QDragObject::DragMode { DragDefault, DragCopy, DragMove,
DragCopyOrMove };

DualColor
KDualColorButton::DualColor { Foreground, Background };

4682-1 appE.f.qc  11/20/00  15:40  Page 692



693Appendix E ✦ Enumerated Types

EchoMode
QLineEdit::EchoMode { Normal, NoEcho, Password };
QMultiLineEdit::EchoMode { Normal, NoEcho, Password };

EchoModes
KPasswordEdit::EchoModes { OneStar, ThreeStars, NoEcho };

Editable
KPalette::Editable { Yes, No, Ask };

Effects
KIconEffect::Effects { NoEffect, ToGray, Colorize, ToGamma,
DeSaturate, LastEffect };

Encoding
QTextStream::Encoding { Locale, Latin1, Unicode,
UnicodeNetworkOrder, UnicodeReverse, RawUnicode };

Endian
QImage::Endian { IgnoreEndian, BigEndian, LittleEndian };

Error
QNetworkProtocol::Error { NoError=0, ErrValid,
ErrUnknownProtocol, ErrUnsupported, ErrParse,
ErrLoginIncorrect, ErrHostNotFound, ErrListChlidren,
ErrMkdir, ErrRemove, ErrRename, ErrGet, ErrPut,
ErrFileNotExisting, ErrPermissionDenied };

ExpandData
QSizePolicy::ExpandData { NoDirection=0, Horizontal=1,
Vertical=2, BothDirections=Horizontal|Vertical };

fileResult
KWrite::fileResult { OK, CANCEL, RETRY, ERROR };

FileView
KFile::FileView { Default=0, Simple=1, Detail=2,
SeparateDirs=4, PreviewContents=8, PreviewInfo=16 };

FilterSpec
QDir::FilterSpec { Dirs=0x001, Files=0x002, Drives=0x004,
NoSymLinks=0x008, All=0x007, TypeMask=0x00F,
Readable=0x010, Writable=0x020, Executable=0x040,
RWEMask=0x070, Modified=0x080, Hidden=0x100,
System=0x200, AccessMask=0x3F0, DefaultFilter=-1 };

FixedType
KCharsets::FixedType { FixedUnknown, Fixed, Proportional };

Flags
KPanelApplet::Flags { Stretch=1, TopLevel=2 };

4682-1 appE.f.qc  11/20/00  15:40  Page 693



694 Appendixes

QMetaProperty::Flags { UnresolvedEnum=0x00000001,
UnresolvedSet=0x00000002, UnresolvedEnumOrSet=0x00000004,
UnresolvedStored=0x00000008,
UnresolvedDesignable=0x00000010,
NotDesignable=0x00000020, NotStored=0x00000040 };

FocusPolicy
QWidget::FocusPolicy { NoFocus=0, TabFocus=0x1,
ClickFocus=0x2, StrongFocus=0x3, WheelFocus=0x7 };

FontColumn
KFontChooser::FontColumn { FamilyList=0x01, StyleList=0x02,
SizeList=0x04 };

FormatOption
QGL::FormatOption { DoubleBuffer=0x0001,
DepthBuffer=0x0002, Rgba=0x0004, AlphaChannel=0x0008,
AccumBuffer=0x0010, StencilBuffer=0x0020,
StereoBuffers=0x0040, DirectRendering=0x0080,
HasOverlay=0x0100, SingleBuffer=DoubleBuffer<<16,
NoDepthBuffer=DepthBuffer<<16, ColorIndex=Rgba<<16,
NoAlphaChannel=AlphaChannel<<16,
NoAccumBuffer=AccumBuffer<<16,
NoStencilBuffer=StencilBuffer<<16,
NoStereoBuffers=StereoBuffers<<16,
IndirectRendering=DirectRendering<<16,
NoOverlay=HasOverlay<<16 };

Gradient
KThemeBase::Gradient { GrNone, GrHorizontal, GrVertical,
GrDiagonal, GrPyramid, GrRectangle, GrElliptic,
GrReverseBevel };

GradientMode
KPixmap::GradientMode { Horizontal, Vertical, Diagonal,
CrossDiagonal };

GradientType
KImageEffect::GradientType { VerticalGradient,
HorizontalGradient, DiagonalGradient,
CrossDiagonalGradient, PyramidGradient,
RectangleGradient, PipeCrossGradient, EllipticGradient };

KPixmapEffect::GradientType { VerticalGradient,
HorizontalGradient, DiagonalGradient,
CrossDiagonalGradient, PyramidGradient,
RectangleGradient, PipeCrossGradient, EllipticGradient };

Group
KIcon::Group { NoGroup=-1, Desktop=0, Toolbar, MainToolbar,
Small, LastGroup, User };

GUIStyle
Qt::GUIStyle { MacStyle, WindowsStyle, Win3Style, PMStyle,
MotifStyle };

4682-1 appE.f.qc  11/20/00  15:40  Page 694



695Appendix E ✦ Enumerated Types

Icon
QMessageBox::Icon { NoIcon=0, Information=1, Warning=2,
Critical=3 };

IconText
KToolBar::IconText { IconOnly=0, IconTextRight, TextOnly,
IconTextBottom };

ImageConversionFlags
Qt::ImageConversionFlags { ColorMode_Mask=0x00000003,
AutoColor=0x00000000, ColorOnly=0x00000003,
MonoOnly=0x00000002, AlphaDither_Mask=0x0000000c,
ThresholdAlphaDither=0x00000000,
OrderedAlphaDither=0x00000004,
DiffuseAlphaDither=0x00000008, NoAlpha=0x0000000c,
Dither_Mask=0x00000030, DiffuseDither=0x00000000,
OrderedDither=0x00000010, ThresholdDither=0x00000020,
DitherMode_Mask=0x000000c0, AutoDither=0x00000000,
PreferDither=0x00000040, AvoidDither=0x00000080 };

InstanceMode
QNPInstance::InstanceMode { Embed=1, Full=2, Background=3 
};

ItemTextPos
QIconView::ItemTextPos { Bottom=0, Right };

ItemType
KToolBarItem::ItemType { Lined=0, Button, Combo, Frame,
Toggle, AnyWidget, Separator };

Joining
QChar::Joining { OtherJoining, Dual, Right, Center };

Key
Qt::Key { Key_Escape=0x1000, Key_Tab=0x1001,
Key_Backtab=0x1002, Key_BackTab=Key_Backtab,
Key_Backspace=0x1003, Key_BackSpace=Key_Backspace,
Key_Return=0x1004, Key_Enter=0x1005, Key_Insert=0x1006,
Key_Delete=0x1007, Key_Pause=0x1008, Key_Print=0x1009,
Key_SysReq=0x100a, Key_Home=0x1010, Key_End=0x1011,
Key_Left=0x1012, Key_Up=0x1013, Key_Right=0x1014,
Key_Down=0x1015, Key_Prior=0x1016, Key_PageUp=Key_Prior,
Key_Next=0x1017, Key_PageDown=Key_Next, Key_Shift=0x1020,
Key_Control=0x1021, Key_Meta=0x1022, Key_Alt=0x1023,
Key_CapsLock=0x1024, Key_NumLock=0x1025,
Key_ScrollLock=0x1026, Key_F1=0x1030, Key_F2=0x1031,
Key_F3=0x1032, Key_F4=0x1033, Key_F5=0x1034,
Key_F6=0x1035, Key_F7=0x1036, Key_F8=0x1037,
Key_F9=0x1038, Key_F10=0x1039, Key_F11=0x103a,
Key_F12=0x103b, Key_F13=0x103c, Key_F14=0x103d,
Key_F15=0x103e, Key_F16=0x103f, Key_F17=0x1040,
Key_F18=0x1041, Key_F19=0x1042, Key_F20=0x1043,
Key_F21=0x1044, Key_F22=0x1045, Key_F23=0x1046,

4682-1 appE.f.qc  11/20/00  15:40  Page 695



696 Appendixes

Key_F24=0x1047, Key_F25=0x1048, Key_F26=0x1049,
Key_F27=0x104a, Key_F28=0x104b, Key_F29=0x104c,
Key_F30=0x104d, Key_F31=0x104e, Key_F32=0x104f,
Key_F33=0x1050, Key_F34=0x1051, Key_F35=0x1052,
Key_Super_L=0x1053, Key_Super_R=0x1054, Key_Menu=0x1055,
Key_Hyper_L=0x1056, Key_Hyper_R=0x1057, Key_Space=0x20,
Key_Any=Key_Space, Key_Exclam=0x21, Key_QuoteDbl=0x22,
Key_NumberSign=0x23, Key_Dollar=0x24, Key_Percent=0x25,
Key_Ampersand=0x26, Key_Apostrophe=0x27,
Key_ParenLeft=0x28, Key_ParenRight=0x29,
Key_Asterisk=0x2a, Key_Plus=0x2b, Key_Comma=0x2c,
Key_Minus=0x2d, Key_Period=0x2e, Key_Slash=0x2f,
Key_0=0x30, Key_1=0x31, Key_2=0x32, Key_3=0x33,
Key_4=0x34, Key_5=0x35, Key_6=0x36, Key_7=0x37,
Key_8=0x38, Key_9=0x39, Key_Colon=0x3a,
Key_Semicolon=0x3b, Key_Less=0x3c, Key_Equal=0x3d,
Key_Greater=0x3e, Key_Question=0x3f, Key_At=0x40,
Key_A=0x41, Key_B=0x42, Key_C=0x43, Key_D=0x44,
Key_E=0x45, Key_F=0x46, Key_G=0x47, Key_H=0x48,
Key_I=0x49, Key_J=0x4a, Key_K=0x4b, Key_L=0x4c,
Key_M=0x4d, Key_N=0x4e, Key_O=0x4f, Key_P=0x50,
Key_Q=0x51, Key_R=0x52, Key_S=0x53, Key_T=0x54,
Key_U=0x55, Key_V=0x56, Key_W=0x57, Key_X=0x58,
Key_Y=0x59, Key_Z=0x5a, Key_BracketLeft=0x5b,
Key_Backslash=0x5c, Key_BracketRight=0x5d,
Key_AsciiCircum=0x5e, Key_Underscore=0x5f,
Key_QuoteLeft=0x60, Key_BraceLeft=0x7b, Key_Bar=0x7c,
Key_BraceRight=0x7d, Key_AsciiTilde=0x7e,
Key_nobreakspace=0x0a0, Key_exclamdown=0x0a1,
Key_cent=0x0a2, Key_sterling=0x0a3, Key_currency=0x0a4,
Key_yen=0x0a5, Key_brokenbar=0x0a6, Key_section=0x0a7,
Key_diaeresis=0x0a8, Key_copyright=0x0a9,
Key_ordfeminine=0x0aa, Key_guillemotleft=0x0ab,
Key_notsign=0x0ac, Key_hyphen=0x0ad,
Key_registered=0x0ae, Key_macron=0x0af, Key_degree=0x0b0,
Key_plusminus=0x0b1, Key_twosuperior=0x0b2,
Key_threesuperior=0x0b3, Key_acute=0x0b4, Key_mu=0x0b5,
Key_paragraph=0x0b6, Key_periodcentered=0x0b7,
Key_cedilla=0x0b8, Key_onesuperior=0x0b9,
Key_masculine=0x0ba, Key_guillemotright=0x0bb,
Key_onequarter=0x0bc, Key_onehalf=0x0bd,
Key_threequarters=0x0be, Key_questiondown=0x0bf,
Key_Agrave=0x0c0, Key_Aacute=0x0c1,
Key_Acircumflex=0x0c2, Key_Atilde=0x0c3,
Key_Adiaeresis=0x0c4, Key_Aring=0x0c5, Key_AE=0x0c6,
Key_Ccedilla=0x0c7, Key_Egrave=0x0c8, Key_Eacute=0x0c9,
Key_Ecircumflex=0x0ca, Key_Ediaeresis=0x0cb,
Key_Igrave=0x0cc, Key_Iacute=0x0cd,
Key_Icircumflex=0x0ce, Key_Idiaeresis=0x0cf,
Key_ETH=0x0d0, Key_Ntilde=0x0d1, Key_Ograve=0x0d2,
Key_Oacute=0x0d3, Key_Ocircumflex=0x0d4,
Key_Otilde=0x0d5, Key_Odiaeresis=0x0d6,
Key_multiply=0x0d7, Key_Ooblique=0x0d8, Key_Ugrave=0x0d9,

4682-1 appE.f.qc  11/20/00  15:40  Page 696



697Appendix E ✦ Enumerated Types

Key_Uacute=0x0da, Key_Ucircumflex=0x0db,
Key_Udiaeresis=0x0dc, Key_Yacute=0x0dd, Key_THORN=0x0de,
Key_ssharp=0x0df, Key_agrave=0x0e0, Key_aacute=0x0e1,
Key_acircumflex=0x0e2, Key_atilde=0x0e3,
Key_adiaeresis=0x0e4, Key_aring=0x0e5, Key_ae=0x0e6,
Key_ccedilla=0x0e7, Key_egrave=0x0e8, Key_eacute=0x0e9,
Key_ecircumflex=0x0ea, Key_ediaeresis=0x0eb,
Key_igrave=0x0ec, Key_iacute=0x0ed,
Key_icircumflex=0x0ee, Key_idiaeresis=0x0ef,
Key_eth=0x0f0, Key_ntilde=0x0f1, Key_ograve=0x0f2,
Key_oacute=0x0f3, Key_ocircumflex=0x0f4,
Key_otilde=0x0f5, Key_odiaeresis=0x0f6,
Key_division=0x0f7, Key_oslash=0x0f8, Key_ugrave=0x0f9,
Key_uacute=0x0fa, Key_ucircumflex=0x0fb,
Key_udiaeresis=0x0fc, Key_yacute=0x0fd, Key_thorn=0x0fe,
Key_ydiaeresis=0x0ff, Key_unknown=0xffff };

KeyBindingType
KCompletionBase::KeyBindingType { TextCompletion,
PrevCompletionMatch, NextCompletionMatch, RotateUp,
RotateDown };

KToolBarPos
KStyle::KToolBarPos { Top=0, Left, Right, Bottom, Floating,
Flat };

KToolButtonType
KStyle::KToolButtonType { Icon=0, IconTextRight, Text,
IconTextBottom };

LayoutMode
QListBox::LayoutMode { FixedNumber, FitToWidth,
FitToHeight=FitToWidth, Variable };

LayoutType
KAboutContainerBase::LayoutType { AbtPlain=0x0001,
AbtTabbed=0x0002, AbtTitle=0x0004, AbtImageLeft=0x0008,
AbtImageRight=0x0010, AbtImageOnly=0x0020,
AbtProduct=0x0040,
AbtKDEStandard=AbtTabbed|AbtTitle|AbtImageLeft,
AbtAppStandard=AbtTabbed|AbtTitle|AbtProduct,
AbtImageAndTitle=AbtPlain|AbtTitle|AbtImageOnly };

KAboutDialog::LayoutType { AbtPlain=0x0001,
AbtTabbed=0x0002, AbtTitle=0x0004, AbtImageLeft=0x0008,
AbtImageRight=0x0010, AbtImageOnly=0x0020,
AbtProduct=0x0040,
AbtKDEStandard=AbtTabbed|AbtTitle|AbtImageLeft,
AbtAppStandard=AbtTabbed|AbtTitle|AbtProduct,
AbtImageAndTitle=AbtPlain|AbtTitle|AbtImageOnly };

LicenseKey
KAboutData::LicenseKey { License_GPL=1, License_LGPL=2,
License_BSD=3, License_Artistic=4 };

4682-1 appE.f.qc  11/20/00  15:40  Page 697



698 Appendixes

Lighting
KImageEffect::Lighting { NorthLite, NWLite, WestLite,
SWLite, SouthLite, SELite, EastLite, NELite };

KPixmapEffect::Lighting { NorthLite, NWLite, WestLite,
SWLite, SouthLite, SELite, EastLite, NELite };

ListStyle
QStyleSheetItem::ListStyle { ListDisc, ListCircle,
ListSquare, ListDecimal, ListLowerAlpha, ListUpperAlpha 
};

Look
KLed::Look { NoLook, Flat, Raised, Sunken,
NoOfLooks=Sunken };

Margin
QStyleSheetItem::Margin { MarginLeft, MarginRight,
MarginTop, MarginBottom, MarginAll, MarginVertical,
MarginHorizontal };

MatchType
KIcon::MatchType { MatchExact, MatchBest };

Media
KTextPrintConfig::Media { A4, B5, Letter, Legal, Executive,
A0, A1, A2, A3, A5, A6, A7, A8, A9, B0, B1, B10, B2, B3,
B4, B6, B7, B8, B9, C5E, Comm10E, DLE, Folio, Ledger,
Tabloid, NPageSize };

MenuId
KHelpMenu::MenuId { menuHelpContents=0, menuWhatsThis=1,
menuAboutApp=2, menuAboutKDE=3, menuReportBug=4 };

Message
KIPC::Message { PaletteChanged=0, FontChanged,
StyleChanged, BackgroundChanged, SettingsChanged,
IconChanged, UserMessage=32 };

metric_style
KRuler::metric_style { custom=0, pixel, inch, millimetres,
centimetres, metres };

Mode
KFile::Mode { File=1, Directory=2, Files=4, ExistingOnly=8,
LocalOnly=16 };

KImageIO::Mode { Reading, Writing };
KURLComboBox::Mode { Files=-1, Directories=1, Both=0 };
KURLCompletion::Mode { ExeCompletion=1, FileCompletion };
QFileDialog::Mode { AnyFile, ExistingFile, Directory,
ExistingFiles };

QIconSet::Mode { Normal, Disabled, Active };
QLCDNumber::Mode { Hex, HEX=Hex, Dec, DEC=Dec, Oct,
OCT=Oct, Bin, BIN=Bin };

4682-1 appE.f.qc  11/20/00  15:40  Page 698



699Appendix E ✦ Enumerated Types

Modifier
Qt::Modifier { SHIFT=0x00200000, CTRL=0x00400000,
ALT=0x00800000, MODIFIER_MASK=0x00e00000,
UNICODE_ACCEL=0x10000000, ASCII_ACCEL=UNICODE_ACCEL };

ModulationType
KImageEffect::ModulationType { Intensity, Saturation,
HueShift, Contrast };

MouseMode
KImageTrackLabel::MouseMode { MousePress=1, MouseRelease,
MouseDoubleClick, MouseMove };

NodeType
QDomNode::NodeType { BaseNode=0, ElementNode=1,
AttributeNode=2, TextNode=3, CDATASectionNode=4,
EntityReferenceNode=5, EntityNode=6,
ProcessingInstructionNode=7, CommentNode=8,
DocumentNode=9, DocumentTypeNode=10,
DocumentFragmentNode=11, NotationNode=12,
CharacterDataNode=13 };

Operation
QNetworkProtocol::Operation { OpListChildren=1, OpMkdir=2,
OpRemove=4, OpRename=8, OpGet=32, OpPut=64 };

Optimization
QPixmap::Optimization { DefaultOptim, NoOptim,
MemoryOptim=NoOptim, NormalOptim, BestOptim };

Orientation
KProgress::Orientation { Horizontal, Vertical };
KSelector::Orientation { Horizontal, Vertical };
KTextPrint::Orientation { Portrait, Landscape };
QPrinter::Orientation { Portrait, Landscape };
Qt::Orientation { Horizontal, Vertical };

PageOrder
QPrinter::PageOrder { FirstPageFirst, LastPageFirst };

PageSize
QPrinter::PageSize { A4, B5, Letter, Legal, Executive, A0,
A1, A2, A3, A5, A6, A7, A8, A9, B0, B1, B10, B2, B3, B4,
B6, B7, B8, B9, C5E, Comm10E, DLE, Folio, Ledger,
Tabloid, NPageSize };

paint_style
KRuler::paint_style { flat, raised, sunken };

PaintDeviceFlags
QInternal::PaintDeviceFlags { UndefinedDevice=0x00,
Widget=0x01, Pixmap=0x02, Printer=0x03, Picture=0x04,
System=0x05, DeviceTypeMask=0x0f, ExternalDevice=0x10 };

4682-1 appE.f.qc  11/20/00  15:40  Page 699



700 Appendixes

PaintUnit
Qt::PaintUnit { PixelUnit, LoMetricUnit, HiMetricUnit,
LoEnglishUnit, HiEnglishUnit, TwipsUnit };

PDevCmd
QPaintDevice::PDevCmd { PdcNOP=0, PdcDrawPoint=1,
PdcDrawFirst=PdcDrawPoint, PdcMoveTo=2, PdcLineTo=3,
PdcDrawLine=4, PdcDrawRect=5, PdcDrawRoundRect=6,
PdcDrawEllipse=7, PdcDrawArc=8, PdcDrawPie=9,
PdcDrawChord=10, PdcDrawLineSegments=11,
PdcDrawPolyline=12, PdcDrawPolygon=13,
PdcDrawQuadBezier=14, PdcDrawText=15,
PdcDrawTextFormatted=16, PdcDrawPixmap=17,
PdcDrawImage=18, PdcDrawText2=19,
PdcDrawText2Formatted=20,
PdcDrawLast=PdcDrawText2Formatted, PdcBegin=30,
PdcEnd=31, PdcSave=32, PdcRestore=33, PdcSetdev=34,
PdcSetBkColor=40, PdcSetBkMode=41, PdcSetROP=42,
PdcSetBrushOrigin=43, PdcSetFont=45, PdcSetPen=46,
PdcSetBrush=47, PdcSetTabStops=48, PdcSetTabArray=49,
PdcSetUnit=50, PdcSetVXform=51, PdcSetWindow=52,
PdcSetViewport=53, PdcSetWXform=54, PdcSetWMatrix=55,
PdcSaveWMatrix=56, PdcRestoreWMatrix=57, PdcSetClip=60,
PdcSetClipRegion=61, PdcReservedStart=0,
PdcReservedStop=199 };

PenCapStyle
Qt::PenCapStyle { FlatCap=0x00, SquareCap=0x10,
RoundCap=0x20, MPenCapStyle=0x30 };

PenJoinStyle
Qt::PenJoinStyle { MiterJoin=0x00, BevelJoin=0x40,
RoundJoin=0x80, MPenJoinStyle=0xc0 };

PenStyle
Qt::PenStyle { NoPen, SolidLine, DashLine, DotLine,
DashDotLine, DashDotDotLine, MPenStyle=0x0f };

PermissionSpec
QFileInfo::PermissionSpec { ReadUser=0400, WriteUser=0200,
ExeUser=0100, ReadGroup=0040, WriteGroup=0020,
ExeGroup=0010, ReadOther=0004, WriteOther=0002,
ExeOther=0001 };

Placement
QTextCustomItem::Placement { PlaceInline=0, PlaceLeft,
PlaceRight };

Policy
QComboBox::Policy { NoInsertion, AtTop, AtCurrent,
AtBottom, AfterCurrent, BeforeCurrent };

4682-1 appE.f.qc  11/20/00  15:40  Page 700



701Appendix E ✦ Enumerated Types

Position
KPanelApplet::Position { Left=0, Right, Top, Bottom };

PreviewMode
QFileDialog::PreviewMode { NoPreview, Contents, Info };

PropagationMode
QWidget::PropagationMode { NoChildren, AllChildren,
SameFont, SamePalette=SameFont };

RasterOp
Qt::RasterOp { CopyROP, OrROP, XorROP, NotAndROP,
EraseROP=NotAndROP, NotCopyROP, NotOrROP, NotXorROP,
AndROP, NotEraseROP=AndROP, NotROP, ClearROP, SetROP,
NopROP, AndNotROP, OrNotROP, NandROP, NorROP,
LastROP=NorROP };

Reason
QFocusEvent::Reason { Mouse, Tab, ActiveWindow, Popup,
Shortcut, Other };

QNPInstance::Reason { ReasonDone=0, ReasonBreak=1,
ReasonError=2, ReasonUnknown=-1 };

RegionType
QRegion::RegionType { Rectangle, Ellipse };

ResizeMode
QIconView::ResizeMode { Fixed=0, Adjust };
QLayout::ResizeMode { FreeResize, Minimum, Fixed };
QSplitter::ResizeMode { Stretch, KeepSize, FollowSizeHint 
};

ResizePolicy
QScrollView::ResizePolicy { Default, Manual, AutoOne };

RestartHint
QSessionManager::RestartHint { RestartIfRunning,
RestartAnyway, RestartImmediately, RestartNever };

RGBComponent
KImageEffect::RGBComponent { Red, Green, Blue, Gray, All };
KPixmapEffect::RGBComponent { Red, Green, Blue };

RunMode
KProcess::RunMode { DontCare, NotifyOnExit, Block };

SaveMode
QTranslator::SaveMode { Everything, Stripped };

SButton
KThemeBase::SButton { SBBottomLeft, SBBottomRight,
SBOpposite };

4682-1 appE.f.qc  11/20/00  15:40  Page 701



702 Appendixes

ScaleHint
KThemeBase::ScaleHint { FullScale, HorizontalScale,
VerticalScale, TileScale };

KThemeCache::ScaleHint { FullScale, HorizontalScale,
VerticalScale };

ScrollBarMode
QScrollView::ScrollBarMode { Auto, AlwaysOff, AlwaysOn };

SegmentStyle
QLCDNumber::SegmentStyle { Outline, Filled, Flat };

SelectionMode
KFile::SelectionMode { Single=1, Multi=2, Extended=4,
NoSelection=8 };

QIconView::SelectionMode { Single=0, Multi, Extended,
NoSelection };

QListBox::SelectionMode { Single, Multi, Extended,
NoSelection };

QListView::SelectionMode { Single, Multi, Extended,
NoSelection };

Separator
QMenuBar::Separator { Never=0, InWindowsStyle=1 };

ShadeStyle
KThemeBase::ShadeStyle { Motif, Windows, Next };

Shadow
QFrame::Shadow { Plain=0x0010, Raised=0x0020,
Sunken=0x0030, MShadow=0x00f0 };

Shape
KLed::Shape { NoShape, Rectangular, Circular,
NoOfShapes=Circular };

QFrame::Shape { NoFrame=0, Box=0x0001, Panel=0x0002,
WinPanel=0x0003, HLine=0x0004, VLine=0x0005,
StyledPanel=0x0006, PopupPanel=0x0007, MShape=0x000f };

QTabBar::Shape { RoundedAbove, RoundedBelow,
TriangularAbove, TriangularBelow };

ShmPolicies
KPixmapIO::ShmPolicies { ShmDontKeep, ShmKeepAndGrow };

SignPosition
KLocale::SignPosition { ParensAround=0,
BeforeQuantityMoney=1, AfterQuantityMoney=2,
BeforeMoney=3, AfterMoney=4 };

Size
QIconSet::Size { Automatic, Small, Large };

4682-1 appE.f.qc  11/20/00  15:40  Page 702



703Appendix E ✦ Enumerated Types

SizeType
QSizePolicy::SizeType { Fixed=0, Minimum=MayGrow,
Maximum=MayShrink, Preferred=MayGrow|MayShrink,
MinimumExpanding=Minimum|ExpMask,
Expanding=MinimumExpanding|MayShrink };

SlantType
KCharsets::SlantType { SlantUnknown, Normal, Italic };

SortMode
KFile::SortMode { Increasing, Decreasing };

SortSpec
QDir::SortSpec { Name=0x00, Time=0x01, Size=0x02,
Unsorted=0x03, SortByMask=0x03, DirsFirst=0x04,
Reversed=0x08, IgnoreCase=0x10, DefaultSort=-1 };

Spec
QColor::Spec { Rgb, Hsv };

Specification
QMetaProperty::Specification { Unspecified, Class,
Reference, Pointer, ConstCharStar };

spellStatus
KSpell::spellStatus { Starting=0, Running, Cleaning,
Finished, Error, Crashed };

State
KLed::State { Off, On, NoOfStates };
QNetworkProtocol::State { StWaiting=0, StInProgress,
StDone, StFailed, StStopped };

QValidator::State { Invalid, Intermediate,
Valid=Intermediate, Acceptable };

States
KIcon::States { DefaultState, ActiveState, DisabledState,
LastState };

Status
QMovie::Status { SourceEmpty=-2, UnrecognizedFormat=-1,
Paused=1, EndOfFrame=2, EndOfLoop=3, EndOfMovie=4,
SpeedChanged=5 };

status_t
KLaunchRequest::status_t { Init=0, Launching, Running,
Error };

StdAccel
KStdAccel::StdAccel { Open=0, New, Close, Save, Print,
Quit, Cut, Copy, Paste, Undo, Redo, Find, Replace,

4682-1 appE.f.qc  11/20/00  15:40  Page 703



704 Appendixes

Insert, Home, End, Prior, Next, Help, FindNext, FindPrev,
ZoomIn, ZoomOut, AddBookmark, TextCompletion,
PrevCompletion, NextCompletion, RotateUp, RotateDown,
PopupMenuContext, WhatThis, Reload, NB_STD_ACCELS };

StdAction
KStdAction::StdAction { New=1, Open, OpenRecent, Save,
SaveAs, Revert, Close, Print, PrintPreview, Mail, Quit,
Undo, Redo, Cut, Copy, Paste, SelectAll, Find, FindNext,
FindPrev, Replace, ActualSize, FitToPage, FitToWidth,
FitToHeight, ZoomIn, ZoomOut, Zoom, Redisplay, Up, Back,
Forward, Home, Prior, Next, Goto, GotoPage, GotoLine,
FirstPage, LastPage, AddBookmark, EditBookmarks,
Spelling, ShowMenubar, ShowToolbar, ShowStatusbar,
SaveOptions, KeyBindings, Preferences, ConfigureToolbars,
Help, HelpContents, WhatsThis, ReportBug, AboutApp,
AboutKDE, NULL1, NULL2, NULL3, NULL4, NULL5, NULL6,
NULL7, NULL8, NULL9, NULL10, NULL11, NULL12, NULL13,
NULL14, NULL15, NULL16, NULL17, NULL18, NULL19, NULL20 };

StdSizes
KIcon::StdSizes { SizeSmall=16, SizeMedium=32,
SizeLarge=48 };

StreamMode
QNPInstance::StreamMode { Normal=1, Seek=2, AsFile=3,
AsFileOnly=4 };

StyleHint
QFont::StyleHint { Helvetica, Times, Courier, OldEnglish,
System, AnyStyle, SansSerif=Helvetica, Serif=Times,
TypeWriter=Courier, Decorative=OldEnglish };

TabPos
KDockTabBar::TabPos { TAB_TOP, TAB_RIGHT };

TabPosition
QTabWidget::TabPosition { Top, Bottom };

TextFormat
Qt::TextFormat { PlainText, RichText, AutoText };

TickSetting
QSlider::TickSetting { NoMarks=0, Above=1, Left=Above,
Below=2, Right=Below, Both=3 };

ToggleState
QButton::ToggleState { Off, NoChange, On };

ToggleType
QButton::ToggleType { SingleShot, Toggle, Tristate };

4682-1 appE.f.qc  11/20/00  15:40  Page 704



705Appendix E ✦ Enumerated Types

ToolBarDock
QMainWindow::ToolBarDock { Unmanaged, TornOff, Top, Bottom,
Right, Left, Minimized };

Type
KProtocolManager::Type { T_STREAM, T_FILESYSTEM, T_NONE,
T_ERROR };

QCheckListItem::Type { RadioButton, CheckBox, Controller };
QEvent::Type { None=0, Timer=1, MouseButtonPress=2,
MouseButtonRelease=3, MouseButtonDblClick=4, MouseMove=5,
KeyPress=6, KeyRelease=7, FocusIn=8, FocusOut=9,
Enter=10, Leave=11, Paint=12, Move=13, Resize=14,
Create=15, Destroy=16, Show=17, Hide=18, Close=19,
Quit=20, Reparent=21, ShowMaximized=21, ShowMinimized=22,
ShowNormal=23, WindowActivate=24, WindowDeactivate=25,
ShowToParent=26, HideToParent=27, Accel=30, Wheel=31,
AccelAvailable=32, CaptionChange=33, IconChange=34,
ParentFontChange=35, ApplicationFontChange=36,
ParentPaletteChange=37, ApplicationPaletteChange=38,
Clipboard=40, SockAct=50, DragEnter=60, DragMove=61,
DragLeave=62, Drop=63, DragResponse=64, ChildInserted=70,
ChildRemoved=71, LayoutHint=72, ActivateControl=80,
DeactivateControl=81, Configure=82, ConfigureLayout=83,
User=1000 };

QSocketNotifier::Type { Read, Write, Exception };
QVariant::Type { Invalid, Map, List, String, StringList,
Font, Pixmap, Brush, Rect, Size, Color, Palette,
ColorGroup, IconSet, Point, Image, Int, UInt, Bool,
Double, CString, PointArray, Region, Bitmap, Cursor };

QXMLSimpleParser::Type { Element, Attlist, Entity,
Notation };

Types
KIcon::Types { Fixed, Scalable };
KPasswordDialog::Types { Password, NewPassword };

UndoFlags
KWrite::UndoFlags { kUndoPossible=1, kRedoPossible=2 };

URITypes
KURIFilterData::URITypes { NET_PROTOCOL=0, LOCAL_FILE,
LOCAL_DIR, EXECUTABLE, HELP, SHELL, BLOCKED, ERROR,
UNKNOWN };

ViewMode
KFileView::ViewMode { Files=1, Directories=2,
All=Files|Directories };

QFileDialog::ViewMode { Detail, List };

Weight
QFont::Weight { Light=25, Normal=50, DemiBold=63, Bold=75,
Black=87 };

4682-1 appE.f.qc  11/20/00  15:40  Page 705



706 Appendixes

WeightType
KCharsets::WeightType { WeightUnknown, Medium, Bold };

WhiteSpaceMode
QStyleSheetItem::WhiteSpaceMode { WhiteSpaceNormal,
WhiteSpacePre, WhiteSpaceNoWrap };

WidgetFlags
Qt::WidgetFlags { WType_TopLevel=0x00000001,
WType_Modal=0x00000002, WType_Popup=0x00000004,
WType_Desktop=0x00000008, WType_Mask=0x0000000f,
WStyle_Customize=0x00000010,
WStyle_NormalBorder=0x00000020,
WStyle_DialogBorder=0x00000040,
WStyle_NoBorder=0x00000000, WStyle_Title=0x00000080,
WStyle_SysMenu=0x00000100, WStyle_Minimize=0x00000200,
WStyle_Maximize=0x00000400,
WStyle_MinMax=WStyle_Minimize|WStyle_Maximize,
WStyle_Tool=0x00000800, WStyle_StaysOnTop=0x00001000,
WStyle_Dialog=0x00002000, WStyle_ContextHelp=0x00004000,
WStyle_NoBorderEx=0x00008000, WStyle_Mask=0x0000fff0,
WDestructiveClose=0x00010000, WPaintDesktop=0x00020000,
WPaintUnclipped=0x00040000, WPaintClever=0x00080000,
WResizeNoErase=0x00100000, WMouseNoMask=0x00200000,
WNorthWestGravity=0x00400000, WRepaintNoErase=0x00800000,
WX11BypassWM=0x01000000 };

WidgetState
Qt::WidgetState { WState_Created=0x00000001,
WState_Disabled=0x00000002, WState_Visible=0x00000004,
WState_ForceHide=0x00000008, WState_OwnCursor=0x00000010,
WState_MouseTracking=0x00000020,
WState_CompressKeys=0x00000040,
WState_BlockUpdates=0x00000080,
WState_InPaintEvent=0x00000100,
WState_Reparented=0x00000200,
WState_ConfigPending=0x00000400,
WState_Resized=0x00000800, WState_AutoMask=0x00001000,
WState_Polished=0x00002000, WState_DND=0x00004000,
WState_Modal=0x00008000, WState_Reserved1=0x00010000,
WState_Reserved2=0x00020000, WState_Reserved3=0x00040000,
WState_Reserved4=0x00080000,
WState_TranslateBackground=0x00100000,
WState_ForceDisabled=0x00200000,
WState_Exposed=0x00400000 };

WidgetType
KThemeBase::WidgetType { PushButton=0, ComboBox,
HScrollBarSlider, VScrollBarSlider, Bevel, ToolButton,
ScrollButton, HScrollDeco, VScrollDeco, ComboDeco,
MenuItem, InactiveTab, ArrowUp, ArrowDown, ArrowLeft,

4682-1 appE.f.qc  11/20/00  15:40  Page 706



707Appendix E ✦ Enumerated Types

ArrowRight, PushButtonDown, ComboBoxDown,
HScrollBarSliderDown, VScrollBarSliderDown, BevelDown,
ToolButtonDown, ScrollButtonDown, HScrollDecoDown,
VScrollDecoDown, ComboDecoDown, MenuItemDown, ActiveTab,
SunkenArrowUp, SunkenArrowDown, SunkenArrowLeft,
SunkenArrowRight, HScrollGroove, VScrollGroove, Slider,
SliderGroove, IndicatorOn, IndicatorOff, ExIndicatorOn,
ExIndicatorOff, HBarHandle, VBarHandle, ToolBar,
Splitter, CheckMark, MenuBar, DisArrowUp, DisArrowDown,
DisArrowLeft, DisArrowRight, ProgressBar, ProgressBg,
MenuBarItem, Background };

WidthMode
QListView::WidthMode { Manual, Maximum };

WindowState
KWin::WindowState { WithdrawnState=0, NormalState=1,
IconicState=3 };

WindowsVersion
Qt::WindowsVersion { WV_32s=0x0001, WV_95=0x0002,
WV_98=0x0003, WV_DOS_based=0x000f, WV_NT=0x0010,
WV_2000=0x0020, WV_NT_based=0x00f0 };

WordWrap
QMultiLineEdit::WordWrap { NoWrap, WidgetWidth,
FixedPixelWidth, FixedColumnWidth };

WrapPolicy
QMultiLineEdit::WrapPolicy { AtWhiteSpace, Anywhere };

✦ ✦ ✦

4682-1 appE.f.qc  11/20/00  15:40  Page 707



4682-1 appE.f.qc  11/20/00  15:40  Page 708



Signals

A n event can be broadcast from an object by the object
emitting a signal. Any object wishing to receive the sig-

nal needs to establish a connection through a slot. In the sim-
plest cases, the signals carry no information — the very fact
that the signal was issued is information enough. In other
cases, argument values included with the signal.

This appendix lists the signals in alphabetical order. Each
entry includes the parameter list and the list of classes that
are capable of emitting a signal of that name and that footprint.

KDE/Qt Signals
aboutToQuit() QApplication
aboutToShow() QTabDialog QPopupMenu
aboutToShow(int) QWidgetStack
aboutToShow(QWidget *) KDockTabCtl
QWidgetStack
accepted(KSocket *) KServerSocket
actionHighlighted(KAction *) KActionCollection
activated() KGlobalAccel KAction KCharSelect
KCharSelectTable
activated(int) QAccel QSocketNotifier
KSelectAction KPanelMenu

KWCommand KWCommandGroup QComboBox
QMenuBar QPopupMenu
activated(QChar &) KCharSelect
KCharSelectTable
activated(QColor &) KColorCombo
activated(QString &) KSelectAction QComboBox
activatedMenu(KFileViewItem *)
KFileViewSignaler
activatedRedirect(int) QPopupMenu
appearanceChanged() KApplication
applied() KPropertiesDialog
apply() KDialogBase
applyButtonPressed() QTabDialog
applyClicked() KDialogBase
authChanged(bool) KAuthIcon
backgroundChanged() KDialogBase
backgroundChanged(int) KApplication
backwardAvailable(bool) QTextBrowser

FFA P P E N D I X

✦ ✦ ✦ ✦

4682-1 appF.f.qc  11/13/00  14:16  Page 709



710 Appendixes

bgChanged(QColor &) KDualColorButton
cancelButtonPressed() QTabDialog
cancelClicked() KDialogBase
canceled() KDirLister KPropertiesDialog
cancelled() QProgressDialog
change() KDockManager
changed() KFileBookmarkManager KPropsPage KAccelInput
changed(bool) KCModule
changed(QConfigDB *) QConfigDB
changed(QString &) KWCommand KColorButton
clear() KDirLister
clicked() QButton KAnimWidget KToolBar
clicked(int) KToolBarButton QHeader QButtonGroup
clicked(QIconViewItem *) QIconView QListView
clicked(QIconViewItem *, const QPoint &) QIconView
clicked(QListBoxItem *) QListBox
clicked(QListBoxItem *, const QPoint &) QListBox
clicked(QListViewItem *, const QPoint &, int) QListView
closeClicked() KDialogBase
closeEvent(KSocket *) KSocket
closeMe(int) KDateInternalYearSelector

KDateInternalMonthPicker
collapsed(QListViewItem *) QListView
colorChanged(QColor &) KColorPatch
colorSelected(int) KColorCells
colorSelected(QColor &) KColorDialog
colorSelected(QColor &, QString &) KPaletteTable
command(int) KSpellDlg
completed() KDirLister
completion(QString &) KComboBox KLineEdit KDirOperator
connectionStateChanged(int, QString &) QNetworkProtocol

QUrlOperator
contents(KFileViewItemList &, bool) KFileReader
contentsMoving(int, int) QScrollView
corrected(QString, QString, unsigned) KSpell
createdDirectory(QUrlInfo &, QNetworkOperation *)

QNetworkProtocol QUrlOperator
currentChanged(KDualColorButton::DualColor) KDualColorButton
currentChanged(QIconViewItem *) QIconView QListView
currentChanged(QListBoxItem *) QListBox
CursorPositionChanged() KEdit
data(QByteArray &, QNetworkOperation *) QNetworkProtocol

QUrlOperator
databaseChanged() KSycoca
dataChanged() QClipboard
dataTransferProgress(int, int, QNetworkOperation *)

QNetworkProtocol QUrlOperator
dateChanged(QDate) KDateTable KDatePicker
dateEntered(QDate) KDatePicker
dateSelected(QDate) KDatePicker
death() KSpell
defaultButtonPressed() QTabDialog
defaultClicked() KDialogBase
deleted(QString &) KDirWatch

4682-1 appF.f.qc  11/13/00  14:16  Page 710



711Appendix F ✦ Signals

deleteItem(KFileItem *) KDirLister
desktopChange(int) KWinModule
desktopNameChange(int, QString) KWinModule
desktopNumberChange(int) KWinModule
destroyed() QObject
dialog3() KSpell
dirActivated(KFileViewItem *) KFileViewSignaler KDirOperator
dirDeleted() KFileReader
dirEntered(QString &) QFileDialog
dirEntry(KFileViewItem *) KFileReader
dirty(QString &) KDirWatch
docking(KDockWidget *, KDockWidget::DockPosition dp)

KDockWidget
dockWindowAdd(WId) KWinModule
dockWindowRemove(WId) KWinModule
done() KEdFind KEdReplace
done(bool) KSpell KSharedPixmap
done(QString &) KSpell
doPrint(KTextPrint &) KTextPrintConfig
doubleClicked(int) KToolBar KToolBarButton
doubleClicked(QIconViewItem *) QIconView
doubleClicked(QIconViewItem *, QPoint &) KIconView
doubleClicked(QListBoxItem *) QListBox
doubleClicked(QListBoxItem *, QPoint &) KListBox
doubleClicked(QListViewItem *) QListView
doubleClicked(QListViewItem *, QPoint &, int) KListView
dropEventPass(QDropEvent *) KWriteView
dropped(QDropEvent *, QValueList < QIconDragItem > &)

QIconView
embeddedWindowDestroyed() QXEmbed
enabled(bool) KAction
enableOk(bool) KEditToolbarWidget
endMovingToolBar(QToolBar *) QMainWindow
enteredURL() KURLLabel
enteredURL(QString &) KURLLabel
error() KRun
error(int, QString &) KFileReader
executed(QIconViewItem *) KIconView
executed(QIconViewItem *, QPoint &) KIconView
executed(QListBoxItem *) KListBox
executed(QListBoxItem *, QPoint &) KListBox
executed(QListViewItem *) KListView
executed(QListViewItem *, QPoint &, int) KListView
expanded(QListViewItem *) QListView
ez() KSpell
eza() KSpell
fgChanged(QColor &) KDualColorButton
fileChanged() QConfigDB
fileDirty(QString &) KDirWatch
fileHighlighted(KFileViewItem *) KDirOperator

KFileViewSignaler
fileHighlighted(QString &) QFileDialog KFileDialog
fileSelected(KFileViewItem *) KDirOperator KFileViewSignaler
fileSelected(QString &) QFileDialog KFileDialog

4682-1 appF.f.qc  11/13/00  14:16  Page 711



712 Appendixes

filterChanged() KFileFilter KFileReader
filterChanged(QString &) KFileDialog
find() KEdReplace
finished() KRun KIconCanvas
finished(QNetworkOperation *) QNetworkProtocol QUrlOperator
finishedLoading() KDirOperator
focusItemChanged() KCharSelect KCharSelectTable
focusItemChanged(QChar &) KCharSelect KCharSelectTable
fontChanged(QString &) KCharSelect
fontHighlighted(QFont &) QFontDialog
fontSelected(QFont &) QFontDialog KFontDialog KFontChooser
fontSizeChanged(int) KFontSizeAction
formulaChanged(QString &) KFormulaEdit
forwardAvailable(bool) QTextBrowser
gotUrlDrop(QDropEvent *) KEdit
guiThreadAwake() QApplication
headerCloseButtonClicked() KDockWidget
headerDockbackButtonClicked() KDockWidget
helpButtonPressed() QTabDialog
helpClicked() QWizard KDialogBase
hidden() KDialogBase
highlighted() KCharSelect KCharSelectTable
highlighted(int) KToolBar QComboBox QListBox QMenuBar

QPopupMenu
highlighted(int, bool) KToolBar KToolBarButton
highlighted(QChar &) KCharSelect KCharSelectTable
highlighted(QColor &) KColorCombo
highlighted(QListBoxItem *) QListBox
highlighted(QString &) QComboBox QListBox QTextBrowser
highlighted(QString &, QString &) KApplicationTree
highlightedRedirect(int) QPopupMenu
historyUpdate(bool, bool) KFileDialog
iconChanged(int) KApplication
iconChanged(QString icon) KIconButton
iMBeingClosed() KDockWidget
indexChange(int, int, int) QHeader
inserted(KAction *) KActionCollection
invalidChar(int) KRestrictedLine
itemChanged(QNetworkOperation *) QNetworkProtocol QUrlOperator
itemPressed(int) KStatusBarLabel
itemReleased(int) KStatusBarLabel
itemRenamed(QIconViewItem *) QIconView
itemRenamed(QIconViewItem *, QString &) QIconView
itemsDeleted(KFileViewItemList &) KFileReader
kdisplayFontChanged() KApplication
kdisplayPaletteChanged() KApplication
kdisplayStyleChanged() KApplication
keyChange() KKeyChooser
keycodeChanged() KAccel
kipcMessage(int, int) KApplication
lastWindowClosed() QApplication
layoutHintChanged() KDialog
leftClickedURL() KURLLabel
leftClickedURL(QString &) KURLLabel

4682-1 appF.f.qc  11/13/00  14:16  Page 712



713Appendix F ✦ Signals

leftURL() KURLLabel
leftURL(QString &) KURLLabel
mailClick(QString &, QString &) KAboutContainer

KAboutContainerBase KTextBrowser
mapped(int) QSignalMapper
mapped(QString &) QSignalMapper
match(QString &) KCompletion
matches(QStringList &) KCompletion
middleClickedURL() KURLLabel
middleClickedURL(QString &) KURLLabel
misspelling(QString originalword, QStringList *, unsigned pos)

KSpell
modechange() KToolBar
mouseButtonClicked(int, QListBoxItem *, QPoint &) QListBox
mouseButtonPressed(int, QIconViewItem *, QPoint &) QIconView
mouseButtonPressed(int, QListViewItem *, QPoint &, int)

QListView
mouseTrack(int, QMouseEvent *) KAboutContainerBase

KImageTrackLabel
moved() QIconView
moved(BarPosition) KToolBar
moved(int, int) QHeader
multipleMatches() KCompletion
nameChanged(QString) KIconCanvas
newChild(QUrlInfo &, QNetworkOperation *) QNetworkProtocol
newItems(FileItemList &) KDirLister
newWidth(int) KSplitList
nextLine() QScrollBar
nextMatch(KeyBindingType) KComboBox KLineEdit
nextPage() QScrollBar
noClicked() KDialogBase
objectCreated(QObject *) KLibFactory
okClicked() KDialogBase
onHotSpot(int) KToolBoxManager
onItem(QIconViewItem *) QIconView
onItem(QListBoxItem *) QListBox
onItem(QListViewItem *) QListView
onViewport() QIconView QListView QListBox
openURL(QString &) KAboutDialog KAboutWidget KAboutContributor
orientationChanged(Orientation) QToolBar
overflow() QLCDNumber
pageSelected(QWidget *) KDockTabCtl
percentageChanged(int) KProgress
pixmapChanged() KDialogBaseTile
pixmapSizeChanged(bool) QMainWindow
posChanged(int, int) KToolBoxManager
pressed() QButton
pressed(int) KStatusBar KToolBar KToolBarButton QButtonGroup

QHeader
pressed(QIconViewItem *) QIconView
pressed(QIconViewItem *, QPoint &) QIconView
pressed(QListBoxItem *) QListBox
pressed(QListBoxItem *, QPoint &) QListBox
pressed(QListViewItem *) QListView

4682-1 appF.f.qc  11/13/00  14:16  Page 713



714 Appendixes

pressed(QListViewItem *, QPoint &, int) QListView
previousMatch(KeyBindingType) KComboBox KLineEdit
prevLine() QScrollBar
prevPage() QScrollBar
processedSize(unsigned long bytes) KShred
processExited(KProcess *) KProcess
progress(int) KIconCanvas
progress(unsigned int) KSpell
propertiesClosed() KPropertiesDialog
readEvent(KSocket *) KSocket
readReady(KProcIO *) KProcIO
ready(KSpell *) KSpell
received(QString &) KJavaProcess
receivedStderr(KProcess *, char *, int) KProcess
receivedStdout(int, int &) KProcess
receivedStdout(KProcess *, char *, int) KProcess
redirection(KURL &) KDirLister
redoAvailable(bool) QMultiLineEdit
released() QButton
released(int) KStatusBar KToolBar KToolBarButton

QButtonGroup QHeader
removed(KAction *) KActionCollection
removed(QNetworkOperation *) QNetworkProtocol QUrlOperator
removeTip() QToolTipGroup
replace() KEdReplace
replaceAll() KEdReplace
replaceDock(KDockWidget *, KDockWidget *) KDockManager
resized() QCanvas
returnPressed() KComboBox QLineEdit KURLRequester

QMultiLineEdit
returnPressed(QIconViewItem *) QIconView
returnPressed(QListBoxItem *) QListBox
returnPressed(QListViewItem *) QListView
returnPressed(QString &) KComboBox KLineEdit KURLRequester
rightButtonClicked(QIconViewItem *, QPoint &) QIconView
rightButtonClicked(QListBoxItem *, QPoint &) QListBox
rightButtonPress(int, QPoint) KDockTabBar
rightButtonPressed(QIconViewItem *, QPoint &) QIconView
rightButtonPressed(QListViewItem *, QPoint &, int) QListView
rightClickedURL() KURLLabel
rightClickedURL(QString &) KURLLabel
rotateDown(KeyBindingType) KComboBox
rotateUp(KeyBindingType) KComboBox
saveYourself() KApplication
search() KEdFind
sectionClicked(int) QHeader
selected(int) QListBox QTabBar
selected(int, int) QWellArray
selected(QListBoxItem *) QListBox
selected(QString &) QListBox QTabDialog QTabWidget
selected(QString &, QString &) KApplicationTree
selectionChanged() KHTMLView QIconView QListBox QListView
selectionChanged(QIconViewItem *) QIconView
selectionChanged(QListBoxItem *) QListBox

4682-1 appF.f.qc  11/13/00  14:16  Page 714



715Appendix F ✦ Signals

selectionChanged(QListViewItem *) QListView
sendEmail(QString &, QString &) KAboutDialog KAboutWidget

KAboutContributor
setDockDefaultPos() KDockWidget
setDockDefaultPos(KDockWidget *) KDockManager
setStatus(QString &) KabAPI
settingsChanged(int) KApplication
showAboutApplication() KHelpMenu
showPreview(KURL &) KFilePreview
showTip(QString &) QToolTipGroup
shutDown() KApplication
sizeChange(int, int, int) QHeader
sizeChanged(int, int) KToolBoxManager
sizeHint(QSize) KFormulaEdit
sliderMoved(int) QScrollBar QSlider
sliderPressed() QScrollBar QSlider
sliderReleased() QScrollBar QSlider
stackingOrderChanged() KWinModule
start(QNetworkOperation *) QNetworkProtocol QUrlOperator
started(QString &) KDirLister
startedNextCopy(QList < QNetworkOperation > &) QUrlOperator
startLoading(int) KIconCanvas
startMovingToolBar(QToolBar *) QMainWindow
stateChanged(int) QButton
tableClicked() KDateTable KDatePicker
tableDown() KCharSelectTable
tableUp() KCharSelectTable
tabSelected(int) KDockTabBar KTabCtl
tabShowPopup(int, QPoint) KDockTabCtl
textChanged() QTextBrowser QMultiLineEdit
textChanged(QString &) QComboBox QLineEdit KURLRequester
timeout() QTimer
toggled(bool) KToggleAction QButton
toggled(int) KToolBarButton KToolBar
toggle_overwrite_signal() KEdit
toolBarPositionChanged(QToolBar *) QMainWindow
tryClicked() KDialogBase
undoAvailable(bool) QMultiLineEdit
updateInformation(int, int) KDirOperator
urlActivated(KURL &) KURLComboBox
urlChanged(QString &) KFileReader
urlClick(QString &) KAboutContainer KAboutContainerBase

KTextBrowser
urlEntered(KURL &) KDirOperator
urlSelected(KURL &) KRecentFilesAction
user1Clicked() KDialogBase
user2Clicked() KDialogBase
user3Clicked() KDialogBase
usesTextLabelChanged(bool) QMainWindow
valid(bool) KAccelInput
valueChanged(double) KDoubleNumInput
valueChanged(int) KIntNumInput KSelector QScrollBar

QSlider QSpinBox
valueChanged(int, int) KXYSelector

4682-1 appF.f.qc  11/13/00  14:16  Page 715



716 Appendixes

valueChanged(QString &) QSpinBox
windowActivate(WId) KWinModule
windowActivated(QWidget *) QWorkspace
windowAdd(WId) KWinModule
windowChange(WId) KWinModule
windowRemove(WId) KWinModule
workspaceAreaChanged() KWinModule
writeEvent(KSocket *) KSocket
wroteStdin(KProcess *) KProcess
yesClicked() KDialogBase

✦ ✦ ✦

4682-1 appF.f.qc  11/13/00  14:16  Page 716



Slots

Slots are used as receivers of information emitted by sig-
nals. Many of the slots have parameters defined, and the

footprint of a slot’s parameters must match that of the signal
it is designed to receive.

This appendix contains an alphabetical listing of the slots that
are defined in the KDE and Qt classes. A slot is also a method
and can be called directly, but these methods are really designed
to be called indirectly by the application emitting a signal.

KDE/Qt Slots
aboutApplication() KHelpMenu
aboutKDE() KHelpMenu
acceptSlave(KSocket *) KLauncher
activateHelp(void) KSpellConfig
addItem(const QString &) KCompletion
addStep() QSlider
advance() QCanvas
advance(int prog) KProgress
allDefault() KKeyChooser
animateClick() QButton
append(const QString &) QMultiLineEdit
appHelpActivated() KHelpMenu KTMainWindow
arrangeItemsInGrid(const QSize &grid, bool 

update = TRUE)
QIconView

arrangeItemsInGrid(bool update = TRUE) 
QIconView

back() KDirOperator
backward() QTextBrowser
build() Kded
cancel() QProgressDialog
cascade() QWorkspace
cdUp() KDirOperator
center(int x, int y) QScrollView
center(int x, int y, float xmargin, float 

ymargin) QScrollView
changeHideShowState() KDockWidget
checkFileChanged() QConfigDB
cleanup() KDialogBaseTile
clear() KCompletion QLineEdit QStatusBar 

QLabel
QMultiLineEdit

clearEdit() QComboBox

GGA P P E N D I X

✦ ✦ ✦ ✦

4682-1 appG.f.qc  11/20/00  15:40  Page 717



718 Appendixes

clearFocus() QWidget
clearSelection() QListBox
clearValidator() QComboBox QLineEdit
close() QWidget
close(int r) QPopupFrame
closeAllWindows() QApplication
computePosition() KEdit
constPolish() QWidget
contextHelpActivated() KHelpMenu
copy() QTextView QMultiLineEdit
copyText() QMultiLineEdit
corrected(QString originalword, QString newword, unsigned pos)

KEdit
cut() QMultiLineEdit
deselect() QLineEdit QMultiLineEdit
display(int num) QLCDNumber
display(double num) QLCDNumber
display(const QString &str) QLCDNumber
dockBack() KDockWidget
enableButton(ButtonCode id, bool state) KDialogBase
enableButtonApply(bool state) KDialogBase
enableButtonCancel(bool state) KDialogBase
enableButtonOK(bool state) KDialogBase
enableLinkedHelp(bool state) KDialogBase
ensureCurrentVisible() QListBox
ensureVisible(int x, int y) QScrollView
ensureVisible(int x, int y, int xmargin, int ymargin)

QScrollView
forward() KDirOperator QTextBrowser
hasMultipleMatches() KCompletion
helpClickedSlot(const QString &) KDialogBase
hide() QWidget
home() KDirOperator QTextBrowser
iconify() QWidget
idleTimeout() KLauncher
insert(const QString &) QLineEdit QMultiLineEdit
insertChar(int c) KFormulaEdit
invertSelection() QListView QListBox
listSync() KKeyChooser
lower() QWidget
makeCompletion(const QString &) KDirOperator
makeDirCompletion(const QString &) KDirOperator
map() QSignalMapper
message(const QString &) QStatusBar
message(const QString &, int) QStatusBar
misspelling(QString word, QStringList *, unsigned pos) KEdit
mkdir() KDirOperator
modeChange() KToolBarButton
move(int x, int y) QWidget
move(const QPoint &) QWidget
needUpdate() Kded
notify(int socket) QIOWatch
notify() QTimeWatch
off() KLed

4682-1 appG.f.qc  11/20/00  15:40  Page 718



719Appendix G ✦ Slots

on() KLed
paste() QMultiLineEdit
play() KAudioPlayer
polish() QWidget
quit() QApplication
raise() QWidget
raiseWidget(int) QWidgetStack
raiseWidget(QWidget *) QWidgetStack
recreate() Kded
redo() QMultiLineEdit
removeItem(const QString &) KCompletion
repaint() QWidget
repaint(bool erase) QWidget
repaint(int x, int y, int w, int h, bool erase = TRUE) QWidget
repaint(const QRect &, bool erase = TRUE) QWidget
repaint(const QRegion &, bool erase = TRUE) QWidget
repaint() KRootPixmap
repaintAll() KEdit
replace_all_slot() KEdit
replace_search_slot() KEdit
replace_slot() KEdit
replacedone_slot() KEdit
reportBug() KHelpMenu
rereadDir() KDirOperator
reset() QProgressDialog QProgressBar
resize(int w, int h) QWidget
resize(const QSize &) QWidget
resizeContents(int w, int h) QScrollView
rotateText(KeyBindingType) KComboBox KLineEdit
saveConfiguration() KFileDialogConfigure
scrollBy(int dx, int dy) QScrollView
search_slot() KEdit
searchdone_slot() KEdit
selectAll() QLineEdit
selectAll(bool select) QListView QListBox
selectAll() QTextView QMultiLineEdit
selected(int) KEdGotoLine
send() KNotifyClient
setAltPixmap(const QPixmap &pixmap) KURLLabel
setBackEnabled(QWidget *, bool) QWizard
setBackgroundColor(const QColor &bgcolor) KURLLabel
setBackgroundColor(const QString &bgcolor) KURLLabel
setBinMode() QLCDNumber
setCancelButtonText(const QString &) QProgressDialog
setCaption(const QString &) QWidget
setCaption(const QString &caption) KTMainWindow KDialog
setColor(const QColor &col) KColorDialog
setCols(int) KTextPrintPreview
setContentsPos(int x, int y) QScrollView QIconView QListView
setCurrentTab(int) QTabBar
setCurrentTab(QTab *) QTabBar
setDecMode() QLCDNumber
setDelay(bool) QToolTipGroup
setDest(int) KTextPrintDialog

4682-1 appG.f.qc  11/20/00  15:40  Page 719



720 Appendixes

setDir(const QString &) QFileDialog
setDirty() KPropsPage
setDockMenuEnabled(bool) QMainWindow
setEditFocus(bool mark = true) KIntNumInput
setEditText(const QString &) QComboBox
setEnabled(bool) QWidget QToolTipGroup KAction QSpinBox

KDockTabCtl QScrollView
setFilter(const QString &) QFileDialog
setFilters(const QString &) QFileDialog
setFilters(const char **) QFileDialog
setFilters(const QStringList &) QFileDialog
setFinish(QWidget *, bool) QWizard
setFinishEnabled(QWidget *, bool) QWizard
setFloat(bool do_float = true) KURLLabel
setFocus() QWidget
setFont(const QFont &font) KURLLabel
setGeometry(int x, int y, int w, int h) QWidget
setGeometry(const QRect &) QWidget
setGlow(bool glow = true) KURLLabel
setHelp(const QString &path, const QString &topic) KDialogBase
setHelpEnabled(QWidget *, bool) QWizard
setHelpLinkText(const QString &text) KDialogBase
setHexMode() QLCDNumber
setHighlightedColor(const QColor &highcolor) KURLLabel
setHighlightedColor(const QString &highcolor) KURLLabel
setIcon(const QPixmap &) QWidget
setIconText(const QString &) QWidget
setItems(const QStringList &) KCompletion
setLabelText(const QString &) QProgressDialog
setMinimumDuration(int ms) QProgressDialog
setMouseTracking(bool enable) QWidget
setMovie(const QMovie &) QLabel
setMovie(const QMovie &movie) KURLLabel
setNextEnabled(QWidget *, bool) QWizard
setNum(int) QLabel
setNum(double) QLabel
setOctMode() QLCDNumber
setOffset(int pos) QHeader
setOn(bool) QPushButton
setOn(bool enable) QToolButton
setOpaqueMoving(bool) QMainWindow
setOrient(int) KTextPrintPreview
setOverwriteMode(bool) QMultiLineEdit
setPageNumbers(bool) KTextPrintPreview
setPalette(const QString &paletteName) KPaletteTable
setPixmap(const QPixmap &) QLabel KURLLabel
setPlainCaption(const QString &caption) KTMainWindow KDialog
setPrefix(const QString &text) QSpinBox
setPrefix(QString prefix) KIntNumInput KDoubleNumInput
setProgress(int progress) QProgressDialog QProgressBar
setReadOnly(bool) QMultiLineEdit
setRightJustification(bool) QMainWindow
setRows(int) KTextPrintPreview
setSelectedColor(const QColor &selcolor) KURLLabel

4682-1 appG.f.qc  11/20/00  15:40  Page 720



721Appendix G ✦ Slots

setSelectedColor(const QString &selcolor) KURLLabel
setSmallDecimalPoint(bool) QLCDNumber
setSuffix(const QString &text) QSpinBox
setSuffix(QString suffix) KIntNumInput KDoubleNumInput
setText(const QString &) QLineEdit QLabel QMultiLineEdit
setText(const QString &text) KURLLabel
setTextAlignment(TextAlignment align) KURLLabel
setTextLabel(const QString &, bool) QToolButton
setTextLabel(const QString &) QToolButton
setTipText(const QString &tip) KURLLabel
setTitle(bool) KTextPrintPreview
setToggleButton(bool enable) QToolButton
setToolBarsMovable(bool) QMainWindow
setTotalSteps(int totalSteps) QProgressDialog QProgressBar
setUnderline(bool underline = true) KURLLabel
setUpdatesEnabled(bool enable) QWidget
setUrl(const QUrlOperator &url) QFileDialog
setURL(const QString &url) KURLLabel
setUseCursor(bool use_cursor, const QCursor *cursor = 0)

KURLLabel
setUsesBigPixmap(bool enable) QToolButton
setUsesBigPixmaps(bool) QMainWindow
setUsesTextLabel(bool) QToolButton QMainWindow
setUseTips(bool tips = true) KURLLabel
setValue(int) QSlider QSpinBox KProgress KIntNumInput
setValue(double) KDoubleNumInput
setVisiblePage(int id) KDockTabCtl
setWidth(int newWidth) KSplitListItem
show() QWidget
showFullScreen() QWidget
showMaximized() QWidget
showMinimized() QWidget
showNormal() QWidget
slotAccept(int) KServerSocket
slotActivated(int index) KColorCombo
slotAddExtension() KApplicationPropsPage
slotApply() KPropertiesDialog
slotAppRegistered(const QCString &appId) KLauncher
slotBrowseExec() KExecPropsPage
slotCancel() KPropertiesDialog
slotClear() KLineEditDlg KOpenWithDlg
slotDelExtension() KApplicationPropsPage
slotDequeue() KLauncher
slotDoHousekeeping(int socket) KProcessController
slotEndOffset(int) KRuler
slotHighlighted(const QString &_name, const QString &_exec)

KOpenWithDlg
slotHighlighted(int index) KColorCombo
slotItemHighlighted(QListViewItem *i) KApplicationTree
slotKInitData(int) KLauncher
slotMailClick(const QString &name, const QString &address)

KAboutContainerBase
slotMakeCompletion(const QString &string) KCompletion
slotMouseTrack(int mode, const QMouseEvent *e)

4682-1 appG.f.qc  11/20/00  15:40  Page 721



722 Appendixes

KAboutContainerBase
slotNewOffset(int) KRuler
slotNewValue(int) KRuler
slotNextMatch() KCompletion
slotOK() KOpenWithDlg
slotPreviousMatch() KCompletion
slotProgress(unsigned int p) KSpellDlg
slotRead(int) KSocket
slotSave() KCookieServer
slotSelected(const QString &_name, const QString &_exec)

KOpenWithDlg
slotSelectionChanged(QListViewItem *i) KApplicationTree
slotSetBackground(const QColor &c) KDualColorButton
slotSetCurrent(KDualColorButton::DualColor s) KDualColorButton
slotSetCurrentColor(const QColor &c) KDualColorButton
slotSetForeground(const QColor &c) KDualColorButton
slotSlaveGone() KLauncher
slotToggled(int) KToolBarRadioGroup
slotUrlClick(const QString &url) KAboutContainerBase
slotWrite(int) KSocket
stepDown() QSpinBox
stepUp() QSpinBox
stop() KToolBoxManager
subtractStep() QSlider
tile() QWorkspace
toggle() QButton QPushButton QToolButton KLed
triggerUpdate() QListView
undo() QMultiLineEdit
undock() KDockWidget
update() QWidget
update(int x, int y, int w, int h) QWidget
update(const QRect &) QWidget
update() QCanvas
updateBackground() KDialogBase
updateContents() QIconView
updateGL() QGLWidget
updateOverlayGL() QGLWidget
updateScrollBars() QScrollView
updateStatus() KAuthIcon KRootPermsIcon KWritePermsIcon
whatsThis() QMainWindow
yearEnteredSlot() KDateInternalYearSelector

✦ ✦ ✦

4682-1 appG.f.qc  11/20/00  15:40  Page 722


