
Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Apache
Desktop Reference
w w w . a p a c h e r e f . c o m

Ralf S. Engelschall
Apache Software Foundation

Addison-Wesley
Boston � San Francisco � New York � Toronto � Montreal

London � Munich � Paris � Madrid
Capetown � Sydney � Tokyo � Singapore � Mexico City

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and we were aware of a trademark claim, the designations have
been printed in initial capital letters or all capital letters.

The author and publisher have taken care in preparation of this book, but
make no expressed or implied warranty of any kind and assume no respon-
sibility for errors or omissions. No liability is assumed for incidental or con-
sequential damages in connection with or arising out of the use of the infor-
mation or programs contained herein.

Copyright c
�

2001 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

First printing, October 2000.
Covers Apache version 1.3.

Library of Congress Cataloging-in-Publication (CIP) Data:

Engelschall, Ralf S.
Apache desktop reference / Ralf S. Engelschall.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-60470-1
1. Apache (Computer file: Apache Group)
2. Web servers -- Computer programs.
I. Title.
TK 5105.8885.A63 E54 2000
005.7’13769--dc21 00-059355

Text printed on recycled paper.
1 2 3 4 5 6 7 8 9—CRS—03 02 01 00

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

To Daniela,
for her patience

and loyalty

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Contents

Foreword ix

Preface 1

1 Introduction 5

1.1 History and Evolution . 5
1.1.1 The Internet . 5
1.1.2 The Hypertext Concept 7
1.1.3 The World Wide Web . 8

1.2 The Apache Group . 11
1.2.1 A Group of Volunteers 11
1.2.2 The Apache HTTP Server Project 12
1.2.3 The Apache Software Foundation 14

2 Apache Functionality 17

2.1 Apache Architecture . 17
2.2 Apache Kernel Functionality 19
2.3 Apache Module Functionality 20

2.3.1 Core Functionality . 20
2.3.2 URL Mapping . 22
2.3.3 Access Control . 24
2.3.4 User Authentication . 24
2.3.5 Content Selection . 26
2.3.6 Environment Creation 27
2.3.7 Server-Side Scripting . 28
2.3.8 Response Header Generation 29
2.3.9 Internal Content Handlers 31
2.3.10 Request Logging . 32
2.3.11 Experimental . 33
2.3.12 Extensional Functionality 34

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

vi Contents

3 Building Apache 37

3.1 Sample Step-by-Step Installation 37
3.1.1 File System Preparation 38
3.1.2 Obtaining the Source Distribution 38
3.1.3 Package Prerequisites 39
3.1.4 Configuring the Apache Source Tree 41
3.1.5 Building and Installing Apache 43

3.2 Configuration Reference . 44
3.2.1 Configuration Variables 45
3.2.2 General Options . 47
3.2.3 Stand-alone Options . 48
3.2.4 Installation Layout Options 48
3.2.5 Build Options . 51
3.2.6 suEXEC Options . 55

3.3 Configuration Special Topics . 56
3.3.1 Shadow Source Trees . 56
3.3.2 On-the-Fly Addition of Third-Party Modules 56
3.3.3 Module Order and Permutations 57

4 Configuring Apache 59

4.1 Configuration Terminology . 59
4.1.1 Resource Identifiers . 59
4.1.2 Pattern Matching Notations 60

4.2 Configuration Structure . 62
4.2.1 Configuration Files . 62
4.2.2 Configuration Grammar 64
4.2.3 Configuration Contexts 64
4.2.4 Context Nesting . 66
4.2.5 Context Dependencies and Implications 67
4.2.6 Context Merging and Inheritance 67

4.3 Configuration Reference . 68
4.3.1 Core Functionality . 69
4.3.2 URL Mapping . 95
4.3.3 Access Control . 104
4.3.4 User Authentication . 106
4.3.5 Content Selection . 111
4.3.6 Environment Creation 114
4.3.7 Server-Side Scripting . 116
4.3.8 Response Header Generation 118
4.3.9 Internal Content Handlers 124
4.3.10 Request Logging . 129
4.3.11 Experimental . 133
4.3.12 Extensional Functionality 134

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Contents vii

5 Running Apache 159

5.1 Command-Line Reference . 159
5.1.1 Apache Daemon Program 159
5.1.2 Apache Control Program 161

6 Apache Resources 163

6.1 Online Resources . 163
6.1.1 Apache Itself . 164
6.1.2 Apache News . 164
6.1.3 Apache Support . 166
6.1.4 Apache Documentation 166
6.1.5 Apache Modules . 167

6.2 Print Resources . 168
6.2.1 Apache Developer Books 168
6.2.2 Apache User Books . 169

6.3 Apache-Related Standards . 171
6.3.1 Hypertext Transfer Protocol (HTTP) 171
6.3.2 Uniform Resource Identifier (URI) 172
6.3.3 Other Important Standards 172

Index 173

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Foreword

Flexibility

W hen we created the Apache project five years ago, our goal was to
ensure that the server-side of the Web would never be dominated by

the proprietary interests of any single company. To the Apache Group, the
Web is more than just a network-based application; it is the means for people
to communicate across geographical and political boundaries, to cooperate
in the sharing of information, and to collaborate in the creation of new works
of the imagination. Web servers are the printing presses of the Internet age.

In order to achieve our goal, we needed more than just another free Web
server. We needed software that is, in every way, a commercial-grade im-
plementation of the standards that define the Web. Any feature that might
distinguish one Web server over another must be achievable in Apache, us-
ing standard protocols where others might use proprietary extensions, and
with the robustness expected of a professional tool.

At the same time, we also knew that a web server must be a workhorse
application — subject to the anarchic nature of the Internet, and yet expected
to work 24 hours a day, 7 days a week, 52 weeks a year. Being webmasters
for our own sites, we knew that the greater the performance requirements,
the more emphasis there must be on maintaining a small server “footprint”
— the size and complexity of the software executable that acts as the brains
of the web server. High-performance sites needed the ability to remove any
functionality from the server that was not needed for their own resources.

When Robert Thau designed the module framework that distinguishes
the Apache architecture, its purpose was to provide webmasters with the
ability to include almost any feature they might want in a web server, and
yet do so in a way that avoided requiring the same features to be present on
every server. While keeping the core server simple, the module framework
allows each server to be tailored to the specific needs of the site it serves.
Flexibility.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

x Foreword

However, flexibility doesn’t come without cost. In order to properly con-
figure and run an Apache server, a webmaster needs to be familiar with the
hundreds of feature modules that are available. Furthermore, each module
can define its own set of configuration directives for controlling its behavior
and that of the server as a whole. Without a guide, even us core server de-
velopers would get lost in the maze of optional features that make Apache
work so well across so many different sites.

What Ralf has provided, in the form of this desktop reference, is a com-
plete guide to the features and configuration information needed to run
Apache as a robust, flexible, and high-performance web server. As one of
the core developers, Ralf provides a level of insight regarding the inner-
workings of Apache that you won’t find in a typical user manual. This is
the kind of book that you want located next to every server console.

As you work with the Apache software, remember that all of this has
been accomplished by a volunteer community of software developers collab-
orating across the Internet. Open source is shared custom software — it only
comes about when individuals have the foresight to share what they do with
the rest of the world. The Apache Software Foundation supports a number
of open-source software projects related to Web technology, including the
HTTP server project, and welcomes anyone with a desire to contribute to-
ward the future of Apache.

— Roy T. Fielding,
July 2000, Irvine, California

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Preface

The best way to predict
the future is to invent it.

— Alan Kay

O n a monthly basis, Netcraft checks a representative set of web servers
around the world to gather statistics about the server market. For its

Web Server Survey1 in April 2000 (see Figure 0.1 on the following page), more
than 14 million web sites were contacted and their server software identified
by parsing the HTTP responses.

According to Netcraft, as of April 2000, more than 60 percent of the ser-
vers were based on Apache — that is, more than 8 million web servers. Apache is the

world-leading web
server.Apache has been the market leader for more than three years now and has

put a large distance between itself and its competitors (Microsoft Internet
Information Server: 21 percent; Netscape server family and various others:
less than 10 percent each). In other words, Apache is the definitive, world-
leading web server software on the market and a drop in popularity is not
expected in the next 12 months. On the contrary, its popularity is increasing.

The Purpose and Audience of This Book
Most webmasters who must manage and maintain an Apache server instal-
lation are already familiar with Apache, either through the online available
documentation from the Apache Software Foundation (ASF) or through the
various Apache books on the market. The purpose of this book is to pro- This book is a

reference for people
who already know
Apache under UNIX.

vide a concise but, fairly complete reference to the various Apache knobs
and levers with which the webmaster is confronted at compile time, config-
uration time, and runtime. Thus the audience of this book consists of web-
masters who are already familiar with Apache, but who need a reference on
a daily basis.

1 ���������	����
�
�
���

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

2 Preface

1996 1997 1998 1999

60%

30%

0%
Aug 2000

NCSA

Microsoft

Apache

Other
Netscape

Figure 0.1: The Netcraft Web Server Survey through April 2000

The book does not purport to explain Apache or to describe all refer-This book does not
cover all third-party
modules, Apache
optimization
techniques, or use of
Apache under
non-UNIX platforms.

enced material in great detail. Instead, it serves as a companion to the var-
ious Apache tutorial-style books on the market. As a result, the book does
not cover special topics like existing third-party modules, optimization of
Apache under runtime, or use of Apache under non-UNIX platforms. If you
are interested in those topics, consult one of the tutorial-style books.

Organization of This Book
This book is organized into six chapters.

Chapter 1, Introduction, discusses the history and evolution of the Internet,
hypertext, and the World Wide Web and describes how Apache and the ASF
fit into this world. This chapter is intended to provide a quick reference to
historical Apache-related numbers and introduce the Apache world.

Chapter 2, Apache Functionality, considers the Apache program architecture,
which consists of a core part and various extensional modules. A concise ref-
erence to the standard Apache modules follows this discussion. This chapter
is intended to provide a compact overview of the Apache module world.

Chapter 3, Building Apache, covers building the Apache package from the
distributed source codes. It first shows a typical Apache installation pro-Chapters 2 and 4 are

the primary reference
chapters.

cedure step by step, then provides a reference to all Apache Autoconf-style
Interface (APACI) options, and finally discusses some special configuration
issues like the Dynamic Shared Object (DSO) facility. This chapter is intended
to help you install a reasonable Apache instance.

Chapter 4, Configuring Apache, focuses on the runtime configuration of Apa-
che. It introduces the gory details of the Apache configuration files and
contexts, then includes a complete reference of all configuration directives

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Preface 3

provided by all standard Apache modules. This chapter is the heart of this
book.

Chapter 5, Running Apache, discusses ways to run the Apache web server and
provides a reference to all command-line options. It is intended to provide
the webmaster with a quick reference for the regular Apache start-up and
restart situations.

Chapter 6, Apache Resources, lists the various other Apache resources that
you can consult to obtain details on a topic. It provides references to the
most important Apache resources on the Internet.

How to Read This Book
The most reasonable approach to reading this book is to first read the non-
reference parts once and then to read the remaining parts only on demand.
The first reading depends on your existing skill:

You are familiar with Apache in general, but you are not an expert.
We recommend that you first read Chapter 1 for an introduction to the
material, than read the first sections of Chapters 2 and 3 to refresh your Everyone should read

at least the first part of
chapter 4 as a
refresher course on
Apache configuration
contexts. The
remaining parts can
then be read on
demand.

knowledge of the Apache module architecture and the APACI facility.
Next, very carefully read the first nonreference sections of Chapter 4,
trying to understand how the Apache configuration contexts work. Fi-
nally, glance over the remaining chapters, which contain material that
you can find later on demand.

You are an Apache expert.
We recommend that you first read Chapter 1 to refresh your Apache
background, followed by a careful reading of the first nonreference
part of Chapter 4 to refresh your knowledge of Apache configuration
context handling. Finally, glance over the remaining parts of the book,
which contain material that you can find later on demand.

Your subsequent readings should occur only on demand or if you are inter-
ested in more details. Refer to Chapter 2 if you are searching for details on
an Apache module, Chapter 3 if you want details on APACI options, Chap-
ter 4 if you are seeking details on particular Apache configuration directives,
Chapter 5 if you are searching for a command line directive, and Chapter 6
if you need more help.

Typographic Conventions
We use italic text for special names and other highlighted terms. We use
���������	���	��
������� text to indicate configuration directives, commands entered
at the command line, and other computer code.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4 Preface

Companion Web Site and Feedback
This book has a companion web site at �	� ���������

�
�� �	� � � ��
	�
���� ������� , main-This book has its own

dedicated companion
web site at������������������ "!� �#��$��%'& .

tained by this book’s author. Here you can find online versions of the refer-
ence materials and resource lists in this book, errata, and other information
about this book and Apache.

Please address comments and questions concerning this book and its
companion web site via e-mail directly to the author at � �	
�(�	� � � ��
)�
��*� ���+� .

Acknowledgments
This book was sometimes nasty to write, because I wrote it at the same time
that I had many very time-consuming tasks to complete for my computer
science study. Additionally, while I assembled the reference information, I
often had to fix bugs in the Apache source or the online documentation first.
Unfortunately, this endeavor greatly delayed the creation of this book.

The greatest thanks go to my wife Daniela, because she was always very
insightful and let me hack the whole day and even on weekends without
complaining. She was also the person who regularly forced me to work on
this book when I became lost in hacking on other things.

Additional thanks go to reviewers Mark J. Cox, Roy T. Fielding, Ken Coar,
Jim Jagielski, Shane Owenby, Sander van Zoest, Stefan Winz, Gautam Gu-
liani and Christian Reiber. I also thank Mary T. O’Brien and John Fuller from
Addison-Wesley for the original idea for this book and the long-term project
assistance. Finally, thanks go to Kathy Glidden and her team at Stratford
Publishing Services for their help in proofreading and publishing the book.

— Ralf S. Engelschall,
July 2000, Munich, Germany

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Chapter 1

Introduction

In this chapter:

History of the Internet
History of Hypertext
History of the World Wide Web
About the Apache Group
About the HTTP Server Project

Apache: generous hackers from around
the world all join forces to help you
shoot yourself in the foot for free.

— Unknown (paraphrased)

I n Chapter 1, we look at the history of the World Wide Web (WWW)
by remembering its evolution out of two important fundamentals: the

global Internet, which forms the networking basis, and the hypertext con-
cept, which is the root of the “web of documents” idea. We then look at the
the role of web servers, the Apache Group, and finally the Apache Group’s
popular HTTP server project.

The World Wide Web
combines the global
dimension of the
Internet with the
associative concept of
hypertext.

All topics are rounded up by historical background details, with the goal
of giving you a better understanding of Apache’s evolution and its world. If
you are not interested in history (or already know the details), you can skip
this introductory chapter. When you plan to base your web business on an
Apache web server, however, it is certainly reasonable to know a little bit
more about this world first.

1.1 History and Evolution

1.1.1 The Internet
In 1957, the USSR launched Sputnik, the first artificial earth satellite. In re-
sponse to this event, the United States formed the Advanced Research Projects

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

6 Chapter 1: Introduction

Agency (ARPA) within the Department of Defense (DoD) to establish a U.S.
lead in science and technology applicable to the military. In 1969, the U.S.
DoD founded ARPANET to facilitate networking research, establishing a
network out of four initial nodes: University of California – Los Angeles
(UCLA), Stanford Research Institute (SRI), University of California – Santa
Barbara (UCSB), and University of Utah (see Figure 1.1).

SRI

UoUtah

UCSB

UCLA

ARPANET

Copyright © 1997
Larry Landweber
and the Internet Society.
Unlimited permission to
copy or use is hereby granted
subject to inclusion of
this copyright notice.

INTERNATIONAL CONNECTIVITY
 Version 16 - 6/15/97

Internet

Bitnet but not Internet

EMail Only (UUCP, FidoNet)

No Connectivity
This map may be obtained via anonymous ftp
from ftp.cs.wisc.edu, connectivity_table directory

19991969 4 hosts 43 million hosts

Figure 1.1: From four nodes to a covered world

This network consisted of 50 Kbps lines and used the Network Control Pro-
tocol (NCP), the first host-to-host protocol. Over the years, more and more
hosts were connected to ARPANET, and the first hundred Request for Com-
ments (RFC) were written to discuss and document the used protocols and
software. In 1974, Vint Cerf and Bob Kahn published “A Protocol for PacketThe Internet started

with 4 nodes in 1969;
just 30 years later,
more than 43 million
nodes exist.

Network Interconnection,” which specified in detail the design of a Trans-
mission Control Program (TCP). In 1978, TCP was split into two protocols:
Transmission Control Protocol (TCP) and Internet Protocol (IP).

In 1982, the DoD declared TCP and IP (commonly known as TCP/IP) to
be its official protocol suite. This move led to one of the first definitions of an
“internet” as a connected set of networks, specifically those using TCP/IP,
and of the “Internet” as the globally connected TCP/IP internets. In January
1983, ARPANET officially switched from NCP to TCP/IP, thereby creating
the Internet. Explosive growth followed: In 1984, the number of hosts al-
ready broke 1,000; in 1987, it reached 10,000; in 1989, it achieved the 100,000
mark; in 1992, it was at 1,000,000; in 1996, it reached 10,000,000. As of this
writing (1999), the Internet counts more than 43,000,000 hosts.1 There is still
no stagnation in sight (see also Figure 1.2 on the facing page).

1Hobbes’ Internet Timeline���������	����
�
�
�� � ����� �	� ����������������������� ��������������������	� � �������������
����� ��� �

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

1.1 History and Evolution 7

the WWW
Invention of

Growth of Internet hosts

5.000,000

25.000,000

30.000,000

35.000,000

40.000,000

45.000,000

1975 1980 1985 1990 1995
0

1969

15.000,000

10.000,000

20.000,000

Growth of websites

0

1.000,000

1.500,000

2.000,000

2.500,000

3.000,000

3.500,000

4.000,000

4.500,000

01/1994 01/1995 01/1996 01/1997 01/1998 01/1999

500000

Figure 1.2: The growth of the Internet (number of connected hosts) and the
World Wide Web (number of web servers)

1.1.2 The Hypertext Concept
The idea of hypertext dates back to 1945. As director of the Office of Scientific
Research and Development under U.S. president Franklin Roosevelt, Vannevar
Bush coordinated the activities of some 6,000 leading American scientists in
the application of science to warfare. In his pioneering article entitled “As
We May Think,” published in The Atlantic Monthly2 in July 1945, he pro-
posed the creation of “memex,” a device “in which an individual stores all Hypertext is a very old

concept that was
reanimated and
became most popular
through the World
Wide Web.

his books, records, and communications, and which is mechanized so that it
may be consulted with exceeding speed and flexibility.” The “essential fea-
ture of the memex” was not only its capacities for retrieval and annotation
but also those involving “associative indexing” — what today’s hypertext
systems term a “hyperlink.”

In 1965, Ted Nelson from Xanadu coined the term hypertext. Later, at
Brown University (Providence, Rhode Island), Andries van Dam in 1967 cre-
ated the Hypertext Editing System (HES) and the File Retrieval and Editing Sys-
tem (FRESS)3 — two of the first real hypertext document systems. In 1968,
Douglas C. Engelbart4 (best known as the inventor of the computer mouse in
1963) demonstrated the NLS (for “oNLine System,” later renamed Augment
System) in a multimedia presentation at the Fall Joint Computer Conference
(FJCC) in San Francisco, California. This event marked the world debut of
the mouse, hypermedia, and on-screen video teleconferencing.

After this pioneering event, many systems were created over the years,
all of which were highly influenced by the hypertext idea (1975: ZOG at
Carnegie Mellon University; 1978: Aspen Movie Map by Andy Lippman
from MIT; 1984: Filevision by Telos; 1985: Symbolics Document Examiner by
Janet Walker; 1985: Intermedia by Norman Meyrowitz at Brown University;
1986: Guide from OWL, NoteCards from XeroxPARC, and so on). In 1987,

2 ���������	����
�
�
�� ��������� �� �� � � ����� ����������������� � �������� � ������� ����������������� � ��������� �
3 ���������	����
�
�
�����������������
��� ������� ������������� ������������������	�������������
 ���	� ������
�����
������������������ �
4 ���������	����
�
�
�������� ��������� ���	� ��������� ����� � � ����� �

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

8 Chapter 1: Introduction

Apple introduced HyperCard 5, which was invented by Bill Atkinson. Hyper-
Card was regarded as a “milestone in the history of computing, and a shift
of paradigm in educational software.”

The HyperTEXT’87 conference was held in Chapel Hill, North Carolina
— the first large-scale meeting devoted to the hypertext concept itself. AsHypertext consists of

nonsequentially linked
pieces of data. The
data that can be linked
to or from are called
nodes, and the whole
system forms a
network of nodes
interconnected with
links.

noted in the conference report, “Hypertext is non-sequentially linked pieces
of text or other information . . . The things which we can link to or from are
called nodes, and the whole system will form a network of nodes intercon-
nected with links.”6

1.1.3 The World Wide Web
In March 1989, Tim Berners-Lee (Tim B.L.) from CERN7 (European Labora-
tory for Particle Physics) wrote a document entitled “Information Manage-
ment: A Proposal,”8 in which he tried to propose answers to the question
“How will we ever keep track of large projects?” This paper circulated for
comments at CERN in 1990.

After approval of the idea by Mike Sendall (Tim B.L.’s boss), work started
on a hypertext GUI browser and editor using the NeXTStep development en-
vironment.9 Tim B.L. made up “WorldWideWeb” as a name for the program;
later it was renamed “Nexus” to avoid confusion between the program and
the abstract information space.10 After the project was developed at CERNAfter pushing the

project at CERN
between 1991 and
1993, the World Wide
Web (WWW) quickly
became the first global
hypertext system.

over two years, the World Wide Web (WWW) quickly became the first global
hypertext system and the abbreviation WWW entered the public conscious-
ness.

After these initial events a fast evolution occurred, made possible by both
the hypertext concept and the availability of the Internet, which represented
a promising development field. Figure 1.3 on the next page tries to illustrate
this evolution with a few milestones.

The client side The client side of the WWW is controlled by two factors:
the Hypertext Markup Language (HTML) and the popular browsers that
form the front end to the end user and render the WWW data on the desk-
top. In 1993, the first HTML versions were designed; in addition, the Na-
tional Center for Supercomputing Applications (NCSA) created its Mosaic

5 ���������	����
�
�
�� � ��� �� ��������������������� �������
6Published in the ACM SIGCHI Bulletin 19, 4 (April 1988), pp. 27–35.
Online version:

���������	����
�
�
���� ������������ ����������� ������ ���� ����� �������� ��	�� ���������������

7 ���������	����
�
�
���� �������� ���
8 ���������	����
�
�
���
 � �	� �����	� � ����� �����
	 � � � ��������� ��� � �������

9See ���������	����
�
�
���
 � �	� ������������� �����
������������������������ � ���� � ��������������� �
 for screenshots and de-
scriptions.

10World Wide Web is now spelled with spaces.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

1.1 History and Evolution 9

httpd

World
Wide Web
(WWW)

CERN
linemode NCSA

Mosaic

Netscape
Navigator

Internet

Apache

1969−1983 HTTP
1991−1997

19951993
1991

1945−1987
Hypertext

1991

HTML
1993−1998

1989−1991

1993

Server

Client

CERN

1995

httpd NCSA

Figure 1.3: The evolution and milestones of the World Wide Web

browser, which immediately became Internet killer application number one.
The popular Netscape Navigator later evolved from Mosaic; today, it rules on
half of all desktops.11 Other early browsers (for example, Lynx) also remain
in wide use, however.

HTML, which was originally a very small SGML-based markup lang-
uage, evolved over the years into a highly complex markup language (cur- Because the client side

of the WWW is so
colorful, most people
identify the WWW with
just this part and totally
forget that there is
another part — the
server side.

rently it is at version 4.0). Together with various companion languages and
object models (for example, JavaScript, DOM), graphics formats (for exam-
ple, GIF, JPEG, PNG), and multimedia data (for example, audio, video), the
client side of the WWW constitutes a very colorful, complex, and sometimes
even chaotic area. And especially because this area is so colorful, most peo-
ple identify the WWW with just this client side and totally forget that another
part exists — the server side.

The server side The server side part is less colorful and interesting than
the client-side — but only at first glance. One cannot make screenshots, see
colorful icons, or click, for instance. But that is the world of Apache. Once On the server side of

the WWW, one cannot
make screenshots, see
colorful icons, or click
— but that is the world
of Apache.

you become familiar with it, you will recognize that it is the really interesting
part of the WWW.

Here Tim Berners-Lee in 1991, and Ari Luotonen and Henrik F. Nielsen
in 1993/1994, started to write the “CERN HTTP server,” which was the first
real web server. In 1993, Tony Sanders wrote a web server in Perl called
“Plexus,” and Robert McCool at NCSA wrote a competitive package in C,
the “NCSA httpd.”12 This NCSA web server became very popular over the

11The other half of the desktop is controlled by Microsoft’s Internet Explorer.
12“httpd” stands for “HTTP daemon,” which means a stand-alone running UNIX process serv-

ing data via HTTP.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

10 Chapter 1: Introduction

next two years, though its development and maintainance were dropped
after McCool left NCSA in 1994.

Out of this situation, a group of people started to assemble patches for
the NCSA httpd. After it became clear that NCSA httpd was dead, it be-
came a nasty task to just assemble patches; in February 1995, the Apache
HTTP server project was born out of these patches (hence the name ”a patchy
server”). Apache was initially based on NCSA httpd 1.3. The first offi-
cial public Apache release appeared in April 1995 (more details are in sec-
tion 1.2.2 on page 12).

Role of the HTTP server While everyone knows HTML, most people fail
to recognize HTTP (Hypertext Transfer Protocol), the workhorse of WWWNowadays everyone

knows HTML, but lots
of people have never
recognized the role
played by HTTP.

network communication. This application layer protocol exists on top of
TCP/IP and is used by web browsers and servers to transfer the various
multimedia data behind hyperlinks. The web server accepts such HTTP con-
nections from browsers and sends out the data queried through hyperlinks
(represented as Uniform Resource Locators; see also Figure 4.1 on page 60)
and various auxiliary HTTP header fields. For an illustration of this task, see
Figure 1.4.

HTTP request

HTTP response

DocumentRoot /bar/baz.html

Network File System

httpd

Client Server

GET /bar/baz.html HTTP/1.0

User−Agent: Quux/0.8.15
Host: www.foo.dom:80

Accept: */*

HTTP/1.0 200 Ok
Server: Apache/1.3
Content−type: text/html

<html>
<head><title>Baz</title></head>

</body>

<body>
<h1>The story of Baz</h1>
...

</html>

<html>
<head><title>Baz</title></head>

</body>

<body>
<h1>The story of Baz</h1>
...

</html>

Figure 1.4: The role of a web server

Keep in mind that although this task looks easy at first (and is easy in princi-
ple), difficulties arise from not-so-obvious requirements related to high per-
formance (a web server can be faced with thousands of HTTP requests at the
same time), customization (the content providers have very different situa-
tions and requirements), portability (Apache runs on all major server plat-
forms), reliability, and other considerations. And although Apache isn’t the
fastest or maximally customizable web server, its popularity comes from the

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

1.2 The Apache Group 11

fact that it provides a very good balance of these things bundled with maxi-
mum portability and reliability.

1.2 The Apache Group
The people behind the Apache web server belong to the Apache Group. If
you plan to base your web business on an Apache web server, it is reasonable
to learn some essentials about this group, its server project, and the organi-
zation behind it, the Apache Software Foundation.

1.2.1 A Group of Volunteers
What is the Apache Group? One of its members, Rob Hartill, once sar-
castically described the Apache Group as follows:

The Apache Group:
a collection of talented individuals who are trying
to perfect the art of never finishing something.

Perhaps this description fits the reality of the group very well. For instance,
in summer 1997 the group thought (after Apache 1.2 was released) that it
could quickly incorporate the recently contributed Windows NT port and One reason that

Apache has been so
reliable is that the
Apache Group doesn’t
have a marketing
department.

release it as Apache 1.3 one or two months later, as an interim release be-
tween Apache 1.2 and the long-awaited Apache 2.0. Unfortunately, this plan
failed horribly. Ultimately, the release of Apache 1.3 required seven beta ver-
sions and a development period of an entire year. So, instead of summer
1997, Apache 1.3 was released in summer 1998 �����

Although the developers’ time plans often prove unrealistic, one should
not treat this delay as a drawback. As Roy T. Fielding summarized the
group’s plans: “I mean releasing Apache when it is ready to be released,
rather than according to an arbitrary schedule. One of the reasons Apache
has been so reliable in the past is that we don’t have a marketing depart-
ment.” Users often forget this important point. The Apache Group is a

collection of talented
individuals who spend
a great part of their
free time trying to
create the best web
server money can’t
buy.

Additionally, the work of the Apache developers should not be under-
valued just because their planning is sometimes a little bit chaotic. Actu-
ally, the Apache Group developers were always very productive in their free
time. Since the amalgamation of the group in 1995, developers have writ-
ten approximately 70,000 lines of polished ANSI C code, released around 80
Apache versions, written more than 50,000 mails of internal correspondence,
and edited in excess of 3,000 bug reports. Thus, it is actually more correct to
say that the Apache Group is a collection of talented individuals who spend
a great part of their free time trying to create the best web server money can’t
buy.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

12 Chapter 1: Introduction

Who are the members of the Apache Group? As of April 2000, the
Apache Group included the following active members (in alphabetical or-
der):

Brian Behlendorf (USA) Alexei Kosut (USA)
Ryan Bloom (USA) Martin Kraemer (DE)
Ken Coar (USA) Ben Laurie (UK)
Mark J. Cox (UK) Rasmus Lerdorf (USA)
Lars Eilebrecht (DE) Doug MacEachern (USA)
Ralf S. Engelschall (DE) Aram W. Mirzadeh (USA)
Roy T. Fielding (USA) Sameer Parekh (USA)
Tony Finch (UK) Daniel Lopez Ridruejo (USA)
Dean Gaudet (USA) Wilfredo Sanchez (USA)
Dirk-Willem van Gulik (IT) Cliff Skolnick (USA)
Rob Hartill (UK) Marc Slemko (CA)
Brian Havard (AU) Greg Stein (USA)
Ben Hyde (USA) Bill Stoddard (USA)
Jim Jagielski (UK) Paul Sutton (USA)
Manoj Kasichainula (USA) Randy Terbush (USA)

The Apache Group is a
colorful bunch of totally
different hackers from
around the world —
every one full of spirit.

The following people are Apache emeriti — that is, old group members now
off doing other things:

Chuck Murcko (USA) Robert S. Thau (USA)
David Robinson (UK) Andrew Wilson (UK)

Additionally, many contributors from around the world have added their
development effort to the Apache Group from time to time. Their help has
been especially notable in the Apache HTTP server project.

1.2.2 The Apache HTTP Server Project
What is the Apache HTTP server project? The HTTP server project is
the Apache Group’s main project. This collaborative software development
effort is aimed at creating a robust, commercial-grade, featureful, and freely
available source code implementation of an HTTP server. This server is well
known as “the Apache.” The volunteers are therefore known as “the Apache
Group.”

How did the Apache HTTP server project start? Let Roy T. Fielding,
another member of the Apache Group (and one of the fathers of HTTP), de-
scribe the early days of the project:

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

1.2 The Apache Group 13

“In February 1995, the most popular server software on the Web was
the public domain HTTP daemon developed by Rob McCool at the National
Center for Supercomputing Applications, University of Illinois, Urbana-Cham-
paign. However, development of that �	� �)� � had stalled after Rob left NCSA
in mid-1994, and many webmasters had developed their own extensions and
bug fixes that were in need of a common distribution. A small group of these
webmasters, contacted via private e-mail, gathered together for the purpose
of coordinating their changes (in the form of ‘patches’). Brian Behlendorf
and Cliff Skolnick put together a mailing list, shared information space, and
logins for the core developers on a machine in the California Bay Area, with By the end of February

1995, eight core
contributors had
formed the foundation
of the original Apache
Group.

bandwidth and diskspace donated by HotWired and Organic Online. By the
end of February, eight core contributors formed the foundation of the origi-
nal Apache Group:

Brian Behlendorf Roy T. Fielding Rob Hartill
David Robinson Cliff Skolnick Randy Terbush
Robert S. Thau Andrew Wilson

with additional contributions from

Eric Hagberg Frank Peters Nicolas Pioch

Using NCSA httpd 1.3 as a base, we added all of the published bug fixes
and worthwhile enhancements we could find, tested the result on our own
servers, and made the first official public release (0.6.2) of the Apache server Apache was originally

based on NCSA httpd,
version 1.3.

in April 1995. By coincidence, NCSA restarted its own development during
the same period, and Brandon Long and Beth Frank of the NCSA Server
Development Team joined the list in March as honorary members so that the
two projects could share ideas and fixes.

The early Apache server was a big hit, but we all knew that the code-
base needed a general overhaul and redesign. During May–June 1995, while
Rob Hartill and the rest of the group focused on implementing new features
for 0.7.x (like pre-forked child processes) and supporting the rapidly grow-
ing Apache user community, Robert Thau designed a new server architec-
ture (code-named ‘Shambhala’) that included a modular structure and API
for better extensibility, pool-based memory allocation, and an adaptive pre-
forking process model. The group switched to this new server base in July
and added the features from 0.7.x, resulting in Apache 0.8.8 (and its brethren)
in August.

After extensive beta testing, many ports to obscure platforms, a new set
of documentation (by David Robinson), and the addition of many features in
the form of our standard modules, Apache 1.0 was released on December 1,
1995. Less than a year after the group was formed, the Apache server passed
NCSA’s �	����� � as the number 1 server on the Internet.”

Over the past few years, many volunteers have contributed thousands of
bug fixes, cleanups, and enhancements for Apache. Their work has allowed

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

14 Chapter 1: Introduction

Apache to keep its leading market position. A few insights of this evolution
follow.

Lines of Code
Version Code Comments Total
1.0.5 11,551 6,099 17,650
1.1.3 18,896 9,786 28,682
1.2.6 33,526 15,715 49,241
1.3.3 52,341 24,956 77,297
1.3.12 69,646 31,041 100,687

Table 1.1: The Apache code evolution

The evolution of Apache The Apache web server has remained under
continuous development during the past few years. Table 1.1 gives you anApache 1.3 consists of

100,000 lines of
polished ANSI C code. impression of the Apache source code basis. It lists a few major Apache re-

lease versions and the number of lines of code they include (divided into
lines of comments and actual code).

Table 1.2 on the facing page summarizes the individual Apache releases in
more detail. It shows the version numbers, their release dates, and the num-
ber of patches (distinguished code changes) in every release. As you can see,
so far the development of Apache 1.3 has required the greatest amount of
effort.

The future of Apache As of April 2000, the Apache developers were ac-
tively working on Apache 2.0, which will provide multithreading underApache 2.0 will also

provide multithreading
instead of the
pre-forked process
model of Apache 1.3. It
will be not ready for
production before
summer 2001.

UNIX Operating System (UNIX) together with lots of smaller enhancements
and changes. This change will allow Apache to scale better, require less
system resources, and perform more quickly compared to the pre-forked
process model of Apache 1.3. Before a 2.0 release version is stable enough
for production environments, however, at least one more year will certainly
pass. So don’t be alarmed: The current stable Apache version is 1.3 — and
that is the version covered in this book.

1.2.3 The Apache Software Foundation
Since 1999, the Apache Software Foundation (ASF) has been the official organi-
zation behind the Apache people. The ASF exists to provide organizational,
legal, and financial support for Apache open-source software projects.

The foundation has been incorporated as a membership-based, not-for-
profit corporation to ensure that the Apache projects continue to exist be-
yond the participation of individual volunteers, to enable contributions of

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

1.2 The Apache Group 15

Date Version Patches
18-Mar-1995 0.2 1
24-Mar-1995 0.3 1
02-Apr-1995 0.4 1
10-Apr-1995 0.5.1 9

NA-Apr-1995 0.5.2 4
NA-Apr-1995 0.5.3 2
NA-Apr-1995 0.6.0 11
31-May-1995 0.6.1 5

NA-Apr-1995 0.6.2 11
05-May-1995 0.6.3 NA

NA-May-1995 0.6.4 NA
NA-NA-1995 0.6.5 NA
NA-NA-1995 0.7.0 NA

NA-NAN-1995 0.7.1 NA
NA-NAN-1995 0.7.2 NA

14-Jul-1995 0.8.0 9
17-Jul-1995 0.8.1 3
19-Jul-1995 0.8.2 11
24-Jul-1995 0.8.3 8
26-Jul-1995 0.8.4 6
30-Jul-1995 0.8.5 10

02-Aug-1995 0.8.6 5
03-Aug-1995 0.8.7 3
08-Aug-1995 0.8.8 2
12-Aug-1995 0.8.9 20
18-Aug-1995 0.8.10 2
24-Aug-1995 0.8.11 12
31-Aug-1995 0.8.12 12
07-Sep-1995 0.8.13 11
19-Sep-1995 0.8.14 6
14-Oct-1995 0.8.15 22

05-Nov-1995 0.8.16 12
20-Nov-1995 0.8.17 13
23-Nov-1995 1.0.0 1

16-Jan-1996 1.0.1 5
07-Feb-1999 1.0.2 7
16-Feb-1996 1.1b0 1
18-Apr-1996 1.0.3 1
18-Apr-1996 1.0.4 1
20-Apr-1996 1.0.5 1
22-Apr-1996 1.1b1 1
24-Apr-1996 1.1b2 1
10-Jun-1996 1.1b3 14
17-Jun-1996 1.1b4 9
03-Jul-1996 1.1.0 7

Date Version Patches
09-Jul-1996 1.1.1 5

25-Nov-1996 1.2b0 NA
02-Dec-1996 1.2b1 1
10-Dec-1996 1.2b2 18
23-Dec-1996 1.2b3 21
30-Dec-1996 1.2b4 8
12-Jan-1997 1.1.2 2
14-Jan-1997 1.1.3 2

NA-Jan-1997 1.2b5 36
26-Jan-1997 1.2b6 2
22-Feb-1997 1.2b7 38
07-Apr-1997 1.2b8 47

NA-Apr-1997 1.2b9 32
28-Apr-1997 1.2b10 5
28-May-1997 1.2b11 23
16-Jun-1997 1.2.0 0
19-Jul-1997 1.2.1 27
23-Jul-1997 1.3a1 50

NA-Aug-1997 1.2.2 18
19-Aug-1997 1.2.3 4
22-Aug-1997 1.2.4 2
16-Oct-1997 1.3b2 99

20-Nov-1997 1.3b3 55
05-Jan-1998 1.2.5 17
19-Feb-1998 1.2.6 22

NA-Feb-1998 1.3b4 103
19-Feb-1998 1.3b5 3
15-Apr-1998 1.3b6 121
26-May-1998 1.3b7 84
06-Jun-1998 1.3.0 20
19-Jul-1998 1.3.1 74

23-Sep-1998 1.3.2 90
07-Oct-1998 1.3.3 31
11-Jan-1999 1.3.4 93

22-Mar-1999 1.3.5 69
24-Mar-1999 1.3.6 1
15-Aug-1999 1.3.7 103
18-Aug-1999 1.3.8 12
20-Aug-1999 1.3.9 19

19-Jan-2000 1.3.10 75
21-Jan-2000 1.3.11 1
23-Feb-2000 1.3.12 13
13-Mar-2000 2.0a1 NA
31-Mar-2000 2.0a2 NA
30-Apr-2000 2.0a3 NA

Table 1.2: The Apache development efforts

intellectual property and funds on a sound basis, and to provide a vehi-
cle for limiting legal exposure while participating in open-source software
projects. Each ASF project is controlled by its own individual project com-
mitee. The Apache HTTP server project is now just one of many ASF projects
— although still the most popular one.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Chapter 2

Apache Functionality

In this chapter:
Apache Program Architecture
Apache Kernel Functionality
Apache Module Functionality

Good design means less design.
Design must serve users,
not try to fool them.

— Dieter Rams,
Chief Designer, Braun

A pache is a very complex web server, mainly because of the vast num-
ber of features provided. Fortunately, most of this functionality stays

in clearly separated and independent program modules, which facilitates
program understanding and maintenance. In this chapter, we look at the
Apache program architecture, consisting mainly of a program kernel and
various optional modules. We then introduce each module by describing its
purpose and the directives that it implements. The order in which modules
are presented in this chapter will be repeated again in the other chapters.
You can therefore treat this chapter as an overview of the Apache program
as a whole and as a departure point from which to examine particular func-
tionalities and implemented directives.

2.1 Apache Architecture
Figure 2.1 on the next page depicts Apache’s program architecture. This
layering architecture consists of four layers, which are built on top of one
another.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

18 Chapter 2: Apache Functionality

...

...

Platform

4

3

2

1

m
od

_s
pe

lin
g

m
od

_r
ew

ri
te

m
od

_a
lia

s

Kernel

http_core

lib
re

ge
x

liboslib
ap

Apache

m
od

_s
sl

m
od

_p
er

l

Operating System

Third−party
libraries used
by Apache
modules

Additional

Basic

functionality
(optional)

functionality
(essential)

O
pe

nS
SL

Pe
rl

functionality

Figure 2.1: The architecture of the Apache web server

➊ Operating System
The basic functionality is provided by the underlying operating sys-
tem. For Apache, this operating system is typically some flavor of
UNIX (p.14) , but it can also be Win32, OS/2, MacOS, or even the
POSIX subsystems of a mainframe.

➋ Apache Kernel, Core Module, and Kernel Libraries
Layer 2 is the main Apache program, consisting of an Apache kernel,
a core module, and a few standard libraries. The Apache kernel, to-
gether with the special core module (�	� �)� ���)�
), implements the basic
HTTP server functionality and provides the Apache application pro-
gramming interface (API) to the module layer. This layer also contains
a library of generic, reusable code (� ��� �	�), a library that implements
regular expression parsing and matching (� �����
��
��), and a small op-
erating system abstraction library (� ��� � �).

➌ Apache Modules
The impressive user-visible functionality that makes Apache unique
among the existing web servers is provided by lots of Apache modules
on layer 3. Usually each module implements one clearly separated
functionality. In reality, no module is required. Running a minimal
web server capable only of serving static documents from a configured

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

2.2 Apache Kernel Functionality 19

document area is possible even without any modules.1 This chapter
focuses on the standard modules of the Apache program distribution.

➍ Third-Party Libraries
For the standard modules (those found in the official Apache distribu-
tion), this layer is usually empty.2 Additional modules, such as ����� � � �

and ����� ��
)� � , use external third-party libraries, however; these libra-
ries can be found on this layer of the Apache architecture.

The interesting part of this program architecture is the fact that layers 3 and 4
are loosely coupled with layer 2; whereas all modules on layer 3 are designed
to remain independent of one another.3 A side effect of this architecture is
that the program code of layers 3 and 4 cannot be statically linked with the
program code of layer 1.

In combination with the Dynamic Shared Object (DSO) facility, this struc-
ture provides great flexibility. One can therefore assemble the Apache func-
tionality provided by layers 3 and 4 at start-up time (instead of at installation
time!) by letting the Apache kernel load the necessary parts.4

2.2 Apache Kernel Functionality
The Apache kernel (layer 2 in Figure 2.1 on the facing page) has two pur-
poses: (1) to provide the basic HTTP functionality, and (2) to provide the
module API.

Basic HTTP Server Functionality
The kernel must support resource handling (through file descriptors,
memory segments, and so on), maintain the pre-forked process model,
listen to the TCP/IP sockets of the configured virtual servers, transfer
control of incoming HTTP requests to the handler processes, handle the
HTTP protocol states, and provide read/write buffers, among other
duties. Additionally, it provides general functionality like URL and
MIME header parsing, DSO loading, and many more capabilities.

Apache Module API
As already mentioned, the real functionality of Apache resides inside
modules. To allow these modules to fully control the Apache process-
ing, the kernel must provide an API. In Apache, this API consists of a

1In practice, one at least requires ����� � � � � .
2There might be some exceptions. For instance, some modules need a NDBM library that
must usually be provided as an external library when it is not part of the vendor’s C library.

3Technically, they are not totally independent of one another, because of ordering issues and
the shared process address space.

4Technically speaking,
����� ���

loads the DSOs and not the kernel.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

20 Chapter 2: Apache Functionality

static function list in each module (which the kernel uses to dispatch
messages between the modules while processing a HTTP request) and
a set of API functions (all starting with the common prefix “ �	� ”) that
the modules can use. Each HTTP request is divided into ten distinct
steps, and each module can hook into each step. At each step, a mod-
ule can usually either decline or accept to handle the step. To handle
the step, the module calls back the kernel through various �	� � � � ���

functions.

For more details about the internals of the Apache API, refer to both the
comprehensive documentation inside Writing Apache Modules with Perl and C
(Lincoln Stein and Doug MacEachern, O’Reilly & Associates Inc., 1999) and
the online API documentation under �	� �����������
��*� �	� � � ��
�� �)� �������� �	� �	� .

2.3 Apache Module Functionality
The real user-visible functionality of Apache resides in the various Apache
modules. Currently (as of Apache 1.3), the Apache program distribution
comes with the core module plus 36 additional standard modules. In this
section, we introduce all of these modules plus two important third-party
modules: ����� � � � and ����� ��
)� � . Many more third-party modules exist, of
course. Each addresses specialized problem situations and solutions. This
book, however, covers only the most important modules.

When you need additional functionality, first search for a solution in the
Apache Module Registry (�	� ��������� ������� �
 � � ��� �	� �
 � �	� ��). The chance is high
that you will find a solution there, as more than 140 modules have been
registered.

2.3.1 Core Functionality

http core (enabled by default)
Apache Base Functionality
Since Apache 1.0, � � �)� ��� � � � �	� �)� ���)�
�� �
The Apache Group (1994)
� � ��� ���	�
 is the base module of Apache, in which all core functionality
is implemented. Although this module also uses the Apache ModuleAlthough the core

module �����"� �"%�!�
uses the Apache
Module API, it is not a
regular module,
because it has
hard-coded links and
dealings with the
kernel.

API, it is a special one: it has a nonstandard file name (�	� ��� ���)�
 in-
stead of the expected ����� ���)�
), it works with special non-API links,
and links between the Apache internals and this module are manda-
tory. In other words, although you can usually strip down Apache at
buildtime by removing unnecessary modules, the �	����� ���)�
 module
can never be removed.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

2.3 Apache Module Functionality 21

Directives:
� /Directory � (� p.71) KeepAliveTimeout (� p.81)� /DirectoryMatch � (� p.71) LimitRequestBody (� p.81)� /Files � (� p.72) LimitRequestFields (� p.81)� /FilesMatch � (� p.72) LimitRequestFieldsize (� p.82)� /IfDefine � (� p.74) LimitRequestLine (� p.82)� /IfModule � (� p.74) Listen (� p.83)� /Limit � (� p.73) ListenBacklog (� p.83)� /Location � (� p.70) LockFile (� p.84)� /LocationMatch � (� p.70) LogLevel (� p.84)� /VirtualHost � (� p.69) MaxClients (� p.84)� Directory � (� p.71) MaxKeepAliveRequests (� p.85)� DirectoryMatch � (� p.71) MaxRequestsPerChild (� p.85)� Files � (� p.72) MaxSpareServers (� p.85)� FilesMatch � (� p.72) MinSpareServers (� p.85)� IfDefine � (� p.74) NameVirtualHost (� p.86)� IfModule � (� p.74) Options (� p.86)� Limit � (� p.73) PidFile (� p.87)� Location � (� p.70) Port (� p.87)� LocationMatch � (� p.70) RLimitCPU (� p.87)� VirtualHost � (� p.69) RLimitMEM (� p.88)
AccessConfig (� p.74) RLimitNPROC (� p.88)
AccessFileName (� p.75) Require (� p.89)
AddModule (� p.75) ResourceConfig (� p.89)
AllowOverride (� p.75) Satisfy (� p.89)
AuthName (� p.76) ScoreBoardFile (� p.90)
AuthType (� p.76) SendBufferSize (� p.90)
BindAddress (� p.77) ServerAdmin (� p.90)
ClearModuleList (� p.77) ServerAlias (� p.91)
ContentDigest (� p.77) ServerName (� p.91)
CoreDumpDirectory (� p.78) ServerPath (� p.91)
DefaultType (� p.78) ServerRoot (� p.91)
DocumentRoot (� p.78) ServerSignature (� p.92)
ErrorDocument (� p.78) ServerTokens (� p.92)
ErrorLog (� p.79) ServerType (� p.92)
Group (� p.79) StartServers (� p.93)
HostnameLookups (� p.80) Timeout (� p.93)
IdentityCheck (� p.80) UseCanonicalName (� p.93)
Include (� p.80) User (� p.94)
KeepAlive (� p.81)

mod so (disabled by default)
Dynamic Shared Object (DSO) Bootstrapping
Since Apache 1.2, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � ��� �
Robert S. Thau, Alexei Kosut, Paul Sutton, Ralf S. Engelschall (1996)

����� ��� is a very interesting module. It supports the DSO facility, which
Apache provides for building modules as stand-alone units (shared ob- &�%�� �"% allows you to

load other modules on
demand.ject files) and loading them at runtime into the address space of the

�	� �)� � process. Thus, although � ��� ��� is implemented as a module, it
provides some bootstrapping functionality for other modules that one
usually would expect to find inside �	� ��� ���)�
 .

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

22 Chapter 2: Apache Functionality

Directives:
LoadFile (� p.94) LoadModule (� p.95)

2.3.2 URL Mapping

mod alias (enabled by default)
Simple URL Translation and Redirection
Since Apache 1.0, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � � � � � � �
Rob McCool, David Robinson, Robert S. Thau (1995)
� ��� � � ��� � is the father of all URL manipulation modules. It has ex-
isted since the early Apache days and provides a limited, but easy-to-&�%�� � ��� � � is intended

for standard URL-to-file
name mappings.

understand mechanism for mapping URLs to file names. The original
idea was that one could translate URLs to file names by mapping URL
prefixes to directory paths on the file system. The

� � ��� ��� ��� � � and
�
�� ���
 ����� ��� � � directives use regular expressions instead of prefixes
to achieve more flexibility.

Directives:
Alias (� p.95) RedirectPermanent (� p.97)
AliasMatch (� p.96) RedirectTemp (� p.97)
Redirect (� p.96) ScriptAlias (� p.97)
RedirectMatch (� p.96) ScriptAliasMatch (� p.97)

mod rewrite (disabled by default)
Advanced URL Translation and Redirection
Since Apache 1.2, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� �
�
� � �
�� �
Ralf S. Engelschall (1996)
� ��� �
�
���� �
 is the Swiss Army Knife of URL manipulations. It pro-
vides virtually all of the functions one would ever need to manipu-&�% � !� ���! � �� is the

most powerful URL
manipulation solution. late URLs, and its functionality is highly generalized. Consequently,

� ��� �
�
���� �
 can be used to solve all sorts of URL-based problems. The
drawback is the high learning curve, because this module is based on a
complex rule-based matching engine, which uses regular expressions
for its patterns. Although the flexibility of ����� �

��� �
 makes it a very
complex tool, once you understand the basic idea you will master all
existing and forthcoming URL-based problems in your webmaster’s
life.

Directives:
RewriteBase (� p.100) RewriteLogLevel (� p.99)
RewriteCond (� p.100) RewriteMap (� p.99)
RewriteEngine (� p.98) RewriteOptions (� p.98)
RewriteLock (� p.99) RewriteRule (� p.101)
RewriteLog (� p.98)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

2.3 Apache Module Functionality 23

mod userdir (enabled by default)
URL Selection by User Names
Since Apache 1.0, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � �	
)�	� � ��� �
Rob McCool, Alexei Kosut, Ken Coar (1995)
����� ���	
)�	� ��� is a module specialized in mapping (� � ���	
)��� ���
) URLs
to the home pages of the corresponding users; these home pages are &�%�� � �� �! � � ! finds the

home pages of your
users.usually found inside the home directory of the user or under one or

more dedicated home page areas.

Directive:
UserDir (� p.102)

mod imap (enabled by default)
URL Selection by Image Map Coordinates
Since Apache 1.0, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � ���	��� �
Rob McCool, Kevin Hughes, Randy Terbush, James H. Cloos, Jr., Nathan
Kurz, Mark Cox (1995)

The task of ����� � ���	� is simply to determine the surrounding area of
x,y-coordinates (given in the

����� ��� 	�
�������
) inside a server-based image &�%�� � & �'� maps image

map coordinates to
URLs.map and perform an HTTP redirection to the URL corresponding to

this area. Although this task is a very specialized one, do not underes-
timate the difficulty involved in solving this problem. Because image
maps can contain arbitrarily complex polygons, a dedicated module to
handle this task is only reasonable.

Directives:
ImapBase (� p.102) ImapMenu (� p.103)
ImapDefault (� p.103)

mod speling (disabled by default)
URL Spelling Correction
Since Apache 1.3, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � ��
 � � � ��� �
Alexei Kosut, Martin Kraemer (1997)
����� ����
 � � � � is a very handy module. It corrects minor spelling or
capitalization errors in URLs — indeed its droll name provides a hint &�%�� ��� ������� is a nifty

URL spell checker that
corrects document
URLs on-the-fly.

as to its task. The module addresses this problem by trying to find a
matching document, even after all other modules (such as ����� � � � � � ,
����� �
�
��� �
 , or ����� ����
)�	� ���) give up. It works by comparing each
document name in the requested directory against the requested doc-
ument name without regard to case, allowing a maximum of one mis-
spelling (character insertion, omission, transposition, or wrong charac-
ter). The drawback of this nice feature is that the complicated disk I/O
usually increases the response time. Often, it is a better choice to force
the user to fix the reference.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

24 Chapter 2: Apache Functionality

Directive:
CheckSpelling (� p.104)

2.3.3 Access Control

mod access (enabled by default)
Host- and Network-Based Access Control
Since Apache 1.0, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � � �	
 � � � �
Rob McCool (1995)
� ��� � � ��
 � � , as its name clearly implies, provides access control for
documents. It allows one to restrict or allow access to resources based&�%�� ������ ��� restricts

access through
network identifiers.

on the client’s host name, IP address, or network address. This module
serves as Apache’s basic access control mechanism.

Directives:
Allow (� p.104) Order (� p.105)
Deny (� p.105)

2.3.4 User Authentication

mod auth (enabled by default)
User Authentication by User Name/Password
Since Apache 1.0, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � �	����� �
Rob McCool, Robert S. Thau, Dirk van Gulik (1995)
The authentication module ����� � � ��� deals with the HTTP Basic Au-
thentication facility, which is simply a user name/password pair sub-
mitted by the client together with the request for a document. This&�% � � ���"� provides the

HTTP Basic
Authentication facility. module allows one to check this information against a flat-file database

similar to UNIX’s ��
�� �)� � � � �
	� and ��
�� �)� ���	� ��� files and to deny ac-
cess when the given user name/password doesn’t match the database
information. Special variants of this module exist that offer the same
functionality but use a database from other than a flat-file (for perfor-
mance reasons).

Directives:
AuthAuthoritative (� p.106) AuthUserFile (� p.106)
AuthGroupFile (� p.106)

mod auth anon (disabled by default)
User Authentication by Anonymous Name/E-Mail Address
Since Apache 1.1, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � �	��� ��� ����� �
Rob McCool, Brian Behlendorf, Robert S. Thau, Dirk van Gulik (1996)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

2.3 Apache Module Functionality 25

The functionality of ����� � �	��� � � ��� resembles the behavior of an Anon-
ymous-FTP server, in some ways. That is, this module deals with the &�%�� � � �"� � � % �

resembles the
Anonymous-FTP idea.Basic Authentication facility like � ��� � �	��� . On the other hand, it does

not serve any real access control purposes. Instead, it merely identifies
the user. One can therefore give the

� � � �
 � � 	 � �
variable a meaning

in SSI/CGI scripts or log files (for noncritical distinguishing purposes)
without requiring real user authentication.

Directives:
Anonymous (� p.107) Anonymous MustGiveEmail (� p.108)
Anonymous Authoritative (� p.107) Anonymous NoUserId (� p.108)
Anonymous LogEmail (� p.107) Anonymous VerifyEmail (� p.108)

mod auth dbm (disabled by default)
User Authentication by User Name/Password (UNIX NDBM)
Since Apache 1.0, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � �	��� ����� � �
Rob McCool, Robert S. Thau, Dirk van Gulik (1996)
����� � �	��� � �	� is a variant of ����� � �	��� that provides exactly the same
functionality, but uses a standard UNIX NDBM hash file instead of a &�%�� � � �"� ����& is the

NDBM-based variant
of & % � � ���"� .flat-file database. The advantage is a magnitude-better performance

in the lookups (performed for every request) — an especially impor-
tant consideration when the user community is very large. An NDBM
library is provided by most all UNIX platforms.

Directives:
AuthDBMAuthoritative (� p.108) AuthDBMUserFile (� p.109)
AuthDBMGroupFile (� p.109)

mod auth db (disabled by default)
User Authentication by User Name/Password (Berkeley-DB)
Since Apache 1.1, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � �	��� ����� �
Rob McCool, Brian Behlendorf, Robert S. Thau, Andrew Cohen (1996)
����� � �	��� � � is another variant of ����� � � ��� that provides exactly the
same functionality. Instead of a flat-file database, however, it uses
a Berkeley-DB/1.x or Berkeley-DB/2.x hash file. The advantage is a &�% � � ���"� ��� is the

Berkeley-DB-based
variant of &�% � � ����� .magnitude-better performance in the lookups (performed for every re-

quest) — an especially important consideration when the user commu-
nity is very large. The Berkeley-DB library is usually not provided by
UNIX platform vendors, but is more reliable and faster than NDBM
libraries.

Directives:
AuthDBAuthoritative (� p.110) AuthDBUserFile (� p.111)
AuthDBGroupFile (� p.110)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

26 Chapter 2: Apache Functionality

mod digest (disabled by default)
User Authentication by User Name/Realm/Password
Since Apache 1.1, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � � �
 ����� �
Rob McCool, Robert S. Thau, Alexei Kosut (1996)
In addition to the classical HTTP/1.0 Basic Authentication mechanism,
a message digest-based HTTP authentication mechanism exists as de-
fined in RFC 2617.5 Instead of transferring a clear-text user name/pass-& % � � � � � � avoids the

transmission of
passwords in clear text
by using one-way
message digests.

word pair with the HTTP request (which can be easily monitored), a
message digest is calculated (via the MD5 algorithm) and transferred
together with the user name. This module then performs the same
message digest calculation for the password stored in the server’s au-
thentication database. When the two digests are equal, access is al-
lowed. This approach offers an obvious advantage relative to Basic
Authentication: the password is not sent over the network. The draw-
back is that many browsers do not support this type of user authenti-
cation.

Directive:
AuthDigestFile (� p.111)

2.3.5 Content Selection

mod dir (enabled by default)
Content Selection by Using Directory Default Documents
Since Apache 1.0, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � ����� �
Rob McCool, Robert S. Thau (1993)
� ��� � ��� performs a basic task of any web server: after some URL trans-
formation has mapped a URL to a directory on the local file system, this& % � � � ! solves the

“trailing slash” problem. module tries to select the default document inside this directory. It also
solves a related problem: if the URL does not end in a slash (not xxx �)
but was nevertheless mapped to a directory rather than a file, a slash
is appended to the URL and an HTTP redirect is performed to avoid
problems with relative hyperlinks inside the document.

Directive:
DirectoryIndex (� p.111)

mod actions (enabled by default)
Content Selection by Content Types and Request Methods
Since Apache 1.1, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � ����������� � �
Alexei Kosut (1996)

5 �������	��� ������� � � � � ������� � ����� ������� ����� ��� 	 � �	��	��

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

2.3 Apache Module Functionality 27

����� � ����� � ��� provides a way to trigger a CGI script when a specific
MIME content type of a document is encountered or when the request
uses a specific HTTP method. This module can be used to create dy-
namic content when specific documents are requested or to implement
special extensional HTTP methods (such as PUT) via CGI scripts.

Directives:
Action (� p.112) Script (� p.112)

mod negotiation (enabled by default)
Content Selection by Best-Matching Client Capabilities
Since Apache 1.0, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� �
�� ����������� ����� �
Robert S. Thau, Roy T. Fielding (1995)

The HTTP protocol provides a flexible content negotiation facility con-
trolled by the

� � �	
	� � and
� ���	
	�	� � XXX headers. If

� �	��� ��� � � � � ��� �
� ��

�� is active, the ����� ��
�� ����� ��������� module chooses the best repre- &�% � � � % � � � � � % �

provides complex
content negotiations.sentation of a resource (when a resource is available in several different

representations, of course) based on the client-supplied preferences for
media type, languages, character set, and encoding. It also implements
features intended to provide more intelligent handling of requests for
clients that send incomplete negotiation information. The internal al-
gorithms in this module are very complex and partly even heuristic,
which makes this module really nontrivial — both to understand and
to use.

Directives:
CacheNegotiatedDocs (� p.113) LanguagePriority (� p.113)

2.3.6 Environment Creation

mod env (enabled by default)
Fixed Environment Variable Creation
Since Apache 1.1, � � �	� ������� �
 �)� � � ��� ���)�	��+� ���
 � ��� �
Andrew Wilson (1995)
�����
�� � is a very simple module that performs one basic task: it con-
trols the export of variables to the SSI/CGI environment and allows &�%�� ��� controls the

CGI environment.the webmaster to force values of variables.

Directives:
PassEnv (� p.114) UnsetEnv (� p.114)
SetEnv (� p.114)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

28 Chapter 2: Apache Functionality

mod setenvif (enabled by default)
Conditional Environment Variable Creation
Since Apache 1.2, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� �	
��
 � ��� �*� �
Alexei Kosut, Paul Sutton (1996)
� ��� �	
��
�� ��� � is a more advanced module for setting SSI/CGI environ-
ment variables. It sets variables depending on various client informa-
tion found in the HTTP request. This ability is useful when combined&�% � �" �� ��� � #

conditionally sets
environment variables.

with a special variable-based feature of the core module’s �
���� and
� � � ��
 directives. In addition, some internal HTTP protocol behaviors
of Apache can be controlled through variables that are usually set with
the

	
�� � � � � � directive of this module.

Directives:
BrowserMatch (� p.114) SetEnvIf (� p.115)
BrowserMatchNoCase (� p.115) SetEnvIfNoCase (� p.116)

mod unique id (disabled by default)
Generation of Unique Identifiers by Request
Since Apache 1.3, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � ���� ��
 ����� �
Dean Gaudet, Alvaro Martinez Echevarria (1997)
� ��� � �������
 � � performs a simple but sometimes useful task: it gen-
erates a magic token for each HTTP request that is guaranteed to be&�%�� � � ��� �� � �

generates unique
identifiers for each
request.

unique across all requests under very specific conditions. The identifier
will even be unique across multiple machines in a properly configured
cluster of machines. It is exported to the SSI/CGI environment as a
variable.

Directives: none

2.3.7 Server-Side Scripting

mod cgi (enabled by default)
Common Gateway Interface (CGI) Implementation
Since Apache 1.0, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � ��� � �
Rob McCool, Robert S. Thau (1995)
The Common Gateway Interface (CGI) is the classical interface for gen-
erating dynamic content on the web. It is basically a set of environ-&�% � � � � provides the

Common Gateway
Interface. ment variables that the server provides to a program while spawning

a specific request to create the dynamic content. CGI remains the only
truly portable and standardized scripting environment provided by
web servers. Unfortunately, this way of creating dynamic content re-
quires many resources (spawning a subprocess costs many extra mem-
ory and CPU cycles) and increases the response time. Alternative so-
lutions are possible, for instance, with ����� �
)� � .

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

2.3 Apache Module Functionality 29

Directives:
ScriptLog (� p.116) ScriptLogLength (� p.117)
ScriptLogBuffer (� p.117)

mod include (enabled by default)
Server-Side Includes (SSI) Implementation
Since Apache 1.0, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � ��� � � ��
�� �
The Apache Group (1995)
����� � ��� � �	�
 implements an extended version of the Server-Side Includes
(SSI) quasi-standard, (which was originally introduced by the NCSA
httpd). Embedded programming constructs in an HTML document &�% � ��� � � � �� provides

Server-Side Includes.are evaluated “on the fly” and expanded by the server before the doc-
ument is sent to the client. The name of the module relates to a major
goal of SSI — its role as a file inclusion facility — but please note that
using this facility decreases server performance.

Directive:
XBitHack (� p.117)

2.3.8 Response Header Generation

mod mime (enabled by default)
Fixed Content Type/Encoding Assignment
Since Apache 1.0, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � � �
�� �
Rob McCool (1995)
����� � � �
 provides for static assigning of MIME content types and con-
tent encodings to documents. This assignment is primarily carried out
through the file extensions of the documents. For more advanced map- &�%�� & � &� assigns

MIME types to
documents.pings, one can use ����� � � �
 ��� ����� . Nevertheless, ����� � � �
 is very im-

portant in Apache, because many other modules depend on � ��� � � �

content-type tables.

Directives:
AddEncoding (� p.118) ForceType (� p.119)
AddHandler (� p.118) RemoveHandler (� p.120)
AddLanguage (� p.118) SetHandler (� p.120)
AddType (� p.119) TypesConfig (� p.120)
DefaultLanguage (� p.119)

mod mime magic (disabled by default)
Automatic Content Type/Encoding Assignment
Since Apache 1.3, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � � �
 ��� ����� � �
Ian F. Darwin, Ian Kluft (1997)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

30 Chapter 2: Apache Functionality

� ��� � � �
 ��������� provides for dynamic assignment of MIME content
types and encodings to documents. In contrast to ����� � � �
 , this mod-
ule looks directly at the content of the document (usually its first bytes)&�% � & � &� &�� � � � is a

nifty variant of&�% � & � &� that guesses
MIME types by
inspecting the first
bytes of a document.

and tries to guess the content type and encoding by matching so-called
magic cookies (byte sequences that are unique to particular file for-
mats). The resulting performance penalty should not be neglected.
Thus, it is a good idea to manually define as many commonly known
and straight forward MIME-types as possible with ����� � � �
 , so ����� �
� � �
 ����� ��� has to determine only the remaining ones.

Directive:
MimeMagicFile (� p.121)

mod expires (disabled by default)
Creation of HTTP Expires Header
Since Apache 1.2, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ���
����� �
 � � �
Andrew Wilson (1996)
� ���
��������
 � controls the setting of the HTTP

� �)����
 � header field in
server responses. The expiration date can be set relative to either the&�% � ���� � !� provides

and controls the HTTP
� ��� � !� � header field. time of the source document’s last modification, or the time of the

last client access. This information informs the client and intermedi-
ate HTTP proxies about the document’s validity and persistence. If
cached, the document may be fetched from the cache rather than from
the source until the expiration date has passed. After that time, the
cache copy is considered “expired” and invalid, and a new copy must
be obtained from the source.

Directives:
ExpiresActive (� p.121) ExpiresDefault (� p.122)
ExpiresByType (� p.121)

mod headers (disabled by default)
Creation of Arbitrary HTTP Headers
Since Apache 1.2, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� ��
 ����
)� � � �
Paul Sutton (1996)
� ��� ��
 ���
)� � can add arbitrary HTTP header fields in the server re-
sponse. Any header field can be replaced, deleted, or extended. It&�% � �� �� �� "! � allows

you to set arbitrary
HTTP response
header fields.

therefore allows you to tailor arbitrary HTTP responses.

Directive:
Header (� p.122)

mod cern meta (disabled by default)
Creation of Arbitrary HTTP Headers (CERN-style)
Since Apache 1.1, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� �	
)��� �
�� ��� �
Andrew Wilson (1996)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

2.3 Apache Module Functionality 31

����� �	
)��� �
�� � is a backward-compatible module that provides app-
roximately the same functionality as ����� ��
 ���
)� � , albeit in a some-
what different way. Instead of being configured through Apache di- & % � �� �! � &� ��� is a

variant of &�% � �� ����� �! �
that uses external files.rectives, the headers are placed inside a dedicated meta-file.

Directives:
MetaDir (� p.123) MetaSuffix (� p.123)
MetaFiles (� p.123)

2.3.9 Internal Content Handlers

mod asis (enabled by default)
Generation of Raw Responses
Since Apache 1.0, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � �	��� � �
The Apache Group (1995)
����� � �	��� allows file types to be defined so that Apache will send them
as is, without adding HTTP headers. It can be used to send any kind & % � � � � � allows you to

send out arbitrary
HTTP responses.of data from the server, including redirects and other special HTTP

responses, without the use of a CGI program.
Directives: none
mod autoindex (enabled by default)
Generation of Directory Index Documents
Since Apache 1.0, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � �	� � � �	�
���� �
Rob McCool, Robert S. Thau (1993)
The index document of a directory (requested with a URL ending in a
slash) can come from one of two sources: a file written by the user or a &�%�� � � ��% ��� �� �� is

Apache’s built-in “
� �

�

�
” function.listing generated by the server. This module uses the latter source. The

layout of such on-the-fly generated index listings can be controlled in
many different ways.
Directives:

AddAlt (� p.124) DefaultIcon (� p.126)
AddAltByEncoding (� p.124) FancyIndexing (� p.126)
AddAltByType (� p.125) HeaderName (� p.127)
AddDescription (� p.125) IndexIgnore (� p.127)
AddIcon (� p.125) IndexOptions (� p.127)
AddIconByEncoding (� p.126) IndexOrderDefault (� p.128)
AddIconByType (� p.126) ReadmeName (� p.128)

mod status (enabled by default)
Display Summary of Server Runtime Information
Since Apache 1.1, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � � ��� ��� � �
Mark Cox (1995)
����� ��� ��� � � provides a content handler that can be mapped to a URL
and that outputs a runtime status page when requested. In particular,

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

32 Chapter 2: Apache Functionality

internal process information is displayed. A variant can be displayed
that gives a simple machine-readable list of the current server state.
Always think about your privacy before using this module.

Directive:
ExtendedStatus (� p.129)

mod info (disabled by default)
Display Summary of Server Configuration-Time Information
Since Apache 1.1, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � � �	� � �
Rasmus Lerdorf, Lou Langholtz (1996)
� ��� � � � � provides a content handler that can be mapped to a URL and
that outputs a configuration-time information page when requested.&�% � � � #�% shamelessly

publishes your server
configuration. This page includes the compiled-in modules and all configuration di-

rectives that are present in the server configuration files.

Directive:
AddModuleInfo (� p.129)

2.3.10 Request Logging

mod log config (enabled by default)
Generic Request Logging
Since Apache 1.0, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � ��� � ��� � � �*� �
Robert S. Thau (1995)
� ��� � ��� ����� � ��� provides for logging of the requests made to the web
server, using the Common Log Format (CLF) or any other user-specified&�% � � % � �"% � # � � allows

the writing of custom
log files.

format. It uses �� � �	�� � � �
-style format strings to define the log file en-

tries. These entries can be written to a file or a reliable pipe connected
to a spawned program.

Directives:
CookieLog (� p.129) LogFormat (� p.130)
CustomLog (� p.130) TransferLog (� p.130)

mod log agent (disabled by default)
Specialized User-Agent Logging (Deprecated)
Since Apache 1.0, � � �)� ����� � �
 �)�	��� � �	� �)�	��� � ��� � ��� � �
��	��� �
The Apache Group (1995)

� ��� � ��� ���
��	� is deprecated because it has been superseded by ����� �
� ��� ������ � � . It provides logging of the

� �	
)� � � �
�� � HTTP header infor-
mation.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

2.3 Apache Module Functionality 33

Directive:
AgentLog (� p.131)

mod log referer (disabled by default)
Specialized Referrer Logging (Deprecated)
Since Apache 1.0, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � ��� �
���
)�
)��� �
The Apache Group (1995)
����� � ��� �
)�
)�
)� is deprecated because it has been superseded by ����� �
� ��� � ��� � � � . It provides logging of the �
��
)�
)� HTTP header informa-

tion.

Directives:
RefererIgnore (� p.131) RefererLog (� p.131)

mod usertrack (disabled by default)
Specialized User Click-Trail Logging
Since Apache 1.0, � � �	� ������� �
 �)� � � ��� ���)�	��+� ��� � �	
)� ���	� � � � �
Mark J. Cox (1995)
����� ���	
)� ��� � � � is a module that implements a nifty idea, but that suf-
fers from nasty side effects in practice. It generates a clickstream log of &�% � � �" �!���!������ tracks

user activity via HTTP
cookies.

user activity on the server by using HTTP cookies (information included
by the server in responses that is stored by the client and sent back to
the server on subsequent requests). Unfortunately, not all clients sup-
port cookies. In addition, many clients, by default, require an inter-
active user dialog to accept cookies. The use of HTTP cookies defeats
caching, too. These facts make the theoretically useful facility mostly
unusable in practice.

Directives:
CookieExpires (� p.132) CookieTracking (� p.132)
CookieName (� p.132)

2.3.11 Experimental

mod mmap static (disabled by default)
Caching of Frequently Served Pages via Memory Mapping
Since Apache 1.3, � � �	� ������� �
 �)��
 ����
)� � �
 � �	� � � ����� �����	� � � ������� � �
Dean Gaudet (1997)
Serving static pages from disk is the main task of a web server. The
����� �����	� � � ������� module maps a statically configured list of frequently &�% � &�&��'� � ��� � � � is

experimental and
memory-maps
documents for fastest
serving.

requested (but not changed) documents into memory by using the UN-
IX �����	� ��� �

function. Although this approach can dramatically reduce
the response time and I/O consumption, it unfortunately brings nasty

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

34 Chapter 2: Apache Functionality

problems: every time a file changes, a reload of the server is required to
remap the new contents into memory because ��� �	� ��� �

doesn’t allow
automatic refreshments.

Directive:
MMapFile (� p.133)

mod example (disabled by default)
Apache API Demonstration (Developers Only)
Since Apache 1.2, � � �)� ����� � �
 �)�)
�� � � � �
� �����
�� ����� �
�� �
Ken Coar (1997)
� ���
�� � ��� �
 is a demonstration-only module. It allows Apache mod-
ule authors to easily explore the Apache Module API. The module ba-
sically hooks into every API processing phase, enabling developers to& % � ����'&�� � lets

developers learn the
internal processing
stages of the Apache
API.

observe the API processing steps. It should never be used within a
production server, of course.

Directive:
Example (� p.133)

2.3.12 Extensional Functionality

mod proxy (disabled by default)
Caching Proxy Implementation for HTTP and FTP
Since Apache 1.1, � � �)� ����� � �
 �)� �� � � � � ����� �� � � ��� �
Ben Laurie, Chuck Murcko (1996)
� ��� �� � � � implements a caching proxy inside Apache. This proxy fa-
cility can be used either as a real web proxy by the clients or as a back&�%�� ��!�% ��� is one of the

stepchild modules of
Apache. end by other modules (such as ����� �

��� �
) for performing HTTP

client tasks. Although this module opens the door to a lot of nifty solu-
tions, it currently remains a “stepchild” inside Apache. It was designed
when HTTP/1.0 was considered state of the art. With HTTP/1.1, how-
ever, the requirements for a proxy changed dramatically. Also, with
the initial design one could not provide real HTTP/1.1-conforming
proxy functionality. Thus, although Apache (as an origin server) is
fully HTTP/1.1 compliant, the proxy module is just HTTP/1.0 comp-
liant. Whereas this module is no longer used to establish a real proxy
server, it remains of interest when applied in conjunction with other
modules like ����� �
�
��� �
 or ����� � � � .

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

2.3 Apache Module Functionality 35

Directives:
AllowCONNECT (� p.134) NoCache (� p.137)
CacheDefaultExpire (� p.138) NoProxy (� p.134)
CacheDirLength (� p.138) ProxyBlock (� p.135)
CacheDirLevels (� p.138) ProxyDomain (� p.135)
CacheForceCompletion (� p.140) ProxyPass (� p.136)
CacheGcInterval (� p.139) ProxyPassReverse (� p.137)
CacheLastModifiedFactor (� p.139) ProxyReceiveBufferSize (� p.136)
CacheMaxExpire (� p.139) ProxyRemote (� p.135)
CacheRoot (� p.137) ProxyRequests (� p.134)
CacheSize (� p.138) ProxyVia (� p.136)

mod perl (disabled by default)
Perl Integration and Interface
Since Apache 1.1, � � �	� ������� �
 �)���
)� � � ����� ��
	� � � � � ������	� � � �)� � � �

Doug MacEachern (1996)

The ����� ��
)� � third-party module integrates the Perl programming lan-
guage into the Apache web server by providing the Apache Module
API (written in ANSI C) at the Perl programming level. One can there- &�% � �� �! � combines the

flexibility of Apache
with the programming
power of Perl.

fore easily extend the Apache web server by writing extensions in Perl,
which is a much easier task than writing an Apache module in ANSI C.
Many interesting Perl modules for Apache (usually named

� � � � ��
���� -
XXX) already exist and provide high-level features for Apache. One of
the most interesting standard use cases for � ��� ��
)� � is

� � � � ��
 ��� �
�� �
������� � : In an alternative CGI implementation, the CGI scripts (written
in Perl) are precompiled into byte-code, cached, and on request exe-
cuted inside the address space of the Apache process. With this ap-
proach, the response time is a magnitude faster and the resource re-
quirements are reduced.

Directives:� /Perl � (� p.141) PerlLogHandler (� p.148)� Perl � (� p.141) PerlModule (� p.143)
=cut (� p.141) PerlOpmask (� p.143)
=pod (� p.141) PerlPassEnv (� p.144)
PerlAccessHandler (� p.147) PerlPostReadRequestHandler (� p.146)
PerlAuthenHandler (� p.147) PerlRequire (� p.143)
PerlAuthzHandler (� p.147) PerlRestartHandler (� p.150)
PerlChildExitHandler (� p.149) PerlSendHeader (� p.145)
PerlChildInitHandler (� p.145) PerlSetEnv (� p.144)
PerlCleanupHandler (� p.149) PerlSetVar (� p.144)
PerlDispatchHandler (� p.149) PerlSetupEnv (� p.144)
PerlFixupHandler (� p.148) PerlTaintCheck (� p.142)
PerlFreshRestart (� p.142) PerlTransHandler (� p.146)
PerlHandler (� p.148) PerlTypeHandler (� p.147)
PerlHeaderParserHandler (� p.146) PerlWarn (� p.142)
PerlInitHandler (� p.145) END (� p.141)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

36 Chapter 2: Apache Functionality

mod ssl (disabled by default)
SSL/TLS Integration and Interface
Since Apache 1.3, � � �)� ����� � �
 �)�	� � � �+� ��� ��� � � �

� �������	� � � �)� � � �

Ralf S. Engelschall (1998)
The ����� � � � third-party module provides strong cryptography via the
Secure Sockets Layer (SSL version 2/3) and Transport Layer Security (TLS
version 1) protocols with the help of the SSL/TLS implementation tool-&�% � � � � combines the

flexibility of Apache
with the security of
OpenSSL.

kit OpenSSL. SSL/TLS is a generic cryptography protocol that resides
on top of TCP/IP (but below protocols like HTTP) and is used inside
web servers to provide the HTTPS protocol (which mainly is HTTP
over SSL/TLS over TCP/IP). The ����� � � � module here forms the es-
sential glue code between the OpenSSL toolkit and the Apache web
server.

Directives:
SSLCACertificateFile (� p.154) SSLOptions (� p.157)
SSLCACertificatePath (� p.154) SSLPassPhraseDialog (� p.150)
SSLCARevocationFile (� p.155) SSLProtocol (� p.152)
SSLCARevocationPath (� p.154) SSLRandomSeed (� p.151)
SSLCertificateFile (� p.153) SSLRequire (� p.158)
SSLCertificateKeyFile (� p.153) SSLRequireSSL (� p.157)
SSLCipherSuite (� p.152) SSLSessionCache (� p.151)
SSLEngine (� p.152) SSLSessionCacheTimeout (� p.152)
SSLLog (� p.156) SSLVerifyClient (� p.155)
SSLLogLevel (� p.156) SSLVerifyClientDepth (� p.155)
SSLMutex (� p.150)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Chapter 3

Building Apache

In this chapter:

Sample Installation
Configuration Reference
Configuration Special Topics

The software said it requires Microsoft
IIS 4 or better, so I installed Apache.

— Unknown (paraphrased)

I n this chapter, we first discuss the process of building a full-featured
Apache web server with Perl scripting and SSL/TLS capabilities; our dis-

cussion takes the form of a step-by-step tutorial that introduces the Apache
AutoConf-style Interface (APACI). The procedure includes getting and extract-
ing the distributions, configuring the source trees, building the packages,
and finally installing the packages. A complete reference follows the tutorial
and covers all command-line variables and options of APACI in detail. Se-
lected Apache configuration special topics are also discussed in more detail
at the end of the chapter.

3.1 Sample Step-by-Step Installation
In the first part of this chapter, we show a complete step-by-step installa-
tion procedure for an Apache server including two extensions, ����� ��
)� � and Here we build a

full-featured Apache
web server with Perl
scripting and SSL/TLS
capabilities.

����� � � � . These two particular modules were selected because they are also
covered in Chapter 4 (the configuration chapter). Other popular third-party
modules such as � ��� � ��� �

, ����� � ��� , and � ��� � �	
	� � can be added in an anal-
ogous fashion. You can therefore treat this section as an installation tutorial

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

38 Chapter 3: Building Apache

intended to help you better understand the configuration reference in Sec-
tion 3.2 and to get a general impression of how to perform a complex Apache
installation.

3.1.1 File System Preparation
As the first step, you must decide where the server package should be in-
stalled. That is, you have to choose a common installation path prefix, such
as � ��� ��� � � ��� � ���	� � � ��
 . This prefix is important because it is required repeat-For installing Apache

you need 25MB free
disk space for
installation plus 60MB
temporary disk space.

edly in the installation procedure. All packages will be installed in subdirec-
tories under this prefix. The file system on which this path prefix will reside
must have at least 25MB of free disk space available. In addition, you need a
working directory where the packages can be built prior to the installation.
For this temporary area, additional disk space of at least 60MB is required.

3.1.2 Obtaining the Source Distribution
Next, you must obtain the Apache source distribution. Although so-called
binary distributions are available, we recommend that you start with the
source distribution, except in those very rare cases where no C compiler is
available. First, determine the latest version number of Apache by looking at
the Apache home page (� � ���������

�� �	� � � ��
�� �	� ��� �	� �)�	�). It always includes
a note about the latest version.

Package Source Distribution
Apache ���������	����
�
�
�� � ����� ��� �	� ������� � � ����� � ��� ��� 	 � � � 	 � � ������� ���

mod perl ���������	��������� � � ����� ��� �	� ��������� ��������� ����� ��
	 � ��� � ������� ���

Perl ���������	����
�
�
�������� ����������� ��� ���������� � � � � ����� �� � � ����� ��� � ������� ���

mod ssl ���������	����
�
�
�� ��������� �	� ��������������� ��� ����� ��� �� � � � � � �
	 � � � 	 � � ������� ���

OpenSSL ���������	����
�
�
��	����� ��� �	� ��������� ����� ���������� ������ � � � � � � ����� � ���

Table 3.1: The involved software packages

For instance, at the time of this writing, the most recent Apache version
was 1.3.12. To grab the source distribution, you can use a browser and fetch
it via HTTP from the area � � ���������

�� �	� � � �
 � ��� ����� ������� . Apache is also
available from mirror locations around the world. The list of available loca-
tions can be found at �	������������

�� ��� � � ��
 � �)�����+� �+��� ��� �	� .All of these software

packages are available
free of charge on the
Internet.

In this book, we also cover two popular Apache extensions, � ��� ��
)� � (the
Apache interface to Perl) and ����� ��� � (the Apache interface to OpenSSL).
You must therefore obtain the distributions of four additional packages: the
Perl interpreter (

�
�����
)� � � �����), the ����� ��
)� � module (��
)� � � �	� � � ��
�� �	� �),

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

3.1 Sample Step-by-Step Installation 39

the OpenSSL toolkit (
�

�� �	�
���� � � � �)� �), and the ����� � � � module (

�� ����� �
� � � � �	� �).

Table 3.1 on the preceding page summarizes the download locations for
the latest stable version of all involved packages. If they have changed since
this book’s publication, start over with the home page of the package to find
the latest version and current download location.

To build the packages, move the distribution files into your chosen work-
ing directory and extract the five distribution “tarballs” there.

�
gunzip -c apache 1.3.12.tar.gz tar xvf -

����������	
������
����
����������	
������
������������
����������	
������
������������������
�

�
gunzip -c mod perl-1.24.tar.gz tar xvf -

����� ��	������
!�"��#��
����� ��	������
!�"��#���$��
����� ��	������
!�"��#���$������������
�

�
gunzip -c perl-5.005 03.tar.gz tar xvf -

��	�����%&��'�'�% '���
��	�����%&��'�'�% '����(���$�)���$�)��
��	�����%&��'�'�% '����*�����+�,�	��
�

�
gunzip -c mod ssl-2.6.6-1.3.12.tar.gz tar xvf -

����� ���������-�/.���.��
!����0
�����(�1�1�243�1�*�5
����� ���������-�/.���.��
!����0
�����*�6�(�1�7�5�8
����� ���������-�/.���.��
!����0
�����*�9�5�:�;�<�8�
�

gunzip -c openssl-0.9.6.tar.gz tar xvf -
����	�+ ��������'��/=���.���*�6�(�1�7�5�8
����	�+ ��������'��/=���.���*�6�(�1�7�5�8-�"8�8�>�	���?
����	�+ ��������'��/=���.���*���+�@�)�,�A���	
�

3.1.3 Package Prerequisites
The Apache build process discussed later in this chapter depends on the
availability of the � ��� ��
)� � and ����� � � � modules. But these, in turn, depend To build the complex

Apache modules, the
third-party packages
must usually be
installed first.

on the Perl and OpenSSL third-party packages. For this reason, a prerequi-
site to building Apache with these modules is to build these two packages
first. Follow these steps to install Perl and OpenSSL:

Go into the source tree of Perl and follow the directions in the
� ��	
 �!B�B

document found there. The typical installation steps will look like the
following:

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

40 Chapter 3: Building Apache

�
cd perl-5.005 03

�
sh Configure -d -s -e -Dprefix=/usr/local/apache

�)�����$ ��	�$�� � ������	 ��A���	 ?���A����)�$)�� ��� ������	�$�	�� *���	����)4+�, �����
>�������$�)4+�, ��� ��� ��+ ������,���� �!�&�����
�

�
make

� ��� ��@�����,�� ��)�����	����&�"� �!)�+)4��	���� � ��)�+ �"� � ��)�+)���	���� ����)4+ � �
��*	��:�
 ��� ��:��5�9�> *�2�9�5 ��� ��;���A ������������������)�+ ����A���	 ��2�

�
make install

������	����)4+ ��$���������	����
������)�� ��A ����������������������������	����)�+
�

�
(cd /usr/include; /usr/local/apache/bin/h2ph *.h sys/*.h machine/*.h)

�&�"��A�$ � � �� �-�"��A�$ � ���
�����-� � ��� �����-� ���
�

�
cd ..

Go into the source tree of OpenSSL and follow the directions in its
����	�
 �!B B

document. The typical installation steps will be similar to the
following:Good packages

usually do not require
you to manually edit
their configuration.
Instead, they provide
some sort of
autoconfiguration
mechanism.

�
cd openssl-0.9.6

�
sh config --prefix=/usr/local/apache

2���	�����$�)�+�, ��?���$�	4� �)����.���������$�	���	�����@���	�		� ����
*���+�@�)�,�A���)�+�, @���� � ��	�	���8�:���	���@
�

�
make� ���)�+�, �����)�+ ����?���$��-�����

	�������������	�@�)�+�	 :�(�<�5�� � ����$�	 � ���������$�	�� �
,���� ��;&� ��;&���"��)�+ ����A���	 ��:�<�5�9�� ;�2�8 ��:�> 5�1�:�;�(�1 �����
�

�
make install)4+ ��$�������)�+�, ����?���$��-�����

� ���)�+�,)4+ ��$������)�+ ����?���$���� � ���-�����
�

�
cd ..

After you complete these steps, the Perl interpreter and the OpenSSL toolkit
will be installed under � ��� ��� � � ��� � ���	� � � ��
 . Now, you must proceed with
the application of ����� �
)� � and ����� � � � to the Apache source tree.Complex Apache

modules usually
provide automated
ways to get to the
Apache source tree.
Most rely on APACI
features.

Follow these steps:

Go into the source tree of ����� �
)� � and follow the directions in the
����	�
 �!B B � �	� � �	� document found there. Many configuration options
are available for ����� �
)� � , although the typical installation steps will
look like the following:

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

3.1 Sample Step-by-Step Installation 41

�
cd mod perl-1.24

�
/usr/local/apache/bin/perl Makefile.PL APACHE SRC=../apache 1.3.12

DO HTTPD=1 USE APACI=1 PREP HTTPD=1 EVERYTHING=1�)���� ����+�@�)�,�A���	 ��)�� (���(�*�;
� ��� ���"������������	
!����0
�������������� �"��*���+�@�)�,�A���	 ��@�)���	 *���+�@�)�,�A�����$�)���+��
�

�
make� ����)�� ����)��

� ����)�� ����)�������)��
��� ���"������������	
��/��0
�������������)4+ ����A���	�����$�$�� ������$��������&� � �����
�

�
make install

;�+ ��$�������)4+�, ��A �������������������������4��	�����)�������	�����%�����)�$�	 ��	�������%-��'�'�%��-�����
�

�
cd ..

Go into the source tree of ����� ��� � and follow the directions in its � ��	�
 �
�!B�B

document. Once again, many configuration options are available,
but the typical installation steps will look like the following:

�
cd mod ssl-2.6.6-1.3.12

�
./configure --with-apache=../apache 1.3.12

*���+�@�)�,�A���)�+�, ����� ���������&��.��� @���� (������4��	��
��/��0
��
� (���������	 ��������$�)���+ � ���"������������	
�����0
4� �	� 	�����)���+
��/��0
��
�
�

�
cd ..

3.1.4 Configuring the Apache Source Tree
The next major step is to configure the Apache source tree. You must se-
lect the desired modules, the compiler and flags used for building, the in-
stallation path layout, and other features. Typically, you will use the Apache The recommended

standard way to
configure the Apache
1.3 source tree is the
new Apache
AutoConf-style
Interface.

AutoConf-style Interface (APACI) — a script named “ � ��� � � ����
 ” you will find
in the top-level of the Apache source tree.1 This script provides numerous
options that allow you to flexibly configure the build and installation. A
complete option reference appears in Section 3.2.

The minimal configuration step usually takes the following form:

�
cd apache 1.3.12

�
./configure --prefix=/usr/local/apache

1In the configuration method of Apache 1.2, you had to manually edit a configuration file
(�������������� � ��������� � ��) and run the script (�������������� � �������) on it. Because this older facility
doesn’t provide installation support, you are strongly advised to use APACI unless you are
an Apache expert. Even when you are an Apache expert, you’ll discover that these editing
steps can be carried out via APACI’s command-line options as well.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

42 Chapter 3: Building Apache

*���+�@�)�,�A���)4+�, @���� (���������	 � � 	�����)���+
������
��
�

�
cd ..

Because we want to build Apache with our two additional modules and be-
cause it’s reasonable to build Apache as flexibly as possible with the help of
the Dynamic Shared Object (DSO) facility, we recommend the following steps:APACI offers lots of

command-line options,
which at first look are
ugly. Once you
become familiar with
APACI, you will enjoy
its consistent and
batch-capable nature.

�
cd apache 1.3.12

�
env SSL BASE=/usr/local/apache ./configure

--target=apache

--with-layout=GNU

--without-confadjust

--prefix=/usr/local/apache

--with-perl=/usr/local/apache/bin/perl

--activate-module=src/modules/perl/libperl.a

--enable-module=perl

--enable-module=ssl

--enable-shared=remain
*���+�@�)�,�A���)4+�, @���� (���������	 � � 	�����)���+
������
��
� A���)�+�,)�+���$���������$�)���+ ����$�� ����?���A�$ � 7�1�3 � ����+�@�)�, ������?���A�$ �
� ����$�)�����$�	�� ��	���� ������A���	 � ������A���	�������	���������)�����	����-�"�
�
*���	���$�)�+�, ������	�@�)���	
*���	���$�)�+�, *���+�@�)�,�A�����$�)���+ �"��������))4+ �����
*���	���$�)�+�, ������	�@�)���)�+ �����
� ����+�@�)�,�A���	�� @���� � ��	�		��8�: ��0
 ������$�@������
� ��	�$�$�)�+�, * ��� ���)���	�� $�� ,����
� ��	�$�$�)�+�, * ����	�����������	�������� $�� ,���� ��5
� �4��	����)4+�, @���� ��?���$�	4� ��	�����	�� @�)���	��
� A���)�+�, ��A���$�� � $�����,�	�$ +�� � 	�� ����������	
� ������)�+�, ��	���	���$�	�� ������A���	��

� ��		����)�$�	 ������A���	 A���	�� *���+�@�)�,�8�$�����$���5�+��
	�+�������)�+�, :��� ��A���������$ @���� ����� ��		����)�$�	

� ����� ��A�$�� ������A���	 A ��	�� *���+�@�)�,�8�$�����$���5�+��
� ��� ��A�$�� � ����A���	 A ��	�� *���+�@�)�,�8�$�����$���5�+��
A ��)�+�, ��	��	��	���	�?���:���
���� @���� ����� ��A�$�� ��� � ����� �

� ����� ������A���	 A ��	�� *���+�@�)�,�8�$�����$���5�+��
� 8�8�>)�+�$�	���@�����	-� � ��� ���������-��.-��
� 8�8�>)�+�$�	���@�����	 ��A�)���� $�?���	�� 2����
� 8�8�>)�+�$�	���@�����	 ��� ������$�)��)���)�$�? � 	�+�������	��
� 8�8�>)�+�$�	���@�����	 	�����	���) � 	�+�$���� ������	�� ��)���������	��
� 8�8�>)�+�$�	���@�����	 ��	�+������ 	���$�	�+ ��)���+ �&� ��)���������	��
� 8�8�>)�+�$�	���@�����	 ����A�,�)�+ � � 	�+������ :�� � ��)�� � �
� 8�8�> ��)���������? ����$�� � ��A ����������������������������	
� 8�8�> ��)���������? ��	�����)���+ � 2���	�+�8�8�> '���=���.
� 8�8�> ��)���������? $�?���	��)�+ ��$�������	�� ������� ��,�	 � ��$���+�����������+�	 �
� 8�8�> ��)���������? ����A�,�)�+ ������	�� +���+�	

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

3.1 Sample Step-by-Step Installation 43

� ��	���� � ����A���	 A���	�� *���+�@�)�,�8�$�����$���5�+��
� ����� ��	�������A)���� $�?���	�� 2����
�)�� � � ��� ��	������
�����#
�)�� � ��	�������%&��'�'�%�'� � @���	�		����� � � ��A�����������������������������	����)�+�����	������
� ��	�$�$�)�+�, A�� � ��� ��	�������A)���� 	�+���)�����+�� 	�+�$
� ������A���$�)�+�, (���������	 ��A)���� 	�+��)�����+�� 	�+�$
� 	�+�������)�+�, ��	���� ��A���������$ @���� 8�8�; � �����)4+ ����A���	 �

� 	�+�������)�+�, 5 ��$�	�+���	�� (�� ; � 5�(�� ; �
� ����)4+�, ����+)�$�? ����	���� ��+ ��� ���)���	�� ��+�� ����$�)���+��
*���	���$�)�+�, ������	�@�)���)�+ ����������A���������$
�

APACI options are just
what their name
implies: optional. Don’t
get confused by the
large number of
available options –
they are just available
for fine-tuning, but are
not mandatory.

These steps configure Apache as follows:

1. The 	�	 B � � 	 � variable locates the installed OpenSSL package for mod-
ule ����� � � � .

2. � � � �)� �
�� names the program “ �	� � � �
 ” (the default is “ �	� �)� � ”).

3. � �
� ��� � � � � � � � selects a GNU-style file system layout (the default is
an old-style “Apache” layout).

4. � � ��
�� ��� specifies the installation path prefix.

5. � � � �� � � ��� ensures that all binaries are installed into a single directory
for binaries.

6. � �
� ��� � ��
)� � locates the installed Perl package for ����� ��
	� � .

7. � � � ����� �	���
 � � ����� �
 activates the ����� ��
)� � module for the configura-
tion process.

8. The two � �
 � � � �
 � ������� �
 options enable ����� ��
)� � and � ��� � � � .

9. � �
�� � � �
 � � � �	�
�� forces all unenabled modules to be built as DSOs for
later loading on demand.

3.1.5 Building and Installing Apache
The final step is to actually build the Apache package ingredients and install
them under our selected installation path prefix. Because we used APACI,
this task is easy and usually involves only two simple commands:
�

make

�� �����

�� ��������������A�+) �
,���� ��� ��;&���"�&��� ��;&���"�-���"��������A�+�) � ��;&���"�-���"� �����
�

�
make install

�� � ����$���	�	-� *���	���$�)�+�, (���������)�+���$���������$�)���+ $���	�	��
�"������������	�����	������ ������)�� �"��� ��A ����������������������������	����)�+
�"������������	�����	������ ������)�� �"��� ��A ����������������������������	����)�+
�

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

44 Chapter 3: Building Apache

Of course, we used � ��� � � � . Consequently, a X.509 server certificate and pri-
vate key are required, though they can be dummy ones for testing purposes.
The following steps are required in our situation:
�

make

�� �����

�� ��������������A�+) �
,���� ��� ��;&���"�-��� ��;&���"�-���"��������A�+) � ��;&�����-���"� �����
�

�
make certificate TYPE=dummy

8�8�> *�	���$�)�@�)�����$�	 7�	�+�	�����$�)���+ 3�$�)���)�$�? � � � ��	���$ � �����
�

�
make install

�� � � ��$���	�	�� *���	���$�)�+�, (���������)�+ ��$���������$�)���+ $���	�	��
�"������������	�����	������ � ����)���� ��� ��A ����������������������������	����)�+
�"������������	�����	������ � ����)���� ��� ��A ����������������������������	����)�+
�

Installing a
ready-to-run Apache
web server with the
help of APACI is just a
matter of a few make
commands.

Voilà! You have now successfully installed an Apache web server including
����� �
)� � and ����� ��� � under � � � ��� � � ��� � ����� � � �
 . Your reward is an out-
of-the-box usable Apache web server including Perl scripting and SSL/TLS
functionality. To verify that it works properly, fire up your new server from
the root user account �����

�
su

��������������� �
� /usr/local/apache/sbin/apachectl startssl
��A ����������������������������	�����)�+�������������	���$�� ��$�����$������-� ��$�$���� ��$�����$�	��
� �

ps -ax grep -i apache
� ��%�=����� 8�� '���'
!� ��� ��A ����������������������������	������)�+�������������	 ��:�8�8�>
� ��%�=�#���� 8 '���'�'-��'�' ��A ����������������������������	������)�+�������������	 ��:�8�8�>
� ��%�=�%���� 8 '���'�'-��'�' ��A ����������������������������	������)�+�������������	 ��:�8�8�>
� ��%�=�.���� 8 '���'�'-��'�' ��A ����������������������������	������)�+�������������	 ��:�8�8�>
� ��%�=������ 8 '���'�'-��'�' ��A ����������������������������	������)�+�������������	 ��:�8�8�>
� ��%�=����� 8 '���'�'-��'�' ��A ����������������������������	������)�+�������������	 ��:�8�8�>

����� and try to connect to it with your favorite browser via both HTTP and
HTTPS through the URLs �	� ��������� � � � � � � � � ��� and � � ����� ����� � � � � � � � � � � .
Both protocols should be usable.

3.2 Configuration Reference
The following is a complete reference to the APACI command line. The var-
ious APACI command-line variables and options enable you to adjust the
way Apache is built and installed. The command line has the following gen-
eral structure:
� 	�+�� �

VARIABLE
 value ����� � �"������+�@�)�,�A���	 � ��� option
 value ����� �

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

3.2 Configuration Reference 45

3.2.1 Configuration Variables
The following VARIABLEs are taken from the APACI environment:

CC C Compiler Program
Example:

�������
 � � � �

Specifies the C compiler program to use when building the Apache ob-
ject files and executables. The default is platform-dependent — Apache
selects the best choice when more than one compiler is installed on the
platform. You can also use this variable to force the usage of a particu-
lar compiler, however.

CFLAGS C Compiler Standard Flags
Example:

���!B � ��	 ��� ��� � � � � ��
�� � ���	����� �

Specifies standard flags for the C compiler. These flags will be used
on the

���
command lines. The exception is “ �

�
”, which (for historical

reasons) should be specified with
��� ��B �
	 � 	

. To squeeze out the
maximum on a
Pentium platform,
compile with “ ���� � � ���
�������������� �����
�
&��� � � � ��& � ” when the

Pentium optimized
GNU C compiler is
available. This option
speeds up at least
number-crunching
tasks such as regex
matching.

OPTIM C Compiler Optimization Flags
Example:

���
� � ��� � ��+��
 � � � �

Specifies the C compiler optimization flags. These flags can also be
specified via

����B � ��	
, but for historical reasons they have their own

variable.

INCLUDES C Compiler Include Flags
Example: � �

��B ��	�� 	 ��� � � � ����� � � � � � � � � � � � �	��
 �

Specifies additional include flags for the C compiler (“ �
� directory”).

These flags can also be specified via
���!B � ��	

, but for historical reasons
they have their own variable.

LDFLAGS Linker Standard Flags
Example:

B�	��!B � ��	 ��� � B � ��� � � � �	��� � � � ��� �

Specifies additional standard flags for the linker command. These flags
are usually “ �

B
directory” flags intended to help the linker find third-

party libraries.

LIBS Linker Library Flags
Example:

B � � 	 ��� � � ��� �

Specifies additional library flags for the linker command. These flags
are usually just “ � � name” flags for linking Apache with third-party li-
braries.

CFLAGS SHLIB Additional CFLAGS for DSO Building
Example:

���!B � ��	 	�� B � �
��� � � � � ���

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

46 Chapter 3: Building Apache

Special flags for the C compiler that are used in addition to
���!B � ��	

when DSOs are compiled. Usually, they specify which flags are re-
quired to force the generation of position-independent code (PIC).

LD SHLIB Linker for DSO Building
Example:

B�	 	�� B � �
��� � � �

Specifies the linker used for building DSOs. The default is platform-
dependent and is usually either the value of

���
or directly “

� � ”.In most cases, you do
not need to specify
DSO building details
manually. Apache
already knows how to
use DSO on all major
UNIX platforms.

LDFLAGS SHLIB Additional LDFLAGS for DSO Building
Example:

B�	���B � ��	 	�� B � �
��� � � � � �)�
�� � �
 �

Special flags for the DSO linker command (
B�	 	�� B � �) that are used in

addition to
B�	��!B � ��	 when DSOs are built. Usually, they specify which

flags are required to force the generation of shared objects instead of
standard objects (executables).

LDFLAGS SHLIB EXPORT Add. LDFLAGS for Program
Building under DSO
Example:

B�	���B � ��	 	�� B � � � � � � ��
 ��� � �	� ��� � � ��� �

Special flags for the linker command (
���

) that are used in addition toB�	��!B � ��	 when the Apache executable is built. Usually, they specify
which flags are required to force the export of API symbols for use by
DSO-based modules.

RANLIB Archive Indexing Tool
Example:

� � � B � �
��� � �� � � ��� �
 �

Used to override the “ � ��� � ��� ” command if the local platform doesn’t
require it. This command is rarely needed, because Apache automati-
cally knows whether it is required.

DEPS Additional Makefile Dependency
Example:

	���� 	 ��� ����� �

For developers only. This command can be used to add a Make depen-
dency to ��� �)� � � �
�� � �
 .

TARGET Name of the Target Program
Example:

 � ��� �
 ��� �	� � � �
 �

Equivalent to the option � � �	�)� �
�� . (See this option for details.)

EAPI MM Path to MM Library (mod ssl only)
Example:

����� � ��� ��� 	���	�
 � � �

Sets the path to the MM library source or installation tree. This library
is used in conjunction with the Extended API (EAPI) facility. The argu-
ment “ 	���	�

� � ” can be specified to indicate that APACI should search
for the MM library in standard system locations.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

3.2 Configuration Reference 47

SSL BASE Path to OpenSSL Toolkit (mod ssl only)
Example: 	�	

B � � 	 ����� 	 ��	�
 � � �

Sets the path to the OpenSSL toolkit source or installation tree. This
toolkit is used in conjunction with ����� ��� � . The string “

	���	�
 � � ” can
be specified as the argument to indicate that APACI should search for
the OpenSSL toolkit in standard system locations. &�% � ��� � extends

APACI; that’s why
additional configuration
variables are available.RSA BASE Path to RSAref Library (mod ssl only)

Example:
��	 � � � 	 ����� 	 ��	�
 � � �

Sets the path to the RSAref library source or installation tree. This
library is used by U.S. residents (only) in conjunction with ����� � � � .
The string “ 	���	�

� � ” can be specified as the argument to indicate that
APACI should search for the RSAref library in standard system loca-
tions.

3.2.2 General Options
The following general options are available on the APACI command line:

- -quiet Quiet Configuration
Example: � � ����
��

Forces APACI to suppress the display of all output while configuring
the source tree. This option can be useful for running APACI in batch
mode — for instance, from a vendor packaging facility like RPM.

- -verbose Verbose Configuration
Example: � � �
)��� � �	

Forces APACI to display additional output while configuring the Apa-
che source tree. This option can be useful for testing the results of var-
ious configuration options. Use � �

��������%�� for
building Apache on
multiple architectures
in parallel.- -shadow[=Dir] Create a Shadow Source Tree

Example: � � � � ���	��
 � � ����� ����� � � ��

Creates a shadow tree of the Apache source tree under the specified
directory Dir before configuration. A shadow tree consists of all direc-
tories of the original tree, with all files inside those directories being
replaced by symbolic links to the original files. This option is useful
when the original Apache source tree stays on a read-only medium
(typically, a CD-ROM) or when one compiles Apache in parallel for
multiple platforms. Details about this facility are found in section 3.3.1.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

48 Chapter 3: Building Apache

3.2.3 Stand-alone Options
The following options stand alone. That is, they stop the configuration pro-
cess and instead perform a special action only.

- -help Display Usage Summary
Example: � � �
 � �

Displays a short usage summary page listing all APACI command-line
options. Use this option when you have forgotten an option and want
to identify it.

- -show-layout Display Installation Path Layout
Example: � � � � ��
 � � � � � �	�

Displays the resulting installation path layout. By default, this option
displays the “Apache” layout from the file ��� � � � ��� � � � � � � . It is also
useful in combination with the � �
� ��� � � � �	� �	� option and the other
installation layout options (see section 3.2.4) for easily checking the re-
sults of those options without having to configure, build, and install
the package.

3.2.4 Installation Layout Options
The following options are used for configuring the general installation path
layout:

- -with-layout=[File:]Name Installation Path Layout
Example: � �
�� ��� � � � � � �	� � � � �

Selects the predefined installation path layout named Name from theThe � �
� � �"�

�

� � ��% ���
option allows you to
load custom
installation path layouts
from a file.

file ����� � � ��� � � � � �	� . This file includes several popular layout ingredi-
ents, and you can set all of their paths at once with this single option.
The default is the historical “Apache” layout. The most typical lay-
out is “GNU,” which resembles the installation paths of typical GNU
Autoconf-based packages. When the Name argument is prefixed with
“File:”, Name is loaded from File instead of ��� � � � ��� � � � � � � . Use this
option for easy loading your own custom layouts.

- -target=Name Installation Target Name
Example: � � �	�)� �
�� � �	� � � ��

Sets the name of the target program to Name. The default is the his-
torical “ �	� �)� � ”. This name affects both the name of the installed exe-
cutable and the error messages.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

3.2 Configuration Reference 49

- -prefix=Prefix Installation Path Prefix
Example: � � ��
)� � � � � ��� ��� � � ��� � ���	� � � �

As with original GNU Autoconf “ ����� � ��� ��
 ” scripts, this option is
the most important choice. It sets the installation path prefix — that
is, the root of the installation tree. Because most other installation
path-related options are, by default, subdirectories of this path, this The only mandatory

APACI is � �
��!� �# � � .option implicitly changes the value of these options unless you config-

ure them manually. The default for Prefix is � ��� ��� � � ��� � ���	� � � �
 . In
most cases, this option is all you need to force the installation to take
place in a different file system area.

- -exec-prefix=ExecPrefix Installation Path Prefix for Executables
Example: � �
��
 � � ��
)� � � � � � � �� � � � � � ���	� � � �
�� � � � � �
 � � �

Similar to � � ��
�� � � , but configures only the prefixes for executables
— or, more correctly, for architecture-dependent files. The default for
ExecPrefix is Prefix; that is, by default APACI doesn’t distinguish be-
tween the various types of files. This option is useful primarily when
you install Apache for multiple architectures into the same installation
area.

- -datadir=DataDir Installation Path Prefix for Shared Data
Example: � � �	���	��� ��� � � ��� ��� � � ��� � ����� � � ��
�	� � �)�

Sets the installation path prefix for the static, read-only data files used
by Apache (such as hypertext documents, and CGI scripts). The de-
fault depends on the installation path layout (see the discussion of the
� �
�� ��� � � � � � �	� option), but DataDir usually defaults to Prefix; that is,
this directory is usually a path prefix for other paths. By default, APACI uses

a three-step path
dependency hierarchy:

� �
� � �"�

�

� � ��% ��� at the
top, then a few options
like � �

��� ��� � � ! that
group related files, and
finally specialized
options like � �

� ��� � � !
for fine-tuning.

- -localstatedir=StateDir Inst. Path Prefix for Dynamic Data
Example: � � � � � � � ��� ���
�� ��� � � � � � � � � ��� � ����� � � ��
�� �	�	�

Sets the installation path prefix for the various dynamic/writable data
files used by Apache (such as log files). The default depends on the in-
stallation path layout (see the discussion of the � �
� ��� � � � � � �	� option),
but StateDir usually defaults to Prefix; that is, this directory is usually a
path prefix for other paths.

The following options are used for fine-tuning the installation path layout:

- -bindir=Dir Installation Path for User Binaries
Example: � � �� �	� ��� � � ��� ��� � � ��� � ���	� � � �
� ��� �

Sets the installation path for user binaries — that is, executables that
will be run by the end user. The default depends on the installation
path layout (see the discussion of the � �
� ��� � � � � � �	� option), but Dir
usually defaults to ExecPrefix � �� � .

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

50 Chapter 3: Building Apache

- -sbindir=Dir Installation Path for System Binaries
Example: � � ���� � � � � � � ������� � � � � � ���	� � � ��
� �� �

Sets the installation path for system binaries — that is, executables that
will be run by system administrators only. The default depends on
the installation path layout (see the discussion of the � �
� ��� � � � � � �	�

option), but Dir usually defaults to ExecPrefix � �� � .

- -libexecdir=Dir Installation Path for Internal Binaries
Example: � � � ����
��
 � � ��� � � ����� � � � ��� � ����� � � ��
�� � ����
 �
 �

Sets the installation path for internal binaries — that is, executables
and DSOs that will be loaded and run by Apache itself. The default de-
pends on the installation path layout (see the discussion of the � �
� ��� �

� � � � � � � option), but Dir usually defaults to ExecPrefix � � ����
 �
 � .

- -mandir=Dir Installation Path for Manual Pages
Example: � � � ��� � ��� � � ��� � � � � � � � ��� � � � �
� � ���

Sets the installation path for the UNIX manual pages. The default de-
pends on the installation path layout (see the discussion of the � �
� ��� �

� � � � � � � option), but Dir usually defaults to Prefix � � ��� .

- -sysconfdir=Dir Installation Path for Configuration
Example: � � ��� � ������ � ��� � � ����� � � � ��� � ����� � � ��
��)
�� �

Sets the installation path for the various configuration files. The de-
fault depends on the installation path layout (see the discussion of the
� �
� ��� � � � � � �	� option), but Dir usually defaults to Prefix � ��� � � .Most of the APACI

options are similar in
name to the ones
specified by the GNU
standards.

- -includedir=Dir Installation Path for C Include Files
Example: � � � ��� � � ��
�� ��� � � ����� � � � ��� � ����� � � ��
�� � � � � � ��

Sets the installation path for the C language include files (also known
as “header files”), which are used by the APXS facility. The default de-
pends on the installation path layout (see the discussion of the � �
� ��� �

� � � � � � � option), but Dir usually defaults to Prefix � � ��� � � ��
 .

- -iconsdir=Dir Installation Path for Icons
Example: � � ��������� � ��� � � � � ��� � � ��� � ����� � � ��
�� � � �)�
�	��� � ���

Sets the installation path for icon images. The default depends on the
installation path layout (see the discussion of the � �
� ��� � � � � � � � op-
tion), but Dir usually defaults to DataDir � ��������� .

- -htdocsdir=Dir Installation Path for Hypertext Documents
Example: � � � �	�	� � ��� ��� � � ��� � � � � ��� � ����� � � �
�	� � �	�
�� � � �	� � �

Sets the installation path for hypertext documents. The default de-
pends on the installation path layout (see the discussion of the � �
� ��� �

� � � � � � � option), but Dir usually defaults to DataDir � �	� �	� � � .

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

3.2 Configuration Reference 51

- -cgidir=Dir Installation Path for CGI Scripts
Example: � � �	�	� � � � � � � � � ����� � � � � � � ���	�	� � �
��	� � ���
��	� ��� � �� �

Sets the installation path for CGI scripts. The default depends on the
installation path layout (see the discussion of the � �
� ��� � � � � � �	� op-
tion), but Dir usually defaults to DataDir � � ��� � �� � .

- -runtimedir=Dir Installation Path for Runtime Data
Example: � � � � � ��� �
�� ��� � � � ����� � � ��� � ��� � � � �
�� � ���

Sets the installation path for the runtime data of Apache (scoreboard,
PID file, and so on). The default depends on the installation path lay-
out (see the discussion of the � �
�� ��� � � � � � �	� option), but Dir usually
defaults to StateDir � � ��� � .

- -logfiledir=Dir Installation Path for Log Files
Example: � � � ����� � �
�� ��� � � � ����� � � ��� � ��� � � � �
�� � ���

This sets the installation path for the log files. The default depends on
the installation path layout (see the discussion of the � �
�� ��� � � � � � �	�

option), but Dir usually defaults to StateDir � � ��� � .

- -proxycachedir=Dir Installation Path for Proxy Cache
Example: � � �� � � � ��� � ��
�� ��� � � � � � � � � ��� � ����� � � ��
�� �	�	�

Sets the installation path for the proxy module’s cache. The default de-
pends on the installation path layout (see the discussion of the � �
�� ��� �

� � � � � �	� option), but Dir usually defaults to StateDir ���� ��� � .

3.2.5 Build Options
The following options are used for configuring the various build parameters: For configuring special

details of Apache,
some configuration
rules exist. Some of
them were added to
APACI by &�% � ��� � .

- -enable-rule=Name Enable a Configuration Rule
Example: � �
�� � � �
 � ��� �
 � � � ��
���	 � � � � �

Used to enable various configuration rules. The following rule Names
are available:

	�� � � ��	 � � � � Configures the Apache core to be built into a shared
library.

	�� � � ��	 � � � � �
Configures the linking of module DSOs against pos-

sibly existing shared libraries.
	 ��� ��	��

Builds Apache with the SOCKS version 4 toolkit. When it is
enabled, you must add the SOCKS library location to

B � � 	 , other-
wise, “ �

B � ��� � � � � ��� � � � ��� � � ��� � � � ” will be assumed.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

52 Chapter 3: Building Apache

	 ��� ��	�� Builds Apache with the SOCKS version 5 toolkit. When it is
enabled, you must add the SOCKS library location to

B � � 	 , other-
wise, “ �

B � � � ��� � � ��� � � � ��� � � ��� � � � � ” will be assumed.
� �� ���� 	 Takes effect only if you are configuring on SGI IRIX. Read

the � � �)� � ��� � ��� �� ��� ������� ��� � � file for more details.
� �� ��� � �

Takes effect only if you are configuring on SGI IRIX. Read
the � � �)� � ��� � ��� �� ��� ������� ��� � � file for more details.

��� � � � � � 	
During the configuration, modules can run pre-program-

med shell commands in the same environment in which APACI
runs. This rule allows modules to control how APACI works.
Normally, APACI will simply note that a module is performing
this function. If you use this rule, it will also print out the code
that the modules execute.

� � � �
 Includes James Clark’s Expat package (an XML/1.0 parsing
library) into Apache, for use by the modules. By default, this rule
is already enabled.

� � �
���	 � � � � �
Apache requires a POSIX-compliant regular expres-If you have a broken

vendor regex library
(for instance, if you
observe core dumps
on � ���! � �� � � �
directives), use

� �
 � ��� �

�
! � � �

� �����	� ��� � � ��
 .

sion library. Henry Spencer’s excellent Regex package is included
with Apache and is used automatically when the underlying op-
erating system has no equivalent library. By default, this rule is
enabled unless it is overruled by operating system specifics.

����� �
(����� � � � only) Enables EAPI, which provides a generic, low-

level, function-calling mechanism, a generic data structure con-
text mechanism; and shared memory support.

	�	 B � � � ���
 (����� ��� � only) Enables ����� � � � to be built with back-
ward-compatible code for Apache-SSL 1.x, mod ssl 2.0.x, Sioux
1.x, and Stronghold 2.x. By default, it is already enabled.

	�	 B 	 	 � � (� ��� � � � only) Controls whether the built-in SDBM lib-If you have a broken
vendor NDBM library
(for instance, if you
observe core dumps
on HTTPS requests),
use � �

 � � � �
�
! � � �

��� � ������ .

rary should be used for ����� � � � instead of a custom-defined or
vendor-supplied DBM library. The default is to use a vendor
NDBM library.

	�	 B � � ��� � � � � ��
 �!B (����� � � � only) Can be used to enable experimen-
tal code inside ����� � � � . These new features typically need more
testing before they can be considered stable.

	�	 B � � � 	 � �
(����� ��� � only) Can be used to enable code inside ����� �

� � � that product vendors can use to extend ����� � � � itself via
EAPI hooks without patching the source.

- -disable-rule=Name Disable a Configuration Rule
Example: � � � ����� � �
 � � � �
 � � � �
���	 � � � � �

Disables a rule.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

3.2 Configuration Reference 53

- -add-module=Name Import a Third-Party Module
Example: � � ��� � � ������� �
 � ��� � � � ����� � � ��� �

Imports and activates a third-party module File into the Apache source
tree under � � �)� ����� � �
 �)�)
�� ��� ��� . See Section 3.3.2 for more details.

- -activate-module=File Activate Third-Party Module
Example: � � � ��� � � ���
 � ������� �
 � � � �)�+� ��� � �
 �	�)
�� �)� ���+� ��� � � ��� �

Activates a manually imported third-party module File, which must
stay under � � �)�+������� �
 �)� . See Section 3.3.2 for more details.

- -permute-module=Name1:Name2 Permute Module Order
Example: � � ��
)� � �	�
 � ������� �
 � ��
�
���� �
�� � � ��� �

An expert option that can be used to permute the order of modules.
See Section 3.3.3 for more details.

- -enable-module=Name Enable a Module for Building
Example: � �
�� � � �
 � � ����� �
 � �
�
� � �

Enables a module “����� Name” for building. The following modules
are available (a “� ” indicates that it is enabled by default): Use the powerful

� �
 � � � �

�
&�%�� � � and

� �
� � �"��� �

�
& % � � �

options to assemble
your individual Apache
functionality.

�	� �)� ���)�
 � ����� � � � � ����� � �	��� �

����� ��� ����� � � ��� ����� � ����� � �	� � � � �
�� �

����� � � � � � � ����� ��
 � ����� ����� ��� � ����� ��� ��� � � �

����� �
�
��� �
 �����
�� � � ����� � � �	�
����� ���	
)�	� ��� � ����� �	
��
�� ����� � ����� � ��� ��� � � � � �

����� � ���	� � ����� � ��������
 ��� ����� � ��� ���
��	�
����� ����
 � � � � ����� � � � � ����� � ��� �
)�
)�
)�
����� � � �	
 ��� � ����� � � � � � �
 � ����� ���	
)� ��� � � �
����� � �	��� � ����� � � �
 � ����� �����	� � � �������

����� � �	��� � � ��� ����� � � �
 ����� ��� �����
�� ����� �

����� � �	��� � �	� �����
��)����
 � ����� �� ��� �
����� � �	��� � � ����� ��
����
)� � ����� ��
)� �
����� � � �
 � � ����� �	
	��� �
��	� ����� � � �

Two special variants of Name exist: “ � � � ” enables all existing modules
and “��� � � ” enables only those modules known to be usable on all plat-
forms without problems.

- -disable-module=Name Disable a Module for Building
Example: � � � ��� � � �
 � ������� �
 � � � ��� �

Disables an enabled (by default or manually) module from building.

- -enable-shared=Name Enable a Module for DSO
Example: � �
�� � � �
 � � � �)�
�� � �
�
� � �

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

54 Chapter 3: Building Apache

Enables a module “����� Name” for building as a DSO. In addition to
the standard module names, two special variants of Name exist: “� ��� ”
enables DSO for all modules except for the bootstrapping modules
(�	� ��� ���)�
 and ����� ���), and “ �
�� � � � ” first enables all still-disabled
modules, then enables them for building as DSO.

- -disable-shared=Name Disable a Module for DSO
Example: � � � ����� � �
 � � � �	�
�� � �
�
� � �

Disables a module “� ��� Name” for building as a DSO.

- -with-perl=File Sets the Perl Interpreter
Example: � �
�� ��� � �
)� � � � ��� � � � � ��� � � ��� � ���
)� �

Sets the path to the Perl interpreter executable to File. By default,
APACI searches for “ ��
	� � ” and “ ��
)� � � ” in

� ���
��
for the latest inter-

preter version. Use this option when more than one Perl interpreter is
installed on your system or you want to use a Perl interpreter found in
a nonstandard file system location.

- -without-support Build without Support Tools
Example: � �
�� ��� � � � � � ����� �)���

Forces APACI to not build the support tools under � � �	� � ����� �)� ��� . By
default, these tools are built. Use this option when these tools are un-
necessary cause portability problems.

- -without-confadjust No Configuration Adjustments
Example: � �
�� ��� � � � � ������	��� � � ���

Forces APACI to not adjust the configuration files on installation. By
default, APACI recognizes, for instance, that when you build as non-Vendor package

maintainers should
keep � �

� � �"� % ���
�

�
�"% � #�� ��� � � � in

mind.

root (UID �� 0), it might be reasonable to pre-configure Apache for port
8080 instead of 80 (because non-root users cannot run Apache on port
80). Sometimes these adjustments are confusing, especially for vendor
package maintainers. In such a case, you can disable the adjustments
with this option.

- -without-execstrip No Executable Stripping
Example: � �
�� ��� � � � �
��
 � ����� �+�

Forces APACI to not “strip” (remove debugging symbols) the executa-
bles when installing them. This option can be either useful for debug-
ging purposes or required on esoteric platforms where the DSO facility
works only when the Apache executable is not “stripped.”

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

3.2 Configuration Reference 55

3.2.6 suEXEC Options
The following options for configuring the suEXEC facility are available on the
APACI command line:

- -enable-suexec Enables suEXEC Facility
Example: � �
�� � � �
 � � ��
��
 �

Enables the suEXEC facility, which can be used to run CGI scripts un-
der particular UIDs.

- -suexec-caller=Name suEXEC Caller UID
Example: � � � ��
 �
 � � � � � �
)� �

�

Sets the user name of the suEXEC calling process to Name — that is,
the UID under which Apache runs (when Apache is started as root, so
that UID = 0, the Name can be a configured custom UID; see the

� �	
)�
directive). The suEXEC then runs only CGI scripts when the calling
process has this user name. The suEXEC facility

allows CGI scripts to
be executed under the
UID/GID of the script
owner instead of the
runtime UID/GID of the
Apache server
processes.

- -suexec-docroot=Dir suEXEC Document Root
Example: � � � ��
 �
 � � � � � � � ��� � � ������� � � ��� � ����� � � �
�	� � �)�
�� � � �	� � �

Sets the path for the suEXEC document root to Dir.

- -suexec-logfile=File suEXEC Log File Path
Example: � � � ��
 �
 � � � ���� � �
 � � ������� � � ��� � ����� � � �
� �	�	��� � ��
 �
 � � � ���

Sets the path for the dedicated suEXEC log file to File.

- -suexec-userdir=SubDir suEXEC User Home Subdirectory
Example: � � � ��
 �
 � � � �	
)�	� � � � ��� � � � ��� � �	��� �

Sets SubDir as the subdirectory of the user’s “homedirs,” where CGI
scripts must reside to be executed through suEXEC.

- -suexec-uidmin=UID suEXEC Minimum UID
Example: � � � ��
 �
 � � ����� � � � ����� � �

Sets the minimum UNIX user ID to UID; the suEXEC facility can then
switch to it.

- -suexec-gidmin=GID suEXEC Minimum GID
Example: � � � ��
 �
 � � � ��� � � � ����� � �

Sets the minimum UNIX group ID to GID; the suEXEC facility can then
switch to it.

- -suexec-safepath=Path suEXEC Safe PATH Variable
Example: � � � ��
 �
 � � � ���
	� ����� � � ��� ����� � � ��� ��� �

Enforces the colon-separated
� ���
��

variable to Path for use under the
suEXEC facility.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

56 Chapter 3: Building Apache

3.3 Configuration Special Topics
The final section of this chapter examines some special configuration issues
on which we’ve touched only tangentially in previous discussions.

3.3.1 Shadow Source Trees
The � � � � ���	�
 [=Dir] option is very interesting. It can be used to build Apache
inside a temporary location without copying the entire Apache source tree
(15MB in size). This option is useful mainly in two situations. First, you
can use it when you want to build Apache on a cluster of machines in par-
allel and want to avoid conflicts (the source then generally stays on an NFS-
mounted file system). Second, when the Apache source tree resides on a
read-only file system (typically a CD-ROM), you must ensure that the build
process can write the object files. Both problems are efficiently resolved
through shadow trees.

A shadow tree consists of a copy of all directories of the original tree,
but with all files inside these directories being replaced by symbolic links to
the original files. Such a tree can be created more quickly than a direct tree
copy can, and it requires less disk space. You simply specify an additional
� � � � ���	��
 option on the APACI command line, and Apache automatically
builds inside this tree in the background.

Shadow trees may be employed in two ways:

You can specify only “ � � � � ���	��
 ”. In this case, the shadow tree is made
only for the � � �)� subdirectory of the Apache source tree and placed
side-by-side to this directory. It is named “ � � � � platform”, where plat-
form is the platform identification string. Use this option when you
want to build for multiple architectures in parallel.The flexibility of

Apache means that
one can easily add
third-party modules to
extend Apache’s
functionality.

You can specify “ � � � � ���	�

�

Dir”. In this case, the shadow tree is made
for the entire Apache source tree and placed under Dir. Use this option
when you want to build from a read-only media.

3.3.2 On-the-Fly Addition of Third-Party Modules
As you may have recognized in our example installation (Section 3.1 on
page 37), third-party modules can be added to the Apache source tree in
three ways:

They can be automatically added and activated by a script. For in-
stance, ����� ��� � uses this approach.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

3.3 Configuration Special Topics 57

They can be automatically added by a script but activated manually by
the user. For instance, ����� ��
	� � uses this approach.

They can be manually added and activated by the user. Most Apache
modules provided by third parties use this approach.

This little inconsistency arises because larger modules have more require-
ments; to make the life of the user easier, these modules partly automate the
steps. Don’t be alarmed if the complex modules differ. The basic way for
manually adding a third-party module in APACI involves three steps:

1. Obtain the module source. For small modules, it is typically a � ��� �	� � �
� � source file. For larger modules, it may be a directory containing
at least � � �
�� � �
�� � ��� � , ����� � �)��� � , and a few additional source files
(conventionally named � �)� � � ��� �). Third-party modules

differ mainly in size:
either they are single
source modules or
they are contained in
their own directory.

2. Add the module source to the Apache source tree somewhere under
� � �	� ������� �
 � . The location selected depends on the module. With a
single � ��� �	� � � � , you usually place the source under � � �)�+������� �
 �)� �

�� ��� �� by using � � ��� � � ������� �
 � ��� ����� ��� ��	� � ��� � ��� �	����� � . For larger
modules that require their own subdirectory under � � �	� ������� �
 �)� (say,
� � �	� ������� �
 �)� � �)�), you must establish this directory manually by run-
ning “ � � � �)� � � ����� � � �� � �	������� �)� ������� �
 �	� � �)��� ” and later activate
it by using � � � ����� �	���
 � � ����� �
 � � � �)�+� ��� � �
 �)� � �	��� � ����� �	��� � .

3. Once the third-party modules are fully integrated into the source tree
of Apache, you can treat them just like the distributed modules. In both
cases, you enable the module for building via � �
�� � � �
 � ����� � �
 � ��� �
or � �
 � � � �
 � ������� �
 � �	�)� . The same idea applies when building as a
DSO: a simple � �
�� � � �
 � � � �)�
�� � � � � or � �
�� � � �
 � � � �)�
�� � � �)� is all
that is needed.

3.3.3 Module Order and Permutations
You may have recognized the harmless-looking APACI option � � �
)��� �	�
 �
� ������� �
 � Name1 � Name2. We briefly mentioned that it can be used for chang-
ing the order of modules. To fully understand this option and its utility, more
knowledge of Apache internals are required.

As explained in Chapter 2, the functionality of Apache is implemented
by modules. An API dispatches the HTTP request processing. During this
dispatching a fixed module order is used that is derived from the order Use –permutemodule

to change the module
order at installation
time and the execution
order at runtime.

employed when building the modules. Actually, it mirrors the order of
the

� � � �	����� �
 / 	 � �)�
�� �	��� � �
 lines in the file ��� �)� � � � � � � ��� ����� � ��� � � � � � ,
which APACI generates from � � �)� � ��� � ��� �� ��� � � ��� ����� � . When a module

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

58 Chapter 3: Building Apache

comes later in this file, it is dispatched earlier in the processing. For instance,
����� �
�
��� �
 comes after ����� � � � � � in this file, so ����� �

��� �
 gets control
for each API step before ����� � � � � � . As a result, ����� �
�
��� �
 can manipulate
URLs before ����� � � � � � can, but it cannot override results of � ��� � � ��� � .

For all distributed modules, the order is pre-configured in a reasonable
way. Nevertheless, sometimes you may want to change the order of one or
more modules. For instance, to give ����� � � � � � higher priority over ����� �
 �

��� �
 , you would use the following:

�
./configure ... --permute-module=alias:rewrite ...

Now ����� �

��� �
 can post-process URLs that were manipulated by ����� � � �

� � � . On the other hand, when you add a third-party module, it is always
appended to the end of � � �)� � ��� � � ���� ����������� � � � � � ; hence, it gets the highest
priority by default. This order often isn’t reasonable. For instance, when you
have added another URL manipulation module (say, � ��� �	� �), it might be
reasonable to ensure that it operates after � ��� �
�
���� �
 and ����� � � � � � . This
goal can be achieved by using the following APACI command line:

�
./configure ... --add-module=/path/to/mod foo.c --permute-module=foo:BEGIN ...

This command moves � ��� �	� � to the beginning of the module list and gives
it the lowest priority. More complex module order adjustments can be achie-
ved by combining multiple � � ��
	��� �	�
 � ����� � �
 options.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Chapter 4

Configuring Apache

In this chapter:

Configuration Terminology
Configuration Structure
Configuration Reference

Build a system that even a fool can use,
and only a fool will want to use it.

— Shaw’s Principle

I n this chapter we present a concise but quite complete reference for all
of the configuration directives that Apache provides to both the webmas-

ter (in the global server configuration files) and users (in the per-directory
configuration files). First, we give a brief description of the various resource
identifiers used by the directives. Next, then we introduce the configura-
tion scopes in which directives can occur. Finally, we describe all available
directives, grouped by the same topics as used in Chapter 2.

4.1 Configuration Terminology

4.1.1 Resource Identifiers
The various Apache configuration directives use a number of resource iden-
tifiers to reference external things. Because they are all related and can be Apache configuration

directives use URLs
and their subidentifiers
to reference resources.

discovered as parts of the Uniform Resource Locator (URL), we summarize
them in a single figure (Figure 4.1 on the next page).

Host name, domain name, FQDN: The host name is a case-insensitive alpha-
numerical string that identifies a particular machine. The domain name

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

60 Chapter 4: Configuring Apache

scheme porthost
name

domain
name number

FQDN

directory
names

directory path

= relative URLfile path

absolute URL

http :// www . foo.dom : 80 / bar / baz / quux.cgi

file name

extension
file

Figure 4.1: The resource identifiers used by Apache directives

is the concatenation (with dot-characters) of case-insensitive alphanu-
merical strings that identify the path from the top-level domain to the
sublevel domain in the Domain Name System (DNS) to which the ma-
chine belongs. The Fully Qualified Domain Name (FQDN) is just theA host name identifies

a particular machine
on the network. dot-concatenation of a host name and its corresponding domain name.

Directory name, directory path: A directory path identifies the location in a
hierarchical storage system and is simply the concatenation (by usingA directory path

identifies the location
in a hierarchical
storage system.

slash characters) of one or more case-sensitive alphanumerical direc-
tory names. In a special case, the first directory (the “root directory”) is
treated as an empty name.

File name, file extension, file path, relative URL: A file name is a case-sensi-
tive alphanumerical string of a file in a storage system that can option-
ally consist of a base name and a file extension. The file path or relative
URL is the file name prefixed with its corresponding directory path.

Scheme, port number, absolute URL: An absolute URL uniquely identifies a
resource in the hierarchical space of the World Wide Web (WWW) byA URL identifies the

location in the
hierarchical space of
the World Wide Web.

prefixing the host-specific relative URL with the FQDN (p.60) and port
number on which the resource providing service identified by a scheme
resides.

4.1.2 Pattern Matching Notations
Apache uses two classical notations for pattern matching on strings: Wild-
card Pattern matching and Regular Expression matching as specified in POSIX
1003.2. The two differ in terms of concept and complexity, but use a very

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.1 Configuration Terminology 61

similar syntax. It is therefore especially important that one remembers the
difference between them.

Characters (items matching fixed text)
c Matches the particular character c (plain text)�

c Matches the particular character c (escaped text)

Meta Characters (items matching variable text)� Matches an arbitrary single character (small wildcard)� Matches none or any number of arbitrary characters
(large wildcard)�

c � c �����	� c
�� Matches one character of c � , c � , ����� , c
 (character class)��
c � c ���	��� c
�� Matches one character not of c � , c � , ����� , c

(negated character class)

Table 4.1: Wildcard Patterns Syntax

Wildcard Patterns Wildcard Patterns are easy to understand and are sum-
marized in Table 4.1. They provide meta-characters, which allow one to col-
lapse parts of URLs and file paths. Wildcard Patterns

provide
meta-characters, which
allow one to collapse
parts of URLs and file
paths.

Inside Apache, a special rule typically applies to the wildcard characters
“ � ” and “ � ”: they do not match a slash character (“ � ”) when they are used
to match URLs and file paths, which closely mimics the behavior of UNIX
shells.

Additionally, a shorthand notation for character classes exists, reflecting
the fact that in most code maps at least the alphanumerical characters are
located in sequence. You can therefore use a range construct; for instance,
instead of “

� � ��� ��
�� ���� � � � � � ��� �	� ����� ��
 � ��� � � � � � ��������� � ”, you can write the
shorter and more intuitive variant “

� � � � � � � � ”.

Regular Expressions While Wildcard Patterns are a simple concept that is
well known from the various UNIX shells, they are often a too weak concept
to satisfy more complex matching requirements. Regular Expressions fill this Wildcard Patterns are

a too weak concept to
satisfy more complex
matching
requirements. Regular
Expressions fill this
gap.

gap. They use a very similar syntax, but totally different semantics.1 Ta-
ble 4.2 on the next page shows the classical syntax supported inside Apache.
Regular Expressions are more powerful than Wildcard Patterns because they

1In Wildcard Patterns, the characters “ � ” and “ � ” are jokers that stand on their own; in Regular Expressions,
these characters are just qualifiers that cannot stand on their own. Instead, they apply to the previous
characters. The general equivalent of “ #�%�% � ” in Regular Expression syntax, for example, is “ #�%�%�� � ” and
not “ #�%�% � ” (which would match “ #�% ” followed by zero or more “ % ” characters!). Additionally, when you
take the rule into account that “ � ” doesn’t match a slash in various situations, then the equivalent Regular
Expression in this context actually is “ ������� � ”. The same applies to “ � ”, of course.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

62 Chapter 4: Configuring Apache

Characters (items matching fixed text)
c Matches the particular character c (plain text)�

c Matches the particular character c (escaped text)

Meta Characters (items matching variable text)
� Matches an arbitrary single character (joker)�
c � c � �	��� c
 � Matches one character of c � , c � , ����� , c
 (character class)��

c � c � �	�	� c
 � Matches one character not of c � , c � , ����� , c

(negated character class)

Quantifiers (items appended to provide counting)
? One allowed, but is optional (

�����
)

* Any number allowed, but are optional (
�������

�����)
+ One required, additional are optional (

���	�
�
�����)�

min � max Min required, Max allowed (min
�
�����

�
max)

Anchors (items matching positions)
Begin of string�
End of string

Specials (items with special semantics)
. . . � . . . Matches either expression it separates (alternation)
�
. . .

�
Limits scope of alternation, provides grouping for
quantifiers and “captures” for back-references

Table 4.2: Regular Expressions Syntax

are actually a notation for a complete regular grammar that provides a pow-
erful facility to describe a character sequence. The drawback is that humans
often find the notation difficult to decipher. Nevertheless, Regular Expres-
sions are very important, because they can be evaluated very efficiently.

4.2 Configuration Structure

4.2.1 Configuration Files
Apache uses a dedicated global configuration file that, by default, is named
�	� ���	�*� ������ and stays in the � ��� � � directory under the server root (the fileThe drawback of

Regular Expressions is
that humans often find
their notation difficult to
decipher.

name can be overridden by the � � option on the �	� ���	� command line). This
file is processed once on the server’s start-up and then again on every server
restart.2

2For historical reasons related to multiple initialization rounds, Apache actually reads the configuration
file twice on start-up, though the process remains invisible to the user. It’s one reason that makes some
modules like &�% � �� �! � and &�%�� ��� � so complex and forces them and their developers to fight against the

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.2 Configuration Structure 63

Historically, two other files were read in addition to �	� ���	�*� ������ : � � �	
 � � �
� ����� � (containing only access control directives) and � ��� � ����� � (for the server
resource map, which contains all forms of resource configuration directives).
Their file names can be overridden with the

� � �	
 � � � ��� � ��� and �
 � � �� �	
 �
� ��� � ��� directives in � � ��� �*� ����� � . The use of these two files has been depre-
cated since Apache 1.3, however, so one should generally use “

� � ��
 � � � � � � � �
���
������ � � � ” and “

�
 ��� �� �	
 � ���� � � ���
�� � � � � � ” and place all per-server di-
rectives in the �	� �)� �*� ��� � � file.

Apache can also be configured on a per-directory basis by local configu- The � ���������� ��� files
are processed while
Apache walks through
the file system
hierarchy to find the
requested documents.

ration files, by default named � � � � � �	
 � � . These files are taken into account
when the

� � � ��
 � �
)��������
 directives in the per-server context support them.
They are then processed when Apache walks through the file system hierar-
chy to find the requested documents. The processing takes the path shown
in Figure 4.2.

AllowOverride
AccessFileNameAccessConfig

ResourceConfig

initialization processingstart−up

restart new request

.htaccesshttpd.conf

access.conf

srm.conf

httpd −f

Figure 4.2: Processing of configuration files

Background Information:

Apache is derived from the NCSA HTTP Server, which uses these three configuration files
and strongly distinguishes between them. The �����"� ���$�"% � # was its general server config-
uration, the �����" �����$�"% � # contained only real access control directives, and the ��!"&	�$�"% � #
contained only resource configuration directives.

Apache never made a strong distinction between these three files, however. Since the
earliest versions of Apache, all three files were treated equally and could contain the same
type of directives. The support for two extra configuration files was kept just for backward- Since the earliest

versions of Apache, all
three configuration files
were treated equally
and could contain the
same type of
directives.

compatibility reasons. This support often caused confusion, so the Apache Group finally
decided to officially declare the use of the two extra configuration files as deprecated.

Of course, the splitting of �����"� � �$�"% � # into separate files is not deprecated in general.
It’s often needed and a good idea to use this approach. For this purpose, Apache provides
the more general

��� � � � �� directive, which is an explicit approach. What’s deprecated is
the implicit approach of the two special configuration file names and the fact that they’re
used implicitly.

subtle side effects of this approach.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

64 Chapter 4: Configuring Apache

4.2.2 Configuration Grammar
The general structure of Apache configuration files is easy to understand,
because Apache defines only the framework and some sectioning rules. The
available (and sometimes far from easy to understand) directives and theirApache defines only

the framework for
configuration files.

allowed arguments are fully implemented and controlled by the Apache
modules. Thus, in general, an Apache configuration file’s structure can be
described with the following first fragment of a syntax grammar:

configuration ::= directive*
directive ::= section-directive

�
simple-directive

section-directive ::= section-open configuration section-close
section-open ::= “ � ” directive-name directive-argument* “ � ”
section-close ::= “ ��� ” directive-name “ � ”
simple-directive ::= directive-name directive-argument*
directive-name ::= “

	 ���
 ���	�)� � ”
�
“
	 � � ���
��	� � � ��� ”

� �	���
directive-argument ::= ���	�

In other words, an Apache configuration file can be empty or can consistAn Apache
configuration file can
be empty or can
consist of one or more
directives.

of one or more directives. Directives are classified into one of two cate-
gories: simple directives and sectioning directives. Sectioning directives can,
in turn, contain one or more directives.

Although the preceding grammar may suggest structural complexity, the
actual syntax of those configuration files is very simple, because they are
read and parsed by Apache on a line-by-line basis3: Every line that isn’t
empty (that is, does not match the regular expression “

 � � � � � � ”) and is
not a commentary line (that is, does not match “

 � � � � ��� � � � ”) is treated
as a directive line. On those lines, the first word is treated as the directive-Apache parses and

evaluates the
configuration files on a
line-by-line basis, but
allows line
continuation.

name and any remaining words form the directive-arguments. Additionally,
when the line ends with a back slash (“

�
”), the following line is treated as a

continuation of the current line (when this continuation line again contains
a back slash, it’s also part of the continuation, and so forth).

4.2.3 Configuration Contexts
Not all Apache configuration directives can be used everywhere. Apache
distinguishes between the following configuration contexts on a per-direc-
tive basis (that is, every directive has a fixed set of contexts in which it is
allowed as shown in Figure 4.3 on the next page).

3Actually Apache evaluates the directives on this line-by-line basis, although the general structure is a nested
one (notice the recursion through configuration in the grammar!). That’s surprising at the time of first
reading and scary at the second time, especially when you have knowledge of compiler construction.

You can imagine that some tricks and limitations affect Apache’s ability to evaluate the logically nested
structure on such a physically line-by-line basis. Even when you see nicely nested �	� � !�� ��� � � % � ��
 and� � � !� �� ��%"! ��
 sections in configuration files and would expect deeply nested internal syntax trees, realize
that Apache internally treats the whole matter as more or less flat text.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.2 Configuration Structure 65

<V
ir

tu
al

H
o

st
>

<Location>

.htaccess

AuthConfig<Directory>

Limits

Options

FileInfo

Indexes

httpd.conf

<Files> 73

4

5

1

6

8

9

10

2

Figure 4.3: Configuration contexts

Per-Server Context
This context applies to the global �	� ��� ��� ����� � configuration file. It is
divided into five sub-contexts:

➊ Global context (outside any sections):
Contains directives that are applied to the default or main server
and (depending on the particular directive) may be inherited by
other sections.

➋ Virtual host sections (� � ��� ��� � ��� � ��� �):
Contain directives that are applied to a particular virtual server,
and are distinguished by unique (IP address, IP port) pairs.

➌ Directory sections (� 	 ���
 � � �)� � � , � 	 � �
 ��� �	� ��� ��� � � �):
Contain directives that are applied to a particular directory (and
its subdirectories), and are distinguished either by plain directory
paths or regular expressions matching directory paths.

➍ File sections (� � � �
 � � , � � � �
 ��� ��� � � �):
Contain directives that are applied to particular files, and are dis-
tinguished by either plain file names or regular expressions match-
ing file names.

➎ URL sections (� B � ������� � � � , � B � ����� � ��� � ��� � � �)
Contain directives that are applied to a particular URL and its sub-
areas, and are distinguished by either plain relative URLs or reg-
ular expressions matching relative URLs.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

66 Chapter 4: Configuring Apache

Per-Directory Context
This context applies to the local � �	� � � �	
 � � configuration files. They
are read on the fly by Apache while it’s walking inside the file systemThe � ���������" ���

configuration files are
read on the fly by
Apache while it’s
walking inside the file
system to process the
HTTP request.

to process the HTTP request. This context is also divided into five sub-
contexts, which are enabled with the

� � � ��
 � �
	�������
 directive in the
� � ��� �*� ����� � file:

➏ Authentication context (
� � ��� � ���� � �):

Contains directives that control authorization.

➐ Limit context (
B � � � � �):

Contains directives that control access restrictions.

➑ Option context (
� �	���������):

Contains directives that control specific directory features.

➒ File information context (
� � �
 � ��	�):

Contains directives that control document attributes.

➓ Index context (� � ��
��
 �):
Contains directives that control directory indexing.

Figure 4.3 summarizes this context topology. Small versions of this figure
are used later in this chapter to intuitively describe the allowed contexts of
each directive.

4.2.4 Context Nesting
As shown symbolically on the left side of Figure 4.3 on the preceding page,
the various configuration sections can be nested. This nesting is not arbitrary,The Apache

configuration sections
can be nested, albeit
with a few restrictions.

however. Instead, the following rules apply and should be remembered:

The � 	 � �
 ��� �	� � � sections are not allowed inside � B � � � � � , � B � ��� �
� � ��� � , � � � �
 � � , or any other � 	 � �
 ��� �	� � � sections.

The � B � ������� � � � sections are not allowed inside � B � � � � � , � 	 ���
 � �
�	�)� � � , � � � �
 � � , or any other � B � ������� � � � sections.

The � � � �
 � � sections are not allowed inside � B � � � � � and � B � ��� �
� � ��� � sections.

The � 	 ���
 ���	�)� � � and � B � ����������� � sections are not allowed inside
� �	� � � ��
 � � files, but � � � �
 � � sections are.

The canonical (and allowed nesting) to which you should force yourself is
shown below (intermediate levels in this tree may be skipped, of course):

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.2 Configuration Structure 67

.htaccesshttpd.conf

Apache configuration

<Limit>

<Files>

<Directory> <Location>

<Limit>

<VirtualHost> <Files>

4.2.5 Context Dependencies and Implications
Although directives can be used in various contexts, some contexts implicitly
include others. Two rules apply here:

The � �	� � � �	
 � � file contexts AuthConfig and Limit always include the
contexts of the per-server � 	 ���
 ���	�)� � � , � � � �
 � � , and � B � � ����� ��� �
sections.

The � �	� � � �	
 � � file contexts Options, FileInfo, and Indexes always in-
clude all contexts of the per-server configuration (the whole � � ��� � �
� ��� � � file).

Additionally, the allowed directives for the � B � ������� ��� � and � � � �
 � � con-
texts are treated the same as those for � 	 ���
 ��� �)� � � .

4.2.6 Context Merging and Inheritance
The configuration contexts have special runtime dependencies, because the
results and behavior of the configuration directives (which are internally
built up by the modules when a directive line is processed) become merged
when Apache processes the various contexts. To understand where and why The behaviors of the

configuration directives
become merged when
Apache processes the
configuration contexts.

a directive is applied, it’s therefore important to know the order in which
Apache processes the configuration contexts (especially because the order
Apache chooses is far away from intuitive or obvious):

1. Contexts of the � 	 ���
 ��� �)� � � (not based on regular expressions) sec-
tions and � � � � � �	
 � � files are processed simultaneously, with the � �	� �
� � ��
 � � directives overriding the directives of the � 	 ���
 ��� �)� � � sec-
tions.

2. � 	 � �
 ��� �	� ��� ��� � � � sections and regular expression-based � 	 ���
 � � �
�)� � � sections are processed.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

68 Chapter 4: Configuring Apache

3. Processing of � � � �
 � � and � � � �
 ��� ��� � � � sections occurs simultane-
ously.

4. � B � ����� � ��� � and � B � ����������� � ��� � � � sections are processed simultane-
ously.

Apart from � 	 ���
 � � �)� � � sections, each section group is processed in the or-
der in which it appears in the configuration files. � 	 ���
 � � �)� � � is processedThe configuration

sections are mainly
processed in the order
in which they appear in
the configuration files.

moving from the shortest directory component to the longest. If multiple
� 	 ���
 ��� �)� � � sections apply to the same directory, then they are processed
in the configuration file order.

This nonintuitive processing has various side effects. One should always
remember the following four points:

When attempting to match objects at the file system level, you must
use � 	 � �
 ��� �	� � � and/or � � � �
 � � . To match objects at the URL level,
you must use � B � ������� ��� � .

Although URLs come before file system paths from the user’s point of
view, � B � ����������� � is processed last. Sections inside � � ��� ��� � ��� � ��� �Although URLs come

before file system
paths from the user’s
point of view,� � %���� � � % �
 is
processed last.

sections are applied after the corresponding sections outside the virtual
host definition. This approach allows virtual hosts to override the main
server configuration. On the other hand, modifying � �	� � ���	
 � � parsing
with the

� � � �
 � �
)�������
 � �	� � ����� directives during � B � ����� � ��� � ac-
complishes nothing because � �	�	� � �	
 ��� parsing has already occurred.

Using an
� �	��� � ��� directive inside a � � � �
 � � section has no effect.

During runtime, Apache actually performs � B � ����� � ��� � and � B � ��� �
� � ��� � ��� � � � sequences just before the name translation phase of the
API takes place (where

� � � � � , �
�
��� �
 � � �
 ,
	 � � ���
��	� � � ��� , and simi-

lar directives are used to map URLs to file names). The results of this
sequence are thrown away after the translation phase ends, however.

4.3 Configuration Reference
This section presents all of the currently accepted configuration directives
(255 in total), sorted by the same topics used for the module summary in
Chapter 2. For each directive, a one-line summary, syntax, example, imple-
menting module, allowed configuration contexts, and short description are
given. The contents are partly derived from the Apache online documenta-
tion, courtesy of the Apache Software Foundation (ASF).

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 69

4.3.1 Core Functionality

http core
Apache Base Functionality

� VirtualHost � http core
Open a Virtual Host Section
Syntax: � � � � � � � ��� � ��� target � target ������� �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � ��� � � � ��� � � �

�
����	� � � �	��� � � � �
Default:

� � ��

Since: Apache 1.0

This directive opens a section enclosing a group of directives that will
apply one or more virtual hosts matching the target. Any directive Virtual Host sections

are used to provide
multiple virtual web
servers on the same
machine; all virtual
hosts can share a part
of their configuration.

that is allowed in a virtual host context may be used. When the server
receives a request for a document on a particular virtual host, it uses
the configuration directives enclosed in the � � ��� ��� � ��� � ��� � section.
The target argument can be either the IP address of a virtual host or an
FQDN for the IP address of a virtual host.

The name “ �
��	� � � � ” can be specified for target, in which case the
section matches any IP address that is not explicitly listed in another
virtual host section. In the absence of any “ �
��	� � � � ” virtual host
sections, the “main” server config, consisting of all definitions outside
any � � ��� ��� � ��� � ��� � section, is used when no match exists.

One can add “ � port” to the target arguments to change the port for
which a match is sought. If the port is unspecified, then the default is
the same port indicated in the most recent

� �)� � statement of the main
server. You may also specify “ � � ” to match all ports on an address that
is recommended when used with “ �
�� � � � � ”.

In most cases, target arguments correspond to the arguments of
B �����
 �

directives, but not always.

� /VirtualHost � http core
Close a Virtual Host Section
Syntax: � � � ��� � � � ��� � ��� �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � ��� ��� � ��� � ��� �
Default: � � ��

Since: Apache 1.0

This directive closes a section previously opened by � � ��� ��� � ��� � ��� � .

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

70 Chapter 4: Configuring Apache

� Location � http core
Open a URL Location Section
Syntax: � B � ����� � ��� url �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � B � � ����� ��� � ��� ������� �
Default:

� ����

Since: Apache 1.1

This directive opens a section enclosing a group of directives that will
apply to the named url and subareas of it. Any directive that is allowedThe � � %��"� � � % �

containers limit the
scope of their body to
particular URL paths.

in a directory context may be used. The url argument is either a relative
URL or a wildcard pattern for a relative URL. If multiple � B � � ����� ��� �
sections match a location (or its parent locations) containing a docu-
ment, then the sections are applied in the order beginning with the
shortest match first.

� /Location � http core
Close a URL Location Section
Syntax: � � B � ������� ��� �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � B � ������� � � �
Default: � ����

Since: Apache 1.1

The directive closes a section previously opened by � B � ������� � � � .

� LocationMatch � http core
Open a URL Location Section (RegEx-based)
Syntax: � B � ����� � ��� � ��� � � pattern �

httpd.conf
<V

ir
tu

al
H

os
t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � B � � ����� ����� ��� � � �
Default: � ����

Since: Apache 1.3

This directive opens a section enclosing a group of directives that will
apply to those URLs matched by pattern and subareas of them. It isUse� � %���� � � % � � � �����

instead of� � %���� � � % �
 if you
want to specify the
scope more flexibly.

similar to � B � ������� � � � with one exception: the argument (pattern) is
a full-featured regular expression and not just a wildcard pattern.

� /LocationMatch � http core
Close a URL Location Section (RegEx-based)
Syntax: � � B � ������� ��� �	��� � � �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � B � ������� � � � ��� � � �
Default: � ����

Since: Apache 1.3

This directive closes a section previously opened by a corresponding
� B � ����������� � ��� � � � .

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 71

� Directory � http core
Open a Directory Section
Syntax: � 	 � �
 ��� �	� � directory �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � 	 ���
 � � �)� � � ��� ��� � � ��� � ���	� � � ��
�� ���	� � � � �
Default:

� � ��

Since: Apache 1.0
This directive opens a section enclosing a group of directives that will
apply to the named directory and subdirectories of it. Any directive The � � � !� �� ��%�! ��

containers limit the
scope of their body to
particular file system
paths.

that is allowed in a directory context may be used. The directory argu-
ment is either a directory path or a wildcard pattern for a directory path. If
multiple � 	 � �
 ��� �	� � � sections match a directory (or its parent direc-
tories) containing a document, then the sections are applied in order
beginning with the shortest match first, interspersed with the direc-
tives from the � �	� � � �	
 � � files along the path to the directory.

� /Directory � http core
Close a Directory Section
Syntax: � � 	 ���
 ���	�)� � �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � 	 ���
 ��� �)� � �
Default:

� � ��

Since: Apache 1.0

This directive closes a section previously opened by a corresponding
� 	 ���
 ��� �)� � � .

� DirectoryMatch � http core
Open a Directory Section (RegEx-based)
Syntax: � 	 � �
 ��� �	� ��� ��� � � pattern �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � 	 ���
 � � �)� ���	��� � � � � � � � � � � � ��� � � � ��� � �
Default: � � ��

Since: Apache 1.3
This directive opens a section enclosing a group of directives that will
apply to those directories matched by pattern and subdirectories of Use� � � !� �� ��%�! � � � �����

instead of� � � !� �� ��%�! ��
 if you
want to specify the
scope more flexibly.

them. It is similar to � 	 ���
 ���	�)� � � with two exceptions: the argument
(pattern) is a full-featured regular expression and not just a wildcard
pattern, and the section is applied after all regular � 	 ���
 � � �)� � � sec-
tions are applied.

� /DirectoryMatch � http core
Close a Directory Section (RegEx-based)
Syntax: � � 	 ���
 ���	�)� ��� ��� � � �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � 	 ���
 ��� �)� � � ��� � � �
Default: � � ��

Since: Apache 1.3

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

72 Chapter 4: Configuring Apache

This directive closes a section previously opened by a corresponding
� 	 ���
 ���	�)� ��� ��� � � � .
� Files � http core
Open a Files Section
Syntax: � � � �
 � file �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � �
 � � � �	� � � �
Default: � ����

Since: Apache 1.2
This directive opens a section enclosing a group of directives that will
apply to the named file. Any directive that is allowed in a file’s scopeThe � � ��� �

containers limit the
scope of their body to
particular file names.

may be used. The file argument is either a base name or a wildcard pat-
tern for a base name. If multiple � � � �
 � � sections match a file, then the
sections are applied in the order in which they appear in the configura-
tion file. A � � � �
 � � section is applied after all � 	 ���
 � � �)� � � sections
are applied.
� /Files � http core
Close a Files Section
Syntax: � � � � �
 � �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � � �
 � �
Default: � ����

Since: Apache 1.2

This directive closes a section previously opened by a corresponding
� � � �
 � � .
� FilesMatch � http core
Open a Files Section (RegEx-based)
Syntax: � � � �
 � � ��� � � pattern �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � �
 ��� ��� � � � � � � � � ��� � � �	��� � � � ��� � � �
Default:

� ����

Since: Apache 1.3
This directive opens a section enclosing a group of directives that will
apply to those files matched by pattern. It is similar to � � � �
 � � withUse � � ��� � � � � ���

instead of � � � � �
 if
you want to specify the
scope more flexibly.

two exceptions: the argument (pattern) is a full-featured regular ex-
pression and not just a wildcard pattern, and the section is applied after
all regular � � � �
 � � sections are applied.
� /FilesMatch � http core
Close a Files Section
Syntax: � � � � �
 ��� ��� � � �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � � �
 ��� ��� � � �
Default: � ����

Since: Apache 1.3

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 73

This directive closes a section previously opened by a corresponding
� � � �
 ��� ��� � � � .

� Limit � http core
Open a Limitation Section
Syntax: � B � � � � method � method ������� �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � B � � � � � �
 � � 	�
 �
Default: � � ��

Since: Apache 1.0

This directive opens a section enclosing a group of directives that will
apply to the specified HTTP access methods given in method. The Use � � � & � ��
 to limit

the directive scope to
particular HTTP
access methods.

method argument is case-sensitive and usually
� �

,
� � 	�

,
���

,
	 �!B �
 �

,� � � � ���
 ,
���
� � ��	 , or another access method. If multiple � B � � � � �

sections match a location (or its parent locations) containing a docu-
ment, then the sections are applied in order beginning with the shortest
match first. To limit all methods, omit all � B � � � � � sections.

� /Limit � http core
Close a Limitation Section
Syntax: � � B � � � � �

httpd.conf
<V

ir
tu

al
H

os
t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � B � � � � �
Default:

� � ��

Since: Apache 1.0

This directive closes a section previously opened by a

� IfDefine � http core
Open a Define Section
Syntax: � � � 	
�� � �
 name �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � 	
�� � ��
 	�	 B �
Default: � � ��

Since: Apache 1.3

This directive opens a section enclosing a group of directives that will
apply when the command-line define name exists, that is, when Apache � � # � �# � �
 in

conjunction with
� %�� � � %�� � � allows you
to conditionally load
and use modules on
demand.

was started with the command-line option “ �
	

name”. The name ar-
gument can be preceded by an exclamation point (“

�
”) to indicate a

negated section (which applies only when the define does not exist).
This feature is intended to provide a way to start-up multiple Apache
server instances with the same configuration file and to provide a way
to conditionally load DSO-based modules.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

74 Chapter 4: Configuring Apache

� /IfDefine � http core
Close a Define Section
Syntax: � � � � 	
)� � ��
 �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � � 	
�� � �
 �
Default:

� ����

Since: Apache 1.3

This directive closes a section previously opened by a corresponding
� � � 	
�� � ��
 � .

� IfModule � http core
Open a Module Existence Section
Syntax: � � � � ��� � �
 src-name �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � �	����� �
 �
Default:

� ����

Since: Apache 1.2

This directive opens a section enclosing a group of directives that will
apply when the module with source name src-name exists — that is,Use � � # � % � � �
 if

you want to enable
directives only if their
implementing module
is actually available.

when Apache was either statically built with this module or the mod-
ule was at least loaded via

B � ��� � ����� �
 . Keep in mind that src-name
is the file name of the main module’s C source file. For instance, for
� ��� �	� � the argument src-name is usually ����� �	� ��� � . The argument
src-name can be preceded by an exclamation point (“

�
”) to indicate a

negated section (which applies only when the module does not exist).
This feature is intended to provide a way to use certain directives only
when the module that implements them is actually available.

� /IfModule � http core
Close a Module Existence Section
Syntax: � � � � � ����� �
 �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � � � ����� �
 �
Default: � ����

Since: Apache 1.2

This directive closes a section previously opened by a corresponding
� � � � ����� �
 � .

AccessConfig http core
Extra Access Configuration File (Deprecated)
Syntax:

� � �	
 ��� � ��� � � � file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ��
 � � � � � � � � ���
�� � � � � �

Default:
� � �	
 ��� � ��� � � � ��� � � ��� ���	
 � � � ������

Since: Apache 1.0

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 75

Apache will read file for more directives after reading the �
 ��� �� �	
 � ��� �
� � � file. Here, the argument file is relative to the 	
)� �
)� � � ��� . Histor-
ically, this file contained only � 	 ���
 ���	�)� � � sections in NCSA httpd
(the ancestor of Apache); since the early Apache days, however, it was
able to use any server directive allowed in the server configuration con-
text. Thus this directive has been officially deprecated since Apache 1.3
and is usually disabled using “

� � �	
 � � � ��� � ��� ����
���� � � � � ”.

AccessFileName http core
Name of Per-Directory Configuration Files
Syntax:

� ���	
 � � � � �
 � � �
 filename
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � �	
 ��� � � �
 � ���
 � �	� � � ��
)� �

Default:
� ���	
 � � � � �
 � � �
 � �	� � � ��
 � �

Since: Apache 1.0

When returning a document to the client, Apache looks for the first ex-
isting access control file from this list of names in every directory of the Use � ���" ��� � % � # � �

and � ��% ��!��" � % � # � �
only for
backward-compatibility
reasons.

path to the document, if access control files are enabled for that direc-
tory. For instance, before returning the document � � � ��� � � ��� � �

 � � �
� � ��
���� �	� � � , the server tries to read the file � � �	� � � �	
 � � , then � ��� � � �
� �	�	� � �	
 ��� , then � ��� � � � � ��� � � � �	�	� ���	
 ��� and then � � � ��� � � ��� � �

 � � �
� �	�	� � �	
 ��� for directives, unless they have been disabled with “

� � � ��
 �
� �
	�������
 � ����
 ”.

AddModule http core
Add Available Module to the List of Usable Modules
Syntax:

� ��� � ����� �
 source-name � source-name ����� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � ����� �
 � ��� �
�
���� �
�� �

Default: � � ��

Since: Apache 1.2

Apache can have modules compiled in or loaded as DSO even if those
modules are not actually activated. This directive can be used to enable Use a list of � ��� � %�� � �

directives after a
� � ���! � % � � � � � � �
directive to reconstruct
the internal list of
enabled modules in
order to change their
runtime processing
priority.

those modules by adding them to the internal list of usable modules.
By default, Apache has a preloaded list of activated modules. This list
can be cleared with the

� �
 �)��� ����� �
 B ����� directive. Be aware that the
argument source-name is really the file name of the primary source file
of the module, (usually “����� name � � ”).

AllowOverride http core
Control Directives Allowed in Per-Directory Configuration Files
Syntax:

� � � ��
 � �
)��������
 override � override ����� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 � �
)��� ���
 � �	��� � ��� � � � � � �
 � � �	�

Default:
� � � ��
 � �
)��������
 � � �

Since: Apache 1.0

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

76 Chapter 4: Configuring Apache

This directive controls which groups of other directives can be config-
ured by per-directory configuration files (see

� � �	
 � � � � �
 � ���
). When
the server finds an � �	� � � �	
 � � file, it needs to know which directivesUse � ��� %�� � � �!�! � �� to

control what your users
can re-configure on a
local file system basis.

declared in that file can override earlier access information. The ar-
gument override can be “ � � ��
 ,” in which case the server will not read
the file at all. If it is All, the server will accept all directives, or one or
more of the following:

� �	��� � ��� � � � to allow the use of the authoriza-
tion directives;

� � �
 � � �	� to allow the use of the directives controlling
document types;

� �	�
��
 � to allow the use of the directives controlling
directory indexing;

B � � � � to allow the use of the directives controlling
host access; and

� �	� � ����� to allow the use of the directives controlling
specific directory features (for instance,

� �	� � ����� and � � � � � � � � direc-
tives).

AuthName http core
Specify User Authentication Realm
Syntax:

� �	��� � ���
 realm
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� � ���
 � � ��� �	���
 	 ��� � � � ��
 �

Default: � ����

Since: Apache 1.0

This directive specifies the name of the authorization realm for a direc-
tory. This realm is given to the client so that the user knows which user
name and password to send during HTTP Basic Authentication. The ar-
gument realm is a single argument; that is, if the realm name contains
spaces, it must be enclosed in quotation marks. The directive must be
accompanied by

� �	���
 ����
 and �
 ������
 directives, plus directives such
as

� �	��� � �	
)� � � �
 and
� �	��� � � � ��� � � �
 , to actually have any effects.

AuthType http core
Specify HTTP Authorization Type
Syntax:

� �	���
 ����
 type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	���
 ����
 � � �	���

Default: � ����

Since: Apache 1.0

This directive selects the type of HTTP user authentication for a direc-
tory. Only “

� � �	��� ” (HTTP Basic Authentication) and “
	 � �
 � � ” (HTTP

Digest Authentication) are currently implemented for type. It must be
accompanied by

� �	��� � ���
 and
�
 ������
 directives, plus directives such

as
� �	��� � �	
)� � � �
 and

� �	��� � � � ��� � � �
 , to actually have any effects.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 77

BindAddress http core
Bind to a TCP/IP Address (Deprecated)
Syntax:

� � � � � � �)�
 � � address
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � � � ���
 ��� � � � � � ��� � � � �

Default:
� � � � � � �)�
 � � �

Since: Apache 1.0
Under UNIX, Apache can listen for connections to either every IP ad-
dress of the server machine (the default) or just one IP address of the The � � � � ����!� ��� is

deprecated, use the
superset directive
� � � �� � instead.

server machine. The argument address can be “ � ”, a numerical IP ad-
dress, or the name of a host with a unique IP address. If the value is
“ � ”, then Apache will listen for connections on every IP address; oth-
erwise, it will listen on only the specified address.

A maximum of one
� � � � � �����
 � � directive can be used. To get more

control over the addresses and ports to which Apache listens, use theB ��� �
�� directive instead of
� � � � � � ���
 � � . This feature is generally used

as an alternative method for supporting virtual hosts through multiple
independent servers, instead of through � � ��� � � � ��� � ��� � sections.

ClearModuleList http core
Clear List of Usable Modules
Syntax:

� �
 �)��� ����� �
 B �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �
 �)� � ����� �
 B �����

Default: � � ��

Since: Apache 1.2

Apache comes with a built-in list of activated and hence usable mod-
ules. This directive clears the list. It is assumed that the list will then
be repopulated via the

� � � � ����� �
 directive.

ContentDigest http core
Generation of Content-MD5 headers
Syntax:

� � �	�
��	� 	 � �
 � ����� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ���	�
 �	� 	 � �
 ��� ���

Default:
� � �	�
��	� 	 � �
 � �������

Since: Apache 1.1

This directive enables the generation of
� ���	�
�� � � � 	 � headers as de-

fined in RFC 1864 and RFC 2068, respectively. MD5 is an algorithm
for computing a “message digest” (also known as a “fingerprint”) of
arbitrary-length data, with a high degree of confidence that any changes
in the data will be reflected as changes in the message digest. The
Content-MD5 header provides an end-to-end message integrity check
of the HTTP response body. A proxy or client may check this header in
an effort to detect accidental modification of the contents in transit.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

78 Chapter 4: Configuring Apache

CoreDumpDirectory http core
Storage Location of Core Dumps
Syntax:

� �)�
 	 �	��� 	 � �
 ��� �	� � directory
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �)�
 	 �	��� 	 ���
 � � �)� � � �	�)��� � �	� � �

Default:
� ����

Since: Apache 1.3

This directive controls the directory to which Apache attempts to switch
before dumping core files. The default is in the 	
	� �
)� � � ��� direc-
tory. This directory should not be writable by the user employed by
the server, however, so core dumps are not normally written. Keep in
mind that daemons start on most platforms under “root”, so should
never dump core files for security reasons.

DefaultType http core
Specify Default MIME Type for Documents
Syntax:

	
��	� � � �
 ���
 mime-type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	
�� � � � �
 ����
 ����� � ��� ����� ������� ���
 � � � ���
 �+�

Default:
	
��	� � � �
 ���
 �
������ �	��� �

Since: Apache 1.0

The server must inform the client of the content type of the document.
In the event of a nondeterminable MIME type (no MIME type map-
pings apply), it therefore uses the value of this directive.

DocumentRoot http core
Root Directory of Document Tree
Syntax:

	 � � �	�
��	� � ����� directory
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	 � � �	�
��	� � � ��� � � ���
�

Default:
	 � � �	�
��	� � ����� �	� �	� � �

Since: Apache 1.0

This directive sets the directory from which Apache, by default, will
serve documents. Unless matched by a directive like

� � � � � or
�
�
���� �
 �

� � �
 , the server appends the path from the requested URL to the di-
rectory argument to create a path to the document. To accommodate
internal Apache logic, you should avoid trailing slashes in directory.

ErrorDocument http core
Set Alternative Response Document for HTTP Errors
Syntax:

� ��� �)� 	 � � �	�
��	� http-code action
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ���	�)� 	 � � �	�
��	� � � � � � �	�
)��� � � � � � � � �	��� �

Default: � ����

Since: Apache 1.0

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 79

In the event of a problem or error, Apache can be configured to do
one of four things: (1) output a simple, hard-coded error message, (2)Use

� !�!�%�! � %�����&� � � to
create custom error
messages. output a dynamic customized message, (3) redirect to a local URL to

handle the problem, or (4) redirect to an external URL to handle the
problem. The first option is the default. The other three options are
configured using the

� ���	�)� 	 � � �	�
��	� directive, which is followed by
the HTTP response code http-core and a text message or URL action.
Messages in this context consist of a quoted string for action. URLs for
action can begin with a slash (“ � ”) for local URLs or be fully qualified
URLs that force an HTTP redirect.

ErrorLog http core
Server Log File for Errors
Syntax:

� ��� �)� B � � target
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ��� �)� B ��� ��� � � ����� � � ��� �

Default:
� ��� �)� B � � � ��� �	��
)��� �	� � � �

Since: Apache 1.0

This directive sets the target to which the server will log any errors
it encounters. If target is a file name and does not begin with a slash In case of any

problems, always look
into the log file
specified via

� !�!�%�! � % �
for details, first.

(“ � ”), then it is assumed to be relative to 	
	� �
)� � � ��� . If it begins with a
pipe (“ � ”), then it is assumed to be a command that spawns the errors.
Alternatively, target can be “ ��� � � ���*� facility”, which enables logging
via syslog(3) if the system supports it. The default is to use syslog
facility

� � ��� ��� .

Group http core
Effective Group ID for Server Process
Syntax:

� �	� ��� gid
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��� � � � ��� �

Default:
� � ��

Since: Apache 1.0

This directive sets the (UNIX) group under which the server process
will run and answer requests. To use this directive, the stand-alone
server must be run initially as “root”. The argument gid is either a
group name or “ � ” followed by a numerical group ID. The use of this
directive in � � ��� � � � ��� � � � � requires a properly configured suEXEC
wrapper. When used inside a � � ��� ��� � ��� � ��� � in this manner, the di-
rective affects only the group runs as CGI processes. All other types of
requests are processed as the group specified in the main server.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

80 Chapter 4: Configuring Apache

HostnameLookups http core
Resolution of IP Addresses to Host Names
Syntax: � � ����� ���
 B ��� � ����� type

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � ��� ���
 B � � � ����� ���

Default:
� � ����� ���
 B ��� � ����� �����

Since: Apache 1.1

This directive specifies whether and how IP addresses of clients are re-
solved to their corresponding host names via reverse DNS lookups, soTo speed up runtime

processing, you can
use “ � % � � � �'&� � %�% � ��� �%�#�# ” and
“

� �� � � � � � � �� ���� %�#�# ”.

that clients can be logged and passed to the CGI/SSI environment. The
argument type can be “ � � ” to enable full resolving, “ ����� ” to disable re-
solving, or “ �	� � � �
 ” to enable double-reverse DNS lookups.

In the latter approach, after a reverse lookup is performed, an ad-
ditional forward lookup is carried out on that result. At least one
of the IP addresses in the forward lookup must match the original
address in a double-revers DNS lookup. Regardless of the setting,
when ����� � � �	
 � � is used for controlling access by host name, a double-
reverse lookup will be always performed for security reasons.

IdentityCheck http core
Perform User Name Identification Lookups
Syntax:

� �
��	� � � � � �
 � � boolean
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �
 �	��� � � � ��
 � � ���

Default:
� �
��	� � � � � �
 � � �����

Since: Apache 1.0

This directive supports RFC 1413-compliant user identification lookups,
which can be used to log the remote user name for each connection. ItSpread your server

configuration over
multiple files with the
help of the

� � � � � ��
directive.

works only if the remote host runs � �
��	�	� or something similar. The
information is logged in the access log file and should not be trusted in
any way except as part of rudimentary usage tracking. Note that this
directive can create serious latency problems in accessing your server,
because every request causes a lookup to be performed.

Include http core
Include Another Configuration File
Syntax:

� ��� � �	�
 file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � ��� � � �
 ��� � ����� ����� �
Default: � ����

Since: Apache 1.3

This directive allows the inclusion of another configuration file, given
in the argument file. Use it with caution inside � 	 ���
 � � �)� � � sections,
because the directive is applied to the surrounding context.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 81

KeepAlive http core
HTTP Keep-Alive Facility
Syntax: �
�
	� � � � �
 boolean

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�
	� � � � �
�� �

Default:
�
�
	� � � � �
������

Since: Apache 1.1

This directive indicates whether the HTTP Keep-Alive facility is sup-
ported — that is, whether the client can establish persistent HTTP con-
nections. Use of this directive is recommended, because it speeds up
request processing.

KeepAliveTimeout http core
Set the Timeout for HTTP Keep-Alive Connections
Syntax: �
�
	� � � � �

 � �
 � �	� seconds

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�
	� � � � �

 � �
 � � � � � �

Default: �
�
	� � � � �

 � �
 � �	� � �

Since: Apache 1.1

This directive sets the number of seconds that the server will wait for a
subsequent request on a Keep-Alive connection before closing it. Once
a request has been received, the timeout value specified by the
 � �
 � � �
directive applies.

LimitRequestBody http core
Limit Maximum Size of Request Message Body
Syntax:

B � � � � �
 ����
 ��� � ��� � bytes
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B � � � � �
 ����
 ��� � ��� � � � � � � �

Default:
B � � � � �
 ����
 ��� � ��� � �

Since: Apache 1.3
This directive sets a maximum size (in bytes) for a request message
body. The bytes argument must be an integer between 0 (meaning un- Use the various

� � & � � � � �� � �
�
�

directives to restrict
incoming requests in
order to avoid Denial of
Service (DoS) attacks.

limited) to 2,147,483,647 (2GB). If the client request exceeds the limit
on the allowed size of the HTTP request message body, the server will
return an error response instead of servicing the request. In this way,
the directive gives the server administrator greater control over abnor-
mal client request behavior, which may help prevent some forms of
denial-of-service attacks.

LimitRequestFields http core
Limit Maximum Number of Request Fields
Syntax:

B � � � � �
 ����
 ��� � ��
 � � � number
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B � � � � �
 ����
 ��� � ��
 � � � � �

Default:
B � � � � �
 ����
 ��� � ��
 � � � ��� �

Since: Apache 1.3

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

82 Chapter 4: Configuring Apache

The directive specifies the maximum number of header fields that can
appear in a request message. The number argument is an integer from 0
(meaning unlimited) to 32,767 (32KB). The directive allows a server ad-
ministrator to modify the limit on the number of request header fields
allowed in an HTTP request. This value should be larger than the num-
ber of fields that a normal client request might include. Use of this
directive gives the server administrator greater control over abnormal
client request behavior, which help prevent some forms of denial-of-
service attacks.

LimitRequestFieldsize http core
Limit Maximum Size of Request Fields
Syntax:

B � � � � �
 ����
 ��� � ��
 � � �	� �
 bytes
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B � � � � �
 � ��
 ��� � ��
 � � � � �
 � � � �

Default:
B � � � � �
 ����
 ��� � ��
 � � �	� �
 � � � �

Since: Apache 1.3

This directive specifies the maximum size of an HTTP request header
field. The bytes argument is an integer from 0 (meaning unlimited)
to 8,190 (slightly less than 8KB). The directive allows a server admin-
istrator to reduce the allowed size of an HTTP request header field
below the normal input buffer size compiled with the server. This
value should be large enough to hold any one header field from a nor-
mal client request. Use of this directive gives the server administrator
greater control over abnormal client request behavior, which may help
prevent some forms of denial-of-service attacks.

LimitRequestLine http core
Limit Maximum Size of Request Lines
Syntax:

B � � � � �
 ����
 ��� B � �
 bytes
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B � � � � �
 � ��
 ��� B � ��
 � � �

Default:
B � � � � �
 ����
 ��� B � �
 � � � �

Since: Apache 1.3

This directive specifies the maximum size of an HTTP request line. The
bytes argument must be an integer size (in bytes) ranging from 0 to
8,190. Use of this directive allows the server administrator to reduce
the allowed size of a client’s HTTP request line below the normal input
buffer size compiled with the server. Because the request line consists
of the HTTP method, URL, and protocol version, the

B � � � � �
 ����
 � � �
B � ��
 directive places a restriction on the length of the URL allowed for
a request on the server.

This value should be large enough to hold any of the resource names,
including any information that might be passed in the query part of a

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 83

� �
 request. Use of this directive gives a server administrator greater
control over abnormal client request behavior, which may help prevent
some forms of Denial of Service attacks.

Listen http core
Listen to Multiple TCP/IP Addresses or Ports
Syntax:

B �����
�� � ip-address ��� port-number
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B �����
 � � � �

Default:
� � ��

Since: Apache 1.1

This directive instructs the server to listen to more than one TCP/IP
address or port; by default, it responds to requests on all IP interfaces, Use � � � �� � to bind

Apache to multiple
TCP/IP addresses
and/or ports for use
with � � � !�� � � � � % � ��

sections.

but only on the port given by the
� �)� � directive. The

B �����
�� direc-
tive can be used instead of

� � �	� � � ���
 � � and
� �	� � . It tells the server

to accept incoming requests on the specified port or address-and-port
combination. If the first format (port number only) is used, the server
listens to the given port on all interfaces, instead of the port given by
the

� �)��� directive.

If an IP address is given as well as a port, the server will listen on
the given port and interface. Note that a

� �)��� directive may also be
required so that Apache-generated URLs that point to your server will
continue to work. Multiple

B �����
 � directives may be used to specify
a number of addresses and ports to which to listen. The server will
respond to requests from any of the listed addresses and ports.

ListenBacklog http core
Maximum Length of the Queue of Pending Connections
Syntax:

B �����
�� � � � � � � � number
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B �����
 � � � � � � ��� ��� �

Default:
B �����
�� � � � � � � � � � �

Since: Apache 1.3

This directive specifies the maximum length of the queue of pending
connections, as used by listen(2). Generally, no tuning is needed or
desired, although on some systems it is desirable to increase tuning
when under a TCP SYN flood attack. In many cases, the operating
system will limit the backlog parameter to the listen(2) system call to
a smaller number. This limitation varies from one operating system
to the next. Also, note that many operating systems do not use the
backlog exactly as specified, but instead use a number based on (but
normally larger than) that set.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

84 Chapter 4: Configuring Apache

LockFile http core
Path to Lock File for Serialized Connection Accepts
Syntax:

B � � � � � �
 path
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B � � � � � �
 � � �)����� � � ����� � � ��
 � � � � �

Default:
B � � � � � �
 � � � �)��� ���	
	�	��� � � � �

Since: Apache 1.2

The path is used when the server needs to lock the � � �	
	� � ��� � call.
This directive should normally be left at its default value. It might be
changed if the log’s directory is NFS-mounted, as the lock file must
be stored on a local disk. The PID of the main server process is auto-
matically appended to the file name. For security reasons, you should
avoid putting this file in a world-writable directory, such as � �	�)������� � ,
because someone could launch a denial-of-service attack and prevent
the server from starting by creating a lock file with the same name as
the one the server will try to create.

LogLevel http core
Logging Level
Syntax:

B ��� B
 �
 � level
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B ��� B
��
 �
 �)���

Default:
B ��� B
 �
 �
)��� �)�

Since: Apache 1.3
This directive adjusts the verbosity of the messages recorded in the
server’s error logs (see the

� ���	�)� B ��� directive). The following levelsUse “ � % � � � � �!�!�%�! ”
on production web
servers to reduce
logging overhead.

are available, in order of decreasing significance:
 �
)� � (emergencies:
system is unusable); � �
)��� (action must be taken immediately); ����� �
(critical conditions);
)��� �	� (error conditions);
 �)��� (warning condi-
tions); � �������	
 (normal but significant condition); � � �	� (informational
messages); and �
 � � � (debugging messages). When a particular level
is specified, messages from all other levels of higher significance will
be reported as well.

MaxClients http core
Maximum Number of Clients
Syntax: � ���

� � ��
��	� � number
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � ���
� � ��
�� � � � � �

Default: � ���
� � ��
��	� � � ���

Since: Apache 1.0

This directive limits the number of simultaneous HTTP requests that
can be supported; no more than this number of child server processes
will be created. To configure more than 256 clients, one must edit the
� � � 	 	 � � � � � B � � �
 entry in �	����� �*� � and recompile Apache. Any con-
nection attempts that exceed the � ��� � � ��
�� � � limit will normally be

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 85

queued in kernel space, up to a number based on the
B ��� �
�� � � � � � ���

directive. Once a child process is freed at the end of a different request,
the queued connection will be serviced.

MaxKeepAliveRequests http core
Maximum Number of Keep-Alive Requests per Connection
Syntax: � � � �
�
	� � � � �
 �
 ���
 ��� � number

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � ��� �
�
	� � � � �
 �
 � �
 � � �
� �

Default: � � � �
�
	� � � � �
 �
 ���
 ��� � ��� �

Since: Apache 1.2

This directive sets the maximum number of HTTP Keep-Alive requests
allowed per established TCP/IP connection when

�
�
	� � � � �
 is “on.”
Use 0 to specify an unlimited number of requests. Use high values to
obtain maximum server performance.

MaxRequestsPerChild http core
Maximum Number of Requests per Server Child Process
Syntax: � � �

�
 ���
 ��� � �
)� � � � � � number
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � ���
�
 ����
 ��� � �
)� � ��� � � � � � � �

Default: � � � �
 ���
 ��� � �
)� � � � � � �

Since: Apache 1.0
This directive sets the maximum number of HTTP requests that an in-
dividual server child process can handle. After this number of requests Use

� ��� � � �� � � � � �! � � ��� �
to control the
maximum number of
HTTP requests that an
individual server child
process can handle.

is reached, the child process will die. If number is
�
, then the process

will never die automatically. For
�
�
	� � � � �
 requests, only the first re-

quest counts toward this limit.

MaxSpareServers http core
Maximum Number of Idle Server Child Processes
Syntax: � � �

	 � �)�
 	
)� �
)� � number
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � ���
	 � �)�
 	
	� �
)� � � �

Default: � � �
	 � �)�
 	
)� �
)� � ���

Since: Apache 1.0

This directive sets the maximum number of idle server child processes.
An idle process is one that is not currently handling a request. If more
than number processes are idle, then the parent process will kill off the
excess processes.

MinSpareServers http core
Minimum Number of Idle Server Child Processes
Syntax: ��� � 	 � �)�
 	
)� �
)� � number

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: ��� � 	 � �)�
 	
	� �
)� � ���

Default: ��� � 	 � �)�
 	
)� �
)� � �

Since: Apache 1.0

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

86 Chapter 4: Configuring Apache

This directive sets the minimum number of idle server child processes.
An idle process is one that is not currently handling a request. If fewer
than number processes are idle, then the parent process creates new
children at a maximum rate of one per second.

NameVirtualHost http core
Declare a Name-based Virtual Host
Syntax: � ���
 � ��� � � � ��� � ��� host � � port �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � ���
 � ��� ��� � ��� � ��� � � � � � ��� � � � �
Default: � ����

Since: Apache 1.3
This directive is required if you want to configure name-based virtual
hosts. Although host can be a host name or an IP address, it is rec-Use � �'& � � !�� ��� � � % � �

in conjunction with�	� � !�� ��� � � % � ��

sections to configure
name-based (non
IP-based) virtual
hosting. But be aware
that this does not work
for the HTTPS
protocol.

ommended that you only use an IP address. With this directive, you
specify the address to which your name-based virtual host names will
resolve. If you have multiple name-based hosts on multiple addresses,
repeat the directive for each address. Notice that the “main server”
and any “ ��
��	� � � � ” servers will never be served for a request to a
� ���
 � � � � � � ��� � ��� IP address.

Options http core
Server Option Configuration
Syntax:

� �	��� � ��� � � � � � option � � � � � � option �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	� � ����� � � �
 � � � � � � � � ��� � ��

��

Default:
� �	��� � ��� � � �

Since: Apache 1.0
This directive controls which server features are available in a particu-
lar directory. The option argument can be � ����
 , in which case none ofUse the � ��� � % � �

directive to restrict
allowed features. the extra features is enabled. Alternatively, it can have one or more of

the following values:
� � � , for all options except � � � ��� � ��

�� ;

� �
 � � � � ,
to permit the execution of CGI scripts;

� � � � ��
 	 ��� B � � � � , to allow the
server to follow symbolic links;

� ��� � � �
 � , to permit Server-Side In-
cludes (SSI);

� � � � � �
 � � � � � ���
, to permit SSI but not the SSI commands

“ �
��
 � ” and “ � � ��� � � �
 ”;
� � �
 �
 � , to enable the auto-generation of in-

dex pages if no
	 ���
 � � �)� � � � �
�� file is found; � � � ��� � �
�
�� , to allow

automatic content negotiation; and
	 ��� B � � � � � � �
 ��
	���	��� � � , to allow

the server to follow only the symbolic links for which the target file or
directory is owned by the same user ID as the link.

Normally, if multiple
� �	� � ����� directives could apply to a directory,

then the most specific one is taken by itself; the options are not merged.
If all options on the

� �	��������� directive are preceded by a “ � ” or “ � ”
symbol, however, they are merged. Any options preceded by a “ � ”
symbol are added to the options currently in force, and any options

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 87

preceded by a “ � ” symbol are removed from the options currently in
force.

PidFile http core
Process ID File
Syntax:

� � � � � �
 file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ��� � � �
 � � �	���	� � �����	� � � ��
���� ���

Default:
� � � � � �
 � ��� �)� � � ��� �*�'����

Since: Apache 1.0

This directive sets the file to which the server records the process ID
of the daemon (actually, the PID of the parent server process). If the
file argument does not begin with a slash (�), then it is assumed to
be relative to 	
)� �
)� � ����� . The

� ��� � � �
 is used only in stand-alone
mode. It is often desirable to send a signal to the server, so that it
closes and then reopens its

� ���	�)� B ��� and

 � � �����
)� B ��� , and rereads

its configuration files. This task is accomplished by sending a
	 � ��� �
�

signal to the process ID listed in the
� ��� � � �
 .

Port http core
Canonical Port Number
Syntax:

� �	� � number
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �)� � � � � �

Default:
� �	� � � �

Since: Apache 1.0
This directive configures the canonical port of the server (in addition to
the 	
	� �
)� � ���
 directive, which configures the canonical host name). Keep in mind that

� %�!��
never affects the ports
on which a� � � !�� ��� � � % � ��

actually responds; the� � � !�� ��� � � % � ��
 and
� � � �� � directives are
used for that purpose.

A
� �	� � setting never affects the ports on which a � � � � � � � ��� � ��� � ac-

tually responds; the � � ��� � � � ��� � � � � and
B �����
�� directives are used

for that purpose. The number argument is a numerical value ranging
from

�
to

����� � �
. The standard port for the HTTP protocol is

� �
. All

ports numbered below 1024 are reserved for system use under UNIX.
That is, regular (nonprivileged) users cannot use them; instead, they
can use only higher port numbers. To use such low-numbered ports,
one must start the server from the “root” account.

RLimitCPU http core
Resource Limit on CPU Usage
Syntax:

� B � � � � ����� soft-seconds � hard-seconds �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� B � � � � ����� � � � � �

Default:
� � ��

Since: Apache 1.2

This directive sets the soft and hard limits for maximum CPU usage of
a process in seconds. It takes one or two parameters. The first param-

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

88 Chapter 4: Configuring Apache

eter, soft-seconds, sets the soft resource limit for all processes. The sec-
ond parameter, hard-seconds, sets the maximum resource limit. Either
parameter can be a number, or “����� ”, which indicates to the server that
the limit should match the maximum allowed by the operating system
configuration. Raising the maximum resource limit requires the server
to be running as the user “root,” or in the initial start-up phase.

RLimitMEM http core
Resource Limit on Memory Usage
Syntax: �

B � � � ��� � � soft-bytes � hard-bytes �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
B � � � ��� � � ��� ��� ����� � � ��� � � �

Default: � ����

Since: Apache 1.2

This directive sets the soft and hard limits for maximum memory usage
of a process in bytes. It takes one or two parameters. The first param-Use the various

��� � & � �
�
�
 to restrict
the runtime resource
limits of server
processes.

eter sets the soft resource limit for all processes. The second parameter
sets the maximum resource limit. Either parameter can be a number,
or “��� � ”, which indicates to the server that the limit should match the
maximum allowed by the operating system configuration. Raising the
maximum resource limit requires the server to be running as the user
“root” or in the initial start-up phase.

RLimitNPROC http core
Resource Limit on Number of Processes
Syntax: �

B � � � � � � � ���
soft-processes � hard-processes �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
B � � � � � � � ���

Default: � ����

Since: Apache 1.2

This directive sets the soft and hard limits for the maximum number
of processes per user or user ID (UID). It takes one or two parameters.
The first parameter sets the soft resource limit for all processes. The
second parameter sets the maximum resource limit. Either parameter
can be a number, or “��� � ”, which indicates to the server that the limit
should match the maximum allowed by the operating system config-
uration. Raising the maximum resource limit requires the server to be
running as “root” or in the initial start-up phase. If CGI processes are
not running under UIDs other than the web server UID, this directive
will limit the number of processes that the server itself can create. This
situation will be indicated by “ ��� � � ��� �	�	� � ” messages in the error log
file.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 89

Require http core
Require User and Group Authentication
Syntax: �
 ������
 type � uid-or-gid � ������� �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
 ���� �
 ��� � ��� ������
��	� �
Default:

� � ��

Since: Apache 1.0

This directive selects which authenticated users or groups may access
a protected directory. The following syntax variants are allowed: “ �
 �
���� �
 ���	
	� uid � uid ... � ”, which means that only the named users can
access the directory; “ �
 ������
 ��� � ��� gid � gid ... � ”, which means that
only users in the named groups can access the directory; and “ �
 ������

� � � ��� � ����
)� ”, which means that all valid users can access the directory.
If this directive appears in a � B � � � � � section, then it restricts access
to the named HTTP methods; otherwise, it restricts access for all meth-
ods. �
 ������
 must be accompanied by

� �	��� � ���
 and
� �	���
 ����
 direc-

tives, as well as directives such as
� �	��� � �	
)� � � �
 and

� �	��� � � � ��� � � �

(to define users and groups), to work correctly.

ResourceConfig http core
Extra Resource Configuration File (Deprecated)
Syntax: �
 ��� �� ��
 � ��� � � � file

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
 ��� ��� �	
 � � � � � � ���
�� � � � � �

Default: �
 ��� �� ��
 � ��� � � � � ��� � � ����� � ��� � �
Since: Apache 1.0
The server reads the specified file for more directives after reading the
�	� �)� �*� ��� � � file. The argument file is relative to the 	
)� �
)� � ����� . His- Use “ � � � � ��# � � � � ” if

access to a particular
area is being allowed
either by user
name/password or
client host address.

torically, this file contained most of the directives, except for the server
configuration directives and the

	 ���
 ���	�)� � sections in NCSA httpd
(the ancestor of Apache). Since the early Apache days, however, it has
been allowed to contain any server directives in the server configura-
tion context. This directive has been officially deprecated since Apache
1.3 and is typically disabled using “ �
 � � �� �	
 � ��� � ��� ����
���� � � � � ”.

Satisfy http core
Special Access Policy Under the Allow and Require Directives
Syntax:

	 ��������� � type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	 ������� � � �����

Default:
	 ��������� � � � �

Since: Apache 1.2

This directive dictates a special access policy if both the
� � � ��
 and

�
 � ����
 directives are used. The parameter type can be either “ �
� �

”
or “ � ��� ”. The 	 ������� � � directive is useful only if access to a particu-
lar area is being restricted by both user name/password (via �
 ���� �
)

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

90 Chapter 4: Configuring Apache

and client host address (via
� � � ��
). In this case, the default behavior

(“ � � � ”) is to require that the client pass the address access restriction
and enter a valid user name and password. Under “ � ��� ” the client will
be granted access if it either passes the host restriction or enters a valid
user name/password. The goal is intended to password-restrict an
area, while letting in clients from particular addresses without prompt-
ing them for a password.

ScoreBoardFile http core
Runtime Process Management Information File
Syntax: 	 ���)�
 � � �)�	� � � �
 file

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	 ���	�
 � � �	�	� � � �
 � �	�)���	� ��� ���	� � � ��
 � � � �)��

Default:
	 ���)�
 � � �)�	� � � �
 � ��� �	���	� � � ��
 ��� ��� � �

Since: Apache 1.0

On some architectures, this directive is required to specify a file that
the server will use to communicate between its children and the parent
so as to manage the process pool.

SendBufferSize http core
TCP/IP Send Buffer Size
Syntax:

	
�� � � � ���
)� 	 � �
 bytes
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
��	� � � ����
)� 	 � ��
 � � ��� � �
Default: � ����

Since: Apache 1.2

This directive forces the server to set the TCP/IP send buffer size to the
number of bytes specified. It allows you to increase the standard oper-
ating system defaults on high-speed, high-latency network links. The
default value for bytes depends on the particular operating system.

ServerAdmin http core
E-Mail Address of the Server Administrator
Syntax: 	
)� �
	� � � � � � account@fqdn

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
)� �
)� � ��� � �

 �	��� � �
)� (�� � ��� � ����� � ���
Default: � ����

Since: Apache 1.0

This directive sets the e-mail address that the server includes in error
messages returned to the client.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 91

ServerAlias http core
Alternative Server Names
Syntax: 	
	� �
)� � � � � � host � host �������

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
)� �
	� � � � � �

����	� ��� �	��� � � ��� �	� �
Default:

� � ��

Since: Apache 1.1
This directive sets the alternative host names for a server, for use with
name-based virtual hosts (that is, the mechanism behind the HTTP Configure with

� �! � �! � ��� � � the
alternative host names
of your web server.

� � � � header).

ServerName http core
Canonical Server Host Name
Syntax: 	
	� �
)� � ���
 host

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
)� �
	� � ���

��"�	� ��� � ���
Default:

� � ��

Since: Apache 1.0

This directive sets the canonical host name of the server. It is used
mainly to create redirection URLs. If the host name is not specified,
then the server attempts to deduce it from its own IP address; this pro-
cess may not work reliably or may not return the preferred host name,
however.

ServerPath http core
Explicit Server Selection Path Name
Syntax: 	
	� �
)� � ����� url-path

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
)� �
	� � �����
Default: � � ��

Since: Apache 1.1
This directive sets the legacy URL path name for a host to url-path,
for use with name-based virtual hosts and older browsers that do not � �! � �! � � �"� is for poor

man’s name-based
virtual hosting.support (or send) the HTTP � � � � header field. Such browsers would

not be able to access a name-based virtual host. With this directive,
they can use �	� ���������

�
�� �	��� � � ��� � ��� � url-path � as a workaround to
access the web site �	� ���������

�
�� �	��� � � ��� �	� � � .

ServerRoot http core
Server Root Directory
Syntax: 	
	� �
)� � � ��� path

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
)� �
	� � � ��� � �
 � � � ������� � � ��

Default: 	
	� �
)� � � ��� � ��� ��� � � ��� � ���	� � � �

Since: Apache 1.0

This directive sets the root directory in which the server resides. Typ-
ically, it contains the subdirectories ����� � � and � ��� �	� . Relative paths

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

92 Chapter 4: Configuring Apache

for other configuration files are taken as relative to this directory. This
directive can also be overridden from the command line via the � � op-
tion.

ServerSignature http core
Control Server Signature
Syntax:

	
)� �
	� 	 � ��� ��� ��
 type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
)� �
)� 	 ����� ��� ���
 ���

Default: 	
)� �
	� 	 � ��� ��� ��
 �����
Since: Apache 1.3

This directive allows the configuration of a trailing footer line under
server-generated documents (error messages, mod proxy ftp directory
listings, mod info output, and so on. In a chain of proxies, the user
often cannot tell which of the chained servers actually produced a re-
turned error message; a footer line overcomes this problem. A type
argument of “ ����� ”, which is the default, suppresses the error line. The
value “ � � ” adds a line with the server version number and

	
)� �
)� � ���

of the serving virtual host. The value “
���� � � ” also creates a “��� � � � ��� ”
reference to the

	
	� �
)� � � � � � of the referenced document.

ServerTokens http core
Control Tokens Displayed in HTTP Server Header Field
Syntax: 	
)� �
	�
 � �
 ��� type

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
)� �
)�
 � �
���� � � �
Default: 	
)� �
	�
 � �
 ��� ��� � �

Since: Apache 1.3

This directive controls whether the HTTP
	
)� �
)� response header field,

which is sent back to clients, includes a description of the generic oper-Use “ � �! � �! � % �� � �& ��� ” if you are
paranoid when it
comes to security.

ating system type of the server (if type is “ � � ”) as well as information
about compiled-in modules (if type is “ ��� � � ”). With a type of “� � � ”,
only the server version is included. This setting applies to the entire
server, and it cannot be enabled or disabled on a per-virtual-host basis.

ServerType http core
Execution Environment of the Server
Syntax:

	
)� �
	�
 ����
 type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	
)� �
)�
 �)��
 � �
��	�

Default:
	
)� �
	�
 ����
 ��� ���	�	� � ���

Since: Apache 1.0

This directive sets how the system will execute the server. The type
argument is either “ � ��
��	� ”, in which case the server will run from

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 93

the system process � ��
�� � (the command to start the server is added
to ��
�� �)� � �
��	�*� � ��� �), or “ ��� ���	�	� � ���
 ”, in which case the server will
run as a stand-alone daemon process (the command to start the server
is added to the system start-up scripts). The � ��
��	� type is deprecated
and should be avoided, because it is an inefficient execution mode and
because Apache has dropped real support for this mode.

StartServers http core
Number of Child Processes to Launch at Server Start-up
Syntax:

	 �	�)� � 	
	� �
)� � number
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	 � �)� � 	
)� �
	� � � �

Default:
	 �	�)� � 	
	� �
)� � �

Since: Apache 1.0

This directive sets the number of server child processes created during
server start-up. Because the number of processes is dynamically con- Do not use

“ � "! � �! � ���� ��� � � ”
anymore — it is no
longer supported and
is even slightly broken.

trolled based on the load, it is rarely necessary to adjust this parameter.

Timeout http core
General Processing Timeout Duration
Syntax:

 � �
 � �	� seconds
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:

 � �
 � �	� � �

Default:

 � �
 � �	� � � �

Since: Apache 1.0

This directive defines the amount of time Apache will wait on three
occasions: (1) the total amount of time it takes to receive an HTTP � �

Use a reasonable
� � &� �% � � directive to
prevent Denial of
Service (DoS) attacks
to your web server.

request; (2) the amount of time between receipt of TCP packets on a
� � 	

or
���

request; (3) the amount of time between acknowledgments
on transmissions of TCP packets in responses.

UseCanonicalName http core
Control the Use of Canonical Server Name
Syntax:

� ��
 � ��� � ������ � � ���
 type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	
 � � � ������ � � � ���
 �)���

Default:
� ��
 � ��� � ������ � � ���
 ���

Since: Apache 1.3

In many situations, the server must construct a self-referential URL —
that is, a URL that refers back to the same server. With type set to “ � � ”,
the server will use the

	
)� �
	� � ���
 and
� �)� � directives to construct a

canonical name. This name is then used in all self-referential URLs, as
well as for the values of 	

� � � � � � � � � and 	 � � � � � � � �
 in the SSI/CGI
environment.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

94 Chapter 4: Configuring Apache

With type set to “ ����� ”, the server will form self-referential URLs us-
ing the host name and port supplied by the client in the HTTP � � � �

header field, if any is supplied (otherwise, it will use the canonical
name). These values are the same as those used to implement name-
based virtual hosts, and they are available with the same clients. The
SSI/CGI variables

	 � � � � � � � � � and
	 � � � � � � � ��

will be constructed
from the client-supplied values as well.

There is a third option in setting type: “ ����� ”, which is intended for use
with mass IP-based virtual hosting to support ancient clients that do
not provide an HTTP

� � ��� header field. With this option, the server
performs a reverse DNS lookup on the server IP address to which the
client connected to work out self-referential URLs.

User http core
Effective User ID for Server Processes
Syntax:

� �	
)� uid
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	
	� � � � ��� �

Default:
� �	
)� � � �

Since: Apache 1.0
This directive sets the user ID to uid; the server will answer requests
from this ID. To use this directive, the stand-alone server must be runAlways specify a

nonprivileged user with
the

� �" �! directive and
never the “root” user.

initially as the user “root.” The uid argument can be either a real user
name (to refer to the given user by name), or “ � ” followed by a numer-
ical user ID (to refer to a user by number). For security reasons, the
user should have no privileges that allow him or her to access files that
are not intended to be visible to the outside world. Similarly, the user
should not be able to execute code that is not meant for HTTP requests.

Note that the use of this directive in � � ����� � � ��� � ��� � requires a prop-
erly configured suEXEC wrapper. When used inside a � � ��� ��� � ��� � ��� �
in this manner, this directive affects only the user associated with CGIs
requests. Non-CGI requests continue to be processed with the user
specified in the main

� �	
	� directive.

mod so
Dynamic Shared Object (DSO) Bootstrapping

LoadFile mod so
Load DSO Files into Apache’s Address Space
Syntax:

B � ��� � � �
 file � file �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B � ��� � � �
 � ��� ��� � ��� � � ��� ����� � � � � ��� � � ���	� � ���

Default: � ����

Since: Apache 1.0

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 95

This directive loads one or more DSO object or library files when the
server is started (or restarted). No special handling of these DSOs oc- Use � %�� � � ��� to load

additional shared
libraries if object file
format does not know
about dependencies
between DSOs.

curs; instead, ����� � � just loads them but does not work with them ex-
plicitly. This directive is useful for bootstrap loading additional code
that may be required for some (DSO-based) Apache modules to work.
The argument file is either an absolute path or relative to

	
)� �
)� � � ��� .

LoadModule mod so
Load DSO Apache Module into Apache’s Address Space
Syntax:

B ����� � ��� � �
 module-handle module-file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B � ��� �	����� �

�� � � ����� �
 � ����
��
 �)� �����
�� ��� ���

Default:
� � ��

Since: Apache 1.0

This directive loads a DSO-based Apache module module-file, looks
up its entry point through the object file symbol module-handle, and Use � %�� � � % � � � to

extend your server
functionality without
having to recompile
Apache from source.

adds this module to Apache’s internal list of known modules. The
argument module-handle is the name of the external variable of type
“������� �
 ” in the module’s source code. The argument module-file is
either an absolute path or relative to

	
)� �
	� � � ��� .

4.3.2 URL Mapping

mod alias
Simple URL Translation and Redirection

Alias mod alias
Map a URL Prefix to a File Name Prefix
Syntax:

� � � � � url-prefix fs-prefix
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � � � � �����
 ��

 � � �����

Default: � � ��

Since: Apache 1.0

This directive allows documents to be stored in the local file system
in a location other than under

	 � � ���
��	� � � ��� . URLs whose path be- Use � ��� � � for
prefix-based URL
manipulations and
� ��� � � � � ����� if you
need more flexibility.

gins with url-prefix will be mapped to local files whose path begins
with fs-prefix. For instance, in the preceding example, a request for
�	� �)�������������� �	
	� �
	� � � ��� �
���	���� � �)��� � � � would cause the server to re-
turn the file ��

 � � �����
�	�	� �� �	�)�*� ����� .

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

96 Chapter 4: Configuring Apache

AliasMatch mod alias
Map a URL to a File Name Path via Regular Expression Match
Syntax:

� � � � � � ��� � � url-pattern fs-path
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ��� ��� ��� � � � � � � � � � � � � � � � �

�
 � � � � � �

Default:
� ����

Since: Apache 1.3

This directive is equivalent to
� � � � � , but uses standard regular expres-

sions, instead of simple prefix matching. The supplied regular expres-
sion url-pattern is compared with the request URL. If it matches, the
server will substitute any matches found in parentheses in fs-path into
the given string and use it as a file system path. For instance, in the pre-
ceding example, a request for � � ��������� � � ��� �)�	� �� � �	�*� � � � would cause
the server to return the file �

�� ��� � � � �)��� � � � .

Redirect mod alias
Redirect URL Prefix to External Resource
Syntax:

�
�� ���
 ��� � status � url-prefix redirect-prefix
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
�� ���
 ��� � � �����
 �	� ��������� � ��� �
����	����� �	�+���

Default:
� ����

Since: Apache 1.0

This directive is similar to
� � � � � in that all URLs starting with url-

prefix use redirect-prefix as a substitution, except that redirect-prefix
must be an absolute URL. The resulting HTTP redirect is sent back to
the client. The optional status argument can be used to return partic-
ular HTTP status codes: ��
)� ������
�� � returns a permanent redirect sta-
tus (301) indicating that the resource has moved permanently; �
����
returns a temporary redirect status (302, the default); �	
�
 ������
	� returns
a status (303) indicating that the resource has been replaced; or � � ��
 re-
turns a status (410) indicating that the resource has been permanently
removed.

When this status is used, the redirect-prefix argument should be omit-
ted. Other status codes can be returned by giving the numeric status
code as the value of status. If the status is between 300 and 399, the
redirect-prefix argument must be present; otherwise, omit it.

RedirectMatch mod alias
Redirect URL via Regular Expression Match
Syntax: �
�� ���
 ����� ��� � � � status � url-pattern � redirect-url �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�� ���
 ��� � ��� � �
� � � ��� � � � �	� �)�������)� � ��� �	� ��� � �

Default: � ����

Since: Apache 1.3

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 97

This directive is similar to
� � � � ��� ��� � � , except that the result is an ab-

solute URL to an external resource instead of a local file system path.

RedirectPermanent mod alias
Redirect URL Permanently
Syntax:

�
�� ���
 � � �
)��� ����
���� url-prefix external-resource
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
�� ���
 ��� �
	��������
 � � � � ��� �
 �	� ���������)�	����� �	��� �

Default: � � ��

Since: Apache 1.2

This directive exists for backward-compatibility reasons only. It is equiv-
alent to using

�
�� ���
 ��� with a status argument of ��
	��������
 �	� .

RedirectTemp mod alias
Redirect URL Temporarily
Syntax: �
�� ���
 � �

���� url-prefix external-resource

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�� ���
 ���

 ��� � � �����
 � � ���������)�	� ��� �	����� � � ���

Default: � � ��

Since: Apache 1.2

This directive exists for backward-compatibility reasons only. It is equiv-
alent to using

�
�� ���
 ��� with a status argument of �
 ��� .

ScriptAlias mod alias
Map a URL Prefix to a Script Prefix
Syntax: 	 ����� �	� � � � � � url-prefix fs-prefix

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	 � ��� � � � � � � � � � � � � �� � �

 �	� ��� � ��� �
Default: � � ��

Since: Apache 1.0
This directive has the same behavior and syntax as the

� � � � � directive,
but it also marks the target directory as containing CGI scripts. URLs � �'! � ��� � � � � � is like a

combination of � ��� � �
and “ � ��� � % � �
� � �� �� ��� �

”.

whose path begins with url-prefix will be mapped to scripts that begin
with fs-prefix.

ScriptAliasMatch mod alias
Map a URL to a Script Path via Regular Expression Match
Syntax: 	 ����� �	� � � � � ���	��� � � url-pattern fs-path

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	 � ��� � � � � � � ��� ��� � �
Default: � � ��

Since: Apache 1.3

This directive is equivalent to
	 � ���+�	� � � ��� � , but uses standard regular

expressions instead of simple prefix matching. The supplied regular
expression url-pattern is compared with the URL. If it matches, the

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

98 Chapter 4: Configuring Apache

server will substitute any matches in parentheses in fs-path into the
given string and use it as a script file name.

mod rewrite
Advanced URL Translation and Redirection

RewriteEngine mod rewrite
Rewrite Engine Operation Switch
Syntax:

�
�
��� �
 � � � � ��
 ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
�
���� �
 � � ��� ��
 ���

Default:
�
�
��� �
 � � � � ��
 �����

Since: Apache 1.2

This directive enables or disables the runtime rewriting engine. If it is
set to �)��� , then ����� �
�
��� �
 does no runtime processing. Use this di-
rective to disable ����� �
�
��� �
 instead of commenting out all �
�
��� �
 �
� � �
 directives. By default, rewrite configurations are not inherited.
Thus you need a �
�
���� �
 � � ��� ��
 directive to switch this configuration
on for each virtual host in which you wish to use it.

RewriteOptions mod rewrite
Rewrite Engine Options
Syntax: �
�
��� �
 � �	� � ����� option � option �������

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�
���� �
 � �	��� ��� � � ����
)��� �
Default: � ����

Since: Apache 1.2

This directive offers some special options for the current per-server or
per-directory configuration of � ��� �
�
���� �
 . Currently, only one op-
tion is implemented: � � ��
	��� � . It forces the current configuration to in-
herit the configuration of the parent. In per-virtual-server context, this
option means that the �
�
���� �
 �	�	� , �
�
���� �
 � ��� � , and �
�
��� �
 � � �
 of
the main server are inherited. In per-directory context, it means that
the �
�
� � �
 � � � � and �
�
��� �
 � � �
 of the parent directory’s � �	�	� � �	
 ���
configuration are inherited.

RewriteLog mod rewrite
Rewrite Engine Logging Target
Syntax: �
�
��� �
 B ��� file

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�
���� �
 B ��� � � � �)�	�

��� �
 � � �

Default: � ����

Since: Apache 1.2

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 99

This directive sets the file of the dedicated rewriting engine log file. It
should appear where it cannot be used for symbolic link attacks on a
real server (that is, a location where only “root” can write). If the file
name does not begin with a slash (“ � ”), then it is assumed to be relative
to the server root. If file begins with a bar (“ � ”), then the following string
is assumed to be a file path to an executable program to which a reliable
pipe can be established.

RewriteLogLevel mod rewrite
Rewrite Engine Logging Level
Syntax: �

��� �
 B ��� B
 �
 � level

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�
��� �
 B ��� B
��
 � �

Default: �

��� �
 B ��� B
 �
 � �

Since: Apache 1.2
This directive sets the verbosity degree of the rewriting engine log file
(�

�
�
� � �
 B � �). The level argument is a number between
�

and
�
, Use

“ � "��! � �� � % � � � ��� ”
to debug your URL
manipulations if they
do not work.

where
�

disables the log file writing and
�

outputs even debugging
information.

RewriteLock mod rewrite
Rewrite Engine Mutual Exclusion Lock
Syntax: �

��� �
 B � � � file

httpd.conf
<V

ir
tu

al
H

os
t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�
��� �
 B � � � � ��� �)�	�
�
���� �
 � � � �

Default: � � ��

Since: Apache 1.3

This directive sets the file name for a synchronization mutual exclusion
lock file that ����� �
�
��� �
 needs to communicate with

�
�
� � �
 � ��� pro-
grams. Set file to a local path (not on a NFS-mounted device) when you
want to use a rewriting map program. This directive is not required for
other types of rewriting maps.

RewriteMap mod rewrite
Rewrite Map
Syntax: �

��� �
 � �	� map-name map-type � map-source

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�
��� �
 � �	� ���	
)� � � � � � � ��� � � ��� ��� � � � � � �
Default: � � ��

Since: Apache 1.2
The

�
�
� � �
 � ��� directive defines a rewriting map that can be used
inside rule substitution strings by the mapping functions so as to in- Use � ���! � �� � �'� if you

need more complex
URL manipulations.sert/substitute fields through a key lookup. Various types of sources

of this lookup can be used. The map-name is used to specify a map-
ping function for the substitution strings of a rewriting rule via

� �
map-

name � lookup-key � default-value � constructs. When such a construct oc-

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

100 Chapter 4: Configuring Apache

curs, the map map-name is consulted and the key lookup-key is looked
up. If the key is found, the looked-up value is substituted for the con-
struct. If the key is not found, then the default-value or the empty string
(if no default-value was specified) is used.

The following combinations for map-type and map-source can be used:
Standard Plain Text (map-type: � � � , map-source: UNIX file path to
valid regular text file); Randomized Plain Text (map-type: ��� � , map-
source: UNIX file path to valid regular text file); Hash File (map-type:
� �	� , map-source: UNIX file system path to valid regular NDBM file);
Internal Function (map-type: � �	� , map-source: �	� ������
	� , � � � �
�
)� ,
 � �
� �	��
 , or � ��
 � � �	��
); and External Rewriting Program (map-type: ��� � ,
map-source: UNIX file system path to valid regular executable).

The
�
�
��� �
 � �	� directive can occur multiple times. Keep in mind that

while you cannot declare a rewriting map in a per-directory context, it
is possible to use it in a per-directory context.

RewriteBase mod rewrite
Rewrite URL Base
Syntax: �
�
��� �
 � � ��
 url

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�
���� �
 � � �	
 � � �	� �� � �)���
Default:

� ����

Since: Apache 1.2
This directive explicitly sets the base URL for per-directory rewriting.
It is useful because

�
�
� � �
 � � �
 can be used in per-directory config-On redirects help
Apache to know your
URL by using
� ���! � �� � �� in
“ � ���������� ��� ” files.

uration files where it will act locally. That is, the local directory prefix
is stripped at this stage of processing and your rewriting rules act only
on the remainder. The URL is added automatically at the end. Thus,
when a substitution occurs for a new URL, � ��� �
�
���� �
 reinjects the
URL into the server processing. To carry out this task, it needs to know
the corresponding URL prefix or URL base. By default, the URL prefix
is the corresponding file path itself. At most web sites, however, URLs
are not directly related to physical file name paths, so this assumption
will usually be wrong! In such a case, you must use the �
�
���� �
 � � �	

directive to specify the correct URL prefix.

RewriteCond mod rewrite
Rewrite Condition
Syntax:

�
�
��� �
 � ���	� test-string pattern � � flag � ����� � �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�
���� �
 � ��� �
� � ��

 � � � 	�
 � � � � ���	��� � � �	��� �

Default: � ����

Since: Apache 1.2
This directive defines a rewriting rule condition. A �
�
��� �
 � � �
 di-
rective can be preceded with one or more �

��� �
 � ��� � directives. The

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 101

�
�
���� �
 � � �
 is then used only if its pattern matches the current state Use one or more
� ���! � �� � % � � directives
in conjunction with a
� ���! � �� � � � if you
need complex
conditional URL
manipulations.

of the URL and the preceding conditions apply. The test-string can
contain the following (to be expanded) constructs in addition to plain
text: rule pattern back-references (

�
N, N = 1,2,...), condition pattern

back-references (
�
N, N = 1,2,...), or server variables (

� �
NAME). The

pattern is the condition pattern — that is, a regular expression that is
applied to the instance of the test-string. In other words, test-string is
evaluated and then compared with pattern. Special patterns and ad-
ditional flags also exist. For more details, see the ����� �
�
���� �
 online
documentation.

RewriteRule mod rewrite
Rewrite Rule
Syntax:

�

��� �
 � � �
 url-pattern url-new � � flag � ������� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
�
��� �
 � � �
 � �)�	� �� � � � � � � � �)� � � � � � � B �

Default:
� � ��

Since: Apache 1.2
This directive is the real rewriting workhorse. It can occur more than
once. Each directive then defines a single rewriting rule. The definition � ���! � �� � � � directives

configure an ordered
list of URL rewriting
rules.

order of these rules is important, because it is used when applying the
rules at runtime. The url-pattern is a regular expression that is applied
to the current URL, where “current” means at the time when this rule
is applied. The current URL may not be the original requested URL,
because any number of previous rules could have already matched and
altered it.

The url-new argument is the string that is substituted for the origi-
nal URL matched by the url-pattern. Beside plain text, you can use
back-references (

�
N) to the url-pattern, back- references (

�
N) to the last

matched
�
�
���� �
 � ��� � pattern, server variables such as

�
�
� � �
 � � � �
test strings (

� �
NAME), and mapping function calls (

� �
map-name � look-

up-key � default-value) for this argument.

In addition, you can set special flags for url-new by appending one or
more flag arguments. The flag argument is actually a comma-separated
list of the following flags: �
�� � �
 ��� (or �) to force an HTTP redirect;
�	�)������ �
 � (or

�
) to forbid access; � ����
 (or �) to eliminate the URL;

�� � � � (or
�

) to pass the URL to � ��� �� � � � ; � � � � (or
B
) to stop process-

ing; ��
���� (or
�

) to start the next round of processing; � � � � � (or
�

) to
chain the current rule with the following one; � ����
 (or

) to force a

particular MIME type; � � � � ���
 � (or
��	

) to ensure that the rule applies
only if no internal sub-request is performed; � � ��� �	
 (or

� �
) to force

the URL matching to be case-insensitive; � ���	����
 � � (or
� 	 �

) to append
a query string part in url-new to the existing one instead of replac-
ing it; � � � ������	� � ��� (or

�
) to pass the rewritten URL through to other

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

102 Chapter 4: Configuring Apache

Apache modules; � � � � (or) to skip the next rule; and
�� � (or
�

) to set
an environment variable. For more details, see the ����� �
�
��� �
 online
documentation.

mod userdir
URL Selection by User Names

UserDir mod userdir
Configure
Syntax:

� �	
)� 	 ��� pattern � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	
	� 	 ��� ��� ���
� � ��� � � � ��� �	��� � �

Default: � ����

Since: Apache 1.0
This directive configures URL-to-file system mappings for the home
directory of users. Apache uses this directive if it receives a request forThe

� �" "! � � ! directive
controls how Apache
finds the personal
home pages of your
users.

a document for a user (URLs starting with “ � � username”);
� �	
)� 	 ��� can

then find the documents inside the home directory of username. The
pattern argument is usually either the name of a directory path or a
directory pattern.
If pattern does not start with a slash (“ � ”), then ����� ���	
)� � ��� assumes
that it is the subdirectory inside the user’s home directory containing
the desired documents. If pattern starts with a slash, two other situa-
tions are possible. First, pattern contains a wildcard (an asterisk “ � ”),
then the asterisk is replaced by username and the result is treated as
the prefix for the user’s documents root. Second, userdir may be ap-
pended to the pattern and the result treated as the prefix for the user’s
documents root.
Several special variants of pattern exist as well. If pattern is “disabled
username1 username2 ...,” then no URL translations of the specified user
names are made. If pattern is just “ � ����� � �
�� ,” all URL translations are
turned off except those explicitly named with the “
�� � � �
�� ” keyword.
If pattern is “enabled username1 username2 ...,” then URL translations
for the specified user names are allowed.

mod imap
URL Selection by Image Map Coordinates

ImapBase mod imap
Default Base URL for Image Maps
Syntax: � ���	� � � �	
 base

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � ����� � � �	
 �	� ���������

����	� ��� � ����� ����� �
Default: � ���	� � � �	
 �	�����������	�	
)� �
	��� ���
��
Since: Apache 1.1

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 103

This directive sets the default URL base used in image map files. Its
value is overridden by a

� � �	
 directive within the image map file. The The &�% � � &��'�
directives are for
processing old
server-side image
maps only. Nowadays
you usually want to
stick with client-side
image maps instead.

base argument can be either ����� (the base is specified in the image map
file), �
��
)�
)� (the base is forced by the client with the HTTP �
��
	�
)�
header field), or a fully qualified URL.

ImapDefault mod imap
Default Action for Image Maps
Syntax:

� � �	� 	
�� � � � � action
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ���	� 	
��	� � � �
)���	�)�

Default:
� � �	� 	
�� � � � � � � ����� �
��	�

Since: Apache 1.1

This directive sets the default action used in the image map files. Its
value may be overridden by a default directive within the image map
file. If no such default directive is present, the default action is � � ����� �
�
�� � , which means that the client receives a 204 (“No Content”) HTTP
response. In this case, the client should continue to display the original
page. Alternatively, one can set the following actions: “
	��� �)� ” to dis-
play a server error page; “�
�� � ” to display a menu page (as controlled
by

� ����� �
�� �) with hyperlinks to possible actions; “ �
��
	�
)� ” to redi-
rect back to the origin URL; or a fully qualified URL to force an HTTP
redirection to a particular URL.

ImapMenu mod imap
Type of Generated Menu for Image Maps
Syntax:

� � �	� �
�� � type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ���	� �
�� ��� � ��

Default:
� � �	� �
�� � �	�)��� ��� �
��

Since: Apache 1.1

This directive determines the action taken if an image map file is called
without valid coordinates. With a type of “ � � ��
 ,” no menu is gener-
ated and the default action is performed; “ �	�)��� ��� �
�� ” displays a well-
formatted menu derived from the image map file; “ �	
 � � �	�)� ����� �
�� ”
displays a minimally formatted menu derived from the image map
file; and “ � � � �)���������
�� ” treats the image map file as HTML instead
of plaintext and ignores extra formatting.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

104 Chapter 4: Configuring Apache

mod speling
URL Spelling Correction

CheckSpelling mod speling
Spelling Module Operation Switch
Syntax:

� ��
 � ��	 ��
 � � � � � ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ��
 � ��	 ��
 � � � � � ���

Default:
� ��
 � ��	 ��
 � � � � � �����

Since: Apache 1.3
This directive toggles the operation of ����� ����
 � � � � . When its opera-
tion is turned on, incorrectly capitalized and misspelled URLs in re-
quests are fixed as if by magic. Keep in mind that the directory scanUse “ � �� ���� � �� ��� �����% � ” if you have lots of

users who keep
thinking URLs are
case-insensitive.

that is necessary for the spelling correction will affect the server’s per-
formance when many spelling corrections must be performed at the
same time.

4.3.3 Access Control

mod access
Host- and Network-Based Access Control

Allow mod access
Allow Access by Host Name or IP Address
Syntax:

� � � ��
 ���	��� source � ��� ��� source �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 ��� ��� ��� � ��� �	� �

Default:
� ����

Since: Apache 1.0

This directive specifies which hosts can access a given directory. The
argument source can be one of the following: “ � � � ” to allow access
from all hosts; a (partial) domain name to allow access from hosts
whose names match, or end in, the specified string; a full IP address
(such as “192.168.1.2”) to allow access from only this particular IP ad-
dress; a partial IP address (first one to three bytes of an IP address,
such as “192.168.1”) for subnet access restriction; a network/net mask
pair (such as “192.168.0.0/255.255.0.0”) for more fine-grained subnet
restriction; or a network/CIDR specification (such as “192.168.0.0/16”)
for more fine-grained subnet restriction.

In addition, source can be of the form “
�� � � variable”, which controls
access to a directory through the existence (or nonexistence) of an en-
vironment variable named variable. Notice that this directive always

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 105

compares whole components; hence “ � �	����
���� ” would not match “ �	��� �
� �)�*��
���� ”.

Deny mod access
Deny Access by Host Name or IP Address
Syntax:

	
 ��� ��� ��� source � ���	��� source �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	
���� ��� � � � � �

Default:
� � ��

Since: Apache 1.0

This directive specifies which hosts cannot access a given directory.
The argument source can be one of the following: “ �

� �
” to deny ac- Use the � ��� %�� , � � � ,

and � ! �� �! directives to
control access by host
or network.

cess from all hosts; a (partial) domain name to deny access from hosts
whose names match, or end in, the specified string; a full IP address
(such as “192.168.1.2”) to deny access from only this particular IP ad-
dress; a partial IP address (first one to three bytes of an IP address,
such as “192.168.1”) for subnet access restriction; a network/net mask
pair (such as “192.168.0.0/255.255.0.0”) for more fine-grained subnet
restriction; or a network/CIDR specification (such as “192.168.0.0/16”)
for more fine-grained subnet restriction.

In addition, source can be of the form “
 � � � variable”, which controls
access to a directory through the existence (or nonexistence) of an en-
vironment variable named variable. Notice that this directive always
compares whole components; hence “ � �	����
���� ” would not match “ �	��� �
� �)�*��
���� ”.

Order mod access
Order in Which Allow and Deny Directives Are Evaluated
Syntax:

� � �
)� type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	�
)� � � � ��
 � �
����

Default:
� � �
)� �
���� � � � � �

Since: Apache 1.0

This directive controls the order in which
� � � ��
 and

	
���� directives are
evaluated. The type argument can be one of the following: “ �
���� � � � �
� ��
 ”, which means that the

	
���� directives are evaluated before the
� � � ��
 directives (the initial state is to allow); “ � � � ��
 � �
 ��� ,” which
means that the

� � � ��
 directives are evaluated before the
	
�� � direc-

tives (the initial state is to deny); or “� �	� � � � � �	� � � ��
 ,” which means
that only those hosts that appear on the

� � � ��
 list but not on the
	
����

list are granted access (the initial state is irrelevant). In all cases, every
� � � ��
 and

	
�� � statement is evaluated. That is, no “short-circuiting”
takes place.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

106 Chapter 4: Configuring Apache

4.3.4 User Authentication

mod auth
User Authentication by User Name/Password

AuthAuthoritative mod auth
Allow Access Control to Be Passed to Lower-Level Modules
Syntax:

� �	��� � �	��� �)� � � ����� �
 ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� � �	��� �)��� � ����� �
 �����

Default:
� �	��� � �	��� �)� � � ����� �
 ���

Since: Apache 1.2

Setting this directive explicitly to “ ����� ” permits both authentication
and authorization to be passed to lower-level modules (as defined in
the

� ��� � � ���� ��������� and ������� �
 � � � files at buildtime) if no user ID or
rule matches the supplied user ID. If a user ID or rule is specified,
the usual password and access checks are applied and a failure gives
an “

� �	��� �)��� � ����� ��� �
 � ����
�� ” reply. The
� �	��� � �	��� �)� � � ����� �
 direc-

tive is typically used in conjunction with a database module, such as
� ��� � �	��� ��� or ����� � �	��� ����� . These modules supply the bulk of the
user credential checking, although a few administrator-related accesses
may fall through to a lower level with a well-protected

� �	��� � �	
)� � � �
 .

AuthGroupFile mod auth
Textual File of Authentication Groups
Syntax:

� �	��� � � � ��� � � �
 filename
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� � � � ��� � � �

�� �	� ��� � �����

Default: � ����

Since: Apache 1.0

This directive sets the name of a textual file containing the list of user
groups for user authentication. The argument filename consists of the
path to the group file. If not an absolute path name, it is treated as
being relative to the 	
)� �
	� � � ��� . Each line of the group file contains a
group name followed by a colon, followed by the member user names
separated by spaces (for example, “ �	� � � � �)� ��� � � ”).

AuthUserFile mod auth
Textual File of Authentication Users
Syntax:

� �	��� � �	
)� � � �
 filename
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� � �	
)� � � �

�� �)� � � � �
	�

Default: � ����

Since: Apache 1.0

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 107

This directive sets the name of a textual file containing the list of users
and passwords for user authentication. The argument filename con-
sists of the path to the user file. If not an absolute path name, it is
treated as being relative to 	
)� �
)� � � ��� . Each line of the user file con-
tains a user name followed by a colon, followed by the � � ���	� � � �

en-
crypted password.

mod auth anon
User Authentication by Anonymous Name/E-Mail Address

Anonymous mod auth anon
Magic User ID for Anonymous Login
Syntax:

� � ��������� ��� user � user �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ����� ��� ��� � � ������� � ��� ����� � � ���

Default:
� � ��

Since: Apache 1.1
This directive specifies one or more magic user IDs (user) that are al-
lowed access (through HTTP Basic Authentication) without password Use & % � � ���"� � � % � ’s

directives to provide a
facility similar to
Anonymous-FTP.

verification. The user IDs are separated by spaces. You can use quotes
or the escape character (a backslash) to insert a space in a user argu-
ment. Note that the comparison is case-insensitive. The magic user
name “ ��� ��������� ��� ” should always be one of the allowed user IDs.

Anonymous Authoritative mod auth anon
Fall Through to Other Authorization Methods
Syntax:

� � ��������� ��� � �	��� �)� � � ����� �
 � � � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ����� ��� ��� � �	��� �)��� �	����� �
 ���

Default:
� � ��������� ��� � �	��� �)� � � ����� �
 �)���

Since: Apache 1.2

When this directive is set to “ � � ”, no fall through to other authorization
methods occurs. If a user ID does not match any of the values specified
in the

� � ������� � ��� directive, access is denied.

Anonymous LogEmail mod auth anon
Log the E-Mail Address in the Error Log File
Syntax:

� � ��������� ��� B ��� � ��� � � ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ����� ��� ��� B ��� � ��� � � �)���

Default:
� � ��������� ��� B ��� � ��� � � ���

Since: Apache 1.1

When this directive is set to “ ��� ”, the default, the entered password
(which should contain a sensible e-mail address) is logged in the server
error log file.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

108 Chapter 4: Configuring Apache

Anonymous MustGiveEmail mod auth anon
Specify Whether Real E-Mail Address Must Be Given as Password
Syntax:

� � ����� ��� ��� � ����� � � �
 � ��� � � ��� � �)���
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ������� � � ������� � � �
 � ��� � � �����

Default:
� � ����� ��� ��� � ����� � � �
 � ��� � � ���

Since: Apache 1.1

This directive specifies whether the user must give a real e-mail ad-
dress (“user (domain”) as the password on anonymous logins. Blank
passwords are then prohibited.

Anonymous NoUserId mod auth anon
Specify Whether User IDs Can Be Empty
Syntax:

� � ����� ��� ��� � � � ��
)� � � � � � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ������� � � � � � �	
)� � � ���

Default:
� � ����� ��� ��� � � � ��
)� � � �)���

Since: Apache 1.1

When this directive is set to “ ��� ”, users can leave the user ID (and per-
haps the password field) empty. This option can prove very convenient
for users of GUI-based browsers, who can then simply hit the Return
key or click directly on an OK button.

Anonymous VerifyEmail mod auth anon
Specify Whether Password Is Checked For Valid E-Mail Address
Syntax:

� � ����� ��� ��� �
)����� � � ��� � � ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ������� � � �
)��� � � � ��� � � ���

Default:
� � ����� ��� ��� �
)����� � � ��� � � �����

Since: Apache 1.1

When this directive is set to “ � � ”, the password is checked for at least
one “ (” and one “ � ” character. It encourages users to enter valid e-mail
addresses.

mod auth dbm
User Authentication by User Name/Password (UNIX NDBM)

AuthDBMAuthoritative mod auth dbm
Specify Whether mod auth dbm Is the Authority
Syntax:

� �	��� 	 � � � �	��� �)��� �	����� ��
 ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� 	 � � � �	��� �)� � � ��� � �
 �����

Default:
� �	��� 	 � � � �	��� �)��� �	����� ��
 ���

Since: Apache 1.2

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 109

Setting this directive explicitly to “ ����� ” permits for both authentica-
tion and authorization to be passed to lower-level modules (as de-
fined in the

� ��� � � � �� ����� ��� and � ����� �
 � � � files) if no user ID or rule
matches the supplied user ID. If a user ID or rule is specified, the
usual password and access checks are applied and a failure gives an
“
� �	��� �	��� �	��� � ��� �
 ���� �
�� ” reply. Thus, if a user ID appears in the

database of more than one module, or if a valid
�
 �������
 directive ap-

plies to more than one module, then the first module will verify the cre-
dentials and no access will be passed on, regardless of the

� �	��� � �	��� �

�)��� � ����� �
 setting.

AuthDBMGroupFile mod auth dbm
DBM File with Groups for Authentication
Syntax:

� � ��� 	 � � � � � ��� � � �
 file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� 	 � � � � � ��� � � �
 �)
�� �)�
�

 � ���	� ����� � �����

Default:
� � ��

Since: Apache 1.0

This directive specifies the DBM file containing the list of user groups
for user authentication. The file argument consists of the absolute path Use &�% � � ����� ����& ’s or& % � � ���"� ��� ’s directive

variants instead of& % � � ���"� ’s directives if
you want to reduce
runtime performance
penalties.

to the group file, which is keyed on the user name. The value for a
user is a comma-separated list of the groups to which the user belongs.
No whitespace can appear within the value, nor any colons. In some
cases, it is easier to manage a single database that contains both the
password and group details for each user. This approach simplifies
any necessary support programs; they must then deal with writing to
and locking only a single DBM file. This task can be accomplished by
setting the group and password files to point to the same DBM, with
the key for the single DBM being the user name. The value then con-
sists of a password section containing the UNIX ��� ���	� � � �

password,
followed by a colon and the comma-separated list of groups. Other
data may optionally appear in the DBM file after another colon; the
authentication module ignores this information.

AuthDBMUserFile mod auth dbm
DBM File with Users for Authentication
Syntax:

� � ��� 	 � � � �	
)� � � �
 file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� 	 � � � �	
	� � � �
 ��
�� �)�

�
 � � � ���
 �*� � �	�

Default: � � ��

Since: Apache 1.0

This directive specifies the DBM file containing the list of users and
passwords for user authentication. The file argument consists of the
absolute path to the user file, which is keyed on the user name. The

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

110 Chapter 4: Configuring Apache

value for a user is the � � �)�	� � � �
encrypted password, optionally fol-

lowed by a colon and arbitrary data. The server ignores the colon and
the data following it.

mod auth db
User Authentication by User Name/Password (Berkeley-DB)

AuthDBAuthoritative mod auth db
Specify Whether mod auth db Is the Authority
Syntax:

� �	��� 	 � � �	��� �)��� � ��� � �
 ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� 	 � � � ��� �)��� � ��� � �
 �����

Default:
� �	��� 	 � � �	��� �)��� � ��� � �
 ���

Since: Apache 1.2

Setting this directive explicitly to “ ����� ” permits both authentication
and authorization to be passed to lower-level modules (as defined in
the

� ��� � � � �� ����� ��� and ������� �
 � � � files) if no user ID or rule matches
the supplied user ID. If a user ID or rule is specified, the usual pass-
word and access checks are applied and a failure gives an “

� �	��� �)��� �	� �
� � ��� �
 �������
�� ” reply. If a user ID appears in the database of more
than one module, or if a valid

�
 ������
 directive applies to more than
one module, then the first module will verify the credentials and no
access is allowed, regardless of the

� � ��� � �	��� �)��� �	����� �
 setting.

AuthDBGroupFile mod auth db
DB File with Groups for Authentication
Syntax:

� �	��� 	 � � � � ��� � � �
 file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� 	 � � �	� ��� � � �
 ��
�� �)��

 � ��� � ����� � � �	�

Default:
� ����

Since: Apache 1.0

This directive specifies the DB file containing the list of user groups for
user authentication. The file argument consists of the absolute path to
the group file, which is keyed on the user name. The value for a user
is a comma-separated list of the groups to which the user belongs. No
whitespace can appear within the value, nor any colons.

In some cases, it is easier to manage a single database that contains both
the password and group details for each user. This approach simplifies
any necessary support programs; they must then deal with writing to
and locking only a single DB file. This task can be accomplished by first
setting the group and password files to point to the same DB, with the
key for the single DB being the username. The value then consists of a
password section containing the UNIX � � ���	� � � �

password, followed

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 111

by a colon and the comma-separated list of groups. Other data may
optionally appear in the DB file after another colon; the authentication
module ignores this information.

AuthDBUserFile mod auth db
DB File with Users for Authentication
Syntax:

� � ��� 	 � � �	
)� � � �
 file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� 	 � � �	
)� � � �
 ��
�� �	�

 � � � � �
	��� ��� �

Default:
� � ��

Since: Apache 1.0

This directive specifies the DB file containing the list of users and pass-
words for user authentication. The file argument consists of the abso-
lute path to the user file, which is keyed on the user name. The value
for a user is the � � ���	�

� � �
encrypted password, optionally followed by

a colon and arbitrary data. The server ignores the colon and the data
following it.

mod digest
User Authentication by User Name/Realm/Password

AuthDigestFile mod digest
Textual File for Message Digest-based User Authentication
Syntax:

� � ��� 	 � �
 ��� � � �
 filename
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �	��� 	 � �
 ��� � � �

�� �)� � � � �
	�*� � � �
 ���

Default:
� � ��

Since: Apache 1.1

This directive specifies the textual file containing the list of users and
encoded passwords for MD5-based message digest authentication. The
filename argument consists of the absolute path to the user file. It uses
a special format that can be created using the �	�	� � �
 ��� utility.

4.3.5 Content Selection

mod dir
Content Selection by Using Directory Default Documents

DirectoryIndex mod dir
List of Directory Index Files
Syntax:

	 � �
 ��� �	� � � � ��
�� filename � filename �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	 ���
 � � �)� � � � �
�� � � �
 ��� �	��� �
�
 � �����
�� �	��� �

Default:
	 � �
 ��� �	� � � � ��
�� � � �
���� �	��� �

Since: Apache 1.0

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

112 Chapter 4: Configuring Apache

This directive sets the list of resources for which to search when the
client requests an index of a directory by specifying a slash (“ � ”) at the
end of the URL. The filename is the (

�
-encoded) URL of a document

on the server relative to the requested directory. It usually contains the
name of a file in the directory. If several URLs are given, the server
will return the first one that it finds. If none of the resources exists and
the

� � �
��
 � option is set, the server will generate its own listing of the
directory.

mod actions
Content Selection by Content Types and Request Methods

Action mod actions
Action to Trigger on MIME Type or Internal Handler
Syntax:

� ����� � � action-type cgi-script
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ��� � ��� � ��� �
� ����� � � ��� � �� � ���	��
 � � � ���

Default:
� ����

Since: Apache 1.1

This directive defines an action that will activate the CGI script cgi-
script when action-type is triggered by a HTTP request. The action-
type can consist of either an internal handler name or a MIME content
type. The URL and file path of the requested document are delivered to
cgi-script via the standard SSI/CGI

� �
�� � � � �
and

� �
��
�� � ��	 B �
 ��	

environment variables.

Script mod actions
Action to Trigger an HTTP Request Method
Syntax: 	 � ��� � � method cgi-script

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	 � � � �	� ���
 � � ��� � �� � � ��� � � ���
Default: � ����

Since: Apache 1.1

This directive defines an action that will activate the CGI script cgi-
script when a file is requested using the HTTP method of method (ei-
ther �

�
 ,
� � 	�
 ,

���
 , or
	��!B��
 �). The URL and file path of the requested

document are delivered to cgi-script via the standard SSI/CGI
���
�� � � �

� �
and

� �
��
 � � ��	 B �
 ��	 environment variables. Note that the 	 ����� �	�
directive defines only default actions. If a CGI script, or some other
resource that is capable of handling the requested method internally
is called, then that action will be taken. Also note that 	 � ��� �	� will
be called with a method of � �
 only if query arguments are present
(such as, “ � � ��� �	� � ��� � �	� ” for use with HTML � 	 � � 	�� � -style process-
ing). Otherwise, the request will proceed normally.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 113

mod negotiation
Content Selection by Best-Matching Client Capabilities

CacheNegotiatedDocs mod negotiation
Allow Caching of Content-Negotiated Documents
Syntax:

� � � ��
 �
 � ����� ���
�� 	 � � �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 �
�� ��� � ���
�� 	 � ���

Default: � � ��

Since: Apache 1.0

This directive allows proxy servers to cache content-negotiated docu-
ments. As a result, clients behind those proxies may be able to retrieve
versions of the documents that are not the best match for their abili-
ties. This directive applies only to requests that come from HTTP/1.0
browsers. HTTP/1.1 provides much better control over the caching of
negotiated documents, and this directive has no effect in responses to
HTTP/1.1 requests.

LanguagePriority mod negotiation
Precedence of Language Variants
Syntax:

B � � � � ���
 � ��� �	��� � � lang � lang �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B ��� � � ���
 � � � �)��� � � ��

 �

Default: � � ��

Since: Apache 1.0

This directive sets the precedence of language variants when the client
does not express a preference in handling an

� �	��� � � ��� � ��� � ��
�
�� re-
quest. The lang arguments appear in order of decreasing preference.
For instance, if “

B ��� � � ���
 � � � �)��� � �
 � �)� �
 ” is used, then a request
for “ �	� � � �	��� � ”, where “ �	� ��� � ��� � ���)� ” and “ �	� � � �	��� � � �
 ” both exist,
but the browser does not express a language preference, will return
“ �	� ��� � ��� � ���)� ”. Note that this directive has an effect only if a “best”
language cannot be determined by any other means. Correctly imple-
mented HTTP/1.1 requests will override this directive.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

114 Chapter 4: Configuring Apache

4.3.6 Environment Creation

mod env
Fixed Environment Variable Creation

PassEnv mod env
Pass Environment Variables to SSI/CGI Environment
Syntax:

� � � � � � � variable � variable �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ��� � � � � �
�� � � � � �
�� B�	 B � � � � ��� ���
��

Default: � ����

Since: Apache 1.1

This directive specifies one or more environment variables to pass to
SSI/CGI scripts from the server’s own process environment.

SetEnv mod env
Set an Environment Variable for SSI/CGI Environment
Syntax:

	
�� � � � variable value
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
�� � � � ���
�� � �� ����� ��� ��� ��� ����� � � � � � � ��� � � ��� �
Default: � ����

Since: Apache 1.1

This directive sets an environment variable (variable) to value, which
is then passed to SSI/CGI scripts.

UnsetEnv mod env
Unset an Environment Variable for SSI/CGI Environment
Syntax:

� ���	
�� � � � variable � variable �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ����
�� � � � B�	 B � � � � ��� ���
��

Default:
� ����

Since: Apache 1.1

This directive removes one or more environment variables from the
list of those passed to SSI/CGI scripts.

mod setenvif
Conditional Environment Variable Creation

BrowserMatch mod setenvif
Define Environment Variables Based on User-Agent
Syntax:

� � ��
���
)��� ��� � � pattern � � � var � � val � � ����� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � �
��	
)���	��� � � � � � ��� � � � �� � � � � � � ��� � � �

Default: � ����

Since: Apache 1.2

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 115

This directive defines environment variables based on the HTTP
� �	
)� � �

� �
 �	� header field. The “
� � ��
���
)��� ��� � � ” is equivalent to “ 	
�� � � � � �

� �	
	� � � �
 �	� ” and hence is a deprecated directive name.

BrowserMatchNoCase mod setenvif
Define Environment Variables Based on HTTP User-Agent (nocase)
Syntax:

� �	��
��	
)� � ��� � � � � � �	�	
 pattern � � � var � � val � � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ��
���
)��� ��� � � � � � � �	
 � � � ��� � � � �� � � � � � � � � � � �

Default: � � ��

Since: Apache 1.2

This directive defines environment variables based on the HTTP
� �	
)� � �

� �
 �	� header field. The “
� �	��
��	
)� � ��� � � � � � �	�	
 ” is equivalent to “ 	
�� �

� � � � � � � � � �	
 � �	
)� � � �
��	� ” and hence is a deprecated directive name.

SetEnvIf mod setenvif
Define Environment Variables Based on HTTP Attributes
Syntax: 	
�� � � � � � attribute pattern � � � var � � val � � �������

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
�� � � � � � �
 ����
 ��� � �� � � � � � � � � � � ��� ��� �
Default: � � ��

Since: Apache 1.3
This directive defines environment variables based on attributes of the
HTTP request. The attribute arguments can take on the values of var- Use � � � � � � # in

conjunction with
� � � ��%'& � % � to provide
conditionalized logging
— for instance to not
writing the log entries
for requests of inline
images.

ious HTTP request header fields (see RFC 2068 for more information)
or other aspects of the request. For example, the following values are
valid: “ �
������
 � � ��� ” for the host name (if available) of the client mak-
ing the request; “

�
������
 � ����� ” for the IP address of the client making
the request; “

�
������
 � �	
	� ” for the authenticated user name (if avail-
able); “

�
 ����
 ��� �
���� ��� ” for the name of the method being used (such
as

� �

or

� � 	�

); “

�
 ����
 � � � �	��� � ��� � ” for the name and version of the
protocol with which the request was made (such as “

�
�
 � � � � � ” or
“ ��
�

� � � � � ”) or “ �
 � ��
 ��� � �� ” for the portion of the URL following
the scheme and host portion.

Some of the more commonly used request header field names include
“ � � ��� ”, “

� �	
)� � � �
��	� ”, and “ �
��
	�
)� ”. If the attribute doesn’t match
any of the special keywords or any of the request’s header field names,
it is tested to see whether it matches the name of an environment vari-
able in the list of those associated with the request.

	
�� � � � � � directives
can therefore test it against the result of prior matches. Only those en-
vironment variables defined by earlier

	
�� � � � � � or
	
�� � � � � � � � � � �	

directives are available for testing in this manner; that is, these vari-
ables must have been defined at a broader scope (such as server-wide)
or previously in the current directive’s scope.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

116 Chapter 4: Configuring Apache

SetEnvIfNoCase mod setenvif
Define Environment Variables Based on HTTP Attributes (nocase)
Syntax: 	
�� � � � � � � � � � �	
 attribute pattern � � � var � � val �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
�� � � � � � � � � � ��
 �
 ����
 ��� � �� � � ����� � � �������
Default:

� ����

Since: Apache 1.3

This directive is semantically identical to the 	
�� � � � � � directive. It
differs only in that the regular expression matching is performed in a
case-insensitive manner.

mod unique id
Generation of Unique Identifiers by Request

This module provides no directives!

4.3.7 Server-Side Scripting

mod cgi
Common Gateway Interface (CGI) Implementation

ScriptLog mod cgi
Error Log File for CGI Scripts
Syntax:

	 � ��� � � B ��� filename
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	 � � � �	� B � � � ��� �	� � � ���+�	� � ���

Default:
� ����

Since: Apache 1.2

This directive sets the error log file for CGI scripts. Without this di-
rective, no error logging is done. With it, any output to ���	�
)��� of the� �'! � ��� � % � allows you

to debug your CGI
scripts by writing
debug information to
� � �� �!�! .

CGI scripts is logged into filename. If this argument is a relative path
name, it is taken as being relative to 	
)� �
	� � � ��� . The log file will be
opened as the user run as the CGI child processes — that is, the user
specified in the main

� �	
)� directive. Consequently, either the direc-
tory containing the filename must be writable by that user or the file
must be manually created and set to be writable by that user. Note that
script logging is meant to serve as a debugging feature when you are
writing CGI scripts; it should not be activated continuously on running
servers.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 117

ScriptLogBuffer mod cgi
Size of Logged Data from PUT and POST Requests
Syntax: 	 ����� �	� B ��� � � ���
)� bytes

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	 � ��� � � B ��� � � ���
)�
� � ���

Default:
	 ����� �	� B ��� � � ���
)� ��� � �

Since: Apache 1.2

This directive limits the size of the
���

and
� � 	�

request bodies that are
logged to the

	 � ��� � � B ��� file. It prevents the log file from growing too
quickly if large request bodies are received.

ScriptLogLength mod cgi
Maximum Size of CGI Error Log File
Syntax: 	 ����� �	� B ��� B
�� � ��� bytes

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	 � ��� � � B ��� B
�� � ��� � � � � � �

Default: 	 ����� �	� B ��� B
�� � ��� ��� � � ����� �
Since: Apache 1.2

This directive limits the size of the CGI script log file. Because this file
holds a great deal of information for each CGI error (all request head-
ers, all script output), it can grow quite large. To prevent problems
caused by unbounded growth, you can use this directive to set a maxi-
mum file size (in bytes) for the CGI log file. If the file exceeds this size,
no more information will be written to it.

mod include
Server-Side Includes (SSI) Implementation

XBitHack mod include
Treat Ordinary HTML Documents as SSI Documents
Syntax: � � � � � � � � mode

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � � � � � � � ��� � �

Default:
� � � � � � � � �����

Since: Apache 1.0

This directive controls the parsing of ordinary HTML documents if
the execution bit is set on them. It affects only files associated with Use “

 � � � ����� % � ” if
you want to turn some
plain HTML pages into
HTML pages with SSI
directives without
having to change your
URLs.

the MIME type �
 � ��� �	� � � . The mode argument can have the follow-
ing values: “ ����� ” for no special treatment of executable files; “ ��� ”
for treatment of any file that has the user-execute bit set as a server-
parsed HTML document (SSI); or “ ��� � � ” for the same as “ � � ”, plus
testing of the group-execute bit. If the latter bit is set, then the HTTP
“
B � ��� � � ��� � � ��
�� ” date of the returned file is set to be the last modified

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

118 Chapter 4: Configuring Apache

time of the file. If the group-execute bit is not set, then no “
B � ��� � �	��� � �

� ��
�� ” date is set. Setting this bit allows clients and proxies to cache the
result of the request.

4.3.8 Response Header Generation

mod mime
Fixed Content Type/Encoding Assignment

AddEncoding mod mime
Associate MIME Content Encoding with File Extension
Syntax:

� � � � � ����� � � � mime-enc file-ext � file-ext �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � ������� � � � � � ��� � � � ���

Default: � ����

Since: Apache 1.0

This directive maps a given file name extension to the specified MIME
encoding type one or more times. The mime-enc argument is the MIME
encoding used for documents with the file extension file-ext. This map-
ping is added to any already in force, and it overrides any existing
mappings for the same extension.

AddHandler mod mime
Associate Content Handler with File Extension
Syntax:

� � � � � � � �
)� handler file-ext � file-ext �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � ��� � �
)� � � � � � � � � �	� � � ���

Default: � ����

Since: Apache 1.1

This directive maps a given file name extension file-ext to the handler
handler one or more times. This mapping is added to any already in
force, and it overrides any existing mappings for the same extension.

AddLanguage mod mime
Associate MIME Content Language with File Extension
Syntax:

� � � B � � � � ���
 mime-lang file-ext � file-ext �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � B ��� � � ���
 ��
 � ��

Default:
� ����

Since: Apache 1.0

This directive maps a given file name extension file-ext to the specified
MIME content language mime-lang one or more times. The � � �
 � � ��� �

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 119

argument is the MIME language of documents with the specified ex-
tension. This mapping is added to any already in force, and it overrides
any existing mappings for the same extension.

AddType mod mime
Associate MIME Content Type with File Extension
Syntax:

� ���
 ����
 mime-type file-ext � file-ext �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � �
 �)��
 � ��� �
� ����� � ��� �

Default: � � ��

Since: Apache 1.0

This directive maps a given file name extension file-ext to the specified
MIME content type one or more times. The mime-type argument is
the MIME type to use for file names with the file-ext file extension.
This mapping is added to any already in force, and it overrides any
existing mappings for the same extension. This directive can be used
to add mappings not listed in the MIME types file (see the

 ����
 � � ��� � ���
directive below).

DefaultLanguage mod mime
Define Default MIME Content Language
Syntax:

	
)�	� � � � B ��� � � ���
 mime-lang
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	
��	� � � � B ��� � � ���

��

Default: � � ��

Since: Apache 1.1

This directive tells Apache that all files in the directive’s scope (for ex-
ample, all files covered by the current � 	 ���
 ���	�)� � � container) that
don’t have an explicit language extension (such as “ � ��
 ” or “ ��
 � ” as
configured by

� � � B ��� � � � �
) should be considered to be in the specified
mime-lang language. Consequently, entire directories can be marked
as containing content of a particular language, without having to re-
name each file. Unlike with the use of extensions to specify languages,	
�� � � � � B ��� � � � �
 can specify only a single language. If no

	
�� � � � � �
B ��� � � ���
 directive is in force, and a file does not have any language
extensions as configured by

� � � B ��� � � � �
 , then that file will be consid-
ered to have no language attribute.

ForceType mod mime
Force a Default MIME Content Type
Syntax:

� �	� �	

 �)��
 mime-type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �)� �	

 ����
������ � ��� ����� ������� ����
�� � � ���
 �+�

Default: � � ��

Since: Apache 1.1

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

120 Chapter 4: Configuring Apache

When placed into an � �	� � ���	
 � � file or a � 	 ���
 ��� �)� � � or � B � � ����� ��� �
section, this directive forces all matching files to be served as the MIME
content type given by mime-type. Note that it overrides any file name
extensions that might determine the media type.

RemoveHandler mod mime
Remove a Content Handler Association
Syntax: �
������
 � ��� � �
)� file-ext � file-ext �������

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
�� ���
 � � � � �
)� � �	� � � � � ���

Default:
� ����

Since: Apache 1.1

This directive removes any handler associations for files with the given
extensions. Consequently, � �	� � ���	
 � � files in subdirectories can undo
any associations inherited from parent directories or the server config-
uration files.

SetHandler mod mime
Add a Content Handler Association
Syntax: 	
�� � � � � �
)� handler-name

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	
�� � ��� � �
)� �	
	� �
)� � ��� ��� � �
Default: � ����

Since: Apache 1.1

When placed into an � �	� � ���	
 � � file or a � 	 ���
 ��� �)� � � or � B � � ����� ��� �
section, this directive forces all matching files to be parsed through the
handler given by handler-name.

TypesConfig mod mime
Configuration for Mapping File Extensions to MIME Content Types
Syntax:

 ����
 � � ��� � ��� filename
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:

 ���
 � � ���� � � �)
�� �)� � � ��� � �+� � �
�� � �)�
 �

Default:

 ����
 � � ��� � ��� ������ � � � �
�� � ���
 �

Since: Apache 1.0

This directive sets the location of the configuration file that maps file
extensions to MIME content types. Alternatively, you can use the

� � � �

 ����
 directive for the same purpose. The filename argument is rela-
tive to the 	
)� �
)� � � ��� . It contains lines in the same format as the ar-
guments to an

� � �
 ����
 command: “MIME-type extension extension ...”.
The extensions are lowercase, and blank lines and lines beginning with
a hash character (“ � ”) are ignored.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 121

mod mime magic
Automatic Content Type/Encoding Assignment

MimeMagicFile mod mime magic
File with MIME Type Magic Matchings
Syntax: ��� �
 � ��� ��� � � �
 file

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: ��� �
 �	������� � � �
������ � �+� � �
�� ���������
Default: � � ��

Since: Apache 1.3
This directive can be used to enable the ����� � � �
 � ������� module. Thus,
if ����� � � �
 could not find a MIME content type for a document, the &�% � & � &� &�� � � � is for

Apache what # ��� �����
is for UNIX.

����� � � �
 � ������� module can use file to guess the content type of the
requested document from its first bytes.

mod expires
Creation of HTTP Expires Header

ExpiresActive mod expires
Trigger Expires Header Generation
Syntax:

� �)����
 � � ����� �
 ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ������
 � � ��� � �
 ���

Default:
� �)����
 � � ����� �
 �����

Since: Apache 1.2

This directive enables or disables the generation of the
� �������
 � header.

If found in an � �	� � ���	
 � � file, for instance, it applies only to documents
generated from that directory. If the directive is set to “ ��� ”, the

� ������
 �
header will be added to served documents according to the criteria de-
fined by the

� ������
 � � �
 �)��
 and
� ������
 � 	
�� � � � � directives. Note that

this directive does not guarantee the generation of an
� ���� �
 � header.

If the criteria are not met, no header will be sent, just as if this directive
had not been specified.

ExpiresByType mod expires
Generate Expires Header for a Particular Document MIME Type
Syntax:

� �)����
 � � �
 ���
 MIME-type codeseconds
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ������
 � � �
 ����
 � �����
�� ��� � � � ��� � � � �

Default:
� � ��

Since: Apache 1.2
This directive defines the value of the

� �������
 � header generated for
documents of the specified MIME type. The second argument specifies Use

� ��� � !� � � � ���� to
control the individual
caching for your files.the number of seconds that will be added to a base time to construct the

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

122 Chapter 4: Configuring Apache

expiration date. This base time is either the time when the file was last
modified or the time when the client accessed the document. It is spec-
ified by the code field, where “ � ” means that the file’s last modification
time should be used as the base time, and “

�
” means the client’s access

time should be used. The difference in effect is subtle. If “ � ” is used,
all current copies of the document in all caches will expire at the same
time, which can be good for a weekly notice that’s always found at the
same URL, for example. If “

�
” is used, the date of expiration differs for

each client; this choice can be effective for image files that don’t change
very often, for example, and particularly for a set of related documents
that all refer to the same images.

ExpiresDefault mod expires
Default Value for Generation of Expires Header
Syntax:

� ������
 � 	
�� � � � � codeseconds
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �������
 � 	
��	� � � � � ��� � � �

Default:
� ����

Since: Apache 1.2

This directive sets the default for calculating the expiration time for
all documents in the affected realm. It can be overridden on a type-
by-type basis by the

� ������
 � � �
 ����
 directive. The syntax of the code-
seconds argument is the same as that for

� ���� �
 � � �
 ����
 .

mod headers
Creation of Arbitrary HTTP Headers

Header mod headers
Control HTTP Response Header Fields
Syntax:

�
 ���
	� operation header � value �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
 ���
)� �	
�� � � ��� �)� � � ��� � 	 ��
 �

Default: � ����

Since: Apache 1.2

This directive can replace, merge, or remove HTTP response headers
fields. It performs the operation designated by the first argument. ThisUse � ����� �! for

creating customized
HTTP response
header fields.

argument can have any of four values. The “ �	
�� ” value sets the re-
sponse header to value, replacing any previous header with this name.
The “ �	����
�� � ” value appends value to the response header of the same
name; when a new value is merged into an existing header, it is sep-
arated from the existing header with a comma — the HTTP standard
way of giving a header multiple values. The “ ��� � ” value adds value to
the response header in the existing set of headers, even if this header

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 123

already exists. The addition can result in two (or more) headers hav-
ing the same name (and lead to unforeseen consequences; in general,
“ �	����
��	� ” should be used instead). The “ � ���	
�� ” value removes the re-
sponse header, if it exists. If multiple headers of the same name exist,
all will be removed.

The operation argument is followed by a header name, which can in-
clude the final colon, though it is not required. Case is ignored. For
“ ��� � ”, “ �	����
 � � ”, and “ �	
�� ” operations, a value is given as the third
argument. If this value contains spaces, it should be surrounded by
double quotes. For “ � ���	
�� ”, no value should be given.

mod cern meta
Creation of Arbitrary HTTP Headers (CERN-style)

MetaFiles mod cern meta
Trigger CERN Meta-file Processing
Syntax: �
�� � � � �
 � ��� � �����

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�� � � � �
 � � �

Default: �
�� � � � �
 � �����
Since: Apache 1.3

This directive enables or disables meta-file processing on a per-directory
basis. Meta-files were a feature of the CERN httpd, and this function-
ality exists to provide backward compatibility.

MetaDir mod cern meta
Subdirectory Containing CERN Meta-files
Syntax: �
�� � 	 ��� subdir

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�� � 	 ��� � �
�� �
Default: �
�� � 	 ��� �
�
 �
Since: Apache 1.1

This directive specifies the name of the subdirectory subdir holding
CERN-style meta-files. The subdirectory is usually “hidden” within
the directory that contains the file being accessed. Set subdir to “ � ” to
let Apache look in the same directory holding the accessed file.

MetaSuffix mod cern meta
File Name Suffix of CERN Meta-files
Syntax: �
�� � 	 � ��� � � suffix

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
�� � 	 � ��� � � � �
��	�
Default: �
�� � 	 � ��� � � � �
�� �
Since: Apache 1.1

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

124 Chapter 4: Configuring Apache

This directive specifies the file name suffix for the file containing the
CERN meta-information. For example, the default values for the �
�� � �
	 ��� and �
��	� 	 � ��� � � directives will send a request to “DocumentRoot-
�	�����
�� ����� � �	�
���� ����� � ” to look in “DocumentRoot � � ���
�� � ��� �
�
 ��� � � �
��
���� �	� � � � �
�� � ” and will use its contents to generate additional MIME
response header information.

4.3.9 Internal Content Handlers

mod asis
Generation of Raw Responses

This module provides no directives!

mod autoindex
Generation of Directory Index Documents

AddAlt mod autoindex
Alternative Text for File Icon
Syntax:

� � � � � � text file � file �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � � � �
�� � � � � � �	��� ���

Default: � ����

Since: Apache 1.0

This directive sets (one or more times) the alternative text to display for
a file — instead of an icon, for

� ��� ��� � � ��
���� � � . The file argument can
contain a file extension, partial file name, wildcard expression, or full
file name. The text argument consists of a string enclosed in double
quotes. This alternative text is displayed if the client cannot show the
image or has image loading disabled.

AddAltByEncoding mod autoindex
Alternative Text for File Icon (by MIME Encoding)
Syntax:

� � � � � � � � � � ����� � � � text enc � enc �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � � � � � � ������� � � � � � � � � � � � ��� � �

Default:
� ����

Since: Apache 1.0

This directive sets (one or more times) the alternative text to display for
a file with the MIME encoding enc, instead of an icon, for

� ��� ��� � �	�
�� �
� � � . The mime-enc argument must be a valid MIME content encoding.
The text argument is enclosed in double quotes. This alternative text
is displayed if the client cannot show the image or has image loading
disabled.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 125

AddAltByType mod autoindex
Alternate Text for File Icon (by MIME Type)
Syntax:

� ��� � � � � �
 ����
 text mime-type � mime-type �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � � � � �
 �)��
 � ��
 � B�� �
�� ��� � ��� �

Default:
� � ��

Since: Apache 1.0

This directive sets (one or more times) the alternative text to display for
a file with the MIME type mime-type, instead of an icon, for

� ������� � � �
�
�� � � � . The mime-type argument must be a valid MIME content type.
The text argument is enclosed in double quotes. This alternative text
is displayed if the client cannot show the image or has image loading
disabled.

AddDescription mod autoindex
Description Text for File
Syntax:

� ��� 	
 � ����� �	������� text file � file �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � 	
 � � ��� � ��� ��� � � ��� � �
��
 � �	� � � � � � �	��� ���

Default: � � ��

Since: Apache 1.0

This directive sets (one or more times) the description text to display
for a file for

� ��� ��� � � ��
���� � � . The file argument can contain a file exten- Use � ��� � ���'! � ��� � % �
to annotate the
automatically
generated directory
listings.

sion, partial file name, wildcard expression, or full file name. The text
argument is enclosed in double quotes and can be a maximum of 23
characters long. Seven more characters may be added if the directory is
covered by an “ � � �
 � � �	��������� 	 ������
 � � 	 � �
 ”, and 19 characters may
be added if “ � � �
�� � �	��� ��� � 	 ������
 ��� B � ��� � ��� � � �
�� ” is in effect. The
absolute maximum width of this column is therefore 49 characters.

AddIcon mod autoindex
Image for File Icon
Syntax:

� ��� � ����� icon file � file �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � � ��� � � � � � �)�	����� � �	� � � � � � � � � �

Default:
� � ��

Since: Apache 1.0

This directive sets (one or more times) the icon to display next to a file
for

� ������� � � �
�� � � � . The icon argument either contains a %-escaped rel-
ative URL to the icon or has the format “

�
alttext,url

�
” where alttext is

the text tag given for an icon for non-graphical browsers. The file argu-
ment can be either “

� � 	 � � ���
 � ��� � � ” for directories, “
��� ��B � � �� � � � ��� ”

for blank lines (to format the list correctly), a file extension, a wildcard
expression, a partial file name, or a complete file name.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

126 Chapter 4: Configuring Apache

AddIconByEncoding mod autoindex
Image for File Icon (by MIME Encoding)
Syntax:

� � � � � ��� � � � ������� � � � icon enc � enc ����� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � ����� � � � ������� � � � � � � � � �)� � ��� � ��� � � � � � �

Default:
� ����

Since: Apache 1.0

This directive is similar to
� � � � ��� � , except that a MIME encoding is

used for matching purposes instead of a file. The enc argument is a
wildcard expression matching the required content encoding.

AddIconByType mod autoindex
Image for File Icon (by MIME Type)
Syntax:

� � � � � ��� � �
 ����
 icon type � type �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � ����� � �
 ����
 � � � � � �)�	����� � �	� � � � ���
� �

Default:
� ����

Since: Apache 1.0

This directive is similar to
� � � � ����� , except that a MIME content type

is used for matching purposes instead of a file. The type argument is a
wildcard expression matching the required content type.

DefaultIcon mod autoindex
Default Icon Image
Syntax:

	
��	� � � � � ��� � url
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	
�� � � � � � ����� � ������� � � � � � �
 ��� � � �

Default: � ����

Since: Apache 1.0

This directive sets the icon to display for files when no specific icon
is known, for

� ������� � � �
 ��� � � . The url argument consists a %-escaped
relative URL to the icon image.

FancyIndexing mod autoindex
Enable or Disable Fancy Directory Indexing (Deprecated)
Syntax:

� ������� � � �
�� � � � ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ��� ��� � � ��
���� � � ���

Default:
� ������� � � �
�� � � � �����

Since: Apache 1.0

This directive sets the
� ������� � � �
�� � � � option for a directory. It has been

deprecated, however, and the
� � �
 � � �	��������� directive should be used

instead.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 127

HeaderName mod autoindex
Document to Be Inserted at the Top of Index Listings
Syntax: �
����
)� � ���
 filename

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
 ���
	� � ���
 � ����������� � �
 ���
)�*� �	� � �

Default:
� � ��

Since: Apache 1.0

This directive sets the name of the document that will be inserted at
the top of an index listing. The filename argument contains the name
of the file to include and is treated as a URI path relative to the one
used to access the directory being indexed. It must resolve to a docu-
ment with a major content type of “ �
�� � ” (for example, “ �
�� �����	��� � ”
or “ �
�������� � � � � ”).

IndexIgnore mod autoindex
Files to Ignore in Index Listings
Syntax:

� �	�
�� � ��� �)�
 file � file �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � �
�� � ��� �)�
 � �	�	� � �	
 ��� � � � � � � �

Default:
� � ��

Since: Apache 1.0

This directive adds to the list of files that should be ignored when list-
ing a directory. Each file argument is a file extension, partial file name,
wildcard expression, or full file name. Multiple � � ��
�� � ��� �)�
 directives
add to the list of ignored files, rather than replacing them. By default,
the list contains “ � ” to ignore all UNIX “dot-files.”

IndexOptions mod autoindex
Enable or Disable Particular Indexing Options
Syntax:

� �	�
�� � � ��� ����� � � � � � option � � � � � � option �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � �
�� � �	��� � ��� � ������� � � �
���� � � � � ����� � �
 B � � � �

Default:
� � ��

Since: Apache 1.0

This directive specifies the behavior of the directory indexing. The op-
tion arguments can have any of the following values. “

� ������� � � �
�� �
� � � ” for turns on fancy indexing of directories; “ � ����� �
 � ���	� � � pixels � ”
to cause the server to include � � ������
 and � � 	
�� HTML attributes in
the

� � � tag for the file icon. “
� ������� � �
 B � � � � ” makes the icons part of

the anchor for the file name (for fancy indexing); “
� ��� � � ������� � � pixels � ”

causes the server to include HTML
� � ������

and � � 	
�� attributes in the
� � � tag for the file icon. “

� ���
 � ������� � � n— � � ” specifies the width of the
file name column in characters (if the keyword value is “ � ”, the col-
umn is automatically sized to the length of the longest file name in
the display). “ 	 � ��� ��
 �

B
 � � �
 � ” enables the extraction of the title from

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

128 Chapter 4: Configuring Apache

HTML documents for fancy indexing. “ 	 �������
 � � � � � �	� � 	 �)����� � � ” en-
sures that the column headings in a fancy indexed directory listing
are not turned into links for sorting. “ 	 �������
 � � 	
 � � ���+� ��� ��� ” sup-
presses the file description in fancy indexing listings. “ 	 ������
 � � ��
 � B �� �
 ��� � �
 ” assumes that the

�
 ���
)� � � �
 document also provides the
standard HTML preamble (

��
 � B ,
� � ��	

, and other tags). “
	 ������
 � � �

B � ����� ��� � � ��
�� ” suppresses the display of the last modification date
in fancy indexing listings. “

	 ������
 ��� 	 � �
 ” suppresses the file size in
fancy indexing listings.

IndexOrderDefault mod autoindex
Order of Documents in Index Listings
Syntax:

� � �
�� � ��� �)�
 type keyword
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ��
�� � ��� �)�
 � � �	
�� � � � � � � �

Default: � ����

Since: Apache 1.0

This directive is used in combination with the
� � ����� � �	�
���� � � index

option. By default, fancy indexed directory listings are displayed in as-
cending order by file name. The � � �
�� � �	�
)� 	
��	� � � � directive allows
you to change this initial display order. It takes two arguments. The
first argument, type, must be either “

� � ��
�� � � � � ” or “
	
 ���	
�� � � � � ”, in-

dicating the direction of the sort. The second argument, keyword, must
be one of the keywords “

� ���
 ”, “
	 ���
 ”, “

	 � �
 ”, or “
	
 ��� ��� �	� � ��� ” and

identifies the primary key. The secondary key is always the ascending
file name.

ReadmeName mod autoindex
Document Appended to Index Listings
Syntax:

�
 ��� �
 � ���
 filename
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
 ��� �
 � � �
 � � ��	 � � � � � �
Default: � ����

Since: Apache 1.0

This directive sets the name of the document that will be appended to
the end of the index listing. The filename argument (the name of the file
to include) is treated as a URI path relative to the one used to access the
directory being indexed. It must resolve to a document with a major
content type of “ �
 � � ” (for example, “ �
������ �	��� � ” or “ �
 � ����� � � � � ”).

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 129

mod status
Display Summary of Server Runtime Information

ExtendedStatus mod status
Enable Extended Server Status Information
Syntax:

� ���
�� �
�� 	 � ������� � � � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � �
��	�
�� 	 �	��� ��� ���

Default:
� ���
�� �
�� 	 � ������� �)���

Since: Apache 1.3

This directive can be used to show extended status information in the
server status pages displayed by ����� � � ��� ��� . It also controls whether
the server keeps track of extended status information for each request.
This setting applies to the entire server; that is, it cannot be enabled or
disabled on a virtual-host-by-virtual-host basis.

mod info
Display Summary of Server Configuration-Time Information

AddModuleInfo mod info
Add Extra Information to Description of a Module
Syntax:

� ��� � ����� �
 � � � � module-source string
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � ����� �
 � � �	� ����� � � � � � � 	�	 B �
 B 	 �

Default:
� � ��

Since: Apache 1.3

This directive allows the content of string to be shown as additional in-
formation for the module module-source in ����� � � �	� ’s generated web
pages.

4.3.10 Request Logging

mod log config
Generic Request Logging

CookieLog mod log config
Log File for HTTP Cookies
Syntax:

� ��� � ��
 B ��� file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � �
 B ��� � ��� �)� � � � � ��
 � � ���

Default: � � ��

Since: Apache 1.0

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

130 Chapter 4: Configuring Apache

This directive sets the file for logging of HTTP cookies. The file argu-
ment is relative to the 	
)� �
)� � � ��� . This directive is included only for
compatibility purposes and has been deprecated.

CustomLog mod log config
Customized Log File Facility
Syntax:

� ����� � � B ��� file format �
 � � � � � � variable �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� ��� � ��� B � � � ��� �	��� � �	
 � � � � � � � � � � � � � � � �

Default:
� ����

Since: Apache 1.2
This directive enables you to write a customized log file, where each
log file line is formatted according to the specification given in format.The � � � ��%'& � % �

directive allows you to
create arbitrary access
log files. In conjunction
with � � � � � � # you
even can conditionalize
them.

If the “
�� � � ..” construct is appended, the writing of a line can be con-
ditionalized through the existence or nonexistence of an environment
variable (usually created by ����� ��
��
�� � � � or ����� �
�
� � �
 based on
the particular HTTP request). The options for the format match those
available for the argument of the

B ��� � �)� ����� directive. If the format
argument includes any spaces (as it will in almost all cases), it should
be enclosed in double quotes. Instead of an actual format string, you
can also use a format nickname defined with the

B � � � �)��� ��� directive.

LogFormat mod log config
Define a Customized Log File Format
Syntax:

B ��� � �	������� format � nickname �
httpd.conf

<V
ir

tu
al

H
os

t>
<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
B ��� � �)������� �

Default: � ����

Since: Apache 1.0

This directive sets the format of the default log file set by the

 � ��� ���
)� �

B ��� directive or defines a customized format that is available underUse � % � � %�!"& � � to
pre-configure log
formats if you need
them in lots of�	� � !�� ��� � � % � ��

sections.

nickname to the
� �����	��� B ��� directive.

TransferLog mod log config
Default Transfer and Access Log File
Syntax:

 � ����� �
)� B � � file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:

 � � �����
)� B ��� � ��� �)��� � �	
 � � � � ���

Default: � ����

Since: Apache 1.0

This directive defines a log file in the format specified by the most re-
cent

B ��� � �)������� directive, or in the Common Log Format (CLF) if no other
default format has been specified. The file argument is either (1) a file
name relative to

	
)� �
)� � � ��� or (2) “ � ” followed by a shell command
to receive the log file information via ���	� � � .

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 131

mod log agent
Specialized User-Agent Logging (Deprecated)

AgentLog mod log agent
Log File for HTTP User-Agent Header Fields (Deprecated)
Syntax:

� �
��	� B � � file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� �
��	� B ��� � � � �)�����
��	��� � ���

Default: � � ��

Since: Apache 1.0

This directive specifies the file to which the server will log the HTTP
� �	
	� � � �
 �	� header field of incoming requests. It has been deprecated,
however, and you should use the

� ����� ��� B ��� directive with the format
string “

� � � �	
)� � � �
��	� � ” instead.

mod log referer
Specialized Referrer Logging (Deprecated)

RefererIgnore mod log referer
Exclude HTTP Referer Header Fields from Logging (Deprecated)
Syntax: �
)�
)�
)� � ��� �)�
 string � string ����� �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
��
)�
)� � ��� �)�

���� � ��� �	� �
Default: � � ��

Since: Apache 1.0

This directive adds to the list of strings that should be ignored in HTTP
�
���
)�
)� header fields. If any of the string arguments in the list is con-
tained in the �
��
	�
)� header field, then no referrer information will be
logged for the request.

RefererLog mod log referer
Log File for HTTP Referer Header Fields (Deprecated)
Syntax: �
)�
)�
)� B ��� file

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: �
��
)�
)� B ��� � ��� �	�	�
��
	�
)��� � ���
Default: � � ��

Since: Apache 1.0

This directive specifies the file to which the server will log the HTTP
�
���
)�
)� header field of incoming requests. It has been deprecated,
however, and you should use the

� ����� ��� B ��� directive with the format
string “

� � �
��
)�
)� � ” instead.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

132 Chapter 4: Configuring Apache

mod usertrack
Specialized User Click-Trail Logging

CookieExpires mod usertrack
Expiry Time of Tracking Cookies
Syntax:

� � � � �
 � ���� �
 � expiry-time
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � ��
 � �)����
 � � � �	� � � �

Default: � ����

Since: Apache 1.2

This directive sets an expiry time on the HTTP cookie generated by
� ��� ���	
	� ��� � � � . The expiry period can be given either as a number
of seconds or in a format such as “

�

�
 � � � �	� � � � � � �� � ”. Valid
denominations are “ �
 �)� � ”, “����� ����� ”, “

�
 � � ”, “ � � �� � ”, “� � � �	�
 � ”,
and “ ��
 ����� � � ”. If expiry-time appears in any format other than one
number indicating the number of seconds, enclose it in double quotes.
If this directive is not used, HTTP cookies persist only for the duration
of the current browser session.

CookieName mod usertrack
Name of Tracking Cookie
Syntax:

� � � � �
 � ���
 name
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � ��
 � � �
 � ��� � �)�

Default:
� � � � �
 � ���
 � � � � ��

Since: Apache 1.3.7

This directive specifies the HTTP cookie that ����� � �	
)� ���	� � � uses for
tracking purposes. By default, this cookie is named “

� � � � ��
 ”. You
must specify a valid cookie name. Using a name containing unusual
characters will yield unpredictable results. A valid name is one thatDo not use

“ � %�% � � � !������ ����� % � ”
in practice — the whole
mechanism is only
theoretically usable.

matches the regular expression “ � A-Za-z0-9 - � +”.

CookieTracking mod usertrack
Cookie Tracking Operation Switch
Syntax:

� � � � �

 � � � � � � � ��� � �)���
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � ��

 �	� � � � � �����

Default:
� � � � �

 � � � � � � � �����

Since: Apache 1.2

When ����� ����
)� ��� � � � is compiled into Apache and “
� � � � �

 � � � � � � �

� � ” is set, Apache will start sending a user-tracking HTTP cookie for
all new requests. This directive can be used to turn this behavior on or
off on a per-server or per-directory basis. By default, cookie tracking is
not activated.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 133

4.3.11 Experimental

mod mmap static
Caching of Frequently Served Pages via Memory Mapping

MMapFile mod mmap static
Memory-Map a Document for Faster Delivery
Syntax: ���	�	� � � �
 file � file �������

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: ��� �	� � � �
 �
�

 � � �	�
���� � ��� �

Default: � � ��

Since: Apache 1.3

This directive maps one or more files (given as whitespace-separated
arguments in file) into memory at server start-up to speed up the doc- ��� �'� � ��� is

experimental and has
restrictions, so use it
with care!

ument’s delivery. The files are automatically unmapped upon server
shutdown. When the files have changed on the file system, you must
send at least a 	 � ��� �
� or 	 � � � 	 � � signal to the server to remap them.
Use this experimental functionality with care, however. Keep in mind
that the document content is not re-mapped automatically by ����� �
�����	� ��� ������� — hence the “static” in the module’s name.

mod example
Apache API Demonstration (Developers Only)

Example mod example
Example Module Operation Switch
Syntax:

� �	����� �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ����� �

Default: � � ��

Since: Apache 1.2

This pure example directive, which is implemented by �����
�� � ��� �
 ,
is mainly intended for use by developers who want to understand the The &�% � ����'&�� � is for

developers only!Apache API. Do not use it on production servers. It simply raises a
flag when the example content handler executes for a request (usu-
ally activated via “

	
�� � ���	� �
)�
�� ����� �
 � � � � � �
)� ” in a � B � ����� � ��� �
or � � � �
 � container for a particular location or file type). If you browse
to a URL to which this example content handler applies, you will see a
display of the routines within the module and learn how and in what
order they were called to service the document request.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

134 Chapter 4: Configuring Apache

4.3.12 Extensional Functionality

mod proxy
Caching Proxy Implementation for HTTP and FTP

ProxyRequests mod proxy
Proxy Module Operation Switch
Syntax:

� � ��� � �
 ����
 ��� � ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � � �
 � ��
 ��� � ���

Default:
� � ��� � �
 ����
 ��� � �����

Since: Apache 1.1

This directive allows or prevents Apache from functioning as an HTTP
proxy server (in addition to its usual behavior as an HTTP origin server).Keep in mind that&�% � ��!�%���� is only

HTTP/1.0 compliant
and still not HTTP/1.1.

Setting this directive to “ ����� ” does not disable ����� �� ��� � , however.
For instance, proxy requests internally generated by

� � � � � � � ��� or
�
 �

���� �
 � � �
 directives continue to be processed.

AllowCONNECT mod proxy
Ports to Which the HTTP CONNECT Method Is Allowed to Connect
Syntax:

� � � ��
 � � ��� ���
 port � port ����� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 � � � � ���
 � � � ��� � � � � � � ��� �

Default: � ����

Since: Apache 1.3

This directive configures the ports to which the HTTP
� � � � ���

proxy
method is allowed to connect. By default, only the HTTPS (443) and
SNEWS (563) ports are allowed.

NoProxy mod proxy
Targets to Which the Proxy Will Connect Directly
Syntax:

� � � � � � � target � target �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � ��� � �"�	� ��� � ��� � � � � � ��� � � � � � � �

Default:
� ����

Since: Apache 1.3

This directive specifies a space-separated list of targets — that is, sub-
nets (“

� � � � � ��� � � � � � � � ”), IP addresses (“
� � � � � ��� � � � � ”), hosts (“

�� �

� � ��� �	� � ”), and domains (“ ���	� � � �	��� ”) — to which the proxy will con-
nect directly, without using a

� � ��� � �
������
 — specified forwarding
proxy. This directive is mainly useful for Apache proxy servers that
reside within intranets.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 135

ProxyRemote mod proxy
Forward Proxy Requests to Other Proxies
Syntax:

� �	��� � �
 �����
 url-pattern remote-proxy
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ��� � �
������
 � �	� ���������	�
�� ���
 � ��
	� �
���� � � � �

Default:
� � ��

Since: Apache 1.1

This directive defines remote proxy servers for use by the local proxy
server. The url-pattern can be the name of a URL scheme that the re- Configure top-level

proxy servers with
� !�%���� � '&�% �� .mote server supports, a partial URL for which the remote server should

be used, or “ � ” to indicate that the server should be contacted for all re-
quests. The remote-proxy is a partial URL for the remote proxy server.

ProxyBlock mod proxy
Block Proxy Connections to Targets
Syntax:

� �	��� � � � � � � target � target �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ��� � � � � � � ��� ��
	� �	
�� � � �	
���� �����

Default:
� � ��

Since: Apache 1.2

This directive specifies a list of URL substrings, host names, and do-
main names, separated by spaces. The proxy server will block HTTP,
HTTPS, and FTP document requests to those targets. In addition, ����� �

�� � � � will attempt to determine the IP addresses of those list items that
may be host names during start-up and use them for matching. The
special target “ � ” blocks all proxy connections.

ProxyDomain mod proxy
Default Intranet Domain Name
Syntax:

� �	��� � 	 � ��� � � domain-name
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ��� � 	 ����� � � � � � ������� � ����� ��� �

Default: � � ��

Since: Apache 1.3

This directive is useful only for Apache proxy servers that reside within
intranets. It specifies the default domain name (domain-name) to which
the Apache proxy server will belong. If a proxy request to a host with-
out a domain name is encountered, the directive will generate a redi-
rection response to the same host with the configured domain-name
appended.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

136 Chapter 4: Configuring Apache

ProxyReceiveBufferSize mod proxy
Explicit Network Buffer Size for Outgoing Proxy Connections
Syntax:

� � ��� � �
 �	
 � �
 � � ����
)� 	 � ��
 bytes
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � � �
 ��
 � �
 � � ����
	� 	 � ��
 � � ���

Default:
� ����

Since: Apache 1.3

This directive specifies an explicit network buffer size for outgoing
HTTP, HTTPS, and FTP connections, so as to increase throughput. The
buffer size must be greater than 512 or set to 0 to indicate that the op-
erating system’s default buffer size should be used.

ProxyVia mod proxy
Control the Use of the HTTP Via Header Field for the Proxy
Syntax:

� � ��� � � � ������� � ��� � ��� � � � � � � � �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � � � � � ��� � �

Default:
� � ��� � � � �������

Since: Apache 1.3

This directive controls the use of the HTTP
� ��� header field by the

proxy server, thereby managing the flow of proxy requests along a
chain of proxy servers. See RFC 2068 (HTTP/1.1) for an explanation
of � � � header fields. If set to “ ����� ” (the default), no special processing
is performed. If a request or reply then contains a � � � header field, it
passes through unchanged. If set to “ ��� ”, however, a � ��� header field
will be added to each request and response for the current proxy server.
If set to “ ��� � � ”, each generated � � � header field will have the Apache
server version shown as a � � � comment field. If set to “ � � � � � ”, every
proxy request will have all its � ��� header fields removed and no new
� � � header field will be generated.

ProxyPass mod proxy
Map Remote Servers into Local URL Space
Syntax:

� � ��� � � � � � local-path remote-url
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � � � � � ��� �)�	� ��� �	� ���������

����	� ��� �	� ���

Default: � ����

Since: Apache 1.1

This directive allows remote servers to be mapped into the URL space
of the local server. In this situation, the local server does not act as anUse

� !�%�� � � � ��� to
virtually map areas of
remote web servers
into your own web
space.

HTTP proxy in the conventional sense, but optically appears to mirror
the remote server. The local-path argument is the name of a local vir-
tual path, and the remote-url argument is a partial URL for the remote
server. Requests under local-path on the local server will be trans-
lated into requests under remote-url in the background. More flexi-

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 137

ble mapping can be achieved by using the �� ��� � flag of ����� �

��� �
 ’s
�
�
���� �
 � � �
 directive.

ProxyPassReverse mod proxy
Adjust HTTP Redirect Responses
Syntax:

� �	��� � � � � � �
��
)� �	
 local-path remote-url
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ��� � � � � � �
��
)� ��
 ��� � � �	� ���������

�
�� � ��� � �����

Default:
� � ��

Since: Apache 1.3
This ����� �� ��� � directive adjusts the URL in the

B � ������� � � header field
on HTTP redirect responses sent by remote hosts. This adjustment is � !�%���� � � ��� � � �! �" is

important for “remote
proxy” situations — for
instance in a load
balancing environment.

essential, for instance, when Apache is used as a “reverse proxy.” In
this case, it avoids by-passing the reverse proxy because HTTP redi-
rects on the back-end servers that stay behind the reverse proxy. The
local-path argument is the name of a local virtual path, and the remote-
url argument is a partial URL for the remote server — just as with
the

� � ��� � � � � � directive. Usually, the directive is used in conjunction
with

� � ��� � � � � � , but
� �	��� � � � � � �
��
)� �	
 can also be used in conjunc-

tion with the �� � � � flag of ����� �
�
��� �
 ’s
�
�
��� �
 � � �
 directive.

NoCache mod proxy
Targets for Which the Proxy Will Not Perform Caching
Syntax: � �

� � � ��
 target � target �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � �
� � � ��
 ���	����� �	��� � � � � � ��� � � � � � � �

Default: � � ��

Since: Apache 1.1

This directive specifies a space-seperated list of targets — that is, sub-
nets (“

� � � � � ��� � � � � � � � ”), IP addresses (“
� � � � � ��� � � � � ”), hosts (“

�
�� �

�	� � � �	��� ”), and domains (“ ��� � ��� �	� � ”) — for which the proxy will not
cache documents. This directive is mainly useful for Apache proxy
servers that reside within intranets.

CacheRoot mod proxy
Filesystem Root of the Proxy Document Cache
Syntax:

� � � ��
 � ����� directory
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 � � ��� � ��� ��� � � ��� � ���	� � � ��
� �	�	��� ��� � �

Default:
� � ��

Since: Apache 1.1

This directive configures directory to be the location where the proxy
stores cached documents. Using this directive implicitly enables cach-
ing. If no

� � � ��
 � � ��� is defined, proxy functionality will be available if� � � � � �
 � ��
 ��� � are set to “ ��� ”, but no caching will be available.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

138 Chapter 4: Configuring Apache

CacheSize mod proxy
Maximum Disk Space Used for the Proxy Document Cache
Syntax:

� � � ��
 	 � �
 size
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 	 � ��
 ��� � �

Default:
� ����

Since: Apache 1.1

This directive sets the maximum disk space used by the document
cache in kilobytes. Although usage may exceed this setting, the gar-
bage collection will subsequently delete files until the usage is at or
lower than this size. Depending on the expected proxy traffic volume
and

� � � ��
 � � � �	�
	� � � � , use a value that is at least 20% to 40% lower
than the available disk space.

CacheDirLength mod proxy
Subdirectory Name Length for the Proxy Document Cache
Syntax:

� � � ��
 	 ��� B
 � � ��� length
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 	 ��� B
�� � ��� �

Default:
� � � ��
 	 ��� B
 � � ��� �

Since: Apache 1.1

The directive sets the number of characters allowed in a subdirectory
name in the proxy cache directory. Cached data will be saved in sub-
directories of this length below

� � � �
 � � ��� .

CacheDirLevels mod proxy
Maximum Subdirectories Depth for the Proxy Document Cache
Syntax:

� � � ��
 	 ��� B
 �
 � � depth
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 	 ��� B
��
 � � �

Default:
� � � ��
 	 ��� B
 �
 � � �

Since: Apache 1.1

This directive sets the number of subdirectory levels in the proxy cache
directory. Cached data will be saved this many directory levels below
� � � ��
 � � ��� .

CacheDefaultExpire mod proxy
Default Expiration Time for Cached Documents
Syntax:

� � � ��
 	
��	� � � � � ����� �
 hours
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 	
�� � � � � � ���� �
 �

Default:
� � � ��
 	
��	� � � � � ��� ���
 �

Since: Apache 1.1

This directive sets the default time in hours for which the proxy server
caches a document. If the document is fetched via a protocol that does

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 139

not support expiration times (for instance, FTP), then the value in the
hours argument is used as the expiration time.

� � � ��
 � ��� � ������
 does
not override this setting.

CacheMaxExpire mod proxy
Maximum Expiration Time for Cached Documents
Syntax:

� � � ��
 � � � � ���� �
 hours
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 � ��� � �)����
 � �

Default:
� � � ��
 � � � � ���� �
 � �

Since: Apache 1.1

This directive sets the maximum time in hours for which the proxy
server caches a document. Cachable HTTP documents will be retained
for at most hours without checking the origin server. Thus they can
be at most hours out of date. This restriction is enforced even if the
document has its own expiration time.

CacheGcInterval mod proxy
Interval between Proxy Cache Garbage Collections
Syntax:

� � � ��
 � � � �	�
)� � � � hours
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 � � � �	�
)� � � � ���

Default:
� � � ��
 � � � �	�
)� � � � � �

Since: Apache 1.1

This directive instructs the proxy server to check the document cache
at the interval specified in the hours argument, and to delete files if
the space usage exceeds that set by

� � � ��
 	 � ��
 . Note that the hours ar-
gument can contain a float value. For example, you can use “

� � � ” to
check the cache every 90 minutes. Keep in mind that, by default, no
garbage collection is performed and the cache will grow indefinitely.
The larger the hours argument, the more extra space beyond the con-
figured

� � � ��
 	 � �
 that will be needed for the cache between garbage
collections.

CacheLastModifiedFactor mod proxy
Factor Used to Estimate Expires from Last Modified HTTP Field
Syntax:

� � � ��
 B � ����� ��� � � ��
�� � � � �	�)� factor
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 B � �����	��� � � �
�� � � � � �	� � � �

Default:
� � � ��
 B � ����� ��� � � ��
�� � � � �	�)� � � �

Since: Apache 1.1

This directive sets the factor that is used to estimate the
� ���� �
 � date

from a date of the
B � ��� � �	��� � � �
�� header field. If the origin HTTP

server did not supply an expiration date for the document, then ����� �

�� � � � estimates one using the following formula: expiry-period = time-
since-last-modification * factor. For example, if the document was last

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

140 Chapter 4: Configuring Apache

modified 10 hours ago, and factor is 0.1, then the expiry period will
be set to 10 * 0.1 = 1 hour. If the expiry period exceeds that set by
� � � ��
 �	��� � �������
 , then the latter takes precedence.

CacheForceCompletion mod proxy
Completion Watermark for Canceled HTTP Transfers
Syntax:

� � � ��
 � �)� �	
 � ����� �
���� ��� percentage
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � � ��
 � �)� �	
 � ��� � �
�� ����� � �

Default:
� � � ��
 � �)� �	
 � ����� �
���� ��� � �

Since: Apache 1.3

If an HTTP transfer that is being cached is canceled, ����� �� ��� � will
complete the transfer to the cache if more than the percentage of the
data has already been transferred. This percentage must be a number
between 1 and 100 (0 is the default). A value of 100 will cause a docu-
ment to be cached only if the transfer was allowed to complete. Use of
a number between 60 and 90 is recommended.

mod perl
Perl Integration and Interface

� Perl � mod perl
Begin Perl Code Section
Syntax: � �
)� � �

httpd.conf
<V

ir
tu

al
H

os
t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � �
)� � �
Default: � ����

Since: Apache 1.2

This directive opens a section containing a Perl program that will ex-
ecute at start-up time inside a special environment. Consequently,
� ��� ��
)� � compiles the contents of these sections by evaluating them� � "! �
 sections

allow you to really
“program” the Apache
configuration in Perl
syntax.

inside the Apache::ReadConfig package. After compilation is finished,
� ��� ��
)� � searches the symbol table of this package for global variables
with the same names as Apache configuration directives. The values of
those variables are then fed into Apache’s normal configuration mech-
anism as if they had been typed directly into the configuration file.

The directive is provided to help program the Apache configuration in
Perl. For instance, you can replace redundant sections with a Perl loop.
For more details about this nifty facility, refer to the chapter “Config-
uring Apache with Perl” in the book Writing Apache Modules with Perl
and C.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 141

� /Perl � mod perl
End Perl Code Section
Syntax: � � �
)� � �

httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: � � �
)� � �
Default:

� � ��

Since: Apache 1.2

Close a section previously opened by � �
)� � � .

=pod mod perl
Begin Plain Old Document (POD) Format Section
Syntax:

� � ���
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � ���

Default: � � ��

Since: Apache 1.2

This “convenience” directive opens a section ending with
� � �	� that

Apache previously skipped. The intention is to allow Perl program-
mers to document Apache configuration files in the same way they Use ��% � and ����� to

embed documentation
in POD format.document Perl code. That is, the

� � ��� and
� � �	� directives resemble the

Perl language commands with the same names.

=cut mod perl
End Plain Old Document (POD) Format Section
Syntax:

� � �	�
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � �	�

Default: � � ��

Since: Apache 1.2

Close a section previously opened by
� � ��� .

END mod perl
Stop Configuration File Parsing
Syntax:

� � 	
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
� � 	

Default:
� � ��

Since: Apache 1.2

Another “convenience” directive,
� � 	

is provided to make the lives
of Perl programmers who are using Apache configuration directives
easier. It simply stops the processing of the configuration file in the
same way that the corresponding Perl language construct marks the
end of a Perl script.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

142 Chapter 4: Configuring Apache

PerlFreshRestart mod perl
Reload of Modules and Scripts on Restarts
Syntax:

�
)� � � �
 � � �
 ��� �)��� � � � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � �
 � � �
 ���	�)� � ���

Default:
�
)� � � �
 � � �
 ��� �)��� �)���

Since: Apache 1.2

This directive forces ����� ��
)� � to completely reload Perl modules (��
)� � � ����� �
) and scripts (�
�
)� � �
 �������
) at every restart. As a result,

changes to the start-up script and other Perl modules can take effect
on restarts without the need to bring the server completely down. By
default, the modules and scripts are cached even over server restarts.
This default is mainly intended for developers.

PerlWarn mod perl
Enable Perl Warning Mode
Syntax:

�
)� � � �)��� ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � �)��� ���

Default:
�
)� � � �)��� �����

Since: Apache 1.2

This directive enables Perl’s warning mode on start-up for all scripts
that are executed under the control of � ��� ��
)� � , but especially Apache::-
Registry scripts. When this mode is enabled, Perl outputs various diag-
nostics before executing a program. See the UNIX manual page perl-
diag(1), which is provided by the Perl package, for details.

PerlTaintCheck mod perl
Enable Perl Tainting Mode
Syntax:

�
)� �
 � � �	� � ��
 � � ��� � �)���
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� �
 � � � � � ��
 � � ���

Default:
�
)� �
 � � �	� � ��
 � � �����

Since: Apache 1.2

This directive enables Perl’s taint checking on start-up for all scripts that
are executed under the control of ����� ��
)� � , but especially Apache::-
Registry scripts. Taint checks cause Perl to die with a fatal error if
unchecked user-provided data (for instance, the values of CGI vari-
ables) are passed to a potentially dangerous function, such as
��
 � � � ,

 � � � � � , or ��� ���
��

���
. See the UNIX manual page perlsec(1), which is

provided by the Perl package, for details.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 143

PerlOpmask mod perl
Configure Perl Operator Mask
Syntax:

�
	� � � �	� � � � file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � �	��� � � ����� �����
)� � � �	�	��� � �

Default:
� � ��

Since: Apache 1.2

This directive establishes a Perl operator mask that disables possibly
dangerous Perl language operators. The mask is loaded from a specifi-
cation in file. Unfortunately, to find out more details, you must look in-
side the ����� ��
)� � and Perl sources, because the operator mask facility
is not very well documented. This facility is considered experimental
and should be used only by real Perl programmers.

PerlRequire mod perl
Read and Evaluate a Perl Script
Syntax:

�
	� � �
 � ����
 file � file �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � �
 ������
 ��
�� �)� �	� �)� �*� � ��� ���'� �

Default: � � ��

Since: Apache 1.2

At server start-up and restart, this directive reads in and evaluates a
Perl script (usually standard Perl files ending in �'� �), much like Perl’s
built-in �
 ������
 command. When placed inside � �	� � � ��
 � � files, the
modules specified in the module arguments are loaded at HTTP re-
quest time and run under the unprivileged UID.

PerlModule mod perl
Read and Import a Perl Module
Syntax:

�
	� � � ��� � �
 module � module �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � �	����� �
 � � � � ��
���� �
���������� �

Default: � � ��

Since: Apache 1.2

At server start-up and restart, this directive reads in and evaluates a
Perl module (usually Perl package files ending in �'�	�), much like Perl’s
built-in � �	
 command. Here module must be a “bare word” — that is, a
package name without any file path information. When placed inside
� �	�	� � �	
 ��� files, the modules specified in the module arguments are
loaded at HTTP request time and run under the unprivileged UID.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

144 Chapter 4: Configuring Apache

PerlSetVar mod perl
Pass a Variable to Perl Modules
Syntax:

�
)� � 	
�� � �)� variable value
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � 	
�� � �)� � ��� � ��� � � � ������ �)�	� � � ����� �

Default:
� ����

Since: Apache 1.2

This directive passes variable to Perl modules. The value can be re-
trieved by using “ � ��� ��� � � � � � � variable � � ” on the Apache request
object. The variable and value arguments that are actually used de-
pend on the modules, of course. Refer to the documentation of the
various Apache::XXX modules for details.

PerlSetEnv mod perl
Pass a Variable to the SSI/CGI Environment
Syntax:

�
)� � 	
�� � � � variable value
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � 	
�� � � � � � � � � � � � � �

Default:
� ����

Since: Apache 1.2

This directive is similar to Apache’s standard 	
�� � � � directive; that is,
it sets variable to value inside the SSI/CGI environment. It differs from
	
�� � � � in that

�
	� � 	
�� � � � is evaluated much earlier in the HTTP pro-
cessing, so that variable is available at an earlier point to Perl modules.

PerlPassEnv mod perl
Control the Variables Passed to the SSI/CGI Environment
Syntax:

�
)� � � � � � � � � variable � variable �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� �

Default: � ����

Since: Apache 1.2

This directive is similar to Apache’s standard
� � � � � � � directive; that is,

it controls which variables (set via
�
)� ��	
�� � � �) are actually passed to

the SSI/CGI environment. It differs from
� � � � � � � in that

�
)� � � � � � � � �
is evaluated much earlier in the HTTP processing, so that variable is
available at an earlier point to Perl modules.

PerlSetupEnv mod perl
Tell mod perl Whether to Set Up %ENV by Default
Syntax:

�
)� � 	
�� ��� � � � ��� � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � 	
�� ��� � � � �����

Default:
�
)� � 	
�� ��� � � � ���

Since: Apache 1.2

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 145

This directive instructs ����� ��
	� � as to whether it should set up Perl’s
� � � � hash by default. Normally, ����� �
)� � establishes

� � � � automat-
ically, but this directive can disable this behavior. This option allows
you to save a few CPU cycles or to ensure that the environment isn’t
changed for various reasons. The environments established by ����� �
��
)� � and ����� � ��� can be distinguished through the value contained

in the CGI environment variable
� �
 � � � � � ��
 � � ����� �

. It is set set to
“
� � � � � � � ” by ����� � ��� and to “

� � � � �
)� � � � � � ” by ����� ��
	� � .

PerlSendHeader mod perl
Scan Script’s Output for HTTP Headers
Syntax:

�
	� � 	
��	� �
 ����
)��� � � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � 	
�� � �
����
)� �����

Default:
�
	� � 	
��	� �
 ����
)��� �

Since: Apache 1.2

When this directive is set to “ � � ”, it forces ����� �
)� � to search for script
output that looks like an HTTP header and automatically calls the API
function ��
�� � � � ��� ��
����
)� ���

. Turning it off saves a few CPU cycles.

PerlInitHandler mod perl
Perl Handler for the Initialization Phase
Syntax:

�
	� � � �� � � ��� � �
)� handler � ����� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � �� � � � � � �
)� � � � � ��
���� 	 � �)���
 � �
��

Default: � � ��

Since: Apache 1.2

This directive is a special handler. When it is found outside of any
� B � � ����� ��� � , � 	 � �
 ��� �	� � � , or � � � �
 � � sections, it serves as an alias
for

�
)� � � � ��� �
 ��� �
 ���
 ��� � � � � �
)� . When found inside one of these
containers, it serves as an alias for

�
	� ���
 ���
)� � �	� �	
)� � ���	� �
	� . Its name
makes it easy to remember that this directive is the first handler in-
voked when serving HTTP requests. Do not mix it with the Apache
module initialization phase.

PerlChildInitHandler mod perl
Perl Handler for the API Phase of Child Initialization
Syntax:

�
	� � � �� � � � �� � � ��� � �
	� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � �� � � � �� � � � �	� �
)� � � � � �
���� 	 �!B ����� �

Default:
� � ��

Since: Apache 1.2

This ����� ��
)� � directive corresponds to Apache’s API phase of child
initialization. The handler argument contains the name of the sub-
routine to call to manage this phase. If handler is not a defined Perl

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

146 Chapter 4: Configuring Apache

subroutine, then ����� ��
)� � assumes it is a package name that defines a
subroutine named “ � � � � �
)� ”.

PerlPostReadRequestHandler mod perl
Perl Handler for the API Phase After HTTP Request Reading
Syntax:

�
)� � � � ��� �
���� �
 � �
 ��� � � �	� �
)� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � � ��� �
 ��� �
 ���
 � � � ��� � �
	� � � � � �
����
 � �
)�

Default:
� ����

Since: Apache 1.2

This ����� �
)� � directive corresponds to Apache’s API phase of reading
(but not parsing) the HTTP request. The handler argument contains
the name of the subroutine to call to manage this phase. If handler is
not a defined Perl subroutine, then ����� ��
)� � assumes it is a package
name that defines a subroutine named “ � ��� � �
)� ”.

PerlTransHandler mod perl
Perl Handler for the API Phase of URL Translation
Syntax:

�
)� �
 � ����� � ��� � �
	� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� �
 � ��� � � ��� � �
)� � � � � ��
���� � � � � � � �
	�

Default:
� ����

Since: Apache 1.2

This ����� ��
)� � directive corresponds to Apache’s API phase of translat-
ing the URL to a file name. The handler argument contains the name
of the subroutine to call to manage this phase. If handler is not a de-
fined Perl subroutine, then � ��� ��
)� � assumes it is a package name that
defines a subroutine named “ � � � � �
)� ”.

PerlHeaderParserHandler mod perl
Perl Handler for the API Phase of HTTP Request Parsing
Syntax:

�
)� ���
 ���
)� � �)� �	
	� � ��� � �
	� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� ���
 ����
)� � �)� �	
)� � � � � �
)� � � � � ��
���� � � � � �
	�

Default:
� ����

Since: Apache 1.2

This ����� ��
	� � directive corresponds to Apache’s API phase of parsing
the HTTP request headers into their ingredients. The handler argu-
ment contains the name of the subroutine to call to manage this phase.
If handler is not a defined Perl subroutine, then ����� �
)� � assumes it is
a package name that defines a subroutine named “ � � � � �
)� ”.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 147

PerlAccessHandler mod perl
Perl Handler for the API Phase of Host Access Checking
Syntax:

�
	� � � � ��
 � � � � � � �
�� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � � �	
 � � � ��� � �
	� � � � � ��
���� 	 � � B � � � �

Default:
� � ��

Since: Apache 1.2

This ����� ��
)� � directive corresponds to Apache’s API phase of host-
and network-based access checking. The handler argument contains
the name of the subroutine to call to manage this phase. If handler is
not a defined Perl subroutine, then ����� ��
	� � assumes it is a package
name that defines a subroutine named “ � ��� �

�
	� ”.

PerlAuthenHandler mod perl
Perl Handler for the API Phase of User Authentication
Syntax:

�
	� � � �	����
�� � � � � �
�� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � �	����
�� � ��� � �
	� � � � � ��
���� � �	��� � � ���

Default:
� � ��

Since: Apache 1.2

This ����� ��
	� � directive corresponds to Apache’s API phase of user
authentication. The handler argument contains the name of the sub-
routine to call to manage this phase. If handler is not a defined Perl
subroutine, then ����� ��
	� � assumes it is a package name that defines a
subroutine named “ � ��� �

�
)� ”.

PerlAuthzHandler mod perl
Perl Handler for the API Phase of User Identification
Syntax:

�
	� � � �	����� � ���	� �
)� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � �	����� � ��� � �
	� � � � � ��
 ��� � �	����� �
�� �
	�

Default: � � ��

Since: Apache 1.2

This ����� ��
	� � directive corresponds to Apache’s API phase of user
identification and access granting. The handler argument contains the
name of the subroutine to call to manage this phase. If handler is not
a defined Perl subroutine, then ����� ��
)� � assumes it is a package name
that defines a subroutine named “ � ���	� �
)� ”.

PerlTypeHandler mod perl
Perl Handler for the API Phase of MIME Type Determination
Syntax:

�
	� �
 ���
 � ��� � �
)� handler � ����� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� �
 ����
 � � � � �
)� � � � � ��
���� ��� �
 	 � �

Default: � � ��

Since: Apache 1.2

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

148 Chapter 4: Configuring Apache

This � ��� ��
)� � directive corresponds to Apache’s API phase of deter-
mining the MIME type of documents. The handler argument contains
the name of the subroutine to call to manage this phase. If handler is
not a defined Perl subroutine, then ����� ��
)� � assumes it is a package
name that defines a subroutine named “ � ��� �

�
)� ”.

PerlFixupHandler mod perl
Perl Handler for the API Phase Before the Content Handling
Syntax:

�
)� � � � � ��� � ��� � �
	� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � � � ��� � ��� � �
)� � � � � ��
���� �
�
 � ��� � � �� �

Default:
� ����

Since: Apache 1.2

This ����� ��
)� � directive corresponds to Apache’s API phase of fixing
up the request before the content generation and delivery starts. The
handler argument contains the name of the subroutine to call to man-
age this phase. If handler is not a defined Perl subroutine, then � ��� �
��
	� � assumes it is a package name that defines a subroutine named

“ � ���	� �
)� .”

PerlHandler mod perl
Perl Handler for the API Phase of Content Handling
Syntax:

�
)� ��� ��� � �
	� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� ��� ��� � �
)� � � � � ��
 ��� �
�� ������� �

Default:
� ����

Since: Apache 1.3

This ����� ��
)� � directive corresponds to Apache’s standard 	
�� � ���	� �
)�
directive. The handler argument contains the name of the subroutine to
call to manage the content generation and delivery phase (also known
as the response phase). If handler is not a defined Perl subroutine,
then ����� ��
)� � assumes it is a package name that defines a subroutine
named “ � ��� � �
)� ”.

PerlLogHandler mod perl
Perl Handler for the API Phase of Request Logging
Syntax:

�
)� � B ��� � ���	� �
)� handler � ����� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � B ��� � ��� � �
	� � � � � ��
���� B �����	� � �

Default:
� ����

Since: Apache 1.2

This ����� �
)� � directive corresponds to Apache’s API phase of logging
the request. The handler argument contains the name of the subroutine
to call to manage this phase. If handler is not a defined Perl subroutine,

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 149

then ����� �
)� � assumes it is a package name that defines a subroutine
named “ � � � � �
)� ”.

PerlCleanupHandler mod perl
Perl Handler for the API Phase of Request Cleanups
Syntax:

�
	� � � �
���� ��� � ��� � �
)� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � �
 ��� ��� � ��� � �
)� � � � � ��
���� 	 ����� � �
 � � ���

Default: � � ��

Since: Apache 1.2

This ����� ��
)� � directive corresponds to Apache’s API phase of clean-
ing up processing before the request handling terminates. The handler
argument contains the name of the subroutine to call to manage this
phase. If handler is not a defined Perl subroutine, then ����� ��
	� � as-
sumes it is a package name that defines a subroutine named “ � ��� �

�
)� ”.

PerlChildExitHandler mod perl
Perl Handler for the API Phase of Child Exits
Syntax:

�
	� � � �� � � � ��� � � ��� � �
	� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>
<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � � �� � � � ��� � � � �	� �
)� � � � � �
���� 	 �!B ��� � � �

Default:
� � ��

Since: Apache 1.2

This ����� ��
)� � directive corresponds to Apache’s API phase of child
termination. The Handler argument contains the name of the sub-
routine to call to manage this phase. If handler is not a defined Perl
subroutine, then ����� ��
	� � assumes it is a package name that defines a
subroutine named “ � ��� �

�
)� ”.

PerlDispatchHandler mod perl
Perl Handler for the Pseudo-API Phase of Dispatching Handlers
Syntax:

�
	� � 	 ��� � ��� � � � ��� � �
)� handler � ����� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � 	 ����� ��� � � � ���	� �
�� � � 	 ����� ��� � ����� � ��� � �
)�

Default:
� � ��

Since: Apache 1.2

This special Perl handler does not correspond to a real Apache API
phase. Instead, it configures handler to take over the process of load-
ing and executing handler code. That is, instead of processing the
�
)� � � � ���	� �
)� directives directly, ����� ��
)� � invokes handler and passes
it the Apache request and the handler that would ordinarily be invoked
to process this phase. The handler argument always contains the name
of a Perl subroutine rather than just a Perl module name.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

150 Chapter 4: Configuring Apache

PerlRestartHandler mod perl
Perl Handler for the Pseudo-API Phase of Server Restarts
Syntax:

�
)� � �
 ��� �)��� � ��� � �
)� handler � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
�
)� � �
 ���	�)� � � � � � �
	� � � �
 ���	�)� ����� � ��� � �
)�

Default:
� ����

Since: Apache 1.2

This special Perl handler does not correspond to a real Apache API
phase. Instead, it configures handler to operate when the Apache server
is restarted. You then have the chance to step in and perform any
cleanup required to tweak the Perl interpreter.

mod ssl
SSL/TLS Integration and Interface

SSLPassPhraseDialog mod ssl
Type of Pass Phrase Dialog for Encrypted Private Keys
Syntax: 	�	

B�� � � � � ��	� �	
 	 ��� � ��� type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B�� � � � � �� � �	
 	 � � � � �
��
 � � �� � �)��
�� � ������	� �	

Default: 	�	
B�� � � � � ��	� �	
 	 ��� � ��� � ��� � ��� �

Since: Apache 1.3

When Apache starts up, ����� ��� � must read the various certificate (�
	 	 B��
)����� � ��� ���
 � � �
) and private key (�

	�	 B��
	� ��� � �������
 �
 � � � �
)
files of the SSL-enabled virtual servers. For security reasons, the pri-
vate key files are usually encrypted. Consequently, ����� ��� � needs to
query the administrator for a pass phrase to decrypt those files. The
type argument specifies the approach taken for this query: “ � �� � ��� � ”
means that an interactive terminal dialog is used; “
 �
 � � filepath” means
that filepath executes and provides the pass phrase on � �	�	� �	� .

SSLMutex mod ssl
Semaphore for Internal Mutual Exclusion of Operations
Syntax: 	�	

B � � �
�� type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B � �	�
�� � � �
�� � ��� �)�	� � � � �	�
��

Default: 	�	
B � � �
�� � � ��

Since: Apache 1.3

This directive configures the SSL engine’s global semaphore, which is
used for mutual exclusion of operations that must be carried out in
a synchronized way between the pre-forked Apache server processes.
This directive can be used only in the global server context, because
one global mutex is needed. The type argument can be either “ � ����
 ”
for no mutex (risky but works for most situations) or “ � � �
�� filepath” for

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 151

using a lock file on the file system. On some platforms, a third variant,
“ �	
�� ”, is available that uses a SysV IPC Semaphore (under UNIX) or a
Windows Mutex (under Win32).

SSLRandomSeed mod ssl
Pseudo-Random Number Generator (PRNG) Seeding Source
Syntax: 	�	

B � ��� � ��� 	
�
�� context source � bytes �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B � � � �	��� 	
�
�� ��� �)� ����� � �� � ��� �

Default: � � ��

Since: Apache 1.3

This directive configures one or more sources for seeding the Pseudo-
Random Number Generator (PRNG) in OpenSSL at start-up (context is Make sure to configure

reasonable
��� ��� � � ��%'& � � �
directives in order to
allow OpenSSL to
have enough entropy
available for its
cryptography
algorithms to work
securely.

“ ��� �)� ����� ”) or just before a new SSL connection is established (context
is “ ����� �
 ��� ”). It can be used only in the global server context, because
PRNG is a global facility. Several source variants are available. The
“ � �� � � � � ” option uses an existing internal seeding source that con-
sumes minimal CPU cycles under runtime and hence can be used with-
out drawbacks.

In the “ � � �
 � filepath” option, the seeding data are read from filepath,
which is especially interesting with an existing ���
 ��� �� � � �	��� device.
The source argument can also take the form “
��
 � � filepath”, where
filepath is treated as a program that is executed and the seeding data
are read from its ���	� � �	� . Optionally, a bytes argument can be given
that forces ����� � � � to read only the specified amount of data instead of
all data until end of file is reached.

SSLSessionCache mod ssl
Type of the Global/Interprocess SSL Session Cache
Syntax: 	�	

B 	
 � � � ��� � � � ��
 type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B 	
 � �	� ��� � � � ��
 ����� � � ��� �)� � � � ��� � ��

Default: 	�	
B 	
 � � � ��� � � � ��
 � ����

Since: Apache 1.3

This directive configures the storage type of the global/interprocess
SSL session cache. This cache speeds up parallel request processing by
avoiding unnecessary session handshakes on subsequent or even par- Use

“ ������� ��� � % � � ������ �'��& ” in conjunction
with the MM shared
memory library to
achieve maximum
runtime performance
for the HTTPS
protocol.

allel requests. Three storage types are supported: “ � ����
 ” disables the
session cache (not recommended); “ ���	� � filepath” uses a UNIX NDBM
file on disk (under filepath) as the cache storage (the portable cache
variant); and “ � ��� � filepath � (bytes) � ” uses a high-performance hash ta-
ble inside a shared memory segment as the cache storage (the shared
memory segment is established via filepath and has a maximum size of
bytes).

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

152 Chapter 4: Configuring Apache

SSLSessionCacheTimeout mod ssl
Seconds Before a Session Expires in the SSL Session Cache
Syntax: 	�	

B 	
 � �	� ��� � � � ��

 � �
�� � � seconds
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B 	
 � �	����� � � � ��

 � �
 � ��� � � � �

Default:
	�	 B 	
 � �	� ��� � � � ��

 � �
�� � � � � �

Since: Apache 1.3

This directive sets the timeout in seconds for the information stored
in the global/interprocess SSL session cache (� 	�	 B 	
 � �	����� � � � ��
) and
the OpenSSL internal memory cache. It can be set as low as “15” for
testing purposes, but should be set to values such as “300” or higher
for real-world applications.

SSLEngine mod ssl
SSL Engine Operation Switch
Syntax:

	�	 B � � ��� ��
�� � � �����
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	�	 B�� � ��� �
����

Default:
	�	 B � � ��� ��
��)���

Since: Apache 1.3

This directive toggles the usage of the SSL/TLS protocol engine. It is
typically employed inside a � � ����� � � ��� � ��� � section to enable SSL/TLS
for a particular virtual host. By default, the SSL/TLS protocol engine
is disabled for both the main server and all configured virtual hosts.

SSLProtocol mod ssl
Configure Usable SSL Protocol Flavors
Syntax:

	�	 B�� �	��� � ��� � � � � � � protocol � ����� �
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B�� � ��� � ��� � � � � � 	�	 B � �

Default: 	�	
B�� �	��� � ��� � � � �

Since: Apache 1.3

This directive controls the SSL/TLS protocol flavors that � ��� � � � uses
when establishing its server environment. Clients can connect only
with one of the configured protocols. The available (case-insensitive)
protocol strings are “

	�	 B � � ”, “
	�	 B � �

”, “

 B 	 � � ”, and “

� � �
”. All these

strings can also be combined by using positive (“ � ”) and negative (“ � ”)
prefixes.

SSLCipherSuite mod ssl
SSL Cipher Suite for Negotiation in SSL Handshake Phase
Syntax: 	�	

B�� �+� ��
)� 	 �� �
 cipher-spec
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B�� � � ��
	� 	 �� �
 �!B B � � ��	 �

Default: 	�	
B�� �+� ��
)� 	 �� �
 �!B�B � � ������ � � � ��	 � � ��� � B � �

Since: Apache 1.3

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 153

This complex directive uses a colon-separated cipher-spec string con-
sisting of OpenSSL cipher specifications to configure the cipher suite
that the client negotiates in the SSL handshake phase. It can be used Use ��� ��� � ���� �! � � � ��

to control the ciphers
the client is allowed to
negotiate with your
web server on HTTPS
requests.

in either per-server or per-directory context. In per-server context, it
applies to the standard SSL handshake when a connection is estab-
lished. In per-directory context, it forces an SSL renegotiation with the
reconfigured cipher suite after the HTTP request is read but before the
HTTP response is sent. The complete syntax of cipher-spec appears
in the ����� � � � manual. To list the available ciphers, use the “ �	��
�� � � �
�	� ����
)� � � � ” command.

SSLCertificateFile mod ssl
Server PEM-Encoded X.509 Certificate File
Syntax:

	�	 B��
)� � � � �������
 � � �
 file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	�	 B��
	� ��� � �������
 � � �

�� �	� � � � ��� � ����� � � �

Default:
� � ��

Since: Apache 1.3

This directive points with file to the PEM-encoded certificate file for the
server and, optionally, to the corresponding RSA or DSA private key
file for it (contained in the same file). If the private key is encrypted,
the pass phrase dialog (� 	�	 B�� � � � � ��	� �	
 	 � � � � �) is forced at start-up
time. This directive can be used a maximum of two times (referencing
different file names) when both RSA- and DSA-based server certificates
are used in parallel.

SSLCertificateKeyFile mod ssl
Server PEM-Encoded Private Key File
Syntax:

	�	 B��
)� � � � �������
 �
 � � � �
 file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	�	 B��
	� ��� � �������
 �
 � � � �

�� �)�	� � � � � � ����� �
 �

Default: � � ��

Since: Apache 1.3

This directive points with file to the PEM-encoded RSA or DSA private
key file for the server. If the private key is not combined with the Certifi-
cate in 	�	 B��
	� ��� � �������
 � � �
 , use this directive to point to the file with
the stand-alone private key. If 	�	

B��
)� � � � �������
 � � �
 is used and the file
contains both the certificate and the private key, this directive is unnec-
essary. We strongly discourage this practice. For security reasons, we
recommend separating the certificate and the private key. If the private
key is encrypted, the pass phrase dialog (�

	 	 B�� � ��� � �� � �	
 	 � � � � �) is
forced at start-up. This directive can be used a maximum of two times
(referencing different file names) when both RSA- and DSA-based pri-
vate keys are used in parallel.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

154 Chapter 4: Configuring Apache

SSLCACertificatePath mod ssl
Directory of PEM-Encoded CA Certificates for Client Authentication
Syntax: 	�	

B�� ���
)� ����� �������
 � ����� directory
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B�� ���
)����� � ��� ���
 � �����
�� �	� � � � �

Default:
� ����

Since: Apache 1.3

This directive sets the directory where you keep the certificates of certi-
fication authorities (CAs) of those clients with which you deal. It is used
to verify the client certificate during client authentication. The files in
this directory must be PEM-encoded and are accessed through hash file
names. Typically, you have to place the certificate files there and then
create symbolic links with the help of the � � �
�� � �
 in the ��� � � � �����
directory that comes with ����� � � � to accomplish this task.

SSLCACertificateFile mod ssl
File of PEM-Encoded CA Certificates for Client Authentication
Syntax:

	�	 B�� ���
)� ����� �������
 � � �
 file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B�� ���
)����� � ��� ���
 � � �

�� �	� � � � ��� � � � ��� �

Default: � ����

Since: Apache 1.3

This directive sets the all-in-one file where you can assemble the certifi-
cates of the certification authorities of those clients with which you deal.
These certificates are used for client authentication. The file is simply
the concatenation of the various PEM-encoded certificate files, placed
in order of preference. This directive can be used as an alternative to
or in conjunction with

	�	 B�� ���
	� ��� � �������
 � ����� .

SSLCARevocationPath mod ssl
Directory of PEM-Encoded CA Certificate Revocation Lists (CRL)
Syntax: 	�	

B�� � �
�� � � ����� ��� � ����� directory
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B�� � �
��	� ����������� � �����
�� �)� ��� � �

Default: � ����

Since: Apache 1.3

This directive sets the directory where you keep the X.509 certificate re-
vocation lists (CRLs) of certification authorities, which are used to reject
revoked certificates. The files in this directory must be PEM-encoded
and are accessed through hash file names. Typically, you have to place
the CRL files there and then create symbolic links with the help of the
�	� �
�� � �
 in the � �

� � � � � � directory that comes with ����� � � � to accom-
plish this task.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 155

SSLCARevocationFile mod ssl
File of PEM-Encoded CA Certificate Revocation Lists (CRL)
Syntax: 	�	

B�� � �
 � � ����� � ��� � � �
 file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B�� � �
�� � � ����� ��� � � �

�� �)� � � � ��� � � � � � �

Default:
� � ��

Since: Apache 1.3

This directive sets the all-in-one file where you can assemble the certifi-
cate revocation lists of certification authorities, which are used to reject
revoked certificates. Such a file is simply the concatenation of the vari-
ous PEM-encoded CRL files, placed in order of preference. This direc-
tive can be used as an alternative to or in conjunction with 	�	 B�� � �
��	� �
����� � ��� � ����� .

SSLVerifyClient mod ssl
Type of Client Certificate Verification
Syntax:

	�	 B �
)����� � � � �
��	� type
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	�	 B �
	��� � � � � ��
��	� �
 ������

Default:
	�	 B �
)����� � � � �
��	� � ����

Since: Apache 1.3
This directive sets the certificate verification type for client authentica-
tion. Notice that it can be used in either per-server or per-directory Use ��� � � �! � # � � ��� � �

to provide client
authentication via
X.509 certificates.

context. In per-server context, it applies to the client authentication
process used in the standard SSL handshake when a connection is es-
tablished. In per-directory context, it forces an SSL renegotiation with
the reconfigured client verification level after the HTTP request is read
but before the HTTP response is sent.

The following type variants are possible: “ � � ��
 ” where no client cer-
tificate is required; “ �	�	��� � � � � ” where the client may present a valid
certificate; “ �
 ���� �
 ” where the client must present a valid certificate;
and “ �	� ��� ��� � � � � ��� ” where the client may present a valid certificate
but does not have to in order to be (successfully) verifiable.

SSLVerifyClientDepth mod ssl
Maximum Depth of CA Certificates in Client Certificate Verification
Syntax: 	�	

B �
)����� � � � �
��	� 	
	�	��� depth
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B �
	��� � � � � ��
��	� 	
	����� ���

Default: 	�	
B �
)����� � � � �
��	� 	
	�	��� �

Since: Apache 1.3

This directive dictates how deeply ����� � � � should go before deciding
that a client does not have a valid certificate. It can be used in either
per-server or per-directory context. In per-server context, it applies to
the client authentication process used in the standard SSL handshake

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

156 Chapter 4: Configuring Apache

when a connection is established. In per-directory context, it forces an
SSL renegotiation with the reconfigured client verification depth after
the HTTP request is read but before the HTTP response is sent.

The depth is the maximum number of intermediate certificate issuers
— that is, the maximum number of CA certificates that can be followed
while verifying the client certificate. A depth of 0 means that only self-
signed client certificates are accepted. The default depth of 1 means
that the client certificate can be self-signed or signed by a CA that is
directly known to the server (for example, the CA’s certificate under
	 	 B�� ���
)� ��� � �������
 � �����).

SSLLog mod ssl
Location in Which to Write the Dedicated SSL Engine Log File
Syntax: 	�	

B�B � � file
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B B ��� � ��� �)� � � �
�� � � ��
 � ���

Default: � ����

Since: Apache 1.3

This directive sets the file of the dedicated SSL protocol engine log file.
Error-type messages are also duplicated to the general Apache error
log file (�

� ���	�)� B ���). This directive should appear where it cannot be
used for symbolic link attacks on a real server (that is, somewhere that
only the “root” can write). If the file name does not begin with a slash
(“ � ”), then it is assumed to be relative to the server root. If file begins
with a bar (“ � ”), then the following string is assumed to be a file path
to an executable program to which a reliable pipe can be established.

SSLLogLevel mod ssl
Logging Level for the Dedicated SSL Engine Log File
Syntax:

	�	 B�B � � B
��
 � level
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	�	 B B ��� B
 �
 � ��� � �	

Default:
	�	 B�B � � B
��
 � � ���

Since: Apache 1.3

This directive sets the verbosity degree of the dedicated SSL protocol
engine log file (� 	�	 B�B � �). The level argument can have any of sev-Always use

“ ��� ��� % � � � � "!�!�%�! ”
on production servers
to avoid performance
penalties, but use
“ ��� ��� % � � � � ��!����" ”
for a convenient way to
debug the HTTPS
processing.

eral values (listed here in ascending order, where higher levels include
lower levels). The “ � ����
 ” option means that no dedicated SSL logging
is written, but messages of level “
)��� �	� ” are written to the general
Apache error log file. The “
)���	�)� ” option logs messages of the error
type only — that is, messages that show fatal situations (processing is
usually stopped). Those messages are also duplicated to the general
Apache error log file.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

4.3 Configuration Reference 157

The “
 �)��� ” option logs warning messages, which show non-fatal prob-
lems (processing is usually continued). The “ � � �	� ” option logs infor-
mational messages, which show major processing steps. The “ ��� � �	
 ”
option logs trace messages, messages that show minor processing steps.
Finally, the “ �
 � � � ” option logs debugging messages, which show de-
velopment and low-level I/O information.

SSLOptions mod ssl
Configure SSL Engine Runtime Options
Syntax: 	�	

B � �	��������� � � � � � option � �������
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B � � ��� ����� � � � �
 � � �	��� � �	��� � � � ��� ��� � � � � �)� �

Default: � � ��

Since: Apache 1.3

This directive controls various runtime options on a per-directory ba-
sis. Normally, if multiple 	�	 B � �	��� � ��� could apply to a directory, then
the most specific one is taken completely; that is,the options are not
merged. If all options on the

	�	 B � �	��������� directive are preceded by a
plus (“ � ”) or minus (“ � ”) symbol, however, then they are merged. Any
options preceded by a “ � ” are added to the options currently in force,
and any options preceded by a “ � ” are removed from the options cur-
rently in force.

The options argument may have several values. “
� ����� ��� � � � � �)� � ” ex-

ports additional SSI/CGI environment variables for backward-compa-
tibility reasons. “

� ��� �	� � �
)��� 	 ��� � ” exports the client and server certifi-
cates in PEM format to the SSI/CGI environment. “

� � �
 � � �	��� � � ��� ”
enables the translation of the Subject Distinguished Name of the client
X.509 certificate into an HTTP Basic Authorization user name. “ 	 ������� � �
�
 � ����
 ” forces forbidden access when 	�	 B �
 ������
 	�	 B or 	 	 B �
 � ����

successfully decides that access should be forbidden even when a “ 	 ��� �
����� � � ��� ” option is active.

SSLRequireSSL mod ssl
Deny Access When SSL Is Not Used for the HTTP Request
Syntax:

	�	 B �
 �������
 	�	 B
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample:
	�	 B �
 ������
 	�	 B

Default:
� � ��

Since: Apache 1.3

This directive forbids access unless HTTP over SSL (that is, HTTPS) is
enabled for the current connection. It is very handy inside the SSL-
enabled virtual host or directories as a defense against configuration
errors that expose data that should be protected. When this directive is
present, all requests that do not use SSL are denied.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

158 Chapter 4: Configuring Apache

SSLRequire mod ssl
Allow Access Only When a Boolean Expression Is True
Syntax: 	�	

B �
 ������
 expression
httpd.conf

<V
ir

tu
al

H
os

t>

<Location>

<Directory>

<Files>

.htaccess

Options

FileInfo

Indexes

AuthConfig

LimitsExample: 	�	
B �
 ���� �
 � � 	�	 B � � � � � � � � ��� � � � � � �

Default:
� ����

Since: Apache 1.3
This directive specifies a general access requirement that must be ful-
filled to allow access. It is a very powerful directive because the ex-Use ��� ��� � � � !� for

fine-grained HTTPS
access control.

pression is an arbitrarily complex Boolean expression containing any
number of access checks. See the ����� � � � user manual for more de-
tails.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Chapter 5

Running Apache

In this chapter:
Daemon Command-Line
Control Command-Line

/O, /Ot Minimize execution speed (default)
— Microsoft Visual C/C++ documentation,

“Environment and Tools,” p. 531

N ow that we have discussed in detail how Apache has been built and
configured, it is time to actually run it. In this short chapter, we present

the third reference part: the available command-line options of both the
Apache daemon program and the Apache control program.

5.1 Command-Line Reference

5.1.1 Apache Daemon Program
This section presents a complete reference to the command line of the Apache
daemon program. Because we built Apache with “ � � �	�)� �
�� � �	� � � �
 ” in
Chapter 3 on page 37, the Apache program is named ��� � � ��
 . By default,
it is usually called �	� �)� � for historical reasons. The command line has the
following general structure:

� ����������	 �
option ����� �

The following options are available on the Apache command line.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

160 Chapter 5: Running Apache

-R libexecdir DSO Runtime Path

This option is available only if Apache was built with the 	�� � � ��	 � � � �

rule enabled, which forces the Apache core code to be placed into a
Dynamic Shared Object (DSO) file. By default, this file is searched in
a hard-coded path under 	
)� �
)� � ����� . Use this option if you want to
override the default.

-d serverroot Server Root Directory

This option sets the initial value for the 	
)� �
)� � � ��� directory to server-
root. It can be overridden by the 	
	� �
)� � � ��� directive in the configu-
ration file. The default is � ��� � � � � ��� � ���	� � � ��
 .

-f configfile Server Configuration File

This option executes the commands in the file configfile on start-up. If
configfile does not begin with a slash character (“ � ”), then it is taken to
be a path relative to

	
)� �
)� � ����� . The default is ����� �� �	� ���	�*� ������ .

-C directive Extra Configuration Directive Prolog

This option processes the configuration directive before reading the con-
figuration files.

-c directive Extra Configuration Directive Epilog

This option processes the configuration directive after reading the con-
figuration files.

-D parameter Define a Configuration Parameter

This option sets a configuration parameter that can be used with � � � 	
 �
� � ��
 � sections in the configuration files to conditionally skip or pro-
cess commands.

-h Output Help Page

This option outputs a short summary of available command-line op-
tions.

-l Output List of Built-in Modules

This option outputs a list of modules compiled into the server.

-L Output List of Implemented Directives

This option outputs a list of directives together with expected argu-
ments and places where the directive is valid.

-S Show Virtual Host Settings

This option shows the settings as parsed from the configuration file
(currently, it shows the only virtual host settings).

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

5.1 Command-Line Reference 161

-t Test Configuration Contents

This option runs syntax tests for the configuration files only. The pro-
gram immediately exits after this syntax parsing, with either a return
code of 0 (syntax OK) or a return code not equal to 0 (syntax error).

-X Run in Single-Process Mode

This option runs in single-process mode, for internal debugging pur-
poses only; the daemon does not detach from the terminal or fork any
children. Do not use this mode to provide ordinary web service.

-v Output Version Information

This option prints the version of Apache and then exits.

-V Output Version and Build Information

This option prints the version and build parameters of Apache and
then exits.

5.1.2 Apache Control Program
For convenience, an optional front end named ��� � � ��
 ��� � (for “Apache Con-
trol”) exists that can be used for easy starting, restarting, and even stopping
of Apache. This script has the following general command-line structure:
� ����������	���$�� �

command ����� �

The following commands are available on the Apache control command line:

start Start Apache

This command starts the Apache daemon and gives an error if it is
already running.

stop Stop Apache

This command stops the Apache daemon.

restart Restart Apache

This command restarts the Apache daemon by sending it a
	 ����� �
�

.
If the daemon is not running, it is started. The command automati-
cally checks the configuration files via ����� � � � �
 � � before initiating the
restart to make sure Apache doesn’t die.

fullstatus Display Status

This command displays a full status report from � ��� ��� ��� ��� . For it to
work, you must have ����� � � ��� ��� enabled on your server and a text-
based browser such as � ��� � available on your system. The URL used
to access the status report is �	�	
)� �
	� � ��� ��� ��� .

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

162 Chapter 5: Running Apache

status Display Status

This command displays a brief status report. It is similar to the ��� � � �
� � ��� ��� command, except that it omits the list of requests currently be-
ing served.

graceful Graceful Restart Apache

This command gracefully restarts the Apache daemon by sending it a
	 ��� � 	 � � . If the daemon is not running, it is started. This procedure
differs from a normal restart in that currently open connections are
not aborted. A side effect is that old log files are not closed immedi-
ately. Consequently, if this command is used in a log rotation script, a
substantial delay may be necessary to ensure that the old log files are
closed before processing them. The command automatically checks the
configuration files via ����� � ��� �
 ��� before initiating the restart to make
sure Apache doesn’t die.

configtest Test Configuration

This command runs a configuration file syntax test. It parses the con-
figuration files and reports either “ 	 ���	�	���

� � ” or detailed information
about the particular syntax error.

help Display Help Page

This command displays a short help message.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Chapter 6

Apache Resources

In this chapter:

Online Resources
Print Resources
Related Standards

Apache, like UNIX, was not designed to stop
people from doing stupid things with it, because
that would also stop them from doing clever
things with it.

— Unknown (paraphrased)

T his chapter lists selected resources from the Apache world. The num-
ber of Apache-related projects on the Internet is very large, so only the

essential ones are included here. The goal is to present you with only the
most important and stable entry points, rather than a comprehensive list.
The Apache world changes daily, so a very concise list of entry points to
reach the latest news about Apache and further details on technical issues
will prove more useful than an all-in-one list.

6.1 Online Resources
The first and most interesting group of resources are those you can find di-
rectly on the Internet. They may provide the latest news, but are usually not
very concise. Nevertheless, they should be your primary entry point to the
Apache world.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

164 Chapter 6: Apache Resources

6.1.1 Apache Itself
Three major locations deal directly with Apache: the Apache Software Foun-
dation, the Apache HTTP server project, and the Apache Conference (Apache-
Con):

Apache Software Foundation (ASF)
� � ���������

�� �	� � � �
�� ��� � �

The home page of the Apache Software Foundation, a nonprofit orga-
nization representing the Apache Group. Whenever you are dealing
with an Apache-related project, license, sponsoring, or press issues, go
to this site. It is under direct control of the Apache Group’s board of
trustees (a subset of the Apache Group’s developer core team) and is
located in San Francisco, California.

Apache HTTP Server Project (Apache)
� � ���������

�� �	� � � �
�� ��� � � � ����� �

The home page of the Apache HTTP server project, also known as ”The
Apache.” Here you can find official information about the Apache web
server. Any new Apache release is announced on this site. Whenever a
security problem occurs, you can find the details (and fixes) there. The
site also provides information about the people behind Apache. It is
under direct control of the Apache Group core team and is located in
San Francisco, California.

Apache Annual Conference (ApacheCon)
� � ���������

�� �	� � � �
 ������� ��� � �

The web site of ApacheCon, the annual conference dedicated to Apache.
When you attend ApacheCon, refer to this resource to obtain the con-
ference agenda and other background information. It’s under control
of the Apache Group and the company managing the next conference.

6.1.2 Apache News
To keep informed about current events in the Apache market, visit at least
the following two web sites on a regular basis.

ApacheWeek
� � ���������

�� �	� � � �
�
�
)
 � � � � ���

The primary source for weekly Apache news. When you want to fol-
low Apache developments, visit these sites on a regular basis. You will
get concise overviews of the latest source changes and issues from the
new-httpd@apache.org mailing list. This web site is located in London,

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

6.1 Online Resources 165

United Kingdom, and provided by Mark J. Cox. Mark is a member of
the Apache Software Foundation and an Apache developer. Some impor-
tant topics covered in ApacheWeek issues have evolved into interest-
ing stand-alone feature articles. Watch for those on the ApacheWeek
site, too.

O’Reilly Apache DevCenter
�	� �)�������
�

�� �)�
 � � � ���
���� ���+�����	�	� � �
�

A resource location for Apache developers provided by the O’Reilly &
Associates Network. Here you can find additional documentation and
articles related to Apache.

ApacheToday
�	� �)����������� � � ��
�� ��� � ��� ���+���

A news site provided by the internet.com Corp. for the Apache com-
munity. Here one can find new feature articles about Apache on a reg-
ular basis.

Slashdot Apache Section
�	� �)������� � � � � � � ����� �	� � � � � �
 ���'� ��� �	
	��� � � � � � � � � �

One of the most popular news sites for hackers. It includes a section
dedicated to Apache, where you can find all types of weekly news and
discussions of hot topics. If you want to read user opinions, look there.
The site is moderated by Jim Jagielski, an Apache developer.

Netcraft Server Survey
�	� �)�������
�

�� ��
�� � �	�)���*� ������� � ��� ��
 ���

A commercial company that summarizes the web server market on
a monthly basis by analyzing and accumulating the HTTP Server re-
sponse headers of more than 4 million web sites. The results are im-
pressive, showing that Apache owns more than half of the web server
market (and is leaving Microsoft and Netscape servers behind). This
site is located the United Kingdom.

E-Soft, Inc. Server Survey
�	� �)�������
�

�� �	
 � �� � � � ���	� �	
 � � ��� � � � ��� �
 ���

Another commercial company that summarizes the web server market
on a monthly basis. It also provides statistics about the various Apache
modules and their community and evolution.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

166 Chapter 6: Apache Resources

6.1.3 Apache Support
If you need support for Apache, check the following resources.

USENET Newsgroup c.i.w.s.u
�
�
�� � � ������� � � �	� ��� ���
+� � �
�
�
�� �	
	� �
	� � � � �����

The primary Apache support forum on the Internet. If you are an
Apache user and have a question, ask it here first. If you do not have
access to USENET directly, you can reach the newsgroups through Deja
(see �	� �)����������
 � ��� � �����) or similar access services.

Apache Support Companies and Contractors
� � ���������

�� �	� � � �
�� ��� � � � ��	��� � ����� �)����� � � �

This is a list of other officially known companies and contractors pro-
viding commercial support for Apache.

Apache 1st
� � ���������

�� �	� � � �
 � � ��� ��� � �

Apache1st is a commercial service from Covalent Technologies for expert
Apache support.

6.1.4 Apache Documentation
Plenty of documentation, articles, papers, and other texts for Apache are
flying around on the Internet. Most of this information, however, derives
from the following locations.

Apache Documentation and F.A.Q. List
� � ���������

�� �	� � � �
�� ��� � ��� � � ���
� � ���������

�� �	� � � �
�� ��� � ��� � � ��� � �����	� � � � � � � � �

The primary online resource for Apache documentation. Here you can
always find the latest set of HTML pages describing the Apache web
server parts. The site provides an always up-to-date, checked-out ver-
sion of the Apache documentation from the source repository. It is the
definitive reference and authority.

Apache API Dictionary
� � �����������
���� �	� � � �
�� ��� � ����������� �	�

This is a complete reference for the Application Programming Interface
(API) of the Apache server.

Apache Reference
� � ���������

�� �	� � � �
)�
	�*� ��� � �

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

6.1 Online Resources 167

The accompanying web site to Apache Desktop Reference (the book you
are currently reading). Here you can find the electronic version of the
entire book, errata, and other updated material. It also provides online
the complete reference of the Apache configuration directives.

Apache Quick Reference Card
�	� �)�������
�

��"�
)� ���	� � � � ��������� � � ������� � � � �
 � ����� �

A very concise and tiny reference card for the Apache web server. It is
also available in print form from O’Reilly & Associates, but the online
version is always more up-to-date.

Apache Developer Site
�	� �)����������
���� �	� � � �
 � �	� ��

When you participate in Apache development (by writing an extension
module) or just want to learn technical background information about
the Apache release cycle, the Apache Group’s voting guidelines, and
other aspects of Apache, this site is for you. It’s a horrible mess in terms
of content and style, but nevertheless has a few interesting things for
people working with and on Apache.

6.1.5 Apache Modules
As shipped, Apache is a very powerful web server. Nevertheless, plenty of
additional modules are available to extend the web server. The following are
the most important references.

Apache Module Registry
�	� �)������� � ����� �
 � � ��� � � ��
 � �)�����

A site containing references to most existing Apache modules. It should
be your first entry point when you search for an Apache module or a
particular functionality that is already implemented by a module. It’s
provided by Covalent in Lincoln, Nebraska and is under the personal
control of Randy Terbush, an Apache developer.

mod perl
�	� �)���������
)� � � ��� � � �
�� �)�����

Doug MacEachern’s popular integration of the Perl language into Ap-
ache. It can be used for Perl-based, server-side scripting; for persistent
and fast CGI-like programming; and even for programming your own
Apache modules in Perl. This module provides most of the Apache
API in Perl.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

168 Chapter 6: Apache Resources

mod php
� � ���������

��'� ����� �
����

Rasmus Lerdorf’s popular server-side scripting language, PHP. One of
the killer modules for Apache, it is a de facto standard for creating
dynamic content with Apache.

mod jserv
� � ��������� � ��� � � �	� � � ��
�� �)� ���

The Java Servlet Engine module for Apache. It allows you to run Java
servlets under Apache. This project also includes Java-related sub-
projects.

mod dav
� � ���������

��
�
 � �	� ��� ��� � � � ��� �	� ���

The WebDAV module from Greg Stein. It provides the functionality of
the Distributed Authoring and Versioning (DAV) standard to Apache.
DAV is the forthcoming standard for manipulating documents on a
web server through HTTP.

mod ssl
� � ���������

�� ����� � � � � ��� � �

The Apache interface to OpenSSL created by Ralf S. Engelschall, the
author of this book. This module integrates the Secure Sockets Layer
(SSL) and Transfer Layer Security (TLS) protocols into Apache with the
help of the SSL/TLS toolkit OpenSSL. SSL/TLS is the de facto standard
for secure communications between web browsers and servers.

6.2 Print Resources
The second most important source for Apache information includes print
resources — that is, books about Apache. This section gives a quick overview
of selected references to help you make your decision for a companion book
more easily.

6.2.1 Apache Developer Books
The following books are intended for developers.

Writing Apache Modules with Perl and C (1st ed.)
Authors: Lincoln Stein, Doug MacEachern
Published by: O’Reilly & Associates, 1999
Companion web site: �	������������

�� ��� � � ��
+������� � ��� �

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

6.2 Print Resources 169

ISBN: 1-56592-567-X
Language: English
Pages: 725

Apache Server Commentary (1st ed.)
Authors: Greg Holden, Matthew Keller, Nick Wells
Published by: The Coriolis Group, 1999
Companion web site: none
ISBN: 1-57610-468-0
Language: English
Pages: 592

6.2.2 Apache User Books
The following books are intended mainly for users. References to more (es-
pecially older) books of this type can be found under � � ���������

�� �	� � � �
 �
� �)� ��� � � �	����	� � � �
 � � � � � � �	��� � .

Apache Pocket Reference (1st ed.)
Author: Andrew Ford
Published by: O’Reilly & Associates, 2000
Companion web site: none
ISBN: 1-56592-706-0
Language: English
Pages: 108

Apache Desktop Reference (1st ed.)
Author: Ralf S. Engelschall
Published by: Addison-Wesley, 2000
Companion web site: �	� ���������

�
�� �	� � � ��
	�
)�*� ����� �
ISBN: 0-201-60470-1
Language: English
Pages: 180

Apache Server Unleashed (1st ed.)
Authors: Bowen, Coar, Grip-Jansson, Kozlov, Tuñon, Marlowe
Published by: Sams Publishing, 2000
Companion web site: �	� �����������	� � � ��
 ��� �
�� � ��
�� � � � � �
ISBN: 0-672-31808-3
Language: English
Pages: 656

Apache Web-Server (3rd ed.)
Author: Lars Eilebrecht
Published by: MITP-Verlag GmbH, 2000

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

170 Chapter 6: Apache Resources

Companion web site: none
ISBN: 3-8266-0612-4
Language: German
Pages: 600

Apache Administrator’s Handbook (1st ed.)
Author: Mohammed J. Kabir
Published by: IDG Books Worldwide, 1999
Companion web site: none
ISBN: 0-7645-3306-1
Language: English
Pages: 550

Apache — The Definitive Guide (2nd ed.)
Authors: Ben Laurie, Peter Laurie
Published by: O’Reilly & Associates, 1999
Companion web site: none
ISBN: 1-56592-528-9 (en), 3-89721-127-0 (de)
Language: English or German
Pages: 370

Professional Apache (1st ed.)
Authors: P. Wainwright, L. Eilebrecht, A. Halberstadt, B. Moon
Published by: Wrox Press Ltd., 1999
Companion web site: none
ISBN: 1-861003-02-1
Language: English
Pages: 800

Apache Server for Dummies (1st ed.)
Author: Ken Coar
Published by: IDG Books Worldwide, 1998
Companion web site: �	�������������	� � � �
 � �	
)���
	�*� � ��� �
ISBN: 0-7645-0291-3
Language: English
Pages: 350

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

6.3 Apache-Related Standards 171

6.3 Apache-Related Standards
The third resource for Apache are the related protocol and system standards.

6.3.1 Hypertext Transfer Protocol (HTTP)
The Hypertext Transfer Protocol is the workhorse of the World Wide Web. You
can find general information about HTTP at the home of the IETF Hyper-
text Transfer Protocol (HTTP) Working Group on �	� �)�������
�

�� ����� � ����� ��
�� ��� �
� � � � �
��� � � � ��� � . The most important references are provided here.

Hypertext Transfer Protocol, Version 0.9 (HTTP/0.9)
The original HTTP version as defined in 1991 by the World Wide Web
initiative prototype software and extended in 1992. This version is still
supported by Apache but its use has been strongly deprecated.
�	� �)�������
�

��
 � � �)� � � � � � � � ��� � �)� ��
�
 � � � � � ��� �
��
 � �
��*� � � � �
�	� �)�������
�

��
 � � �)� � � � � � � � ��� � �)� ��
�
 � � ��

 � � � �	� � �

Hypertext Transfer Protocol, Version 1.0 (HTTP/1.0)
The first really standardized and complete HTTP version as defined in
1996 as Request For Comments (RFC) 1945. This version, which is fully
supported by Apache, is the version used by most browsers.
�����������)���)��� ���	� ��
�� ��� � � � � ����
 �	�	��� � � ����� � � � �

Hypertext Transfer Protocol, Version 1.1 (HTTP/1.1)
The third generation of HTTP as defined in 1997 as RFC (p.171) 2068
and updated in 1999 by RFC (p.171) 2616. This version is fully sup-
ported by Apache when acting as an origin server (the usual case), but
only partially supported when acting as a proxy server. 1 This HTTP
version is not fully supported by all browsers. 2

�����������)���)��� ���	� ��
�� ��� � � � � ����
 �	�	��� � � � ��� � � � �
�����������)���)��� ���	� ��
�� ��� � � � � ����
 �	�	��� � � � � � � � � �

Use and Interpretation of HTTP Version Numbers
An informational RFC that describes the proper use and interpretation
of HTTP version numbers in HTTP request and response messages.

1The original design of Apache’s proxy module (
����� ������	��

) doesn’t allow the implementa-
tion of some HTTP/1.1 features like Keep-Alive connections. Also, to fulfil the proxy-related
caching requirements of HTTP/1.1, much programming effort would be needed, which isn’t
reasonable. Thus, for Apache 2.0, a complete rewrite of the proxy module is a must.

2Current browsers usually support HTTP/1.0 with a few extensions borrowed from
HTTP/1.1, like the

�������
header. They usually do not support the full HTTP/1.1 protocol.

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

172 Chapter 6: Apache Resources

This RFC is a companion to the HTTP standards.
�����������	������� ���	� ��
�� � � � � � � ���
 ���	��� � � � ��� � � ���

6.3.2 Uniform Resource Identifier (URI)
Uniform Resource Identifiers are the addresses of the World Wide Web. You
can find general information about them at the home of the IETF Uniform
Resource Identifiers (URI) Working Group at �	� ���������

�� ��� � � ���	� ��
������ � ��� �
� ��
���� � ������ . References to the most prominent variant, the Uniform Resource
Locators (URL), are present here.

Uniform Resource Identifiers (URI): Generic Syntax
�����������	������� ���	� ��
�� � � � � � � ���
 ���	��� � � � ��� � � ��� , 1998

Uniform Resource Locators (URL)
�����������	������� ���	� ��
�� � � � � � � ���
 ���	��� � � � � � � � ��� , 1994

Relative Uniform Resource Locators
�����������	������� ���	� ��
�� � � � � � � ���
 ���	��� � � � � � � � ��� , 1995

6.3.3 Other Important Standards
Common Gateway Protocol, Version 1.1 (CGI/1.1)
� � ��������� � � ��� � ��� ��������� �� ��� ��
�� � �	� � ��� � �	�
	��� � �	
 � � � � �

World Wide Web Distributed Authoring and Versioning (WebDAV)
� � ���������

�� ��� � � � �	� �"
�� � � � � � � �
�����

 � � � � �

Transport Layer Security, Version 1.0 (TLS/1.0)
�����������	������� ���	� ��
�� � � � � � � ���
 ���	��� � � � ��� � � ���

IANA Assigned Numbers
� � ���������

�� � ��� ��� �)� ��
�����������	������� ���	� ��
�� � � � � � � ���
 ��� � �	��	����� � � � ���

Multipurpose Internet Mail Extensions (MIME)
The MIME standard describes the format of Internet message bodies.
It is related to Apache in that HTTP request and response messages use
MIME format for representing at least the headers.
�����������	������� ���	� ��
�� � � � � � � ���
 ���	��� � � � ��� � � ���
�����������	������� ���	� ��
�� � � � � � � ���
 ���	��� � � � ��� � � ���
�����������	������� ���	� ��
�� � � � � � � ���
 ���	��� � � � ��� � � ���
�����������	������� ���	� ��
�� � � � � � � ���
 ���	��� � � � ��� � � ���
�����������	������� ���	� ��
�� � � � � � � ���
 ���	��� � � � ��� � � ���

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Index

Symbols
� � �	� directive 141
� � ��� directive 141
� � 	 directive 141

A
absolute URL. 60
� � �	
 ��� � ��� � � � directive 75
� � �	
 ��� � � �
 � ���
 directive 76
� � �
 �)��
 directive 120
� � � 	
 � � ��� � ��� ��� directive 125
� � � � � ��� directive 126
� � � B � � � � ���
 directive 119
� � � � ����� �
 directive 75, 77
� � �
 �)��
 directive 120
Advanced Research Projects Agency

6
� � � � � directive 68, 78, 95–97
� � � � � � ��� � � directive . . . 22, 95, 97
� � � ��
 directive 89, 90, 105
� � � ��
 directive 28
� � � ��
 � �
)��� ���
 directive . . . 68, 76
Andries van Dam. 7
Andy Lippman 7
� � ����� ��� ��� directive 107
Apache AutoConf-style Interface37,

41
Apache Autoconf-style Interface 2
Apache Desktop Reference . . . 167
Apache HTTP server project . . 164
Apache Software Foundation . . 1,

14, 164, 165
Apache1st . 166

ApacheCon 164
ApacheCon 164
APACI . 3
Apple . 8
Application Programming Interface

166
Ari Luotonen 9
ARPANET. .6
Aspen Movie Map 7
� � ��� � �	��� �)��� �	����� ��
 directive .109
� � ��� � �	��� �)��� �	����� ��
 directive 106,

110
� � ��� � � � ��� � � �
 directive . . . 76, 89
� � ��� � ���
 directive 76, 89
� � ���
 ���
 directive 76, 89
� � ��� � �	
	� � � �
 directive76, 89, 106

B
base name . 72
Basic Authentication 76
Basic Authorization 157
Beth Frank . 13
Bill Atkinson 8
� � � � � � �)�
 � � directive 77, 83
Bob Kahn. .6
Brandon Long 13
Brian Behlendorf 13
Brown University7

C
� � � ��
 � � � �	�
)� � � � directive . . . 138� � � ��
 � � � � ���� �
 directive139, 140
� � � ��
 � ����� directive137, 138

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

174 Index

� � � �
 	 � �
 directive 139
Certificate . 153
certificate . 153
certificate revocation lists 154
certification authorities . . 154, 155
cipher suite 153
� �
 �	��� ����� �
 B ��� � directive 75
client authentication 154, 155
Cliff Skolnick 13
Command.see Directive
Common Log Format32
Covalent Technologies 166
� �����	��� B ��� directive . 115, 130, 131

D
David Robinson 13
	
��	� � � � B � � � � ���
 directive . . . 119
	
��	� � � � B � � � � ���
 directive . . . 119
	
���� directive 105
�
���� directive 28
Department of Defense 6
� 	 ���
 ��� �)� � � directive 66
� 	 ���
 ��� �)� � � directive 67
Directive

� � �	� . 141
� � ��� . 141
� � 	 141

� � �	
 ��� � ��� � � � 75
� � �	
 ��� � � �
 � ���
 76
� � �
 �)��
 120
� � � 	
 � � ��� � ��� ��� 125
� � � � � ��� 126
� � � B � � � � ���
 119
� � � � ����� �
 75, 77
� � �
 �)��
 120
� � � � � 68, 78, 95–97
� � � � � � ��� � � 22, 95, 97
� � � ��
 89, 90, 105
� � � ��
 . 28
� � � ��
 � �
)��� ���
 68, 76
� � ����� ��� ��� 107
� �	��� � �	��� �)� � � ����� �
 109
� �	��� � �	��� �)� � � ����� �
 . 106, 110

� �	��� � �	� ��� � � �
 76, 89
� �	��� � � �
 76, 89
� �	���
 �)��
 76, 89
� �	��� � ��
)� � � �
76, 89, 106
� � � � � �����
 � � 77, 83
� � � ��
 � � � �	�
	� � � � 138
� � � ��
 �	��� � �������
 139, 140
� � � ��
 � � ��� 137, 138
� � � ��
 	 � �
 139
� �
 �)���	����� �
 B ����� 75
� ����� ��� B ��� 115, 130, 131
	
��	� � � � B ��� ��� ���
 119
	
��	� � � � B ��� ��� ���
 119
	
���� . 105
��
���� . 28
� 	 ���
 ���	�)� � �66
� 	 ���
 ���	�)� � �67
� 	 ���
 ���	�)� � � . . 64–68, 71, 72,

75, 80, 119, 120, 145
	 ���
 ���	�)� � 89
	 ���
 ���	�)� � � �	�
�� 86
� 	 ���
 ���	�)� ��� ��� � � � . . .65, 67,

71, 72
	 � � �	�
 �	� � � ��� 68, 95
� ��� �)� 	 � � �	�
 �	� 79
� ��� �)� B ��� 79, 84, 87, 156
� ������
 � � �
 �)��
121, 122
� ������
 � 	
��	� � � � 121
� ������� � � �
���� � � 125
� ������� � � �
���� � � 124
� ������� � � �
���� � �124–126
� � � �
 � 133
� � � �
 � � 65–68, 72, 145
� � � �
 ���	��� � � � . 65, 68, 72, 73
�
 ���
)� 122
�
 ���
)� � ���
 128
� � � 	
�� � ��
 �160
� � � 	
�� � ��
 � 73, 74
� � � � ����� �
 � 74
� ���	� �
 � � 103
� ��� � � ��
 63, 80
� � �
�� � ��� �)�
127
� � �
�� � �	��� ��� � 126

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Index 175

� �	�
�� � � �
)� 	
)�	� � � � 128
�
�
	� � � � �
 85
� B � � � � � 66, 73, 89B � � � � �
 ����
 ��� B � �
 82B � � � � �
 ����
 ��� � � � 81B �����
�� 69, 77, 83, 87B �����
�� � � � � � � � 85B ����� � � �
 95B ����� � ��� � �
 73, 74, 95
� B � ������� � � � 66
� B � ������� � � � ��� � � � 68
� B � ������� � � � . . 65–68, 70, 120,

133, 145
� B � ������� � � � ��� � � � 70
� B � ������� � � � ��� � � � .65, 68, 70B � � � �)��� ��� 130
� � � � � ��
 �	� � 84
� � � �
 ���
 ��� � �
)� � ��� � � 85
�
�� � 	 ��� 124
�
�� � 	 � ��� � � 124
���	�	� � � �
 133
� � �
 � ����� � � ��� � ��� 86
� � ��� ���113
� � ��� �����68, 76, 86
� � ��� ����� � � � ��� � ��
�
�� 27
� � �
)� . 105
� � � � � � � 144
� �
	� � � 140, 141
�
	� � � � � � � �
)� 149
�
	� ���
 ���
)� � �	� �	
	� � � � � �
	� 145
�
	� � � ��� � �
 142
�
	� � � � ��� � � �144
�
	� � � � � � �
 ��� �
 � �
 � � � ���	� �
	�

145
�
	� � �
 � ����
142
�
	� � 	
�� � � � 144
� � � � � �
 87
� �	� � 69, 83, 87, 93
� �	��� � � � � � 134
� �	��� � �
 ����
 ��� � 137
� �	��� � � � � � 136, 137
� �	��� � � � � � �
��
)� ��
137
� �	��� � �
 �����
 134, 135

�
�
���� �
 � � �
134
�
�� ���
 ��� 97
�
�� ���
 ��� � ��� � � 22
�
 � ����
 76, 89, 109, 110
�
 � � �� �	
 � ��� � ��� 75
�
 � � �� �	
 � ��� � ��� 75
�
�
���� �
 � � �
 78, 98
�
�
���� �
 � � �	
100
�
�
���� �
 � ��� �98, 100, 101
�
�
���� �
 � � ��� ��
 98
�
�
���� �
 B ��� 99
�
�
���� �
 �	�	� 98–100
�
�
���� �
 � � �
 . . 52, 68, 98, 100,

101, 137
� B � � � � � � � 88
	 ��� ����� � 89
	 � � � �	� 112
	 � � � �	� � � � � � 97
	 � � � �	� B � � 116, 117
	
)� �
)� � ��� � � 92
	
)� �
)� � � � � � 91
	
)� �
)� � � �
 87, 92, 93
	
)� �
)� � ����� 91
	
)� �
)� � ����� 75, 78, 79, 87,

89, 95, 106, 107, 116, 120,
130, 160

	
�� � � � 144
	
�� � � � � � 28, 115, 116, 130
	
�� � � � � � � � � � ��
 115
	�	 B �
 ���� �
 157
	�	 B�� ���
)����� � ��� ���
 � ����� . 154,

156
	�	 B�� � �
��	� ����������� � ����� . . . 155
	�	 B��
)� ����� �������
 � � �
 153
	�	 B��
)� ����� �������
 � � �
 150, 153
	�	 B��
)� ����� �������
 �
 � � � �
 .150
	�	 B�� � � ��
	� 	 �� �
 153
	�	 B B ��� 156
	�	 B � �	��� � ��� 157
	�	 B�� � � � � �� � �	
 	 � � � � � . . . 153
	�	 B � ��� �	� � 	
�
�� 151
	�	 B �
 ���� �
 158
	�	 B �
 ���� �
 	�	 B 157

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

176 Index

	�	 B 	
 � �	� ��� � � � ��
 152
	�	 B �
	��� � � � � ��
��	� 155

 � �
 � �	� 81, 93

 � ����� �
)� B � �130

 � ����� �
)� B � � 87

 ����
 � � ��� � ��� 119
� �	
)� 55, 94, 116
� �	
)� 	 ��� 102
� � ��� � � � ��� � � � � 64, 65, 68, 69,

77, 79, 83, 86, 87, 94, 130,
152

� � � � � � � � 76
� 	 ���
 ��� �)� � � directive 64–68, 71,

72, 75, 80, 119, 120, 145	 ���
 ��� �)� � directive 89
directory names 60
directory path 60, 71	 ���
 ��� �)� � � � �
�� directive 86
� 	 ���
 ��� �)� � � ��� � � � directive . 65,

67, 71, 72	 � � ���
��	� � � ��� directive 68, 95
domain name 59, 60
Doug MacEachern 20, 167
Douglas C. Engelbart 7
Dynamic Shared Object 2, 42

E
� ��� �	� 	 � � ���
��	� directive 79
� ��� �	� B ��� directive . 79, 84, 87, 156
� ���� �
 � � �
 ����
 directive . 121, 122
� ���� �
 � 	
)�	� � � � directive 121
Extended API 46

F
Fall Joint Computer Conference .7
� ������� � � �
 ��� � � directive 125
� ������� � � �
 ��� � � directive 124� ������� � � �
 ��� � � directive . 124–126
� � � �
 � directive133
file extension 60
file name . 60
file path . 60
File Retrieval and Editing System

7

� � � �
 � � directive . 65–68, 72, 145
� � � �
 � � ��� � � � directive . . .65, 68,

72, 73
Filevision . 7
Firms

Apache Software Foundation
164

ApacheCon 164
ApacheCon 164
Netcraft . 1

Franklin Roosevelt7

G
Greg Stein . 168

H
�
 ���
	� directive 122
�
 ���
	� � ���
 directive 128
Henrik F. Nielsen 9
Henry Spencer 52
host name.59, 60
HotWired . 13
Hypertext Editing System 7
Hypertext Transfer Protocol . . 171

I
IETF Hypertext Transfer Protocol

(HTTP) Working Group171
IETF Uniform Resource Identifiers

(URI) Working Group172
� � � 	
�� � ��
 � directive 160
� � � 	
�� � ��
 � directive 73, 74
� � � � ��� � �
 � directive 74
� ���	� �
�� � directive 103
� ��� � �	�
 directive 63, 80
� � �
�� � ��� �)�
 directive 127
� � �
�� � �	��� � ��� directive.126
� � �
�� � �	�
)� 	
��	� � � � directive .128
Internet Protocol6

J
Janet Walker . 7
Jim Jagielski 165

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Index 177

K
Keep-Alive connections 171
�
�
	� � � � �
 directive 85

L
� B � � � � � directive 66, 73, 89B � � � � �
 ����
 ��� B � �
 directive . . . 82B � � � � �
 ����
 ��� � � �

directive 81
Lincoln Stein 20B �����
 � directive 69, 77, 83, 87B �����
 � � � � � � ��� directive 85B � ��� � � �
 directive 95B � ��� �	����� �
 directive . . . 73, 74, 95
� B � ����� � ��� � directive 66
� B � ����� � ��� � ��� � � � directive . . . 68
� B � ����� � ��� � directive. .65–68, 70,

120, 133, 145
� B � ����� � ��� � ��� � � � directive . . . 70
� B � ����� � ��� � ��� � � � directive . . 65,

68, 70
lock file . 151B ��� � �	������� directive 130

M
Mark J. Cox 165
� ��� � � ��
��	� � directive 84
� ��� �
 ����
 ��� � �
)� � �� � � directive85
McCool . 10
�
�� � 	 ��� directive 124
�
�� � 	 � ��� � � directive 124
��� �	� � � �
 directive 133
mod rewrite

�

��� �
 � � �
 78, 98
�

��� �
 � � �	
100
�

��� �
 � ��� �98, 100, 101
�

��� �
 � � ��� �
 98
�

��� �
 B ��� 99
�

��� �
 � �	� 98–100
�

��� �
 � � �
 . . 52, 68, 98, 100,

101, 137
mod ssl

	�	 B �
 �������
 157
	�	 B�� ���
	� ��� � �������
 � ����� . 154,

156

	�	 B�� � �
��	� ����������� � ����� . . . 155
	�	 B��
)� ����� �������
 � � �
 153
	�	 B��
)� ����� �������
 � � �
 150, 153
	�	 B��
)� ����� �������
 �
 � � � �
 .150
	�	 B�� � � ��
	� 	 �� �
 153
	�	 B B ��� 156
	�	 B � �	��� � ��� 157
	�	 B�� � � � � �� � �	
 	 � � � � � . . . 153
	�	 B � ��� �	� � 	
�
�� 151
	�	 B �
 ���� �
 158
	�	 B �
 ���� �
 	�	 B 157
	�	 B 	
 � �	����� � � � ��
 152
	�	 B �
)��� � � � � ��
 �	� 155

mod UNKNOWN
� � � � . 141
� � ��� . 141
� � 	 141

� � ��
 � � � � � � � � 75
� � ��
 � � � � �
 � ���
 76
� � �
 ����
 120
� � � 	
 � � � � �	��� � � 125
� � � � ����� 126
� � � B ��� � � ���
 119
� � � � ����� �
 75, 77
� � �
 ����
 120
� � ��� �68, 78, 95–97
� � ��� ��� ��� � � 22, 95, 97
� � � ��
 89, 90, 105
� � � ��
 . 28
� � � ��
 � �
	�������
 68, 76
� � � ������� � � 107
� �	��� � �	��� �)��� � ����� �
 109
� �	��� � �	��� �)��� � ����� �
 .106, 110
� �	��� � � � ��� � � �
 76, 89
� �	��� � ���
 76, 89
� �	���
 ����
 76, 89
� �	��� � �	
)� � � �
76, 89, 106
� � �	� � � ���
 � � 77, 83
� � � ��
 � � � �	�
)� �	� � 138
� � � ��
 � ��� � ������
 139, 140
� � � ��
 � � ��� 137, 138
� � � ��
 	 � ��
 139
� �
��)��� ��� � �
 B ����� 75

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

178 Index

� ����� � � B ��� 115, 130, 131
	
��	� � � � B ��� � � ���
 119
	
��	� � � � B ��� � � ���
 119
	
���� . 105
�
���� . 28
� 	 ���
 � � �)� � �66
� 	 ���
 � � �)� � �67
� 	 ���
 � � �)� � � . . 64–68, 71, 72,

75, 80, 119, 120, 145
	 ���
 � � �)� � 89
	 ���
 � � �)� � � � �
�� 86
� 	 ���
 � � �)� ���	��� � � � . . .65, 67,

71, 72
	 � � �	�
��	� � ����� 68, 95
� ��� �)� 	 � � �	�
��	� 79
� ��� �)� B ��� 79, 84, 87, 156
� ������
 � � �
 ����
 121, 122
� ������
 � 	
�� � � � � 121
� ������� � � �
�� � � � 125
� ������� � � �
�� � � � 124
� ������� � � �
�� � � � 124–126
� � � �
 � 133
� � � �
 � � 65–68, 72, 145
� � � �
 � � ��� � � � . 65, 68, 72, 73
�
 ���
	� 122
�
 ���
	� � ���
 128
� � � 	
�� � ��
 �160
� � � 	
�� � ��
 � 73, 74
� � � � ��� � �
 � 74
� ���	� �
�� � 103
� ��� � �	�
 63, 80
� � �
�� � ��� �)�
127
� � �
�� � �	��� � ��� 126
� � �
�� � �	�
)� 	
��	� � � � 128
�
�
	� � � � �
 85
� B � � � � � 66, 73, 89B � � � � �
 ����
 ��� B � �
 82B � � � � �
 ����
 ��� � � � 81B �����
 � 69, 77, 83, 87B �����
 � � � � � � ��� 85B � ��� � � �
 95B � ��� �	����� �
 73, 74, 95
� B � ����� � ��� � 66

� B � ����������� � ��� � � � 68
� B � ����������� � . . 65–68, 70, 120,

133, 145
� B � ����������� � ��� � � � 70
� B � ����������� � ��� � � � .65, 68, 70B ��� � �)� ����� 130
�	��� � � �
��	� � 84
�	��� �
 � ��
 ��� � �
)� � � � � � 85
�
�� � 	 � � 124
�
�� � 	 ���� � � 124
� � �	� � � �
 133
� ���
 � � � � � � ��� � ��� 86
� �	��� ��� 113
� �	��� ��� �68, 76, 86
� �	��� ��� � � � � ��� � ��
�
�� 27
� �	�
)� . 105
� � � � � � � 144
� �
)� � � 140, 141
�
)� � � � ��� � �
	� 149
�
)� ���
����
)� � �)� �	
)� � � �	� �
)� 145
�
)� � � ����� �
 142
�
)� � � � � � � � �144
�
)� � � � ��� �
 ��� �
 ���
 � � � � � � �
	�

145
�
)� � �
 ������
142
�
)� � 	
�� � � � 144
� ��� � � �
 87
� �)� � 69, 83, 87, 93
� � ��� � � � � � 134
� � ��� � �
 ����
 � � � 137
� � ��� � � � � � 136, 137
� � ��� � � � � � �
 �
)� �	
137
� � ��� � �
������
 134, 135
�
�
��� �
 � � �
134
�
�� ���
 ��� 97
�
�� ���
 ����� ��� � � 22
�
 ������
 76, 89, 109, 110
�
 ��� �� �	
 � ���� � � 75
�
 ��� �� �	
 � ���� � � 75
� B � � � � � � �

. 88
	 ��������� � 89
	 � ��� �	� 112
	 � ��� �	� � � � � � 97

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Index 179

	 ����� �	� B ��� 116, 117
	
	� �
)� � � � � � 92
	
	� �
)� � � � � � 91
	
	� �
)� � ���
 87, 92, 93
	
	� �
)� � ����� 91
	
	� �
)� � � ��� 75, 78, 79, 87,

89, 95, 106, 107, 116, 120,
130, 160

	
�� � � � 144
	
�� � � � � � 28, 115, 116, 130
	
�� � � � � � � � � � �	
 115

 � �
 � �	� 81, 93

 �	�������
	� B ���130

 �	�������
	� B ��� 87

 �)��
 � � � � � � � 119
� ��
)� 55, 94, 116
� ��
)� 	 ��� 102
� � � � � � � ��� � ��� � 64, 65, 68, 69,

77, 79, 83, 86, 87, 94, 130,
152

� � � � � � � � 76

N
� ���
 � ��� � � � ��� � ��� directive 86
NCSA HTTP Server 63
Netcraft . 1
Network Control Protocol 6
NLS . 7
Norman Meyrowitz 7

O
Office of Scientific Research and De-

velopment7
OpenSSL 151–153
� �	��� � � directive 113
� �	��� � ��� directive 68, 76, 86
� �	��� � ��� � � � � � � ��
�
 � directive.27
� �	�
)� directive 105
Organic Online 13

P
Part see Module
pass phrase 150, 153

� � � � � � � directive 144
� �
	� � � directive 140, 141
�
	� � � � � � � �
)� directive.149
�
	� ���
 ���
)� � �	� �	
)� � � � � �
)� direc-

tive 145
�
	� � � ��� � �
 directive 142
�
	� � � � ��� � � � directive 144
�
	� � � � � � �
 ��� �
 ���
 � � � ��� � �
	� di-

rective 145
�
	� � �
 � ����
 directive 142
�
	� � 	
�� � � � directive 144
Persons

Andries van Dam 7
Andy Lippman 7
Ari Luotonen 9
Aspen Movie Map 7
Beth Frank 13
Bill Atkinson 8
Bob Kahn 6
Brandon Long 13
Brian Behlendorf 13
Cliff Skolnick 13
David Robinson 13
Doug MacEachern. . . .20, 167
Douglas C. Engelbart 7
Franklin Roosevelt 7
Greg Stein 168
Henrik F. Nielsen 9
Henry Spencer 52
Janet Walker 7
Jim Jagielski 165
Lincoln Stein20
Mark J. Cox 165
McCool 10
Norman Meyrowitz 7
Ralf S. Engelschall 168
Randy Terbush 167
Rasmus Lerdorf.168
Rob Hartill 11, 13
Rob McCool 13
Robert McCool 9
Robert Thau 13
Roy T. Fielding 11, 12

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

180 Index

Ted Nelson.7
Tim Berners-Lee 8, 9
Tony Sanders 9
Vannevar Bush 7
Vint Cerf 6

� ��� � � �
 directive 87
� �)� � directive 69, 83, 87, 93
port number.60
position-independent code 46
private key 153
� � ��� � � � � � directive 134
� � ��� � �
 ���
 ��� � directive 137
� � ��� � � � � � directive136, 137
� � ��� � � � � � �
��
)� ��
 directive . . 137
� � ��� � �
������
 directive . . . 134, 135
Pseudo-Random Number Gener-

ator 151

Q
qualifiers . 61

R
Ralf S. Engelschall 168
Randy Terbush 167
Rasmus Lerdorf 168
�
�
� � �
 � � �
 directive 134
�
�� � �
 ��� directive 97
�
�� � �
 �����	��� � � directive 22
Regular Expression 60
Regular Expressions 61
relative URL 60, 70
Request for Comments 6
�
 �������
 directive . 76, 89, 109, 110
�
 ��� �� �	
 � ��� � � � directive 75
�
 ��� �� �	
 � ��� � � � directive 75
�
�
� � �
 � � �
 directive 78, 98
�
�
� � �
 � � �	
 directive 100
�
�
� � �
 � � � � directive98, 100, 101
�
�
� � �
 � � ��� ��
 directive 98
�
�
� � �
 B � � directive 99
�
�
� � �
 � ��� directive.98–100
�
�
� � �
 � � �
 directive . 52, 68, 98,

100, 101, 137

� B � � � � � � � directive 88
Rob Hartill 11, 13
Rob McCool 13
Robert McCool 9
Robert Thau 13
Roy T. Fielding 11, 12

S
	 ������� � � directive89
scheme . 60
	 � ��� � � directive 112
	 � ��� � � � � � � � directive 97
	 � ��� � � B ��� directive 116, 117
server root.62, 99, 156
Server-Side Includes 29
	
)� �
	� � � � � � directive 92
	
)� �
	� � � � � � directive 91
	
)� �
	� � ���
 directive . . . 87, 92, 93
	
)� �
	� � ����� directive 91
	
)� �
	� � � ��� directive75, 78, 79, 87,

89, 95, 106, 107, 116, 120,
130, 160

session cache 151, 152
	
�� � � � directive 144
	
�� � � � � � directive . . . 28, 115, 116,

130
	
�� � � � � � � � � � �	
 directive 115
	�	 B �
 ������
 directive 157
	�	 B�� ���
)� ����� �������
 � � ��� directive154,

156
	�	 B�� � �
�� � � ����� ��� � ����� directive155
	�	 B��
	� ��� � �������
 � � �
 directive153
	�	 B��
	� ��� � �������
 � � �
 directive150,

153
	�	 B��
	� ��� � �������
 �
 � � � �
 directive

150
	�	 B�� �+� ��
)� 	 �� �
 directive 153
	�	 B�B � � directive 156
	�	 B � � ��� ����� directive 157
	�	 B�� � � � � ��	� �	
 	 ��� � � � directive153
	�	 B � � � �	��� 	
�
�� directive 151
	�	 B �
 ������
 directive 158
	�	 B �
 ������
 	�	 B directive 157

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

Index 181

	�	 B 	
 � �	� ��� � � � ��
 directive . . . 152
	�	 B �
	��� � � � � ��
��	� directive . . . 155
Subject Distinguished Name. .157
Symbolics Document Examiner . 7

T
Ted Nelson . 7
Tim Berners-Lee 8, 9

 � �
 � �	� directive 81, 93
Tony Sanders 9

 � ����� �
)� B � � directive 130

 � ����� �
)� B � � directive 87
Transmission Control Program. .6
Transmission Control Protocol . . 6

 ����
 � � ��� � ��� directive 119

U
Uniform Resource Identifiers . 172
Uniform Resource Locator 59
Uniform Resource Locators (URL)

172
� �	
)� directive 55, 94, 116
� �	
)� 	 ��� directive 102

V
Vannevar Bush 7
Vint Cerf . 6
� � ��� � � � ��� � � � � directive . 64, 65,

68, 69, 77, 79, 83, 86, 87,
94, 130, 152

W
Web Server Survey 1, 2
Wildcard Pattern 60
wildcard pattern 70–72
Wildcard Patterns 61

X
Xanadu. 7
� � � � � � � � directive 76

Z
ZOG . 7

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

182 Index

Papersize:
��������	�	
�
��� (US letter)

Cropmarks: � � � ���	��� �� �� (AWL repro)

This book was typeset in Europe by the author on the UNIX operating sys-
tem FreeBSD 4.2 with the typesetting system TEX and its macro language
LATEX 2 � . It was designed for U.S.-letter paper (

��������
�
	 ��� ���

�) with crop marks
at �

� ���
��	�� �� ��� � for reproduction. It is typeset in the 10pt Adobe Palatino font

family. It was shipped to the publisher in camera-ready Postscript format via
the Internet.

