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Preface 

Software architecture is an emerging discipline and an exciting career path for software 
professionals. We encourage both new and experienced practitioners to read this book as 
an aid to becoming better software architects. You may have noticed that most software 
books today do not say much about software architecture. Here, in this volume, we've 
concentrated the knowledge that you need to be the most effective architect possible. 

As co-authors, we have lived through the experience of graduating from "member of 
technical staff" developers to becoming practicing software architects at the most senior 
levels of our respective companies. We are technical people, not managers, and we enjoy 
the technical nature of our work. We enjoy parity of salary and benefits with the senior 
managers at our respective firms. In other words, we are none-the-worse-for-wear as a 
consequence of choosing a software architecture career. We think that many of our 
readers would like to gain from our experience. Hence this book. 

This is more than a book about software architecture. It is a field manual that can train 
you. We choose the pseudomilitary style, because it embodies an essential attitude. As a 
software architect, you need many survival skills— some technical, some political, some 
personal. While neither author has mili- tary experience, we have seen software 
architecture become a battleground in many ways. It is a battleground of ideas, as 
developers compete to forward their own concepts. It is a battleground for control of key 
design decisions that may be overruled by managers or developers, perhaps covertly. It is 
a battleground with many risks, since architects are responsible for a much wider range of 
technical and process risks than most managers or individual developers. 

If you are a practicing software architect, we know that you are a busy professional. After 
buying this book, we would suggest that you peruse the table of contents and the index 
for topics that are new to you. Focus on those sections first. When you have time, we 
suggest that you attempt a cover-to-cover read-through, to familiarize yourself with all of 
the covered topics and terminology. 

If you are new to architecture and want to become a software architect, we suggest that 
you do a cover-to-cover read-through beginning with the first chapter. Work the exercises 
provided, which will add an experiential learning element to your experience base. 

Raphael Malveau 

Thomas J. Mowbray, Ph.D. 

McLean, Virginia, U.S.A. 
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Chapter one Introduction 

So you want to become a software architect? Or perhaps you are already a software 
architect, and you want to expand your knowledge of the discipline? This is a book about 
achieving and maintaining success in your software career. It is also about an important 
new software discipline and technology, software architecture. It is not a book about 
getting rich in the software business; our advice helps you to achieve professional 
fulfillment. Although the monetary rewards are substantial, often what motivates many 
people in software architecture is being a continuous technical contributor throughout 
their career. In other words, most software architects want to do technically interesting 
work, no matter how successful and experienced they become. So the goal of this book is 
to help you achieve career success as a software architect and then maintain your success. 
 
In this book we cover both heavyweight and lightweight approaches to software 
architecture. The role of software architect has many aspects: part politician, part 
technologist, part author, part evangelist, part mentor, part psychologist, and more. At the 
apex of the software profession, the software architect must understand the viewpoints 
and techniques of many players in the IT business. We describe the discipline and 
process of writing specifications, what most people would consider the bulk of software 
architecture, but we also cover those human aspects of the practice which are most 
challenging to architects, both new and experienced. 
 
So what does a software architect do? A software architect both designs software and 
guides others in the creation of software. The architect serves both as a mentor and as the 
person who documents and codifies how tradeoffs are to be made by other software 
designers and developers. It is common to see the architect serve as a trainer, 
disciplinarian, and even counselor to other members of the development team. Of course, 
leadership by example will always remain the most effective technique in getting 
software designers and developers on the same page. 

1.1 Advice for Software Architects 

" Success is easy; maintaining success is difficult. "—J.B.  

If you have a focus for your career, gaining the knowledge you need in order to advance 
can be relatively easy. For software professionals, simply building your expertise is all 
that is needed in most corporate environments. For example, we often ask software 
people what books they have read. In the West, most professionals are familiar with 
design patterns (see Section 1.3). And many have purchased the book by Erich 
Gamma and co-authors that established the field of design patterns [Gamma 94]. Some 
have even read it. However, it always surprises us how few people have read anything 
further on this important topic. 

For software architect books, the situation is even worse. Possibly the reason is that there 
are fewer popular books, but more likely it is that people are not really focused on 
software architecture as a career goal. In this book series, by publishing a common body 
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of knowledge about software architecture theory and practice, we are eliminating the first 
obstacle to establishing a software architecture profession. However, making this 
information available does not automatically change people's reading habits. 

So, if the average software professional only reads about one book per year, just think 
what you could do in comparison. If you were to read three books on design patterns, you 
would have access to more knowledge than the vast majority of developers on that 
important topic. In our own professional development, we try even harder—at least a 
book each month, and if possible, a book every week. Some books take longer than a 
week—for example, the 1000-page book on the Catalysis Method [D'Souza 98]. In our 
opinion, it contains breakthroughs on component-oriented thinking, but so few people are 
likely to read it thoroughly (except software architects), that it becomes a valuable 
intellectual tool for making you (the reader) a thought leader, as the entire industry moves 
through the difficult transition to component-based development. 

" Particularly for social systems, it's the perceptions, not the facts, that count " [Rechtin 
97].  

Getting ahead on book reading is a clearcut way to differentiate yourself from the 
software masses. Converting your book learning to real-world success is also 
straightforward. You can apply your knowledge on your current projects. You can 
convert your knowledge into briefings and tutorials that put you in visible leadership and 
teaching roles. You can share you knowledge at conferences and professional groups. 
And you can write. The key transition that leads to success starts with sharing your 
knowledge one-to-one (i.e., inefficiently) and proceeding to share with many at a time. In 
our own careers, when we began to share knowledge in one-to-many situations, the 
appearance of success came with it. Since, for most people, appearance is reality, success 
is easy to attain. The much more difficult challenge is maintaining success, once you've 
achieved it. 

Word of Caution 

The software architecture career path is a difficult one for many reasons. While becoming 
a competent software architect can be difficult, maintaining your skills is usually even 
harder. Here are some key reasons why the architecture career is difficult: 

Nascent Body of Knowledge 

Confusion and Gurus 

Professional Jealousy 

The Management Trap 

The Software Crisis 

We discuss each of these in the subsections that follow. 

Nascent Body of Knowledge 
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First of all, the body of software architecture knowledge is not well established. Software 
architecture is a relatively new field of computer science. Not much software architecture 
is taught in schools. Academics have not yet sorted out the fundamentals; there is still 
much discussion and disagreement on the basics. 

 

However, many practicing software architects believe that sufficient knowledge does 
exist. The practice of software architecture is much more mature than many will admit. 
Hopefully, you will gain this understanding, too, after reading further. 

 

In the absence of widespread agreement about software architecture theory, you have to 
be your own expert. You have to acquire your own set of knowledge and a strong set of 
beliefs about how to do software right. No one book or software method will give you 
everything that you need to be an effective software architect. 

 

" Technical problems become political problems " [Rechtin 97].  

Confusion and Gurus 

Many published software approaches claim to provide the benefits of software 
architecture, but most of them can't deliver on their promises. In fact, the software 
industry has created many technology fads and trends, on the basis of incomplete 
principles. When these approaches are applied in practice, software projects fail. And 
guess what? The overwhelming majority of corporate development projects do fail—by 
being cancelled, from overspending, or for underdelivery. 
 

These failures are characteristic of a vast corporate software market, populated with 
companies that are struggling to deliver their internal software. New products and 
software development ideas are constantly being produced, in a never-ending attempt to 
meet the needs of the struggling software masses. Consequently, despite all the failures, 
the software products industry has thrived. 

As a software architect, you have to be an evangelist and leader for your software team. 
From the myriad conflicting software approaches and productsyou need to sort out what 
works and what does not. This is not easy, because a tremendous onslaught of marketing 
information generated by vendors and industry experts tends to contradict your 
architectural messages. It is your fate to have your architectural decisions frequently 
contradicted and obsolesced by the commercial software industry. One of your key skills 
as an architect is to make sound decisions that can survive the ravages of time and 
commercial innovation. 

Professional Jealousy 
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The more successful you become, the more some people will resent your success. Many 
software professionals are genuinely nice people. But many people in our profession have 
large egos. We all have egos that can be abrasive, but whether you intend to compete on 
the basis of ego or not, professional competition can create serious problems in software 
organizations and in your career, unless you are careful. 

" Challenge the process and solution, for surely someone else will " 
[Rechtin 97].  
Professional jealousy is a factor that you will have to watch for vigilantly. You must learn 
to conduct yourself with a certain degree of humility and be prepared to defend yourself 
when necessary. Never take any comment personally; it's always a mistake. Consider a 
situation where you are meeting someone for the first time and they appear to be acting 
quite rudely. In the eyes of people who have known them for an extended period of time, 
they may very well be acting in their usual manner. 

The Management Trap 

As you become more successful in your software career, you may be joining the ranks of 
management, since most companies organize around a single management ladder. If you 
are good at what you do, it is natural for management to want you to mentor and 
supervise other people doing it, too. The company can try to get the productivity of 
several good performers based upon your experience. 

As your administrative responsibilities increase, your time to perform technical work can 
decrease dramatically. Because you spend less time on technical tasks and on maintaining 
your technical skills, you can lose your technical edge. If you chose a software career 
because you enjoyed technical work, you can lose one of your most important 
motivations for your work. 

Being a software architect is quite different from being a manager. A software architect is 
a direct technical contributor, whereas a manager contributes indirectly by coordinating 
the actions of other people. Together, managers and architects make highly effective 
leadership teams. In our experience, combining the two roles can work only temporarily. 

As you advance as a manager, eventually a superior will tell you to stop touching the 
keyboard (i.e., programming).  

You as a software architect can avoid becoming a manager if you establish a personal 
professional policy. If you don't want management duties, you must learn how to say so. 
For many of us, one of the most difficult transitions is learning how to say "No." For 
example, you have to avoid lateral promotions that lead to management and 
administrative roles. 

In some organizations you will become trapped in a management role, because the 
company does not have a technical ladder. At a certain level of seniority (typical of 
software architects), you may be surprised, one day, to find yourself assigned 
responsibilities on the management organization chart. Once this is decided, it is very 
hard to reverse. The best approach is to declare your expectations (e.g., for technical 
assignments) when you first take the job. And repeat your policy often. 
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Defining Software Architecture 

An increasing number of software professionals are claiming the title: software architect. 
In our opinion, very few of these people understand what software architecture is. 

Have you ever been involved in a discussion of the question: "What is architecture?" The 
term "architecture" is one of those most often misused. Below we describe one of the 
common misuses; then we answer the question "What is architecture?" with a conceptual 
standard that is in widespread use today (see Section 1.2). 

Misuse of the Term "Architecture"  

Too often, architectures are used as sales tools rather than technical blueprints. In a 
typical scenario, a fast-talking technical manager (the "architect") presents a few high-
level viewgraphs to convince you of the greatness of his product or system. This is a 
presentation of a marketing architecture. Most marketing architectures are directed 
externally at customers and not at software developers. Marketing architectures are fine 
for advertising the features of commercial products, but they provide only limited 
technical information for developers. 

The problem with marketing architectures is that they are decoupled from the 
development process. The so-called architect is a manager who delegates most technical 
details to individual developers. Unless the architect manages the computational model 
(including subsystem interfaces), the architecture is unlikely to deliver any real technical 
benefits. Architectural benefits that are easily compromised include system adaptability 
(for new business needs) and system extensibility (for exploitation of new technologies). 

Despite the many competing definitions, experts emphasize the importance of 
architecture, especially for component-based applications. As component reuse and 
software complexity increase, architecture is growing dramatically in importance. In 
subsequent sections we discuss several architecture-centered approaches, which support 
business change, technology innovation, and design reuse. Reuse of architectural designs 
benefits component reuse, because design reuse is often much more effective than 
software reuse alone. 

Before Architecture 

High-quality, flexible software is one goal of architecture-centered development. In 
recent years, popular development approaches assumed that bad software is better. In 
other words, getting software delivered quickly is better than delivering quality software 
which supports change and reuse. Well-known process models and vendor regimes are 
founded on the bad-is-better principle. 

Architecture-centered approaches accommodate reuse and change more effectively, 
because there is a planned system organization, specifically designed for these purposes, 
i.e., the system architecture. In our opinion, the practice of software architecture is 
essential for component-based development. Bad is better was the thesis; software 
architecture is the antithesis. 
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Of course, we do not want to lose the inherent benefit of bad is better, i.e., rapid delivery. 
Architecture-centered approaches utilize several techniques, including pragmatism, 
architecture planning, and architecture reuse, which jointly support increased productivity, 
reduced risk, and minimum time-to-market. 

The Software Crisis 

Many of us have serious misconceptions about the capabilities of current software 
approaches. Based upon surveys of corporate software projects in the United States, the 
realities of software development are as follows [Brown 98]. About one-third of all 
software projects are cancelled. Average projects expend twice as much budget and 
schedule as initially planned. After delivery, the majority of systems are considered 
unsuccessful because they have far fewer capabilities than expected. Modification and 
extension of systems are the most expensive cost drivers and very likely to create new 
defects. Overall, virtually all application software projects produce stovepipe 
systems, brittle software architectures that underperform on requirements. 

The software crisis in corporate development became apparent decades ago, when 
procedural software technologies were popular. Subsequent, object-oriented approaches 
(such as the Object Modeling Technique) have been equally unsuccessful for corporate 
developers. These outcomes have been repeatedly confirmed by research [Brown 98]. 

Three key factors are exacerbating the software crisis: 

requirements change 

commercial innovation 

distributed computing 

A significant part of the problem is rising user expectations. User requirements for 
systems have increased much faster than corporate developers' capability to deliver. 
Requirements changes are more frequent, as businesses maneuver for competitive 
advantage with strategic corporate software. 

Another confounding factor is the destabilizing force of accelerating technology 
innovation, in both commercial software and hardware platforms. Corporate developers 
have difficulty finding compatible configurations of software products and are forced to 
upgrade configurations frequently as new products are released. Software maintenance 
due to technology upgrades is a significant corporate cost driver. 

Owing to predominance of the Internet and geographically diverse enterprises, distributed 
computing is an essential feature of many new applications. Traditionally, software 
designers assumed homogeneous configurations, centralized systems, local 
communications, and infrequent failures. Today's highly distributed enterprises require 
heterogeneous hardware/software, decentralized legacy configurations, and complex 
communications infrastructure. The resulting computing environments have frequent 
partial system failures. Distributed computing reverses many key assumptions that are the 
basis for procedural and object-oriented software development. 
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The software industry has established object orientation (OO) as the mainstream 
technology. OO is the technology adopted by new corporate development projects 
because it is universally supported by software tool vendors. Masses of legacy 
programmers are training for object-oriented development (e.g., C++ and the Java 
programming language) as corporations create new strategic systems. Unfortunately, 
these developers and corporations are likely to become the next generation of 
disillusioned participants in the software crisis. However, the organizations that survive 
and thrive with this technology, must use it in sophisticated new ways, represented by 
componentware. 

1.2 Software Architecture as a Discipline 

As a professional discipline, software architecture has at least a dozen schools of thought. 
Some of the major schools of thought include: 

Zachman Framework [Zachman 97] 

Open Distributed Processing (ODP) [ISO 96] 

Domain Analysis [Rogers 97] 

Rational's 4+1 View Model [Booch 98] 

Academic Software Architecture [Bass 98] 

Alternative architecture approaches share concepts and principles, but their terminologies 
differ greatly. Each architecture school is relatively isolated from the others. In the 
literature of any given school, perhaps one or two other schools are acknowledged, 
however briefly. None of the schools appear to make any significant use of the results of 
the others. Since the terminology between these groups varies significantly, 
communication is difficult, especially between practitioners using different architecture 
approaches. Upon further study, we find that the goals of each school are quite similar, 
and each school has some unique value to offer. 

In addition to these schools, there are many vendor-driven approaches that are tied to 
specific product lines, such as Netscape ONE, Sun Enterprise JavaBeans, and Microsoft 
BackOffice. In fact, every vendor appears to have a unique architectural vision for the 
future founded upon its own product lines. 

Many vendors actually have minimal understanding of application architecture. Thus, I 
focus here on those approaches which consider key application drivers with appropriate 
product support for underlying capabilities. 

Architecture Approaches 

Here is a brief tour of the major schools of software architecture thought. 

Zachman Framework 
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Derived from IBM research and practice, the Zachman Framework is a traditional 
architecture approach; i.e., it is decidedly non-OO. The Zachman Framework is a 
reference model comprising 30 architecture viewpoints. The reference model is a matrix, 
which intersects two paradigms: journalism (who, what, when, why, where, and how) and 
construction (planner, owner, builder, designer, subcontractor). Architects choose from 
among these viewpoints to specify a system architecture. 

Open Distributed Processing 

A formal standard from ISO and ITU (telecommunications), Open Distributed Processing 
(ODP) defines a five-viewpoint reference model (enterprise, information, computational, 
engineering, and technology). ODP defines a comprehensive set of terminology, a 
conformance approach, and viewpoint correspondence rules for traceability. The product 
of seven years of standards work, ODP is a recent adoption that fully supports OO and 
component-based architecture. In fairness, I should note that ODP is my primary 
approach to software architecture. 

Domain Analysis 

A process for the systematic management of software reuse, domain analysis transforms 
project-specific requirements into more general domain requirements for families of 
systems. The requirements then enable the identification of common capabilities, which 
are used as the basis for horizontal frameworks and reusable software architectures. An 
important capability of this approach is the definition of robust software designs, which 
are relatively resistant to requirements and context changes. 

4+1 View Model 

A four-viewpoint approach is under development by Rational Software. The viewpoints 
include: logical, implementation (formerly "component"), process (i.e., runtime), and 
deployment. The "+1" denotes use case specifications supporting requirements capture. 
This approach is closely aligned with the Unified Modeling Language and the Unified 
Process. 

Academic Software Architecture 

Academic software architecture comprises a community of computer science researchers 
and educators constituting an academic field. Their educational efforts are focused on 
basics and fundamentals. In their research contributions, this community avoids proven 
architectural standards and practices in order to achieve originality, theoretical formality, 
and other academic goals. 

Common Principles 

It is often said that the principles of software are simple. For example, let's consider (1) 
simplicity and (2) consistency. Architects agree that managing complexity (i.e., achieving 
simplicity) is a key goal, because it leads to many architectural benefits, such as system 



IT-SC 16

adaptability and reduced system cost. For example, a simpler system is easier to test, 
document, integrate, extend, and so forth. 

" Explore the situation from more than one point of view. A seemingly impossible 
situation might become transparently simple " [Rechtin 97].  

Simplicity is most necessary in the specification of the architecture itself. Most 
architectural approaches utilize multiple viewpoints to specify architecture. Viewpoints 
separate concerns into a limited set of design forces, which can be resolved in a 
straightforward and locally optimal manner. 

Consistency enhances system understanding and transfer of design knowledge between 
parts of the system and between developers. An emphasis on consistency contributes to 
the discovery of commonality and opportunities for reuse. Architects agree that 
unnecessary diversity in design and implementation leads to decidedly negative 
consequences, such as brittle system structure. 

Architecture Controversies 

The principal disagreements among architecture schools include: (1) terminology, (2) 
completeness, and (3) a priori viewpoints. 

Architects disagree on terminology due to their backgrounds or schools of thought. For 
example, when discussing software interfaces, the consistency principle is variously 
called: standard interfaces, common interfaces, horizontal interfaces, plug-and-play 
interfaces, and interface generalization. We can also argue that variation-centered 
design (from design patterns) and component substitution are largely based upon 
consistent interface structure. 

Unnecessary diversity of terminology leads to confusion, and sometimes to proprietary 
advantage. Some vendors and gurus change terminology so frequently that keeping up 
with their latest expressions becomes a time-consuming career. 

Differences in terminology lead to miscommunication. In contrast, some distinct areas of 
disagreement among architecture schools can't be resolved through improved 
communications alone. 

The notion of complete models is promoted by legacy OO approaches (e.g., OMT), the 
Zachman Framework school, and various others. These groups have promoted a vision 
that complete models (describing multiple phases of development) are a worthwhile goal 
of software development projects. Other schools would argue that multiple models are 
not maintainable, that unnecessarily detailed models are counterproductive, and that 
architectural significance should be considered when selecting system features for 
modeling. 

These contrary notions can be summarized in terms of the principle of pragmatism. We 
side with the pragmatists for the above reasons and because most software systems are 
too complex to model completely (e.g., multithreaded distributed computing systems). 
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Pragmatism is a key principle to apply in the transition from document-driven to 
architecture-centered software process. 

The selection of architecture viewpoints is a key point of contention among architecture 
schools. Some schools have preselected a priori viewpoints. Some schools leave that 
decision to individual projects. The Zachman Framework is an interesting case, because it 
proposes 30 viewpoints, from among which most projects select groups of viewpoints to 
specify. 

Variable viewpoints have the advantage that they can be tailored to address the concerns 
of particular system stakeholders. Predefined viewpoints have the advantage that they can 
accompany a stable conceptual framework and a well-defined terminology, as well as 
predefined approaches for resolving viewpoint consistency and architecture conformance. 

Innovative Software Architecture 

There are many active and successful schools of software architecture thought. Software 
architecture is a discipline unified by principles, but divided by terminology. The various 
architecture schools can be viewed as different branches of an evolutionary progression. 

The Zachman Framework has evolved from the traditional non-OO approaches. ODP is 
an outgrowth from object-oriented and distributed-computing paradigms that has 
achieved stability, multiindustry acceptance, and formal standardization. Both Zachman 
and ODP approaches have enjoyed significant success in production-quality software 
development. Domain analysis has demonstrated its worth in defining robust, domain-
specific software architectures for reuse. The 4+1 View Model is an approach undergoing 
development, in parallel with the Unified Process. 

All of the above can be described as innovative software architecture approaches. They 
are being applied in practice, based upon various levels of proven experience. Academic 
research in software architecture is defining a baseline for architecture knowledge that 
resembles a lowest common denominator of the above approaches. Fortunately, the 
academic community has legitimized the role of the software architect, regardless of 
whether their guidance is useful to innovative architects. 

In our opinion, software architects should have a working knowledge of the innovative 
approaches described above. In addition, they should utilize one of the product-quality 
architecture frameworks in daily practice. Component architecture development is a 
challenging area, requiring the best of stable conceptual frameworks supporting sound 
architectural judgment. 

The Architecture Paradigm Shift 

The nature of information systems is changing from localized departmental application to 
large-scale global and dynamic systems. This trend is following the change in business 
environments toward globalization. The migration from relatively static and local 
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environments to highly dynamic information technology environments presents 
substantial challenges to the software architect (Figure 1.1). 

Figure 1.1. Virtual Enterprise Paradigm Shift 

 
A majority of information technology approaches are based upon a set of traditional 
assumptions (Figure 1.2). In these assumptions the system comprises a homogeneous 
set of hardware and software which is known at design time. A configuration is relatively 
stable and is managed from a centralized system management configuration. 
Communications in traditional systems are relatively predictable, synchronous, and local. 
If the state of the system is well known at all times and the concept of time is unified 
across all the activities, another key assumption is that failures in the system are 
relatively infrequent and, when they do occur, are monolithic. In other words, either the 
system is up or the system is down. 

Figure 1.2. Traditional and Distributed-Systems Assumptions 
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In the building of distributed application systems, most of the assumptions are reversed. 
In a distributed multiorganizational system it is fair to assume that the hardware and 
software configuration is heterogeneous. The reason is that different elements of the 
system are purchased during different time frames by different organizations and many of 
the decisions are made independently. Therefore in a typical configuration you have a 
variety of information technology. It is also the case that hardware and software 
configurations are evolving. Occurring within any organization are turnover in employees 
and evolution of business processes. The architecture of the organization impacts the 
architecture of the information technology. As time progresses, new systems are installed, 
systems are moved, new software is acquired, and so on. When multiple organizations are 
involved, these processes proceed relatively independently, and the architect must 
accommodate the diverse evolving set of configurations. 

In distributed systems, the assumption is that there is remote processing at multiple 
locations. Some of this remote processing is on systems that were developed 
independently and therefore have their own autonomous concept of control flow. This 
reverses the assumption of localized and unified processing resources. There are some 
interesting implications for the concepts of state and time. The state of a distributed 
system is often distributed itself. The state information may need to be replicated in order 
to provide efficient reliable access at multiple locations. It is possible for the distributed 
state to become nonuniform in order to get into error conditions where the replicated state 
does not have the desired integrity and must be repaired. The concept of time-distributed 
systems is affected by the physics of relativity and chaos theory. Electrons are traveling 
near the speed of light in distributed communication systems. In any large system there is 
a disparity between the local concepts of time, in that this system can only have an 
accurate representation of partial ordering of operations in the distributed environment. 
The total ordering of operations is not possible because of the distances between 
information process. In addition, distributed communications can get quite variable and 
complex. In a distributed system there are various qualities of service which 
communications systems can provide. The communications can vary by timeliness of 
delivery, the throughput, the levels of security and vulnerability to attack, the reliability 
of communications, and other factors. The communications architecture must be 
explicitly designed and planned in order to account for the variabilities in services. 

Finally, the distributed system has a unique model of failure modes. In any large 
distributed system components are failing all the time. Messages are corrupted and lost, 
processes crash, and systems fail. These kinds of failures happen frequently and the 
system must be architected to accommodate for them. 

In summary, distributed processing changes virtually all of the traditional system 
assumptions that are the basis for most software engineering methodologies, 
programming languages, and notations. To accommodate this new level of system 
complexity, architects have three new needs. 

First, architects need the ability to separate complex concerns, in particular to separate 
concerns about business-application functionality from concerns about distributed-system 
complexity. Distributed computing is a challenging and complex architectural 



IT-SC 20

environment unto itself. If systems are built with traditional assumptions, architects and 
developers are likely to spend most of their time combating the distributed nature of real-
world applications. Problems and challenges of distributed computing have nothing to do 
fundamentally with business-application functionality. 

The purpose of information technology is to establish new business processes. By 
separating concerns, we can focus on the business functionality that is the true purpose of 
the information system. Ideally, architects would like to separate distributed-system 
issues into categories of design, where the majority of components are purchasable as 
commodity communication infrastructure. 

Object-oriented architects also need the ability to future-proof the information systems 
that they are planning. It is important to accommodate commercial technology evolution, 
which we know is accelerating and beginning to provide substantial challenges for 
architects and developers. Future-proofing also requires the ability to adapt to new user 
requirements, since requirements do change frequently and account for a majority of 
system software cost over the life cycle. It is important to plan information systems to 
support the likely and inevitable changes that users will require in order to conduct 
business. 

A third need for object-oriented architects is the ability to increase the likelihood of 
system success. Corporate developers to date have had a very poor track record of 
creating successful systems. The object-oriented architect is responsible for planning 
systems with the maximum probability of delivering success and key benefits for the 
business. Through proper information technology planning, we believe that it is possible 
to increase the likelihood of system delivery on time and on budget. 

In confronting these three needs, authorities in software engineering and computer 
science tend to agree that architecture is the key to system success. Authorities in areas 
ranging from academia to commercial industry are declaring that software architecture is 
essential to the success and management of information systems. There is a long and 
growing list of software authorities who have come to this conclusion. Unfortunately, it is 
not always clear to everyone what software architecture truly is. In order to provide 
clarification, we need to take a look at some of the reference models which provide 
definitions of software and systems architecture (Figure 1.3). 

Figure 1.3. Software-Intensive Systems Architecture Reference Models 
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The needs that we are discussing have been thoroughly considered by many authorities. 
There are two leading meta-architecture frameworks that guide the development of 
software system architecture. One of the popular frameworks originated at IBM and is 
called the Zachman Framework. The Zachman Framework predated the popularity of 
object orientation and took the perspective of separating data from process. In the 
Zachman Framework there are six information system viewpoints as well as five levels of 
design abstraction. The original Zachman Framework published in 1987 contained 
viewpoints for the network, the data, and the process of the information system [Zachman 
97]. A subsequent revision introduced three additional viewpoints. The current 
framework resembles the set of traditional journalistic questions, which include who, 
what, when, why, where, and how. Each viewpoint in the Zachman Framework answers a 
chief set of questions to ensure that a complete system engineering architecture is created. 

The Zachman Framework formed a matrix of architecture descriptions which are also 
organized in terms of levels. There are five levels of description above the information 
system implementation. They range from architectural planning done by individual 
programmers at the finest grain to the overall enterprise requirements from the investors' 
perspective of the information system. In total, the Zachman Framework identifies 30 
architectural specifications, which provide a complete description of the information 
system. In practice no real-world project is capable of creating these 30 or more detailed 
plans and keeping them all in synchronization. When the Zachman Framework is applied, 
systems architects partition the viewpoint into various categories and create architectural 
specifications that cover all of the different Zachman descriptions without having to 
create the large number of specification documents that the Zachman Framework implies. 
One example is a very successful architecture initiative by the United States Department 
of Defense called the C4ISR architecture framework, where C4ISR stands for Command 
and Control, Computers, Communication, Intelligence Surveillance, and Reconnaissance. 
The C4ISR architecture framework is used to describe DOD information technology at 
the highest echelons of the organization. The primary benefit in this case is that different 
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service organizations and agencies can communicate their architectural plan through 
common-viewpoint description. 

Beyond the Zachman Framework, object-oriented architects have discovered additional 
needs for defining computational architecture and other viewpoints which are not obvious 
applications of the Zachman principles. The international standards organization (ISO) 
has also considered these architectural issues. Recently completed is the ISO reference 
model for open distributed processing called RM-ODP. This model belongs to a category 
of ISO standards called open distributed processing (ODP). ODP is an outgrowth of 
earlier work by ISO in open systems interoperability. The Open Systems Interconnection 
(OSI) seven-layer reference model identified an application layer which provided 
minimal structure and guidance for the development of application systems. In fact, the 
seventh layer for applications groups remote procedure calls, directory services and all 
other forms of application level services within the same architectural category, not 
defining any particular structure or guidance for this significant category of functionality. 

A Standard for Architecture 

Among the various architecture approaches, there is a useful international standard that 
defines what information systems architecture means, the Reference Model for Open 
Distributed Processing (RM-ODP) [ISO 96]. We will cover it as one way to think about 
software architecture. This model is representative of mature software architecture 
practice today. 

RM-ODP defines five essential viewpoints for modeling systems architecture: 

Enterprise Viewpoint 

Information Viewpoint 

Computational Viewpoint 

Engineering Viewpoint 

Technology Viewpoint 

The five viewpoints provide a comprehensive model of a single information system. 

An enterprise viewpoint contains models of business objects and policies. Enterprise 
policies include permissions, prohibitions, and obligations. An information viewpoint 
includes the definition of information schemas as objects. Three kinds of RM-ODP 
schemas include static, invariant, and dynamic. A computational viewpoint includes 
definitions of large-grained object encapsulations, including subsystem interfaces and 
their behaviors. These three viewpoints define architecture in a manner that makes 
distributed computing transparent. An engineering viewpoint exposes the distributed 
nature of the system. The distribution transparencies supported by infrastructure are 
declared explicitly. The allocation of objects onto processing nodes is also specified. RM-
ODP defines a reference model of distributed infrastructure called a channel which is 
used to model all forms of middleware connections. 
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RM-ODP defines eight distribution transparency properties. It is interesting to note that 
only a handful of these properties are supported by major commercial infrastructures 
(without resorting to niche-market products). For example, CORBA products provide full 
support for access, location, and transaction transparency, with some support for failure 
and persistence transparency. Microsoft's Distributed Component Object Model (DCOM) 
provides support for persistence and transaction transparency, with limited support for the 
other properties. 

Open distributed processing and its reference model are the result of ten years of formal 
standardization work at ISO. The reference model for open distributed processing is 
object oriented. It provides a referenced model that was intended to address three 
fundamental goals: (1) to provide a standard framework for further work and additional 
detailed standards under the open distributed processing initiative, (2) to provide a set of 
common terminology and concepts that could be applied for the development of product 
and application systems for open distributed processing, (3) to provide a guideline for 
object-oriented architects to specify software systems. This third purpose is directly 
relevant to the day-to-day practices of systems architects. 

Open distributed processing includes several other standards which are significant 
(Figure 1.3). In particular, it has adopted the interface definition language from 
CORBA as a notation for a specified computational architecture. It also has a standard for 
the trader service, which is the key directory service supporting the discovery of 
application functions in distributed systems. The trader service has subsequently been 
adopted as a commercial standard through the object management group. The group's 
object management architecture is a commercial specialization of open distributed 
processing. 

All together, the OMG's consensus standards and the ISO open distributed processing 
form a set of software architecture standards that are useful intellectual tools for most 
software architects and developers. 

RM-ODP has three completed standards documents. Part one of the standards is a non-
normative overview and summary of the overall concepts and terminology. All three 
parts of the adopted standard are cosponsored by the International Telecommunications 
Union ITU-T through their X.900 series. The cosponsorship of both ISO and ITU-T 
represents a broad international consensus on this guideline for object-oriented 
architecture. 

Part two of the standard is the foundations document, comprising a glossary of standard 
terminology for object oriented distributed systems. 

Part three of the standards is the architecture document. It defines the various viewpoints 
for object-oriented architecture along with their structuring rules and various open 
distributed processing functions which enable distributed computing. 

Altogether, these three standards documents comprise less than 200 pages of 
documentation with the normative parts, part two and part three comprising about 100 
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pages. Even though this is a relatively short standard, it provides a great deal of valuable 
information. Many ISO standards are relatively inscrutable to the practicing software 
engineer; this standard is no exception. However, we believe that the effort to understand 
it is very worthwhile, given the challenges of distributed computing in business process 
change that need to be resolved. 

Who supports RM-ODP? RM-ODP is the product of formal standards bodies including 
ISO and IEEE. The IEEE is an accredited standards organization reporting to ISO; 
therefore, the IEEE is a voting participant and joint supporter of RM-ODP as well. RM-
ODP is the formal standards basis for the object management group's object management 
architecture and all of the resulting technologies that the group has adopted which form 
the basis for distributed object computing and technologies that are available 
commercially. RM-ODP is also accurately used in several mission-critical industries 
which depend upon information technology for their income. In particular, RM-ODP is 
applied across the telecommunications industry through the telecommunications 
information network architecture consortium, and RM-ODP is actively used by 
telecommunication companies such AT&T, Lucent, and Nortel. In the 
telecommunications industry, information technology is their business, and distributed 
information systems success is essential to maintaining their competitive advantage. 

Also applying ODP actively is the financial services industry. Companies such as Merrill 
Lynch, Morgan Stanley, and various mortgage lending organizations are applying RM-
ODP to define new information systems concepts. The deployment of new information 
technologies is becoming one of the key competitive advantages that these companies 
have for creating new market channels to distribute and transact new financial 
instruments and securities, and perform other financial services. For these industries 
failure of information systems directly affects bottom-line profitability and is usually not 
an option. If these influential companies accept this architectural approach and apply it 
actively, can your organization afford not to consider its benefits? 

The RM-ODP comprises five standard viewpoints. Each viewpoint is a perspective on a 
single information system (Figure 1.4). The set of viewpoints is not closed, so that 
additional viewpoints can be added as the needs arise. Another of their purposes is to 
provide information descriptions that address the questions and needs of particular 
stakeholders in the system. By standardizing five viewpoints, RM-ODP is claiming that 
these five stakeholder perspectives are sufficient for resolving both business functionality 
and distributed systems issues in the architecture and design of information systems. RM-
ODP is an elegant model in the sense that it identifies the top priorities for architectural 
descriptions and provides a minimal set of traceability requirements which are adequate 
to ensure system integrity. 

Figure 1.4. Architecture Viewpoint Perspectives 
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The enterprise viewpoint of our RM-ODP takes the perspective of a business model. The 
enterprise models should be directly understandable by managers and end users in the 
business environment. The enterprise viewpoint ensures that business needs are satisfied 
through the architecture and provides a description which enables validation of these 
assertions with the end users. 

The information viewpoint defines the universe of discourse in the information system. 
The perspective is similar to the design information generated by a database modeler. The 
information viewpoint is a logical representation of the data and processes on data in the 
information system. 

Each of the five RM-ODP viewpoints is object oriented, and they provide a complete 
model of the system from the given perspective. The information viewpoint is an object-
oriented logical model of the information assets in the business and how these assets are 
processed and manipulated. 

The computational viewpoint partitions the system into software components which are 
capable of supporting distribution. It takes the perspective of a designer of application 
program interfaces for componentware. The computational viewpoint defines the 
boundaries between the software elements in the information system. Generally, these 
boundaries are the architectural controls that ensure that the system structure will embody 
the qualities of adaptability in management of complexity that are appropriate to meet 
changing business needs and incorporate the evolving commercial technology. 

The engineering viewpoint of RM-ODP exposes the distributed nature of the system. Its 
perspective is similar to that of an operating system engineer who is familiar with the 
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protocol stacks and allocation issues that are necessary to define the distributed 
processing solutions for the information system. 

The fifth viewpoint is the technology viewpoint. It defines the mappings between the 
engineering objects and other architected objects to specific standards and technologies 
including product selections. The viewpoint is similar to that of a network engineer who 
is familiar with the protocol standards and products available commercially which are 
appropriate selections to configure the information system. 

All five RM-ODP viewpoints are co-equal in the sense that they do not form levels of 
description; rather each viewpoint provides a complete model of the information system 
that is object oriented and corresponds to the other viewpoints. Each defines various 
constraints on the design of the information system that provide various architectural 
benefits for each of the system's stakeholders. The RM-ODP viewpoints enable the 
separation of concerns which divide the business and logical functionality of the system 
from the distributed computing and commercial technology decisions of the architecture. 

The first three viewpoints identify informational and computational characteristics. The 
enterprise and information viewpoints are purely logical views of the business, 
represented as object-oriented models (Figure 1.5). The computational viewpoint is 
independent of the distribution of software modules, but it must define computational 
boundaries which are enabled for distribution. The CORBA IDL notation for specifying 
computational interfaces is appropriate for this purpose. IDL provides a way to define 
computational interfaces which are independent of the distribution and deployment issues 
in enterprise development. The first four viewpoints—enterprise, information, 
computational, and engineering—are independent of specific implementations. In other 
words, the majority of the architectural design is independent of the specific product 
selections which configure the system. This property of RM-ODP enables the evolution 
of technology components without impacting the overall architectural constraints defined 
in the first four viewpoints. The engineering viewpoint defines qualities of service and 
distribution transparencies which evolving technology selections must support. The 
terminology of RM-ODP assists in providing concise descriptions of these technology 
requirements. 

Figure 1.5. Characteristics of Architecture Viewpoints 
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RM-ODP contains many terminology definitions which are useful concepts for object-
oriented architects. Some of the key definitions in RM-ODP are the distribution 
transparencies. RM-ODP defines in distribution transparencies which specify the 
qualities provided by distributed computing infrastructure (Figure 1.6). Currently 
available commercial infrastructures provide some subset of these, such as location, and 
access transparencies provided by CORBA along with partial support for persistence in 
transaction transparency. Additional transparencies are available through niche-market 
products and through custom implementations which are enabled by proper architectural 
separation of infrastructure requirements from technology selections. Technologies which 
do not provide access transparency, such as Microsoft COM+ and the distributed 
computing environment, do not adapt well to the future evolution of distributed systems 
(Figure 1.7). 

Figure 1.6. Distribution Transparencies 

 

Figure 1.7. Distribution Channel model 
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RM-ODP provides standard definitions for distributed infrastructure objects that enable 
abstract descriptions of engineering constraints. Figure 1.7 is an example of the 
engineering objects which RM-ODP defines. These engineering objects are capable of 
defining the characteristics of all forms of distributed infrastructure, including remote 
procedure calls, screening data interfaces, and asynchronous interfaces for signaling. 
Among the most important features of RM-ODP are its definitions supporting 
conformance assessment. After all, what is the purpose of architectural documentation 
unless we can assess conformance—that is, make sure that the implementation of the 
system corresponds to the written and intended architectural plans. 

RM-ODP defines four categories of conformance and proceeds to specify how 
conformance is represented in an architectural plan. The first category is called 
programmatic conformance. This is the usual notion of behavioral testing of software 
interfaces. Many of the programmatic conformance points will occur in the 
computational viewpoint specification of RM-ODP based architectures. 

Perceptual conformance includes testing at user interfaces in communications ports 
that represent external boundaries to the system. Usability and user interface testing can 
be defined through perceptual conformance assessment. Interworking conformance 
involves testing between systems implementations. It is not sufficient for individual 
systems to have programmatic conformance in order to guarantee interoperability. 
Interworking conformance includes interoperability testing between working 
implementations, which is an additional requirement beyond programmatic conformance. 
Interchange conformance involves testing of the exchange of external media, such 
as disks and tapes. It ensures that information that is stored on external media can be 
interpreted and assimilated in other systems that conform to the same standards. RM-
ODP also defines correspondence requirements between the various viewpoints of 
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application architecture. In general, the objects defined in each of the viewpoints do not 
have to be explicitly correspondent, because they represent independent description of the 
system representing various levels of granularity of descriptions and constraints. 

Several key points of correspondence must be ensured. The computational viewpoint 
must support any dynamic behaviors that are specified in the information viewpoints. The 
information viewpoint represents the information in the information system and its 
processing. Whenever a process occurs, it must be explicitly allocated to the internal 
operation of one of the computational modules or it must be explicitly allocated to a 
particular computational interaction—in other words, invoking a software interface to 
cause the processing of information. In addition, there is an explicit correspondence 
requirement between the computational and engineering viewpoints. In general, 
engineering objects outnumber computational objects, because the engineering viewpoint 
exposes the objects in the distributed infrastructure, which may be numerous. For every 
computational interface defined in the computational viewpoint, there must be an explicit 
correspondence to engineering interfaces in the engineering viewpoint objects. The 
computational boundaries must map onto distributed engineering objects so that the 
distribution strategy is clarified by the architecture. 

Applications and Profiles 

Open systems standards (such as RM-ODP) are purposely generic so that they apply to 
all domains. To make standards deliver their benefits, a profile is required. A profile is 
an implementation plan for how the standard is applied within a context. Several profiles 
of RM-ODP are in use today. 

The 4+1 View Model is a viewpoint-based architecture approach supported by OO tools 
such as Rational Rose. The viewpoints include: 

Use Case View 

Logical View 

Process View 

Implementation View 

Deployment View 

The use case view models enterprise objects through a set of scenarios. The logical view 
includes object models of packages, classes, and relationships. The process view 
represents control flows and their intercommunications. The implementation view defines 
the modular structure of the software. The deployment view identifies the allocation of 
software onto hardware. An architecture defined as a 4+1 View Model covers aspects of 
all 5 RM-ODP viewpoints. 

RM-ODP is being applied in several industries, including financial services and defense. 
For example, the United States Department of Defense (DoD) has a profile of RM-ODP, 
called the Command, Control, Communications, Computers, Intelligence, Surveillance, 
and Reconnaissance Architecture Framework (C4ISR-AF). C4ISR-AF defines three 
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viewpoints: operational architecture, system architecture, and technical architecture. An 
information viewpoint is also specified. 

Before applying the framework, DoD services defined their architectures using disparate 
conventions. C4ISR-AF is currently used by all DoD services to describe their 
architectures. The framework is enabling technology exchanges across diverse system 
development programs. Reuse opportunities and common interoperability solutions are 
being identified and defined as a result. 

Viewpoint Notations 

Within each viewpoint, the RM-ODP approach uses formal notations (or specification 
languages) that support architecture description. 

One of the most useful notations for specifying computational viewpoints is the ODP 
interface definition language (ODP IDL). ODP IDL is a related international standard 
that is identical to CORBA IDL. It enables the specification of object encapsulations that 
can be implemented on multiple infrastructures, such as CORBA, Microsoft COM, and 
the Adaptive Communication Environment (ACE). Since ODP IDL is programming-
language independent, a single interface specification suffices to define interoperable 
interfaces for C, C++, Ada95, COBOL, Smalltalk, the Java programming language, and 
Microsoft IDL. These mappings are defined by open systems standards and supported by 
commercial products. 

Another useful notation for describing architecture viewpoints is the Unified Modeling 
Language (UML). UML is an object-oriented notation recently adopted by the Object 
Management Group. UML is also supported by Microsoft in its respository and 
development environment technologies. 

Although it is not widely publicized, RM-ODP is providing architectural benefits in 
multiple industries. RM-ODP is a formal standard that defines how to describe 
distributed OO architectures. In practice, RM-ODP's viewpoints, models, and 
transparency properties are useful conceptual tools for object-oriented architects. 

1.3 Design Patterns and Software Architecture 

We view software architecture as an eclectic practice, combining ideas from many areas 
of computer science and software engineering. Reuse of these ideas and existing 
knowledge is paramount to the effective practice of the architectural discipline. Luckily, 
the popular movement of design patterns has codified and documented a great deal of 
software knowledge for this purpose. We believe that software architects should also be 
pattern literate. 

What the design patterns community has done is to make the reuse of lessons learned into 
a popular, trendy approach. Patterns represent a rejection of originality as a technical goal, 
including an active avoidance of the Not-Invented-Here (NIH) syndrome. 
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Design Patterns 

Design patterns are a significant extension to object-oriented paradigm. Design patterns 
are documented representations of software engineering knowledge. They are intended to 
capture expert-level knowledge and important lessons learned. Design patterns are a 
departure from previous object-oriented guidance in several respects. Patterns document 
essential design knowledge, transcending original object-oriented notions. Originally, 
object orientation was based upon modeling of the natural world as objects. To design 
effective software systems, more sophisticated structures are needed that are unique to 
software. 

Design patterns have more stringent requirements for documenting knowledge. Design 
patterns should represent proven solutions, not merely wishful thinking about how 
software should be done. This concept is embodied in the so-called rule of three. 
Informally, the rule of three states that: "A single design occurrence is an event, two 
occurrences are a coincidence, and three occurrences are a pattern." To the design 
patterns authors, there is a more literal meaning, that patterns are proven solutions 
applied by one or more communities of experts on a recurring basis. 

Design patterns also introduce the notion of design force, also called issues or concerns. 
Design patterns document these forces explicitly and elaborate the solution in terms of 
resolving the design forces. 

In order to facilitate problem solving, it is useful to find ways to separate design 
concerns—design elements which are implicitly responsible for resolving all potential 
concerns, those that are potentially unstable (when subject to scrutiny), and those that 
may require voluminous documentation to justify the design. Explicit reference models 
for separation of concerns have been proposed for software engineering and other fields 
of engineering endeavor. 

Figure 1.8 also contains a software design-level model proposed by Shaw and Garlan 
showing three levels [Shaw 96]. In comparison, the software community does not have a 
sophisticated view of how to separate design concerns, and it is also not known what the 
components are that comprise each of these levels. In the software design model, the 
machine level represents the binary software that is part of the operating system and 
commercial products that cannot be modified by the application developer. The code 
represents the program that is the domain of application development, and the third level 
is the architecture, which provides a model of how the system is partitioned and how 
the connections between the partitions communicate. The shortcomings of this simple 
model are that it does not represent any significant separation of concerns and that 
important properties such as interoperability between systems are not considered. 

Figure 1.8. The Concept of Design-Level Models 
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Software Design-Level Model 

Figure 1.9 shows the software design-level model that we propose in our book called 
CORBA Design Patterns [Mowbray 97a]. This model was originated by one of the 
founders of the design pattern movement, Richard Helms, and describes in a recursive 
fractal fashion what the various levels of software design are in terms of objects. At the 
micro levels we have individual objects, and the design principles that apply to those 
individual objects are usually object specific. There is a class of patterns called idioms 
which represent design guidance for language-specific issues. These issues are fairly fine 
grained. 

Figure 1.9. Software Design-Level Model 
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The next level up is called micro architecture patterns. In micro architectures we have 
small configurations of objects, generally a handful of objects that give us sophisticated 
ways of organizing our software structure to support variability in other qualities of 
design. The framework level then takes a number of micro architecture patterns and 
combines them into a partially completed application with reusable software. Above the 
micro level, we have completed applications and systems. The application level 
represents the application of zero or more frameworks to provide an independent program. 
We encounter issues such as user interface programming which are significant in 
software development. At the system level, we take a number of applications which play 
the role of subsystems and integrate those applications to create a working system 
environment. The system level is where many of the design forces applicable to 
programming are changed in terms of their priorities. Management of complexity and 
change becomes critical at the system level and above. 

At the enterprise level, we have a number of different systems which are integrated 
across an organization or virtual enterprise of organizations working in conjunction. The 
enterprise level is the longest scale of internally controlled operating environments. 

The global industry level is represented by the Internet, the commercial market, and the 
standards organizations, which comprise the largest scale of software systems. Figure 
1.10 represents the separation of design forces which occurs as we move throughout 
these various levels. Overall, the management of risk is a force which applies at all levels 
when we make software decisions. At the finer-grained levels, management of 
performance and functionality issues is very important and perhaps dominates any of the 
other design forces that apply horizontally across all the levels. Looking at the system 
level, the key design forces here include the management of change and the management 
of complexity. We come to this conclusion due to the writings of other authors. In 
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particular Horowitz writes that the adaptability of systems is the primary quality which is 
missing where the majority of system cost is due to changes in requirements reference 
[Horowitz 93]. Shaw and Garlan identify the management of complexity as the key 
design force at the system architecture level [Shaw 96]. 

Figure 1.10. Prevalent Forces in Software Decisions 

 
Above the system level the environment changes on a more frequent basis. Each system 
must be modified to support individual business processes; at an enterprise level with 
multiple systems the change accumulates as people move and the organization evolves on 
a daily basis. Management of the resources at the enterprise level and of technology 
transfer to support capabilities such as design and software reuse becomes more 
significant and important. At the global and industry levels, the management of 
technology transfer become predominant. When something is published on the Internet, it 
is instantly accessible on a global basis to virtually any organization or individual. Using 
the management of technology transfer design force, it is important to manage the 
information that the enterprise discloses in terms of software intellectual capital as well 
as the information that the organization exploits. 
Figure 1.11 shows the overall priorities for these horizontal design forces as they apply 
to the coarser-grained levels. Here we show that at the system architecture level the 
management of change is the predominant force, because it is linked directly to the cost 
of the system in published work. We also identify as a second priority the management of 
complexity, because it is a design force that is emphasized by academic authorities in 
software architecture. Priorities at the other levels are indicated to show how the 
perspective of each of the architectural designers at these levels varies by the scale of 
software design. We see these as guidelines for making sure that the appropriate priorities 
are allocated to decisions that are made at each of these levels. The reference model helps 
us to organize patterns knowledge and identify priorities for design forces that are 
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horizontal across all the levels. Design patterns are a modern approach to providing 
technical guidance. The breakthrough that design patterns provide is the capability of 
applying lessons learned and reusing design information across organizations. 

Figure 1.11. Priorities for Key Design Forces 

 
Design patterns represent a high-quality academic research movement that has its own 
conference series and visibility at most other technology events. The origin of design 
patterns comes from actual bricks-and-mortar building architecture. The original vision 
for design patterns included a design level model which we did not discover in other 
authors' work. We believe that design patterns represent the right approach for 
documenting guidance and solving technical problems in software architecture and 
system development. Figure 1.12 shows an example of a popular design pattern called 
the model view controller. This is a pattern that applies at the framework level and 
provides an approach for reusing software objects that contain data and processing which 
must be viewed and controlled in many different ways. 

Figure 1.12. Model View Controller Pattern 



IT-SC 36

 

The model view controller pattern includes model objects, view objects, and controller 
objects. The model object is the reusable component. It represents the data in the system 
and the encapsulating processes which need to be represented and controlled in several 
ways. The view objects represent various visualizations of that information, and there can 
be many simultaneous views that may be presented to groups of users. The controller 
objects represent various business processes or mechanisms for controlling the processing 
of the data. The model view controller pattern has been around at least since the invention 
of Smalltalk and has been reapplied at several different scales of software by various 
groups, including UML's business classes and the OMG business object task force which 
defines business objects in an analogous set of categories [Mowbray 97b]. Figure 11.6 
shows the overall structure of design patterns. The essence of any design pattern is a 
problemsolution pair. The problem is explained and expanded in terms of the applicable 
design forces and any contextual forces which may be present. The solution resolves the 
design forces in a particular manner. The selection of any solution is a commitment, and 
a commitment provides some benefits as well as consequences. In addition, selection of a 
solution may lead to additional problems where other patterns are appropriate. 

Design patterns are distinguished from other forms of software literature in that design 
patterns are presented in terms of a standard outline or template. Several templates have 
been published that meet the needs of various software design models. Figure 1.13 is a 
listing of the template developed for the CORBA design patterns [Mowbray 97a]. In this 
template there is a separation between the solution description and the variations of the 
solution, which may vary by structure and by scale of application. Making this separation 
allowed the authors to clarify the base solution at a particular scale and then to describe 
the variations and nuances of applying the pattern in separate sections of the template. 
The design pattern template is a rhetorical structure that ensures consistent coverage of 
the key questions that people may need to answer in order to apply the design 
information. In particular, when justifying the application of a pattern, it is important to 
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understand the benefits and potential consequences of the pattern to understand the real 
tradeoffs in design. If the design pattern authors have properly documented the pattern, 
they have identified those points of debate explicitly so that the users of the pattern do not 
have to reinvent that information. 

Figure 1.13. An Example Pattern Template 

 
Figure 1.14 is an example of a CORBA design pattern that applies in general to 
technologies beyond CORBA for system building. The problem is that most systems 
have vertical solutions, where each software module has a unique interface corresponding 
to each software implementation. The vertical solutions lead inevitably to stovepipe 
interdependencies between the modules in the system. By adding the common interface 
pattern to a system, we can capture the common interoperability information so that the 
software modules can interoperate without explicit dependencies upon particular 
implementations. The common interface pattern is a fundamental principle that is applied 
in standardization work and in software architectures in general. 

Figure 1.14. Common Interface Pattern 
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Figure 1.15 shows a related pattern which applies the common interface in a more 
general and sophisticated context. In this pattern, called the horizontal vertical metadata 
pattern, we have a static architecture for a system defined in terms of a common interface 
with vertical interface extensions; also we are adding some dynamic architecture 
elements represented metadata. A key tradeoff described in the pattern talks about how 
dynamic architecture and static architecture can be varied to represent different portions 
of the design. Dynamic architecture is one of the key solutions for implementing 
variability and adaptability in software architectures. 

Figure 1.15. Horizontal Vertical Metadata Pattern 
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Figure 1.16 shows how the horizontal-vertical-metadata pattern is actually an instance 
of a more general concept that is applied across standards organizations and profiling 
entities all the way down to a system level of deployment. This application of the 
horizontal-vertical-metadata pattern is directly analogous to the functional and system 
profiles that we describe in Chapter 4, where the functional profile is a vertical 
extension of a global standard. A system profile is a vertical extension of a functional 
profile, and any particular application system is a vertical instance of a system profile. 

Figure 1.16. Pattern Applicability at Multiple Scales 

 
Figure 1.17 shows an application-level pattern and how it is applied. We present this 
example to give you a flavor of what is involved. In this case we are showing a UML 
sequence diagram. Before the pattern is applied, there is a simple request and return 
transaction which actually causes the client program to block while it is occurring. It 
turns out that this is the default behavior of most distributed computing infrastructures 
such as remote procedure calls and CORBA. We can improve the performance of this 
configuration by adding a moderate amount of complexity and, after applying the pattern, 
we can return a reference to the result which will be computed in parallel and then 
retrieved later (Figure 1.17). 

Figure 1.17. Partial Processing Sequence Diagram 
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Figure 1.18 shows a table of several examples of design pattern languages. Much of 
the available pattern documentation addresses a specific software design level. More 
recent work on CORBA design patterns and pattern-oriented software architectures has 
addressed several levels of abstraction where these level are explicit. At the idiom level 
of design patterns we are concerned with individual objects. Idiom documentation has 
been widely available in the form of programming language guidebooks. Idioms 
represent expert programming techniques. These are techniques that one would 
rediscover after substantial use of a language. If software engineers are maintaining 
software written by other people, it is essential to understand idioms in order to 
understand the intentions of the programmers applying these sophisticated ideas. 

Figure 1.18. Comparison of Design Pattern Languages 

 

One of the first published design pattern languages described microarchitecture patterns 
[Gamma 94]. The goal of the gamma pattern language was to invent a new discipline of 
variation-centered software design. The gamma pattern language is organized in terms of 
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several categories including creational patterns, structural patterns, and behavioral 
patterns. When applying the gamma patterns, complexity of design is increased with the 
benefit of potential support for potential modification of the software. Gamma patterns 
have become very popular and are applied widely in software engineering organizations 
today. 

AntiPatterns 

A recent development in the patterns community is called AntiPatterns. An AntiPattern 
differs from an ordinary pattern in that it is a solution pair rather than a problemsolution 
pair (Figure 1.19). An AntiPattern starts with a problematic solution. The reason why 
the solution is there is due to various contextual forces. The AntiPattern solution leads to 
various kinds of symptoms and consequences, and the consequences can be quite 
devastating. The AntiPattern proceeds to define a potential solution for migrating the 
problematic solution to a refactored solution providing improved benefits. AntiPatterns 
are fundamentally about software refactoring. Refactoring is modification to software to 
improve its structure or quality. Common examples of AntiPatterns include stovepipe 
systems, spaghetti code, and analysis paralysis. AntiPatterns are further explained in the 
book AntiPatterns published by John Wiley & Sons in 1998 [Brown 98]. 

Figure 1.19. AntiPatterns 
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1.4 Conclusions 

In order to realize the benefits of software components and object technology, much more 
effective guidance is needed than the naive application of objects which characterized the 
first generation of these technologies. Design patterns are a highly effective and 
academically based guidance approach that is now being practically applied in many 



IT-SC 43

software development shops. The technology and skills transfer available through design 
patterns can lead to some important benefits, including reducing software risks, 
enhancing the effectiveness and productivity of the software developer, and making 
successful practices repeatable. 

In particular, the reference model for open distributed processing is the formal standard 
for object-oriented architecture. This reference model is widely used because it is 
effective for defining distributed systems. The model is used in many industries where 
mission-critical systems must be successful. RM-ODP separates complex concerns for 
the specification of distributed systems. RM-ODP enables future proofing because it 
defines an approach for specifying architectural plans which are independent of 
distribution and technology choices. We believe that RM-ODP is a key architectural 
guideline for object-oriented systems and should be applied in your organizational 
practices. 

1.5 Exercises 

Exercise 1.1 

Define your career plan for the next two years. As your career progresses to higher levels 
of seniority, you will be expected to require redirection on a less frequent basis, with the 
maximum being about once a year. We believe that planning is essential, so making a 
career plan at this early stage of your reading would be a positive step. Identify your 
goals, and then identify what you need to know in order to achieve your goals (i.e., 
knowledge gaps). Be brutally honest. 

Example Solution: 

Three years ago, my goal was to continue in technical architecture roles and increase my 
knowledge in several areas, so that I could be a more complete contributor. In particular, 
I wanted to gain extensive experience in UML modeling, design patterns, and software 
process and to reconnect with programming fundamentals. I also wanted to gain some 
management experiences to add to my resume. I wanted to give the research and 
development cycle one more go, for both personal and professional reasons. After all, I 
joined this industry because I loved programming. At the back of my mind was a desire 
to help some friends in small commercial businesses, but I sorely lacked experience in 
this area, having worked mostly for large defense contractors and think tanks. Having a 
list of what I wanted to learn, I next consulted the Internet, the world's most extensive 
collection of free resources. I located several books, training courses, and other 
information that helped me identify specific learning targets. 

Being a relatively independent middle manager in the technical ladder, I adjusted my 
workload to align with my goals. I prepared a tutorial on UML and defined an 
architecture using UML notation, which was within the scope of our research. I 
downloaded the latest version of the Java programming language from Sun Microsystems 
and began programming the first phase of the architecture prototype. I was having fun 
and achieving my goals while performing useful architecture research and evangelism for 
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my firm, which was in the midst of UML adoption. Reviewing my results with co-
workers enriched my learning experience and helped my firm to move forward on UML-
related initiatives. Also I pursued directed readings and attended a patterns workshop, 
which greatly enriched my knowledge of the field. 

Having achieved a modicum of success on this path, I was ready for the next phase. Time 
to replan. In the pre-Y2K days, the software industry was very profitable. Opportunities 
abounded. I lacked much of the essential knowledge to help my friends in small 
commercial businesses (my ultimate goal). In addition, I wanted to do more technical 
architecture work, on a faster cycle. Defining a new architecture every month would be 
ideal, but that kind of opportunity was not available at my current firm. Also, business in 
my firm was in a cooling-off period. 

A career change was in order. I took a job at a very stable, highly reputable small 
commercial firm; e.g., their paychecks came regularly and they always cleared the bank. 
This new firm knew everything that I wanted to learn—a perfect match. At the library I 
discovered the book resources to learn the requisite areas of knowledge that I was lacking, 
a bit of business training, and so forth. I was able to read about these matters and apply 
them on the job daily. I was able to complete several interesting architecture projects, 
including a financial system specification, a middleware architecture specification for a 
large telecommunications firm, and a high-level architecture for a real-time system. In 
addition, I was able to do a great deal of UML modeling, learn Visual Basic and C++, 
and do some CORBA programming. I was also teaching courses on the topics that I 
wanted to master—excellent progress, by any standards of performance. At this point, I 
had achieved the technical goals that I had set two years earlier. Time to re-plan, as this 
exercise continues in real life. 

Exercise 1.2 

Select an architecture framework for use in your current firm (or customer's 
organization)—for example, RM-ODP, Zachman Framework, or 4+1 Model View. Write 
a brief profile description about how the framework should be applied in your 
organization. 

Background for Solution: 

We believe that having a framework is far superior to working without one. Whatever 
framework you choose, certain conventions and guidelines for applying it in your 
organization will need to be managed. The need for these profile conventions is most 
obvious in the selection of the Zachman Framework. Since you have 30 candidate 
specifications to write, you must address two issues. First, 30 specifications is too much 
work, and you should compress and simplify the amount of effort required to plan a 
system. Focus on the useful, practical elements for your domain of application. Combine 
elements as appropriate to ensure coverage without elevating the document-driven 
aspects to an unreasonable level. Second, if there is no profile, you can't possibly expect 
any two architectures to be comparable. You should select essential and optional 
viewpoints to be specified, and define what they mean in your organization's terminology. 
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You can also propose conventions for how these viewpoints will be documented, such as 
a template for each viewpoint, and notational conventions. We believe that these steps are 
required for any responsible application of these powerful frameworks. 

Exercise 1.3 

Create a pattern system for use in your organization. Select patterns from among the 
available pattern catalogs to cover the areas of greatest concern and need in your 
organization. 

Background for Solution: 

A "pattern system" is documented in a simple tabular form. Use page 380 of [Buschmann 
96] as your starting point. The pattern-system table contains a listing of the names of each 
pattern, along with their book page reference, for quick retrieval. Implicit in this exercise 
is the selection of the key patterns catalogs (i.e., books) that would be readily available to 
every developer. Remember: Patterns are lessons learned. The purpose of this exercise is 
to create a job aid so that your developer can more effectively apply lessons learned. We 
suggest that you consider including sources such as [Fowler 97], [Gamma 94], and 
[Mowbray 97a, b] to your list of candidate catalogs. 
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Chapter two Software Architecture: Basic 
Training 

This chapter on basic training for software architects presents the fundamental tools you 
require in order to be effective. In the military, basic training is used to challenge and 
motivate cadets and to demonstrate both the demands and rewards of a military career. 
Similarly, software architects must be motivated individuals who have the desire to 
confront the challenges of technical leadership in a software development effort. 
However, motivation is not enough. A software architect must be equipped with the 
intellectual tools to concretely realize in software an architectural vision. 

This manual takes a hands-on approach that not only presents the best architectural 
practices in the industry but also provides concrete real-world examples and exercises for 
applying the presented material to circumstances common throughout the software 
industry. Basic training will cover the fundamental concepts of software technology, 
which provide a foundation for software architecture. Software technology has evolved 
through many trends and alternatives for software development. Currently, mainstream 
software practice has evolved from procedural software to object orientation (Figure 
2.1). With the increasing adoption of enterprise Java and Microsoft COM, component-
orientation is the next major paradigm. In corporate development, most new-start projects 
are adopting object orientation because it is supported by the majority of commercial 
development environments. As we will discuss, object orientation has a very weak notion 
of software architecture, which leads to serious shortcomings. The emerging trend of 
component orientation is replacing old approaches with strong elements of architectural 
design. 

Figure 2.1. (a) Procedural Paradigm and (b) Object-Oriented Paradigm 
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Software architects must be able to articulate these development paradigms clearly, along 
with appropriate uses of enabling technologies. In any given project, an eclectic mixture 
of development paradigms (including relational database management) can be useful to 
achieve the best results. Each paradigm has something useful to offer, including mature 
development tools. An interesting discussion of multiparadigm programming is presented 
in [Coplien 99]. 

2.1 Software Paradigms 

Today, most organizations will find their technology skill base engaged in one of the 
three major paradigms: procedural, object oriented, or component oriented. Where you 
are today is highly specific to your organization and your staff skills. Procedural and 
object paradigms are closely tied to programming-language choice, but you will find that 
component orientation is different in that it is more closely associated with the selection 
of an infrastructure. 

Procedural programming languages include FORTRAN, COBOL, Pascal, BASIC, and 
many others. In procedural technology, the program comprises the process for executing 
various algorithms. The process is separated from the data in the system, and the process 
manipulates the data through direct access operations. This is a direct outcome of the 
stored-procedure programming systems from which computer technology originates. 
When the program and data are separated, there are many potential interdependencies 
between parts of the program. If the data representation is modified, there can be 
substantial impacts on the program in multiple places. 

An example of data–process separation is the year 2000 problem, in which simply adding 
some additional digits to the date representation has catastrophic consequences for 
procedural software. Unfortunately, because the majority of systems are built with 
procedural technology, the dependencies upon these data representations can cause 
systemwide program errors and the necessity for line-by-line program review and 
modification. 

Object-Oriented Paradigm 

Object-oriented programming languages include Smalltalk, C++, and the Java 
programming language ("the Java language"). These languages support the encapsulation 
of data with accessor code in terms of abstract data types (commonly called classes). In 
object-oriented programming languages, the encapsulation capabilities are sufficient for 
reasonably sized programs. As long as software modules are maintained by individual 
programmers, encapsulation is sufficiently robust to provide some intrinsic benefits. 
However, we shall see that language-specific encapsulation is insufficient to support 
software reuse and distributed systems. 

In object-oriented technology, the basic paradigm is changed to enable a separation of 
concerns. Figure 2.1 shows the object-oriented technology paradigm in which the 
program is broken up into smaller pieces called objects. Each object contains some of 
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the data of the system, and the program encapsulates that data. In other words, access to 
the data is only available through using the program through which it is directly 
associated. In this way, the system is partitioned into modules which isolate changes. 
Changes in data representation usually only impact the immediate object which 
encapsulates that data. 

Objects communicate with each other through messages. Messages can have an impact 
upon state—in other words, changing the data—but only through the encapsulated 
procedures which have an intimate relationship to the local data. For small-scale 
programs, the object paradigm is effective in its isolation of change. However, the 
paradigm is not perfect for all of its potential uses. 

Technology and System Scale 

When the size of the system is scaled so that many programmers are involved, the 
encapsulations have been found to be insufficient to isolate change across systems. In this 
case, additional component-oriented infrastructures are needed to provide industrial-
strength encapsulations of the data and associated programs. 

One example is the CORBA interface definition language, which defines object-oriented 
interfaces that are sufficiently opaque to support the integration of large-scale distributed 
systems. In fact, the encapsulation mechanism, or IDL, is powerful enough to enable the 
transparent integration of multiple programming languages such as Smalltalk and the 
Java language as well as the object-oriented communication across heterogeneous 
systems which may involve multiple operation systems and protocol stacks. 

Objects Are the Commercial Baseline 

Object-oriented technology is in widespread use today. It has been said that the 
procedural technologies originated from academia but the object-oriented technologies 
originated from commercial organizations. In fact, object-oriented technologies have 
many interesting origins which go back virtually to the beginning of computer science. 
Today, object technology is the dominant paradigm for commercial software. Virtually 
every vendor in the software business is providing object-technology solutions which, 
together with component infrastructures, can enable interoperability between software 
vendors in various software environments. 

For example, corporate development organizations today are migrating from procedural 
languages such as C and COBOL to object-oriented languages which have gained 
substantial popularity in recent years. Languages such as the Java language have made a 
dramatic impression on society as a whole. An awareness of the Java language is so 
commonplace that even the man on the street is familiar with the terminology for this tool 
of software developers. 

Object-Oriented Architecture: An 
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Oxymoron 

For the majority of practitioners, object orientation is devoid of a software 
architecture approach. This is manifested in multiple ways in object-oriented 
methods and culture. Starting with what is generally regarded as the original 
source for OO thinking, Wirfs-Brock's 1990 book, Designing Object-
Oriented Software, there was a notion of software architecture, including 
the discovery of subsystems through inspection of collaboration diagrams. It 
merited an entire chapter of Wirfs-Brock's method in 1990. In the next decade, 
little was written about architecture in the OO methodology community. Major 
OO methodology books had at most a few paragraphs concerning architecture, 
which were a faint reflection of Wirf-Brock's architecture notions. 

Since virtually nothing was written about architecture in the literature, most OO 
practitioners had no architecture guidance. There was no reason to consider 
architecture important. This has led to great confusion on OO projects, as team 
members struggle to manage complexity and scalability with OO methods not 
designed to address them. 

In general, OO methods involve successive refinement of object models, where 
most analysis objects are eventually transformed into programming objects. In 
our terminology, we called these approaches model-based methods. The 
assumption that each analysis object will inevitably become a programming 
object is a major obstacle for OO thinkers to overcome in order to understand 
architecture. In architectural models, specification objects represent constraints, 
not programming objects. They may or may not be transformed into 
programming objects; that is an independent decision of the developer. 

OO also opposes architecture in other subtle ways, related to project culture. OO 
encourages project teams to be egalitarian (e.g., CRC cards), where all decisions 
are democratic. On such a project, there is no architect role, because there is 
little separation of decision making between members of the development team. 

OO encouraged "bad-is-better" thinking in development, a philosophy which is 
virtually the opposite of architectural thinking. Using "bad is better," the 
external appearance of a working implementation greatly outweighs any 
requirement for maintainable internal structure. In other words, rapid iterative 
prototyping, with ruthless disregard for architectural principles, is a normal, 
healthy environment for OO development. 

The topic of architecture has resurfaced only recently in OO literature, with the 
newfound popularity of componentware. Now it is customary to include a token 
chapter on architecture in most methodology books, whereas in the heyday of 
OO, architecture was virtually taboo. In one sense, componentware is a response 
to the shortcomings of OO. Componentware, with its emphasis on larger-
variable-grained software modules, is a clear step toward an architectural 
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mindset. 

Databases and Objects 

Database technologies are also evolving toward objects. The database technologies 
originated with several different models. In recent years, the relational model of 
databases has been predominant. More recently, object-oriented databases have become a 
substantial technology market, and databases which combine object orientation and 
relational concepts are becoming prevalent. 

Database query languages, such as Structured Query Language (SQL), are being 
extended in standards work to support object-oriented concepts. One reason why this is 
occurring is that the kinds of applications people are creating require substantially more 
sophisticated types of data representations and types of query algorithms for searching 
and manipulating the information. 

Object in the Mainstream 

Object technology is used today in most application areas and vertical markets. Dozens of 
projects are being pursued by government organizations in object technology as well as 
commercial industry. A principal advantage of technology is that it enables the 
implementation of new business processes which provide competitive advantage to 
organizations. Society is changing toward increasing dependence upon information 
technology. The use of object technology enables rapid system implementation and 
various forms of labor saving through software reuse mechanisms. Even though the 
largest number of lines of software are still written in procedural languages such as 
COBOL, it is becoming clear that this paradigm is changing. 

Toward Components: Scripting Languages 

Proponents of scripting languages claim that there are a larger number of scripting 
language programmers than there are of any other kind [Ousterhout 98]. Scripting 
languages such as the JavaScript language, TCL shell programming languages, and 
Visual Basic enable pre-existing software (e.g., components) to be easily integrated into 
application configurations. 

Since object-oriented software and object technology is the dominant commercial 
paradigm, it is important to understand the major flavors of commercial technologies 
which are available for the architecture of software systems. The two major categories 
include commercial off-the-shelf proprietary software and commercial off-the-shelf open 
systems software (see Section 2.2). 

Componentware: The Component Orientation Paradigm 
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Moving to the next level of software sophistication requires fundamental changes in 
systems thinking, software processes, and technology utilization. The next major area of 
technology, componentware (or component orientation), contains key elements of the 
solution to today's critical software problems. 

The componentware approach introduces a set of closely interrelated techniques and 
technologies. Componentware introduces a sophisticated mindset for generating business 
results. These componentware elements include: 

Component Infrastructures 

Software Patterns 

Software Architecture 

Component-Based Development 

Componentware technologies provide sophisticated approaches to software development 
that challenge outdated assumptions. Together these elements create a major new 
technology trend. Componentware represents as fundamental a change in technology as 
object orientation did in previous generations. We will discuss these componentware 
technologies after a brief introduction to componentware's unique principles. 

Components versus Objects 

Componentware can be understood as a reincarnation of object orientation and other 
software technologies. Distinguishing componentware from previous generations of 
technology are four principles: encapsulation, polymorphism, late binding, and safety. 
This list overlaps with object orientation, except that it eliminates the emphasis on 
inheritance. In component thinking, inheritance is a tightly coupled, white-box 
relationship that is unsuitable for most forms of packaging and reuse. Instead, 
components reuse functionality by invoking other objects and components instead of 
inheriting from them. In component terminology, these invocations are called 
delegations. 
"One person's architecture is another person's detail. One person's system is another 
person's component" [Rechtin 97]. 

By convention, all components have specifications corresponding to their 
implementations. The specification defines the component encapsulation (i.e., its public 
interfaces to other components). Reuse of component specifications is a form of 
polymorphism which is strongly encouraged. Ideally, component specifications are local 
or global standards that are widely reused throughout a system, an enterprise, or an 
industry. 

Componentware utilizes composition for building systems. In composition, we integrate 
two or more components to create a larger entity, which could be a new component, a 
component framework, or an entire system. Composition is the integration of components. 
The combined component acquires joint specifications from the constituent component. 



IT-SC 52

If the components have matching specifications for client calls and services, then they 
can interoperate with no extra coding. This is often called plug and play integration. 
When executed at runtime, this is a form of late binding. For example, a client 
component can discover a component server through an on-line directory, such as the 
CORBA Trader Service. With matching client and service interface specifications, the 
components can establish a run-time binding to each other and interact seamlessly 
through the component infrastructure. 

In a perfect world, all components would be fully conformant with their specifications 
and free from all defects. Successful operation and interoperation of components depend 
on many internal and external factors. Safety properties can help because they can 
minimize entire classes of defects in a component environment. As society becomes 
increasingly dependent upon software technology, safety has become a serious legal 
concern and one of the most important areas of computer science research. 

For example, Java's garbage collection feature guarantees memory safety, or freedom 
from memory deallocation defects (which are problematic in C++ programs). Other kinds 
of safety include type safety (guaranteed data type compatibility) and module safety, 
which controls the effects of software extension and component composition. 

Component Infrastructures 

The componentware revolution has already arrived in the form of component 
infrastructures. Major platform vendors have bet their futures on componentware product 
lines. In particular, Microsoft, Sun Microsystems, IBM, and the CORBA consortia have 
established significant componentware infrastructures through massive technology and 
marketing investments. 

These component infrastructures (Microsoft COM, Sun Enterprise JavaBeans, and 
CORBA request brokers) are dominant infrastructures for overlapping industry 
segments—Microsoft COM+ on the desktop; the Java language for cross platform 
applications; and CORBA for corporate networks and the Internet. Interestingly, these 
technologies are also mutually interoperable, with Microsoft, Sun, IBM, and others 
supporting the CORBA Internet Inter-ORB Protocol (IIOP) for Microsoft COM and Java 
Remote Method Invocation (although the Java language works equally well with 
CORBA). In the following paragraphs, we'll compare these infrastructures briefly. 

Microsoft has been promoting the Component Object Model (COM) and follow-on 
products for several years. COM is a single-computer component infrastructure. OLE and 
ActiveX define componentware interfaces based upon COM. In theory, the Distributed 
Component Object Model (DCOM), now called COM+, extends the capabilities of COM 
over networks and the Internet. With these technologies, Microsoft has funded a major 
corporate strategy promoting a worldwide migration to componentware over the past five 
years. Future Microsoft plans indicate that it will continue its componentware initiative 
for the forseeable future. 



IT-SC 53

Sun Microsystems' invention of the Java language is a continuing evolution of 
programming-language features, infrastructures, and related class libraries. The Java 
language technology has created tremendous industry excitement and support from 
independent developers. The extensions for JavaBeans and Enterprise JavaBeans 
establish an evolving component model that rivals COM and ActiveX in the cross-
platform application space. Enterprise JavaBeans and the IBM San Francisco project are 
using Java Remote Method Invocation (RMI) for distributed computing, one of several 
proprietary infrastructures available to Java language programmers. While proprietary 
Java language infrastructures do provide convenience for programmers, they lack one key 
capability: ease of interoperability with other programming languages. This may be a 
serious limitation for corporate projects because it hampers legacy integration and cross-
language development which is commonplace for server applications. Another, more 
subtle, issue is that Java application programming interfaces (APIs) are not standard. For 
popular technologies like JDBC, vendors often customize the APIs as they create their 
value-added versions of the Sun reference technologies. 

The Common Object Request Broker Architecture (CORBA) is an open systems standard 
for distributed infrastructure supported by multiple vendors, industry consortia, and 
formal standards bodies. Recently there has been a surge in CORBA licensing in 
corporate development organizations, with a surprising array of Fortune 500 companies 
adopting CORBA for enterprise projects, including banks and manufacturers. From its 
inception CORBA has supported both object and componentware models. With today's 
CORBA products supporting multiple component interfaces in a single encapsulated 
servlet, CORBA is an ideal infrastructure for componentware development involving 
heterogeneous hardware/software, multiple programming languages, or distributed 
computing. Recently, CORBA has been extended to support the capabilities of message-
oriented middleware and domain-specific API standards (health care, manufacturing, 
financial services, and so forth). Just like any other technology, CORBA products do 
have limitations (e.g., memory leaks, conformance, performance). However, for a 
standard established in 1991, it is amazing how well the CORBA architecture has 
weathered cataclysmic innovations in other technologies and emerged ever stronger (e.g., 
the Java language and the Internet). 

Java application servers have overtaken CORBA's role in many Internet-savvy 
organizations. What CORBA lacks is direct support for scalability, reliability, and 
maintainability. These capabilities are standard features supported by most Java 
application servers today. 

Componentware infrastructures are having a significant impact on software development. 
In many respects, these infrastructures are well on their way to becoming mainstream 
development platforms. Because all of them are becoming interoperable (through 
CORBA IIOP), there is a well-understood relationship between infrastructure models. 
Their similarities are much greater than their proprietary differences might imply. 

Infrastructure selection is one of the most discussed, but least important, aspects of 
implementing componentware. For corporate developers, the most critical issues are 
confronted well after infrastructure selection. These issues include: how to master 
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designing with the technology, how to architect systems, and how to coordinate one's 
development efforts. These areas are covered in the next three sections. 

Component Software Patterns 

Software patterns comprise a common body of software knowledge which can be applied 
across all component infrastructures (see Section 1.3). The most famous category of 
software patterns, called design patterns, comprises proven software design ideas 
which are reused by developers. Other important categories of patterns include analysis 
patterns and antipatterns. Analysis patterns define proven ways of modeling business 
information that can be directly applied to the modeling of new software systems and 
databases. 

Software patterns are a necessary element of componentware. The development of new, 
reusable components requires expert-level quality of design, specification, and 
implementation. Proven design solutions are necessary to establish successful component 
architectures and frameworks for families of applications. Often, there are too many 
variables to take chances on unproven design concepts. 

The popularity of software patterns can be explained as a response to the practical 
shortcomings of object orientation. Antipatterns explain the common mistakes that 
people make when developing object oriented software systems (as well as other types of 
systems). Much more is needed than basic object-oriented principles to build successful 
systems. Design patterns explain the additional, sophisticated ideas that are required for 
effective software designs. Analysis patterns present the sophisticated ideas necessary for 
the effective modeling of concepts and data. 

It is still commonplace in software development to reinvent design ideas, incurring the 
risks and delays of trial-and-error experimentation. If fact, most software methods 
encourage reinvention as the normal mode of development. Considering the challenging 
forces of requirements change, technology innovation, and distributed computing, we 
consider reinvention to be an unnecessary risk in many circumstances. This comment is 
especially applicable to the development of components, where the costs of defects and 
redesigns can affect multiple systems. 

Altogether, software patterns can be described as knowledge reuse. It is interesting 
to note that most patterns are considered as simple as common sense by expert-level 
developers. However, for the majority of developers, patterns are a necessary part of 
technical training that can help them to achieve world-class results. 

Component Software Architecture 

Software architecture concerns the planning and maintenance of system structure from 
earliest system concept through development and operations. Good architectures are 
stable system structures which can accommodate changes in requirements and 
technologies. Good architectures ensure the continuous satisfaction of human needs (i.e., 
quality) throughout system life cycles. Reusable components are examples of good 
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architecture. They support stable interface specifications, which can accommodate 
changes due to reuse in many system contexts. 

Software architecture plays an important role in component design, specification, and use. 
Software architecture provides the design context within which components are designed 
and reused. Components have a role in predetermining aspects of software architecture. 
For example, a component framework may predefine the architecture of a significant 
portion of a system. 

One of the most exciting aspects of software architecture for componentware is 
supporting distributed project teams. A software architecture comprises a system 
specification that enables parallel, independent development of the system or its parts. A 
proper software architecture defines computational boundaries (i.e., API) that divide the 
system into separate testable subsystems. These subsystems can be outsourced to one or 
more distributed project teams. 

Component-Based Development 

Component-based development is software development with a difference. Many process 
aspects are reused, such as iterative, incremental development. The primary 
componentware difference is the specialization of technical roles. Three key 
componentware roles are software architect, component developer, and application 
developer. These differ from object-oriented approaches, which promoted notions of all-
purpose programmers, committee-based design, and architecture after-the-fact. 

A typical leadership team for a project comprises a software architect and a project 
manager. The architect works in conjunction with management to make key technical 
decisions, those with systemwide impact. The architect is responsible for technical 
planning of the system and for communicating these plans with developers. Since the 
architect coordinates systemwide design decisions, many other technical decisions are the 
responsibility of developers. To be effective, the architect must have the highest levels of 
experience and technical training, with outstanding skills in design, specification writing, 
and spoken communication. 

The best component developers are also the most talented programmers. They design and 
program the building blocks from which the application will be constructed. The architect 
defines the major boundaries behind which component-based services will be provided. 
Reuse of preexisting components is evaluated with respect to an organizational software 
repository. For new component requirements, the component developers design and 
construct new software, updating the organizational repository. Typically, components 
will implement the horizontal functions and lower-level aspects of the system, reducing 
the need for application developers to reinvent these capabilities. Component developers 
make intensive use of software patterns, applying several overlapping patterns to each 
component design and implementation. 

Application developers are responsible for integrating components and implementing the 
vertical requirements of the system, including user interfaces. They apply preexisting 
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components to the solution of application-specific problems. Application developers must 
communicate with end users having some domain expertise. 

Generally, component developers use systems programming languages, such as the C++ 
and Java languages, while application developers use scripting languages, such as the 
JavaScript language, TCL, Python, and Visual Basic. Systems programming languages 
allow more control of low-level issues but are more difficult to use for application 
building. Scripting languages provide a higher level of abstraction, with a corresponding 
reduction of up to 8:1 in lines of code needed to implement a given requirement, 
compared to systems programming languages. 

Componentware is the next major software technology trend. In many ways, it has 
already arrived and is readily available for commercial exploitation. This revolution is 
actively supported by major vendors, including Microsoft, Sun, IBM, and the CORBA 
vendor consortia. The most important aspects of componentware are not the choice of 
technologies, but how these are applied. Successful adoption of componentware must 
include the reuse of software patterns, the planning of software architecture, and the 
establishment of component-based development teams. 

The componentware revolution is an exciting opportunity to avoid the inadequacies of 
outdated software approaches. Componentware enables you to survive and thrive when 
facing the challenges of requirements change and rapid commercial innovation. 
Componentware delivers the benefits of software reuse and enables outsourcing to 
distributed project teams. 

2.2 Open Systems Technology 

Proprietary software is a non-standards-compliant product of a single vendor. That 
single vendor controls the form and function of the software through many iterations of 
product releases. When today's systems are built, they are dependent upon commercial 
software to varying degrees. Commercial software is the primary form of software reuse 
and in practice is a much more effective form of reuse within individual enterprises. 

One reason why commercial software is a more powerful form of reuse is due to an 
economy of scale. Large numbers of copies of the software are distributed to customers, 
and the software can be debugged and quality controlled to a degree which exceeds the 
in-house development capabilities of even the largest end-user enterprises. When end-
user enterprises depend upon proprietary software, they are dependent upon the vendors' 
continued support for existing capabilities, and architecturally many end users depend 
upon future features which the vendors claim will be added to the software. When 
proprietary software is packaged in the form of a public specification or standard, the 
specification is usually a direct representation of that single software implementation. 

Often, when proprietary specifications are put forward in the public domain, it is unlikely 
that the proprietary implementation will be modified. This leaves the impression that 
proprietary software can also be an open system standard, when in fact there is no 
possibility of modification of the underlying technologies. This phenomenon is especially 
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true when millions of software licenses have been distributed and are running on existing 
software systems. When proprietary technology is put forward, vendors use unique 
interpretations of software concepts to describe their products. These interpretations can 
include fundamental modifications to object-oriented principles. 

"Successful architectures are proprietary, but open" [Rechtin 97]. 

The most significant aspect of proprietary technology is the provision of application 
program interfaces (APIs). The APIs to proprietary software define the boundary between 
a proprietary implementation and any value-added application software which either an 
independent software vendor or the end user provides to build application systems. As 
proprietary software technologies evolve through multiple releases, the application 
program interfaces can change. 

New capabilities are continuously added to proprietary software, and this exacerbates the 
complexity of application program interfaces. In many cases the complexity of the 
program interfaces available with proprietary software greatly exceeds the functionality 
needs of end-user organizations. It then becomes appropriate for the end-user 
organizations to attempt to manage this complexity in various ways. We will cover 
complexity-management concepts in several chapters. 

In addition to adding new capabilities to proprietary program interfaces, vendors also on 
occasion may obsolesce interfaces in software. When program interfaces are obsolesced, 
there can be a significant maintenance impact upon application software. As proprietary 
software evolves through multiple releases, it is important for users to continue to 
upgrade the software to remain in synchronization with the mainstream support activities 
from the proprietary vendor. When the end users' systems fall behind more than two 
cycles, it is often necessary to completely repurchase and reintegrate the commercial 
software in order to synchronize with the currently released version. Many end users have 
found an almost complete obsolescence of application program interfaces within a few 
cycles of product release. 

In summary, proprietary software releases and the evolution of the program interfaces 
become a treadmill for application programmers and independent software vendors to 
maintain synchronization with available and supported software. There is a conflict of 
interests between the application users and the proprietary software vendors, because the 
vendors' majority of profits can be driven by the sale of software upgrades. 

The other major category of commercial software is open systems technologies (Figure 
2.2). An open system technology is fundamentally different than a proprietary 
technology. In an open system technology, there is multivendor consensus to develop a 
specification that is independent of proprietary implementations. This is the case of most 
formal standards activities and many consortium standards activities which are becoming 
increasingly prevalent. In an open systems technology, the specification governs the 
behavior of the implementations. 

Figure 2.2. (a) Proprietary Technology and (b) Open Systems Technology 
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One of the key benefits is a consistency of implementation interfaces across multiple 
vendors. Additional benefits include uniformity of terminology and software interfaces, 
because the open systems technology requires multiple vendors to reach consensus. 
Another benefit is an increased level of technology specification and an extended life 
cycle. Since product developments are in parallel across multiple vendor organizations, 
the corresponding marketing activities which create the demand for the technology are 
also synchronized and coordinated. A key benefit of open systems technology is the 
interoperability that it provides between commercial software vendors. The distinction 
between open systems and proprietary technologies is particularly appropriate for object-
oriented systems, which are becoming the mainstream of application development, as 
object technology is already the mainstream of commercial technology. 

Commercial information technology is evolving. Additional capabilities are being added 
and becoming available through commercial technology that increasingly satisfy 
application needs. However, there is also a significant amount of reinvention in 
commercial technology of fundamental capabilities such as operating systems and 
programming languages. 

In some commercial technologies, such as office automation, word processors, and 
spreadsheets, a continual reorganization of functionality is presented to the end user 
without significant extension of capabilities. In many people's view the rate of technology 
evolution on the commercial side is relatively slow in comparison to the growth in needs 
for competitive application developers. Commercial technology is put forth to satisfy the 
needs of large numbers of users. The generality of this software exceeds the need of any 
individual application user. In order to adapt commercial technologies to application 
needs, there is a requirement for software development and installation which customizes 
the commercial software to the needs of specific applications (Figure 2.3). 

Figure 2.3. Commercial Software Customization 
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The requirement to customize commercial technology is often called profiling, a concept 
that we will cover in more detail in Chapter 4. In addition to the profiling software, 
substantial application-specific software is required to create application systems. 
Because of the relatively primitive capabilities available commercially for many 
application needs, this drives an increasing demand to build more and more application-
specific software to complete the architecture for application systems. As systems evolve 
from single-user and departmental-level applications, to the enterprise with greater 
interoperability capabilities, the functional gap between available commercial software 
and individual user software will continue to increase. 

The architecture of applications software systems is increasingly important in how 
systems support user needs. The majority of systems that have been created outside of the 
telecommunications industry are integrated using procedural and other paradigms which 
often lead to ineffective solutions. In fact, for systems created by corporate development 
organizations, a majority of the software projects are considered unsuccessful at 
completion. From an architectural perspective, many of these systems resemble the 
configuration in Figure 2.4 for stovepipe systems. In a stovepipe system there are a 
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number of integrated software modules. Each software module has a unique software 
interface. This unique software interface corresponds to a single program implementation. 

Figure 2.4. (a) Stovepipe Systems and (b) Component Architectures 

 

When the system is integrated, there are many one-to-one dependencies between various 
part of the system. These dependencies are unique integration solutions. As the scale of 
the system increases with the number of modules, the number of dependencies increases 
by the square of the number of modules. This increase in complexity has many negative 
consequences. In particular, as a system evolves it becomes less and less amiable to 
modification and extension. System extension happens to be one of the major cost drivers 
in application development; it can account for as much as half of all software cost 
[Horowitz 93]. 

An alternative way of architecting systems includes a planned definition of software 
interfaces which provide a greater level of uniformity across the integrated solution. 
Component architectures are application systems which are defined using consistent 
application program interfaces across multiple instances of software subsystems (Figure 
2.4). Component architectures reduce the dependency between software modules. The 
reduced dependency enables the system to be extended and support larger scales of 
integration. A properly architected component system has complexity which scales with 
the number of software modules in terms of the complexity of the software integration. 

2.3 Client Server Technology 

Client server technologies are the result of the evolution of software technology 
supporting application systems. In particular, the evolution of client server technologies 
has been an important factor in the expansion of information technology across an 
increasing range of application business processes. Originally client server technologies 
focused on file sharing. File sharing is still the dominant paradigm of the Internet today 
with protocols such as HTTP supporting access to global file systems available across the 
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Internet. File server technologies evolve into a second generation of capabilities 
dominated by a database server technology. It is important to note that the file server 
technologies were closely linked with the evolution of distributed computing 
technologies. 

Increasingly, client-server technologies are being replaced by N-Tier component-oriented 
solutions. Based upon Java application servers, the N-Tier solutions include support for 
thin-client user interfaces with increased scalability and reliability. 

One of the most successful networking technologies came from Sun Microsystems and is 
called network file server. Sun Microsystems was successful in encouraging the de facto 
standardization of that technology by providing free reference technology access in terms 
of source code for implementation on arbitrary platforms. Network file server technology 
is based upon open network computing, another Sun Microsystems technology which 
was one of the first successful generations of distributed computer technology. Network 
file server was a procedurally based technology closely tied to the C programming 
language, as was the other important remote-procedure-call technology called the 
distributed computing environment. Both of these technologies resulted in file-sharing 
capabilities which were widely implemented. The database server technologies utilized 
these underlying distributed computing capabilities to provide remote access to database 
systems from a variety of client platforms. 

Another important technology that arose during the database generation was that of 
transaction-processing monitors. Transaction-processing monitors enable the consistent 
and reliable maintenance of data integrity across distributed systems. Transaction 
processing technology continues to be an important add-on capability to distributed 
computing technologies to ensure robustness and integrity of implementations. 

Groupware technologies also arose in the late 80s and early 90s starting with e-mail and 
evolving to higher forms of interactivity, some of which we can see on the Internet today, 
such as chat rooms and videoconferencing. Recently, the technologies of object 
orientation, distributed computing, and the Internet are beginning to merge to support 
adaptable computing environments which can scale to global proportions. This 
generation of technologies is called distributed objects and is characterized by 
technologies such as CORBA and the Java language (Figure 2.5). 

Figure 2.5. Origins of Client Server Technologies 
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The client server technologies initially arose as an evolution of mainframe-based 
technologies. Mainframe-based technologies were a natural outgrowth of single-
processor systems which date back to the origins of computing. In a mainframe 
technology, the processing and management of data in the system is completely 
centralized. The mainframe is surrounded by a number of peripheral client terminals 
which simply support presentation of information. In the client server generation of 
technologies, the client computer has become a significant processing resource in its own 
right. Client systems which arose during the personal computer revolution are now 
capable of processing speeds which rival and greatly exceed that of former minicomputer 
and mainframe computer generations. Initially, in order to support access to data in 
departments and enterprises, client server technology supported the connection through 
local area networking to the back-end mainframe minicomputer and workstation server 
systems. The technology at the software level supporting this communication is called 
middleware. 
An element "good enough" in a small system is unlikely to be good enough in a more 
complex one [Rechtin 97]. 

Initially, middleware was installed as a custom capability to support client server 
networking between PCs and server platforms. As technology evolves, middleware is 
becoming embedded in the operating system so that it is a natural capability of client 
platforms as well as server platforms. Client systems with embedded middleware can 
now support on-board services to applications running locally and across the network. 
This evolution of client server technology to an embedded capability has added many 
new challenges to the implementation of application systems. In fact, there are various 
antitheses to the client server evolution, including a resurgence of the mainframe 
platform as a significant business of IBM and the capability called the network computer 
which begins to resemble the dumb terminal of mainframe days (Figure 2.6). 

Figure 2.6. Role of Middleware 
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Object technologies are organized around client server capabilities. Object technologies 
come in two primary categories. Some are organized to serve the process of software 
development (Figure 2.7). Examples of these technologies include object-oriented 
analysis and object-oriented design. Object-oriented analysis comprises the definition of 
information technology capabilities that are models of current and future business 
processes. Object-oriented modeling provides rich capabilities for representing business 
entities and business processes. This is in contrast to procedural and relational database 
technologies, which require the application designer to compromise the representation of 
the business environment to the constraints of the technology in terms of control flow and 
data representation. Object-oriented analysis, because of the natural correspondence of 
state information in process, provides a mechanism for modeling reality which is 
relatively easy to communicate with end users. Because the end-user communication is 
facilitated, the design and validation of object-oriented systems is greatly enabled. 

Figure 2.7. Middleware Reference Model 
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Object-oriented design is another major software phase which has been successful 
commercially in the software process market. Object-oriented design comprises the 
planning of software structure and capabilities that support the reduction in software 
defects and rapid prototyping of software capabilities. 

The other major category of object technology focuses on the implementation. At the 
center is object-oriented middleware technology. Object-oriented middleware supports 
distributed computing and the integration of various heterogeneous software technologies 
including operating systems, programming languages, and databases. Object-oriented 
programming languages are the direct expression of the object paradigm. Object-oriented 
programming languages support the encapsulation of data with process in the form of 
abstract data types in component objects. There are numerous object-oriented 
programming languages as there are procedural languages. The predominant languages 
for object-oriented programming include C++ Smalltalk and the Java language but there 
are significant communities supporting Eiffel, and other languages. Object-oriented 
middleware allows these languages to interoperate to form applications. Object-oriented 
programming languages are one possible choice for implementation of application 
software. It is also possible to utilize object-oriented analysis and design to support 
programming in procedural languages. This occurs frequently, as many corporate 
development environments use procedural languages for their mainstream languages, 
such as the C programming language and COBOL. 

Another important technology is that of object-oriented database management systems 
and their closely related cousin, extended relational database systems. Object-oriented 
middleware supports the integration and distribution of all of these database capabilities. 
In the case of object-oriented database systems, middleware can support the publishing 
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and access of data objects across distributed heterogeneous systems. Object-oriented 
analysis and design are also used in the definition of database capabilities which are then 
implemented in ordinary relational technologies. Object-oriented programming languages 
can then be used with relational databases to build systems. This practice is commonplace. 

Relational database technologies continue to be a practical implementation technology 
for many forms of applications. The occurrence of pure object-oriented systems will 
continue to be relatively rare as legacy application technologies are carried forward into 
future target systems. Distributed object technologies (i.e., component infrastructures) are 
appropriate for the integration of legacy applications. The encapsulation capabilities of 
distributed object technologies provide some distinct advantages to the integration of 
legacy systems and the extension of those systems with new object-oriented capabilities. 

One of the important qualities of object orientation is that the developer should not have 
to be concerned about the underlying implementation. If the underlying implementation 
is procedural or is object-oriented, it should not and does not matter if the applications are 
properly encapsulated. Distributed object middleware supports the opaque encapsulation 
property which makes this possible. The integration of commercial software with legacy 
and object-oriented applications is also enabled due to these encapsulation properties 
(Figure 2.7). 

Object-oriented middleware technologies can be viewed as an outgrowth of their 
procedural producers. Beginning with operating systems, procedural technologies 
supporting interprocess communication were added to enable file sharing and the 
evolution of client server capabilities (Figure 2.8). Some of these technologies include 
the remote-procedure-call technologies such as ONC and DCE. The remote-procedure-
call technologies were preceded by socket-level technologies, which are a more primitive 
form of messaging. Today, all of these technologies are still used actively in application 
systems and on the Internet. The object-oriented middleware technologies provided a 
next generation of capabilities which bundled more of the application functionality into 
the infrastructure. 

Figure 2.8. Distributed Technologies in Context 
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It is interesting to note that previous generations of interprocess communication 
technology were marketed with the promise of universal application interoperability. 
Component-oriented technology is marketed the same way today. Distributed object-
oriented middleware has the advantage of retrospection on the shortcomings of these 
previous technology generations. It was found that even though remote-procedure-call 
technologies enabled the integration of distributed software, the primitive level of these 
technologies required substantial application programming in order to realize systems. 
Once the systems were implemented, the systems tended to be fairly brittle and difficult 
to maintain. We can see many of the same shortcomings in the current generation of the 
component object model from Microsoft. 

Microsoft, in 1996, released the distributed component object model (DCOM) as a 
multimedia middleware technology for the Internet. DCOM still exposed many of the 
lower-level primitive details which were the downfall of remote procedure calls. DCOM 
added some object-oriented capabilities and a natural integration support for C++ 
programming. Simply adding the capability to support C++ doesn't necessarily overcome 
the procedural route that exposed excessive complexity to distributed system developers 
in the DCOM predecessor called the distributed computing environment. 

The common object request broker architecture for CORBA was the first technology to 
be designed from the ground up to support distributed object-oriented computing. 
Figure 2.8 shows that there is a partitioning of a technology market between the 
Microsoft technology base and virtually all other information technology vendors. The 
other vendors support various open system technologies that are the result of consensus 
standards processes. CORBA is universally accepted as the vendor-independent standard 
for distributed object middleware. CORBA simplifies distributed computing in several 
ways. The most significant advance is the language independence that CORBA provides, 
allowing multiple programming languages in heterogeneous environments to interoperate 
using object messaging. 
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Above the middleware layer are other technologies which support further integration of 
application functionality. In the Microsoft technology base, they have grouped these 
technologies into a brand name called ActiveX. The ActiveX technologies are being 
obsolesced and replaced with Windows 2000+ technologies called COM+. The COM+ 
technologies include a substantial reinvention of middleware capabilities that eliminate 
interface definition languages, and it is likely that the language independence of the 
middleware will be compromised. The COM+ technologies are not yet available in a 
robust development configuration. The CORBA capabilities are widely available today 
and support multiple programming-language integration from multiple vendor platforms. 
Layered on top of the CORBA capabilities are various other technologies, some of which 
are still in development. These include JavaBeans and the CORBA component model, 
which is the distributed heterogeneous extension of JavaBeans technology. 

CORBA technologies are the product of an open systems consortium process called the 
object management group, or OMG. The OMG has over 700 member organizations 
including all major vendors in the information technology, such as Sun Microsystems, 
Hewlett Packard, IBM, Netscape, and Microsoft. The OMG has addressed the problem of 
application software interoperability by focusing on the standardization of programming 
interfaces. With previous generations of remote-procedure-call technologies, the only 
widely adopted standard interface was the network file server, which is really the most 
primitive form of software interoperability beyond exchange of removable media. It is 
important for end users to provide their requirements and interact with open systems 
processes because they shape the form of technologies which will be used for end-user 
system development. In particular, sophisticated users of technologies can encourage 
open systems consortia and software vendors to provide more complete capabilities to 
enable the development of complex systems. This reduces technology risk and creates 
more leverage for application developers. 

The CORBA technologies are centered around the object request broker which the 
component standardizes (Figure 2.9). In the object management architecture which is 
the route node of OMG diagrams, there are several categories of objects. The object 
request broker is distinguished because it is the object through which all the other 
categories of object communicate. The object management architecture is conceptually a 
layered architecture which includes increasing levels of specificity for domain application 
implementation. The most common capabilities embodied by object technologies are 
standardized through the object request broker. The next level of capabilities are called 
the CORBA services, which provide enabling functions for systems implementation. The 
CORBA services are comparable in functionality to current operating-system services 
which are commonly bundled with platforms. The CORBA services provide the first step 
toward a distributed operating system capability which supports the integration of 
application software and commercial software across all types of platforms and 
environments. 

Figure 2.9. Object Management Architecture 
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The next level of capabilities is called the CORBA facility. CORBA facilities are 
common horizontal functions which may not be appropriate in every application domain. 
These functions include system management and compound document as well as printing 
and other capabilities. The CORBA domains are standard interfaces for the direct support 
of application domain interoperation. The application domains include health care, 
manufacturing, finance, and many other categories. The final category of distributed 
objects is the application objects. These include all of the other interfaces which will not 
be explicitly standardized. Application object interfaces include commercial proprietary 
interfaces, as well as custom interfaces that are built for a particular application system. 

CORBA technology is widely available today and is a mainstream technology available 
on virtually every operating-system platform. Some of the more innovative platforms, 
including the Netscape Communicator which could be considered an operating-system 
platform in its own right, are bundling CORBA with all of their deliverable licenses. 
Microsoft also supports the CORBA technology market by delivering specifications that 
enable interworking with the Microsoft infrastructure workings. The OMG has 
standardized interworking specifications for both COM and COM+ generations of 
Microsoft technologies. These standards are available on products on major CORBA 
implementation systems today. 

In addition, third-party vendors are providing direct support for CORBA. These include 
vendors like Black and White software who provide graphical user interface development 
tool kits, database vendors, system management vendors, and specialty market vendors 
such as realtime and computer-aided software engineering tools. The key capability that 
CORBA provides, which is fundamental to object orientation, is the interface definition 
language. The interface definition language is a notation for defining software boundaries. 
IDL is a specification language which enables the description of computational software 
architectures for application systems as well as international standards for interoperability. 
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The interface definition language from CORBA has also been adopted by the 
international standards organization and the formal standards counterparts for 
telecommunication systems. IDL is the international standard DIS14750. As such, IDL is 
a universal notation for defining application program interfaces in software architectures. 
Because IDL is programming-language independent, a single specification will suffice 
for defining software interfaces on any language or platform environment. IDL interfaces 
support object-oriented designs as well as the integration of legacy software. Since the 
object management group is the only major standards consortium developing object-
oriented standards specifications for software interfaces, IDL is synonymous with object 
technology open system. 

IDL supports the integration of a diverse array of programming languages and computing 
platforms (Figure 2.10). With IDL one can specify software interfaces that are 
compiled and readily integrated to available programming languages. These capabilities 
are available commercially and support distributed communication in a general manner. 

Figure 2.10. Technology Independence of the Interface Definition Language 

 

In this section, we have discussed how mainframe technology has evolved into client 
server technologies with middleware providing the distributed computing software 
capabilities. Because client server technologies have merged with object technologies, it 
is now possible to provide object-oriented capabilities that augment legacy systems 
across most or all programming environments. In addition, interoperability between 
CORBA and the Microsoft counterpart called COM+ enables the coverage of popular 
platforms on many organizational desktops. The vendors supporting open systems also 
support CORBA. The dominant Internet vendors are delivering CORBA and associated 
protocol stacks to numerous licensees. CORBA is the standard for object-oriented 
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middleware. The products are available now as well as the horizontal services 
specifications that enable application development. The OMG is proceeding to develop 
the vertical specifications that will provide direct support for application-level 
interoperability. 

The ISO has supported the designation of CORBA IDL as a standard for the definition of 
software interfaces across all computing environments. 

Object orientation is a natural paradigm for modeling real-world information and 
business processes. Object technology supports the integration of heterogeneous and 
distributed information technologies that include legacy systems (Figure 2.11). 
Combining object orientation and component technology enables the creation of 
ambitious system concepts which are increasingly becoming the competitive advantage 
of application companies and end users. 

Figure 2.11. Interoperability Vision for Object Technology 

 

2.4 Software Application Experience 

In the commercial end-user environment, object technology has been applied to many 
important applications which enable business advantages. Examples include Fidelity 
Investments, one of the world's largest mutual fund companies, which as long as five 
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years ago integrated its fund management workstations to support the integration of 
multisource information including decision-support capabilities that are crucial to the 
fund management business. The infrastructure they chose was an object request broker 
implementation conforming to the CORBA standard. Using CORBA, Fidelity 
Investments is able to customize the information gathering and analysis environment to 
the needs of individual fund managers. Many readers of this book probably have funds 
invested in one or more of the securities supported by CORBA. Wells Fargo, a large 
banking institution, has also applied object technologies to multiple applications to derive 
competitive advantages. One example is a financial transaction system which was 
developed and prototyped and deployed in less than five months based upon an object 
technology and CORBA implementation. In that system they integrated mainframe 
environments running IBM operating systems with minicomputer environments serving 
the on-line transaction terminals. In another Wells Fargo application, they integrated 
heterogeneous systems to support system management across a large enterprise. System 
management is one of the challenging and necessary applications which client server has 
created because the operation and management of information technology is no longer 
centralized and needs to be coordinated across many autonomous departmental systems 
as well as user desktops. Wells Fargo took advantage of object technology to implement 
such a distributed system management capability and greatly reduced their expense and 
response capabilities for system support challenges. 

Another dramatic example of object technology was implemented by a large insurance 
provider. USAA had an auto claims system which was utilized by customer service 
agents to receive reports of damage claims over the telephone. USAA in addition to auto 
insurance has a number of other related product lines including life insurance and loan 
capabilities. By integrating their information technology using objects, USAA was able 
to provide the customer service agents with information about the full range of USAA 
product lines. When a customer called with an auto damage claim and the car was totaled 
and needed to be replaced, the customer services agents were able to process the 
insurance claim and offer a new car loan for the replacement of the vehicle. In addition, 
the customer service agent had information about customers such as the ages and number 
of children and was able to offer additional insurance coverages at the appropriate time 
frames during this same auto claim call. With these enhanced capabilities, essentially 
reengineering its customer service process, USAA was able to realize 30% increased 
revenue on its existing customer base by providing additional services to the customers 
who were calling USAA for auto claims purposes. 

In the public sector, object technology has also been applied and delivered significant 
benefits. Several examples were implemented through the work of the authors on a 
project called discus, which is data interchange and synergistic collateral usage study. 
This project and its lessons learned are described in detail in another book, The Essential 
CORBA. One of the first lessons learned on discus was the power of using object 
technology to reuse design information. Once software interfaces were established and 
specified using IDL, it was relatively inexpensive to have contractors and commercial 
vendors support interoperability interfaces. The discus capabilities were defined before 
the Internet revolution, and when it became appropriate to integrate Internet capabilities, 
the same encapsulations were equally applicable to integrating new ways of viewing the 
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data through Internet browsers. The existing legacy integrations implemented by discus 
were then used to extract information for viewing on Internet browsers. 

Another case study implemented by the authors involved a set of information access 
services, which is a case study documented in another book, Inside CORBA. In this 
application, we discovered that the government had implemented a variety of systems 
with similar capabilities and the end users needed these systems to interoperate to support 
expanded access to information resources. The application we are describing does not 
differ in substance from the environment required by the Fidelity Investment Managers—
in other words, gathering information from diverse resources in order to support 
important decisions. In order to resolve the users' needs, we conducted a study of existing 
systems that focused on the software interfaces supported through multiple technologies. 
By learning the details of the legacy system interfaces, we could formulate new object-
oriented designs that captured the existing functionality in a manner that was common 
across the legacy system environment. By committing the new interface design to an IDL 
specification, we were able to work with other contractors to implement prototypes and 
forward the specifications through government standardization processes. Within two 
years, the interoperability concept evolved from ground zero to working software 
including a formal test sweep that assured conformance between multiple 
implementations of the specification. 

There is an opportunity in many enterprises to realize these kinds of results. Because 
information technology in large enterprises is evolving from desktop and departmental 
information systems to interoperable enterprise systems, there is layer of enterprise 
architecture which does not exist in most organizations and can be implemented using 
distributed-object technologies in a manner that provides interoperability in a general 
way. 

Let us summarize this section. Commercial organizations have realized many benefits 
from object technology that are directly relevant to their corporate competitive 
advantages. The authors' experiences in research and development show that design reuse 
is one of the most important concepts to apply in realizing these kinds of results. Given a 
proper software interface specification, it is relatively easy for software developers to 
understand the specification through training processes and then proceed to implement 
the specifications. A much more difficult problem would be to ask developers to integrate 
systems without this kind of guidance. In other words, reinventing a new custom 
interoperability link is significantly more difficult than if you give the developers a 
design for how the systems interoperate and they simply have to implement the code to 
implement that capability. In our research and development we found these kinds of 
benefits even at the smallest scales where only two or three subsystems were being 
integrated; as the scale of integration increased up to seven or ten or more systems, the 
benefits also increased. 

Systems interoperability is achievable today through object technology, and these 
benefits are being realized in existing commercial systems and in system procurements in 
the public sector. 
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2.5 Technology and Application Architecture 

Software architecture involves the management of both application functionality and 
commercial technology change. The kinds of benefits we just mentioned are not the 
direct result of adoption of a particular technology but involve exploiting the technology 
in ways that are most effective to realize the business purpose of the system. The simple 
decision to adopt CORBA or COM+ is not sufficient to guarantee positive business 
outcomes. One of the key challenges is managing the change in commercial technologies 
in a manner that supports long-term system life cycles and the ability to extend the 
system without substantial maintenance as the commercial technology evolves. 

Figure 2.12 is an example of the class of technology challenges which must be 
managed by object-oriented architects. Figure 2.12 concerns the evolution of 
middleware technologies, starting with the socket technologies and evolving into remote 
procedure calls and distributed computing environment to the current Java 2 Enterprise 
Edition (J2EE) and ActiveX technologies. No one can reliably predict the future, but 
given what is known about proprietary technology evolution as well as open systems 
evolution, it is likely that many of the technologies that are becoming popular will 
eventually have their own life cycle, which has a distinct ending point based on when the 
software vendors discontinue their product support and move their attention to new 
product lines. This particular technology evolution in middleware has some dramatic 
effects on application software because the middleware is closely integrated with many of 
the emerging application capabilities. When a technology like ActiveX becomes obsolete 
has it then become necessary to upgrade application systems to the new technologies in 
order to maintain vendor support and integration of new capabilities. We can already see 
the demise of ActiveX on the horizon as COM+, a succeeding technology, will replace 
core elements of its technology. The software interfaces are likely to be quite different, 
especially because COM and COM+ are based upon an interface definition language, not 
the same one as CORBA, and COM+ doesn't have an interface definition language, at 
least in terms of current marketing information. It is important for the software architect 
to anticipate these kinds of inevitable changes and to plan the migration of application 
systems to the new technologies in a manner which doesn't mitigate the business purpose 
of current system development. 

Figure 2.12. Managing Technology Change 
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There are many challenges to the architect in the application space. Some of the most 
strenuous challenges involve the changing business processes which current businesses 
are undergoing. There is increasing competition from all sectors and a merger of 
capabilities through technologies like the Internet, newspapers, computer companies, 
cable television vendors, and telecommunications operators are starting to work in the 
same competitive spaces and are experiencing significant competitive pressure that is the 
direct result of information technology innovations and innovative concepts implemented 
in application systems. Even with previous generations of technologies it is fairly well 
known that requirements change a great deal. In fact, the majority of applications costs 
for software development can be traced directly to requirements changes [Horowitz 93]. 
For the first time in history, information technology budgets are exceeding payrolls in 
many organizations in industries such as financial services. Information technology is 
becoming synonymous with competitive advantage in many of these domains. However, 
the basic capabilities of system development are still falling far short of what is needed to 
fully realize competitive capabilities. For example, in corporate development, one out of 
three systems that are started end up in a project cancellation [Johnson 95]. These types 
of statistics represent inordinate risk for small and medium-size businesses, given the 
increasing cost and dependence upon information systems. 

One of the fundamental rules of thumb of computing is that no technology ever truly goes 
away. One can imagine some early IBM minicomputers that are still faithfully 
performing their job in various businesses around the world. As information technology 
evolves, the need to integrate an increasing array of heterogeneous systems and software 
starts to become a significant challenge. As we integrate across enterprises and between 
enterprises using intranets and extranets, the architecture challenges become substantial. 
One problem is the current inadequacy of information technology infrastructure, 
including technologies like COM+ and CORBA which differ from the real application 
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needs in some significant ways. As the challenges of information technology continue to 
escalate, there is another problem with the software skill base. In many industries, there 
are substantial shortages of software engineers. It is estimated that there is at least a 10% 
negative unemployment level in the United States in the software engineering profession. 
Some industries are much harder hit than others, including public sector systems 
integration contractors. In order to build systems with that challenge in mind, the object-
oriented architect needs to plan the system development and control the key software 
boundaries in a more effective manner than has ever been done before. 

Many critical challenges lie ahead for application systems developers and software 
architects. There is an escalating complexity of application system development. This is 
driven by the increasing heterogeneity of information systems and the need to integrate 
increasing scopes of systems both within and outside the company. In addition, the user 
requirements are increasing the user expectations, due to exposure to Internet 
technologies and other marvels of modern life and are driving software developers to take 
increasing risks with more complicated and ambitious systems concepts. The key role of 
the object-oriented architect is the management of change. Managing commercial 
technology innovation with its many asynchronous product life cycles is one area. 
Another area is managing the changing business processes which the information 
technology supports and implements. One area of potential solutions lies in the users 
influencing the evolution of open systems technologies, influencing software vendors to 
provide whole technology capabilities, and influencing legislators to put in place the 
appropriate guarantees of merchantability and fitness for purpose that underlie the 
assumptions in system architecture and development. 

2.6 Applying Standards to Application Systems 

In the adoption of object-oriented architectures and technologies, many common 
questions are raised which must be resolved in order to fully understand the implications. 
We have already discussed questions of defining object orientation and the component 
technologies which comprise object technologies. We have also touched on how object 
technologies compare with others, such as procedural technology. 

Many other questions and requirements are crucial to certain categories of applications. 
Questions about performance, reliability, security on the Internet and how these 
technologies integrate with vendors that have significant market share are all important 
considerations in the adoption of these technologies. In the next few chapters we explain 
some of the fundamental concepts that describe the commercial and application sides of 
object-oriented architecture. We further make the case of the application of open systems 
technologies in object-oriented software development practice. We also address 
application development issues on applying object technology, integration of legacy 
systems, and the impact of these technologies on procurement and development processes. 

It is important to understand that commercial technologies based upon open systems 
evolve according to certain underlying principles. These principles are clearly defined 
through a model developed by Carl Cargill that describes the five stages of 
standardization (Figure 2.13). To initiate an open systems standards process it is 
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necessary to define a reference model. A reference model defines the common principles, 
concepts, and terminology that are applied across families of standards. These reference 
models also apply to object-oriented architectures and the integration of application 
systems. Reference models are an element often missing in software engineering 
processes that are addressing complex issues. Developing a formal reference model 
through a formal open systems process takes a considerable amount of effort from 
numerous people. 

Figure 2.13. The Five Stages of Standardization 

 
A typical reference model from the international standards organization may take up to 
ten years to formulate. Based upon a reference model, a number of industry standards can 
be initiated and adopted on a somewhat shorter time scale for formal standardization; this 
ranges up to seven years. Both reference models and industry standards are usually the 
intellectual product of groups of technology vendors. The standards represent the most 
general common denominator of technologies across the largest consumer base. In order 
to apply these technologies, it is necessary to define a number of profiles which serve the 
role of reducing the complexity of applying the standard within a particular domain or set 
of application systems (Figure 2.13). 

There are two different kinds of profiles. Functional profiles define the application in 
general terms of a standard for a specific domain. Typical domains might include 
mortgage lending or automobile manufacturing. The functional profiles define the 
common usage conventions across multiple companies within the same industry. 
Functional profiles can be the product of information technology vendors but usually are 
a joint product between the users of technology and the vendors. 

The next level of profiles is called system profiles. System profiles define how a 
particular family of systems will use a particular standard or set of standards. The family 
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of systems is usually associated with a certain enterprise or virtual enterprise. For 
example, a set of electronic data interchange standards for the Ford Motor Company 
define how the company and its suppliers for the manufacturing process can provide just-
in-time inventory control so that Ford's assembly lines can proceed in an organized 
fashion without interruptions. 

Above system profiles there are application systems, which are specific implementations. 
Even though the concept of profiles is new to many software engineers, profiles are 
implemented, perhaps implicitly, in all systems. Whenever a general-purpose standard or 
a commercial technology is applied, decisions are made regarding the conventions of 
how that technology is used, and those decisions comprise a profile. Unfortunately, many 
of the important profiles are buried in the implementation details of information systems. 
Notice that, in Figure 2.13, the time scales for developing each of the types of 
specifications is decreasing. The intention is that the reference models provide a stable 
architecture framework for all of the standards, profiles, and systems that are developed 
over a longer term. The industry standards provide the next level of stability and 
continuity, the profiles provide stability and consensus across domains and application 
families, and all of these mechanisms support the rapid creation of application systems on 
the order of half a year to a year and a half. 

Figure 2.14 shows the breakout of reference models and profiles from the perspective 
of a particular vendor of information technology. In general, a vendor is working from a 
single reference model that spans a number of industry standards. The vendor implements 
technologies conformant with these standards and then works with various application 
developers and vertical markets to define the usage of the technology for valuable 
business systems. There is a multiplying factor for vendors in this approach in that for a 
small group of vendors there are potentially numerous customers that are enabled by the 
technologies that they supply. 

Figure 2.14. Standards from the Vendor's Perspective 



IT-SC 78

 
Figure 2.15 portrays the concept from the perspective of the end-user application 
developer. We find this diagram somewhat amusing in a dark sense, but very 
representative of the kind of challenges that object-oriented architects in all kinds of 
information technology are facing today. For a given application system numerous 
standards and reference models are potentially applicable to the development of that 
system. A smaller number of functional profiles and system profiles can be obtained off 
the shelf to guide application system development. In general there is a gap between the 
application implementations and the industry standards in the area of profiling. Because 
profiling is primarily the responsibility of users, it's appropriate to say the users are to 
blame for this gap in guidance. 

Figure 2.15. Standards from the User and Application Developer's 
Perspective 
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When profiles are not agreed to between application system projects, the likelihood is 
that the systems will not be interoperable, even though they are using identical industry 
standards and even products from the same vendors. This can be a confusing and 
frustrating situation for application architects. It is necessary to understand these 
principles in order to resolve these kinds of issues for future system developments. 

2.7 Distributed Infrastructures 

Earlier, we introduced the concept of middleware that provided the software 
infrastructure over networking hardware for integrating server platforms with computing 
clients, which may comprise complete platforms in their own right. 

Distributed infrastructure is a broad description for the full array of object-oriented and 
other information technologies from which the software architect can select. Figure 
2.16 shows the smorgasbord of technologies available on both client server and 
middleware operating system platforms [Orfali 96]. On the client platform, technologies 
include Internet Web browsers, graphical user interface development capabilities, system 
management capabilities, and operating systems. On the server platform we have a 
similar array of technologies including object services, groupware capabilities, 
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transaction capabilities, databases, and others. As we said before, the server capabilities 
are migrating to the client platforms as client server technologies evolve. In the 
middleware arena, we also have a fairly wide array of client server capabilities. These 
include a large selection of different transport stacks, network operating systems, system 
management environments and specific services. These technologies are described in 
significant detail in a book that we recommend by our friends Bob Orfali, Dan Harkey, 
and Jeri Edwards, The Client Server Survival Guide [Orfali 96]. 

Figure 2.16. Infrastructure Reference Model 

 

Some of the key points to know about client server technologies include the fact that the 
important client server technologies to adopt are the ones that are based upon standards. 
The great thing about standards is that there are so many to choose from. A typical 
application portability profile contains over 300 technology standards. This standards 
profile would be applicable to a typical large-enterprise information policy. Many such 
profiles have been developed for the U.S. government and for commercial industry. The 
information technology market is quite large and growing. The object-oriented segment 
of this market is still relatively small but is beginning to comprise enough of the market 
so that it is a factor in most application systems environments. 

As standards evolve, so do commercial technologies. Standards can take up to seven 
years for formal adoption but are completed within as short a time as a year and a half 
within consortia like the OMG. Commercial technologies are evolving at an even greater 
rate, trending down from a three-year cycle that characterized technologies in the late 80s 
and early 90s down to 18-month and one-year cycles that characterize technologies today. 
For example, many vendors are starting to combine the year number with their product 
names, so that the obsolescence of the technology is obvious every time you invoke the 
program and users are becoming increasingly compelled to upgrade their software on a 
regular yearly basis. Will vendors reduce innovation time to less than one year and 
perhaps start to bundle the month and year designation with their product names? 
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The management of compatibilities between product versions is an increasingly difficult 
challenge, given that end-user enterprises can depend upon hundreds or even thousands 
of individual product releases within their corporate information technology 
environments. A typical medium-sized independent software vendor has approximately 
200 software vendors that it depends upon in order to deliver products and services, 
trending up from only about a dozen six years ago. Figure 2.17 shows in more detail 
how commercial technologies are evolving in the middleware market toward increasing 
application functionality. Starting with the origins of networking, protocol stacks such as 
the transmission control protocol (TCP) provide basic capabilities for moving raw data 
across networks. 

Figure 2.17. Evolution of Distributed Computing Technologies 

 

The next level of technologies includes the socket services which are available on most 
platforms and underlie many Internet technologies. These socket services resolve 
differences between platform dependencies. At the next layer, there are service interfaces 
such as transport-layer independence (TLI), which enabled a substitution of multiple 
socket-level messaging services below application software. As each of these 
technologies improves upon its predecessors, additional functionality which would 
normally be programmed into application software is now embodied in the underlying 
infrastructure. One consequence of this increasing level of abstraction is a loss of control 
of the underlying network details in qualities of services which were fully exposed at the 
more primitive levels. Beyond transport invisibility, the remote-procedure-called 
technologies then provide a natural high-level-language mechanism for network-based 
communications. The distributed computing environment represents the culmination of 
procedural technologies supporting distributed computing. Object-oriented extensions to 
DCE, including object-oriented DCE and Microsoft COM+, now provide mechanisms for 
using object-oriented programming languages with these infrastructures. 
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Finally, the CORBA object request broker abstracts above the remote procedure's 
mechanisms by unifying the way that object classes are referenced with the way that the 
individual services are referenced. In other words, the CORBA technology removes yet 
another level of networking detail, simplifying the references to objects and services 
within a distributed computing environment. The progress of technology evolution is not 
necessarily always in a forward direction. Some significant technologies that had 
architectural benefits did not become successful in the technology market. An example is 
the open doc technology, which in the opinion of many authorities had architectural 
benefits that exceed current technologies like ActiveX and JavaBeans. 

Standards groups have highly overlapping memberships, with big companies dominating 
most forums. Groups come and go with the fashions of technological innovation. 
Recently Internet forums (W3C, IETF) have dominated, as well as JavaSoft and 
Microsoft open forums. 

Many networking and open systems technologies as well as other object-oriented 
standards are the products of now defunct consortia. The consortium picture is dynamic. 
Some of the former consortia such as the Open Software Foundation and X Open are now 
merged to form The Open Group. Other consortia, such as the Object Management 
Group and the Common Open Software Group, are highly overlapping in membership. A 
recent addition to the consortium community has been the Active Group. The Active 
Group is responsible for publishing technology specifications for already released 
technologies developed by Microsoft (Figure 2.18). The Open Software Foundation 
originated the distributed computing environment which supports remote procedure calls 
as well as other distributed services. The distributed computing environment is the direct 
predecessor of the Microsoft COM+ technologies. Distributed computing environment 
represents the consensus of a consortium of vendors outside Microsoft for procedural 
distributed computing. 

Figure 2.18. Commercial Software Technology Consortia 
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Along with CORBA, the distributed computing environment is a mainstream technology 
utilized by many large-scale enterprises (Figure 2.19). One important shortcoming of 
the distributed computing environment is the provision of a single-protocol-stack 
implementation. As distributed computing technologies evolve, it becomes increasingly 
necessary to provide multiple network implementations to satisfy various quality-of-
service requirements. These requirements may include timeliness of message delivery, 
performance, and throughput, reliability, security, and other nonfunctional requirements. 
With a single-protocol-stack implementation, the developers of applications do not have 
the capability to provide the appropriate levels of service. The technology gap described 
here is properly described as access transparency, a term defined by an 
international standards organization reference model that we cover in Chapter 9. 
Proper object-oriented distributed computing infrastructures do provide access 
transparency and give developers the freedom to select the appropriate protocol stacks to 
meet the application quality-of-service requirements. 

Figure 2.19. Distributed Computing Environment 
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Figure 2.20 shows the infrastructure technologies from the Microsoft COM+ and 
ActiveX product lines. The basis of these technologies for distributed computing came 
from the original OSF environment, but that technology was extended in various ways 
with proprietary interfaces that also support the use of C++ programs in addition to the C 
program supported by DCE. The ActiveX technologies have a partition between 
capabilities which support distributed computing and capabilities which are limited to a 
single desktop. The capabilities which are desktop specific include the compound 
document facilities. Compound document facilities support the integration of data from 
multiple applications in a single office document. When moving a document from 
desktop to desktop, there can be complications because of the lack of complete 
integration with the distributed environment. 

Figure 2.20. ActiveX Technology Elements 
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Figure 2.21 shows some of the underlying details of how the component object model 
and COM+ model interface with application software. Application software is exposed to 
Microsoft generated function tables which are directly related to the runtime system from 
Microsoft Visual C++. The consequence of this close coupling between Visual C++ in 
applications software is that the mapping to other programming languages is not 
standardized and in some cases is quite awkward—for example, when ordinary C 
programs are applied with the COM+ infrastructure. The CORBA technologies provide a 
resolution of some of these shortcomings. 

Figure 2.21. Component Object Model 
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Figure 2.22 shows the basic concept behind an Object Request Broker (ORB). The 
purpose for an ORB is to provide communications between different elements of 
application software. The application software providing a service is represented by an 
object. This object may encapsulate software which is not object oriented. An application 
client can request services from an object by sending the request through the ORB. The 
CORBA mechanism is defined to help simplify the role of a client within a distributed 
system. The benefit of this approach is that it reduces the amount of software that needs 
to be written to create an application client and have it successfully interoperate in a 
distributed environment. 

Figure 2.22. Object Request Broker Concept 

 
Figure 2.23 shows some of the finer-grained details from the CORBA model. 2.23 
relates to Figure 2.22 in that we are showing client and object software interoperating 
through an object request broker infrastructure. The part of the infrastructure which 
CORBA standardizes is limited to the shaded interfaces between the application software 
and the ORB infrastructure. CORBA does not standardize the underlying mechanisms or 
protocol stacks. There are both benefits and consequences to this freedom of 
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implementation. Because different implementors have the ability to supply different 
mechanisms and protocol stacks underneath CORBA interfaces, a diversity of products 
support this standard and provide various qualities of service. Some implementations, in 
fact, provide dynamic qualities of service that can vary between local and remote types of 
invocations. The consequence of this freedom of implementation is that the mechanisms 
selected may not be compatible across different vendors. An additional standard called 
the Internet Inter ORB Protocol (IIOP) defines how different ORB mechanisms can 
interoperate transparently. The implementation of IIOP is required for all CORBA 
products. 

Figure 2.23. Key Interfaces in CORBA Architecture 

 

The CORBA infrastructure provides two different kinds of mechanisms on both the client 
and implementation sides of the communication services. On the client side, the client 
developer has the option of using precompiled stub programs that resemble ordinary calls 
to the application software. The use of static stubs minimizes the special programming 
which is required because the application is potentially distributed. The stub programs 
appear like local objects in the application environment, but the stubs represent a proxy 
for the remote object. 

The client developer has the option of using dynamic invocation (Figure 2.23). 
Dynamic invocation is an interface that enables the client to call an arbitrary message 
invocation upon objects that it discovers dynamically. The dynamic invocation gives the 
CORBA mechanism extensibility which is only required in certain kinds of specialty 
applications. These applications might include program debuggers, mobile agent 
programs, and operating systems. The implementor of object services in the CORBA 
environment also has the capability to choose static invocation or dynamic invocation. 
The two options are generated as either static skeletons or dynamic skeletons. 
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The skeletons provide the software which interfaces between the ORB's communication 
infrastructure and the application program, and they do so in a way which is natural to the 
software developer. By using dynamic skeletons with dynamic invocation in the same 
program, interesting capabilities are possible. For example, software firewalls, which 
provide filtering between different groups of applications, can easily be implemented by 
these two dynamic capabilities. 

Figure 2.24 shows the CORBA technologies in the object management architecture 
and how these technologies relate to the Cargill model that we discussed earlier. The 
object management architecture shown in Figure 2.9 provides a reference model for all 
the CORBA technologies. CORBA and the related standards, such as CORBA services 
and CORBA facilities, are examples of industry standards that apply broadly across 
multiple domains. 

Figure 2.24. Extensions of the Object Management Architecture 

 

The CORBA domains comprise functional profiles in the Cargill model. In other words, 
the CORBA domain interface specifications represent domain-specific interoperability 
conventions for how to use the CORBA technologies to provide interoperability. Finally, 
the application objects in the object management architecture correspond directly with 
the application implementations in the Cargill model. 

Other initiatives (besides CORBA) have attempted to specify comprehensive standards 
hierarchies. First Taligent, then IBM in San Francisco attempted to define object 
standards frameworks, but neither garnered the expected popularity. Java J2EE has come 
closest to achieving the vision, and in our opinions represents outstanding progress 
toward completing the standards picture. 
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2.8 Conclusions 

In this chapter we introduced the fundamental concepts of object orientation, open 
systems, and object-oriented architectures. We learned that object orientation helps to 
isolate changes in software systems by combining the data and processing into modules 
called objects. Object technology is a capability which is already present and entering the 
mainstream of software development. Object technology is broadly supported by 
commercial industry through software vending and by many mainstream end-user 
organizations in their application development. 

We learned that the only sustainable commercial advances are through open systems 
forms of commercial technology. With proprietary technologies, the obsolescence of 
capabilities conflicts with the need to build stable application environments which 
support the extension of application functionality. 

We learned that stovepipe systems are the pervasive form of application architecture but 
can be reformed into more effective component object architectures. In the next chapter 
we will describe object technologies and various reference models which make these 
technologies understandable. 

In this chapter we talked about one of the key concepts in object-oriented architecture—
the application of standards in software development. Proper understanding of how 
standards are utilized is very important to the successful exploitation of commercial 
technologies and the interoperability of application functions. 

In this chapter we also described object-oriented client server technologies with a focus 
upon the underlying distributed computing capabilities and how they compare with 
related technologies from the procedural generation. We discovered that the companies 
supplying these technologies have highly overlapping interests which are expressed 
through commercial standards consortia and formal standards bodies. We discussed how 
distributed computing environments vary from the CORBA mechanism to the Microsoft 
technologies that are more closely related to remote procedure call. Finally, we described 
some of the details of CORBA infrastructure and how they relate to the Cargill model. 

In conclusion, a wide range of open systems client server technologies support object 
orientation. These technologies enable the construction of a wide array of distributed 
systems based upon objects and components. 

2.9 Exercises 

Exercise 2.1 

Assess the state of your current organization (or customer) with respect to the adoption of 
software paradigms. Prepare a short status assessment document containing 
recommendations for resolving any gaps in the current skill base. 

Background for Solution: 
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First look at the programming languages being used. Most procedural and OO 
organizations adopt single-language solutions. Then examine the training requirements. 
How much training is each developer required to have? We know of major IT 
organizations that require 9 weeks to as much as 26 weeks of training before they turn 
developers loose on the shop floor. At a bare minimum, we'd suggest 3 weeks. Suppose 
we're pursuing the OO paradigm. The recommended training is 1 week for "thinking 
objects," 1 week for OO programming, and 1 week for distributed systems development 
process and practice, e.g., experiencing systems building in a training environment. These 
are the recommended absolute minimums. Some of the smartest companies require much 
more. 

Exercise 2.2 

Assess the state of architectural control within your organization. Are you heavily 
dependent upon the architecture of a single vendor or set of vendors? What elements of 
the architecture do you control in a vendor-independent manner? Create a list of 
recommendations for resolving any discrepancies or shortcomings due to excessive 
vendor dependency. 

Background for Solution: 

Ask people, "What is our architecture?" If the answer is Oracle or Microsoft, you should 
be concerned. These are honorable vendor firms, but in our way of thinking, what 
vendors do is not application architecture. Simple selection of a technology is not 
sufficient to resolve architectural forces. At a minimum, your enterprise architecture 
should describe the deployment of technologies and customization conventions for how 
products are used consistently across systems development. Ideally, your organization 
has its own APIs that resolve key interoperability issues, as well as rigorously maintained 
profiles for technology utilization. 

Exercise 2.3 

Assess the state of middleware technologies in your organization (or customer). Identify 
which technologies are utilized, and how effectively they are exploited. 

Background for Solution: 

In our experience, there is a very high correlation between the technologies utilized and 
the architecture practices. If you are using several middleware infrastructures in a single 
application, you are most likely to have ad hoc architecture practices and relatively 
unmaintainable systems. In the era of CORBA enlightenment, begin to recognize the 
folly of this approach. Many organizations, being conservative, chose DCE as their 
corporate middleware solution. However, DCE remains a relatively brittle infrastructure 
(originating from the "C" procedural generation of technologies). Early adoptions of 
CORBA frequently resemble DCE-like solutions. As these organizations mature in their 
use of distributed computing, there is a corresponding flowering of architectural practices. 
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Eventually, solid architecture frameworks like RM-ODP become quite attractive to these 
organizations, because they help architects think much more effectively about managing 
infrastructure. 

Exercise 2.4 

Describe a case-study experience for your organization as a useful lesson learned for 
other developers. Which products, versions, and platforms were utilized? How did you 
use and customize the applications to meet the needs of the application? 

Background for Solution: 

A case study or "experience report" is quite different than a design pattern although they 
both share lessons learned. A case study is a specific instance of a successful solution. As 
you write this up, think about answering the questions that would be most useful to 
developers encountering a new architecture problem. What elements of the solution are 
most reusable, in a way that saves time and eliminates risk for readers about to define a 
new system architecture? 

Exercise 2.5 

Describe the infrastructure dependencies of one or more current applications in your 
organization. How would you re-architect these systems in their next generation to 
accommodate technology change more effectively? 

Background for Solution: 

The worst case is if you are applying vendor technologies without profiling conventions 
and user-defined APIs. Unfortunately, the worst case is also typical of most organizations. 
Suppose a vendor provides 300 APIs to access its product. Your developers will use 
alternate sets of APIs for each project and even within a single system. If you want to 
migrate to something else, you have a supreme challenge. Consistency in use of product 
features can work wonders for enabling interoperability and maintainability. The user-
defined APIs, although proprietary, are very much under control and not likely to be 
vendor specific, e.g., CORBA IDL interfaces. To resolve these issues, you need to 
simplify the choices for how to utilize vendor products (i.e., using profiles) and clearly 
identify which aspects will be vendor independent. Reliance on standards is one step. 
Definition of profiles shows that you have sophistication in the use of standards and 
products. 

Exercise 2.6 

Which standards are being applied in your organization? Do they supply the desired 
benefits? Are there any profiles for these standards in your organization? Why or why not? 
Develop a plan, listing the recommended profiles of standards for your organization. 
Explain the rationale for why your organization needs each profile specification. 
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Background for Solution: 

Standards, while being one step away from vendor dependence, pose many of the same 
challenges as integrating with vendor-specific APIs. By definition, standards are very 
general purpose, applying to as many types of applications as possible. Therefore, the 
management of complexity is not an important goal for the standards writer. In fact, 
many standards are overly complicated in order to create barriers for vendor competition. 
Sophisticated application architects know this, and they plan to manage this complexity, 
e.g., profiles. We apologize for being so singled-minded about profiles, but this is a key 
solution concept that most organizations miss—with resulting negative consequences. In 
one of our favorite quotes, a senior executive laments that "We have created a set of fully 
standards-compliant stovepipes which can't interoperate." It's dead obvious why that's 
happened. You didn't read our book. Not that we created the concept, which is nearly as 
old as IT standards themselves. 

Exercise 2.7 

Describe the quality-of-service requirements for the distributed infrastructures in your 
organization (or customer). What qualities of service are readily supported today? What 
qualities of service could be usefully added? What distributed technologies would be 
applicable to meet these needs? 

Background for Solution: 

A quality of service (QoS) is an important category of architectural requirements for 
distributed infrastructure. Do you need reliable communications, e.g., funds transfer? Do 
you need to support continuous media, e.g., desktop video teleconferencing? How 
reliable? How continuous? How secure? These are important questions that drive the 
selection of infrastructures, the migration plans of enterprises, and the practices of 
enterprise architects. 
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Chapter three Software Architecture: 
Going to War 

To be a software architect means that you must learn to think like an architect—in 
particular, a distributed systems architect. This is a substantial paradigm shift from 
thinking like an individual software developer writing one program. In this world of 
increasingly distributed IT systems, much of what you learned in your previous training 
can naively mislead you. 

In order to go to war, you need to commit to a new mindset and a ruthless pursuit of 
architectural knowledge. Ignorance is our enemy, and knowledge is power on the 
architectural battlefield. We must erase mistaken assumptions and help you think about 
systems with much greater clarity, so that you can reason about the complex issues 
involved. 

3.1 Software Architecture Paradigm Shift 

Unless you program telecommunications systems, video games, mainframe operating 
systems, or rigorously inspected software (e.g., CMM Level 5), almost every piece of 
software you will ever encounter is riddled with defects and, at least in theory, doesn't 
really work. It only appears to work—until an unexpected combination of inputs 
sends it crashing down. That is a very hard truth to accept, but experienced architects 
know it to be the case. In commercial software, nothing is real. If you don't believe this, 
invite a noncomputer user to experiment with your system. It won't take long for them to 
lock up one or more applications and possibly invoke the Blue Screen of Death. 

In order to cope with this uncertain terrain, you need to begin thinking about software as 
inherently unreliable, defect ridden, and likely to fail unexpectedly. In addition, you need 
to confront numerous issues regarding distributed computing that aren't taught in most 
schools or training courses. 

We have many things to learn and unlearn as we go to war. We begin by recognizing a 
key paradigm shift that leads to a deeper understanding of distributed computing and its 
pervasive consequences. 

Traditional System Assumptions 

The essence of the paradigm shift revolves around system assumptions. Traditional 
system assumptions are geared toward nondistributed systems—for example, 
departmental data processing systems. Under these assumptions, we assume that the 
system comprises a centrally managed application where the majority of processing is 
local, the communications are predictable, and the global states are readily observable. 
We further assume that the hardware/software suite is stable and homogeneous and fails 
infrequently and absolutely: Either the system is up or the system is down. Traditional 
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system assumptions are the basis for the vast majority of software methodology and 
software engineering. 

Traditional system assumptions are adequate for a world of isolated von Neumann 
machines (i.e., sequential processors) and dedicated terminals. The traditional 
assumptions are analogous to Newton's laws of physics in that they are reasonable 
models of objects that are changing slowly with respect to the speed of light. 

Distribution Reverses Assumptions 

However, the von Neumann and Newtonian models are no longer adequate descriptions 
of today's systems. Systems are becoming much less isolated and increasingly connected 
through intranets, extranets, and the Internet. Electro- magnetic waves move very close to 
the speed of light in digital communications. With global digital communications, the 
Internet, and distributed objects, today's systems are operating more in accord with 
Einstein's relativity model. In large distributed systems, there is no single global state or 
single notion of time; everything is relative. System state is distributed and accessed 
indirectly through messages (an object-oriented concept). In addition, services and state 
may be replicated in multiple locations for availability and efficiency. Chaos theory is 
also relevant to distributed object systems. In any large, distributed system, partial 
failures are occurring all the time: network packets are corrupted, servers generate 
exceptions, processes fail, and operating systems crash. The overall application system 
must be fault-tolerant to accommodate these commonplace partial failures. 

Multiorganizational Systems 

Systems integration projects that span multiple departments and organizations are 
becoming more frequent. Whether created through business mergers, business process 
reengineering, or business alliances, multiorganizational systems introduce significant 
architectural challenges, including hardware/software heterogeneity, autonomy, security, 
and mobility. For example, a set of individually developed systems have their own 
autonomous control models; integration must address how these models interoperate and 
cooperate, possibly without changes to the assumptions in either model. 

Making the Paradigm Shift 

Distributed computing is a complex programming challenge that requires architectural 
planning in order to be successful. If you attempt to build today's distributed systems with 
traditional systems assumptions, you are likely to spend much of your budget battling the 
complex, distributed aspects of the system. 

The difficulty of implementing distributed systems usually leads to fairly brittle solutions, 
which do not adapt well to changing business needs and technology evolution. 

The important ideas listed below can help organizations transition through this paradigm 
shift and avoid the consequences of traditional system assumptions: 
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1. Proactive Thinking Leads to Architecture.   The challenges of 
distributed computing are fundamental, and an active, forward-thinking approach 
is required to anticipate causes and manage outcomes. The core of a proactive IT 
approach involves architecture. Architecture is technology planning which 
provides proactive management of technology problems. The standards basis for 
distributed object architecture is the Reference Model for Open Distributed 
Processing (RM-ODP). 

2. Design and Software Reuse.   Another key aspect of the paradigm 
shift is avoidance of the classic antipattern: "Reinventing the Wheel." In software 
practice there is continual reinvention of basic solutions and fundamental software 
capabilities. Discovery of new distributed computing solutions is a difficult 
research problem which is beyond the scope of most real-world software projects. 
Design patterns is a mechanism for capturing recurring solutions. Many 
useful distributed computing solutions have already been documented using 
patterns. While patterns address design reuse, object-oriented frameworks are 
a key mechanism for software reuse. To develop distributed systems 
successfully, effective use of design patterns and frameworks can be crucial. 

Tools.   The management of complex systems architecture requires the support of 
sophisticated modeling tools. The Unified Modeling Language makes these tools 
infinitely more useful because we can expect the majority of readers to understand the 
object diagrams (for the first time in history). Tools are essential to provide both forward 
and reverse engineering support for complex systems. Future tools will provide 
increasing support for architecture modeling, design pattern reuse, and software reuse 
through OO frameworks. 

The software architecture paradigm shift is driven by powerful forces, including the 
physics of relativity and chaos theory, as well as changing business requirements and 
relentless technology evolution. Making the shift requires proactive architecture planning, 
pattern/framework reuse, and proper tools for defining and managing architecture. The 
potential benefits include: development project success, multiorganizational 
interoperability, adaptability to new business needs, and exploitation of new technologies. 
The consequences of not making the paradigm shift are well documented; for example, 5 
out of 6 corporate software projects are unsuccessful. Using architecture to leverage the 
reversed assumptions of distributed processing can lead to a reversal of misfortunes in 
software development. 

3.2 Doing Software Wrong 

After many years of brutal lessons learned, enterprise software development is moving 
out of the heroic programming dark ages and into an industrial-strength architecture 
revolution. The key is architecture-centered development, and most software experts 
agree that for complex systems nothing else works. 

In this chapter we will explain the architecture-centered development process in some 
detail. But first, let's see why this software revolution is an inevitable necessity in 
enterprise development organizations. 
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This Old Software 

To be successful, software must create an on-screen illusion that appears to meet end-user 
needs. But this illusion is temporary. In enterprise development, the internal structure of 
the software is also of great importance. In particular, the software architecture's ability to 
accommodate change will determine whether it provides ongoing value to the enterprise. 

There are at least two unstoppable forces of change in enterprise software development: 
(1) requirements change and (2) technology change. In effect, our complex world is 
changing during system development and operational deployment. 

Requirements change because the business environment changes, and because the end 
users' understanding of the requirements changes upon encountering realized system 
elements. 

Technology changes are driven by relentless competition under the guise of innovation in 
the commercial software market. Vendor strategies are accelerating and enforcing change 
for software consumers. Currently, major vendors obsolete their own products every 6 to 
18 months. 

Because virtually every enterprise system relies on multiple commercial software 
suppliers, managing technology change is complex. Identifying, developing, and 
maintaining suites of integrated commercial products is an ongoing problem that every 
enterprise software organization must resolve for itself. 

An Example: Doing Software Wrong 

Here is a typical development scenario that is occurring in many enterprise software 
organizations today. 

The enterprise needs a new software system. The target system is a replacement or 
consolidation of existing systems which do not support necessary changes to business 
processes. A project manager is appointed and a development team formed. The 
development team is a mixed group with some current and legacy skills (often with the 
balance toward legacy). 

The project manager studies potential approaches and concludes that "object-oriented" 
(or other current buzzword) is the only paradigm that makes sense, given readily 
available, commercial technologies. In other words, the manager is led to believe that 
buzzword technology will make system success easy. Vendors encourage this illusion by 
claiming that their products can remake ordinary developers into programming stars. So 
the manager makes technology commitments and puts the development team through a 
product-specific programming course. 

After that, nothing seems to happen. The team struggles to analyze, design, and program 
the system, without much measurable progress. The manager grows increasingly 
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frustrated and worried, as the project schedule slips into political trouble with upper 
management and end users. 

Statistically, the manager was doomed, almost from the start. According to reliable 
surveys, the brutal reality is that one-third of all corporate development projects are 
cancelled. Five out of six projects are considered unsuccessful and unable to deliver 
desired features. Even average projects have schedule and budget overruns nearly double 
the original project estimates. 

Enter the Knight: Heroic Programmers 

Heroic programmers can help a project to avoid short-term consequences, by delivering 
software that appears to meet end-user needs. Now that user interfaces are relatively easy 
to implement, the illusion of working software is increasingly easy to demonstrate. 
However, the complexities of developing a system that accommodates change is another 
matter. Heroic programmers are usually too close to the software problem to consider 
these longer-term consequences (Figure 3.1). 

Figure 3.1. Heroic Programmers Often Fail to See the Bigger Dragon 

 

With today's complex programming notations (e.g., C++) and distributed system 
capabilities (e.g., intranet, N-tier), it is widely understood that software modules are 
unmaintainable, except by the original programmer. Averaging at 30% annually in the 
United States, developer turnover can quickly obsolesce an undocumented, heroically 
programmed system into an unmanageable stovepipe system. 

We believe that good programmers are absolutely necessary, but not sufficient, to ensure 
system success. Even in the most qualified of hands, the available program design 
methods, software tools, and computing technologies are surprisingly inadequate, 



IT-SC 98

compared to today's enterprise system challenges. Managing change and complexity 
requires much more than raw programming talent in order to realize a successful and 
maintainable system. Solutions to today's enterprise development challenges are possible 
through architecture-centered development—in other words, through working smarter, 
not harder, by doing software right. 

3.3 Doing Software Right: Enterprise Architecture 
Development 

Solving complex problems with teams of people requires planning. For enterprise 
software systems, some of the most important planning is highly technical (i.e., planning 
system architecture). 

Planning generates artifacts, but planning (as an activity) is much more important than 
project management plans, the typical artifacts. By this, we mean that document-driven 
process is not recommended because its priorities focus on paper artifacts, whereas the 
real product of any software development project is software. Instead, we view planning 
in a broader context, with multiple levels of formality and technical detail. For example, 
architecting is planning, and so are requirements analysis, design modeling, and 
generating plans. The level of formality should be tied to the longer-term usefulness of 
the documentation. 

In architecture-centered development, planning is pragmatic (Figure 3.2). Project plans 
and design models are throwaway documentation because their accuracy is short lived. 
Once a plan or specification is out of date, it is essentially useless. For example, source-
code changes can quickly obsolesce design models. 

Figure 3.2. Without Planning, It Becomes Apparent That Many Individual 
Successes Are Not Sufficient for Overall Project Success 
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In addition software methods and standards should be treated as guidelines, not mandates. 
Project teams are encouraged to think for themselves and tailor the process to meet the 
project's needs. 

Pragmatics is a fundamental principle of software modeling: for requirements, 
architecture, and design. Every model has a purpose and focus, suppressing unimportant 
details. Models should document important decisions, based upon project assumptions 
and priorities. Deciding what's important is an essential decision skill that is part of being 
a competent architect. 

Architecture-Centered Process 

Figure 3.3 shows the 10-step process for architecture-centered development that covers 
the full system life cycle. This process is based upon key software standards and best-
practice patterns proven in practice. 

Figure 3.3. Architecture-Centered Development Process 
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A key objective is to facilitate productivity in Step 7 for parallel iterative development 
(i.e., coding and testing). In this discussion, the activities preceding Step 7 are 
emphasized, because these steps comprise the architecture planning activities where we 
believe the key issues reside in current enterprise development. 

We emphasize that this process is inherently iterative and incremental perhaps requiring 
revisions to artifacts from previous steps. However, the predevelopment steps do have a 
waterfall progression, due to their interdependencies. The entire process is quality driven, 
with the ultimate goal of satisfying end-user needs by establishing a stable architecture 
description and a working software codebase that can accommodate change. 

Step 1: System Envisioning 

In discussing modeling, we mentioned the key words purpose, focus, assumptions, 
and priorities. These are all essential elements of a systemwide Vision Statement. 
If they change during system development, the project is at risk of obsolescing its own 
models. Therefore, the first step of architecture-centered development is to establish a 
Vision Statement, with the binding assumption that the Vision Statement cannot change, 
once development begins (Step 7). Any changes must be reflected in key project plans—
in particular, the System Architecture (Step 3). 

In effect, the Vision Statement is a binding agreement between the system developers and 
the system users. It should be short and to the point, typically less than 10 pages of text, 
depending on the system. 

The Vision Statement establishes the context for all subsequent project activities, starting 
with requirements analysis. 

Step 2: Requirements Analysis 
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The requirements should define the external behavior and appearance of the system, 
without designing the internal structure of the system. The external behavior includes 
internal actions (such as persistence or calculation) that are required to ensure desired 
external behavior. The external appearance comprises the layout and navigation of the 
user interface screens. 

An effective approach for capturing behavioral requirements is through use cases. A use 
case comprises a top-level diagram and extensive textual description. A typical use case 
diagram is shown in Figure 3.2, for an information retrieval architecture. Use case 
notation is deceptively simple, but it has one invaluable quality: it enforces abstraction. 
Use case notation is one of the most effective notations ever devised for expressing 
complex concepts. Hence, it's great for ensuring simplicity and clarity in representing 
top-level requirements concepts. 

For each circle in the diagram (called an individual use case), there is an extensive textual 
description of the relevant requirements. This write-up takes the form of a long list, 
containing a sequence of actions, described in domain-specific prose. The definition of 
use cases should be done jointly with domain experts. Without continuous involvement 
of domain experts, the exercise is a common antipattern called Pseudo Analysis, i.e., 
something to be avoided. 

Use cases provide a domain model of the system for the purpose of defining architecture. 
Use cases also have a downstream role. In development, Step 7, use cases are extended 
with system-specific scenario diagrams. Eventually, these scenarios are elaborated into 
software tests. 

The appearance, functionality, and navigation of the user interface is closely related to 
the use cases. An effective approach to defining the screens is called low-fidelity 
prototyping. In this approach, the screens are drawn out with paper and pencil. Again, the 
end-user domain experts are continuously involved in the screen definition process. 

With the use cases and user interfaces defined, we have established context for 
architectural planning. In addition to generating documentation (including paper and 
pencil sketches), the architecture team acquires a deep understanding of the desired 
system capabilities in the context of the end-user domain. 

A final product of requirements analysis is a project glossary which should be extended 
during architecture planning (Step 3). 

Step 3: Architecture Planning 

Architecture bridges the huge semantic gap between requirements and software. Because 
requirements notation is prose, requirements are inherently ambiguous, intuitive, and 
informal. It's right-brain stuff. Software, on the other hand, has the opposite 
characteristics. Software source code is a formal notation. Software is interpreted 
unambiguously by a machine, and its meaning is logically unintuitive (i.e., hard to 
decipher). It's left-brain stuff. 
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Architecture's first role is to define mapping between these two extremes. Architecture 
captures the intuitive decisions in a more formal manner (which is useful to 
programmers), and it defines internal system structure before it is hardwired into code (so 
that current and future requirements can be satisfied). Architecture is a plan that manages 
system complexity in a way that enables system construction and accommodates change. 
Architecture has another significant role: defining the organization of the software project. 
(See Step 6.) 

Architecture planning is the key missing step in many current software projects, 
processes, and methods. One cause of this gap is the ongoing debate about the question: 
"What is architecture?" Fortunately, this question has already been answered definitively, 
by the software architecture profession, in a formal ISO standard for Open Distributed 
Processing (ODP). 

ODP is a powerful way to think about complex systems which simplifies decision 
making (i.e., working smarter, not harder). It organizes the system architecture in terms 
of five standard viewpoints, describing important aspects of the same system. These 
viewpoints include business enterprise, logical information, computational interface, 
distributed engineering, and technology selection (Figure 3.4). 

Figure 3.4. ODP Viewpoints 

 

For each viewpoint it is important to identify conformance to architectural requirements. 
If conformance has no objective definition, then the architecture is meaningless, because 
it will have no clear impact upon implementation. ODP facilitates this process because 
ODP embodies a pervasive conformance approach. Simple conformance checklists are all 
that's needed to identify conformance points in the architecture. 
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In the following paragraphs we shall summarize each of these viewpoints. Using ODP, a 
typical architecture specification is concise, comprising about 100 pages, depending upon 
the system. Each viewpoint comprises 5 to 20 pages. It is expected that every developer 
will read this document, cover to cover, and know its contents. We suggest that the 
content be tutorialized (i.e., viewgraphs) and communicated to developers, in detail, 
through a multiday kickoff meeting. (See Step 7.) 

Business Enterprise Architecture 

The Business Enterprise Architecture (the enterprise viewpoint) defines the business 
purpose and policies of the system in terms of high-level enterprise objects. These 
business object models identify the key constraints on the system, including the system 
objective and important system policies. 

Policies are articulated in terms of three categories: (1) obligations—what business 
objects must do, (2) permissions—what business objects can do, and (3) prohibitions—
what business objects must not do. 

A typical Business Enterprise Architecture comprises a set of logical object diagrams (in 
UML notation) and prose descriptions of the diagram semantics. 

Logical Information Architecture 

The Logical Information Architecture (the information viewpoint) identifies what the 
system must know. This architecture is expressed in terms of an object model with an 
emphasis on attributes which define system state. Because ODP is an object-oriented 
approach, the models also include key information processes, encapsulated with the 
attributes, i.e., the conventional notion of an object. 

A key distinction is that architectural objects are not programming objects. For example, 
the information objects do not denote objects that must be programmed. On the other 
hand, the architecture does not exclude this practice. 

Architecture objects represent positive and negative constraints on the system. Positive 
constraints identify things that the system's software must do. Negative constraints are 
things that the system's software does not have to do. Knowledge of these constraints is 
extremely useful to programmers, because they eliminate much of the guesswork in 
translating requirements to software. The architects should focus their modeling on those 
key system aspects of greatest risk, complexity, and ambiguity, leaving straightforward 
details to the development step. 

The information model does not constitute an engineered design. In particular, 
engineering analysis, such as database normalization, is explicitly delegated to the 
development activities (Step 7). 

Computational Interface Architecture 
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Often neglected by architects, the computational interface architecture (the computational 
viewpoint) defines the top-level application program interfaces (API). These are fully 
engineered interfaces for subsystem boundaries. In implementation, the developers will 
program their modules to these boundaries, thus eliminating major design debates 
involving multiple developers and teams. The architectural control of these interfaces is 
essen tial to ensuring a stable system structure that supports change and manages 
complexity. 

An ISO standard notation ODP computational architecture is the CORBA Interface 
Definition Language (IDL). IDL is a fundamental notation for software architects 
because it is completely independent of programming-language and operating-system 
dependencies. IDL can be automatically translated to most popular programming 
languages for both CORBA and Microsoft technology bases (i.e., COM/DCOM) through 
commercially available compilers. 

Related techniques for defining computational architectures include architecture mining 
and domain analysis. 

Distributed Engineering Architecture 

Distributed engineering architecture (the engineering viewpoint) defines the requirements 
on infrastructure, independent of the selected technologies (Figure 3.5). The 
engineering viewpoint resolves some of the most complex system decisions, including 
physical allocation, system scalability, and communication qualities of service (QoS). 

Figure 3.5. ODP Engineering Viewpoint 
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One of the key benefits of ODP is its separation of concerns (i.e., design forces). 
Fortunately, the previous viewpoints resolved many other complex issues that are of 
lesser concern to distributed systems architects, such as APIs, system policies, and 
information schemas. Conversely, these other viewpoints were able to resolve their 
respective design forces, independent of distribution concerns. 

Many software and hardware engineers find this part of architecture modeling to be the 
most interesting and enjoyable. Fascinating decisions must be made regarding system 
aspects such as object replication, multithreading, and system topology. 

Technology Selection Architecture 

The technology selection architecture (the technology viewpoint) identifies the actual 
technology selection. All other viewpoints are fully independent of these decisions. 
Because the majority of the architecture design is independent, commercial technology 
evolution can be readily accommodated. 

A systematic selection process includes initial identification of conceptual mechanisms 
(such as persistence or communication). The specific attributes (requirements) of the 
conceptual mechanism are gathered from the other viewpoints. Concrete mechanisms are 
identified (such as DBMS, OODBMS, and flat files). Then specific candidate 
mechanisms are selected from available technologies (such as Sybase, Oracle, and Object 
Design databases). Based upon initial selections from candidates, this process is iterated 
with respect to project factors such as product price, training needs, and maintenance 
risks. 

It is important to retain the rationale behind these selections, as it is important to record 
the rationale for all viewpoints as future justification of architectural constraints. This 
recording can be done in an informal project notebook maintained by the architecture 
team for future reference. 

Step 4: Mockup 

The screen definitions from Step 2 are used to create an on-line mockup of the system. 
Dummy data and simple file IO can be used to provide more realistic interface simulation 
in key parts of the user interface. The mockup is demonstrated to end users and 
management sponsors. 

End users and architects should jointly review the mockups and run through the use cases 
(Step 2) in order to validate requirements. Often, new or modified requirements will 
emerge during this interchange. Generate screen dumps of any modified screens and 
mark them up for subsequent development activities. Any modifications to requirements 
are then incorporated by the other architectural activities. 

Through the mockup, management is able to see visible progress, a politically important 
achievement for most projects. This step is an example of an external (or vertical) 
increment, which is used for risk reduction, both political and requirementswise. 
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With rapid prototyping technologies such as screen generation wizards, mockups can be 
generated in less than a staff month for most systems. 

Step 5: Architecture Prototyping 

The architecture prototype is a simulation of the system architecture. System API 
definitions are compiled and stub programs written to simulate the executing system. The 
architecture prototype is used to validate the computational and engineering architectures, 
including flow of control and timing across distribution boundaries. 

Using technologies like CORBA, a computational architecture specification can be 
automatically compiled into a set of programming header files with distributed stubs 
(calling side) and skeletons (service side). Dummy code is inserted in the skeletons to 
simulate processing. Simple client programs are written to send invocations across 
computational boundaries with dummy data. A handful of key (e.g., high-risk) use cases 
are simulated with alternative client programs. Prototype execution is timed to validate 
conformance with engineering constraints. 

Changes to the computational, engineering, or technology architectures are proposed and 
evaluated. 

Step 6: Project Management Planning 

As the final step in the predevelopment process, project management plans are defined 
and validated to resolve resource issues, including staffing, facilities, equipment, and 
commercial technology procurement. A schedule and a budget are established, according 
to the availability (lead time) for resources and project activities. 

The schedule for Step 7 is planned in terms of parallel activities for external and internal 
increments. External increments support risk reduction with respect to requirements and 
management support (see Step 4). Internal increments support the efficient use of 
development resources—for example, the development of back-end services used by 
multiple subsystems. 

Current best practices are to perform several smaller internal increments supporting 
larger-scale external increments, called VW staging. Ideally, several project teams of up 
to 4 programmers are formed, with 3-month deliverable external increments. In practice, 
this has proven to be the most effective team size and increment duration. 

The architecturecentric process enables the parallel increments. Because the system is 
partitioned with well-defined computational boundaries, development teams can work 
independently, in parallel with other teams, within their assigned boundaries. Integration 
planning includes increments which span architectural boundaries. 

The detail in the project plan should not be inconsistent. The plan should be very detailed 
for early increments and should include replanning activities for later in the project. This 
recognizes the reality that project planners don't know everything up front. 
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A risk mitigation plan is also prepared with identification of technical backups. The 
development team involved in mockup and architecture prototyping should continue to 
develop experimental prototypes with high-risk technologies in advance of the majority 
of developers. This is called the "run-ahead team" and is a key element of risk mitigation. 

The final activity in project management planning is the architectural review and startup 
decision. Up to this point, the enterprise sponsors have made relatively few commitments, 
compared to the full-scale development (about 5% of system cost, depending on the 
project). 

Executive sponsors of the project must make a business decision about whether to 
proceed with building the system. This executive commitment will quickly lead to many 
other commitments which are nearly impossible to reverse (such as technology lock-in, 
expenses, and vendor-generated publicity). At this point, the system architects are 
offering the best possible solution and approach, in the current business and technology 
context. 

If the system concept still makes business sense, compared to the opportunity costs, the 
enterprise is in an excellent position to realize the system because they're doing software 
right. 

Step 7: Parallel Incremental Development 

Development project kickoff involves several key activities. The developers must learn 
and internalize the architecture and requirements. An effective way to achieve this is with 
a multiday kickoff meeting, which includes detailed tutorials from domain experts and 
architects. The results of all previous steps are leveraged to bring the developers up to 
speed quickly and thoroughly. We suggest that the lectures be videotaped, so that staff 
turnover replacements can be similarly trained. 

Each increment involves a complete development process, including design, coding, and 
test. Initially, the majority of the increments will be focused on individual subsystems. As 
the project progresses, an increasing number of increments will involve multiple 
subsystem integration. A project rhythm is established that enables coordination of 
development builds and tests. 

For most of the software development activity, the architecture is frozen, except at some 
planned points, where architectural upgrades can be inserted without disruption. 
Architectural stability enables parallel development. 

For example, at the conclusion of a major external increment, an upgrade to the 
computational architecture can be inserted, before the next increment initiates. The 
increment starts with an upgrade of the software, conformant with the changes. In 
practice, the need and frequency of these upgrades decreases as the project progresses. 
The architect's goal is to increase the stability and quality of the solution, based upon 
feedback from development experience. A typical project would require two architectural 
refactorings (upgrades) before a suitably stable configuration is achieved for deployment. 
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Step 8: System Transition 

Deployment of the system to a pilot group of end users should be an integral part of the 
development process. Based upon lessons learned in initial deployment, development 
iterations might be added to the plan. Schedule slips are inevitable, but serious quality 
defects are intolerable for obvious reasons. Improving quality by refactoring software 
(improving software structure) is an important investment in the system that should not 
be neglected. 

An important architect's role in this step involves system acceptance. The architect should 
confirm that the system implementation is conformant with the specifications and fairly 
implements the end users' requirements. This task is called architectural certification. 

In effect, the architect should be an impartial arbitrator between the interests of the end 
users and those of the developers of the system. If the end users define new requirements 
which impact architectural assumptions, the architect assesses the request and works with 
both sides to plan feasible solutions. 

Step 9: Operations and Maintenance 

Operations and Maintenance (O&M) is the real proving ground for architecture-centered 
development. Whether or not "doing software right" was effective will be proven in this 
step. The majority of system cost will be expended here. As much as 70% of the O&M 
cost will be due to system extensions—requirements and technology changes that are the 
key source of continuing development. 

Typically, half of a programmer's time will be expended trying to figure out how the 
system works. Architecture-centered development resolves much of this confusion with a 
clear, concise set of documentation: the system architecture. 

Step 10: System Migration 

System migration to a follow-on target architecture occurs near the end of the system life 
cycle. Two major processes for system migration are called big bang and chicken little. A 
big bang is a complete, overnight replacement of the legacy. In practice, the big bang 
seldom succeeds; it is a common antipattern for system migration. 

The chicken little approach is more effective and ultimately more successful. Chicken 
little involves simultaneous, deployed operation of both target and legacy systems. The 
initial target system users are the pilot group (as in Step 8). 

Gateways are integrated between the legacy and target systems. Forward gateways allow 
legacy users to have access to data that is migrated to the target system. Reverse 
gateways allow target system users to have transparent access to legacy data. Data and 
functionality are migrated incrementally from the legacy to the target system. In effect, 
system migration is a continuous evolution. As time progresses, new users are added to 
the target system and taken off the legacy environment. 
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In the long term, it will become feasible to switch off the legacy system. By that time, it 
is likely that the target system will become the legacy in a new system migration. The 
target system transition, Step 8, overlaps the legacy system migration, Step 10. In the 
chicken little approach, Steps 8, 9, and 10 are part of a continuous process of migration. 

3.4 Bottom Line: Time, People, and Money 

As a general rule, enterprise software projects requiring more than a year for delivery 
should be avoided. In a one-year development, at least 3 to 6 months should be allocated 
to the architecture phases (Steps 1 through 6). 

The architecture phases require only a minimal staff. The architecture team includes a 
project manager and a set of one to four architects depending on project complexity. A 
part-time Run-Ahead Team augments the architecture staff, for implementation exercises, 
including the Mockup and Architecture Prototype (Steps 4 and 5). A part-time Domain 
Team assists in drafting the requirements and user interface design. The Domain Team 
also validates the architecture and the mockup from the end-user perspective. 

The development phase is scalable to fit the project complexity and delivery schedule, 
through small functional teams of developers (ideally teams of 4 developers on 3-month 
increments). 

The schedule breaks down as follows: approximately 50% for system planning and 50% 
for development. The development efforts would be split about 25% for actual coding 
and 25% for testing and training. These allocations are conformant with best practices for 
project management, which work in multiple domains, including software projects. 

Cost estimates include an empirically verified 70% to 30% partition between 
development and O&M. In addition, we estimate that a typical project requires less than 
5% of the system budget for the architecture phases. 

3.5 Conclusions 

Architecture-centered development is doing enterprise software right. The process 
detailed in this chapter is called the ODP+4 process; it is based upon widely utilized 
architecture standards and best-practice patterns. It is called ODP+4 because it generates 
an Open Distributed Processing architecture as well as other formal and informal artifacts, 
including: (1) the Vision Statement, (2) the use-case-based requirements, (3) the rationale, 
and (4) the conformance statements. 

Architecture-centered development is pragmatic. Modeling focus is given to those 
decisions that are architecturally important. Not every artifact is required. Document 
formality is selective. 

From experience, we have seen so many projects doing software wrong, that it's no 
wonder five out of six projects are unsuccessful. The age of the heroic programmer is 
coming to an end, and the age of the professional software architect has begun. Driven by 
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escalating user expectations, business changes, and technology innovations, many 
organizations now realize that proper system planning generally translates into system 
success, and improper planning leads to system failure. 

Finally, the role of the software architect is relatively new in many project cultures. What 
has been called architecture, informally, needs to become conformant with standards and 
best-practice patterns, if consistent development success is desired. 

3.6 Exercises 

Exercise 3.1 

Which mistaken traditional systems assumptions are commonly applied by your 
organization in software development? How would you remedy this situation? 

Background for Solution: 

Much of what people learn in school (e.g., computer science courses) can be viewed as 
negative training with respect to this paradigm shift. Not everyone in the organization 
needs to embrace the paradigm shift completely. At a minimum, the architects of the 
system do have to have a solid understanding of these concepts and need to define system 
boundaries that mitigate the consequences of the actions of wrong-thinkers. 

Exercise 3.2 

Are there obvious AntiPatterns which your organization continually repeats in 
development after development? What alternatives would you recommend to avoid these 
recurring mistakes and/or refactor the results of existing solutions? 

Background for Solution: 

Please refer to our book AntiPatterns for a full disclosure on this sensitive topic 
[Brown 98]. In our experience, AntiPatterns are more prevalent than patterns of success. 
One of our good friends mused that if people would simply avoid the most obvious 
mistakes, software development would be much more successful, as an industry. In other 
words, our friend thinks that you may not need a new set of good practices, as long as 
you avoid the practices that are known not to work. 

Exercise 3.3 

How does the process of Enterprise Architecture Development compare with your current 
organizational practices for building large systems? Do you have an explicit architectural 
phase before hordes of programmers join the effort? Do you use Lo-Fi screen design and 
architectural prototyping to reduce risks? Do you have a run-ahead team? Is your 
architecture prework defining effectively organizational interfaces that enable parallel 
development? 
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Background for Solution: 

Sophisticated architecture practices are rare indeed, in today's software industry. The one-
man heroic programming team is still a commonplace fixture in many shops. Not 
surprisingly, some of the best-known products in today's software market are the result of 
one-man development teams. It works for some commercial organizations that can 
tolerate the release of extremely deficient products. Not so, in most application 
development shops. We know that it is brutally difficult to attempt to think and work 
architecturally, when every manager is under extreme time pressure to deliver results. 
First they have to understand that there is a problem. Lending them a copy of our book 
AntiPatterns is one way to move forward. We wrote it specifically for people who 
have difficulty admitting that there is a problem, when it's incredibly obvious to most 
other people. 

Exercise 3.4 

What is your organizational process for architecting and developing a system? Are there 
conventions for how much time is devoted to system planning (e.g., architecture) versus 
programming and other tasks? If you had a magic wand, how would you refactor your 
organizational practices to improve system successes and reduce unnecessary 
commitments and risks? 

Background for Solution: 

On a typical project (in many shops), a large group of developers (perhaps 30 or 50) join 
the project on day one. These people are rapidly allocated into a human organization 
before there is an architecture available to guide these decisions. Once in place, these 
organizations are almost impossible to change. Then there is a long period of negotiations 
as these groups struggle to define the system architecture to be conformant with their 
organizational boundaries. The architect has lost control. Ideally, what should happen 
resembles the Enterprise Architecture Development process that we describe in this 
chapter. Commitments for developers and equipment are delayed until adequate planning 
has occurred. Irreversible decisions are not made until the organization fully understands 
what it wants to accomplish. 
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Chapter four Software Architecture: Drill 
School 

In order to provide technical leadership, an architect must have mastered several 
fundamental areas of software design and aspects of the overall software development 
process. 

Most software architects would agree that software design involves multiple levels of 
abstraction. The notion of design levels originates from the hardware design levels 
proposed by Bell and Newell in 1971. Design levels help to simplify hardware design 
because they provide a separation of concerns. In design patterns terminology, design 
levels provide a separation of "forces." 

By limiting the sets of forces that need to be resolved in each design decision, we 
simplify design problems. This simplification is possible because not all design forces are 
equally important at all levels. Design levels are defined in terms of a reference model. 
The reference model partitions and allocates the major design forces so that each force is 
resolved at an appropriate level. 

The separation of design levels is an important, but missing, element in most object 
technology practice. Design levels are particularly important for the creation and 
understanding of object-oriented architecture. 

4.1 Architecture versus Programming 

Software design levels has been a topic of academic discussion. Representing the 
software architecture research community, Shaw and Garlan propose a three-level model, 
comprising: 

machine 

code 

architecture 

The machine level comprises unmodifiable binary software, including the operating 
system and linkable modules. The code level is modifiable source code. The architecture 
level is a higher level of abstraction. In their model, architecture comprises software 
partitioning, software interfaces, and interconnections. 

The three-level model establishes a useful frontier for academic research on software 
architecture. However, it does not have enough levels to provide a sufficient separation of 
design forces. In addition, this model cannot explain key object-technology benefits, such 
as interoperability and reuse. Interoperability and reuse require at least one more level in 
the model: The Enterprise, an architecture of system architectures. 

The Fractal Model of Software 
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Another way to view software levels is in terms of scale (Figure 1.9). Objects and 
classes are the finest grain level. This is the level defined by programming languages 
(C++, Java) and infrastructures (e.g., CORBA, J2EE). The next level comprises 
microarchitectures, which are simple configurations of objects. This is the level 
addressed by most design patterns. Configurations of microarchitectures form 
frameworks (in the Taligent sense). Groups of frameworks form applications (or 
subsystems). Groups of applications form systems. 

The idea for the fractal model was proposed by Richard Helm, co-author of Design 
Patterns: Elements of Reusable Object-Oriented Software [Gamma 94]. A missing 
element from the fractal model is the separation of concerns (or forces). 

Major Design Forces 

There is surprising agreement about the major design forces on the part of various 
communities of software researchers. Much of the work is driven by a single major force 
at a particular design level, although the particular force and design level vary by group. 

Many identify adaptability as the key design force. Adaptability is alternately called 
"management of change" or variation-centered design. Others focus on management of 
complexity. Management of complexity is the major driving force of the academic 
software architecture community, as well as much of the software metrics community. 

The Effect of Scale on Forces 

Management of change is one of the major design forces in object-oriented architecture. 
Its importance varies greatly with the scale of software and design level. As the scale of 
software increases, so does the frequency of change. 

For example, an individual application may need to be upgraded only occasionally. A 
system may comprise many applications, each requiring upgrade. The effect of change is 
cumulative. At an enterprise level, change is very frequent, with new applications, 
systems, peripherals, and employees moving every day. 

There is a similar effect of scale on other major design forces. This realization leads to a 
separation of forces between design levels. 

Software Design Levels 

The Software Design-Level Model (SDLM) builds upon the fractal model (Figure 1.9). 
This model has two major categories of scales, Micro-Design and Macro-Design. The 
Micro-Design levels include the finer-grain design issues from application (subsystem) 
level down to the design of objects and classes. The Macro-Design levels include system-
level architecture, enterprise architecture, and global systems (denoting multiple 
enterprises and the Internet). 
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The Micro-Design levels are the most familiar to developers. At Micro-Design levels, the 
key concerns are the provision of functionality and the optimization of performance. At 
the Macro-Design levels, the chief concerns lean more toward management of 
complexity and change. These design forces are present at finer grains, but are not nearly 
of the same importance as they are at the Macro-Design levels. 

An interesting boundary in the SDLM model is between the enterprise and the global 
levels. Forces that are important to resolve inside the enterprise are very different than the 
forces that are important externally. Inside the enterprise, control of information 
technology and resources is challenging, but feasible. At the global level, issues of 
technology transfer, control of intellectual property (licensing), and security are key 
issues between enterprises (and individuals). 

Using Design Levels 

Design levels are an important and useful intellectual tool. Design levels help to simplify 
design problems by separating design forces. Each design level limits the number of 
forces that need to be resolved by any given design decision. Design levels have been in 
use for dozens of years in digital hardware engineering, and it is time for object 
technology to adopt a similarly effective conceptual discipline. 

Design levels are a key issue for object-oriented architecture because they define the 
problems and forces that architecture must resolve. 

4.2 Managing Complexity Using Architecture 

One of the key skills of any software architect is the management of software complexity. 
Software complexity is the one of the key characteristics of all nontrivial software 
systems which must be managed. Successful management of complexity leads to 
improvement in many system qualities such as understandability, maintainability, and 
modifiability. 

Complexity is an interesting phenomenon because it arises from the aggregation of many 
small design decisions. For system-level interfaces, the effects of complexity are 
multiplicative, because multiple parts of an integrated system are affected by each design 
addition. For example, it may seem very reasonable to add a few attributes and operators 
to a subsystem interface. If this uncoordinated practice is repeated on multiple 
subsystems, the result will be excessive complexity and brittle interdependencies. 
Another key factor is interpersonal: It is easier to reach consensus on design 
disagreements by adding complexity, rather than by eliminating overlapping details. This 
is the chronic failing of formal standards groups which produce "designs by committee." 

Creating Complexity 
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Many key qualities of software systems are directly related to complexity, including cost, 
maintainability, extensibility, and so forth.In practice, successful management of 
complexity is rare. Poor management of complexity has several causes, including: 

• Lack of Priority:  Many software practitioners do not appreciate how 
critically important management of complexity is to the success of any software 
architecture and system implementation. 

• Lack of Architectural Sophistication:   Design patterns for 
managing complexity are not commonplace in software education, training, and 
practice. 

Many software projects fail to manage complexity because they do not consider control 
of complexity to be part of architecture. System-level design details are often delegated to 
multiple developers, who readily produce unique, uncoordinated designs. Other projects 
inherit excess complexity from the architecture of a proprietary product. Vendor 
architectures emphasize flexibility to satisfy the widest possible consumer market. For 
vendors, management of complexity has low priority, implicitly delegated to application 
developers. 

In order to successfully manage complexity, one needs to understand and apply a number 
of architectural options. The following sections summarize some of the key techniques 
for managing complexity in software architectures. 

For present purposes only, I have labeled these options in terms of familiar analogies. 
These architectural options are not exclusive. In each analogy, "It" refers to complexity: 

Sweep It Under a Rug (Encapsulation) 

Hide It in a Crowd (Repository Architecture) 

Ignore It (Horizontal Architecture) 

Slice It (Layered Architecture) 

Dice It (Vertical Architecture) 

"Do not slide through regions where high rates of information 
exchange are required" [Rechtin 97]. 

Complexity comprises implementation details derived from the domain and the 
technology. By managing complexity, we reorganize these details in a beneficial way. By 
organizing complex details, we eliminate unnecessary dependencies and other factors that 
compromise system quality. 

Option 1: Sweep It Under a Rug 

Encapsulation is an obvious way to hide implementation details behind an interface. As 
one of the fundamental properties of object-oriented (OO) environments, encapsulation 
unifies the software's data model and procedural model into object abstractions. 



IT-SC 116

Encapsulation using language-specific mechanisms is not always as effective as we might 
hope. When an implementation changes, there are unforeseen impacts on related objects, 
which must also be modified. 

Industrial-strength encapsulation, using CORBA Interface Definition Language (IDL), is 
a way to increase the effectiveness of encapsulation. Users of X11R6 Fresco experienced 
the enhanced encapsulation benefits of IDL even in a single-language, nondistributed 
environment. 

Option 2: Hide It in a Crowd 

One of the most effective ways to manage complexity is to use a repository architecture. 
In most cases, the repository is a database, but there are other forms, such as a blackboard. 
Repository architecture is a design pattern that is highly applicable to system-level 
architecture with documented benefits and consequences. It is interesting that many 
software architects and developers fail to utilize this pattern when appropriate, exposing 
large numbers of fine-grain object instances across system-level boundaries. 

A repository architecture manages complexity by consolidating access to many objects 
through query languages or accessor methods. One query-language statement can 
consolidate messaging to thousands of objects. An object or relational repository schema 
provides a common model and access protocol for management of large numbers of 
objects. 

Option 3: Ignore It 

By ignoring nonessential differences between complex objects, we can define common 
interface abstractions that provide many benefits, such as interoperability, adaptability, 
substitutability, and isolation. The concept of "common interface" has many synonyms in 
the software literature: design reuse, variation-centered design, standards, and so forth. 
As one of the gang-of-four states: "The structure of most design patterns is similar". A 
metapattern for this similar structure is the Common Interface. 

Because the Java language supports interfaces as a language feature, some software gurus 
are just discovering the benefits of common interfaces. Java interfaces allow flexible 
substitution of multiple classes supporting a common interface protocol. Distributed 
object practitioners have enjoyed the benefits of language-independent, common 
interfaces for years. 

Option 4: Slice It 

A layered architecture defines levels of abstraction in a system, allowing application 
software to be isolated from low-level details. 

Layering defines sets of horizontal services with common interface abstractions. These 
services are reused by multiple application objects and higher-level service objects. 
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Layering is a basic form of software reuse which provides interoperability and portability 
benefits, in addition to managing complexity. 

Layering is a flexible concept which takes many forms. Layering is frequently applied in 
object wrapping, operating systems, networking, frameworks, standards profiling, and 
application architectures. 

Option 5: Dice It 

Layering defines horizontal interfaces and partitions that manage complexity. 
Definition of vertical partitions is also useful. Vertical partitions can isolate complexity 
into independent subdomains. Each subdomain can support unique vertical frameworks. 
Vertical dependencies can be limited to objects in the vertical partition. Cross-domain 
dependencies (such as interoperability) should be handled through horizontal interfaces. 

In practice, most systems contain many unique vertical interfaces. Good architecture has 
a healthy balance between horizontal and vertical interfaces. Without horizontal 
interfaces, vertical partitioning is ineffective. Horizontal interfaces enable vertical 
partitions to interoperate without unnecessary dependencies. 

"The first line of defense against complexity is simplicity of design" 
[Rechtin 97]. 

4.3 Systems Integration 

We extend our discussion of architectural issues related to client server systems 
integration by covering a number of additional areas from which many important 
questions arise. Handling tough questions about your architecture is one of the key skills 
which we hope you will learn in our drill school. You may have detected an attitude of 
skepticism in some of the previous remarks which we believe is appropriate for a mature 
understanding of technology capabilities and how they apply to system development. 
Object-oriented architects are responsible for developing the technology plans that 
manage these underlying technologies in a way that supports the full system life cycle, 
which may range up to 15 years for systems in the public sector. 

The key concepts for technology management allow us to predict that technologies in 
today's configurations will be evolving into new technologies which may obsolesce many 
of today's current interfaces and infrastructure assumptions. One approach for mitigating 
this inevitable commercial technology change is by defining application software 
interfaces which the architect controls and maintains to isolate application technologies 
from the majority of commercial infrastructure which are subject to rapid innovation. We 
have covered these concepts and the details of how to implement them in significantly 
more detail in some of the authors' writings; please refer to the bibliography. 

"Use open architectures. You will need them once the market begins to 
respond" [Rechtin 97]. 
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Taking a somewhat cynical view of open systems technologies, one can conclude that the 
developers of standards in both formal and consortium organizations represent the 
interest of technology suppliers. There are significant differences in quality between the 
kinds of specifications which are created and utilized for the general information 
technology market, comprising the vast majority of object technology specifications and 
the specifications used in particular mission-critical markets such as telecommunications. 
For general information technology specifications, there are many cases where the 
standards do not support testing. In fact, only about 5 or 6 percent of formal standards 
have test suites which are readily available. The majority of testable standards are 
compilers such as FORTRAN compilers, PASCAL compilers, and so forth. The CORBA 
technology market has taken a direction to resolve this issue, at least in terms of the base 
specifications for CORBA technologies. Significant additional work needs to occur to 
enable general information technology standards to truly meet the needs of object-
oriented architects. 

What about the Internet? The integration of Internet technologies is a capability that has 
high priority in many organizations. The use of intranets and extranets is becoming a 
mission-critical capability for large and medium size enterprises. There has been 
substantial research and development in this domain. Figure 4.1 shows some of the 
kinds of interfaces which have been created to support the integration of object 
technologies to the Internet. Commercially supplied products which tie CORBA 
technologies directly to the Internet, such as HTTP, are readily available. The 
implementation of ORB technologies in an Internet-ready fashion has occurred—for 
example, with the implementation of Java language based ORBs which are integrated 
with browser environments. The use of object-oriented middleware is an important and 
revolutionary step in the evolution of the Internet. Object oriented middleware represents 
the ability to rapidly create new types of services and dynamically connect to new types 
of servers. These capabilities go well beyond what is currently feasible with technologies 
like http and the Java remote method invocation, which is a language-specific distributed 
computing capability. 

Figure 4.1. Integration of Multiple Technology Bases 
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Figure 4.2 addresses the question of integration of Microsoft technologies with other 
object-oriented open systems capabilities. Based upon industry-adopted standards, it is 
now possible to integrate shrink-wrapped applications into distributed object 
environments supporting both CORBA and COM+. The definition of application 
architectures can implement this capability in several ways. One approach is to adopt the 
shrink-wrapped defined interfaces into the application software architecture. In this way 
the application's subsystems become directly dependent upon proprietary control 
interfaces, which may be obsolesced at the vendor's discretion. The alternative approach 
is to apply object wrappers to profile the complexity of the shrink-wrap interfaces and 
isolate the proprietary interfaces from the majority of the application subsystem 
interactions. The same level of interoperability can be achieved with either approach, but 
the architectural benefits of isolation can prove significant. 

Figure 4.2. Systems Integration with Object Wrapping 
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What about security? Computer security is a challenging requirement that is becoming a 
necessity because of the increasing integration and distribution of systems, including 
intranet and the Internet itself. One reason why security is so challenging is that it has 
frequently been supplied to the market as a niche-market or nonstandard capability. For 
example, the COM+ technology and its ActiveX counterparts do not have a security 
capability. When one downloads an ActiveX component on the Internet, that component 
has access to virtually any resource in the operating-system environment, including data 
on the disk and system resources which could be used for destructive purposes. The 
implication is that it is not wise for anyone to be using ActiveX and COM+ in Internet-
based transactions and information retrieval. The object management group has 
addressed this issue because of end-user questions about how this capability can be 
supplied. The group adopted the CORBA security service, which defines a standard 
mechanism for how multiple vendors can provide security capabilities in their various 
infrastructure implementations. Computer security has been implemented in selected 
environments. An understanding of the CORBA security service and how to apply it will 
be important in the future to enable organizations to satisfy this critical requirement. 

What about performance? Object-oriented technology has suffered criticism with respect 
to performance. Because object technology is providing more dynamic capability, there 
are certain overheads which are consequential. In the case of OMG and CORBA 
specifications, it is fair to say that the CORBA architecture itself has no particular 
performance consequences, because it is simply a specification of interface boundaries 



IT-SC 121

and not the underlying infrastructure. In practice, CORBA implementations have similar 
underlying behaviors with a few exceptions. In general, CORBA implementations can be 
thought of as managing a lower-level protocol stack which in many cases is a socket-
level or TCP/IP layer. Because the CORBA mechanisms provide a higher level of 
distraction which simplifies programming when an initial invocation occurs, the ORB 
infrastructure needs to intelligently establish communications between the client program 
and the server program. For the initial invocation, certainly additional overhead and 
handshaking are required to perform this purpose. This handshaking would have to be 
programmed manually by the application developer without this infrastructure. 

Once the ORB establishes the lower-level communication link, the ORB can then pass 
messages efficiently through the lower-level layer. In benchmarks of ORB technologies, 
some researchers have found the CORBA technologies are actually faster in some 
applications than comparable programs written using remote procedure calls. Part of the 
reason is that all of the middleware infrastructures are evolving and becoming more 
efficient as technology innovation progresses. On the second and subsequent invocations 
in an ORB environment, the performance is comparable to remote procedure calls and in 
some cases faster. The primary performance distinction between ORB invocations and 
custom programming to the socket layer is involved in what is called the marshaling 
algorithms. The marshaling algorithms are responsible for taking application data, 
which is passed as parameters in an ORB invocation, and flattening it into a stream of 
bytes which can be sent through a network by lower-level protocols. If a machine 
generates the marshaling algorithms with custom marshaling, it cannot be quite as 
effective as a programmer who knows how to tailor the marshaling for a specific 
application. Because of the increasing speed of processors, the performance of 
marshaling algorithms is a fairly minuscule consideration overall compared to other 
performance factors such as the actual network communication overhead. 

Proper distributed object infrastructures give you additional options for managing 
performance. Because these infrastructures have the access transparency property, it is 
possible to substitute alternative protocol stacks underneath the programming interfaces 
which are generated. Once the application developer understands and stabilizes the 
interfaces required, it is then possible to program alternative protocol stacks to provide 
various qualities of service. This approach is conformant with best practices regarding 
benchmarking and performance optimization. The appropriate approach is to first 
determine a clean architecture for the application interaction, next to determine the 
performance hot spots in the application, and then to compromise the architecture as 
appropriate in order to perform optimizations. Within a single object-oriented program, 
compromises to the architecture are one of the few options that one has. In a distributed 
object architecture, because the actual communication mechanisms are transparent 
through access transparency, it is possible to optimize the underlying communications 
without direct compromises to the application software structure. In this sense, the use of 
distributed object computing has some distinct advantages in terms of performance 
optimization that are not available under normal programming circumstances. 

What about reliability? Reliability is a very important requirement when multiple 
organizations are involved in various kinds of transactions. It is not reasonable to lose 
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money during electronic funds transfers or lose critical orders during mission-critical 
interaction. The good news is that distributed object infrastructures, because of their 
increasing level of abstraction from the network, do provide some inherent benefits in the 
area of reliability. Both COM+ and CORBA support automatic activation of remote 
services. CORBA provides this in a completely transparent manner called persistence 
transparency, whereas COM+ requires the allocation of an interface pointer, which is 
an explicitly programmed operation that also manages the activation of the services, once 
that operation is completed. If a program providing CORBA services fails, CORBA 
implementations are obligated to attempt to automatically restart the application. In a 
COM+ environment, one would have to allocate a new interface reference and reinitiate 
communications. 

An important capability for ensuring reliability is the use of transaction monitors. The 
object management group has standardized the interfaces for transaction monitors 
through the object transaction service. This interface is available commercially through 
multiple suppliers today. Transaction monitors support the so-called acid properties: 
durability, isolation, and consistency. Transaction monitors provide these properties 
independent of the distribution of the application software. Use of middleware 
technologies with transaction monitors provides a reasonably reliable level of 
communications for many mission-critical applications. Other niche-market capabilities 
that go beyond this level can be discovered through cursory searches of the Internet. In 
conclusion, what is needed from commercial technology to satisfy application 
requirements is quality support for user capabilities. This includes quality specifications 
that meet the user's needs and products that meet the specifications. 

In order to ensure that these capabilities are supported, new kinds of testing and 
inspection processes are needed that are able to keep pace with the rapid technology 
innovation occurring in consortium and proprietary vendors today. The end users need to 
play a larger role in driving the open systems processes in order to realize these benefits. 
In terms of application software development it is necessary to have on each development 
team one or more object-oriented architects who understand these issues and are able to 
structure the application to take advantage of the commercial capabilities and mitigate the 
risks of commercial innovations that may result in maintenance cost. The use of 
application profiles at the system profile level for families of systems and the functional 
profile level for the mains should be considered when application systems are constructed. 
It is also important for software managers to be cognizant of these issues and to support 
their staffs in the judicious design, architecture, and implementation of new information 
systems. 

4.4 Making the Business Case 

Software architecture has many potential benefits. Many of these are not realized by 
some adopters of the architectural practices. We believe many of these shortfalls are due 
to inadequate practice of architecture principles and disciplines. Some key benefits of 
software architecture include various forms of reuse, which can provide benefits such as 
reduced risk, reduced cost, and reduced time to market. Another important benefit of an 
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architectural approach is interoperability. Interoperability can only be realized if the 
computational architecture is managed appropriately for application system development 
across an enterprise. We covered some significant success stories for object orientation 
and object technology in Chapter 3. In addition, many other documented studies show 
how the technology can provide benefits if it is applied properly. 

One of the best collections of object technology success stories is Paul Harmon's book, 
The Object Technology Case Book Reference [Harmon 96]. It documents 18 case studies 
of projects that were award winners in an annual competition sponsored by Computer 
World. Some examples include a SmallTalk application by Allied Corporation where 
they realized a 2400-to-1 reduction in operational cycle time. In other words the cycle 
time for performing their task was reduced from nine weeks down to nine minutes 
through the use of an object-oriented information system. In addition this application 
reduced the required personnel from seven down to one, and the qualifications of that 
person were reduced to a novice level, whereas formally they needed experts. In addition, 
because of the reduction in staff there was a corresponding reduction in the amount of 
capital required to perform this application capability. 

Other examples from the case book include several systems at Boeing, one of which 
reduced the time to market by 30% and reduced the time on some tasks by up to a factor 
of ten. In another Boeing case study, they reduced the production costs up to 20% on 
their applications. The general results for re-use benefits are fairly consistent, in that the 
primary benefit is through the reduction in system development time, which can be as 
large as 70%. The actual cost savings, if you include the development of the reusable 
software usually hovers around the 10% to 15% level, because the development of 
reusable software does require extra effort. 

Another consideration is that most of the documented success stories for software reuse 
are based upon companies developing software for commercial applications and applying 
that software to multiple commercial applications, instead of applying the software to 
internal applications. 

Simplify designs by minimizing the number of interface operations. 

In Figure 4.4 we describe the primary paradigm shift at the architectural level for how 
new systems can be constructed using object technologies to provide enhanced benefits in 
system extensibility and reduced complexity. Figure 4.3 is an example of this paradigm, 
showing how many of the available standards only provide interoperability among 
vertical functions of the same kind. It is in the interoperability across vertical functions in 
a horizontal sense that the true benefits occur. 

Figure 4.3. Vertical Domain-Based Integration 
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Figure 4.4. Hybrid Horizontal and Vertical Integration 

 
In Figure 4.4 is a revised architectural concept which adds the horizontal capability to 
the vertical integration. Figure 4.5 shows the potential benefits of a hypothetical 
environment using the various kinds of architectural approaches. If the traditional 
approach called custom integration is applied, the types of systems that are constructed 
resemble the stovepipe configuration and quickly escalate in complexity, such that the 
benefits of interoperability are overcome by the cost of creating and maintaining the 
integration solution. 

Figure 4.5. Comparison of Architectural Options 
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With highly coordinated integration, it is possible to reduce the complexity and cost of 
extension down to almost constant factors. However, this level of coordination is not 
possible or practical in most organizations today. With vertical types of standardization 
the benefits do not vary significantly from custom integration, so there is a category of 
vertical architecture standards which does not provide significant leverage across a wide 
variety of applications. In the fourth column in Figure 4.5 the hybrid architecture 
approach allows a variation in the level of benefits that can be controlled by the 
application architect. Further details of how this approach is implemented are given in 
our book The Essential CORBA [Mowbray 95]. 
Figure 4.6 translates these concepts into dollar figures for a hypothetical 
enterprisewide system integration project. In order to achieve interoperability across this 
organization with 20,000 users and 50 applications, the potential cost is as high as a 
billion dollars, or $50,000 per seat. The numbers are based upon experiences and lessons 
accrued over the last ten years. In order to extend the system with custom integration the 
cost could be as high as $40 million in order to tie one new application into the existing 
50. If you had to merge two companies, which is not an unusual occurrence these days, 
the cost of integrating two companies that have already performed custom integration 
across the board could be as high as $2 billion. If you apply a proper architectural 
approach to systems integration, the cost can be substantially reduced. If you could define 
a common architectural solution that applied across all 50 applications, the cost of 
integration could be reduced to $500 per seat. The addition of a new application could be 
reduced as low as $10 per seat, and if two organizations supported the same coordinated 
specifications, it might already be the case that their internal systems would interoperate 
without modification. 

Figure 4.6. Potential Benefits of Architectural Coordination 

 
Architect a small horizontal interface supported by all components. 

This section has discussed several aspects of the business case for object technology. Paul 
Harmon's Object Technology Case Book [Harmon 96] includes many examples of how 
object technology has helped organizations reduce costs in time to market. In Chapter 
2 we gave several additional examples of what is possible. The key to applying object 
technology effectively is the proper application of architectural principles and practices. 
Through these principles, it is possible to achieve some dramatic kinds of results in 
integrating systems across large-scale enterprises. These results scale down to small 
application configurations as well, as our experience shows. 
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4.5 Architecture Linkage to Software Development 

If we apply proper architectural principles to create and maintain software structure, 
potential cost saving could be 50% or greater [Horowitz 93]. Good software structure is a 
function of the overall application architecture, the software interfaces or what is called 
confrontational architecture, and the implementation itself (Figure 4.7). 

Figure 4.7. Computational Specification Links Architecture and 
Implementation 

 

Computational interfaces may be the key enabler for improved software structure. 
Software interfaces as specified in IDL define boundaries between modules of software. 
If the software interfaces are coordinated architecturally, it is possible to define the 
boundaries for application programmers so that the intended structure of the application 
becomes its implemented structure. In practice we have found that the specification of 
software interfaces provides an actual benefit to the programmers, because they then have 
a guideline for how to implement software independently of other application developers. 
When developers share the same specification, their software can then interoperate, even 
though the applications are developed separately. 

Figure 4.8 describes the overall process for how these kinds of results can be achieved. 
Starting with a set of enterprise requirements for a community of users, a business object 
analysis process can define the overall structure and characteristics of the application 
environment. Business object analysis is an object-oriented analysis in which both end 
users and object-oriented modelers and architects participate in defining new information 
technology capabilities which satisfy the needs of the business and the constraints of the 
technology implementation process. Once the business object analysis has produced 
object models, there is a further step, a drill-down exercise to define the common 
interface definitions. The common interface definitions are the software interfaces which 
define the actual internal software boundaries for the system. This is a drill-down 
exercise because these interfaces will specify the actual operations and parameters which 
are passed throughout the software system. 
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Figure 4.8. Sample Architecture-Driven Process 

 
The common interface definitions must be coordinated with individual software projects 
in order for the appropriate lessons learned and legacy-migration considerations to be 
incorporated into the designs. As the common interface definitions mature and are 
applied across multiple projects, these definitions can become localized standards and 
profiles for the community of developers. These can provide useful information for new 
developers and commercial vendors that may want to participate in the interoperability 
solutions. It is not sufficient for interface specifications to stand alone. One important 
lesson learned that has been repeatedly discovered is that no matter how precise a 
specification is, the definition of how applications use this specification is required to 
assure interoperability. This requirement is equivalent to the profiling concept that we 
introduced in Chapter 2. 
Figure 4.9 shows how a set of specifications both horizontal and vertical can be 
constrained with respect to a profile, so that application developers will be much more 
likely to provide interoperability between separate implementations. There is a distinct 
difference between specifications and profiles, which needs to be incorporated into 
software process. A specification such as an IDL definition should be designed so that it 
can be reused across multiple applications or families of systems. The profile information, 
on the other hand, should correspond to specific applications and families of systems, so 
that the conventions can be specialized without compromising the reusability of the 
overall specification. Specifications can be standardized either locally within the 
organization or on a more global scale through organizations like the object management 
group. However, profiles should remain fluid. Profiles in their best case are documented 
developer agreements for how standards specifications are used in specific instances. 

Figure 4.9. Interoperability Profile 
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Identifying the appropriate categories of specifications to be standardized is a challenge 
that many organization never overcome. The process which has been applied repeatedly 
to achieve this purpose is shown in Figure 4.10. The problem for many individual 
software development projects and end users is understanding the need for commonality 
and how that need is distinguished from the actual design and architecture of specific 
applications. The same problem arises in identification of common data elements when 
commonality of information architecture is desired. The first step in the process is to 
basically survey the available requirements and technologies and other kinds of input 
which provide stakeholder impact on the selection of common functionality. Given that a 
broadly based survey across the scope of the enterprise is impossible, a smaller group of 
architects can get together and brainstorm some of the candidate facilities for interface 
coordination. 

Figure 4.10. Large-Scale Architecture-Driven Process 
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It is important to abstract the selection of these facilities in an architectural block diagram 
to display how some facilities play roles that are horizontal in relationship to some of the 
others. It is also important to define a diagram extraction in order to communicate the 
structure of an architecture of this scale to multiple stakeholders in these deliberations. In 
Step 4, the individual facilities identified earlier are defined and documented as to their 
scope and basic functionality. This definition is necessary in order to constrain the drill-
down process, which will be necessary in order to drive out the details for the interface 
definitions or data element definitions. In Step 5, a review process allows the various 
stakeholders in the architecture to verify that their needs are being met and also to build 
consensus across the enterprise for funding the reusable assets which will be defined 
when the interfaces are created. 

Step 6 in the process is to slow the pace of architectural decision making and stabilize the 
architecture. After multiple iterations of the architecture document and review among all 
of the potential stakeholders, it is necessary to conclude the exercise and publish the 
document. It is then appropriate to tutorialize this information and make sure that there is 
a thorough understanding of it across the developer community. This final step of 
communicating architectural vision is often overlooked in many organizations, because 
once approval is obtained, many architects assume that potential developers will be 
constrained by the organizational decision and they assume that it is an appropriate 
transfer of responsibility to individual developers to understand what has been 
documented. 
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There is a key distinction between what happens in Steps 1–6 and what happens in Step 7. 
In Steps 1–6 the design of the architecture is being delivered and there is open discussion 
of potential extensions and changes, particularly among individual architects who are 
highly cognizant of the design implications. In Step 7 the assumption is that the 
architecture has been stabilized and that individual elements of the architecture are no 
longer the subject of debate. It is not possible to properly disseminate the architecture if 
the perception is that the debate is continuing. This phenomenon is the downfall of some 
significant and otherwise well-conceived architectures. 

Figure 4.11 shows the overall prices for architecture migration. The migration process 
starts with some preexisting software including legacy applications, commercial software, 
and the possible use of shareware or freeware. Mixed into this is the creation of new 
software which will be implementing many new capabilities within the target system. 
The architecture migration process is influenced by business needs and by the definition 
of enterprise architecture that we described earlier, with a focus on the computational 
interfaces which are the real keys to controlling software boundaries. Once the target 
architecture is defined, then there is a continuous process of migration. 

Figure 4.11. System Architecture Migration 

 
The process of migration may take many years to realize and may never truly be 
completed. The kind of migration that we recommend is sometimes called chicken-little 
migration because it does not assume that on any specific date the legacy system will be 
shut down and the new system turned on at potentially substantial risk to the organization 
if the new system is not perfect. In chicken-little migration the capabilities of the legacy 
which already provide business value in the capabilities of the target system can be 
brought on line or transferred as the target system takes form. Figure 4.12 shows one 
of the key concepts in how the target system is realized by leveraging legacy applications. 
The legacy application will have one or more mechanisms for transferring information. 
At a minimum a legacy system maintains some files on disk or perhaps a database, and 
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the legacy implication may have more than that; for example, it may have some 
application program interfaces that are documented or other types of command-line 
interfaces. 

Figure 4.12. Legacy Object Wrapping Approach 

 

Legacy applications may comprise a majority of commercial software having the same 
kinds of mechanisms available for the purpose of integration. In our experience with 
object-oriented integration we found a different set of mechanisms for virtually every 
legacy and commercial package that we encountered. The purpose of the object wrapper 
is to map from the preexisting interfaces to the target architecture interfaces which may 
be defined using IDL. In addition to providing a direct functional mapping, there are 
capabilities of the target architecture which should be considered and will reside in the 
resulting object wrapper. For example, a distributed object architecture typically has one 
or more directory services to enable applications to dynamically discover other 
applications in the environment without hardwired programming of point-to-point 
integration. The support for metadata director services is one of the new functions that 
the object wrapper can provide. Other kinds of functions in the wrapper include support 
for security, for system management, and for data interchange. 

Object-oriented technology enables the creation of significant applications. Through 
survey research we have discovered some of the key challenges to the migration to object 
technology. The key challenge is the difficulty in establishing an architecture for the 
information system for the enterprise. To quote one of our sources, people start in the 
middle of the software process, immediately begin development without doing their 
homework, with no vision, no business process, and an incomplete architecture. Another 
challenge is in management of the object-oriented process, which differs in some 
fundamental ways from how software processes from previous paradigm were managed. 



IT-SC 132

To quote one of our sources, people are solving tomorrow's problems with today's 
technology and yesterday's methodology. Another challenge that we frequently 
encountered was a difficulty in sustaining an architecture during development and 
maintenance, once an architecture had been established. To quote our sources, it is easier 
to scope and start over rather than to figure out what they did. Another source noted that 
requirements evolve during design implementation, leading to hack design. 

Other types of challenges were perceived as smaller obstacles than one might expect. For 
example, technology requirements were accorded a fairly low priority in the migration to 
object technology, compared to architectural and management issues. 

4.6 Architectural Software Notation 

In this section we will convey a basic familiarity with software notations that is essential 
for all architects. If you are very experienced with software design and the Unified 
Modeling Language (UML), you can safely skip this section. Understanding these 
notations enables you to understand the business implications of information technology. 
This section uses a subset of the UML including those features which are commonly used 
and commercially supported in computer-aided software engineering tools today. We 
recommend that your organization adopt UML in order to facilitate communication in 
general computer literacy for interpreting architectural documentation. 

Before UML, there existed a large number of proprietary information technology 
diagrams and notations ( Figure 4.13). In fact, every authoritative practitioner of object 
orientation and other information technologies had their own notation—for example, 
Booch notation, Odell notation, object modeling technique (OMT) notation, and so forth. 
It was a general consensus that approximately 70% of the concepts that were being 
modeled through these various notations were overlapping. It took the industry many 
years to discover how to unify notations in these common areas and provide a way to 
extend the common notation to capture their specialized extension. 

Figure 4.13. Object-Oriented Modeling Notations 
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The unified modeling language is a consensus standard of the Object Management Group. 
UML is a unique standard because it is also supported by the Microsoft Corporation, 
which participated actively in the OMG process. It captures the common concepts from 
the proprietary notations in a uniform manner, and it is designed for extensibility, so that 
particular kinds of extensions can be defined consistent with the standard. In particular 
the UML standard includes extensions for business modeling and for objectory process. 
UML contains and represents common notational conventions for information systems 
models. These include object-oriented models as well as more general business process 
models in other forms of information representation. Authorities such as David Harel 
have described the creation of UML as an industry standards achievement as significant 
as Algol 60. Today, UML is enthusiastically supported by most object-oriented software 
authorities and major vendors including IBM and Microsoft. 

The UML standard includes several sections. The UML notation guide is the 
specification that is most likely to provide benefits. The diagramed notation is defined 
along with a minimal set of semantics that defines the meaning of the notation. There also 
exists a much more elaborate semantic description of UML called the UML meta-model, 
a standard that provides additional details about the fine-grained issues of diagram 
meaning. In addition, UML includes an object constraint language, which is a textual 
notation using first-order logic that enables rigorous description of diagram-based 
constraints. 

There are two categories of UML diagram types, as shown in Figure 4.14. Static 
diagrams represent the logical structure of information objects. Dynamic diagrams 
represent the behavior and activities of these objects. The static diagram types include use 
case diagrams, static structure diagrams, and implementation diagrams. Use case 
diagrams are used for enterprise viewpoint modeling and other kinds of top-down 
analysis to discover the key functionality of information systems. Static structure 
diagrams are used for information viewpoint objects as well as other important 
descriptions, because they identify exclusive objects and define constraints on those 
objects, including the object attributes, the object operation, and other characteristics. 
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Implementation diagrams enable the description of the computational components as well 
as the technology objects and how they are deployed and allocated. 

Figure 4.14. UML Diagram Types 

 
"Modeling is a craft and at times an art" [Rechtin 97]. 

Dynamic UML diagrams include interaction diagrams and state charts. Interaction 
diagrams represent the time-based behavior of groups of objects exchanging object-
oriented messages. State chart diagrams are usually used to represent the internal states 
and transitions of individual objects. 

Figure 4.15 represents a running example that we will use to help explain the 
capabilities of UML notation. In this example we are modeling various characteristics of 
a purchasing system. This is a contrived example, and we will only define aspects of this 
system which are useful for describing the features of UML. In this purchasing system 
we have employees who engage in the acquisition of capital equipment. We have 
corporate buyers who have the authority to conduct purchasing transactions, and we have 
vendors that manufacture and market capital equipment that the employees need. 

Figure 4.15. Purchasing System Modeling Example 
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Figure 4.16 is an example of packages, used to represent the key architecture 
viewpoints. A package is used to represent any grouping of UML modeling elements, 
much as parentheses are used to group words in sentences. In modeling tools, packages 
are used to represent subsidiary diagrams. Wherever a package appears, there is yet 
another more detailed diagram, viewable on another modeling screen or page. 

Figure 4.16. Example of UML Packages 

 
Figure 4.17 is a use case diagram representing the top-level functionality of the 
procurement system. In this diagram we have represented the boundary of the 
procurement system as a UML package. UML packages appear as file folders in 
diagrams and usually represent the existence of an embedded diagram within a particular 
viewpoint. In a case tool, clicking on a package will reveal a more detailed diagram from 
that viewpoint of the system. In our use case we have a number of stick figures which 
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represent actors that participate in using the system. Actors are analysis objects which in 
most cases are external to the system. Each of the use cases is represented by an oval in 
the diagram and represents some major function of the system which can be detailed later 
as analysis and design progresses. Dependencies between actors in use cases are 
represented as arrows in this diagram (Figure 4.17). The power of use case analysis is 
that the diagrams are simple representations of what the system does. Use case analysis 
forces the modelers to focus on the highest priority capabilities of the system that provide 
value to the users. 

Figure 4.17. Use Case Diagram Example 

 

The second type of diagrams in UML are called static structure diagrams. Many people 
call them class diagrams. The purpose of static structure diagrams is to identify the 
concepts and constraints that are structural within the information system. Static structure 
diagrams contain two types of entities including classes and objects. Classes represent a 
specific category of behavior. Objects represent specific instances of classes. Classes and 
objects are represented with rectangles in the UML. Objects are distinguished because the 
name appearing in the top cell of the rectangle will be underlined. Whenever we have this 
underlined element in a UML diagram, we generally mean that we are representing an 
instance of that entity. 

Figure 4.18 is a static structure diagram for the purchasing system. In this case we 
have a package which represents the purchasing communities and we have various 
information objects that represent various kinds of documents involved in the purchasing 
process. For example, there are purchase requisition documents, procurement checklist 
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documents, and purchase order documents. Relationships between the classes are 
represented by lines. These lines are called associations. Another common notation 
shown in Figure 4.21 is a comment or note, which is represented by a rectangle with 
the top right corner folded in. A note is attached to one or more model elements and 
specifies additional constraints or semantics for the diagram. 

Figure 4.18. Structure Diagram Example 

 

Figure 4.21. Structure Diagram: Purchase Requisition Detail 
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Figure 4.19 is another static structure diagram showing the employee type class and 
various subclasses including employee contacts and purchasing contacts. The unique kind 
of association that represents inheritance is shown in Figure 4.19 as a line with an 
open-ended arrow. This is called a generalization association. Figure 4.20 shows major 
forms of associations appearing in UML. The purpose of associations is to show 
relationships between model entities. These relationships may be one-to-one, one-to-
many, or other types of cardinality constraints. Most associations in UML diagrams are 
plain lines between objects and classes. An association can have a name attached to it and 
an identification of roles at each end of the association. Each of the roles can be identified 
by numbers or ranges of numbers. If the asterisk symbol is used, this means many, 
which denotes any number from zero to infinity. 

Figure 4.19. Generalization Relationship Example 
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Figure 4.20. Representation of Object Associations 

 
Other types of associations include generalization for representing inheritance, 
dependency for showing general kinds of change relationships, aggregation for 
showing part-whole relationships and collections, and then composition, which is a 
stronger form of aggregation that implies that the life cycles of the related objects are 
tightly coupled. In other words, in composition, if the aggregate object is deleted, all of 
the objects that are part of that composition are also deleted (Figure 4.20). 
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Figure 4.21 is yet another static structure diagram and shows more of the details of 
associations and attributes and operations that UML can represent. When particular 
elements of UML are not explicitly represented, such as operations and attributes, that 
does not mean that these constraints do not exist. It simply means that in this particular 
model for this purpose it was not necessary to represent that constraint. Figure 4.21 
shows several objects with explicit representations of attributes and operations. If the 
class element is represented explicitly, it has by default three compartments. The top 
compartment is the name of the class; the second compartment is a list of the attributes of 
the class. Each attribute represents state information, which may be public or private. The 
state information can include representation of data type and default initial values. The 
third compartment contains operations by default. The operations are identified by their 
visibility, whether they are public or private, the operation name, a parameter list, and a 
return type. All of these may be optionally included except for the operation name, which 
is required. 

The static structure diagram is the most important part of UML to understand properly, 
because it is the richest set of descriptive features in UML and is useful for virtually any 
application of modeling static structure and constraints. Component diagrams are another 
type of static representation. Figure 4.22 is an example showing various components 
and dependency relationships between them. Component diagrams are analogous to the 
computational viewpoint objects that we described earlier. Component objects are 
software modules that have interfaces and dependencies upon other computational 
objects. Figure 4.22 shows the computational objects as rectangles with interface 
components. 

Figure 4.22. Component Diagram Example 
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Deployment diagrams are another form of structural representation. They are very simple 
and may not be sufficiently sophisticated for many of your modeling needs. We 
recommend the use of static structure diagrams when complex constraints need to be 
represented. Deployment diagrams include processor symbols, which represent 
independent computing elements, and device symbols which represent dependent 
computing elements such as peripherals. Figure 4.23 is an example of the deployment 
diagram. The processing elements have shaded surfaces and the device elements do not. 
There are associations between these deployment objects that represent various kinds of 
physical connections. Dynamic modeling diagrams include state chart diagrams and 
interaction diagrams. 

Figure 4.23. Deployment Diagram Example 
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Interaction diagrams come in two flavors, and these diagrams are isomorphic. In other 
words, for any given collaboration diagram, there is an equivalent sequence diagram 
which contains the same information represented differently. This applies in the reverse 
direction as well. Collaboration diagrams resemble ordinary static structure diagrams 
except that we are representing the dynamic time-base behavior of a set of objects which 
is executing. Within these diagrams we have ordinary UML objects, which have 
underlying names and messages that are directed associations between these objects. 

Figure 4.24 is an example showing an execution sequence and the order of messaging 
of this information exchange between the object and the purchasing system. The order of 
object message transmission is indicated by a numbering sequence, one, two, three, and 
so forth. These imply a time-based dependency between these messages and how they 
interact with the information objects. Sequence diagrams, another very important form of 
UML notation, are used to convey the details of use cases and how use cases will operate 
as well as showing the description of the system in a manner that is readily interpreted by 
most users. 

Figure 4.24. Collaboration Diagram Example 
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Sequence diagrams, like collaboration diagrams, contain objects which are rectangles 
with underlying names in the notation. Figure 4.25 is an example of the sequence 
diagram showing the purchasing system completing a purchase transaction. Notice that 
the messages and objects in Figure 4.25 correspond exactly to the transaction that we 
represented in the collaboration diagram in Figure 4.24. Each object has a dashed line 
extended from it which runs down the paper. This is the object life-cycle line and 
represents the time when the object is actively processing a particular message. The 
object life-cycle line runs down the page in increasing time so that we see a chronological 
progression of messaging between the objects. 

Figure 4.25. Sequence Diagram Example 
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The final type of UML diagram is the state chart. State charts represent control flows that 
cause state transitions. Typically, state chart diagrams represent the state of a single 
object and the transition between these states as the object executes. Figure 4.26 is an 
example of a state chart diagram for our purchase system example. In this case we are 
representing the states of the buyer object. The state chart represents several decision 
points and their representative states which are significant to the object's functioning. 
These states can be used to determine the overall structure of the source code for this 
object. 

Figure 4.26. State Chart Example 
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"If you can't explain it in five minutes, either you don't understand it 
or it doesn't work" [Rechtin 97]. 

4.7 Conclusions 

We began this chapter with a discussion about managing software complexity, and we 
end it with a drill school lecture on software modeling. Software architects must know 
the fundamentals as well as be able to use them creatively to achieve architectural goals. 

If your organization has not yet adopted a standard notation. and your developers are not 
literate in it, UML provides an opportunity to introduce new modeling practices. UML is 
a standard notation from the Object Management Group, an ISO-affiliated organization. 
UML is an industry consensus supported by most of the major authorities in object-
orientation. UML's key benefit is its clarity of description, since it is relatively devoid of 
cryptic symbols, such as "crows' feet" used by precursor notations to represent cardinality. 
UML is the first object-oriented modeling notation which is widely recognized and 
understandable by the majority of software practitioners. 

4.8 Exercises 

Exercise 4.1 

Managing Complexity Using Architectural Options 

Consider one approach to a distributed collection management service. You could model 
it after the approach used by many C++ tools vendors and specify interfaces for 
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numerous collection types (bag, list, keyset, etc.), operations to provide type-specific 
operations such as a comparison between objects, and commands for executing processes 
on objects stored within the collection. (See Figure 4.27.) Assume the distributed 
collection management service takes each of these characteristics to the extreme. Use the 
architectural options described to refactor the design into a more manageable set of 
interfaces. 

Figure 4.27. Distributed Collection Management System 

 

Background for Solution: 

Step 1.  
The management of elements in a collection is fairly straightforward and can be 
implemented using various design tradeoffs. Collection types such as bag, list 
queue, etc., are different ways to implement collection man-agement behaviors. 
Sweep it under the rug and ignore it directs us to abstract the collection 
management behavior to a higher level of abstraction and not expose the specific 
implementation details to client applications. 
Step 2.  
The distributed collection management service described handles 
three separate responsibilities: element management, type-
specific comparisons, and commands. Such a design can be 
sliced into three simpler interfaces, each of which focuses on just 
one area of responsibility. Separate out the notion of generically 
managing collection elements, as generic elements, into a single 
interface which hides the details of the collection implementation. 
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Define a separate command interface which operates on a list of 
objects rather than a collection. The command and collection 
interfaces should not have any dependencies between them. This 
approach to design is strictly superior to other approaches where 
the collection expects a command and iterates over its elements, 
executing a command on each item. In the new design, the 
responsibilities are sliced so that each command decides how to 
iterate over the set of elements provided rather than the 
collection. The collection no longer needs to know about the 
command interface, and the command does not know about the 
collection. 
Step 3. The dice it architectural option is used to define the third 
interface which separates out the vertical type-specific behavior 
from the horizontal capabilities of element management. 
Commands can have a standard interface which can support 
both horizontal commands, operations which do not refer to the 
specific object subtype, and vertical capabilities, where 
operations depend on the contents of the object. Horizontal 
commands would include generic operations which refer to the 
interface repository or perform general logging. Vertical 
commands would include operations which require inspection of 
the object contents, such as sorting and data transformations. 
The third interface should be a standalone version of the 
operation's interface which may be used in the implementation 
of a command. Most frequently, it may be appropriate to 
collocate the type-specific operation's implementation with the 
command sets which require it.  
The new design produced by applying these architectural options 
would be more component oriented and capable of supporting a 
greater variety of applications. However, it is less object oriented 
in the traditional sense, as the collection itself no longer 
encapsulates as much functionality. However, it provides a 
better base for building fully encapsulated objects, which 
delegate to the new collection components rather than 
reimplement such behavior in a new object. 
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Chapter five Leadership Training 

There are some definite benefits to being a soldier&mdash;the rush of being a part of 
something larger than yourself, having a well-defined role which is important and vital to 
the success of great enterprises, the camaraderie of fellow soldiers, and the belief that if 
everyone performs as well as you, victory will soon be at hand. However, the reality of a 
battlefield is that not all soldiers are equal. Some troops are well trained, well equipped, 
disciplined, and possessed of a great deal of combat experience; others are recently thrust 
into battle straight from civilian work, lacking knowledge, discipline, experience, and 
even the will to compete against hostile enemy forces. Similarly, in the software industry, 
there is a great degree of difference in productivity between the best and worse 
performers. For the most part, raw recruits in the software industry frequently have the 
will and a fair degree of knowledge but need a proper environment to acquire the 
discipline and experience required to excel. Therefore, more experienced and disciplined 
developers are forced to leave their comfortable foxholes to assume the greater 
responsibility of leading a team of developers with diverse development experience into 
the greener pastures of effective software development. 

5.1 Leadership Is a Necessary, Learnable Skill 

It is rare that a talented developer can immediately excel when first thrust into a 
leadership role. Furthermore, close examination of those who are successful typically 
reveals a history of informal leadership activity such as mentoring and assuming 
responsibility for tasks such as configuration management, which already affects a large 
number of fellow developers. Fortunately, leadership, while being a necessary part of an 
architect's skill set, is also a learnable skill. 

Special characteristics of architectural leadership must be emphasized in order to 
maximize a software architect's chance for success. They are vision, integrity, and 
decisiveness. Vision provides a concrete goal for a development team to focus upon. 
Without having a vision, it will be difficult to justify the rationale for the many technical 
decisions which are made throughout the development life cycle. A high standard of 
integrity is essential for motivating team members to look beyond their own self-
interest and consider the various issues from the viewpoint of what is best overall rather 
than easiest for them. Finally, an architect needs to be decisive, both to facilitate 
progress and to maintain the confidence of the team that the technical issues are 
understood well enough to be quantified and acted upon. 

It is the job of the software architect to clearly articulate a compelling vision for the 
software project. The vision provides the motivation for the team and provides the basis 
for making tradeoffs in order to accomplish the overall vision. This is extremely vital in 
software, where success can be realized through a variety of methods, each with its own 
unique set of tradeoffs and consequences. The architect's vision becomes the software 
project blueprint, the clear path through which the overall concept of the software is 
realized in an actual software product. 
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It is absolutely essential that the software architect is honest and has the absolutely 
highest standard of integrity. With software, the product is extremely malleable, lending 
itself to a tremendous number of approaches for accomplishing any particular task. As the 
technical leader, the architect has to advocate a particular approach as the most desirable 
technical solution. If the architect's actions are perceived as being motivated by other than 
technical reasons—for example, to appease various political forces in an organization—it 
undermines the trust of team members who are expected to preserve the architectural 
vision. 

Finally, the most vital attribute a software architect must have is decisiveness. When a 
technical issue arises which requires the architect to make a decision, more likely than 
not the worse decision is to avoid making any decision at all. Doing so impedes, rather 
than facilitates, progress, and it frustrates people who can be far more effective once the 
decision is made. Remember that failing to decide something is also a decision, just one 
that is unlikely to result in any sort of resolution and may run an increasingly high risk of 
magnifying the problem. Not being decisive demonstrates to others both a lack of 
urgency and a lack of confidence in resolving technical issues. Either of these is 
sufficient to compromise the architect's ability to serve in a leadership role, but the 
combination is a recipe for the certain alienation of other team members who do possess 
these vital qualities. If the architect does not exhibit a determination to have the 
development effort succeed in its goals, then other team members will question whether 
the team and their role within it are meaningful and whether the team goals are worth 
pursuing. 

5.2 The Architect as Team Builder 

The software architect leads by bringing the team together. As the most visible and 
technical of the management staff, the architect is in a position to turn the mindsets of the 
team members in a common direction. All but the most dysfunctional of teams want to be 
successful. However, where people differ is on the details of what it means to have a 
successful outcome as well as the best means of achieving it. To correct the first of these 
issues, the architect must continually communicate the vision of what the final outcome 
of the development team can be if the management and technical plans are followed. This 
creates a willingness in team members to give the day-to-day decisions the benefit of the 
doubt as long as they believe that the end goal is sufficient to satisfy their own personal 
criteria for project success. 

Once a team is on the same page as to the overall vision and desired outcome, the 
common view of where the team is going serves to lessen the contention about what is 
the best means to achieve it. Rather than suspecting that the motives of other team 
members are different from their own, people are more willing to consider various 
solutions and defined objectives on their technical merit. In a software project, any time 
the discussion can be converted into a purely technical discussion rather than one based 
on personality and ego management, it is a major win in moving toward the project goals. 

One important lesson software architects must learn is to trust the skills and talents of 
other people on their team. A common mistake of new software architects is to 
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micromanage other team members. This results in one of two predictable outcomes. (1) 
The other developers may become resentful of your lack of trust and confidence in them, 
resulting in a significant negative impact on their productivity with regard to the team 
goal and overall project vision. (2) Even worse, the developers may eagerly allow the 
architect to assume the bulk of the project responsibilities. This creates the illusion of 
working in the short term, but it breaks down quickly as the reality sinks in that the 
architect cannot work as effectively on his/her own as with a high-performance team of 
dedicated developers focused on accomplishing the same outcome. Therefore, having 
trust in other team members to execute tasks independently is critical for the overall 
success of the team. Yes, this involves undertaking risks which some people, in hindsight, 
may claim are unnecessary. However, taking the long view, it is important that others 
accept and live up to their individual and team responsibilities in order to maximize the 
overall output from a development team. 

A software architect is sometimes required to mediate between conflicting demands of 
project management and higher-level stakeholders in a development project. Often the 
demands on the software developers were made higher up in the management chain than 
the software architect without detailed knowledge of the development staff that will be 
responsible for delivering on whatever claims and expectations were formulated. In order 
to be effective, a software architect focuses first and foremost on the needs of the 
development staff. At some level, every project plan ever made is a fantasy. It is the 
flesh-and-blood developers who must feel respected and motivated enough to produce the 
concrete project deliverables. The software architect must be aggressive in serving the 
needs of developers through communicating with management, overseeing the purchase 
of productivity-enhancing tools and COTS products, ensuring proper recognition for the 
team, etc. After all, the ultimate value the architect adds is to ensure that the developers 
are efficient and effective in performing their tasks. 

5.3 Always Insist on Excellence in Deliverables 

A responsibility of the software architect is to review developers' work products. 
Inevitably, in the early stages of a new effort, it is likely that several of the work products 
(use cases, designs, test plans, etc.) are going to fall short of the architect's expectations. 
Most likely, the disconnect between the architect's expectations and the work produced is 
due not to malice or a lack of effort but rather to a lack of understanding of what 
precisely the architect's standards are. It is in these early stages where detailed review is 
essential and where the architect must insist on excellence in the work products produced. 
This should be done professionally and politely, however; the quality and level of effort 
must not be compromised. If the architect does not insist upon excellence in the early 
development process, it is unlikely that it will ever be achieved in future iterations. 

An architect should expect some resistance the first time any experienced developer has 
to undergo a work review. Typically, the architect will receive arguments about the worth 
of producing deliverables which satisfy the standards, about whether the task description 
was clear enough to sufficiently describe the desired deliverables, and a thousand or so 
similar variants, most of which blame the standards and the architect rather than the 
developer. The software architect's best course of action is to be gracious and accept full 
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blame and responsibility, but insist that the additional work required to achieve the 
desired deliverable is performed in a timely manner. If this is done well, the most avid 
detractors of the initial standards will eventually become their staunchest defenders, once 
their value has been demonstrated later in the development process. When integration 
time is reduced by two thirds by having clear and very specific design documents, no one 
on the team will want to proceed to implementation and integration without them ever 
again. 

The software architect must be versatile and set an example for the rest of the 
development team to follow. For example, if the project is at risk of being delayed 
because a critical design is missing, frequently the best contribution the architect can 
make is either to sit down with the group and jointly develop the design, or sometimes, 
particularly if the subsystem slipped through the cracks at task assignment, to produce the 
design independently. In either case, the architect should adhere to the same process, in 
terms of documentation guidelines and reviews, that everyone else on the team adheres to. 
Similarly, if integration is delayed because of problems in debugging tricky parts of the 
source code, ideally the architect will sit with the developers and, if all goes well, assist 
in rapidly resolving the obstacles. Not surprisingly, this aspect of being a software 
architect frequently comes easily to new architects, as it was a responsibility also 
assumed by them as experienced developers. The more difficult part is finding the time to 
continually develop the architect's skill set so he can be equally versatile after several 
years as a software architect. 

However, there are a few pitfalls which must be avoided. As the software architect, you 
have the most visible technical role. Like it or not, you are also the technical role model 
for the team and your actions directly impact their actions and mentality. Therefore, if 
you take or suggest shortcuts and kludges to quickly resolve a development issue, like it 
or not, you are implicitly advocating that others use similar means to resolve issues which 
they find problematic. Also, rest assured that less experienced developers will encounter 
many more things which are problematic than will the architect, and they will be more 
than content with adding numerous kludges to source code rather than asking for help in 
resolving the problems according to the known architectural principles. Similarly, if your 
code lacks a unit test or is not related back to the requirements specification, you will 
immediately discover several developers who automatically are following your lead. 
Therefore, as the architect, you must conduct your efforts exactly as you expect others to 
conduct their own behavior. It is far easier to start off with a good example and maintain 
it, than it is to explain why you didn't and yet still expect others to conform to your stated 
standards. 

Etiquette for Software Architects 

As silly as it may sound, an investment in a book on general etiquette and the 
time it takes to read and absorb it will always pay off handsomely for a software 
architect. Most of the problems which will hurt the productivity of a 
development team are people problems rather than technical ones. Etiquette can 
frequently head off the people problems before they escalate into major 
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obstacles. For the one or two individuals who are too foolish to heed the above 
wisdom, here are a few of the most basic techniques, strictly etiquette related, 
which will help you succeed as a software architect: 

Before you criticize work anyone else has produced, start the conversation off 
by identifying a few things you liked about the work. 

Generalize criticism into a heuristic, using specific cases as examples of the 
heuristic not being followed, rather than immediately criticizing specific 
instances. 

Do not talk to people only when something is wrong. Let people know when 
you like their work and efforts. Sometimes, just ask how things are progressing 
and how you can improve upon your efforts. 

Just as serving as an example to the development team comes easily to most new 
software architects, having confidence and courage when first appointed as the architect 
typically does not. At a minimum, a software architect's courage should take two forms. 
First, no technical question should ever be feared by the architect. The decisions of the 
architect should be made based on his best technical knowledge. Not every decision is 
popular, but they are all based on understanding the various tradeoffs in making use of 
various technologies and design approaches. Any question should either be answerable 
by recapping the known tradeoffs or be a source of information which may require that 
an existing tradeoff be reevaluated. Neither case reflects badly upon the architect, since 
honestly considering questions and hearing new information, even from critics, is a 
perfectly valid technique of information acquisition! A software architect should 
welcome both types of questions without getting agitated, as they both provide practice in 
articulating the project's architectural vision and may lead to cases where the vision is 
further refined in light of new information. Second, the architect should never be afraid 
of making a concrete decision. 

One constant in software development is that good software architecture never just 
happens. It must be planned, monitored and defended over the lifetime of the software. If, 
as a software architect, you are not constantly monitoring the execution of software 
processes to verify that the architectural principles and guidelines established at the outset 
of the project are adhered to and maintained, then you are failing in your role. A software 
architect cannot be effective without actively seeking out the real progress and direction 
of the project from the developers who are performing the actual work. 

As a software architect, you have knowledge and information which frequently exceed 
that of many team members. As a general rule, the architect should be willing to share 
information with other team members and trust them to use it constructively. For example, 
if the team is incorporating a technology with known limitations, such as the CORBA 
marshalling delays with complex data types, then it should be willing to acknowledge the 
problem and discuss why the benefits of the technology are sufficient to overcome its 
limitations. While information sharing may occasionally be damaging—for example, by 
bringing up the limitations to higher-level management who may be unable to adequately 
understand the technical tradeoffs—in the long run it builds trust among team members 
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and enables them to develop solutions rather than waste time rediscovering known 
problems. An environment where the cumulative knowledge of the entire team can be 
brought to bear, both in solving problems and in seeking out still more knowledge, is the 
most ideal for software development. Little is more disappointing than seeing a talented 
architect attempt to horde information, which typically becomes obsolete at a faster rate 
than it can be stockpiled. 

Seven Habits of Highly Successful 
Software Architects 

Keep it simple.   When communicating to team members various 
architectural concepts or software mechanisms, resist the temptation to provide a 
complete and detailed explanation of how things work or a detailed comparison 
against all the alternatives in front of a group. Instead, say enough to 
communicate the idea at a high level, just low enough to be understood in 
principle, and let individuals do their own homework or meet with you 
individually to address their specific concerns. 
Let others defend the architecture.  It is always preferable to 
have someone else respond to a technical concern rather than have the software 
architect appear to be the sole source of knowledge. It reinforces teamwork, 
provides the architect insights from people who agree as well as disagree, is a 
key aspect in mentoring others, etc. 
Act, don't argue.   Arguing technical points in a meeting wastes time, 
hurts feelings, and seldom if ever fully resolves any technical issues. When such 
an argument starts, act—either assign people to get or verify the relevant 
information, set up a meeting specifically for resolving the debated topic, or, if 
time requires an immediate course of action, lay down the law explaining why 
the time constraints force an end to the matter. 
Keep an eye on the prize.  Always be aware of the end goal. It is easy 
to be distracted by tasks and smaller technical issues, and frequently other team 
members will succumb to one form of tunnel vision or the other. However, it is 
vital that the architect is always focused on the overall vision of the system and 
can relate every task or technology to how it contributes to the end goal. 
Be willing to change, but never too much at once.   After 
the initial bootstrapping of a software development effort, be wary of 
implementing too many process improvements all at once, as there is a risk of 
compromising the effective parts of the process. 
Learn where to stop.   Resist the temptation to go into too many details 
and to micromanage design decisions. For example, it would typically be 
enough to specify that caching is required in client applications and that the 
caching code should be reused throughout the application. However, detailing 
the specific caching algorithm used or writing the caching pseudocode is 
probably overkill. Learn to trust other team members to provide design and 
implementation details and let them come to you in case of difficulties. 
Know how to follow.   If there is a lead architect you report to, or even if 
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you delegate the responsibility for an issue to someone else, avoid publicly 
confronting others on major design issues. This is accomplished by knowing 
ahead of time what is going to be discussed and the reasons for the various 
decisions. This is a key aspect to developing a focused, high-performance team. 

The software architect serves as a technical mentor to other developers on a project. 
Often the architect is asked to help resolve technical problems or mediate a technical 
dispute between two parties. Rather than simply resolving the technical problem or 
deciding between the two alternatives, the software architect should go the extra mile. In 
the case of technical problem solving, the architect should walk the developer through the 
steps necessary to resolve the problem at a level of detail low enough that the developer 
can resolve similar problems in the future without additional aid. In mediating technical 
disputes, the architect should articulate the issues and design tradeoffs which make a 
particular alternative more desirable in a particular case than the competing alternative. If 
possible, the architect should figure out the concerns being addressed by the inferior 
alternative, and point out what elements are missing in the current case which, if present, 
would make that alternative more desirable. Ultimately, team members should feel that 
interacting with the architect is a learning experience. Furthermore, if the same technical 
issues are brought to the attention of the software architect, take the developer to task and 
ask why he/she doesn't feel comfortable resolving such problems without your assistance. 
Eliminating road blocks to applying new knowledge is an easy way to improve the 
efficiency of a development team. 

A software architect should always be willing to hold team members accountable for 
their lack of productivity. If a design is overdue, it is reasonable to ask for the reason for 
the delay and a description of where the elapsed time has been spent. Similarly, if a 
coding task is delayed, getting specific details about whether the delay was caused by 
problems in the design, debugging a tricky section of code, or unforeseen complexity in 
the implementation is vital. Such information can lead the architect to gain productivity 
increases across the board by conducting debugging tutorials or by improving design 
review procedures. Also, always make it clear that as soon as delays are anticipated, 
developers have an obligation to let the project manager know so tasks can be replanned 
accordingly. 

Most development efforts, even ones with mature processes and an experienced team, 
cannot avoid some degree of chaos. Left unchecked, the unexpected technical and 
organizational issues could occupy just about all of the software architect's time. 
However, any software architect needs to ensure that the bulk of his/her time is devoted 
to issues internal to the development team. An effective architect must always be 
available on relatively short notice to attend to the team's internal details, which may 
delay development if not attended to promptly. These issues include resolving disputes 
over interfaces between various subsystems, weighing in on problems caused by product 
upgrades, or providing verification that certain design approaches aren't in violation of 
the architect's vision of the system. 

5.4 Architect's Walkthrough 
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A number of development milestones occur that require the attention of the software 
architect. Unless the architect is available, the development team may be faced with 
either waiting for approval—the kiss of death for rapid development—or making 
assumptions that may not always be accurate. Correcting these incorrect assumptions at a 
later date is always substantially more expensive and difficult than getting them right 
initially. Therefore, an architect must give the impression that he/she is always available 
with the expectation that the internal demands of a development team will be greatest 
early in the development process through the design process, tapering off somewhat 
during implementation, testing, and deployment. The best way to be available is to walk 
around periodically and talk to people about their progress. If any significant issue comes 
up, set up an appointment between the two or three people most involved and discuss it at 
some time separate from that devoted to the walkthrough. This limits the time spent 
during the walkthrough and gives the people involved a chance to work things out on 
their own before the meeting. If the meeting continues to be necessary, everyone will be 
prepared to focus on a specific problem, which, if properly facilitated, can lead to a short, 
highly productive meeting. 

Another benefit of the walkthrough is that you get a lower-level understanding of the 
project details than you would from just meeting with the team leaders. Restraint is 
required to remember that the primary objective of the architect in a walkthrough is to 
listen and understand the problems rather than immediately to attempt to resolve every 
issue. In fact, the less direct guidance given in a walkthrough, the better. Rather, think 
about the problem and make suggestions to the appropriate team leader. This will keep 
the team leader in the information loop, allowing him/her freedom in incorporating your 
suggestions into the overall team direction. In addition, it will provide you with greater 
insight into team dynamics in future walkthroughs, when you can gauge to what extent 
your suggestions were accepted by the overall team. The architect should avoid making 
too many suggestions directly to team developers, as these suggestions are frequently 
taken as mandates, regardless of the direction set by the team leaders. Without fail, the 
political and organizational problems resulting from such actions will overshadow any 
short-term technical benefits. In general, the architect should always be willing to listen, 
but direct action, and even suggestions, must be performed with care, taking the needs of 
the entire development effort into consideration. 

So after nine months or so with the same team, you realize that there are still hotly 
debated topics, people who just don't like each other, and a project that is falling behind 
schedule. The issue most new architects face is evaluating whether their efforts have 
actually made a difference on a particular software project. Fortunately, there are a few 
heuristics which are effective for recognizing when you are succeeding as an architect. 
Unfortunately, the ultimate metric, repeatably delivering high-quality software on time 
within the estimated constraints, typically takes several years to establish. 

Heuristic 1: Arguments within a team are over increasingly trivial 
subject areas. 

With any group of software professionals of diverse backgrounds, there will always be 
disagreements of some kind or another. Early in a project new to software architecture, 
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the typical disagreements focus on whether or not XYZ is the right thing to do. Later, if 
the architect is successful, there is an implicit agreement on what to do, and the developer 
battleground shifts to arguments about how to accomplish XYZ. These arguments will be 
just as heated and impassioned as the previous wave of disagreements, but the debated 
issues are at a lower level. Later, if there is an implicit buy-in on how to accomplish XYZ, 
new arguments will arise, again just as heated, on what an implementation of how to 
accomplish XYZ looks like. While the volume levels and passion may be constant and to 
an outside observer the internal problems appear unchanged, it is the shift of focus which 
indicates vision, architectural, and design consensus. Achieving this consensus is a 
monumental accomplishment and eliminates a slew of problems which would arise did 
such a consensus not exist. 

Heuristic 2: When it appears that there is no consensus initially, 
consensus is easy to achieve after listening to all sides. 

Frequently, when establishing the overall vision and defining the architecture for a 
project, complete consensus is nearly impossible to achieve. For whatever reasons, there 
will always be a few people who will need concrete evidence of the benefits of the 
approach on their own personal level, before they will accept any vision save their own. 
Later, if a consensus is established, there will be roughly the same number of 
disagreements. However, most frequently, one side or the other is mainly motivated to 
ensure that its concerns are acknowledged and known to the team and is not actually 
demanding that all of its issues are addressed immediately. An architect should recognize 
such concerns for what they are and allow them to be presented to the team. Typically, 
when the minority side has been convinced that it has been heard and understood, it will 
not object to a more popular alternative plan which satisfies the architectural vision and 
project objectives. 

Heuristic 3: Other developers are willing to argue the merits of the 
architecture. 

When this occurs, it indicates team buy-in for the system architecture. Note that if the 
software architect considers himself the sole defender of the architecture and is always 
the first to rise to its defense, the architect will never realize that this architectural buy-in 
has occurred. Therefore, the architect should be patient and give others the opportunity to 
comment when architectural issues are challenged. If the architect is exceptionally 
successful, several meetings will pass where consensus is reached in accordance to the 
architectural principles of the project without the architect's saying anything. Of course, 
when this occurs in several consecutive meetings, the architect is obligated to bring 
donuts to subsequent similar meetings. 

Heuristic 4: There is an implicit willingness to delegate development 
issues to teams. 

As the subjects of many meetings degrade in quality, fewer of the team members will 
care about how many of the development issues (configuration management trees, coding 
conventions, utility modules, etc.) are resolved. In such cases, it is beneficial to everyone 
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to delegate an issue to a group of two or three people. This group can meet independently, 
come to an agreement on the issue, and present the agreed-upon solution to the 
development team at a later date. In fairness, it is important that everyone agree to accept 
whatever solution is agreed upon by the smaller group. Otherwise, interested parties will 
not join the group in hopes of overriding the group's decision later, thereby wasting the 
efforts expended by the developers who possessed the initiative to join the smaller group. 

Heuristic 5: The software architecture becomes less obvious. 

There is an implicit acceptance that adhering to the architectural principles has some 
value, so that there is no longer any need to debate it or even talk about it except when 
mentoring new developers or presenting to new stakeholders. Design and code reviews 
rarely turn up areas which reflect a lack of understanding regarding the software 
architecture. They may take just as long but now focus on lower-level issues, such as 
variable naming, or lack of reuse. 

Conversely, you know when you are not succeeding as a software architect when the 
opposite of these heuristics are true—for example, if various fundamental aspects of the 
architectural vision are questioned throughout the development life cycle, or achieving a 
consensus on meaningful issues is increasingly more difficult to obtain. If a consensus is 
developing against the architectural vision, then it is necessary to understand the 
opposing arguments and discover why they are so compelling to the developers on the 
team. Sometimes, gaining insight into the compelling nature of the opposing arguments 
may result in modifying the architectural vision to one which can achieve buy-in from the 
development team. At other times, the software architect needs to present a better case as 
to why the proposed architecture is better than the available alternatives. Frequently, this 
may require educating the team on technologies and industry trends which they may not 
otherwise be aware of. This education process, along with everything else that is required 
to achieve vision and architectural buy-in, is a prerequisite for a successful development 
project and for a software architect to be successful in his/her role. 

It is important to differentiate between architectural leadership and management. The 
most obvious difference is that the software architect is responsible for creating and 
articulating the technical vision of the development effort. Frequently, the architectural 
vision is not limited to a single effort but provides a blueprint of what the organization 
can accomplish in the long run. The success of the current project validates the 
architectural vision and provides greater confidence that the long-term architectural 
vision is achievable through similar methods. Management, on the other hand, is focused 
on the success of a short-term project with limited, well-defined objectives. For example, 
an architectural vision could be a component-based enterprise framework which may be 
used to produce scalable applications in several domains. A manager's goal is to produce 
a workflow management system for logistics in nine months with a team of twelve 
developers. Similarly, a manager has to ensure that a specific set of agreements are 
satisfied and often has to interact with external stakeholders to verify that what is being 
produced matches their expectations. Any changes in direction, such as new requirements 
or procedures, are communicated from external stakeholders to project management, 
whose responsibility is to communicate the changes to the team. The architect, however, 
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is focused more internally and communicates why the work is meaningful and the 
purpose of doing things in the prescribed manner. It is not uncommon to have the 
software architect advocate taking more risk and adopting radical changes if he is 
expected to produce a technically superior product without involving too many additional 
resources. Management, on the other hand, tends to be more cautious and more willing to 
repeat technical approaches which have been successful in the past rather than gamble on 
state-of-the-art techniques. All but the most routine of software development efforts 
require both a software architect and a project manager. 

5.5 Conclusions 

The software architect has a unique leadership role in the software development effort. 
The architect educates the development team on technical issues when time permits, sells 
them on the defined vision when there isn't enough time to educate, and relies on the 
cultivated trust between the architect and the team in the remaining cases. Regardless of 
the method, the architect keeps the team focus on the overall technical vision and has the 
difficult tasks of verifying that the team is on the same technical page based on work 
products and of communicating with the team. The architect must serve as the technical 
role model to team members and maintain their respect on technical issues in order to 
effectively guide the project toward the desired technical goals. 

5.6 Exercises 

Exercise 5.1 

As an architect, mentoring your team is of utmost importance. For each person on your 
existing project, list the behaviors which he/she could improve upon. Afterward, write 
down a list of concrete steps which you can take to help the person improve in these areas. 
Develop a concrete plan specifying whom you will work with, how often, and how you 
can assist each person. Finally, execute the plan. Repeat at regular intervals for the best 
long-term results. 
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Chapter six Software Architecture: Jump 
School 

In the military, jump school is used to prepare soldiers for landing in enemy-occupied 
terrain. Without adequate intelligence, paratrooping soldiers can find themselves in the 
middle of a village dung heap, a minefield, or a camouflaged enemy camp. Similarly in 
software, when the architect joins an organization or project team without adequate 
intelligence information, there is no telling what they are getting into. An architect can be 
doomed from the start due to existing organizational or interpersonal problems among 
team members. Conversely, you may discover a team that is already well organized, 
where you have the luxury of devoting the majority of your time to technical rather than 
process and team-building activities. This chapter is not about intelligence gathering; 
rather, it is about making the best of whatever situation you encounter when assigned as 
the architect of a software development team. The information on software process and 
team building will provide the tools for building an environment where the architect can 
successfully transfer architectural principles throughout a team and ensure that they are 
realized in the software development process. 

6.1 Process 

In order to have a specific software architecture produce a worthwhile design and a useful 
implementation, an effective software process needs to be in place. A good software 
process will detail the steps necessary to repeatedly produce a software product which 
satisfies a set of requirements or a design objective. Unfortunately, many emerging 
architects lack the luxury of an existing, proven software process. In such cases, it is the 
responsibility of the software architect to work with the project manager in defining and 
executing the software processes necessary for success. 

Process Prerequisites 

The process prescription described in this section is designed to meet the needs 
of the middle 80% of software organizations. There are more sophisticated 
guidelines for more mature organizations, for example, the Capability Maturity 
Model (CMM) approach defined by the Software Engineering Institute (SEI). 
An extremely dysfunctional organization—for example, one in which people are 
afraid to tell the truth—is unlikely to benefit from this approach or any other. 

There is an important prerequisite to the insertion of software process which is a 
key challenge for many organizations. In order to effectively utilize a software 
process, the organizational skill base must be sufficiently high in the areas 
covered by the process to make it effective. It is much easier to adopt software 
processes from a book, consultant, or product (e.g., The Unified Software 
Development Process [Jacobson 99]) than to train the skill base to perform 
that process. Many organizations make this mistake and struggle mightily to 
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overcome their capabilities shortcomings. 

For example, when adopting object-oriented technologies, the development 
team needs to have some knowledge and experience of the technology before 
progress is feasible. First, people need to be trained to think in terms of objects. 
This is a simple thing technically, but a very difficult transition for some people. 
Many will never succeed in adopting the paradigm shift. Second, people need to 
be trained to develop with an object-oriented programming language. 
Competence in using the programming syntax is not the key training objective. 
What's more important is that people use the object-oriented language properly 
as an object-oriented language, and not as if they were using a language 
designed for some other paradigm. It's a very common problem that causes 
serious problems in object-oriented projects. 

Finally, the people need experience with the new paradigm so that they apply 
common sense and mature engineering judgment. The fact that you have 
transitioned to objects does not mean that you can ignore common sense and 
machine limitations. We have seen many designs from otherwise competent 
engineers that have unwarranted levels of resources and complexity for 
otherwise simple tasks. This maturity of judgment often goes beyond what you 
will find documented in textbooks and courses. Instilling this practicality in the 
development environment is one of the important contributions that architects 
can contribute to a project. We are amazed that, a decade after the initial 
popularity of object orientation, many organizations are still in the early phases 
of transition and experiencing the age-old problems mentioned here. 

Every military campaign is executed according to a thoughtfully crafted set of 
plans. Similarly, in software architecture, a detailed plan is needed to effectively 
capture requirements, produce designs which satisfy the requirements, manage 
the configuration of software, and test software artifacts to ensure their quality 
and consistency with the requirements and designs. Admittedly, it is frequently 
easier to discuss the need for improved software processes than to establish a 
plan for creating organizational processes and effectively implementing them for 
a particular team or organization. However, a well-kept secret among veteran 
software architects is how to create effective software processes. Before 
detailing the steps in process creation, there are a few golden rules which every 
software architect must know. 

First, a software process which is not defined cannot be repeatable. If a process 
is not written down, then there is no basis to claim whether the same steps were 
truly executed according to a preconceived plan. When a team member has a 
skill at executing a particular process, there is frequently a resistance to 
documenting and detailing the steps executed to achieve the goal. Regardless of 
where the resistance comes from, be it a fear of being replaced or a desire to 
maintain control over future executions of the process, it must be overcome in 
order to mature the organization to the point where benefits from an 
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architecture-driven approach can be realized. 

Next, a software process needs to be tracked. Specifically, every software 
process must have concrete, definable deliverables. For example, a quality 
initiative which involves only a series of lectures cannot be considered a 
process. This is not to say that lectures and seminars are bad, but rather that 
without mechanisms to capture feedback and to measure how presented 
information is actually applied, it will be difficult to determine the impact of 
such activities. Generally, it is best to break deliverables down so that some 
portion can be completed every two or three days. A longer period between 
deliverables does not provide the feedback necessary to ensure that the 
deliverable is satisfying expectations. Project management that waits weeks or 
months for a tangible demonstration of progress is guaranteed to receive excuses 
and radical misinterpretations of the original goals. Just as military leaders rely 
upon continuous battlefield assessments to measure the progress of a campaign, 
a software architect needs a steady stream of concrete measures of development 
progress to assist project management in their frequent replanning efforts and to 
quickly identify problem areas on a project. 

Also, all processes must have a clear progression. Even ongoing processes 
should define the progression through each cycle. For example, a defect tracking 
process is typically an ongoing process in an organization supporting multiple 
products with varying release dates. However, how an individual defect is 
identified, documented, and resolved must be clearly specified in the process. 
The consequence of failure to do so is that often a process is defined but its 
execution falters or occurs sporadically, frequently resulting in a state where 
outcomes are unreliable—which defeats the point of having a process at all. 

A Basic Component Framework 
Software Design Process 

This section begins our definition of a lightweight process for component 
software architecture and development. Compared to heavyweight approaches to 
architecture-centered development (e.g., ODP+4), this process is much more 
compatible with object-oriented approaches that your developers may already be 
familiar with. If you are working with a small team of developers, and you don't 
have complex distributed-systems issues to contend with, this process may be 
right for your project. Architects should carry a big bag of tricks with flexible 
notations and processes to meet the demands of the terrain. 

Given the increasing popularity of component software, it may be beneficial to 
present a single design process which is effective in coping with the unique 
issues related to this emerging development approach. The assumption is that 
the system being built is of reasonable complexity and spans across several 
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distributed heterogeneous systems. 

A component-oriented design process is used to define how to implement the 
requirements for a project so that reuse is maximized from existing framework 
components and services, and to provide a distributed, scalable enterprise 
platform for the domain model and future system extensions. The basic 
approach used is a top-down design methodology which clearly defines the 
software boundaries, component responsibilities, and system collaborations. In 
addition, the external interfaces to COTS packages and the existing component 
base are specified in the design documents. 

The design process presented has three distinct stages: 

• Conceptual design phase:  Specifies at a high level the goals 
and specific responsibilities of a component 

• High-level design phase:  Documents the classes, methods, 
and attributes for the subsystem 

Detailed design phase:   Defines the precise semantics for the attributes and 
methods and the IDL, which provides a well-specified transition into 
implementation  

Most component architectures define four architectural layers (Figure 6.1): 

Figure 6.1. Layered Architecure for Distributed Component 
Development 

 
Foundation layer 

Domain layer 

Application layer 
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User interface layer 

Each design falls within one of these architectural layers. The foundation layer 
defines the infrastructure components used throughout the system. It contains 
classes to manage database access, object-oriented querying, collections, basic 
object services, and object primitives used to compose more complex objects. 

The domain layer defines the components which are recognized in and are 
unique to a particular domain. Components in the domain layer represent either 
specific business entities or specific business processes. Typically, domain 
components provide minimal, coarse-grained methods to access their underlying 
data representation. This is necessary because domain components are used 
throughout a particular enterprise and are typically distributed, requiring remote 
access. By defining a coarse-grained interface, network latency is reduced, with 
the application layer caching the information to provide a finer-grained method 
of accessing information to service view components. 

The application layer provides the application logic for a set of views. It 
contains specializations of domain components which are tailored to perform a 
precise set of tasks. The coordination of object services in the foundation layer 
and domain components from the domain layer typically occurs in the 
application layer. Additionally, optimizations such as caching and conversions 
from domain types to user interface types occur in this architectural layer. 

Finally, the user interface layer contains the user interface components that 
interact with the user and the application layer to provide a complete application 
from the user's standpoint. 

The conceptual design focuses on high-level design issues. It defines the overall 
scope of the design subsystem and the limits of the responsibilities of the 
subsystem. Part of the process is to examine the requirements being addressed 
from different angles to ensure that the design resolves the design issues in such 
a manner as to let it be reused in other similar situations in other subsystems. 
Also, the design must handle the use case scenarios naturally and smoothly 
without unnecessary complexity. The deliverables for the conceptual design 
stage are: 

A one-sentence goal of what the design does 

A list of the responsibilities of the subsystems 

A clear statement of the architectural level the component is developed for 

The document also gives the classes and objects initially identified for the 
subsystem and a description of what the class semantics and relationships are. 
This enables an early discussion on how the design satisfies a specific set of 
project requirements. Specifically, the conceptual design document can be used 
to discuss how the use cases in the requirements document are satisfied by the 
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conceptual design. 

The high-level design provides the details on precisely how the classes which 
make up the conceptual design are specified. The standard modeling notation in 
the industry is the Unified Modeling Language (UML), and the high-level 
design uses the static class diagrams to describe the static model of the classes in 
the subsystem. The dynamic model is provided in UML sequence diagrams in 
the detailed design stage. In the high-level design there are three key 
deliverables: 

Screen mockups of the component being designed 

The static class diagrams 

A document which provides information on the expected dependencies of the 
subsystem 

Specifically, the document describes how the subsystem collaborates with other 
parts of the framework, what third-party tools and other components will be 
used in implementing the subsystem, and also the representative use cases which 
will be used in detailed design for providing detailed sequence diagrams of the 
selected scenarios. The static class model provides the classes, attributes, and 
methods for subsystem objects and explicitly identifies the relationships 
between them. The high-level design is the absolute minimum which must be 
completed before any amount of implementation can begin. 

The detailed design provides the component specification for distributed 
components in the system (typically in OMG IDL); sequence diagrams for one 
or more use cases which are satisfied by the subsystem, either entirely or 
collaboratively with other subsystems; and detailed prose descriptions of the 
precise semantics of all attributes, methods, and data structures for the 
subsystem classes. The interface specification also includes the possible 
exceptions for a component, and the prose details when they occur and how they 
will be handled. 

The sequence diagrams illustrate a use case scenario by tracing through the 
object model and showing by what method signatures are invoked and on what 
classes in order to satisfy the use case. An explanation of how system data is 
produced and what transformations are performed by libraries and nonobject 
portions of the system is also provided. 

The combination of the conceptual, high-level, and detailed designs forms the 
design document deliverable for a subsystem. Together, the document contains 
the conceptual overview for the subsystem, detailed UML diagrams of the 
classes, screen mockups, sequence diagrams showing system dynamics, and a 
detailed prose description of the semantics of each of the subsystem 
components. 

The component development methodology incorporates a concurrent design 
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process where each of the subsystems is designed and managed by its own 
design process. The subsystems with the fewest dependencies are designed and 
implemented first, with subsystems with a higher number of dependencies being 
designed later. This provides the ability to stage the design process (Figure
6.2) so that concrete incremental progress can be validated with both design 
and software deliverables. In addition, the components which support the 
greatest amount of dependencies benefit from more iteration, creating a more 
robust, reliable platform for application components. 

Figure 6.2. Component Development Methodology Facilitates 
Concurrent Design of Subsystems 

 
In Appendix B, a set of design templates defining the deliverables for this 
process and a sample set of designs documented according to the templates are 
provided. 

Finally, process deliverables must be defined well enough to establish clear 
expectations as to what the document will contain and how it will be presented. 
Specifying how a process deliverable is to be presented is a recurring weak point 
for many processes, the predictable result being that the process deliverables 
vary significantly depending on the people executing the process or on other 
inconsistent factors. 
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6.2 Creating New Processes 

Specifically, the detailed process for creating processes is defined as follows: 

1. Define the goals of the process explicitly.   There should never 
be any doubt about what a particular process is expected to accomplish. 

2. Explain the current organizational context, which 
illustrates why a process is needed.   This provides a basis for later 
discussing whether the process is still needed when an organization changes. 

3. List a brief outline of the process, which covers the 
process steps and how the process progresses.   Each step in 
the process should have a concrete completion point. Even ongoing tasks should 
have some well-defined completion point, for example, a single cycle. The steps 
of the process should provide measurable progress toward the completion of a 
process deliverable. 

4. Make sure the process deliverables and timetable are 
explicitly stated.   Ideally, the specifications for the deliverables include 
how the product is to be formatted as well as the information it contains. 

Next, it is important to know when it is necessary to define a new process. There are two 
key indicators: (1) a major disruption or problem occurred which could have been 
prevented if a process was in place, or (2) an opportunity exists for improved outcomes if 
a process is put in place. So either a new process prevents or eliminates bad outcomes, or 
it creates desirable outcomes or improves existing outcomes. 

Finally, maintain a high standard for how a process is defined. Processes which are vague, 
open-ended, and do not satisfy or exceed the criteria listed above for a process will create 
a false sense of security in an organization and will ultimately waste valuable time and 
resources, as critical process elements are endlessly debated and redefined. 

In a brand-new software development effort, an architect should ensure that processes 
exist for at least the standard stages of the software development process, i.e., 
requirements, design, configuration management, testing, etc. Over time, processes will 
need to be created to improve software quality, including a code review process, defect 
tracking process, etc. Again, it may not be the role of the architect to define and execute 
all of these processes; however, he does have the responsibility of ensuring they are in 
place and sufficient for the project needs. Without these processes, it will be extremely 
difficult for the architect to have a direct input on how the software architecture is 
realized in the designs and actual implementation. 

For development environments where existing processes are in place, new processes are 
developed to solve particular recurring problems. It is critical that the existing context, 
which determines the need for the process as well as the process details, is communicated 
to those affected by the process. In addition to developing buy-in, it allows process 
participants to provide critical feedback either into how the process can be improved or 
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on other issues which also need to be addressed to effectively accomplish the process 
goals. 

A common mistake of a novice software architect is to assume responsibility for tracking 
too many of the various processes required for the project to be successful. While there 
are times when a software architect needs to assume some process execution duties, a 
more effective approach is to delegate the majority of such responsibilities to the project 
manager or other members of the development team. The architect's responsibility is to 
ensure that the processes are being tracked and that the software artifacts (design models, 
documentation, code, etc.) are in accordance with the guidelines and heuristics dictated 
by the software architecture. Properly done, documenting how to make architectural 
tradeoffs and verifying that the artifacts are in compliance will dominate the bulk of the 
software architect's schedule. It is the time-consuming process execution which 
frequently overwhelms novice architects and impedes their effectiveness in controlling 
the architectural consistency throughout a project. 

6.3 Teamwork 

One frustrating aspect of becoming a system architect is realizing that you probably could 
not build a large software system entirely by yourself in a reasonable time frame. And 
even if you could, you probably could never convince an organization that allowing you 
to do so is in its best interest. Therefore, it is nearly inevitable that you will have to 
interact with a team of individuals in order to design and develop software. 

It is difficult to create a well-designed system without an understanding of the domain 
model which the system supports. The key elements of a well-described domain model 
follow. 

Domain Model Requirements 

1. A discussion of the domain business problem the domain 
model supports and the context in which it provides 
meaningful solutions.   The domain business problem should not refer to 
software constructs but to the objectives of the business and various users of the 
system. For example, in banking, a business problem would state that a customer 
uses a bank to save money, write checks against funds in the accounts, borrow 
funds at an agreed-upon interest rate, and transfer funds between accounts. 

2. A discussion of the domain business objects which 
comprise the model and the relationships between 
them.   For example, a banking system would define the types of accounts 
supported, the relationships between the accounts, the business rules governing 
account ownership, and how funds may be transferred between accounts. 

3. The business processes which the system either 
automates or facilitates.   The business process definitions must 
include the purpose of the process, the specific inputs and outputs of the business 
process, and any records or side effects produced. For example, it may not be 
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possible for the system to perform a higher-level task such as analysis. However, 
it may facilitate analysis by executing algorithms, which are a single step in the 
analysis, and presenting the intermediate results to the analyst. Defining the 
concrete steps and decision points by which an analyst performs the business 
function of analysis allows a design to accommodate automation without 
depriving the user of the control and configuration needed to achieve the desired 
results. 

4. A discussion of the various roles which the system 
supports and how the roles are acquired and released in 
various scenarios.   Each role should be clearly defined with a concrete 
and limited set of responsibilities. For example, a bank may define the roles of 
teller, office manager, loan officer, and customer. Even if the customer may want 
the appearance of creating a new account, the domain model may require the 
system to play the role of a teller or office manager in order to complete the 
transaction rather than have the customer assume a new role. 

5. A discussion of the various ways information is organized 
in a domain.  For example, in banking there may be an employee 
organization starting with the board of trustees and bank president and ending 
with the security guards. Another organization may be the staffing arrangement 
on a typical day with M number of tellers, N number of guards, X number of 
account managers, etc. Yet another way to classify the organization may be with 
respect to signature authority. Having information about the various classification 
schemes used in the domain provides a basis for later abstractions. Frequently, the 
abstractions are frozen prematurely, and the precise domain classifications, which 
justify the design abstractions and modularization of functionality, are lost. 

An important role of software architects on a team is to ensure that the highest-quality 
software can be delivered within a certain set of constraints. Even in the face of intense 
time constraints, the role of an architect includes an awareness that compromising too 
much on software quality will eventually extend the time to delivery rather than shorten it. 
Knowing your role on a development team is essential, both for maintaining personal 
focus, for team confidence, and for demanding essential concessions (time, tools, 
expertise) from other stakeholders who may possess different agendas, for example, 
marketing departments, human resources, etc. 

Unfortunately, the word quality has become greatly abused throughout corporate 
America, and especially in the software development industry. For an emerging architect, 
leading a team in developing software, quality involves adhering to basic principles. A 
key principle is to avoid rework of existing code. This is most effective when a second 
principle is followed: strive to reduce the amount of code required overall to accomplish 
the system objectives. For any two designs which accomplish identical functionality, the 
minimal design which leads to the simplest implementation is preferable. This does not 
mean the simplest design is always preferable, as frequently a small design means the 
problem has been overabstracted and a large amount of significant implementation details 
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are undocumented. Obtaining a feel for the complexity of the implementation is crucial to 
really understanding the true simplicity of a proposed solution. 

Just as the software architect has a well-defined role on a development team, there are a 
few other roles which must be satisfied by individuals other than the software architect. A 
project manager is necessary to fulfill the vital and time-consuming tasks of tracking the 
progress of the development effort and providing updates, both to the higher-level 
stakeholders and to the development team who evaluate progress against their 
predetermined goals. As new information arrives which affects the schedule, the project 
manager solicits information for replanning and updates the involved parties. 
Additionally, there will be team members who will be responsible for executing one or 
more individual software processes. For example, there may be a build manager who 
ensures that configuration management is actively used and that the software can be built 
regularly. Someone else may be responsible for code versions or bringing new team 
members up to speed and arranging mentors. A requirements analyst may be tasked with 
ensuring that design and implementation tasks and deliverables are traceable back to 
stated or derived requirements. 

Under some rare circumstances, an architect is given the opportunity to assemble a new 
development team from scratch. When this occurs, recognize and appreciate what a rare 
opportunity you possess and resolve to make the most of it. Although team formation is 
usually a management function, the architect often plays an influential role. Obtain a big-
picture view of what the project entails and identify the processes and skill sets required 
to be successful. Don't allow the team to become too unbalanced in a specific skill. For 
example, most software applications require fairly sophisticated interactive user 
interfaces, which may be difficult to achieve with a team of relational database experts. A 
good mix is desired not only for their ability to perform their specialty but more 
importantly to provide a unique viewpoint and to educate fellow team members about the 
benefits and limitations of their technical areas. In choosing the size for a team, keep it 
small. If the work requires a team of more than 5 people, create subteams, with the 
understanding that the subteam structure exists primarily to make communication 
manageable. Enforce this by ensuring that team leader selection is based on their ability 
to effectively communicate with team members and the architect, rather than on purely 
technical skills or experience. 

Even in the case where the architect is assigned to a team, the same guidelines on team 
balance and team size apply. It does not matter how many people a team has if the right 
mix of skills and experience is not already present on the team. In the past, training and 
time allocated to get team members up to speed on a particular skill set was sufficient. 
However, with the radical decrease in development cycle times, many companies hire 
people having the skills demanded by a particular project, either as new employees or 
consultants, rather than train existing staff. In such cases, failure to utilize the new 
employee or consultant as a mentor to existing employees with different skill sets is a 
common mistake. 

Once the membership of a team is established and the development process begins, the 
architect must immediately decide and communicate how design and implementation 
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tradeoffs will be made and what is the intended quality level of the software. This must 
be decided carefully, as it is difficult and expensive to change either of these after the 
project kickoff. Often, some architectural planning is useful, before team formation, in 
order to guide these decisions. If performance is a top priority, then the architect should 
make it clear that all design and code are expected to maximize performance over space, 
maintenance, and robustness. In effect, the architect should define the design force 
priorities for the team. Concepts such as design by contract and caching should be 
reviewed and their existence validated in design and code reviews as well as reflected in 
the test plans. If quality is a high priority, then more time needs to be allocated to review 
and test processes. These tradeoffs must be documented explicitly for the team. Ideally 
the guidance would be broken down into specific design and implementation heuristics 
for individual developers to follow. 

Starting from the project kickoff, the architect should maintain a continuous flow of 
information to team members. If design by contract is used, circulate articles about its 
effectiveness and how other people coped with its disadvantages. If developing a product, 
provide information about comparable products or off-the-shelf solutions which may help 
shorten development time. If you hear that someone is struggling with a particular design, 
stop by for a chat and lend him Arthur Riel's design heuristics book, for example [Riel 
96]. The architect cannot be effective by walking around and talking all the time (i.e., 
hallway management) or by hiding in an office and waiting to be called upon. Rather, his 
role is to provide technical guidance, receive technical feedback (including project 
deliverables), and ensure that all team members have whatever information they need to 
be successful, from both internal and external information sources. 

A key part of the architect's role is to maintain a continuous interest in all parts of the 
project. Early in a software project, everyone's interest is high, as there are a lot of 
possibilities. If the process is successful, decisions will be made which constrain the 
possibilities, and as parts of the system begin to get implemented, real-world problems 
are encountered affecting schedule, performance, and resource constraints. It is typical to 
see interest in any effort decrease once it is actually under way. However, in the early 
stages, the architect is identified as the key person who understands and decides technical 
matters, At a high level, the actions of the architect and fellow team members are seen as 
potentially affecting all aspects of the system. As the system is further decomposed, some 
problems become more interesting than others to the architect, either due to their 
complexity or because they coincide with the technical areas of personal interest. If the 
architect constantly spends time on the areas of most personal interest, team members 
will feel their own areas are viewed as less important. If these feelings persist, team 
members in a particular subarea will tend to psychologically distance themselves from 
the team as a whole. They will feel the architect and other team members do not respect 
their work and will tend to focus solely on their tasks, independent of the concerns of the 
system as a whole. The architect can prevent this by making a constant effort to allocate 
time to all areas and to ask questions and probe into the technical challenges in all aspects 
of the system. In addition to maintaining the morale of all the subteams, frequently the 
knowledge gained provides a better holistic view of the system and opportunities for 
synergy which would not otherwise be apparent. Furthermore, the architect is setting an 
example of the kind of cross fertilization high-performance teams demand. When 
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possible, have regular meetings where all team leaders are allowed to voice concerns and 
get feedback on looming technical challenges. Ensure that everyone fully understands 
how each subgroup contributes to the overall project objectives. Be prepared to ask 
specific questions to draw out crucial status information, if subteam leaders are reluctant 
or decline to provide sufficiently detailed information. 

In most projects, there are a few critical dependencies whose prompt completion is 
essential for other tasks to proceed. As an architect, frequently one or more of these tasks 
are either already on your desk or well on their way to your desk. It is vitally important 
that critical dependencies are recognized and that steps are taken to minimize the external 
factors which hinder their completion. Frequently, such tasks include senior developers 
who are also solicited to mentor other less experienced developers. Working with the 
project manager, the architect must intervene to protect people working on critical tasks 
by temporarily suspending or reassigning routine responsibilities and to ensure that 
enough quality time is spent bringing critical tasks to completion. Few things are as 
detrimental to a schedule as having several teams unable to proceed because they need 
the results of a team that is behind schedule, especially when the slippage occurs from 
doing important work, but not work as important as removing the dependency. 

Most software development teams work best with a flexible work environment. Most 
professionals in the industry are honest enough that, given a chance to arrive later at work 
by an hour or two when no morning meetings are scheduled, they will diligently work the 
same amount of time or more later to compensate. However, this is not always the case, 
and major team morale problems arise when benefits such as flexible work hours are 
abused. No leader, architect, or manager should tolerate repeated and blatant abuse of 
flexible work policies. If someone claims to work excessive time in the evenings, then it 
is reasonable to expect tangible results from the time spent, especially given the lower 
frequency of interruptions and office distractions. The team members should be judged 
on their results, and when the results do not measure up to the expectations of the team, 
either the project manager or the architect is responsible for finding out why and ensuring 
that a cooperative team environment is maintained. 

Explaining Incremental Development 
to Upper Management 

Upper Management to Software Architect:  "Hey, these UML 
diagrams look different than the ones three months ago. Why do you keep 
changing your architecture?" 

If you are doing your job as an architect well, eventually one or more of the 
stakeholders will confront you with the above statement. Keep calm; don't panic. 
There are a few common misconceptions you need to quickly dispel in order to 
resolve this situation. First, there is an industry confusion about the difference 
between software design and architecture. In order to clarify the distinction in 
the minds of people having various, and frequently less intensive, technical 
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backgrounds, the following real-world analogy is recommended: 

"Say, do you know what Gothic architecture is? You know, with the medieval 
cathedrals and intricate designs and all. What about Ionic architecture, like the 
Romans used to build the Pantheon? You know, buildings with the rows of 
columns and fancy murals. What about modern architecture, with the 
rectangular shaped buildings and windowpanes and so on? Well, just because 
you have a building's architecture, it doesn't mean you have its blueprints. You 
still have to decide for each and every building how many rooms are needed, 
what their dimensions are, where the doors are, and a thousand other critical 
details. 

"The architecture may tell you that if you need to support a ceiling, you do it 
according to a particular set of guidelines. It does not tell you the precise amount 
of support required or where to put the light switches. A building can be built an 
infinite number of ways using the same architecture. Similarly, software 
architecture does not provide a set of design blueprints. Working with a 
particular software architecture will still require incremental design and 
development. 

"As more is known about the problem space and as new functional or derived 
requirements are discovered, it is okay that designs evolve to handle new classes 
or problems. However, that does not mean that the architecture is changing. In 
fact, it is the presence of a good software architecture which allows individual 
designs to change without causing cascading changes throughout the system. So 
rather than view the changes in individual designs as a weakness in the 
architecture, we either fix the processes which allow the new requirements to be 
introduced in the course of actual implementation or address how a particular 
subsystem was designed, rather than architected." 

6.4 Conclusions 

In this chapter we have introduced a lightweight component-oriented development 
process which is suitable for most organizations and projects. Given that an ideal team 
size is 4 developers working for 3 months, this sort of process compares favorably with 
heavyweight approaches introduced elsewhere in this book, such as RM-ODP and the 
Zachman Framework. 

It is important to note that good software architects are very pragmatic. Our goal is to 
produce a working software system that satisfies stakeholder needs. We are not in the 
business of creating piles of papers or mind-numbingly extensive requirements 
specifications. We recommend what's necessary and prudent to achieve the result, 
avoiding unnecessary make-work whenever possible. 

We usually favor lightweight approaches over heavyweight ones, but we are cognizant of 
each approach, and its strengths and weaknesses. And we are equally capable of fulfilling 
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the system needs, regardless of methodology. We skip unnecessary steps, bypass 
irrelevant viewpoints, and add those viewpoints and techniques that are appropriate, even 
if they go beyond the scope of a particular framework. 

6.5 Exercises 

Exercise 6.1 

Define a code review process for a small development team with an approximately equal 
mix of experienced and inexperienced software developers. Follow the process template. 

Background for Solution: 

Here is one possible solution for a code review for a small development team. 

Small Corp Software Inspection Process 

Process Rationale: 

There are several issues in the current software development process which could be 
mitigated by regular code reviews. Currently, the software is sometimes unable to satisfy 
all use cases or provide all of the functionality its interface would suggest. There has been 
a lack of reuse of client access code, which creates several unnecessary maintenance 
points for code of sometimes significant complexity. The actual naming and coding 
standards differ from the corporate coding standards. Frequently, the software contains 
several defects which are not discovered until integration or, in some cases, deployment. 
Additionally, maintaining code has been difficult when people leave due to a lack of 
comments and esoteric coding practices. For example, people introduce third-party 
libraries to solve a particular problem without telling anyone or even documenting the 
vendor source of the library. Regular, systematic code reviews are expected to 
significantly reduce such incidences. 

Process Goals: 

The software inspection process has three main goals. The first is to improve software 
quality. What is meant by "improve software quality?" improve in relation to what 
baseline? The baseline is a process with the same timeline, but no inspection process. 
Thus, the baseline consists of a process with a small amount of additional time for all the 
other development activities. We expect to improve quality by discovering and correcting 
inadequate comments, poor design, and errors early in the software life cycle. The second 
goal is to create and disseminate recommended code solutions for solving specific, 
recurring technical problems. The third goal is to facilitate maintenance and 
enhancements by increasing uniformity of software styles. 

Process Outline: 
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The software inspection process has three main phases: before the software inspection 
meeting, during the meeting, and after the meeting. 

Before the Meeting: 

The inspection process is based on three-person round-robin teams. Figure 6.3 
illustrates the concept. Teams can be self-appointed or assigned, but everyone with new 
code should be on a team, and teams should change membership from one round to the 
next. Each team member chooses one or more major classes to be inspected and 
distributes them to each member of the team. Each member reviews the code written by 
one other member before the meeting starts and brings the annotated code to the meeting 
for discussion. 

Figure 6.3. Three-Pearson Round-Robin Inspection 

 

A software inspector should look for the following kinds of things. The most obvious are 
errors such as failing to take account of all cases, dividing by zero, failing to check array 
bounds, failing to check for null pointers, etc. 

Also, make sure that the basic purpose of a class is documented and that complex code, 
e.g., code involving third-party software such as Objectstore, is explained in comments. 

Still another type of comment is just checking that all requirements are met and that the 
code matches the documented design. 

As for software style standards, e.g., indentation and naming, Eidea Labs has adopted 
Scott Ambler's Java coding standards. All inspectors should be familiar with these 
standards. 
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See http://www.ambysoft.com/javaCodingStandards.html for more 
information. 

During the Meeting: 

Here is an example of how three-person round-robin inspection should work. Suppose 
that Vick, Christy, and Zhian are on a team. First, the team decides who will review 
whom. Each reviewee selects some new code that needs review and tells the reviewer 
where it is. For example, Zhian reviews Vick's code, Vick reviews Christy's code, and 
Christy reviews Zhian's code. Each team member brings three copies of reviewed code 
with annotations including suggested improvements and highlighting of possible 
problems. 

The flow of the meeting will look something like this: 

~40-minute review of Vick's code 

Break 

~40-minute review of Christy's code 

Break 

~40-minute review of Zhian's code 

Let's keep the meetings from taking forever, and let's prevent review of one person's code 
from taking up all of the time allocated for the remaining reviews. If time runs out, time 
runs out. Move on to the next person's code. Take the rest offline. 

During the meeting, a reviewer hands out the annotated code. The reviewee narrates 
his/her code by stepping through one thread of execution in methods of a class, or 
through an important thread in client code. Both of the other participants ask questions 
and give suggestions. The reviewer makes sure that all his/her comments are covered. 
The third person needs to watch the clock! The third person should help to keep the 
meeting on track, try to resolve disputes, and take notes of cool techniques and sneaky 
bugs. The group should reach consensus on changes that need to be made to code under 
review, and the reviewee should record his/her own action items for those changes. 

After the Meeting: 

The participants of an inspection meeting are expected to produce several deliverables. 
Of these, software revisions according to the meeting recommendations are the most 
important. In addition, one person from the review documents the meeting with a note 
containing at least the following information: 

Line of code reviewed 

How long the meeting lasted 

Number of errors identified (no author data; missing comments not counted) 
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Recommended solutions to recurring problems (with code samples as appropriate) 

A physical file with a copy of all annotated code and the meeting document will be 
created. The files will be organized by date and the names of all participants. These files 
will serve two purposes. First, they can be used to verify that participants complete 
meeting action items. Second, they can be used to establish a longitudinal record for 
evaluating the benefits of the software inspection process itself. 

Process Deliverables: 

This section provides a simple checklist of all the deliverables produced during the 
process: 

Annotated code (annotations from before and after the meeting) from each participant 

Corrected code from each participant 

Meeting document 

Folder containing all of the above 

Process Timetables 

Single Software Inspection Timetable: 

The timetable for one round of a software inspection process is as follows. Choose a team 
and pass out code. Allow three or four days between everyone's receiving the code and 
the meeting. The meeting should take about two hours, as mentioned above. Fixes 
recommended during the review should be performed immediately. The amount of time 
required for these fixes depends greatly on their nature. Redesign might take a week, 
while adding comments may take only an hour. The results note should be written and 
sent by close of business (COB) the following day. 

Software Inspection Cycle: 

From a longer-term perspective, software inspections should take place every two weeks 
during the implementation phase of the life cycle. After each inspection, each participant 
will require approximately one day to make changes according to action items and to 
create the meeting document. 

Software Inspection in the Software Development Life Cycle: 

Where in the overall software development life cycle should the inspection occur? The 
code should be inspected during unit test and before integration. Once code from multiple 
authors has been integrated, it is far more labor intensive to isolate and correct errors. By 
inspecting the code before this phase, we can eliminate many time-consuming 
integration-phase problems. 

References: 
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Abstracts of several papers on software inspection are available at these URLs: 

http://www/ics.hawaii.edu/~johnson/FTR/Bib/category-metrics.html 
http://www.ics.hawaii.edu/~johnson/FTR/Bib/urls.html 

Software Architecture Tip: Practical 
MVC Use 

In Basic Training you were introduced to the MVC and Observer design 
patterns. Many of the constructs in the Java language require the implementation 
of one or more interfaces to use preexisting view components with a particular 
data model. So what do you do when you have several different views, each of 
which demands a particular data model interface implementation? See Figure
6.4 for one approach. 

Figure 6.4. One Approach to Coordinating Multiple Interfaces and 
Data Models 

 
Do not create a "manager" class to coordinate the disparate models. Such an 
approach is unwieldy and error-prone. Each data model would possess its own 
copy of the data, and extensive code would be needed to keep the models in 
sync. In addition, adding in a new representation would require changing 
existing methods in order to accommodate the new data model and its classes. 
Instead, consider the motivation behind the MVC design pattern: "to have a 
single model which supports multiple views. The view should know about the 
model but not the other views." With that in mind, Figure 6.5 presents a 
cleaner, more effective approach. 

Figure 6.5. Integrating Several Data Models and Views Effectively 
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Here you have a single model which controls all the data needed by the various 
views. The model has the responsibility of implementing all required interfaces 
so that they all use the single data set. Each view communicates with the single 
data model implementation via its expected interface. Each inherited interface 
serves as a role for the data contained by the data model. While implementing 
such a large number of interfaces appears unwieldy, it is an overall better 
architecture, as it lends itself well to future extension and reduces the overall 
design complexity. 

Exercise 6.2 Teamwork Exercises: 

For each of the following two scenarios, write a brief analysis of what is motivating the 
behavior of each character type and what actions can be taken to resolve the situation. 
Both stereotypes are on a software development team of six people, including an architect 
and project manager. 

"Lone Wolf Developer": Team member has little patience for the overall team goals. 
Instead he/she insists on being given a well-defined piece to develop in isolation. On 
previous tasks, he or she has tended to disregard agreed-upon interfaces and has been 
extremely reluctant to provide detailed designs prior to beginning implementation. 
Whatever is provided before implementation is always in a state of flux, with most of the 
documentation being delivered after the implementation is complete. 

"Unilateral Consensus": Team member's opinion dominates the group to the point where 
there are never any dissenting opinions. The team member has technical superiority and a 
forceful personality. When his/her opinion on an issue is known, other options are no 
longer considered. 
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Background for Solution: 

"Lone-Wolf Developer": This person appears to lack a buy-in into the common purpose 
of the team. His/her actions indicate a shirking of responsibility to the team and no belief 
in mutual accountability. There is a feeling that success on his or her part is separable 
from the overall success of the team. Allowing the "lone wolf" to continue destroys the 
mutual trust between him/her and other team members. Infighting is inevitable when 
interfaces change without warning, vital documentation is missing, and integration is 
needlessly delayed by a continually changing codebase. 

Regular design and code reviews are essential in ensuring that some communication 
exists between lone wolves and the rest of the team. By reviewing work products that 
they have a personal vested interest in, obtaining their attention is assured, and hopefully, 
constructive "forced" interaction will lead to more regular informal interactions in the 
future. From the management perspective, the lone-wolf tasks should be scheduled in 
small increments, ideally no more than three days in length. After each task, they are 
responsible for documenting their work and integrating with other people who, ideally, 
work closer to the baseline. Finally, make it clear that proactive communication with 
team members is the primary determinant of future responsibility. Specifically, an 
individual should neither spend an inordinate amount of time stuck on a particular 
problem, nor allow anyone else to spend time on problems whose solution is already 
known within the team. 

"Unilateral Consensus": First, talk to the expert and make it clear how much his or her 
expertise is valued and considered an asset to the organization. Next, when he or she 
suggests an idea, ask for the general heuristics which reinforce why the particular 
approach is superior. Have either the expert or other team members document and 
consolidate the design heuristics provided. Over time, the heuristics will demystify the 
decision-making process of the expert and allow team members to reintroduce relevant 
heuristics in future discussions with the confidence that their suggested approach is at 
least valid in some circumstances. 

Next, change the way meetings are conducted. Create a rule that the opinions of the less-
experienced team members are heard first. This results in two desirable outcomes. Less-
experienced team members are given a chance to establish ownership of some ideas 
which will later be validated by the expert and more experienced team members. Or, and 
admittedly more commonly, the more experienced members are forced to explain the 
flaws in the suggested approach of less-experienced team members, which helps them 
learn by starting the discussion in areas they understand rather than the "foreign ground" 
of the expert. Also, by getting their ideas out first, they are more likely to defend them, 
which is better than not having an opportunity to suggest them at all. 
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Chapter seven Communications Training 

The cornerstone of any significantly large venture is communication. In the military, 
establishing lines of communication between troops is the top priority. Without 
communication, it is impossible to adequately allocate resources, coordinate efforts, 
assess progress, or, basically, to conduct war. Similarly, a software team must 
communicate throughout a software development effort or it simply cannot succeed. A 
software architect must define what level of communication is required, what form the 
communication takes, and how to continually assist in improving communication in order 
to ensure that the development tasks proceed as expected. The architect frequently has to 
decide which design problems require collaborative brainstorming and which are more 
suited to a concentrated focus by one or two individuals. Frequently, the specific artifacts 
of communication among team members which are shared among stakeholders are 
decided by the architect. Sometimes, notes are a sufficient record of discussions, while at 
other times formal specifications in UML, IDL, and other forms are required. Finally, 
every architect should establish feedback mechanisms to ensure that his own technique 
and approaches are improving and obtaining the desired results. 

7.1 Communications Challenges 

Software development is becoming increasingly complicated, requiring the participation 
of many diverse people with various skill sets. Dealing with the coordination among 
different groups is an ongoing factor in the military. As such, the military provides a 
wealth of lessons which are equally applicable to the development of software 
applications, the most important of which is how multidirectional communication is 
handled. Since effective communication is required for proper coordination, it can never 
be considered an optional part of the life of a software professional. Rather, constant 
verification through proper communication must be a fundamental part of the overall 
software development process. If it is determined that there is a breakdown, then top 
priority must be given to re-establishing communications. Facilitation plays a major role 
in smoothing over various personal conflicts. If necessary, communication may even 
have to be forced during critical situations. 

There is a substantial industry built around aiding developers in the production of 
software development artifacts. There are tools for coordinating requirements and use 
cases, tools for developing software design models, and tools for defining software test 
plans. Each tool has its own strengths and can reduce the time it takes to produce one or 
more software artifacts. If the goal of software development was the production of such 
artifacts, they would be worth their kilobytes in gold. However, what sometimes gets lost 
in a discussion of the merits of the latest tool is how effectively it facilitates 
communication. After all, while the external deliverable is the software, the internal 
deliverable is effective communication among team members to ensure everyone is 
working toward a common goal. 

In that context, software artifacts are a necessary, but not sufficient, element of achieving 
effective communication between software developers. Regardless of the documents 
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being produced, they are of no value unless they are discussed with and understood by 
the development team. The following two methods will help ensure that development 
artifacts are not ignored on some distant bookshelf. First, all artifacts should be 
reviewed by a team composed of developers from other teams. This ensures that the other 
teams are aware of what is being produced throughout the organization and are on the 
same page in regard to architectural principles, design heuristics, and coding standards. 
Once the final review is complete, the final document is disseminated to all reviewers. 
Second, all designs produced are submitted to all team leaders who are expected to be 
familiar with their contents. When issues arise which are answered in the design 
documents, the architect should bring it to their attention and continually remind team 
leaders to stay on top of the designs of other groups. While it may be frustrating to know 
that few of the team leaders are following through and truly staying current with all of the 
designs, over time it will become apparent that better decisions are made on the team 
level, in part due to a greater awareness of the efforts of other teams. Finally, when topics 
arise which affect several teams, schedule a meeting with representatives from all 
affected teams. Either have the issues solved collaboratively, or have an agreement to 
utilize a solution developed by the first group that is affected by the issues. For example, 
if a new requirement arises that all system logs should be exported in an XML format, the 
first group which needs to produce a log will present a standard XML DTD which will be 
used by the other teams for storing and viewing logging information. 

7.2 Responsibility–Driven Development 

The design process requires special discussion in order to promote responsibility-driven 
design and development. Responsibility-driven design requires that subsystems and 
components are identified and designed based on their functional responsibilities. Each 
subsystem or component has a set of responsibilities which is orthogonal to every other 
subsystem or component in the system. If a particular responsibility which already exists 
is required by a new subsystem or component, the new component delegates the task to 
an existing instance of the component or subsystem. This technique maximizes reuse and 
redundancy at the expense of the typically small performance overhead of delegation. 
While responsibility-driven development is already popular in many object-oriented 
software development organizations, it will likely grow even further in popularity with 
the advent of components and component-oriented development, which already rely upon 
delegation for composing new components from existing components. 

One of the design deliverables in a software development effort is the creation of a 
software specification for one or more subsystems. In specification writing, it is 
important to differentiate between the documentation of an interface and the 
documentation of the implementation. Since the interface may be relied upon by other 
subsystems, it is expected that its specification will be less likely to change than classes 
utilized completely within an encapsulated subsystem. 

For software development where developers are not able to remain in constant close 
contact, design documents should be more akin to a specification, a more rigorous 
description of a software design than those provided by some methodologies. A design 
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specification should clearly differentiate between the interface between subsystems and 
components versus the parts which make up the internal implementation of one or more 
subsystems. The purpose of a specification is to reduce, if not completely eliminate, the 
effect of multiple interpretations of a design. If every design consistently defined every 
subsystem to a sufficiently low level of detail, documenting each subsystem by 
describing the semantics of every class, method, parameter, and data structure, then there 
would be no need to have a specification, as such a design would be sufficient to resolve 
any ambiguity. However, in practice, designs often vary in their quality, and the 
introduction of a specification makes explicit the areas where detail is absolutely 
essential—the interfaces exposed to other subsystems. Generally, it is exceptionally 
beneficial to describe these interfaces in an interface specification language, such as 
OMG IDL. 

Having a design specification makes it easier for the architect, as there are several 
heuristics which can be applied to assess whether certain tradeoffs are made appropriately. 
For example, the introduction of several user-defined data types indicates a tighter 
coupling between the subsystem and its clients than if more simple or systemwide data 
types were used. Frequently, an architect will need to communicate ideas to parts of a 
development team, and a presentation is deemed to be better suited to the time constraints 
than conveying the same information through individual mentoring. While a presentation 
is useful for disseminating quick and dirty guidance, it tends to be rather useless if not 
supplemented with more substantial material over time. Specifically, guidance given in 
presentation form without being tied to hands-on mentoring can do more harm than good, 
as developers gain no additional skills and are demoralized at not meeting a higher level 
of productivity. An architect should always make clear to project stakeholders what 
presentations are not effective at conveying, and she should emphasize the need to 
support in-depth studying from academic texts. Even more important are industry white 
papers, which are frequently an excellent means of learning lower-level architectural 
details of emerging technologies. 

7.3 Communication Responsibilities 

One of the duties of a software architect is to serve as the spokesperson of the 
development team on technical matters. As such, the architect will frequently need to 
prepare and present briefings to upper management and other stakeholders. Furthermore, 
briefings are usually faster to create than white papers and are a good preparatory vehicle 
for outlining the key concepts for future papers. In order to be effective in creating and 
presenting briefings, the use of a few straightforward techniques can increase the odds of 
success. 

As a technical person, there is always a tendency to convey too much information on a 
technical topic. Upper-level management frequently is interested only in conclusions—
summary information. Also, other technical people can already figure out the details, 
once the basic idea has been successfully conveyed. First-time technical presenters nearly 
always cram much more detail and information onto charts than the briefing-chart 
medium can effectively handle. 
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In a military campaign, it is essential that information is appropriately updated as the 
situation changes. This includes the verification that targets were successfully 
incapacitated, the position and direction of mobile units, and the additional defensive 
capabilities acquired by the enemy since the last time they were directly observed. Every 
commander knows that viewed information is immediately obsolete, as several of the 
campaign elements are constantly in flux. Similarly, on any software project, the status of 
a development team is also changing. Initial assumptions about time lines, task 
complexity, and resources will need to take advantage of new information throughout a 
project's life cycle. While project management will be responsible for the replanning of 
the current project plan, the architect should wisely be utilizing feedback to alter his 
technical approach to the project. The issues of when to get feedback, how to get it, and 
what to do with it once you have it will be addressed in considerable detail. 

In some respects, acquiring feedback should be a continual part of the architect's daily 
responsibilities. It has already been mentioned that in a walkthrough, the architect should 
be listening for details which reflect how the project is progressing and what obstacles are 
occupying the most resources. Furthermore, where time permits, cross-team reviews of 
deliverables should be a part of every development process. Still, there are a few 
milestones which provide special opportunities to extract useful feedback. 

7.4 Handling Feedback 

There is definitely a positive benefit just in the solicitation of feedback from developers. 
However, unless there is evidence that provided feedback is utilized to improve process 
and organizational issues, the development team will quickly become disillusioned and 
much more reluctant to comment on development activities. Therefore, a plan to make 
the most of feedback is vitally important to have in place in conjunction with obtaining 
feedback. Feedback is generally less useful in evaluating the current performance of an 
organization than in developing a strategy for future improvements in process and team 
building. 

Admittedly, not all feedback should be acted upon. In the highly stressful software 
industry it is common for a certain amount of venting to take place. For example, if a 
deadline slipped, there will always be a tendency for a few team members to look to 
place blame (perhaps rightly so) on particular individuals. In such cases, feedback 
provides an understanding ear to people who have an appropriate sense of urgency in 
meeting the agreed-upon milestones by a particular date. However, rather than deal with 
specific instances—often well after the time when action can be taken to resolve the 
situation—look toward long-term patterns in people's actions and short-term steps in 
process improvements. 

An important realization in dealing with people on a development team is that you cannot 
actually change the people you are working with. You can encourage them, flatter them, 
and negotiate with them; however, ultimately they bear the responsibility for being 
productive members of a development team. This is true regardless of whether you 
directly supervise them, share the same level of supervision, or are in a lesser position of 
authority. However, to be effective you can change yourself, how you deal with people, 
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and how you react to people. First and foremost, a software architect should lead by 
example and demonstrate the qualities he expects others in the team to share. This 
includes acknowledging that you respect that people are trying to accomplish the same 
goals as you are, even if their methods are different. It may take time to listen effectively 
to gain an understanding of the underlying reasons for a person's behavior. As an 
architect, it is important to accept responsibility for the efforts of everyone on the team. If 
the goal is shared by everyone on the team, it is illogical not to accept shared 
responsibility when various problems arise. Different organizations provide the software 
architect with varying degrees of authority in working with software developers. When 
you have greater authority as an architect, you can be even more effective by making the 
decisions which no one else on the development team is empowered to make. 

7.5 Exercises 

Exercise 7.1 

To facilitate brainstorming, the "spitwad technique" is a practical, proven method to 
generate ideas. The facilitator first passes around identical slips of blank paper. The 
facilitator then reviews the discussion topic and purpose of the brainstorming session. 
Next, everyone is requested to write down his or her ideas on one or more slips of paper. 
Each slip of paper should contain a single idea which is relevant to the discussion topic. 
Every idea should be complete and self-contained, requiring no additional information or 
explanation. Each idea is wadded up into a ball and tossed into a wastebasket, a box, or, 
in a pinch, a corner of the room. Ideally, the end result will be a pile of indistinguishable 
wads of paper. The entire process should take about five minutes. 

When everyone has finished, pass around the wads of paper evenly throughout the group. 
Go around the room and have each person read his or her wads of paper aloud. After 
hearing all of the ideas, gather suggestions for categories to group the various ideas into. 
For each category for which there is a general consensus, have someone create a tagboard 
and tape it to the wall. Next, have the group tape their paper wads to the tagboards under 
the appropriate category. Every wad should be attached to a category, including 
duplicates and even ideas which may seem initially to be inappropriate or already part of 
the existing situation. Finally, the facilitator should proceed to each category and lead a 
discussion about each of the topics. Participants can provide additional ideas or expand 
upon existing ideas. 

The notes from the discussion should be preserved and distributed to the meeting 
participants. The information gained from the spitwad brainstorming activity can be 
utilized in a future meeting devoted to evaluating the ideas and making decisions about 
appropriate actions to take. The advantage of the spitwad approach is that ideas are 
submitted anonymously, which allows participants to submit ideas without fear of being 
judged and being held personally accountable for the merit of their ideas. Therefore, they 
are more likely to contribute whatever knowledge they have on the discussion topic. 
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Chapter eight Software Architecture: 
Intelligence Operations 

Intelligence operations are knowledge-gathering procedures. Intelligence operations go 
beyond basic data collection (assembling uncorrelated information) to the point of 
collecting fully assimilated practical knowledge—knowledge that affects important 
architectural decisions. 

Gathering knowledge is an essential element of being a software architect. Ordinary 
knowledge gathering for a project comprises end-user requirements capture and perhaps 
some commercial product evaluation. We believe that proper architectural practices go 
well beyond these project-centric traditions, which we consider to be isolationist when 
used exclusively. 

Instead, we would augment these practices with some additional procedures which we 
have found to be effective, including architecture mining, architecture iteration, and 
architectural judgment. In this chapter we define specific meanings for these phrases as 
we explain their intelligence-gathering potential. 

Architecture mining is a practice that breaches classic intelligence barriers between 
projects. It can have an intelligence scope as large as an entire industry, or as small as one 
company's systems. Architecture mining is a conscious effort to eliminate the ignorance 
of silence that characterizes many system developments. 

Architecture iteration is a process focused upon a single architecture or specification. It 
tracks the architecture through its development and life cycle, improving quality through 
intelligence gathering on each project. 

Architectural judgment is a process of decision making, based upon intelligence 
gathering. Making quality decisions is at the very heart of being an architect. In today's 
changing world of technology, it is increasingly difficult to make long-lasting judgments 
without a systematic process. 

8.1 Architecture Mining 

Architecture mining is rapid intelligence gathering for making better decisions. Its benefit 
is intelligence amplification; it makes the architect appear smarter and more experienced. 

Architecture mining should be fast and effective, or it should not be pursued. The 
industry changes too quickly for any procedure to be effective which takes more than a 
few days, weeks, or months, depending upon the scope of the decision. Architecture, in 
its role as a planning discipline, should reduce timelines and make software 
development more effective and efficient. We make this point here because architecture 
mining has the potential for becoming a career-length activity, instead of a short-
turnaround intelligence amplification. 

Top Down and Bottom Up 
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In a top-down design approach, abstract concepts are progressively transformed to 
concrete designs and implementations. The highest level of abstract design might be the 
system vision or its initial requirements document. In a bottom-up approach, a new 
design would be created from fundamental programs or parts. Bottom-up design can be 
very productive when it involves incremental change or reuse from existing designs. 

We contrast top-down and bottom-up with up-front and after-the-fact. An up-front 
approach would generate plans for designs before implementation commences. In an 
after-the-fact approach, the project would document designs based upon the as-built 
configuration. 

In general, we consider software architecture to be initiated as an up-front approach. 
Architecture embodies a system plan that enables estimation and efficient system 
construction. Ideally, architecture is configured through a bottom-up approach called 
architecture mining. 

Interestingly, object-oriented approaches usually define architecture after-the-fact, as an 
outcome of the detailed design process, whereas the recommended approach would create 
architecture as an input to detailed design. 

Architecture Farming 

Most software design approaches assume that design information is invented as the 
process proceeds. In a top-down process, design information is generated from 
requirements, which may be represented as software analysis models. Requirements-
driven architecture design is called architecture farming. In a spiral process, design 
information is invented during each iteration. As the spiral process proceeds, architects 
invent new design information as they learn more about the application problem. It is fair 
to say that these approaches reinvent much of their design information. 

Precursor designs exist for most information systems applications and problems. These 
designs are in the form of legacy systems, commercial products, standards, prototypes, 
and design patterns. In my experience, it is not difficult to identify a half-dozen or more 
precursor designs for any given application problem. Valuable information is buried in 
preexisting designs—information that allowed earlier architects to build useful systems. 
Extracting this information for use in software architectures is called architecture mining. 

Architecture Mining Process 

Architecture mining is a bottom-up design approach. It exploits historical design and 
implementation experience to create new software architectures. Because we are relying 
on successful previous designs, there is substantial risk reduction. The challenge of 
software architecture mining is to discover, extract, and refine the nuggets of design 
knowledge. Because there is often a great deal of implementation detail to review, the 
process is analogous to mining the earth for precious metals. 
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Mining is a bottom-up design approach, incorporating design knowledge from working 
implementations. Mining can incorporate design input from top-down design processes, 
too, so that there can be both top-down traceability and bottom-up realism. 

Before mining starts, it is necessary to identify a set of representative technologies that 
are relevant to the design problem. Technology identification can be done by various 
means, such as searching literature, interviewing experts, attending technical conferences, 
and surfing the net. All available resources should be pursued. 

The first mining step is to model each representative technology. Technology modeling 
produces specifications of relevant software interfaces. I recommend using OMG IDL as 
the interface notation because it is concise and free from implementation detail. OMG 
IDL is also a good design notation for the target architecture because it is language 
independent, platform neutral, and distribution transparent. By modeling everything in 
the same notation, we create a good basis for design comparison and tradeoff. 

In the modeling step, it is important to describe the as-built system, not the intended or 
desired design. Frequently, relevant design information is not documented as software 
interfaces. For example, some of the sought-after functionality only may be accessible 
through the user interface. Other key design lessons may be undocumented. It is useful to 
capture this design information, too. 

In the second step, the mined designs are generalized to create a common interface 
specification. This step entails more art than science, more architectural intuition than 
meticulous engineering. The goal is to create an initial strawman specification for the 
target architecture interfaces. It is usually not sufficient to generate a lowest-common-
denominator design from the representative technology. The generalized interfaces 
should resemble a best-of-breed solution that captures the common functionality as well 
as some unique aspects inspired by particular systems. Unique aspects should be included 
when they create valuable features in the target architecture or represent areas of known 
system evolution. A robust assortment of representative technologies will contain 
indicators of likely areas of target system evolution. 

At this point it is appropriate to factor in the top-down design information as one of the 
inputs. Top-down information is usually at a much higher level of abstraction than 
bottom-up information. Reconciliation of these differences involves some important 
architecture tradeoffs. 

The final step in the mining process is to refine the design. Refinements can be driven by 
the architect's judgment, informal walkthroughs, review processes, new requirements, or 
additional mining studies. 

Applicability of Mining 

Mining can be a fast, inexpensive process that yields significant benefits in risk reduction 
and architecture quality. The real product of mining is the edification of the software 
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architect. With a mature understanding of the problem and previous solutions, the 
software architect is well prepared to make good architectural decisions. 

Other mining artifacts include the OMG IDL interface models, but they should not be 
treated as formal deliverables. These artifacts are simply design notes used in the creative 
process that produce good architecture. 

I believe that mining should be done for most high-quality reusable designs. It is not 
necessary to do mining for all designs in a system, especially the ones that impact only a 
small number of developers or subsystems. It is appropriate to consider mining for high-
risk or widely used interfaces that impact significant aspects of the system or enterprise. 

Given the right documentation and access to expertise, architecture mining can be done 
very rapidly. In our experience, most mining studies can be completed within a few days 
for each representative technology. After several mining studies, it is possible to 
undertake significant designs with confidence. 

Mining for Success 

How does a software architect gain sufficient knowledge to design and defend a good 
architecture? Knowledge can come from years of experience of designing similar 
architectures. Alternatively, the learning process can be greatly accelerated by explicit 
mining of design knowledge from existing technologies and experts. 

In our observation, most software architectures are designed in a vacuum. It is easy to 
ignore or reject preexisting designs when confronted by a new design problem, but there 
are serious consequences. "Design-in-a-vacuum" invariably produces immature, custom 
designs with minimal potential for reuse, interoperability, and adaptability. Because 
technology transfer between multiple systems rarely occurs in practice, the positive 
effects of software architecture mining can be quite dramatic. 

Horizontal versus Vertical 

It is essential to understand the subtle differences between horizontal and vertical design 
elements. In particular, we refer to aspects of a software interface design at a system level. 
At this scale of design, we are interested in managing complexity and change effectively. 
Designs must be flexible, but simple and reusable, if at all possible. 

An important goal of architectural design is to have a well-thought-out balance between 
horizontal and vertical elements. When we say horizontal and vertical, it often confuses 
people, because these essential design extremes are unfamiliar concepts to most 
programmers. When referring to these extremes, we are talking about a continuum of 
design choices, which vary in flexibility and reusability (on the horizontal extreme) with 
its ability to solve the point-design solution (on the vertical extreme). 

When we say vertical design, we mean designs that are unique to one software 
implementation, unique to one system, or unique to one set of application requirements. 
Vertical designs are the norm. It is likely that most of the designs that you have ever 
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created or encountered (except for vendor APIs) are decidedly vertical. And people 
wonder why software reuse is so difficult to achieve in practice? 

What makes a design vertical is the presence of specialized details which are hard-coded 
into the solution. It is well known that attribute names and schemas are application 
specific and vary over time in an application-dependent way. If these attributes are hard-
coded into the system APIs, then we have a vertical API. Other examples include APIs 
that specify very specialized functions, or contain uniquely constrained sets of parameters. 

As programmers, we favor vertical designs because they resolve the current design 
problem in an obvious way. We have certain attributes and operations to implement, and 
we code them in a straightforward and direct way. Why should we do it any differently? 

As architects, we are concerned with additional design forces which have longer-term 
impact. From experience, we know that requirements change frequently. We know that 
certain ways of designing can support change more flexibly than other ways of designing. 
We could do a rational approach to change management that lists the likely sources of 
change and their design impacts. One such approach is called the Software Architecture 
Assessment Method [Bass 98]. These methods address coarse-grain issues of change. But 
as architects, we can make hundreds of fine-grain decisions that accommodate for change, 
as we proceed with design. The rationale for these fine-grain decisions could be called 
our architectural intuition (or the art of architecting). However, we also want to balance 
our quest for flexibility with practicality. 

Can a Design Be Too Flexible? 

In a nutshell, YES. It's easy to make designs that are too flexible for their own 
good. Proper architecting is all about common sense and balanced design. When 
designing system-level interfaces, we certainly don't want to hard-code vertical 
design details that we expect to change overnight. On the other hand, we 
certainly don't want to propose a design so flexible that it has flexibility disease. 
The potential consequences of making a design too flexible include: 

• Inefficiency.   Highly flexible designs require extra runtime 
processing on both sides of an interface. For example, parameter 
encodings for flexibility may require application-programmed 
translations from native types to dynamic self-identifying types. In a 
distributed system, additional marshalling time may be required for 
dynamic parameters. These inefficiencies can lengthen interface 
processing latencies by two orders of magnitude or more. Inefficiency 
will be the most frequent complaint that you encounter when attempting 
to insert some architecture qualities into a design. In most cases, you 
should resist this argument. Over-optimization is a source of many 
unnecessary architectural compromises. 

• Lack of Understandability.  Another thing you will notice 
when the designs are too flexible is that your developers won't 
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understand the flexible features. Some developers will tell you this 
directly; others will ask questions (that you will have a hard time 
answering). But the most dangerous response is when developers don't 
understand, yet go ahead and make assumptions and use the features in 
ways that you had not intended. We view lack of understandability as a 
primary limiting force on design flexibility. You should make your 
designs flexible, but only up to the practical limit of how easy to 
understand the designs will be for your developers. That includes the 
likelihood of developers misusing the designs due to lack of 
understanding (which is also a failure to communicate on your part as 
the architect). 

• Extra Coding.   Flexible designs do require extra software on both 
sides of the flexible interface. If you look at this extra code, you will 
notice that it often hard-codes exactly what you had intended to make 
flexible in your design. For example, passing a set of dynamic attributes 
could be hard-coded as a fixed set of attributes for each usage of the 
interface. This situation is normal, since some part of the implementation 
must do data- handling operations; hard-coding is the most direct way to 
do it. The benefit of flexibility is that the attribute set is not hard-coded 
into the architecture, and attribute sets may vary without architectural 
modifications. 

• Extra Documented Conventions.  A key price of flexibility 
is the need to constrain usage through conventions. Without usage 
constraints it is often impossible to achieve interoperability between 
implementations, no matter how carefully specified the interface is. A 
design may be too flexible when the usage conventions become 
cumbersome or may even outweigh the original specification. There is 
an important design balance in trading off implementation details 
between hard-coded architecture and usage conventions.  

A vertical design often has many potentially negative consequences. Vertical elements 
are tied to application-specific requirements. And we know that requirements are always 
subject to change or reinterpretation. Vertical designs are unique to one implementation 
and embody the antithesis of reusability. Vertical designs are often complex, containing 
many application-specific details. In that sense, it is difficult to manage complexity 
effectively in a vertical design. 

Horizontal Design Elements 

Horizontal design represents the common requirements from more than one application. 
One way to describe horizontal design is that it is the design that remains after the 
vertical elements are removed or refactored. The elimination of the vertical design 
elements is an explicit intellectual exercise practiced by software architects. If you take a 
design and remove or refactor vertical elements into horizontal elements, then the 
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remaining design often addresses the needs of multiple applications; hence it is horizontal 
by definition. 

One formalized approach to vertical design elimination is called domain engineering. 
Domain engineering is the systematic management of reusability. It starts with domain 
analysis. Typically, domain analysis begins with a set of application requirements 
[Rogers 97]. The requirements are sorted into groups representing various application 
functions. Functions that are judged more horizontal (e.g., common to multiple 
applications) are selected for rewriting. These requirements are rewritten iteratively to 
remove application-specificity, while still retaining their domain functionality. The 
rewritten requirements are checked with domain experts to ensure that they retain their 
value to the domain. 

Software design begins after the requirements are domain-analyzed. The horizontal 
requirements are used to define software interfaces in an application-independent manner. 
Several software authorities claim that domain analysis helps programmers to design 
much higher-quality interfaces [Rogers 97] [Coplien 99]—in particular, much more 
adaptable and reusable, and subjectively better structured. 

We believe this observation is due much more to the experiential process than to the 
artifacts. The process of domain analysis not only yields the deliverable of horizontal 
requirements, it also gives the software designer new insight and perspective about the 
design problem. This new knowledge is an invaluable resource for creating high-quality 
designs. 

It is important to note that domain analysis is an exercise that helps designers 
differentiate between horizontal and vertical design elements in a given problem domain. 
Another such exercise is architecture mining. In both cases, the knowledge gained by the 
analyst is more important to the design process than the artifacts (e.g., documents) 
generated by the domain analysis or architecture mining process. 

Good horizontal designs meet the requirements of multiple applications. Logically that 
should be very hard to achieve in practice. However, in a perverse sense, horizontal 
design is easier to do than vertical design. In a famous result from a mathematics 
educator, George Polya claims that solving more difficult, generalized problems is often 
easier than solving specific problems (i.e., solving vertical specializations) [Polya 71]. In 
other words, solving a more general (harder) problem is often easier in practice. This 
result is called Polya's Paradox. We believe that this result applies to software design, as 
well. 

One reason why Polya's Paradox works is that specialized problems are often 
overwhelmed by details. Because a specialized problem refers to one concrete instance, 
we can extract as much detail as desired from the real-world situation. This excess 
information itself becomes a problem for the designer. In the more generalized problem, 
we are freed from addressing the details of any single situation, except as an example 
from which we can easily discriminate the relevant and irrelevant details. 
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In the abstract world of the generalized problem, we can define the solution structure in a 
most advantageous way. This new solution structure is relatively easy to formulate at the 
abstract level, unburdened by details. When we apply this solution to specific cases, the 
generalized solution defines the underlying principles for the specialized solution. And 
we can resolve any similar specific problem with these same principles. In effect, we 
have defined a reusable solution. 

In software, the situation is often not so clearcut. It is possible to have mixtures of 
horizontal and vertical solutions. Whether we have a good or bad structure depends upon 
how these elements are intertwined. For example, the vertical qualities of an API are not 
diminished if it contains intermixed horizontal design elements. In fact, intermixing of 
vertical and horizontal design elements is the norm, and the design problem for the 
architect or programmer is to separate these elements from each other. If horizontal 
design elements are properly separated (for example, in a separate interface), then it is 
possible to intermix these design elements (e.g., through inheritance) in a controlled way 
that does not compromise the inherent advantages of separation. 

In many instances, the differentiation between what is vertical and what is horizontal is 
an intuitive, subjective judgment. We believe that the ability to distinguish between these 
extremes is an important and essential ability of software architects. An important design 
choice (e.g., between horizontal and vertical) for an architect may be invisible or 
unimportant to programmers on the project. And that's okay. That is one of the reasons 
why we believe that software architects are different from programmers. The ability to 
clearly see these distinctions and know why they are important is an important indicator 
of the architecture instinct. 

What about Traceability? 

Internal and external designs are different views of the system. It is relatively easy to 
prove traceability for vertical designs, because the details correlate closely with external 
requirements. As we refactor a design into its horizontal form, the traceability becomes 
less obvious. A horizontal design (of an interface architecture) represents the internal 
structure of a software system. The internal structure is different and separate from the 
external requirements. The relationship between the two can be shown only indirectly, at 
best. When a design comprises horizontal elements, the dichotomy between internal and 
external views can be extreme. 

One approach to show how the internal design supports the external requirements is 
through scenarios. Each scenario is the performance of an externally significant function, 
expressed as a thread of execution through multiple layers of the system. In effect, the 
internal design is exercised in direct response to the execution of an externally 
meaningful function. Typically, each horizontal design element will be involved in 
multiple scenarios, indicating that the design is traceable to many external requirements, 
but not any individual requirement that solely justifies its design. 

Designing for Future Applications 
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Horizontal designs resolve problems across a range of applications. For a horizontal 
design to be effective, it must meet the potentially conflicting requirements of several 
independent applications. The horizontal design must satisfy not only current application 
needs, but also future application needs whose requirements have yet to be specified. But 
how can we address future, unknown requirements? 

The apparent ability to predict future features of systems is a strength of the architecture 
mining approach. This phenomenon is easiest to understand in terms of commercial 
software, if we consider that in any given commercial software market there are a number 
of competing products with differentiated features. For example, the software market 
includes word processing and geographic information systems (GIS). 

There is a common functionality across all products in the market, but there are also key 
differences that make each competitive. For example, one word processor has great 
layout abilities, and another has great graphics extensions. As the market evolves, each 
product will tend to be extended in ways that have proven successful in competing 
product lines. 

This same phenomenon of product differentiation occurs much more dramatically in 
other situations. For example, in geographic information systems, the product 
differentiation is so successful that most large companies need multiple vendors' GIS 
systems to meet their needs. 

Because information about commercial products is readily available, it is difficult for 
competitors to hide anything significant about their products. Competitors monitor each 
other's products and customers to keep in touch with current conditions and future market 
directions. With custom in-house software systems, information is less readily available. 

In our experience with architecture mining, every legacy system implemented some 
unique and advanced capability that surprised us in comparison with other known 
systems. Legacy systems within the same functional area have unique capabilities (that 
was probably why they were developed in the first place), and all of these capabilities are 
quite different. It was clear that if the legacy owners were aware of all these capabilities, 
then they would want a new system that embodied most of them. In effect, study of 
legacy capabilities showed us the future best-of-breed for custom systems. 

In a limited sense, a future software system is a best-of-breed display of successful 
features in current software systems. Of course, we can factor in some untested features 
supporting novel requirements which may or may not become successful. One can 
predict, with some success, how future system features will evolve, given a study of 
system differences today, and how well these product differences are thriving in today's 
market. 

8.2 Architecture Iteration 

Architecture iteration relies upon intelligence gathering during a project. Whether, how, 
and when to change an architecture are some of the most important decisions for a 
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software architect. An architecture is a plan, and it is said that no plan survives first 
contact with the enemy. The enemies in this case are change and ignorance. As software 
architects, we want our decisions to be flexible enough to survive changes. But according 
to Alistair Cockburn, we don't know what we don't know [Cockburn 98]. Ignorance is the 
more dangerous enemy. What we don't know can change our architectural assumptions to 
the breaking point. This intelligence operation is intended to defeat these enemies 
through the preplanned strategy of architecture iteration. 

Architects can be very insulated from the realities of software development. The most 
active time for any architect is at the start of a project. During this time, the architect is 
free to envision the system without much concern for downstream constraints. Early in 
the project, an enticing vision is often preferable, both to impress the funding sources 
(e.g., with apparent progress) and to attract potential staff to the project. 

We would urge restraint at this stage for several reasons. First, on average, software 
projects are over budget by 184% by the time of delivery [Johnson 95], and the systems 
seldom deliver what was expected. Overestimation of what is feasible is one of the most 
common failings of up-front estimators, among which architects are key participants. 
Second, it's more important for projects to prove credibility through demonstrated results, 
rather than paper plans, known in a derogatory sense as "slideware" or "viewgraph 
engineering" [Brown 98]. It is important to help projects to identify what is feasible for 
early demonstration and delivery. Rather than to define "the big vision" for what the 
system could potentially become in an unconstrained-budget environment, it is important 
to architect for reasonable implementation costs and long life-cycle maintenance. 

Software Process Background 

The two traditional types of software processes are waterfall and iterative. Waterfall 
process is a sequence of steps, such as "analyze requirements," "design," "code," and 
"test," which are of long duration and are scheduled only once during the software project. 
It is widely accepted that waterfall process does not work for software development in 
most organizations. 

Waterfall fails because of change and the nature of software development. A waterfall 
process is unable to effectively respond to changes, because changes often require rework 
in earlier parts of the process. Rework would require violation of process and scheduling 
constraints. So the project continues ever onward in denial of changes that may cause it to 
deliver the wrong system. The nature of software development is chaotic. Software 
projects are products of one or more minds. Communication and miscommunication 
between people have chaotic effects upon our ability to assess progress and quality. As 
these things we don't know are discovered, responsiveness, rework, and redirection are 
often required. 

Iterative process reuses the waterfall sequence, but makes each step much shorter and the 
whole sequence repetitive. The steps are shortened because the scope of the problem 
addressed in each step is greatly reduced. The sequence is repeated so that the efforts can 
be redirected in response to changes and discoveries. Iterative process is sometimes 
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called risk-driven development, because in each iteration of analyze-design-code-test 
there is a feedback assessment (perhaps with user input), and a new plan can be 
formulated for the next iteration in response to what is learned. Each iteration is an 
opportunity to rework elements of each process step in accordance with lessons learned. 

A key variation of the iterative process model is the iterative-incremental process. 
Incremental processes focus on specific functions of a system, one at a time, not all 
system functions at once, as may be the case in waterfall and pure iterative processes. For 
example, an increment may focus on prototyping selected screens. This would be called 
an external increment, because it is focused on the externally observable behavior of the 
system. In another example, an increment might focus on building a data access layer, an 
API for transparent retrieval and update of multiple databases. This would be called an 
internal increment, because it is focused on internal functionality that is not directly 
observable to end users. 

In an iterative-incremental process, particular functions are selected in sequence for 
incremental development. Each increment becomes an iteration of the process. The goal 
of iterative-incremental process is to complete an entire function in an increment, so that 
it will not require rework downstream in the process. This means that the analysis, design, 
coding, and testing of that one function must be exhaustive enough to reduce or eliminate 
the need for later rework. 

Iterative-incremental process is a widely accepted approach to software development. 
Some authorities have called it a "spiral" process, because each iteration increases the 
scope of developed software, and builds upon the results of previous iterations. Planning 
a spiral process is one of the most important functions of project management. The 
balance and sequence of project iterations are critical to project survival, balancing 
factors such as progress, risk reduction, and upper management support. 

External iterations are critical to demonstrating progress (for management support) and 
usability risk reduction (i.e., making sure we are building the right system). However, 
external increments usually require throw-away coding, since certain internal functions 
that have not been implemented must be simulated. In contrast, the objective of internal 
increments is finished code that can be used throughout development and the system life 
cycle. In general, the most cost-effective way to build a system starts with internal 
increments. There are often stronger motivations to perform external increments early in 
the project. 

The Role of Architecture Process 

Software architecture helps the project manager in planning increments, because the 
architect breaks up the system into well-thought-out functions—for example, subsystems 
and system use cases. The process for software architecture is only one of the tasks in the 
overall software development process. Much of the software architecture activity takes 
place early in the project; thus, software architecting comprises early project iterations. 
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Spiral processes are intended to be quite flexible when applied. How much depth and 
how often each step is applied can vary from iteration to iteration. Also the length of 
iterations can and should vary. Software architecture requires this flexibility to be applied 
sensibly. Ideally, iterations are longer at the beginning of a project. These initial iterations 
can be called "architecture iterations" because the principal deliverables are architecture 
artifacts (e.g., higher-level systemwide technical plans). 

Generally, the first two iterations are the longest and are applied to architectural planning. 
A total of three to six months for these iterations is not unreasonable, although as little as 
two to four weeks is commonplace. 

Explicit architecture planning has some distinct benefits in software process. First, the 
architecture iterations do not require an entire project team. Hordes of programmers are 
unnecessary during the architecture iterations. In fact, adding programmers too early in 
the project can lead to much dissension and wasted labor expenditures. Many 
programmers resent having to participate in lengthy requirements analyses and 
architecture processes. As might be expected, many programmers would rather be 
designing and coding hands-on. Also, it is difficult to creatively design in groups larger 
than 5 people. So, ideal architecture teams are kept small, as are ideal programming 
teams, with 4 people for 3 months being the most effective size and task duration for 
development. 

A key benefit of architecture is planning the partition of large systems developments into 
smaller subprojects. As you might expect, our ideal goal would be to form subprojects for 
about 4 people working for 3 months. Architecture can plan the partitions and define the 
boundaries between these subprojects. The most detailed partitioning of boundaries is in 
the form of software interface definitions, i.e., computational architectures. As such, 
architecture planning makes the whole software process more efficient. 

During the architecture phases, commitments can be minimized. For example, it is not 
necessary to purchase a lot of equipment or software licenses for a small, short-duration 
architecture team. Any expensive licenses that are required (e.g., for assessing software 
technologies) could be demonstrator or evaluation versions. The project can also save on 
labor costs by using a small team during these initial phases. 

Architecture planning defers commitment of resources until they are needed. Once the 
development phase starts, it can be accelerated, because the development effort and many 
crucial technical decisions are preplanned by the architecture team. A desirable 
partitioning ratio between architecture planning, development, and deployment is 2:1:1—
in other words, half of the project for planning, one quarter for "doing" (i.e., software 
development and testing), and one quarter for training and deployment. This is a classic 
result from general project management, which has been applied successfully to software 
projects. We would consider this as a "goal," not a hard and fast rule. In a sense, once 
development starts, it continues throughout the software system life cycle, with about 
70% of the expenditures occurring after the completion of the formal development 
project, during operations and maintenance. 
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Development of a maintainable system is one of architecture's key benefits. In our 
opinion, architecture planning is essential for achieving higher-level qualities such as 
maintainability, reliability, extensibility, and others. Many of these qualities are directly 
or indirectly linked to system complexity. It may be simple common sense, but excess 
system complexity makes it difficult and expensive in virtually every respect. For 
example, complex systems are hard to document, develop, test, maintain, debug, and so 
forth. Architects understand that a system must be as simple as possible, but not too 
simple (i.e., simplistic). Most systems can be architected in a much simpler way than 
developers would normally assume. 

In any problem there is an inherent complexity, but there is an even greater complexity in 
solutions (assuming that the solutions work). The necessary complexity in the solution is 
due to the inherent complexity in the problem. The excess complexity in the solution 
(beyond the inherent complexity) varies greatly. From experience, most excess 
complexity derives from a lack of design coordination. Excess complexity can be a 
natural result of uncoordinated designs, particularly at the system level of software scale. 
Knowing this, architects can manage and minimize the excess complexity. 

Architecture by Delegation 

The good old days of software promulgated a practice that continues today. 
Software architecture was and is often designed by delegation. To architect by 
delegation, a manager identifies candidate subsystems and then delegates the 
details of interface specification to individual developers. The number of 
subsystems selected is usually based upon the number of programmers. Six 
programmers equals six subsystems, four programmers equals four subsystems, 
and so forth. Having the preexisting structure of the software organization drive 
the technical solution is a dubious practice, but what happens next is even 
worse. In order to define subsystem interfaces, programmers engage in pairwise 
negotiations to define the software interfaces. Since all the interface decisions 
are decentralized, the process inevitably leads to unique interfaces, also called 
an "order N by N" solution. The interfaces are unique to each implementation, 
and unique to each system. 

The tragedy of architecture by delegation is that architecture qualities of design 
are seen as desirable by developers, but virtually always are sacrificed to 
expedience. Commonality of interfaces is viewed as a desirable objective, but is 
seldom pursued in practice. Management of complexity is not a significant issue 
if you have face-to-face technical support from fellow programmers, and the 
ability to change things whenever agreeable. 

Architecture planning enables organizational decisions to be made after their 
consequences are clearly understood. A classic problem for software projects involves 
mismatches between the technical requirements of the solution and the preexisting 
structure of the human organization. Once the human organization is established for a 
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project, with ownership for specific architectural partitions, it is most difficult to change. 
It is even worse when the architecture is ill-defined, because technical decisions are 
equivalent to political decisions. It is very undesirable when political compromises 
become the most important drivers in the design of the system. Doing architecture, up-
front, with a small team, allows management to establish the proper organizational 
structure, one that does not conflict with technical imperatives. 

From a management perspective, architecture is a useful planning activity because it 
defines the solution in sufficient detail to provide a dramatically improved basis for 
project planning. While estimation methods (e.g., function points) are capable of 
forecasting project costs, these methods cannot define an architecture for the solution. 
Estimation methods cannot indicate how the system is configured, how to organize the 
project team, or how to decompose the project. Architecture planning can. 

The Macro Process: Architecture Iteration 

Architecture iteration is a process for quality improvement in project/system architecture. 
The process spans the entire system life cycle. In this description of architecture iteration, 
we will assume that extensive review and feedback are applied at every step in which the 
project makes an important selection. Once the architects are willing to make a 
commitment, the information value is lost if it is not reviewed, validated, or confirmed 
through consensus of peers, developers, or other system stakeholders. 

Typically, a software project begins with an informal vision, or an inspiration that may be 
the result of a creative discussion, or someone's bright idea. This occurs long before the 
project is a formal project. We could call this Architecture Iteration 0.1 (we will refer to 
the version and iteration synonymously here). This vision is then documented in some 
form that sells the concept to the system stakeholders (Iteration 0.2). As a result, time or 
money becomes available to pursue the vision. In follow-on iterations, projects diverge 
greatly, depending upon industry, participants, and corporate culture. In this case, we 
assume that an architecture planning activity occurs next. 

After Iteration 0.2, the architecture planning proceeds through requirements analysis and 
architecture specification, followed by architecture prototyping. During the paper 
planning phase of architecture specification, any number of design alternatives can be 
considered. Ten iterations of paper design is not atypical. The architect (or architecture 
team) is seeking the best solution. And they cannot effectively evaluate solutions without 
committing them to paper or software for criticism. 

Design concepts can (and should) vary widely. For example, designs that are highly 
vertical should be attempted, as well as designs that are broadly horizontal, and hybrids 
of the two extremes. At the paper stage of design, commitment to any specific design is 
inconsequential; therefore, bizarre ideas should be explored in order to discover their 
potential benefits, if any. 



IT-SC 199

Having gathered the best ideas, from paper design studies, architecture mining, and other 
intelligence, the architects select the final design. We can call this Iteration 0.9. In the 
architects' judgment, it represents the best design candidate for realization. 

An architecture prototyping activity is appropriate at this point. Its purpose is to validate 
the key design decisions, in particular the dynamic behavior of the solution. The 
architecture prototype is a simulation of the system, with all architectural boundaries 
implemented, but with the internals of the subsystems stubbed out (e.g., throwaway code). 

Lessons learned from the architecture prototype are incorporated into the final iteration of 
the architecture phase, which we can call Iteration 1.0. It produces a paper specification 
and architecture prototype representing the best design that the architects can produce 
(with respect to paper studies and simulation), without actually building the system. 

The publication of Architecture Iteration 1.0 is an important project milestone, and the 
most critical milestone for software architects. At this point, the architecture is transferred 
to the development teams for detailed design and construction (i.e., iterative incremental 
development). As the conceptual basis for the entire software project, the architecture 
should be stabilized or frozen, while this detailed work proceeds. The architecture 
represents the key assumptions of the project. Changes in key assumptions can have dire 
consequences. The architecture also represents the boundaries of the project, both internal 
and external. If these boundaries are unstable, much negotiation or worry-mongering may 
result. The architects work with project management to reduce these negative 
consequences through architecture stabilization. 

The keys to stabilization include (1) doing your homework during the architecture 
iterations, and (2) sticking together, including architects, management, and lead 
developers. The team is ill-prepared for Iteration 1.0 if its members can't defend their 
architecture when facing simple and complex questions. 

During the development iterations, the architecture team is available to communicate the 
design. The architects can answer developer questions and interpret designs. The 
architects should not try to micromanage the internals of each subsystem's design, but 
simply reinforce the larger-scale boundaries defined by the architecture through well-
articulated explanations. 

At the same time, the architects are beginning their intelligence collection for Iteration 
2.0. As people ask questions and raise concerns, architects should take notes. Any 
immediate change to the architecture is unwarranted because the experiment is just 
beginning. It is important to respond with good judgment and not to react in a reflexive 
manner. 

Developer Reaction to Architecture 

As the developers near completion of their first prototype, the result of a major 
development iteration, the architecture team begins active intelligence collection, 
preparing for the next iteration of the architecture. We can categorize what the architects 



IT-SC 200

observe in terms of three developer reactions: (1) implementation as planned, (2) 
misunderstanding, and (3) defect workaround. 

When the system is designed on paper, the architects envision various design benefits. 
These benefits are unproven until they provide advantages to developers in practice. 
When the architects inspect the implementation, and it appears to be implemented as 
planned, that is evidence that the design benefits have been realized. In order for this to 
happen, the architecture vision and design must be communicated and understood, then 
implemented, and the design must be technically sound. Evidence of implementation as 
planned is confirmation of adequate communications and design soundness. 

What happens in practice is that some parts of the design are implemented as planned, 
and other parts in unexpected ways. Each design element has an intended purpose that 
defines how it should be used by developers. However, architectural intentions do not 
always match implementation reality. The three developer reactions apply to each and 
every architectural decision that affects their work. The architect needs to inspect the 
designs carefully in order to discover the developer reactions. This involves 
conversations with developers as well as inspection of software and subsidiary design 
documentation. 

We emphasize that it is not the architects' role to be judgmental. During this discovery 
phase, the architects should be neutral fact finders, using informal discussions and casual 
reviews to collect their information. This is not the time to enforce architectural decisions; 
rather it is the time to rediscover the architectural reality, having been through the cycle 
of design and development. 

When the design is not implemented as planned, there are two alternative reasons: there 
was a misunderstanding of the architecture, or there is a real design defect. The architect 
must decide which is which. In a misunderstanding, a sound design was implemented in a 
creative way by the development. The developer could have done what was achieved by 
using the architecture as planned, but didn't. The developer proceeded to implement the 
design in a discretionary way that exploited other elements of the design to achieve the 
same purpose. 

As professionals, we make the assumption that everybody in our work environment is 
trustworthy and has good intentions with respect to architecture and implementation. If 
possible, we also make the competent engineer assumption, that all of the 
developers are sufficiently educated and competent to understand and implement a 
properly articulated architecture. We know that the competent engineer assumption does 
not always apply in many of today's programming shops, so we can work with 
management to make necessary adjustments to project policies and procedures. 
Architecture is particularly valuable in this respect, in that it provides technical guidance 
to the developers that eliminates much guesswork. We can supplement that architectural 
benefit with training and mentoring. 

Using effective management practices, we never jump to the conclusion that developers 
have bad intentions. When there is a misunderstanding, we always assume that further 
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explanation is needed (perhaps in the form of additional education and training). In this 
sense, a misunderstanding is a failure of the management and architecture team to 
communicate the design effectively. Procedures for architectural release and rollout 
should be modified. For example, if there is a consistently misunderstood part of the 
design, spending more time communicating that part of the design is warranted in the 
next iteration. 

As our primary architectural communication mechanism, we favor the one-day 
architecture seminar. This is a lecture-tutorial format which is not a review. This should 
be emphasized to the audience, because there is an implicit assumption in many 
development cultures that every meeting is some form of review. In this one-day seminar, 
the architecture is explained by the architects, section by section and level by level. In our 
experience, a written document, alone, cannot be an effective means of coordinating 
implementations without some form of face-to-face explanation. In other words, the 
stand-up tutorial imparts some missing element of communication that cannot be 
effectively replaced by architectural documentation. 

At first impression, this missing communication factor appears mysterious. What the 
stand-up tutorial imparts, that no document can, is the architects' commitment to the 
system design, in every important detail. Through a stand-up tutorial, the architect can 
make the system vision understood and much more believable. In addition, the architect 
can quickly explain rationale for design details that no amount of documentation can 
replace. In a perverse sense, architectural rationale can be nearly unlimited. Design 
decisions can be based on long experience or on design insights gained through lengthy 
studies. You can attempt to explain these experiences at length, but the real knowledge 
can be gained only by experiential learning. 

It is possible, as a last resort, that the design has a flaw which must be changed. Flaws 
and defects can come in many forms and for many reasons. They can be mistakes, 
oversights, ignorance, and so forth. Many such defects are unpredictable and are 
discovered and remedied only through experience. As architects, it is our last resort to 
change the design. Design changes have consequences. A change may fix a certain 
problem locally, but may cause many other problems and hardships for the project. For 
example, a significant change to a system-level API used by a dozen applications would 
involve substantial reprogramming. Sometimes such changes are necessary if there are 
great technical advantages to the new design. 

After Intelligence, Iterate the Design 

The architects have learned much during the initial paper design process. They have 
gained additional insights during architectural prototyping, but the real test of the 
architecture occurs during development and testing of engineering prototypes and 
production releases. At every step, the architects strive to improve the quality of the 
design; they use the lessons learned to make the design better and better. Since quality is 
the satisfaction of human needs, architects are continually working toward a design that 
will realize the most stable balance of design features supporting a quality solution 
addressing the stakeholders' needs. 
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In terms of our architectural iteration process, at the end of architecture iteration 1.0, we 
froze the architecture design during development iteration 1.0. Near the end of the 
development iteration we collected substantial intelligence about how the architecture 
was implemented. Any changes to the architecture must be inserted during the transition 
from development iterations 1.0 to 2.0. The key idea of architecture iteration is to keep 
the architecture stable during development, changing it only at discrete times 
synchronized with work-stopping transitions in the development process. 

The architecture activity is vigorous near the beginning and end of major development 
iterations, where most developers will work on finishing and stabilizing the current 
release, before branching off and building the next major release of the code. It is the 
intention of architects to catch the train of the next major release, without derailing the 
project through ill-timed architecture fluctuations. 

Changes are made to the architecture through a decision process called architecture 
concentration. Through our intelligence gathering we know about design comments, 
criticisms, and actual usage. Each of these inputs to the process comprises an 
architectural design force. The design forces are balanced by the architect through 
improved communications or design changes. Many forces are required before a design 
change is justified. If we are too responsive to forces, design changes will be frequent and 
violent. This is the opposite of the stable environment that architects are attempting to 
create. If the architect does not respond to emerging design forces, it creates an equally 
indefensible situation. So the architects find balance between these extremes by using the 
architecture iteration process. In other words, there will be changes to the architecture, at 
discrete times, according to the project plan. Any inputs received are considered 
intelligence for the next architectural iteration. 

In the architecture concentration process, many forces are resolved by each change. The 
appropriate analogy is "killing two birds with one stone." The influences of several 
design forces are combined to cause a single change to the design that addresses the 
needs. The architect must distinguish between what is needed and what is desired. The 
provision for "what is needed" must be satisfied, but the provision for "what is desired" 
should be considered with moderation. Also, it is important to realize that the explanation 
of the revised architecture can be as important as design changes. In other words, how the 
features of the architecture are explained is a way of resolving forces, which is often 
more effective than direct technical changes. 

Architecture iteration works like a critical damping factor. If we are too responsive, the 
architecture changes too rapidly and does not converge for a long time. If we are too 
stubborn to be responsive, the architecture also takes much longer to converge, perhaps 
after our dismissal. We want to play our role in the project so that the architecture 
converges as rapidly as possible, but without much oscillation, which is over-
responsiveness to change. 

As architects it is our mission to ensure that the system converges on a high-quality 
design, at least for design decisions having systemwide impact. And if we truly believe in 
the principle of encapsulation as promoted by OO and component paradigms, that's all 
we should really care about, because any internal design defects (outside of the architect's 
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control) are isolated within subsystems. Quality convergence is a goal unique to 
architects, because it is seldom seen as a priority by developers (who are focused on 
coding issues) or management (who are focused on short-term results). However, we 
know that architecture quality will contribute significantly to the ease of coding and the 
delivery of short-term project results, as well as the longer-term issues of usability, 
extensibility, and maintenance. 

The Micro Process: Architecture with Subprojects 

The core process of architecture iteration is called architecture with subprojects. 
Because architecture planning partitions the problem into subsystems with stable 
boundaries, it is possible to design and develop these subsystems as subprojects in 
relative isolation. By relative isolation we mean that the subprojects may be 
conducted concurrently or in a distributed organization, with relatively minimal need for 
intersubsystem coordination (assuming that the architecture "does its job"). 

We can describe architecture with subprojects as a viewpoint on the overall process of 
system development as follows: 

1. Identify subsystems.   A key result of the architecture planning activity 
is the designation of a stable of subsystems. Each subsystem has high cohesion 
(functional connectivity) but minimal coupling to the other subsystems. In 
addition to its technical role, each subsystem has a correspondence to the human 
organization for the project. For example, on small projects each subsystem may 
denote the scope of responsibilities for a single development. Alternatively, with a 
high ratio of subsystems to developers, each subsystem may correspond to one of 
several significant responsibilities of each developer. On larger projects, a 
subsystem is usually assigned to a team of developers. 

2. Define subsystem interfaces.   Subsystem interfaces are the concrete 
definition of boundaries between parts of the architecture. Proper isolation 
between subsystems (and the groups implementing them) cannot be achieved 
unless this part of the design is well coordinated across the system (i.e., managed 
by architects). It is not always possible to completely define and stabilize 
interfaces during the architecture planning phase, but these interfaces should at 
least be considered as a part of the architecture. On large projects and distributed 
developments, preplanning the subsystem interfaces is more necessary than on 
smaller projects. 

3. Project planning.   The designated subsystems form the basis for 
development team organization, project planning, and cost estimation. Project 
planning is most effective given a reasonable technical plan as a starting point. 
Project planning can determine how the existing human organization can be 
mapped onto the desired architecture, perhaps through redrawing boundaries in 
the human organization for the purposes of the project. 

4. Subprojects in parallel.   With the project plan and the architecture plan 
well defined, individual subprojects can be spawned to realize parts of the 
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architecture. Ideally, the subproject partititioning is closely matched to the 
partititioning of the technical architecture. As the parallel subprojects complete 
their deliverables, they need to synchronize at various points in order to test 
interoperation across system boundaries. Internally, each subproject conducts an 
iterative incremental development process. The subproject iterations do not need 
to be synchronized, except at major iterations involving systemwide integration. 
A subproject can have several internal iterations for each major iteration that 
involves other subsystems. 

From-Scratch Designs versus Smart 
Architecting 

The practice of architecture involves some engineering, some psychology, some 
art, and a great deal of intuitive judgment. However, we believe that architecture 
is not magic. When designing a new system, it is insufficient to "throw 
something together" and expect to generate good design. When starting on a 
new design, the worst approach is to give all the developers a blank sheet of 
paper (or analogous situation) and ask them to design from their own knowledge 
of the problem under a tight deadline. Almost as bad is an approach where the 
architecture team tries the same thing. We call this situation designing in a 
vacuum, because there is no intelligence gathering. In contrast to other fields 
of endeavor, a software architect has no particular advantage over ordinary 
developers when designing in a vacuum. 

We can overcome the limitations of designing in a vacuum in several ways. One 
approach that we described at length is architecture mining. Architecture mining 
gives the architect substantial, detailed information about how to design similar 
systems effectively. It also conveys a sense of perspective, beyond experience 
with a sole implementation. Another approach is domain analysis, where a set of 
requirements is iterated, with user involvement, from a disorganized jumble into 
distinct horizontal and vertical elements. In both cases, the experience of domain 
analysis is more valuable than the artifacts generated, because it trains the 
architect to think about the problem and realize the advantages of increased 
intelligence and vicarious experience. 

Architecting in Chaos 

Architecture attempts to bring some additional technical order to the chaotic process of 
software development. Development can appear chaotic because of apparent changes in 
the environment of the project. It is the strong desire of software management to give 
their sponsors what they want—and what they want can change as frequently as the wind 
direction. In addition, a software project is a learning experience, in which business 
requirements and real-world constraints are discovered during the project, not during 
initial requirements elaboration. 



IT-SC 205

The technical environment is also changing; innovations that occur during a project can 
motivate changes in technical plans. As commercial technologies increasingly address the 
vertical needs of industry, it becomes easier for external marketeers to impact 
organizational decisions about software. For example, we have seen extremely well-
planned projects completely change direction and technologies, almost overnight, 
because of vendor influence. 

Software design models are inherently intolerant to change. Design models are crafted 
with respect to certain assumptions, and an emphasis on what's important and what's not. 
When changes in fundamental assumptions occur, the models are invalidated because 
their hard-wired assumptions no longer hold true. Most projects find this acceptable. It is 
a very common failing to deny that invalid models are indeed invalidated. Instead, 
projects pretend to make progress with broken models, which become progressively more 
corrupted. 

Another source of chaos is in the software process itself. It is devilishly hard to assess 
software progress, especially by word of mouth. A common joke in the software 
profession is that the software is always 85% done. Of course it is, and the last 15% can 
easily add another 90% to the development time and budget. As the truth emerges about 
software progress there are many surprises, including many pitfalls and unknowns and 
necessary reworks that impact the project's schedule and direction. 

Architects are not the primary responsibility holders when it comes to controlling chaos; 
that is properly the role of management. However, architects are a de facto part of the 
management team and can influence management decision making. Architects are 
responsible for eliminating as much technology-driven chaos as possible, and for 
mitigating chaotic conditions in other areas touched by architecture, such as enterprise 
architecture models. Architects should use their influence with management to make 
suggestions about how to handle important situations that they may have encountered on 
previous projects. In addition, architects work with management to affect decisions, 
solutions, and policies that moderate chaos. 

Architecture iteration is a primary approach for dealing with chaos, from the software 
architect's perspective. Some additional strategies that should be used with architecture 
iteration for dealing with chaos include: 

1. Frequent sampling.   Having frequent and regular meetings can give the 
project a way to identify and cope with chaotic change. One can address the 
challenge of change through the frequency of sampling, including regular 
meetings, perhaps daily. In this approach, the way to keep ahead of change is to 
keep an eye on it. There is an emerging methodology based on this theory called 
Scrum, in which the project has stand-up team meetings on a daily basis [Rising 
00]. 

2. Managed environment.   Knowing the potentially devastating 
consequences of change on a project, management can help a great deal to control 
the timing and impacts of change. Architecture iteration supports this principle, in 
which the impacts of architecture change are infrequent, and always crafted to 
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reduce the possibility of future change. Management can control the 
dissemination of changes in several ways. First and most important is what 
management says to the development team. If management parrots and amplifies 
every known source of change, it becomes the source of chaos. Alternatively, 
management can limit its comments to those which have necessary impact on the 
project. An important part of the architect's job is to assess the technical 
consequences of changes. Management and architects can work together to 
process change inputs and formulate plans and messages for dissemination to the 
project staff. Traditionally, management had control of organizational 
communications; everything was communicated through the chain of command. 
Today, email has changed that situation a great deal, allowing people to 
communicate across all organization boundaries and levels at the push of a button. 
Management should encourage the staff to come to them for decisions regarding 
change inputs. In addition, management should enforce old-fashioned chain-of-
command rules regarding changes requested by other persons and organizations. 

3. Short projects.   You can minimize the effects of change by keeping the 
project's duration within one year. The shorter the better. The rationale for this 
guideline particularly addresses changes in the technology environment. Over the 
course of a year, major technology changes can occur, but complete obsolescence 
of the existing technology base is unlikely. Over two years, that assumption may 
not hold. This challenge is especially apparent through the burning-in of year 
numbers in product names, such as Rational Rose 98 and Microsoft Office 97. 
There is an inherent 12-month planned obsolescence built into these product 
images. And the human-interpreted images often are much more influential than 
the real-world technological consequences of obsolescence. 

4. Low commitment planning and fast execution.   Ideally, an 
enterprise should have many architectures in planning stages, but few 
development projects. During the architecture phase, the commitments are very 
low: a few people for a few months with free-evaluation software. Architecture 
plans can be changed without much trepidation. Once programming begins, there 
is usually a larger commitment of resources: many programmers, much 
equipment, purchased software, and so forth. The commitment to particular 
decisions increases as code is written. Whereas changes during the architecture 
phase are easily accommodated, changes during the development phase can be 
expensive, often resulting in cancelled or unsuccessful projects. Executing the 
low-commitment approach, development phases are no longer than 6 months, and 
architecture phases can be as long as 3 to 6 months. The architecture phase 
defines a project plan and technical design that make it possible to develop the 
system rapidly. 

8.3 Architecture Judgment 

All architecture benefits depend upon a critical assumption: that architecture 
decisions are fundamentally sound and will not be subject to significant 
change. If architecture decisions are no better (or even worse) than chance, then it 
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would be appropriate to conduct a software project without architectural planning. In 
particular, this is why the quality of judgment of the architect is vital. Architecture is all 
about making important technical decisions for a system or project. By definition, the 
scope of architecture comprises the important decisions, also known as "architecturally 
significant" decisions. 

How do architects use judgment? Judgment guides our advice to project management and 
developers. Judgment is used in the evaluation and selection of technologies. Judgment is 
used in the definition of a "system vision," including the envisioning of architectural 
frameworks that are detailed to realize the design. Judgment is used in virtually every 
detail of architecting—for example, designing subsystem interfaces, elaborating 
enterprise requirements, and allocating engineering objects. We rely on judgment in 
many cases, because more logical engineering methods are not available or are 
inapplicable to many intuition-based architecture decisions. 

A key role of the architect is to assess the impacts of changes in requirements and 
technologies. This is a proper role for architecture judgment, because the architect must 
assess whether these changes impact "the architecture," which also means "affect 
important system decisions and assumptions." With a systemwide view, the architect is in 
the best position to make such judgments. The architect should also rely upon specialists 
to provide answers about specific technologies, as inputs to a decision. 

Judgment is the application of the intuitive aspects of architecture. When we say 
"intuitive," we do not imply impulsitivity and ad hoc guesswork. Usually the architect's 
judgment is backed up by intelligence gathering and experience, as well as systematic 
decision-making processes. It is infeasible to justify every decision in writing, so we 
attribute much of what we do to intuitive judgment. Even if we could document all of our 
decisions, we cannot recreate all of our experiences for the reader, so that he draws the 
exact same conclusions as our own intuitive judgments. It is essential to have our 
management and developers trust our judgment in order to be effective architects. We 
usually do this by enlisting one or more of the lead developers into the architecture 
decision-making process. 

Problem Solving 

Architectural judgment is one form of problem solving. If we consider problem solving 
as a paradigm, we can argue that it fits many human activities. We can map the problem-
solving paradigm upon most project activities, including what we do in meetings and 
day-to-day on the job. In order to be good problem solvers, we believe we should use a 
problem-solving process for important decisions. 

Some alternatives to problem solving include: ad hoc decisions, "whoever yells the 
loudest," management by caveat, and flipping a coin. Sometimes these are expedient 
approaches; sometimes it is more important to move on to the next topic, rather than 
dwell on an inconsequential decision. 
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To establish a process, we first define the problem-solving paradigm as a reference model. 
The general problem-solving paradigm is to first decide upon the question to be 
addressed, then identify alternative solutions, elaborate the alternatives, select among 
them, and implement the solution [VanGundy 88]. At each step we have decisions to 
make about which process to utilize, and which content alternative to select. Considering 
each of the generic problem-solving steps, we have the basis for a problem-solving 
process: 

1. Identify the Question.   The first step is to define the problem. What 
questions should we answer in order to resolve the situation? The search for the 
right question can be a miniature problem-solving exercise in itself. In the case of 
architecture, the questions may be broad and complex, as are the solutions. In a 
meeting situation, one of the best ways to identify the question is to write down 
some candidate question (on a flipchart or whiteboard) and let the group edit it 
through discussion. 

2. Identify Alternative Solutions.   The second step is to discover 
several potential solutions. In a perfect world it would be nice to identify all 
possible solutions, but this is seldom feasible (or desirable) in practice. We want 
to find a reasonable number of candidate solutions that are all worth investigating 
further. Sometimes if there are many potential solutions, it is useful to redefine 
the problem or to downselect the alternatives before detailed study. 

3. Elaborate the Alternative Solutions.   Each alternative can be 
studied further—for example, by detailing the steps involved in implementing that 
solution. Simply creating a written description of the proposed solutions is a 
major step toward reducing ambiguity. In this step, we want to share information 
about the proposed solution, in order to make a more informed decision. In many 
cases, it is necessary to "make up" information about a solution—for example, by 
providing a strawman definition of a plan of implementation. 

4. Select among the Alternatives.   Given the sufficiently elaborated 
alternatives, the studies are done and it is time to make a decision. Decision 
making itself can be a drawn-out process, or it can be a simple choice among 
obvious tradeoffs. By understanding the more complete decision-making 
processes, we can effectively simplify with known consequences. In particular, 
decision analysis is a process based upon a matrix (also called "Olympic scoring") 
[Kepner 81]. The alternatives are listed in columns, and decision criteria are listed 
in rows. The criteria are in two categories: the essentials and the desirables. The 
desirables are sorted by priority. Note that we need a problem-solving process to 
select criteria. The alternatives are scored in rank order: 1, 2, 3, . . . . Then the 
scores are tabulated with respect to priority weightings, and the best score wins. 
The full decision analysis process is considerably more rational and objective than 
ad hoc decision making. The winner is usually a good choice, and we have a 
rationale for explaining why in the form of the decision matrix. 

5. Implement the Solution.   Once we have selected a particular solution, 
we can elaborate the design and implementation plan for that solution and realize 
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the results. Having made a sound decision and eliminated consideration of many 
unnecessary options makes the implementation step much more focused. 

Sometimes the powers that be will disagree with a carefully rationalized decision. One 
way to explain this mismatch is that the decision criteria have different priorities than the 
real-world priorities. It is an interesting spreadsheet exercise to revisit the decision 
analysis and discover the likely priorities. 

In any decision-making process, the ability to prioritize is essential. It is not productive to 
view each choice as an exclusive selection, because that arbitrarily excludes desirable 
choices. Instead, it is preferable to prioritize among options or among criteria in order to 
rank-order the alternatives or considerations. One of the most effective ways to prioritize 
is to use situation analysis, essentially scoring each option by its seriousness, urgency, 
and growth in importance as high/medium/low, and ranking the results [Kepner 81]. This 
prioritization process can be used with arbitrary lists of ad hoc concerns. It is not always 
necessary to rank equal items, and you should not insist on perfection before considering 
rank ordering. What is important is to determine what is most important, and then focus 
energies on exploring those alternatives. All this advice can be summarized in the saying 
"First things first and second things never." Determining what's first (i.e., most important) 
and what's second is done through a process of prioritization. 

Review and Inspection 

In some organizational cultures, every meeting is a review. Review is an important 
process, but it tends to be overused and overestimated. Any time you have more than six 
people, the meeting is by default a virtual review. With six or more people (and typical 
meeting processes), it is very difficult to design and proceed creatively. However, it is 
relatively easy to get sidetracked on discussions. 

What's wrong with the review process is that its results are uneven. At its best, it helps to 
form consensus for good ideas. At its worst, it is a pernicious form of group-think, where 
everybody concedes to the boss's wishes. Most likely, the review process will focus on 
issues that are not the most important. And some people with long meeting experience 
can manipulate the review process by exploiting its weaknesses. One macabre review 
game is to search for the question that can't be answered (e.g., "What about security?"). It 
does not have to be the most important question, or even a significant one. Groups are 
easily led in such a direction, even though it may be irrelevant to the accomplishment of 
the group's purpose. 

We have seen too many review meetings where every idea is pooh-poohed (criticized). 
This often happens when multiple competing interests are present, such as competing 
software companies. One interesting process, used by Sun's JDBC team, is to bring one 
company in at a time, instead of the more typical multicompany meetings. Without the 
pressure of imminent competition, the companies were more willing to share their 
technical opinions and help with the creative process. 
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One firm-and-fast rule that we insist upon in review meetings is that we shouldn't 
redesign on-the-spot. Technical design decisions should be considered carefully, off-line, 
and not become the victims of group-think. Untold numbers of bad design decisions are 
made in review meetings, for spurious reasons. Each review comment is considered to be 
a design force which must be balanced with other forces in order to make a reasonable 
choice. Often, many design forces are resolved with single changes, or the solution can 
be explained in terms of the current design, and how it can be used more effectively. 

Also, it is important to clearly define which meetings really are review meetings and 
which are not. For example, a tutorial is not a review meeting. In some cases, we meet to 
disseminate completed specifications. We must switch from review mode sometimes in 
order to stabilize work, distinguishing which decisions are closed and which are open for 
choice. Otherwise, every decision is up for reconsideration at virtually every meeting. 

There is another, more structured, version of review called software inspection [Gilb 93]. 
We do not claim to describe the process completely here; suffice it to say that this is a 
process that is very effective. Some experts claim that software inspection "always 
works." 

Instead of an unstructured review, software inspection is a highly structured process. 
Proper inspection requires a list of quality criteria as well as a basis document (e.g., 
requirements) with which to compare the designs. Inspection differs primarily from 
review in that it involves a closer examination. Forty-five minutes per page is not 
uncommon in an inspection process. The inspections are performed off-line, outside 
meetings. At inspection meetings, the potential defects are collected as efficiently as 
possible from the inspection team members. No document can enter the inspection 
process without meeting certain quality criteria beforehand. These entry criteria are 
assessed by the inspection leader, a key role in this process. 

Inspection can be used at any phase of software development. It is most effective while 
reviewing written specifications and architectures, although it has been used for code 
review. 

8.4 Conclusions 

In this chapter we covered several intelligence-gathering techniques that can improve our 
architecture practices and probability of system success. One of the most important 
lessons learned is to consider architecture as a deliverable. In the opinions of 
some software authorities, architecture is the most important deliverable of the project. 
We tend to agree; however, we seldom brag about this openly, especially in the presence 
of developers. The truth is that everybody's contribution to the software project is vitally 
important, but not all are equally important. Each person can provide a positive or 
negative contribution to the project's outcome. For example, negative contributions can 
result from exacerbating chaotic project inputs, rumor mongering, and unwarranted 
dissension. Architecture is helpful for moderating the chaos of a project but is not the 
only or most effective means for doing so. 
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The intelligence-gathering process is interleaved with other architecture processes. For 
example, we freeze architecture during active code development and gather intelligence 
near the logical end of each phase. Intelligence is applied to make architectural decisions 
when and where they can cause the least disruption and most benefit. One of the benefits 
of intelligence gathering most difficult to achieve is the definition of stable interfaces that 
maintain system qualities throughout their life cycles. Stable interfaces are required for 
system-level architecture, distributed computing, and component-based development. 

8.5 Exercises 

Exercise 8.1 

Work with a peer or manager who is very familiar with the organizational systems. 
Identify the focus of the study, such as: "We want to find a way to exchange accounting 
information between our systems for monthly and yearly reporting" or "We want our 
customer service representatives to access information and post transactions across as 
many lines of business as possible." Then make a list of the systems, standards, 
prototypes, and products you already know about that are relevant to the problem. Check 
the Internet, too. Sort this list in terms of the importance of each system for the business 
and problem resolution. You are done; you have a plan for architecture mining. The next 
steps would be to track these resources down (leverage the knowledge of managers) and 
set up some 2- to 3-hour appointments with their one or two architects to walk through 
their interface specifications and/or schemas, depending on the problem. 

Background for Solution: 

Maybe we chose the wrong name for this process, but architecture mining is a quick and 
lightweight procedure, compared to what most people expect. You can plan a mining 
mission in an hour or less (e.g., this exercise) with the right pair of people in the room. 
Over a 2-week period, you can complete this mission. And your architectural knowledge 
will be increased immeasurably. 

There is no deliverable from architecture mining; it's all about making architects smart. 
Pick the best-of-breed of the ideas you gather, and you are well on your way to 
specifying a quality architectural solution to a problem that is vitally important to your 
business organization. We can't recommend an easier or faster way to get these kinds of 
results. We know many groups of architects who have spent years trying to find the 
answers that architecture mining easily delivers within a couple of weeks. 

Architecture mining has a second important benefit: it cross pollinates information 
between projects, creating technology transfers that are otherwise organizationally 
impossible. The SunSoft people who created Java Database Connectivity (JDBC) used a 
similar process. They met one-on-one with contributing organizations, eliminating 
competitive worries that larger multiorganizational meetings would surely trigger. 

Exercise 8.2 
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Using your organization's current software process, how would you synchronize the 
architecture iterations to minimize fluctuations in architecture during development tasks? 
How would you coordinate architecture changes between iterations? On large projects, 
will this architecture coordination benefit from synchronization with management 
communications/meetings, or should architecture coordination be an entirely separate 
process? 

Background for Solution: 

The key concept of architecture iteration is to keep the architecture stable when the code 
is changing, and vice versa. Stabilizing the architecture during coding yields significant 
benefits. It eliminates much developer confusion. It reduces the wasted time spent on 
system discovery (estimated to consume up to half of the developer's time). It enables 
programmers and groups of programmers to work in parallel and in distributed 
laboratories. 

Exercise 8.3 

List the elements of your organization's design process and the resulting design elements. 
How would each element and step be characterized with respect to engineering procedure 
versus architectural judgment? In the execution of judgment, how is the judgment 
rationalized and/or documented? How could each judgment be re-evaluated at a later time? 
Who is responsible for defending key judgments when changes occur? 

Background for Solution: 

Software engineering has suffered from physics envy. Ideally, every process step could 
be decomposed into rational engineering analysis techniques. Analogies such as 
automobile manufacturing have been applied to software process, with disappointing 
results. There is an intuitive level of decision making which is often discounted and 
buried in software engineering processes. In this age of software architecture 
enlightenment, we are making these issues explicit and assigning responsibility to 
architects to manage these intuitive forces. To make the incredible transition from 
unstructured natural language requirements to a brutally logical binary machine, we must, 
at a minimum, insert some intermediate steps, in order to minimize risk. This is the role 
of software architecture, in addition to system planning, which maps the intuitive forces 
in rationalized steps into the logical abyss of machine code. Architectural judgment is 
vital to this transition, whether explicit or implicit in the software process. 
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Chapter nine Software Architecture: 
Psychological Warfare 

In psychological warfare, we use the term grounding to mean a state of quiet 
confidence. Grounding comes from knowing "how things happen." And usually, you gain 
knowledge of how things happen through experience, including making mistakes, trial, 
and error. 

9.1 Alternative Learning 

There is another way to learn (rather than making mistakes), and that is through learning 
from other people. In order to do that effectively, you need two skills that most people 
lack: how to read between the lines how to take advice. A famous technical editor said, 
"People don't read," meaning that it's very rare to find someone who's really done his/her 
homework, reading technical publications and so forth. It is equally true that people don't 
listen to advice. Including you. Us, too. We all have to try harder to do these basics more 
effectively. They seem really simple, but most people don't acquire these basic skills in 
much depth, and therefore waste a great deal of time and energy by not benefiting from 
the knowledge of others. 

The phrase "reading between the lines" is only a figure of speech. You don't literally read 
anything between lines of text. What you do is analyze what the author is saying at a 
level of detail somewhat beyond the surface discussion. To do this you need to use your 
knowledge, experience, and imagination. 

Suppose you are reading a story about human experiences. Try to imagine how those 
people were feeling and acting that motivated what they did. Were they lazy, angry, 
ignorant, misinformed, or biased? Now read an article by a vendor or consultant. Is the 
writer competent to speak and act on this subject? Does he have an agenda, perhaps 
product or standards centric, and is he trying too hard to persuade you? How does what 
he is saying compare to your own experience and knowledge? Is he right or wrong or 
somewhere in between? When did he write this, and what was the historical context of 
these comments? 

These are impressions that you should be able to pick up naturally while you read. 
Reading between the lines gives you the ability to discriminate what you will add to your 
knowledge, and what you will reject. Every piece has some good and some bad 
information. To win the psychological war, you need to know the difference, almost 
instinctively. 

9.2 Internal Control 

When a friend comes up with bright ideas, it's human nature to try to talk them out of it, 
because (psychologists say) we are trying to help them avoid being discouraged. We are 
helping them avoid discouragement by discouraging them verbally. Makes no sense, but 



IT-SC 214

most of us engage in this behavior unconsciously. It's natural. In order to change our 
behavior, we first observe "how things happen." 

Similarly, taking advice is not natural. It just seems obvious that any mature adult knows 
how to take advice. But we don't. Not naturally. Normally, we all think that we know 
what we are doing. And that we can handle the situation with the force of our own will. 
In a sense, we mistakenly assume that we can control the world, even when we are in a 
brand-new situation where we don't have a clue "how things happen." 

We use the term brain in gear to mean that you achieved a deep state of understanding 
(about a set of related topics), so that you can articulate your points very persuasively. A 
trial lawyer works hard to achieve the state of being in gear. 

9.3 Expectation Management 

Expectation management is one of the most powerful weapons in psychological warfare. 
In expectation management, we take our instinctual need to discourage other people's 
ideas, and we use the technique consciously, regarding our own ideas as we present them 
to other people. 

The concept is simple. If you tell someone that your idea will deliver wonderful benefits, 
and it doesn't, then the person will be dissatisfied. And you lose credibility. However, 
with expectation management you carefully articulate the potential good and bad 
outcomes, even emphasizing the negatives. Then with the same idea and same outcome, 
the person will be pleasantly surprised. You delivered more than they were led to expect! 
Congratulations. 

This technique is essential for group dynamics (e.g., meetings). Always promise less than 
you can actually deliver. In meetings, tell people clearly what you expect them to do, 
explain the caveats (i.e., expectation management), and they will often overachieve. 

Expectation management is used in a convoluted form in software product marketing. 
Since marketeers are selling to the customer's needs, an inflated product image is created. 
This is called the expected product [Moore 96]. People buy the expected product because 
it appears to meet their needs. What they actually buy is the generic product, which is 
what the vendor can deliver. In marketing terms, "crossing the chasm" is the transition 
from a customer base who will buy based upon sexy technology expectations to 
customers who will buy based upon real-world quality to satisfy needs. If the product is 
successful, there will be time to enhance it to actually meet expectations. The product can 
then become an augmented product through extensions and up-selling options. However, 
this standard model for software marketing almost always leads to disappointment. 

Ideally, expectation management is a form of truthful disclosure. By telling people the 
truth about the potential outcomes, you establish a psychological framework of 
expectations. In reality, you can contribute to causes but you cannot control the absolute 
outcomes. If you do a good job, you are contributing to the desired outcomes. And 
chances are you'll be able to deliver upon expectations, most times. If you don't manage 



IT-SC 215

expectations, then you will underperform in people's perceptions, even with the same 
outcomes. We highly recommend that you apply expectation management; it is a 
technique that we use every day. 

9.4 Psychology of Truth 

It is important to understand the meaning of truth, and how to use it, as the basis for your 
psychological warfare. In an absolute sense, everything that you know is an abstraction of 
reality. We could say that "everything you know is wrong," which is true in an absolute 
sense, but not very productive. Thinking more constructively, we can describe our 
understanding of reality as a set of patterns and models. These patterns and models are an 
illusion (or, more accurately, a self-inflicted delusion). For example, one can say: 
"History never repeats itself," which is true in an absolute sense because the world is 
always changing, always progressing in time. Or so we think. 

Software architecture knowledge consists of models. In the hard sciences, it is common 
knowledge that nature knows nothing about physics. Newton's models for classical 
mechanics are wrong, when taken out of context. So are Einstein's theories of relativity. 
However, within their intended contexts, these theories are accurate descriptions of how 
things happen in the universe. Research in design patterns and AntiPatterns explains why 
these models work in practice. With the right context and forces, the appropriate model 
for the solution usually works and produces predictable outcomes. 

Despite its weaknesses, classical mechanics is the theoretical model behind numerous 
human achievements, including rocket science, machinery, buildings, and bridges. In 
proper context, Einstein's theories accurately describe nuclear energy and near-light-
speed digital communications in distributed systems. 

9.5 Perception Is Not Reality 

It is essential for you to understand some important aspects of mass psychology. Most 
people believe that "perception is reality" and "seeing is believing." And there may have 
been some time, before technology, when that was a reasonably effective way to think. 
But it is not so today. Perception is not reality because technology can falsify perceptions. 
Technology can create powerful illusions. And especially with computing technology, 
illusions are becoming easier and easier to manufacture. 

For you as an architect, the ability to envision new illusions and impress them upon 
people's imaginations is vitally important. The architect works in the gray area between 
intuitive perception and the logical certainty of software. In order to translate intuitive 
system concepts into software reality, we must have a talent to envision architectural 
structures. Then we must be able to document these visions and articulate (explain) them 
in a way that sells the concepts to other people. In other words, we start system 
envisioning by creating an illusion, and then proceed to architect the system, providing 
more and more depth to the illusion, until it appears obvious what the system is about, 
why we should build it, and how it can be realized. 



IT-SC 216

Not all system illusions are worth building even if they are very "sexy." It has been said 
that "whatever man can see and believe, man can achieve." Software development is an 
ideal refutation of this kind of wrong-think. A great majority of software projects 
envision illusions that cannot be effectively realized. In effect, many software projects are 
subject to the illusion of "imagination run rampant." The architect is responsible for 
moderating this situation. The architect has the power of imagination, like most people, 
but the architect is also responsible for managing risks, both technical and people-
oriented, that could impact project success. 

In an often-used analogy, software efforts are like building different types of cars. First 
we build a Ford Pinto (or Yugo). The system does something useful, but the engineering 
and manufacturing are not superb; in fact, they are just the opposite! Often the system 
does not meet the full expectations (system illusion) of the users. But in the eyes of the 
developers, if the system actually works, they gain much confidence and are ready to try 
again with much more ambition. When the team tackles the next system challenge, it 
builds a Cadillac with all the bells and whistles. With encouragement from the users, the 
system developers create overly ambitious requirements that cannot be effectively 
realized. Cadillac projects are likely failures. The project bogs down in trying to create 
too complex a system; the effort lacks focus. After this failure, the team takes a much 
more sober approach to the next system. This time they envision and build a Volkswagen 
Beetle, a modest system, but very practical and well engineered. It meets human needs 
and works reliably. That's the whole point. 

As architects, we want to facilitate our projects to avoid these extremes. Architectural 
planning creates a solid system structure that goes beyond the engineering limitations of 
the Pinto/Yugo. We give the developers an excellent chance to avoid this phase of system 
evolution. We also argue against building the Cadillac system. We want to advise our 
colleagues to be practical and avoid the pitfalls where so many other projects have failed. 
Ideally, we want to design and build the VW on the first attempt. Sometimes you can't 
talk people out of making these classic mistakes, so you may get forced into building the 
Pinto/Yugo or Cadillac. At this point, it is okay to make your opinions well known, 
perhaps vehemently (we favor the adult-assertive approach). If they don't understand 
your concerns, then document them clearly and move on to new challenges. Do not dwell 
on lost battles or try to undermine the committed direction of a project, whether you are 
right or wrong, once you have lost the argument. As a computer scientist once said, "It is 
the fate of competent advisors to have their best advice ignored." As you already know, 
people don't listen. 

9.6 Exploiting Human Weaknesses 

One of mankind's greatest psychological weaknesses is that we jump to conclusions too 
easily. Competent software architects can turn this weakness into a strength for their 
software organization and the software industry. By creating compelling reference 
models of software knowledge, we lead our organizations to the appropriate conclusions. 

Software architects command extensive knowledge about software technology, software 
organizations, and real-world business processes that our systems support. Knowledge is 
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power—in this case, the power to change perceptions. For most people, perception is 
reality. Reference models are the pattern of the solution for transforming perception into 
real-world success. Let's explore some examples. 

Reference models are commonplace in other fields of human endeavor. They facilitate 
successful practice in sales, investment, journalism, public relations (PR), economics, 
psychology, digital hardware design, and consulting. A classic sales reference model is: 
person, organization, goals, and obstacles (POGO). The analogous reference model for 
investment analysis is: strengths, weaknesses, opportunities, and threats (SWOT). 
Journalists and PR professionals use a reference model comprising six questions. These 
reference models provide an invaluable structure for human discourse that assures quality. 
Interestingly, many of these models have been incorporated into software standards and 
practice. For example, the Zachman Framework adopted the journalistic reference model 
directly. The Reference Model for Open Distributed Processing (RM-ODP) assimilated 
models from economics and psychology to standardize software architecture viewpoints. 

The Hardware Design Level Model (HDLM) has been used in digital engineering 
practice for more than two decades. HDLM separates design context and forces, so that 
every EE student learns in college how to design and optimize digital logic circuits with 
relative ease. Reference models simplify problem solving, so that ordinary professionals 
can practice their disciplines with world-class results. 

Hence the contradiction: Why haven't reference models been used to structure effective 
software practice? In our opinion, the most effective reference models are unknown by 
the profession and academia—for example, the Software Design Level Model and RM-
ODP. Other powerful reference models have been imposed with unfortunate 
consequences. For example, Capability Maturity Model (CMM) certification has become 
the software equivalent of the Spanish Inquisition. Articulating reference models so that 
they assist in individual decision making is a kinder, gentler way to reform software 
practice, and ultimately more effective. 

Reference Models as Perception 

Applying the classic reference model for consulting intervention, there are three basic 
questions that the readers (software architects) should consider: 

1. What is the problem?   Reference models are basic intellectual tools that 
are virtually nonexistent in software practice. Effective reference models exist but 
are relatively unknown by the profession. The corpus of software knowledge is 
not expressed in terms of reference models. The lack of reference models inhibits 
our profession from separating design forces and evolving software into an 
engineering discipline with successful, predictable outcomes. 

Software professionals need reference models in order to 
understand abstractions. For example, the founders of the 
software design patterns movement (The Hillside Group) have 
claimed that four out of five software developers cannot abstract 
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effectively. The Hillside Group's classroom experience is 
supported by Meyers-Briggs surveys of the general population; 
only 20% of adults have the appropriate world-perspective to 
define abstractions. Reference models are a necessity in the 
confusing, rapidly changing technology environment in which we 
practice. 

2. What are other people doing to contribute to the 
problem?   The hard technology problems addressed by reference models are 
"application problems"—a phrase vendors repeat laughingly, all the way to the 
bank. 

3. What are you (software architects) doing to contribute to 
the problem?   This question leads to a Gestalt turnaround: What can we 
(software architects) do to resolve the problem? We can learn the available, 
effective reference models for software. We can educate and evangelize the 
profession toward the use of existing, effective reference models. When we see an 
important issue unresolved by available models, we can create a new model, 
optimize it, and contribute it to the corpus of software knowledge. The 
instantaneous global reach of the Internet make this imminently feasible. We can 
mentor our peers constantly about reference models, design patterns, and other 
forms of software problem solving. We (software architects) can take 
responsibility for our part of the mind-boggling problems and opportunities that 
the software industry is confronting. Through the articulation of reference models, 
we can help the software profession become more enjoyable and successful. 

Biological Response Model 

One of the most universally useful reference models describes biological response 
(Figure 9.1). This model shows what happens as a biological system is stressed to 
various degrees. It can be used to describe how people behave, psychologically, when 
stimulated, and how people can change their minds or behaviors. It is also a good 
description of how you might respond to external stimulation, so with an understanding 
of this model, you can choose to follow your biological instincts or choose another path. 

Figure 9.1. Biological Response Model 
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The biological response model works according to various stages of excitement. Initially, 
if the stimulation is small, it is ignored, either deliberately or unconsciously. Consciously 
our response might be: "It's not important" or "I'm ignoring it." Biologically we are 
drawn toward small stimuli. 

As the intensity of stimulation increases, our attraction changes and we are increasingly 
repelled. The next level of psychological response is denial, or deliberate ignorance. In 
denial, we deny the truth or existence of a stimulus event. We turn away from it. We do 
this automatically; it's human nature, which makes it very difficult to control this part of 
the response. 

As stimulation continues to increase, so does excitation. When a stimulus becomes 
impossible to deny, we become angry—or joyful—depending upon the situation. It is not 
possible to maintain a high level of excitation indefinitely. So, in short order, 
psychological energy is released, such as an angry display or laughter. 

If the stimulation persists beyond a state of excitation, then we experience depression 
(sadness) or a state of acceptance. Further stimulation above this level of intensity can be 
fatal. 

In psychological warfare we use the biological response model to our advantage, because 
for most people these are automatic responses of which they are not consciously aware. 
In fact, some people are so unaware of their own responses that they may not even know 
when they are angry, until they erupt in an excited frenzy. "Gone ballistic" is the popular 
phrase for this behavior. 

We use this model by adjusting the intensity of our architectural evangelism according to 
the situation and desired outcome. In some cases, we want to get something accepted 
without much controversy. This is called "flying under the radar screen." We keep the 
message at a very low level of intensity and mention the matter infrequently. In some 
cases, we want people to take notice and to change what they are doing in accordance 
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with our ideas. In this case, we may want to push them right over the top of the model 
and get them very excited about the concept, with a goal toward changed behavior 
(acceptance instead of ignorance or resistance). 

Group Applications of Response 

The biological response model can also be applied to the facilitation of groups, although 
we are straying from the biological origins of this model when we do so. In theory, each 
of us individually has a group inside our minds, formed through early childhood 
experiences. This reference model indicates that we all have interactions between 
members of our internal group. Real groups are the extension of this concept into 
interpersonal interactions. So we use these concepts to explain that, if the response model 
applies to individuals, then it can also be extrapolated to groups. 

As the model implies, people often get excited about something before they change their 
behaviors and accept it. Laughter is one way to push groups over the top and into release 
and acceptance. Laughter is a great way to diffuse successful situations and win 
arguments. The experience of laughter involves a high level of excitation and leads to an 
immediate release of stress (i.e., exactly what we're seeking). Some of the best comedy is 
self-effacement—in other words, making fun of yourself. Watch standup comedians on 
television to learn more. Particularly watch for humor based upon self-effacement. Also, 
the worst kind of humor relates to human body parts. You will see professional 
comedians use this kind of humor too often for their own good. Avoid this kind of humor 
at all costs, for reasons such as political correctness. 

In groups, we tend to link response models together, so that we create waves of responses. 
Since death is seldom an option, we continue beyond each state of acceptance into a new 
curve of excitement. Repeatedly we want to bring individuals and groups to a high level 
of interest and excitement, make a decision, then move on to the next matter. Meeting 
facilitation, covered in other chapters, uses the principles of biological response with 
groups in this way. 

We use meeting breakouts to enable people to create something (anything as a first draft), 
so that they often have ownership and are excited about defending it. It also gives us a 
starting point for discussion, even if it's bad. We then give them their chance to defend it 
in public. That's very exciting for the presenter. If the presentation provokes a response 
from the audience, then he or she can become very excited too. Good things are 
happening. We have experienced group excitement in very positive and negative senses. 
Either way is equally beneficial from the facilitator's perspective. In either sense, an 
excited group is a group that can make decisions and implement choices vigorously. The 
last thing we want is a group that's falling asleep. In that case, behaviors won't change 
and little progress is made. 

9.7 Example: Reference Selling 

One of the ultimate weapons in psychological warfare is the power of illusion. In this 
warfare we prey on human weaknesses with positive intent. Suppose we had to sell a 10-
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million-dollar software system (i.e., very expensive). The buying authority for such a 
product may not even exist entirely within the IT community of the organization; perhaps 
it resides in the Chairman of the Board of Directors. But even more important than 
influencing the Chairman will be justifying the sale to the organization, so that the 
executives have a clear indication of need. It's a lobbying effort on a massive scale, 
because no one individual needs (or can justify) the whole system, but each may benefit 
in his or her own way from the purchase. 

This kind of salesmanship assignment is a primary activity of software architecture, as it 
is for software salesmen. But the need to "sell the system" may be just as great for the 
architect. And the situation, as we have posed it, is within the scope of the kinds of 
"organizational sales" that software architects participate in and sometimes lead. 

The trick for making such a large sale is in the sales pitch. First, you need multiple points 
of contact in the organization, ideally representing multiple chains of management. We 
want to talk to each point of contact with the intent of achieving two key things. The 
highest priority is to convince them that what you are selling is what they want. Then it is 
important to get them to articulate that need. We will use that information later. Then you 
want to get additional referrals to other people in the organization. If you succeed with 
your first contact, you are well on your way. You have a successful sales pitch. However, 
it often takes three to six months to complete business on this scale. 

We use the referrals to lobby additional points of contact in the organization. Remember 
that leaving a voicemail is not good enough. We need to get them on the phone and/or 
meet them in person to deliver our pitch. On the second and subsequent contacts, we use 
the fact that earlier contacts indicated "need" for the product in order to convince our 
current prospect that it's a growing wave of demand within the organization. 

We are telling the customer that it's safe for him/her to support this purchase, because 
many other people already do. It's a done deal. It's a fait accompli. Real salesmen will 
stretch the truth (via careful articulation) just a bit in order to make their point. In other 
words, this is a form of namedropping, with a systematic intent. What's important is that 
we are using the power of illusion to create and consolidate demand for our product. 

We are describing a systematic sales process that is used by some of the world's largest 
software companies, called "reference selling." The software architect should be aware of 
how this process works, both in order to resist its influence from the outside (if 
necessary), and in order to use the process to build consensus on the inside of the 
organization (when needed). 

9.8 Psychology of Ownership 

With individuals and groups, a very important concept is ownership. This is using the 
"not invented here" syndrome to our advantage in psychological warfare. Ownership can 
take a long time to develop but is a very important concept for the architect to foster. 
Ownership can be much more easily eliminated than developed. 
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Ownership can be quickly eliminated if there is one "know-it-all" person who overrules 
and makes all decisions on a design or project. For some naysayers, this is the definition 
of the architect's role. To avoid this perception, the architect cannot be a micromanager. 
The architect should focus on architecturally significant questions and delegate 
engineering design questions to the responsible developers. In this way, individual 
developers acquire and control ownership of their own design space. Interfering with 
their design decisions, without an overwhelming reason, can be deadly to a project, 
because it destroys ownership. 

Smart people know how to give someone else an idea. This is the key to ownership on the 
personal level. On most projects there is a "customer," someone who literally owns the 
project from a financial or responsibility perspective. Many customers are quite insistent 
that their ideas always take precedence, even if they are not qualified on the technical 
subject matter. Anyone else's "bright idea" can be either accepted or discarded, based on 
their whim or fancy. As an architect, you need to be sensitive to this phenomenon. There 
are some arguments which you can't win, no matter how right you are, because you don't 
"own" the project. It is not your money being spent, for example. 

You must learn to let go of certain cherished ideas, if you can't win over the real project 
owner. In our work experience, this situation will arise most frequently when there is a 
direct family relationship between the real project owner and a team member. Many good 
ideas will get overruled because the family member disagrees—whether or not he or she 
is really qualified to do so. This is a good example of "life is not fair." And it is 
something that you will have to live with, unless you leave the project. 

Ownership is best fostered in a relationship of trust among the team members and the 
architect. There must be a division of design responsibilities if there is to be both 
ownership and quality design. The architect is responsible for architecturally significant 
decisions. The other team members each have assigned responsibilities. If everyone 
contributes, and is told how important his or her contributions are, there is the proper 
environment for establishing a sense of ownership. Ownership requires respect for all 
team members, no matter how large-scale or narrowly focused their responsibilities are. 

In the psychological warfare over ownership, the desired outcome is long-term peace, 
with mutual respect and trust. A powerful weapon in this battle for peace is showing that 
you care about team members and their ideas. Some might call it affection or love. 
People won't listen to you until they know you care about them. Psychologically, what 
people want most is "to know that they matter," that you think their ideas are important 
and worth considering, that you think their contributions are essential to the effort. This 
feeling of mutual respect should be fostered at every opportunity. Showing respect for 
team members often results in reciprocal feelings for the architect. We use these concepts 
often in our own daily lives. 

Some architects do rule by ego. They do their best to dishonor and discredit other 
people's ideas through political techniques and/or meeting confrontations. And they can 
be very successful, professionally. In the wake of such people you will find many 
discontented persons, crushed by the overwhelming ego. This fosters feelings of 
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resentment which are long-lived, well beyond project completion. We do not like 
working with people like this, although we have had plenty of experiences with such 
people. You will have to make your own judgments, if this is your style of interaction. 
We do know that the person who rules by ego destroys ownership intentionally. And we 
think that practice is counterproductive. 

9.9 Psychological Akido 

Being an architect is a tough job. It can be particularly challenging to your psychological 
health. It is difficult to stay positive and happy while it sometimes seems that the whole 
world is upon your shoulders. And bad things happen all the time. It can be quite 
frustrating at times. Most adults experience frustration often; statistically, a typical adult 
gets angry about 10 times every day. That's normal psychology. 

The common man, inexperienced in psychological warfare, is constantly trying to get 
himself out of trouble. As experienced warriors, we embrace trouble as much as we 
embrace success. Good and bad things happen. Most of the events are of small 
consequence. And many events are out of our control. To be happy in a world of trouble, 
we must learn to let things go that we cannot control, and to contribute to the success of 
those events that we can influence. 

To acquire the ability to endure bad events and remain happy, we use a philosophy of 
personal expectation management. We try and try to create success on software projects. 
We try and try to help our peers and colleagues achieve career and personal success. But 
in our personal expectation management, we expect nothing—no change in outcome, 
regarding our involvement. Like medical doctors, we try to do no harm. But there are 
times when good work leads to bad outcomes, too. It's the luck of the draw. Every day 
and every decision is a gamble. When nothing happens, great! It's just what we expected. 
When good things happen, great! It's a pleasant surprise. When bad things happen, there 
is often a much greater opportunity to be exploited. We should look for it and attempt to 
bounce forward, instead of being discouraged. 

We learn the most from our mistakes, and the least from our successes. Not that we seek 
to fail. With an attitude of personal expectation management, we don't expect our 
strategies and patterns to work. So we give it our best effort, acting as if it won't work 
unless our input is perfect (in a time-bounded sense, of course). For example, suppose we 
are applying a software design pattern to one of our architectures. If we make a half-
hearted effort to apply the pattern, it's very unlikely to generate benefits. Developers will 
easily ignore it or misuse it so that the benefits evaporate. If we apply the pattern with a 
reasonable effort, reasonable documentation, and so forth, we are assuming that good 
things will happen, and with luck the pattern will generate benefits. Developers might 
understand exactly what we mean, and even add value to our pattern application. We 
think this is wishful thinking in practice. Finally, suppose that we decide to use the 
pattern, assume that it's likely to go wrong, and apply it with exceptional care and due 
diligence, documenting and communicating clearly our intentions to the developers. Even 
though we expect nothing, we have given the pattern the best chance to perform its 
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function. If nothing good happens, so be it. If it works, that's great, and a very pleasant 
surprise. 

In Psychological Akido, we apply these philosophies in terms of a process of learning. 
We expect both good and bad things to happen as a result of our architectural work. Our 
goal is to understand "how things happen." MBAs learn that good things happen when 
you pull the "action lever." An action lever is anything that you or your project might do 
to effect change. Unfortunately, we live in world of confusion, of increasing change and 
information overload. Seeing the action lever is difficult and often requires experience 
and expertise. That's why companies hire expert consultants; they know where the action 
lever is. An architect plays this role as well, within the scope of technology and system 
building. 

When good things happen, we have found an action lever, perhaps by accident. The cause 
may not be immediately obvious. We try to apply the same techniques again in a 
systematic, experimental way, in order to refine our knowledge of the action lever. When 
bad things happen, we learn even more. We have found one or more destruct button, 
which we must try to avoid on future trials. As experience progresses, we learn to avoid 
the destruct buttons and pull the action levers, becoming more effective. 

It is interesting to note that the process of learning to use a computer involves these 
principles directly. In one dramatic experience, we once took a programming class for a 
new operating system, in beta test. The software had many defects, as all commercial 
operating systems do, but these defects were much more prevalent than most of the class 
had ever encountered (in a near-production release), all of us being experienced software 
engineers. Because we had not learned the destruct buttons of this new software, 
everybody experienced frequent crashes, requiring reboot. About 30 reboots were needed 
on the first day alone, as we attempted to perform simple tasks. The situation reminds us 
of when we put noncomputer users in front of a demonstration, and they break the 
software within the first few keystrokes—a well-known phenomenon. In our rebooting 
laboratory, we learned to "do this and this in a specific order" and "not ever do that," plus 
remove an erroneous file or two after rebooting. Overnight, many of us thought that it 
was hopelessly buggy software. By the second day, all students had cut their rebooting 
needs in half. And we were able to perform more sophisticated programming tasks than 
we had attempted on the first day. By the end of the week, we were able to perform 
extremely sophisticated programming tasks, with virtually no rebooting required, except 
when we chose to reboot intentionally. We had learned the action levers and the destruct 
buttons. Most surprisingly, we didn't have to think about it; we did it naturally, as we had 
internalized this knowledge about how we used the system. On reflection, this experience 
is common to people who use computers. This was just a dramatic example of 
experienced software engineers repeating the process for new software. 

Psychological Akido is much the same, but instead of learning to control a machine, we 
are learning to survive the psychological warfare that is life. As architects, our life 
stresses are significant. We use Psychological Akido to help us to cope with life and to 
learn to perform better and better. Psychological Akido is our quality control process for 
psychological warfare. 
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9.10 Intellectual Akido 

Psychological Akido is a defensive strategy that works on a personal level. It guards us 
from the insane situations and environments that we often encounter in our profession. As 
architects, we should attempt to do more than merely protect ourselves. We should try to 
help others to grow professionally and personally. 

Intellectual Akido is an extension and scaling up of the former practice, to affect many 
more lives and change the way that people do software. In a sense, the goal of Intellectual 
Akido is to make the world a better place. Mentoring individuals one by one, we can have 
some limited impact, perhaps helping a few dozen people over a lifetime. In 
Psychological Akido, our scope can be much more ambitious, possibly affecting 
thousands of lives directly. 

We apply Psychological Akido as a front-end process, gathering knowledge from good 
and bad experiences. The next step is to transform our positive experiences into patterns, 
in the "software patterns" sense. We want to find practices that repeatedly work, so that 
we can share them with many others. Initially, we prove to ourselves that the patterns 
work, by applying them in our own work. Then we mentor other professionals to do the 
same. We learn the ins and outs of the new technique. 

When we are satisfied that the quality of this knowledge is worth sharing on a wider scale, 
we shift knowledge-sharing strategies. We transition from one-to-one sharing (e.g., 
mentoring) into one-to-many sharing. This transition is an essential idea for affecting the 
practices of large groups of developers. Suppose you were an enterprise architect or a 
Chief Information Officer. You would have to execute educational and administrative 
strategies that change behaviors on a mass scale. One-to-one mentoring simply wouldn't 
work. 

One thing that you must do is to generate documentation. A useful first step is a set of 
tutorial briefing charts. With these charts you can project your message to groups ranging 
from a half dozen to several hundred people. The experience of teaching and answering 
questions will focus your knowledge of the solution and how it is executed. In a sense, 
you are providing many shortcuts for your student's own Psychological Akido process. 
You are telling them explicitly where the action levers are, and what to avoid in terms of 
destruct buttons. 

In many cases, some 5% or more will listen carefully, learn the new patterns of 
knowledge, and apply them to their own work. According to the Nolan Curve, a classic 
learning theory, if 5% of your skill base can successfully apply much more effective 
practices, the other 95% will eventually migrate. Within a single organization, a tutorial 
may be sufficient to effect the required change. Ideally your tutorial includes an even 
balance of lecture, experience, and feedback (e.g., discussing their experience). From a 
training perspective, what the students do successfully in class, you can expect them to do 
on the job. Experience, such as programming laboratories, is vital to their effective 
knowledge acquisition. 
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To affect a large group of developers, you need to go further in your knowledge 
dissemination. A magazine article is a wonderful way to communicate to very large 
groups. It's wonderful because it's a relatively short-term commitment on your part, and 
the rewards of professional recognition are superb—almost as good as writing a book. 
Magazines are continually seeking talent, and if you have something that really works in 
this chaotic software industry, the knowledge is probably well worth sharing. Posting the 
same information on the Internet is useful, but not nearly as persuasive as the magazine 
format. 

Everything we have done so far in this process has affected many lives. But the impacts 
are transient, at best. The tutorial helped us to focus our ideas and develop the verbal 
articulation of the ideas which is necessary to communicate the message. To create 
permanent knowledge we must go further. In particular we are talking about books and 
standards. A standard is a documented technical agreement. It has great moral hegemony. 
Most standards focus on detailed technical solutions that are intended for vendor 
implementation. If your ideas are applicable, this is a reasonable mechanism to pursue, 
given its shortcomings—primarily compromises and long delays. We do not discourage 
standardization, since we have pursued this approach on a number of occasions. 

A book defines intellectual standards. Note that the role in society of journalism and 
publishing is to confer credibility upon authors, people, and organizations. A book is the 
ultimate form of journalism. It yields substantial credibility, as well as professional 
recognition. Hence the phrase that he/she "wrote the book." It is also said that "he who 
writes, writes history." Exactly. The book author is in a unique position of defining a new 
ground truth, a new reality—new ways of thinking and perceiving that are a permanent 
part of human history. 

For example, many more people (perhaps 1000X) have read our books on CORBA than 
will ever read the standard. It is an awesome responsibility. As architects involved in the 
CORBA standardization process, we use this authority to articulate the technology in a 
way that is more effective than the standards alone. If you study this situation, you will 
discover that there is a great gap between what can be readily assimilated (and what is 
useful in practical applications) and what appears in a typical standards document. A 
standards-oriented book resolves this gap and makes the technology usable to much 
greater numbers of developers. 

Winning the War 

After the book, the job is not nearly finished. As a result of the book, good things happen. 
In our early book experiences, we were surrounded by naysayers prior to publication, and 
they all disappeared around the time it was published. They quit their jobs or were 
transferred into obscurity. Miraculous, to say the least. We were asked to do many more 
tutorials, worldwide, and to write magazine articles—an almost endless demand for 
knowledge and wisdom. You can leverage your newfound popularity to enrich your 
business, or you can go further in the process, which is not nearly complete. 
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The transition from grunt to expert began on the day you stepped up to the podium and 
gave your first tutorial. You became the expert (whether you deserved it or not) because 
you had the courage to put yourself on the front line for the sake of your message. That 
warfighting spirit can carry you through step after step of Intellectual Akido, until you are 
affecting many people's lives, and making the world a better place. According to surveys, 
public speaking is the number one fear for most adults, more so than death. Since you 
were able to overcome a fear worse than death, you have earned the "right to speak" and 
a position of respect and authority. 

As you travel about the world sharing your message (post book), two important things 
happen. First, you learn to articulate your message an order of magnitude better than 
before you wrote the book. You grow and transition from imparting a little bit of 
knowledge (which everybody knows is dangerous) to communicating lethally effective 
practices. This newfound confidence does not continue forever, so enjoy it while it lasts. 
Second, you gain a much deeper sense of how things go wrong by applying your 
knowledge. What are people's basic misunderstandings? How did they try and fail to 
succeed? 

A second book, describing the AntiPatterns of the misapplication of your ideas, might be 
an appropriate follow-on. This will help many more people to avoid the common pitfalls. 
Also, you have gained much more knowledge by following through with this process. 
Since you have so much more to share, someday you may want to write again—and 
repeat this final step in the process. 

As a series editor, and an advisor to many authors, I always tell them: do not be afraid to 
share everything that you know about that topic. Be generous with references and 
citations. The emotional instinct is to hold things back. Save some key bits and pieces for 
myself, so that I can make money. Not necessary. Not even close. In Intellectual Akido 
our philosophy is to give it all away. And when you give it all away, you gain so much 
more. Because there are so many people in this industry who try to hoard their knowledge, 
the Akido practitioner is a welcome and refreshing alternative. It is also a principle of 
entertainment, that the actor/actress who gives everything on stage is the most 
appreciated. The more you give, the more people will enjoy and benefit from your 
message. And you will grow in knowledge, much faster than anybody can attempt to 
"catch up" to you. 

Winning the Peace 

Most of the people capable of "catching up" to you technically will probably scoff at your 
work and not bother reading it anyway. That's one of the unpleasant shortcomings of this 
way of life, but probably unavoidable. Professional jealousies will arise. People will be 
on your case because they feel resentment about your popularity and success. Luckily, 
there will be few and infrequent encounters. Be sensitive to this. 

To follow our way of coping, you must become a kinder, humbler, and nicer person. Do 
not give these people a reason to criticize you. Never win an argument by implying that, 
"I wrote the book, so shut up!" Never brag about your accomplishments; let others do that 
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for you. Win by explaining your ideas, which by this time are very well thought out. Let 
naysayers make up reasons to dislike you, and eventually they will fade away. When you 
must go up against these people, stay off "front street." Let other people do your talking, 
while you quietly work in the back room writing the architectures and specifications, 
doing work that you love. 

As your success grows, some of your peers will want to beat you up for any number of 
reasons. You may have become the symbol of a technology that they don't like. You may 
be a competitor to their business or their ego. You can attack them head-on, but we 
wouldn't recommend it. We have tried and failed using this approach. 

What's much more effective is an age-old secret of psychological warfare. Be gracious. 
Turn the other cheek. Most outside observers won't see the situation in terms of issues; 
they'll interpret a confrontation in terms of personalities. If you are the cool guy (or gal) 
they'll see the other player as a hothead—someone who is venting anger, not someone 
who is rationally motivated. We were cheered up, after a recent scuffle, when one of the 
observers commented that: "At least Tom Mowbray is cool." Remember that "the people 
have the power," not your hotheaded peers. 

An even deeper warfare secret, which always works, is a four-letter word. Love. It's 
almost unbelievable, but this word has the power to erase all bad feelings, and reverse 
insurmountable conflicts. We have seen it work for us in recent days, resolving 
impossible situations that most people assumed would be protracted indefinitely in the 
fires of war. If you know someone well, it is perfectly reasonable to wish them well and 
send your love and respect to them and their families. Do it. Don't hold back. Express 
your feelings honestly and sincerely. You don't need to say much. Once is sufficient. And 
it is merely a small personal gesture. But it is the key to winning the peace. This is the 
ultimate weapon of psychological warfare. 

9.11 Conclusions 

Psychological warfare requires essential skills for maintaining your own peace of mind 
and affecting the world about you. As a software architect, you endure tremendous 
psychological pressures which you must manage, both for yourself and your software 
organization. Using these techniques, you can progress from small successes to global 
influence. We emphasize that you should apply these powerful techniques "for the right 
reasons." Hopefully, your number one motivation for being in this profession is not to 
make money. To be a true professional you must love your work. 

We can unkindly describe the person who's in this business only for the money as a 
confidence trickster. Another popular terminology for describing these sorts of people is 
"trough guy," as in a pig trough. We fully understand that there are some roles in the IT 
business where this way of thinking is appropriate, such as sales engineering. And we 
have seen several friends follow this path, which leads to quite abrasive ways of 
interacting. But we take strong exception to this attitude in software architects. It is 
simply bad behavior and highly inappropriate to attain success as a software architect. 
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In our philosophy of software architecture, we don't use psychological warfare for purely 
personal or selfish reasons. These techniques are strictly apolitical. Both good guys and 
bad guys can use them. And nobody is either all bad or all good. To be the good guys, 
and do our jobs properly, we must be sophisticated about psychological warfare 
techniques. We use this knowledge to defend ourselves, defend our projects, and make 
progress in otherwise intractable situations. 

9.12 Exercises 

Exercise 9.1 

You will need two 15-minute segments of time to complete this exercise in "reading 
between the lines." 

First Set: 

Select a historical or fictional book that you might consider to be rather dry reading 
material. Depending upon your tastes it could be the Holy Bible or Catcher in the 
Rye. Find a story about people, and read a paragraph or two carefully. Think about what 
was it like to be those people. What motivations could they have? What pressures were 
they under? What do they want and why are they doing what they're doing? Use your 
imagination to fill in the details of their lives that further explain and enlighten the story. 
Have someone ask you these questions about the story and hear what you come up with. 

Second Set: 

Now select some technical reading material, perhaps a recent magazine. Pick articles 
written by vendors or consultants, individuals who are likely to have an agenda (selling 
something) for writing the story. Read a few paragraphs and think about them. Why are 
they telling you this? What is their agenda? How does their message compare with what 
you already know about the topic? Did they neglect to mention something germaine to 
the topic? Do they claim something which you suspect is misleading or blatantly false? 
Did they include proper citations for verifying their claims, or are they vague about their 
sources? What is their surface motivation, e.g., telling you about the Java language? And 
what is their true motivation, e.g., selling you their Java tool by telling you how hard your 
work will be without some great tool? 

Background for Solution: 

This is an exercise in subtlety. You are learning to perceive beyond the surface content 
and get into the author's head. What you know from your perspective is equally as 
important as the content that you are reading. Most messages that we encounter every day 
come from biased sources and there is a hidden agenda for sharing this information—for 
example, advertising and commercials. But more important, much of what you assume is 
unbiased editorial content (e.g., newspaper stories) is actually based upon press releases 
from highly biased sources. In fact, some large software companies have hundreds of 
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public relations agents feeding information to the media as quickly as they can assimilate 
and print it. This is the world of managed perceptions that we live in. Either learn to see 
through it, or be misled by most of what you read. 

Exercise 9.2 

To learn the concept of internal psychological control, there are a few things that you can 
practice all the time to consciously modify your natural reactions. 

First Set: 

When someone comes to you with a technical idea, it is natural to try to talk him out of it. 
We naturally want to discourage people from attempting things that lead to 
disappointment. In this exercise, try to spend a whole day encouraging people, instead of 
discouraging them. Before you reflexively blurt out your discouraging message, STOP! 
Take a breath. Think of a positive message, one that will give them ownership and 
permission to try it on their own recognizance. This exercise is about changing your own 
behavior. This discouragement behavior is one of the most obvious natural reactions, so 
we use it as a classic example which you can work on. 

Second Set: 

Unless you are in a high light environment, like San Diego beach, most people don't 
smile as a regular habit. In this exercise, try smiling when you encounter people—friends, 
acquaintances, and nonthreatening strangers. Inside your head, the message you want to 
convey with your smile is, "I want you to know that you matter and I care." This 
conscious modification of behavior will have a positive impact upon the people around 
you. You'll be having a good day, and you won't know why. 

Background for Solution: 

There is a distinct difference between what we would do naturally and emotionally, and 
what we should do for ourselves, our friends, and our businesses. Psychologically, we 
may be stressed out, we may be frustrated, we may want to lash out at people emotionally, 
sometimes for the slightest implied insult. In psychological warfare, we know that it is 
"always a mistake to take things personally." Before we react emotionally, internal 
control should kick in, directing us to respond, not react. By responding with internal 
control, we can maintain important relationships in our lives and our businesses, which 
might otherwise be destroyed in a few heedless moments. 

Exercise 9.3 

Try the following. Soon. Suppose that you know that you are about to be asked to deliver 
something, and you are on your way to management to discuss the details. In this 
exercise, we apply expectation management to our commitment for delivery. 
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Let's say that you think it's about one day's work, but you're likely to get interrupted and 
miss a one-day deadline. You believe that if you had two days, you could easily complete 
the task and deliver. And in three days you could deliver a gold-plated high-quality 
version. 

When you talk to management, I would propose three days, initially, and claim that, "I'll 
be able to deliver what we basically need by that time." If management balks, and claims 
they need it in one day, I would tell them the truth, with a bit of underselling. "I really 
need two days to do an adequate job. I'm very likely to get pulled off into other tasks 
during those two days, so it will be a struggle." If they absolutely insist on one day, tell 
them the truth again. State your conditions. "The only way I can deliver is if I get 
absolutely no interruptions. The only way I can ensure that is if I work at home and 
unplug the phones." 

They should buy on this basis, or find someone else to do the task. So, worst case, you 
get to spend a luxurious day at home. Take a long hot bath. Do a few hours of 
uninterrupted work. And take the rest of the day off. Worst case. More likely is that you'll 
get your two days, they'll expect a minimal job, and you'll deliver a more-than-minimal 
product, exceeding expectations. You'll be a hero. You kept your word. You delivered on 
time. And your quality exceeded expectations. Well done! You should give yourself a 
day off for working so hard! 

Background for Solution: 

It is quite natural to want to oversell something that you can do in order to quickly 
generate consensus. However, if you oversell, you have set yourself up for underdelivery. 
And that's the opposite of expectation management. 

Exercise 9.4 

Applying the principles of Psychological Akido, let's turn around your next negative 
situation and find the positive lessons learned. Suppose your boss (or customer) is in the 
habit of getting quite angry because the software is late and buggy, or some other equally 
normal occurrence. How should you react? Most people would have a reflexive 
emotional response (without thinking) which varies widely based upon early childhood 
experience (or so the psychologists claim). Some people might get angry, right along 
with the boss: "Those darn programmers, they're always late, and their code stinks, damn 
them to hell!" Other people can't tolerate anger, and they close down. They become very 
passive, afraid, and quiet. Or they find a reason not to be there and leave. 

As an expert martial artist in Psychological Akido, our response is to stay balanced. This 
is the boss's emotional trauma, not ours. We don't have to be afraid or angry. That's the 
boss's process erupting, not ours. We want to be there for the boss, and help him work 
through his feelings. Sensitively. I might say something like, "I'm sorry you feel that way 
about this situation, how can I help?" Neither angry, nor afraid, but compassionate. 
Ideally, let the boss sort his own problem. You might ask some leading questions to get 
him started on identifying alternatives. Perhaps, "What do you think is causing this 
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problem?" and "If you had a magic wand, what would we do to fix this?" Help the boss 
channel his/her energy into constructive brainstorming of alternatives, and then to 
selection of positive actions. 

Background for Solution: 

There are always alternatives. Using this martial art, we channel negative energy into 
constructive planning and action, because fundamentally we believe that positives and 
negatives are the same. Both express energy that leads to equally constructive 
possibilities. From the experience, we learn "how things happen," and a new way forward 
for dealing with negative situations. 

Exercise 9.5 

Suppose our job was to redirect 100 software projects to use a common process or 
standard, such as CORBA, within one year. If we were brilliant enough to redirect one 
project every week, through face-to-face mentoring, it would take two years to complete 
the task. Nobody is that brilliant or consistently productive. We can't succeed working 
one-on-one. That's working hard, not smart. 

The techniques of Intellectual Akido show a way forward. The core of the strategy is to 
prepare and present tutorials on CORBA that will evangelize and train the developers to 
use the technology effectively. In addition, various process and guidelines documents can 
make it easy to transfer lessons learned to projects, so that they can adopt the desired 
technology readily. In addition we would add a few other elements, such as an executive 
policy letter directing all projects to make the transition. We would also add CORBA to 
the enterprise operational environment (i.e., site licensing and easy acquisition and 
installation by any project) [Brown 98]. 

When given an intractable task such as the one described in this exercise is to approach it 
confidently with a firm grounding in the psychological warfare techniques that will make 
you ultimately successful. 
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Appendix A. Architecture Example: Test 
Results Reporting System 

A.1 Introduction 

A.2 Component Interoperability Challenge 

A.3 Target Architecture for the TRRS 

A.4 Target Enterprise Viewpoint 

A.5 Target Information Viewpoint 

A.6 Target Technology Viewpoint 

A.7 Prototype Implementation 

A.8 Prototype Computational Viewpoint 

A.9 TRRS Terminology 

A.10 Use Case Definitions 

A.11 Core Workflows 

A.12 Information Model 

A.13 Conclusions 

A.1 Introduction 

This appendix describes a case study architecture for a test results reporting system 
(TRRS). The TRRS is a software system initiative that is intended to help software 
developers resolve incompatibilities between reusable components. The application 
vision is further explained in [Weiler 99]. We begin with a description of the system 
concept within the context of UML. Next, the target architecture is defined as an open 
distributed processing (ODP) system specified in UML. The target architecture provides 
secure database access for a community of software developers and vendors via the 
Internet. The architectural prototype is described as a Java language application, specified 
in UML. 

A.2 Component Interoperability Challenge 
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In the development of large-scale distributed systems, there is a recurring need for teams 
of developers to share information about systems. Architecture mismatch is the term 
made popular by the Software Engineering Institute to describe the pervasive 
incompatibilities between the architectures of software systems [Garlan 95]. This 
problem is also an artifact of the increasing use of commercial-off-the-shelf (COTS) 
software in application systems. Multivendor solutions are the norm for both legacy and 
distributed object environments. 

Today, corporate software development organizations must support COTS products from 
hundreds of suppliers. Managing the compatibility relationships between numerous 
COTS products is a significant and costly problem in most medium to large corporations. 
The increasing frequency of software releases from COTS vendors exacerbates this 
problem for software developers. 

The TRRS is an initiative that attempts to resolve these challenges. Today, software 
developers perform a great deal of in-house testing of COTS products in an attempt to 
resolve these issues. The TRRS would enable software developers to share testing and 
development experiences about successful configurations of software products. In 
addition, technology suppliers could participate in the clearinghouse by integrating their 
web presence and product information. 

A complex, multienterprise system like the TRRS requires significant architectural 
planning, including the use of design patterns, architectural styles, and modeling tools. 
We describe here the part of the architecture involving UML case studies and initial Java 
prototyping. The sections that follow describe the target architecture for the TRRS's 
Internet presence; then the initial prototype is discussed. 

A.3 Target Architecture for the TRRS 

The target architecture for the TRRS is described in UML and organized according to the 
Open Distributed Processing (ODP) standard. As described in other parts of the book, 
ODP is a standard conceptual framework for object-oriented architectures [ISO 96]. The 
ODP framework provides a separation of design forces for managing the complexity of 
large-scale distributed architectures. ODP is quite flexible, and its flexibility is utilized to 
advantage in this example. For example, not all viewpoints are architecturally significant 
for this example, so we selectively exclude those viewpoints that are not necessary for the 
purpose of this system. 

A.4 Target Enterprise Viewpoint 

The TRRS enterprise viewpoint comprises a number of UML use cases that identify 
TRRS community participants and their policy relationships. Figure A.1 shows the 
UML use cases from the application software developer's viewpoint. The three use cases 
in the UML diagram indicate that software developers will be able to determine product 
compatibility from the TRRS in a number of ways. 
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Important enterprise policies concern integrity and liability for product statements in the 
TRRS databases. Semantic definitions in the UML Object Constraint Language (OCL) 
can define the policies (i.e., permissions, prohibitions, and obligations) of the enterprise 
actors in the TRRS process. 

Figure A.1. UML Use Cases for TRRS 

 

A.5 Target Information Viewpoint 

The TRRS information viewpoint comprises a set of UML class models. The information 
viewpoint identifies the key concepts that comprise the persistent state of the TRRS 
system. 

Figure A.2 is a UML diagram showing interoperability relationships between COTS 
products. Conformance Statements (Figure A.3) are vendor assurances of product 
conformance to standards. Interoperability Statements are a similar concept, except that 
pairs of vendors assure mutual product compatibility. Interoperability Test Reports 
contain test results from multiproduct interoperability testing. Interoperability Products 
are specific COTS solutions for multivendor compatibility. Experience Reports are 
documented case studies about successful product integration experiences. Together, 
these are the key document types stored in the TRRS database. 

Figure A.2. UML for Product Information 
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Figure A.3. UML for Supplier Information 

 
An important tradeoff in UML modeling concerns the number of concepts on each 
diagram. As shown in Figures A.2 and A.3, simpler UML diagrams are easier to 
understand because they portray a handful of closely related concepts. Simple UML 
diagrams can be combined to portray larger sets of concepts on fewer pages. When 
combined, the technical meaning does not change, but the understandability varies. Too 
many simple diagrams can be just as hard to understand as too few complex diagrams. 

A.6 Target Technology Viewpoint 

The TRRS technology viewpoint includes three phases of prototype planning (Figure 
A.4). These phased prototypes are selected to support incremental system evolution and 
scalability. The evolution from phase to phase is enabled by the choice of technologies 
and the provision of multitier interoperability boundaries in the implementation. 
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Phase 1 is a rapid prototype configured as a standalone Java application with a flat-file 
database. Phase 2 supports multiple clients on an intranet using RMI or IIOP technologies 
for distributed infrastructure [Malveau 97]. Phase 3 supports database scalability by 
replacing the flat file with a JDBC interface to a back-end database. 

The technical architectures for Phase 4 and beyond resemble Phase 3. Beyond Phase 3, 
the addition of TRRS software functionality for database entry, database integrity, and 
Internet-capable security means significant development challenges. Other development 
challenges include the provision of tools for architecture planning and management that 
utilize the TRRS data. For example, notification to software developers about relevant 
TRRS product entries (using push-technology) introduces a dynamic aspect to software 
architecture. 

Figure A.4. UML for Prototype Deployment 

 

A.7 Prototype Implementation 

In order to plan this prototype, we needed to define an affordable scope of capabilities to 
demonstrate the TRRS concept within tight budget and schedule deadlines. The UML 
modeling of the TRRS assisted greatly in identifying the core functionality for this first 
prototype increment. 

A low-fidelity (LoFi) mockup of the Phase 1 user interface was prepared and validated 
with potential users of the TRRS. LoFi is a useful paper-and-pencil exercise that enables 
rapid evolution and validation of user interface concepts. 
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As a first programming step, the developer used Java AWT Library objects to construct 
the user interface. Using cut-and-paste programming techniques from working Java code, 
the overall control structure of the application was configured. Additional programming 
customized the code for the TRRS application, working on both front-end and back-end 
capabilities iteratively. 

The sample database syntax was defined using a predictive-keyword parsing strategy. 
Multiple record formats were defined to represent the attributes of the key object types 
from the UML model. Product data was collected to populate the sample database using 
on-line information from vendors' Internet sites. Data collection was limited to a target 
market comprising selected database products and compatible CORBA products 
[Malveau 97]. The data collection process yielded interesting examples of vendor 
architecture mismatches and product data specification. 

The resulting prototype is shown in Figure A.5. The main TRRS window displays the 
product options (upper left). Software developers select a configuration of products using 
the ADD and REMOVE buttons to create the configuration list (upper right). The 
RETRIEVE RESULTS button accesses the database from the back end. The bottom 
panels display the retrieved clearinghouse documents, including standards conformance 
statements, product interworking evidence, and product installation requirements. The 
software developer then reviews the desired information using the DISPLAY 
DOCUMENT buttons. Figure A.5 is an example of the final screen appearance after 
document retrieval and display. 

Figure A.5. TRRS Prototype 
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A.8 Prototype Computational Viewpoint 

To support future evolution of the TRRS prototype into a deployed distributed system, a 
partitioning strategy was employed between the front-end and back-end application code. 
The coupling between these computational modules was limited to five operation 
signatures (Figure A.6). These Java operations were chosen to directly support a thin-
client implementation for the user interface. The majority of the application logic is 
allocated to the back-end. This strategy enables future distributed implementations of the 
TRRS prototype, as well as the integration of alternative front-ends and tools by vendor-
participants. 

Figure A.6. Computational Viewpoint Signatures in the Java Language 

 

A.9 TRRS Terminology 
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In our opinion, sorting out terminology is an important task for the architect, just because 
it seldom gets done on its own by other project members. The architect requires 
consistent terminology to articulate the architecture specification. In addition, the 
architect often creates new terminology in order to give the developers a handle on key 
concepts. The following is a preliminary TRRS glossary: 

Experience Report—  A report by an independent organization (not 
the product vendor) about a set of products. 

Feature (or Product Feature) —  A significant product 
capability that is selected from an enumerated list in the TRRS Categories. 
Examples: Security, Directory, Database Access 

Operating Environment—  An enabling hardware/software 
platform configuration upon which products can execute. 

Organization—  A participant in the TRRS, which may be a 
standards group, a product vendor, a testing organization (providing 
product-related services), or an IT user. 

Product—  A unit of commercially available software (i.e., readily 
available). 

Product Related Service—  A technical service that relates 
directly to product capabilities or utilization. Example: Training and 
testing. 

Standard Profile—  A "technology" that is published as an open 
systems specification (publicly available specification adopted by a 
standards group). A standard profile may be a derivative from a publicly 
available specification. 

Technology—  A reference to the specification of a "feature." Either 
the technology is a standard profile, or there is a default technology 
category: PROPRIETARY. Examples: For Security Feature: CORBA 
Security, GSS API, Secure TCP/IP Sockets. For Directory Feature: 
CORBA Naming, CORBA Trader, LDAP, X.500. 

A.10 Use Case Definitions 

In this section we describe the essential system-level use cases, identifying key 
interactions with the TRRS system. 

The essential interactions with the TRRS system involve the following actors and 
transactions: 

1. UC001 Product Information Retrieval Session 

Key Actor: Information Technology User (IT User). 
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Key Transaction: Retrieving product information and experience 
reports from the TRRS system. 

2. UC002 Product Information Entry Session 

Key Actor: Vendor. 

Key Transaction: Entering product information into the TRRS 
system. 

3. UC003 Experience Report Entry Session 

Key Actors: Solution Providers and Testers. 

Key Transaction: Entering experience reports into the TRRS 
system. 

This first set of use cases can be diagrammed as shown in Figure A.7. 

Figure A.7. Core Use Cases for TRRS System 

 

Use Case 001 Product Information Retrieval Session 

High-level sequence of actions: 

User directs browser at TRRS web site. 
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User logs in with IT user privileges. 

System identifies user "domain" and presents reference model graphic. 

User navigates to selected architectural level and product category using domain 
reference model. 

User requests display of a specific product category. 

System displays a list of alternative products. 

User selects a specific product. 

System displays product attributes. 

Extension: User can display attributes of other products. 

User exits TRRS site. 

Use Case 002 Product Data Entry Session 

High-level sequence of actions: 

Vendor staff directs browser at TRRS web site. 

Staff logs in with vendor privileges. 

Staff requests creation of new product data entry. 

System displays product data entry form. 

Staff selects product level and product category. 

Staff enters product attributes. Uses Product Entry Workflow (UC004). 

Staff submits form. 

System validates entries. 

Extension: System can request updates to form before accepting it. 

System confirms receipt of valid form, displaying entries. 

Staff confirms form submission. 

Extension: Staff can return to data entry form to modify entries and resubmit (Steps 7–
11). 

Staff exits TRRS site. 

Use Case 003 Experience Report Entry Session 

High-level sequence of actions: 

Staff of system solution providers or testers directs browser at TRRS web site. 

Staff logs in with tester or solution provider privileges. 

Staff requests creation of new experience entry. 
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System displays experience report data entry form. 

Staff selects product(s) from TRRS database. 

Staff fills in experience report data entry form. 

Staff submits form. 

System validates form entries. 

Extension: System can request updates to form before accepting it. 

System confirms receipt of valid form, displaying entries. 

Staff confirms form submission. 

Extension: Staff returns to data entry form to modify entries and resubmit (Steps 7–11). 

Staff exits TRRS site. 

A.11 Core Workflows 

These are core business processes of the TRRS organization. They provide supporting 
information for the primary use cases. 

UC004 Product Entry Workflow 

Key Actors: Product Vendor 

Context: Workflow initiating with the creation of a new 
product entry in the TRRS system. 

Vendor collects product data sheets and standards references to prepare for submission to 
TRRS. 

Vendor selects product features from TRRS categories to create a class features list. 

Vendor selects standards for asserting product conformance by completing conformance 
forms. 

Vendor identifies product's interoperability capabilities, completing interoperability 
forms. 

Vendor establishes linkages to own product information and external documentation. 

The product entry is committed to the TRRS system product directory. 

The product conformance and interoperability templates are entered into a workflow 
queue to solicit the following kinds of TRRS entries (see use cases UC005 and UC006): 

Standards Testing 

Independent Testing 

User Experience Reports 

UC004 Extension: Vendor nominates an additional feature 
category. 
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UC005 COTS Validation Workflow 

Key Actors: Testing Labs, Solution Providers, IT Users, 
Product Organizations Context: Workflow initiated when 
new conformance statements are asserted. 

Conformance statements are sent to independent evaluators, including Testing Labs, 
Solution Providers, and IT Users, soliciting test and experience inputs. 

1.  

Independent laboratory test generates test results, entered in TRRS system as experience 
report (see UC003). 

Solution providers using the product in systems development submit integration testing 
experience reports (UC003). 

IT Users submit usability results as experience reports (UC003). 

Continue with UC007. 

UC006 Interoperability Validation Workflow 

Key Actors: Independent Evaluators: IT Users, Testing 
Labs, Solution Providers, two or more Product Vendors. 

Context: Workflow initiated when new interoperability 
statements are asserted. 

Interoperability statements are sent to independent evaluators. 

Evaluators perform interoperability tests, product integrations, and usability experiments. 

Evaluators submit results to the TRRS as experience reports. 

Continue with UC007. 

Extension (from Step 3 above): Interoperability 
Solution 

Solution provider or third-party vendor may create an interoperability solution between 
two or more products. 

The interoperability solution can be registered with the TRRS as a product with these 
asserted interoperability statements. 

Solution providers can report their level of effort to create the interoperability solution. 

UC007 Experience Report Update 

Vendor assesses the experience report submissions. 

Vendor concurs with each report(See Extensions A and B.) 
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Report is stored and published in TRRS system. 

Extension A: Vendor does not concur (as in Step 2 above). 

Vendor does not concur with experience report 

TRRS returns report to author with comment. 

Author modifies report and resubmits. (Resume from Step 2 above.) 

Extension B: Deadline Passes 

Context: Vendor does not concur 

Sixty days pass since vendor has received report without concurring. 

Report is stored and published in TRRS system. 

A.12 Information Model 

This information model is provided for requirements purposes, as identifying the business 
classes and their attributes in the Interoperability Clearinghouse business environment. 
Note that it does not represent an engineered data model. 

The primary business objects in the TRRS system are shown in Figure .8. The 
following is a basic description of these objects. TRRS member organizations include 
standards groups, independent software vendors (ISV), testing laboratories, and IT users. 
Product related services are value-added capabilities provided by TRRS member 
organizations, such as testing, systems integration, and value-added reselling. A standard 
profile identifies a particular standard (or a user profile of a standard). An operating 
environment is a configuration of horizontal products and/or infrastructure products that 
enable the utilization of other higher-level products. An experience report is 
documentation of the use of a product. A product is a commercial software artifact. 

The entities shown in Figure A.9 identify the anticipated information requirements for 
the TRRS system. The sections that follow outline preliminary definitions of the 
associated information for these TRRS entities. Note that this does not constitute a 
normalized or engineered data model. Asterisks indicate fields which are anticipated to 
be indexed for the purposes of searching, e.g., primary and foreign keys. 

Figure A.8. Key Information Objects and Associations 
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Product Information 

Product Name and Version*—  The trade name of the product 
and the version number. The version number should be detailed and 
distinct for each product release. 

Release Date—  The date of initial general availability of the product. 

Organization Name*—  The vendor of the product. 

Organization URL*—  The web site URL of the vendor of the 
product. 

Product Class—  The class of product selected from TRRS 
Categories. 

Figure A.9. Preliminary Information Requirements 
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Function List—  A description of the product features from a 
business perspective. 

Product Data Sheet—  A detailed description of the product from 
a technical perspective. 

Interface Specification—  The external interface specification of 
the product. 

Operating Environment*—  The operating environment which 
this product supports. 

Interoperates with What Product—  Vendor-asserted 
interoperability relationships with specific product(s). 

Conforms to Standards—  Vendor-asserted standards 
conformance. 

Product Dependencies—  Additional products required for this 
product to operate. 

Is a Part of a Suite—  Name of the product suite of which this 
product is a member. 

Unit Price—  Manufacturer retail price for this release. 

UML/ADL Functional Specification—  Product specification 
in terms of Unified Modeling Language and formal specifications. 
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TRRS Status and URL Links 

Interoperability Validation—  Links to TRRS documents that 
are evidence of interoperability between this product and other products. 

Standards Conformance Testing—  Links to TRRS 
documents that are evidence of conformance between this product and 
standards. 

Usability Testing Awards—  Links to TRRS documents that are 
evidence of product usability, or awards for usability. 

User Implementation Validation—  Links to TRRS 
documents that are evidence of experience of utilization of this product, 
e.g., Experience Reports. 

Standard Profile Information 

Standard Name—  The title phrase that identifies this standard. 

Standards Organization—  The organization(s) which issue this 
standard. 

Class—  The product class to which this standard applies. 

Standard Number and Current Version—  The formal 
standards number and version numbers of this standards release. 

Release Date—  The date of initial public availability of this standard. 

Standard Function List—  A description of the features that are 
standardized, explained from a business perspective. Corresponds to the 
terminology and keywords used for the Product: Feature List. 

UML Specification—  The Unified Modeling Language 
specification of this standard. 

Bibliography—  A document bibliography corresponding to this 
standard (e.g., including ANSI National Standards Number). 

URL or XML Tag—  A web site URL or XML description to provide 
a referral for more information about this standard. 

Standard Price—  Cost of obtaining the standards specification. 

Reference Implementation or Testing Tool—
  Description of an implementation of the standard which is inexpensively 
available as a reference to implementers. Alternatively a description of a 
testing tool which can be used to assess conformance of implementations 
to the standard, including instructions or contacts on how to obtain the 
reference implementation or testing tool. 

Approved Testing/Branding Organization*—  Cross 
reference to a testing organization or branding organization, where a 



IT-SC 249

testing organization provides conformance testing as a "product related 
service," and/or a branding organization grants trademarks with associated 
conformance guarantees. 

Conforming Products—  Links to products with some level of 
conformance to the standard. 

Organization Information 

Organization Name—  Legal or business name of the organization. 

Organization Type—  Kind of organization as characterized by a 
TRRS Category. 

Industry—  Industrial domain for this organization, e.g., 
manufacturing, telecommunications, etc. 

Contact Information—  How to contact this organization, 
including: principal point of contact, address, phone, fax, and email. 

Standards Affliliation—  Membership in a standards organization 
or organizations. 

Service Offerings*—  The kinds of services performed, including 
"Product Related Services," e.g., conformance testing. 

Product Offerings*—  The products offered, cross referenced to 
"Product" entities. 

Experience Reports*—  Cross referenced to published experience 
reports, registered with the TRRS. 

Validation/Awards Information—  Description (and cross 
reference) to the standards conformance validations or awards received. 

Product Related Services Information 

Service Name—  Name of the service performed. 

Service Class—  Kind of service. 

Organization Name*—  Name of the organization performing the 
service. 

Description—  Description of the service performed. 

Associated Product Suites—  Cross referenced to the product 
suites upon which this service is performed. 

Contact Information—  Instructions and information for how to 
request the service. 

Pricing—  Cost of the service. 
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Contract Vehicles—  In-place mechanisms for acquiring the service, 
e.g., basic ordering agreements, etc. 

TRRS Status and URL Links 

Accreditations—  Credentials associated with the service. 

User Experience Reports—  Cross referenced to experience 
reports pertaining to this service. 

Certifications—  Certification credentials relevant to this service. 

Experience Report Information 

Report Name—  Name describing this experience. 

Report Type—  Kind of report, from TRRS Categories. 

Organization Name*—  Cross referenced to the organization that 
submitted the report. 

Product Name—  Name of the product(s) addressed by this 
experience report. 

Environment—  Operating-environment context for this experience. 

URL Link—  Link to the experience report content. 

Results and Status—  Summary of the experience report outcome. 

Operating Environment Information 

Operating Platform—  Description of the (hardware/software) 
platform embodied by this operating environment. 

Class—  Type of operating environment, e.g., client, server, net-server, 
embedded. 

Product Name—  Name of the product designating this operating 
environment. 

Device Drivers—  Installed device drivers (hardware/software) 
required in this operating environment. 

Database Runtime—  Database products supported in this 
operating environment. 

Procotol Stack—  Networking protocols supported in this operating 
environment. 

Industry Adoption of Platform—  Endorsements for this 
operating environment and its components. 

A.13 Conclusions 
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This test results reporting system is a case study that demonstrates the applicability of 
ODP and UML notation to architecture and prototyping. The diagram literacy that UML 
makes possible benefits efforts like the TRRS by making technical documentation 
universally understandable. UML supports the application of powerful tools for advanced 
software development practices, including: design patterns, OO frameworks, architecture 
styles, and components. Combining these UML technologies and practices with Internet 
applications makes ambitious concepts like the TRRS feasible. Note that the architecture 
does not comprise an engineered design, but does specify details such as information 
requirements in a form that is much closer to implementation than ordinary prose 
requirements. 
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Appendix B. Design Templates and 
Examples 

B.1 Conceptual Design 

B.2 Relationship Service Conceptual Design 

B.3 High-Level Design 

B.4 Relationship Service High-Level Design 

B.1 Conceptual Design 

Conceptual design focuses on high-level issues. It defines the scope and limits of the 
design. It looks at issues from different perspectives. It ensures that use cases are handled 
naturally and smoothly. It is completed prior to high-level design, detailed design, or 
implementation. 

Conceptual design documentation provides an overview of a component or service 
(utility). It includes the following sections: 

Goal 

Responsibilities 

Architectural level 

Classes and objects, class semantics, and class relationships 

Description of features, interactions, data types, and constraints 

How the design addresses relevant use cases and requirements 

Section 1 Goal 

The goal is a single, simple, and complete statement that captures the purpose of a 
component or service (utility). 

Good Example 

The trash bag [component] provides people a disposable container for refuse. 

Poor Example 

The trash bag [component] is used both indoors and outdoors to put refuse in so it can 
later be picked up by a garbage truck or taken to a garbage dump. 
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Section 2 Conceptual Overview 

The conceptual overview is a one- or two-paragraph statement supporting the goal and 
describing what the reader can expect from the remainder of the document. 

Example (from Profile Service Conceptual Design) 

In addition to information that is intrinsic to a business object (BO), it is useful to find 
other related information about the BO that is not part of what defines that object, but is 
useful nevertheless. The discovery interface available on these BOs allows one to add and 
retrieve such related data by means of the Metadata, Property, Ontology and Relationship 
services. However, the absence of a uniform template that tells one what data can be 
expected from these services limits their usefulness. It is this template that is provided by 
the profiling service in the form of one or more profiles for each type of business object. 

Section 3 Responsibilities 

Responsibilities describe what a component does or what it keeps track of. They are 
listed in order of priority, with more important or larger responsibilities listed first. Each 
responsibility must first be captured by a single, simple sentence (not compound with lots 
of "ands"). A description including important supporting details should follow. The 
description may introduce subconcepts, but not new or super concepts. 

Good Example 

The Boy Walking Dog [component] 

exercises the dog. He does this twice a day. 

prevents the dog from running away. He does this by keeping the dog on a leash. 

ensures doggie creates waste. 

cleans up doggie waste. 

Poor Example 

The Boy Walking Dog [component] 

uses a scooper. This is part of cleaning up after the dog. 

walks the dog and learns to whistle. He also picks up a gallon of milk at the store he 
passes along the way. 

Section 4 Architectural Level[1]  

[1] Architectural level is also used to organize documents in the file system 

The architectural level is one of the following: 
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Application. The application level encompasses application and session components, 
application and session utilities, and user interface classes and utilities. 

Domain. The domain level includes vertical domain-specific components and services. 

Foundation. The foundation level encompasses common services, such as workflow, 
naming or metadata, and core components and data types, such as EiObject and 
FormattedDataRep. 

For application components, also note whether the component is generic to all domains or 
specific to either a single or a limited number of domains. 

Section 5 Classes and Objects, Class Semantics and Class 
Relationships 

This section should contain one or more diagrams (probably not more than three or four) 
identifying classes and objects, class semantics and class relationships. Diagrams should 
be responsibility oriented, not data oriented. They should show the relationships and 
interactions between classes, and class semantics. They should show how classes or class 
groupings fulfill responsibilities listed in Section 3. 

Each diagram should be accompanied by a sequence of interactions that are taken to 
fulfill each responsibility the diagram fulfills. 

Diagrams are drawn using Visio or PowerPoint and inserted into a conceptual design 
document electronically. Diagrams do not have to follow UML standards. They should be 
drawn relatively quickly, and should have just enough detail to illustrate concepts. In 
other words, these diagrams should be kept simple. 

Example (See Figure B.1) 

The boy attaches the leash to the dog and holds it throughout the walk. 

The leash restrains the dog throughout the walk. 

The dog exercises. 

At least one time during the walk, the dog creates waste. This may occur randomly 
throughout the walk; however, the walk isn't complete until there is at least one 
occurrence. 

Following each occurrence of the dog creating waste, the boy operates the scooper. 

The scooper picks up and stores the waste. 

Section 6 Description of Features, Data Types, and Constraints 

Features are fine-grained mechanisms for fulfilling responsibilities. There should be 
many more features than responsibilities, and the features should directly support 
responsibilities. Data types are supported formats for populating classes. Constraints are 
limitations imposed on classes, relationships, and interaction. 



IT-SC 255

The detailed description: 

Refers to class diagrams where appropriate 

Does not address implementation details 

Relates each point back to specific classes, objects, or responsibilities 

Does not introduce new concepts 

Figure B.1. Boy Walking Dog Component Classes 

 

Examples 

The boy component has a watch so it knows when to walk the dog 

The boy component can bend, allowing it to position the scooper effectively 

The leash is made of leather to ensure that the dog can be restrained under any conditions 
(for example, if the dog starts to run or jerk) 

The dog can exercise at speeds from 0 to 30 mph 

The scooper holds 100 cm3 of waste 

The scooper may be of type Johnson & Johnson Model B or DuPont Model 52-P412 

Section 7 How the Design Addresses Relevant Use Cases and 
Requirements 

This section references relevant use cases and requirements and their source documents. 
No new design concepts are introduced. References to class diagrams and responsibilities 
are made where needed to clarify how the component fits in with the use case or 
requirements. 

Example 
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The Boy Walking Dog component satisfies the following requirements from Use Case 
TCP1: Takes Care of Pet in the Family Household System Scope definition documents. 

TCP1.2.1 The dog must be exercised twice daily 

TCP1.2.2 The dog must create waste when it exercises 

TCP1.2.3 The dog must be cleaned up after 

B.2 Relationship Service Conceptual Design 

Section 1 Goal 

Enable the explicit representation of entities and relationships. 

Section 2 Conceptual Overview 

The Relationship Service allows entities and relationships to be explicitly represented. 
Entities are objects. Roles represent objects in a Relationship. 

The Relationship Service contains a list of relationship factory objects, each of which 
contains relationships of a particular type. Relationships are between object instances and 
are dynamically created from Roles. Roles are defined as part of the description of a 
relationship and also contain a reference to an object instance and a name for the role 
instance within a particular relationship. Relationships are typically the result of dynamic 
system processes versus class attributes, which are part of the object's definition. 
Relationship types are defined by the processes occurring within a domain model. 
Typical relationships include owned-by, responsible-for, part-of, and member-of. 

The Relationship Service introduces the concept of RelationshipFactory, which is the 
universe of relationship instances that share the same relationship type. A 
RelationshipFactory is analogous to a table, where each row constitutes a relationship 
instance, and every column can be regarded as a Role. Figure B.2. exemplifies this 
analogy. 

• Type  

Related entities and the relationships themselves are typed. In 
the example, the Patient-Doctor relation is a relationship among 
two persons. The Patient and Doctor roles constrain their 
associated object types to the object type Person. 

• The roles of entities in relationships  

A RelationshipFactory is defined by a set of roles that entities 
have. In the example, a person plays the role of Patient, and 
another one plays the role of Doctor. A single entity (i.e., Ms. 
Robinson) can have different roles in distinct relationships. 

• Degree  
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Degree refers to the number of required roles in a relationship. 
In the example, the Patient-Doctor relation is a degree-two 
relationship. 

• Cardinality  

For each role in a relation, the cardinality specifies the maximum 
and minimum number of relationships that may involve that role. 
In the example, the Patient role may have a minimum cardinality 
of one and a maximum cardinality not specified (a doctor may 
take care of one or many patients). The Doctor role may have a 
minimum and maximum cardinality of one (if a patient can have 
only one primary doctor assigned). 

Figure B.2. The Patient-Doctor RelationshipFactory Analogy. 
Relationships can be characterized along a number of dimensions 

 

• Uniqueness  

Uniqueness describes a constraint among roles in a relation that 
determines whether the same object name may exist in multiple 
roles for a single relationship. In the example, the object Dr. 
Garfunkel is unique with respect to a single relationship because 
a patient of Dr. Garfunkel cannot assume the role of a doctor 
and treat Dr. Garfunkel as a patient. 

Section 3 Responsibilities 

The Relationship Service is responsible for: 

Representing entities and relationships 

Managing the life cycle of RelationshipFactories 

Managing the life cycle of Relationships 

Providing a way to traverse to the related entities 

Section 4 Architectural Level 
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Foundation 

Section 5 Classes and Objects, Class Semantics, and Class 
Relationships 

The following classes support the use of the Relationship Service: 

RelationshipFactoryFactory 

RelationshipFactory 

Relationship 

Relation: Contains all the Relationship instances of the relationship 
type that it defines. Manages the life cycle of a Relationship. Holds the 
constraints that a set of objects has to meet in order to participate in the 
relationship type. 

Relation Factory: Manages the life cycle of a RelationshipFactory. 

Relationship: References the related objects. 

Role: Holds the constraints that an object has to meet in order to assume 
the role. 

Role Factory: Manages the life cycle of a Role. 

The following structure supports the use of the Relationship Service: 

Named Object: Contains the name of the role that the object wants to assume and a 
reference to the object. 

The scenario shown in Figure B.3 depicts the Relation Creation Process, to illustrate 
the interactions among the different classes in the system. 

The Create Relation BPO passes the role name and cardinality constraints to the Role 
Factory (i.e., Role name = "Doctor," minimum and maximum cardinality = 1). 

The Role Factory creates the Role object (i.e., The role Doctor). 

The Create Relation BPO sets the type constraints on the Role object (i.e., Adds the 
object type Person to the role Doctor). 

The Create Relation BPO repeats steps 1–3 for every role in the relation. 

The Create Relation BPO passes the relation name and the role objects to the Relation 
Factory (i.e., Relation name = "Patient-Doctor," Patient and Doctor roles). 

The Relation Factory creates the Relation object (i.e., The Patient-Doctor relation). 

The Create Relation BPO sets the relation properties on the Relation object (i.e., 
Specifies that the role Patient is antisymmetric with the role Doctor). 

The scenario shown in Figure B.4 depicts the Relationship Establishment Process that 
creates a relationship instance between two objects. 
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The Establish Relationship BPO asks the Relation Factory to find a specified relation 
(i.e., Find relation "Patient-Doctor"). 

The Relation Factory retrieves the Relation object (i.e., The Patient-Doctor relation). 

The Establish Relationship BPO passes a set of Named Objects to the Relation object 
(i.e., {Role name = "Doctor" and a reference to the Person instance Dr. Cheng} and 
{Role name = "Patient" and a reference to the Person instance Mr. Lee}). 

The Relation object verifies that the passed objects meet the roles (type and cardinality) 
and relation (degree and properties) constraints (i.e., Dr. Cheng has to be of the object 
type Person). 

The Relation object creates the Relationship object that relates the passed objects. 

Figure B.3. Relation Creation Process 

 

Figure B.4. Relation Establishment Process 
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Section 6 Description of Features, Data Types, and Constraints 

Features 

Ability to represent entities as objects. 

Ability to represent different types of Relationships. 

Ability to represent entities participating in a Relationship as Roles. 

Ability to characterize Role constraints within a Relationship. 

Create/Delete RelationshipFactories. 

Create/Delete Relationships. 

Traverse to related objects through Relationship objects and Role constructs. 

Data Types 

The Roles for a Relationship are defined as a structure to decrease the overall number of 
objects which need to be created per relationship. Also, the definition of Role, including 
their constraints, and the definition of the Relationship are also modeled as structures. 
This is to support the expected usage pattern of retrieving descriptive information to 
display a set of related characteristics, as most of the values make little sense in isolation, 
i.e., Maximum Cardinality. 

       
struct RoleDef { 
        string roleName; 
        InterfaceDefSeq allowedTypes; 
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        long minCardinality; 
        long maxCardinality; 
        boolean uniqueObjectName; 
}; 
typedef sequence <RoleDef> RoleDefSeq; 
 
struct RelationshipDef { 
        string relationshipName; 
        string relationshipDesc; 
        RoleDefSeq roleDefs; 
}; 
typedef sequence <RelationshipDef> RelationshipDefSeq; 
 
struct Role { 
        string roleName; 
        string objectName; 
        CORBA::Object relatedObject; 
}; 
typedef sequence <Role> RoleSeq; 
 
      

Constraints 

An object must be a CORBA::Object in order to participate in a Relationship. 

Section 7 How the Design Addresses Relevant Use Cases and 
Requirements 

The design supports the following requirements stated in the Virtual Hub Requirements 
document. 

Information Management Requirements  

4.4  Photographs will be assigned a role based on the categories listed in Section 4.2 
of TEC95 

4.9 The user may establish relationships between ground truth data 

4.10
The user may establish relationships between ground truth data and products or
documentation 

Situational Awareness Requirements  
12  The user may associate a geographical feature 
12.1 With a Business Object 
12.3 With ontology Concepts 
Dynamic Linked Documents Requirements  
25  Linked Documents 
25.3 Embedded objects need to be 'linkable' to other objects. 
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B.3 High-Level Design 

High-level design precisely allocates component or service (utility) behaviors and 
responsibilities. It also details relationships with other components. Highlevel design is 
completed prior to detailed design and implementation. 

The high-level design documentation deliverable is a prose document with the following 
sections: 

Screen Mockups 

UML Diagrams 

Discovery Interface Use 

Component Reuse 

Representative Use Cases 

Section 1 Screen Mockups 

Screen mockups are created for interesting graphical user interfaces. This includes all 
interfaces essential to fulfilling component or service responsibilities. Each screen 
mockup is accompanied by a decription of input and feedback, and how the view changes 
as work progresses. 

Section 2 UML Diagrams 

Text description of where to find the component, and how to open and close it. 

Section 3 Discovery Interface Use 

Section 4 Component Reuse 

Section 5 Representative Use Cases 

B.4 Relationship Service High-Level Design 

Section 1 Screen MockUps 

The Relationship service will use the Relationship Composer and Relationship Browser 
to visualize its contents. The service itself will not have a visual component. 

Section 2 Design Considerations 

Several issues affected the design. This design overcomes several of the flaws in the 
other industry relationship service while avoiding much of the complexity of the previous 
relationship service design. The primary capability which existed in the previous version 
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of the relationship which is not included in the new design is the rich set of constraints 
(i.e., symmetric, antisymmetric, reflexive, transitive, etc.). There are no plans to include 
such constraints in the future, as the value they provide is not worth the increase in 
complexity and decrease in understandability of the design. 

These were the major issues involved in the design: 

There was a desire to limit the number of CORBA objects created to one per relationship 
instance. The other relationship services are frequently criticized for requiring the 
instantiation of several CORBA objects per relationship instance, which is expensive and 
results in poor resource utilization. 

A desired feature of the Eidea Labs relationship service was the capability to create new 
relationship types dynamically. Few other relationship services currently provide this 
capability. 

Another feature which was desired was a more straightforward use of the service when 
interacting with the Eidea Labs Discovery interface. 

CORBA provides very limited support for object equality. This design does not explicitly 
address this issue nor does it require objects participating in a relationship to implement 
an interface which uniquely identifies an object instance. Flexibility in describing unusual 
relationship types was also desired, such as relationships between arbitrary configurations 
of groups of objects. 

The design needed to adhere to the Eidea Labs architectural principles, including minimal 
interfaces, concise abstractions, and reasonable scalability to support large-scale 
enterprise systems. 

Section 3 Component Reuse 

This component will use Objectstore to manage its persistence and Visibroker to manage 
its distribution. No other reuse of software is expected. 

Section 4 Discovery Interface Use 

The Relationship Service defines a class RelationshipBag which is stored inside domain 
objects and accessed through the discovery interface. The Relationship service modifies 
this class to add relationships to the Relationship bag so they can be accessed by clients 
to the business object in order to discover the specific relationships an object instance 
participates in. 

Section 5 OMG IDL 

This completely replaces the Relationship Service IDL which was used in the 
Relationship Service implementations. 

Complete IDL 
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#include <eiTypes> 
 
module ei { 
   module RelationshipService { 
       struct Role { 
              string roleName; 
              string objectName; 
              CORBA::Object relatedObject; 
       }; 
       typedef sequence <Role> RoleSeq; 
 
       struct RoleDef { 
              string roleName; 
              InterfaceDefSeq allowedTypes; 
              long minCardinality; 
              long maxCardinality; 
       }; 
       typedef sequence <RoleDef> RoleDefSeq; 
 
       struct RelationshipDef { 
              string relationshipName; 
              string relationshipDesc; 
              RoleDefSeq roleDefs; 
              boolean uniqueObjectName; 
       }; 
       typedef sequence <RelationshipDef> 
RelationshipDefSeq; 
 
 
       RelationshipFactoryFactory { 
              exception CannotCreateRelationshipFactory {}; 
 
              RelationshipFactory create(in RelationshipDef 
                 definition); 
              void remove(in RelationshipFactory factory); 
       };  // end interface RelationshipFactoryFactory 
 
 
              exception CardinalityViolation {}; 
              exception UniquenessViolation {}; 
              exception ObjectTypeViolation {}; 
              exception InvalidRole {}; 
              exception NameMismatch {}; 
 
       interface RelationshipFactory { 
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              readonly attribute RelationshipDef 
description; 
 
              Relationship create(in RoleSeq roles) raises 
(Car- 
dinalityViolation, 
                     UniquenessViolation, 
ObjectTypeViolation, 
                        InvalidRole); 
              void remove(in Relationship relationship); 
       };  // end interface RelationshipFactory 
       interface Relationship { 
    
 
              readonly attribute RoleSeq roles; 
              readonly attribute RelationshipDef 
description; 
 
              RoleSeq findRoles(in string objectName) 
raises 
                 (NameMismatch); 
              void addRoles(in RoleSeq roles) raises 
(Cardinali- 
                 tyViolation, 
                     UniquenessViolation, 
ObjectTypeViolation, 
                        InvalidRole); 
              void removeRoles(in RoleSeq roles) raises 
(Cardi- 
                  nalityViolation, 
                     InvalidRole); 
       }; // end interface Relationship 
 
       interface RelationshipBag { 
              exception NameMismatch { }; 
 
              RelationshipSeq find(in string 
relationshipName); 
              RoleSeq findRoles(in string relationshipName); 
              StringSeq getRelationshipTypes(); 
 
       // The following two operations are used by the 
Relation- 
          ship Service to 
       // add Relationship reference to object if the 
Relation- 
          shipBag is available 



IT-SC 266

       // through the discovery interface 
        
          void addRelationship(in Relationship 
newRelation- 
             ship, 
                 in string objectName) raises (NameMis- 
                    match); 
          void removeRelationship(in Relationship relation- 
ship); 
       };  // end interface RelationshipBag 
   }; // end module RelationshipService 
};  // end module ei 
 
      

Section 6 Population 

This effort will define the following three relationship types: 

Associated-With 

This Relationship is used to model general associations between two objects of any type. 
It provides a straightforward one-to-one mapping, can accept objects of any type, and 
constrains the two objects to have a different name assigned to their role. The relationship 
consists of two roles: Subject and Associated. 

Composed-Of 

This Relationship is used to associate Spectra objects with other objects, with the 
semantics of one object being composed of a set of materials with the corresponding 
spectral signatures. It allows up to ten spectra to be associated with an object. There are 
two roles, a Subject role, which can be of any object type, and a Material role, which 
must be a Spectra object. All of the objects in the relationship must be assigned different 
names. 

Produced-by 

This Relationship is used to associate an object, typically a Feature object, with the 
WorkItem or Business Process that created it. The relationship has two roles, the Result 
role, which can be of any object type, and a Process role, which must be an object of type 
WorkItem or BPO. The process role has a cardinality of exactly one, as does the Result 
role. The Result and Process roles must be assigned different names. 

Section 7 Representative Use Cases For Event Traces 

The following use case will demonstrate the base capability of the Eidea Labs 
Relationship Service. 
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VHP3c Associates Geographical Feature 

The purpose of this use case is to associate a geographical feature with ancillary 
information to provide a more complete description of the feature. 

Section 8 Client Profile 

The following Java utility class will provide a more convenient, finer-grained access to 
the information contained in the Relationship service: 

      
class RelationshipWrapper { 
       RelationshipWrapper(RelationshipSeq relationships); 
       RelationshipWrapper(ei::component eiObject); 
       string Name(); 
       string[] RoleNames(); 
       string[][] RoleValues(string[] roleNameList); 
       long count(); 
       long minCardinality(string roleName); 
       long maxCardinality(string roleName); 
       boolean uniqueName(string roleName); 
       string[] allowedTypes(string roleName); 
       string[] getObjectName(string roleName); 
     

Figure B.5. Relationship Service 
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     boolean objectPlaysRole(string objectName, string 
role- 
        Name); 
     boolean objectIsParticipant(string objectName); 
}; 
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Section 9 UML Class Diagrams 

The UML class model for the architecture is shown in Figure B.5, on the previous page. 
The relationship factory creates relationship objects. These objects are typically 
contained in a relationship bag. The factory itself has a factory-factory that supports 
independent distributed creation operations throughout the system. 
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Appendix C. Glossary of Software 
Architecture Terminology 

Glossary 

This glossary is a derivative compilation of terms, including 
terminology from the Reference Model for Open Distributed Processing 
(RM-ODP) [ISO 96]. If the term is viewpoint specific, the viewpoint is 
indicated in brackets (for example "[ENTERPRISE]"). 
Abstraction:  

The process of suppressing irrelevant detail to establish a 
simplified model, or the result of that process. 
 

Access Transparency:  
A distribution transparency which masks differences in data 
representation and invocation mechanisms to enable 
interworking of objects. 
 

Action:  
Something that happens. Every action of interest for modeling 
purposes is associated with at least one object. 
 

Activity:  
A single-headed directed acyclic graph of actions, where the 
occurrence of each action in the graph is made possible by the 
occurrence of all immediately preceding actions (i.e., by all 
adjacent actions which are closer to the head). 
 

Architecture of a System:  
A set of rules that defines the structure of a system and inter-
relationships between its parts. 
 

Behavior of an Object:  
A collection of actions with a set of constraints on when they 
may occur. The specification language in use determines the 
constraints which may be expressed. Constraints may include, 
for example, serializability, nondeterminism, concurrency, or 
real-time constraints. A behavior may include internal actions. 
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The actions that actually take place are restricted by the 
environment in which the object is placed. 
 

Binder [Engineering]:  
An engineering object in a channel that instantiates and 
maintains a distributed binding between interacting engineering 
objects. 
 

Capsule [Engineering]:  
A configuration of engineering objects forming a single unit for 
the purpose of encapsulation of processing and storage. Virtual 
machines and processes are examples of a capsule. 
 

Channel [Engineering]:  
A configuration of stubs, binders, protocol objects, and 
interceptors providing a binding (connection) between a set of 
interfaces to engineering objects, through which interactions can 
occur. Bindings that require channels are referred to as 
distributed bindings in the engineering language. Bindings that 
do not require channels (i.e., between objects in the same 
cluster) are referred to as local bindings. 
 

Checkpoint [Engineering]:  
An object template derived from the state and structure of an 
engineering object that can be used to instantiate another 
engineering object, consistent with the state of the original 
object at the time of checkpointing. 
 

Class:  
The set of all entities satisfying a type. 
 

Cluster [Engineering]:  
A configuration of engineering objects forming a single unit of 
deactivation, checkpointing, reactivation, recovery, and 
migration. A segment of virtual memory containing objects is an 
example of a cluster. 
 

Community [Enterprise]:  
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A configuration of (enterprise) objects formed to meet an 
objective. The objective is expressed as a contract which 
specifies how the objective can be met. 
 

Compliance:  
The satisfaction of architectural constraints by a set of 
specifications. 
 

Composition of Objects:  
A combination of two or more objects yielding a new object, at a 
different level of abstraction. The characteristics of the new 
object are determined by the objects being combined and by the 
way they are combined. The behavior of the composite object is 
the corresponding composition of the behavior of the component 
objects. The composition of a collection of objects yields an 
equivalent object representing the composition. The behavior of 
this object is often referred to simply as the behavior of the 
collection of objects. 
 

Computational Viewpoint:  
The computational viewpoint partitions the system into objects 
which interact at interfaces. It enables distribution through 
functional decomposition of the system. 
 

Configuration of Objects:  
A collection of objects able to interact at interfaces. A 
configuration determines the set of objects involved in each 
interaction. The concept of interface and the related concept of 
interaction are defined terms. From these definitions, the 
concept of configuration can be seen to encompass not just a 
collection of objects, but also the way in which those objects are 
able to interact. 
 

Conformance:  
The satisfaction of specification constraints by a system or 
product implementation. 
 

Conformance Point:  
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In a specification, a conformance point corresponds to an 
architectural reference point. A conformance point is where 
behavior may be observed for the purposes of conformance 
testing. 
 

Contract:  
An agreement governing part of the collective behavior of a set 
of objects. A contract specifies obligations, permissions, and 
prohibitions for the objects involved. The specifications of a 
contract may include: 

• a specification of the different roles that objects involved in 
the contract may assume; 

• the interfaces associated with the roles; 

• Quality of Service (QoS) attributes; 

• Quality of Protection (QoP) attributes; 

• indications of duration or periods of validity; 

• indications of behavior which invalidates the contract 
(preconditions, postconditions, invariants); 

• live-ness and safety conditions. 

 

Contractual Context:  
The knowledge that a particular contract is in place and that a 
particular behavior of a set of objects is required. An object may 
be in a number of contractual contexts simultaneously; the 
behavior of that object is constrained by the intersection of the 
contractual agreements. 
 

Decomposition of an Object:  
The specification of a given object as a composition. As an 
example of the above definitions, an object, A, may be 
decomposed into a composition of objects, X and Y and Z, and, 
conversely, objects X and Y and Z may be composed into the 
single object, A. 
 

Distribution Transparency:  
An abstraction of the complexity of distribution processing from 
particular system users (such as application software 
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developers). The standard distribution transparencies include: 
access, failure, location, migration, relocation, replication, 
persistence, and transaction. See the corresponding definitions. 
 

Domain:  
A set of objects, each of which is related by a characterizing 
relationship to a controlling object. Every domain has a 
controlling object associated with it. Examples of domains are 
Security domains and Management domains. 
 

Dynamic Schema [Information]:  
A dynamic schema is a specification of allowable state changes. 
 

Engineering Viewpoint:  
The engineering viewpoint focuses on object allocation, 
mechanisms, and functions (i.e., services) required to support 
distributed interaction between objects in the system. 
 

Enterprise Viewpoint:  
The enterprise viewpoint focuses on the purpose, scope, and 
policies (obligations, permissions, and prohibitions) of the 
system. 
 

Entity:  
Any concrete or abstract thing of interest. While in general the 
word entity can be used to refer to anything, in the context of 
modeling it is reserved to refer to things in the universe of 
discourse being modeled. 
 

Environment of an Object:  
The part of the model which is not part of that object. The set of 
actions associated with an object is partitioned into internal 
actions and interactions. An internal action always takes place 
without the participation of the environment of the object. An 
interaction takes place with the participation of the environment 
of the object. 
 

Epoch:  
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A period of time for which an object displays a particular 
behavior. 
 

Error:  
Part of an object state which is liable to lead to failures; a 
manifestation of a fault in an object. Corrective action may 
prevent an error from causing a failure. 
 

Failure:  
The violation of a contract. The behavior specified in the contract 
is, by definition, the correct behavior. A failure is thus a 
deviation from compliance with the correct behavior. 
 

Failure Transparency:  
A distribution transparency which masks, from an object, the 
failure and possible recovery of other objects (or itself), to 
enable fault tolerance. 
 

Fault:  
A situation that may cause errors to occur in an object. Faults 
can be accidental, intentional, physical, man-made, internal, 
external, permanent, or temporary. 
 

Federation [Enterprise]:  
A community of domains. 
 

Function:  
Distributed processing functions are fundamental, widely 
applicable services that enable the construction of distributed 
processing systems. There are four standard categories of 
functions [ISO 96]: 

• Management functions: object management, cluster 
management, capsule management, node management 

• Coordination functions: event notification, checkpointing 
and recovery, deactivation and reactivation, group, 
replication, migration, engineering interface reference 
tracking, transaction 
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• Repository functions: storage, information organization, 
relocation, type repository, trading 

• Security functions: access control, security audit, 
authentication, integrity, confidentiality, nonrepudiation, 
key management 

 

Implementation [Technology]:  
A process of instantiation whose validity can be subject to test. 
 

Information Viewpoint:  
The information viewpoint focuses on the semantics of 
information and information processing. 
 

Instantiation of an Object Template:  
An object produced from a given object template and other 
necessary information. This object exhibits the features specified 
in the object template. 
 

Interaction Point:  
A location where there exists a set of interfaces. A location is a 
position in both space and time. 
 

Interceptor [Engineering]:  
An engineering object in a channel located at a boundary 
between domains. An interceptor performs checks to enforce or 
monitor policies on permitted interactions between engineering 
objects in different domains. Interceptors perform 
transformations to mask differences in interpretation of data by 
engineering objects in different domains. An inter-subnetwork 
relay is an example of an interceptor, as are gateways and 
bridges. 
 

Interface:  
An abstraction of part of the behavior of an object. An interface 
comprises a set of interactions and a set of constraints. 
 

Invariant:  
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A predicate that a specification requires to be true for the entire 
lifetime of a set of objects. 
 

Invariant Schema [Information]:  
A set of predicates on one or more information objects which 
must always be true. 
 

Location Transparency:  
A distribution transparency which masks the use of information 
about location in space when identifying and binding to 
interfaces. 
 

Manager:  
An engineering object which manages a collection (unit) of 
engineering objects. A cluster (capsule) manager is responsible 
for managing a single (capsule) cluster of engineering objects. 
 

Migration Transparency:  
A distribution transparency which masks, from an object, the 
ability of a system to change the location of that object. 
Migration is often used to achieve load balancing and reduce 
latency. 
 

Mobility Schema:  
A specification of constraints on the mobility of an object. 
 

Name:  
A term which refers to an entity in a given naming context. A 
name identifier is an unambiguous name in a given naming 
context. 
 

Naming Context:  
A relation between a set of names and a set of entities. 
 

Node [Engineering]:  
A configuration of engineering objects forming a single unit for 
the purpose of location in space. The node provides a set of 
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processing, storage, and communications functions. Access to 
these functions is provided by a nucleus object. A computer and 
its software (operating system and applications) is an example of 
a node. A node can be a parallel computer under the control of a 
single operating system. 
 

Nucleus [Engineering]:  
An engineering object which coordinates processing, storage, 
and communications functions for other engineering objects 
within its node. 
 

Object:  
A model of an entity. An object is characterized by its behavior 
and, dually, by its state. An object is distinct from any other 
object. An object is encapsulated, i.e., any change in its state 
can only occur as a result of an internal action or as a result of 
an interaction with its environment. An object interacts with its 
environment at its interaction points. 
 

Obligation:  
A prescription that particular behavior is required. An obligation 
is fulfilled by the occurrence of the prescribed behavior. 
 

Operation [Computational]:  
An interaction between client and server objects. The syntax of 
an operation is usually defined by an operation signature (or 
function prototype). 
 

Permission:  
A prescription that a particular behavior is allowed to occur. A 
permission is equivalent to there being no obligation for the 
behavior not to occur. 
 

Persistence:  
The property that an object continues to exist across changes of 
contractual context of an epoch. 
 

Persistence Schema:  
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A specification of constraints on the use of processing, storage, 
and communication functions. 
 

Persistence Transparency:  
A distribution transparency which masks, from an object, the 
deactivation and reactivation of other objects (or itself). 
Deactivation and reactivation are often used to maintain the 
persistence of an object when the system is unable to provide it 
with processing, storage, and communication functions 
continuously. 
 

Policy:  
A set of rules related to a particular purpose. A rule can be 
expressed as an obligation, a permission, or a prohibition. Not 
every policy is a constraint. Some policies represent an 
empowerment. 
 

Postcondition:  
A predicate that a specification requires to be true immediately 
after the occurrence of an action. 
 

Precondition:  
A predicate that a specification requires to be true for an action 
to occur. 
 

Prohibition:  
A prescription that a particular behavior must not occur. A 
prohibition is equivalent to there being an obligation for the 
behavior not to occur. 
 

Proposition:  
An observable fact or state of affairs involving one or more 
entities, of which it is possible to assert or deny that it holds for 
those entities. 
 

Protocol Object [Engineering]:  
An engineering object in a channel that communicates with other 
protocol objects in the same channel. Protocol objects achieve 
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interaction between engineering objects which are in different 
clusters, capsules, and nodes. 
 

Quality of Protection (QoP):  
A set of security requirements on the collective behavior of one 
or more objects. 
 

Quality of Service (QoS):  
A set of quality requirements on the collective behavior of one or 
more objects. 
 

Reference Point:  
In an architecture, an interaction point designated for selection 
as a conformance point. The conformance point appears in a 
specification which is compliant with that architecture. 
 

Refinement:  
The process of transforming a specification into a more detailed 
specification. Specifications and their refinements typically do 
not coexist in the same system description. 
 

Relocation Transparency:  
A distribution transparency which masks relocation of an 
interface from other interfaces bound to it. 
 

Replication Schema:  
A specification of constraints on the replication, availability, and 
performance of an object. 
 

Replication Transparency:  
A distribution transparency which masks the use of a group of 
mutually behaviorally compatible objects to support an interface. 
Replication is often used to enhance performance and availability. 
 

Role:  
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Identifier for a behavior, which may appear as a parameter in a 
template for a composite object, and which is associated with 
one of the component objects of the composite object. 
 

Schema [Information]:  
A specification of state, state changes, or constraints. The kinds 
of schema include: invariant schema, static schema, dynamic 
schema, mobility schema, persistence schema, and replication 
schema. See corresponding definitions. 
 

Security—Access Control Function:  
Prevents unauthorized interactions with an object. 
 

Security Audit Function:  
Provides monitoring and collection of information about security-
related actions, and subsequent analysis of the information to 
review security policies, controls, and procedures. 
 

Security—Authentication Function:  
Provides assurance of the claimed identity of an object. 
 

Security—Confidentiality Function:  
Prevents the unauthorized disclosure of information. 
 

Security—Integrity Function:  
Detects and/or prevents the unauthorized creation, alteration, or 
deletion of data. 
 

Security—Key Management Function:  
Provides facilities for the management of cryptographic keys, 
including: key generation, registration, certification, 
deregistration, storage, archiving, and deletion. 
 

Security—Nonrepudiation Function:  
Prevents the denial by one object involved in an interaction of 
having participated in all or part of the interaction. 
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State of an Object:  
At a given instant in time, the condition of an object that 
determines the set of all sequences of actions in which the object 
can take part. 
 

Static Schema [Information]:  
A specification of the state of one or more information objects at 
some point in time. 
 

Stub [Engineering]:  
An engineering object in a channel that interprets the 
interactions conveyed by the channel and performs any 
necessary transformations or monitoring based on this 
interpretation. Stubs are the engineering object in the channel 
which interface directly with the client and server objects. 
 

Subtype:  
An entity is a subtype of a given type if and only if its properties 
satisfy the predicate of the given type and other subtype-specific 
predicates. 
 

System:  
Something of interest as a whole or as comprised of parts. 
Therefore a system may be referred to as an entity. A 
component of a system may itself be a system, in which case it 
may be called a subsystem. For modeling purposes, the concept 
of a system is understood in its general, system-theoretic sense. 
The term system can refer to an information processing system 
but can also be applied more generally. 
 

Technology Viewpoint:  
The technology viewpoint focuses on the choice of technology in 
the system. 
 

Template:  
The specification of the common features of a collection of 
entities in sufficient detail that an entity can be instantiated 
using it. For example, an object template is the specification of 
the common features of a collection of objects in sufficient detail 
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that an object can be instantiated using it. A object template is 
an abstraction of a collection of objects. A template may specify 
parameters to be bound at instantiation time. A standards 
specification containing interface bindings is a technology object 
template. 
 

Transaction Transparency:  
A distribution transparency which masks coordination activities 
among a configuration of objects to achieve consistency. 
 

Transparency:  
The property of hiding from a particular user the potential 
behavior of some parts of the system. 
 

Type:  
A predicate characterizing a collection of entities. An entity is of 
the type (or satisfies the type) if the predicate holds for that 
entity. Types needed are (at least) objects, interfaces, and 
actions. An entity may have several types and may acquire and 
lose types (for example: person, employee, homeowner). 
 

Viewpoint Language:  
Definitions of terminology, concepts, and rules for the 
specification of a system from a particular viewpoint. The 
standard viewpoint languages include: Enterprise Language, 
Information Language, Computational Language, Engineering 
Language, and Technology Language. See [ISO 96] Part 3 for 
details. 
 

Viewpoint of a System:  
A form of abstraction achieved using a selected set of 
architectural concepts and structuring rules, in order to focus on 
particular concerns within a system and its environment. 
Viewpoints often represent the perspective of a particular 
stakeholder or technical expert involved in the system. The 
viewpoint model addresses their issues and concerns. There are 
five standard viewpoints of a system: Enterprise, Information, 
Computational, Engineering, and Technology. See corresponding 
definitions. 
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Appendix D. Acronyms 

ACID Atomic, Consistent, Isolated, Durable 
AKA also known as 
ANSI American National Standards Institute 
API Application Program Interface 
CASE Computer Aided Software Engineering 
CD-ROM Compact Disk Read Only Memory 
CIO Chief Information Officer 
CMU Carnegie Mellon University 
COM Microsoft Component Object Model 
CORBA Common Object Request Broker Architecture 
COSE Common Open Software Environment 
COTS Commercial off-the-shelf 
CTO Chief Technology Officer 
DARPA Defense Advanced Research Projects Agency 
DIN German National Standards Organization 
ECMA European Computer Manufacturers Association 
E-R Entity-Relationship Modeling 
FGDC Federal Geographic Data Committee 
FIPS Federal Information Processing Standard 
FTP File Transfer Protocol 
GOTS Government off-the-shelf 
GPL Gamma Pattern Language 
HVM Horizontal-Vertical-Metadata 
IBM International Business Machines 
IC Interoperability Clearinghouse 
ICD Interface Control Document 
IDL ISO/CORBA Interface Definition Language 
IEEE Institute of Electrical and Electronics Engineers 
ISO International Standard Organization 
ISV Independent Software Vendor 
IT Information Technology 
MVC Model-View-Controller 
O&M Operations and Maintenance 
ODMG Object Database Management Group 
ODP Open Distributed Processing 
OLE Microsoft Object Linking and Embedding 
OLTP Online Transaction Processing 
OMA Object Management Architecture 
OMG Object Management Group 
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ONC Open Network Computing 
OO Object-Oriented 
OOA Object-Oriented Analysis 
OOA&D Object-Oriented Analysis and Design 
OOD Object-Oriented Design 
OODBMS Object-Oriented Database Management System 
OOTS Object-Oriented Technology Symposium 
OQL ODMG Object Query Language 
OSE Open System Environment 
OSF Open Software Foundation 
OTG Objective Technology Group 
PLoP Pattern Languages of Programs Conference 
RFC Request for Comment 
RFI Request for Information 
RFP Request for Proposal 
SEI Software Engineering Institute 
SPC Software Productivity Consortium 
SQL Structured Query Language 
SYSMAN X/Open System Management 
TCP/IP Transmission Control Protocol/Internet Protocol 
TRRS Test Results Reporting Database 
TWIT Third-World Information Systems Troubles 
UML Unified Modeling Language 
URL Universal Resource Locator 
WAIS Wide Area Information Search 
URL Universal Resource Locator 
WAIS Wide Area Information Search 
 



IT-SC 286

Appendix E. Bibliography 

The following sources are cited in the text using the name-date notation, for example, 
[Katz 93]. 

Bibliography 

[Adams 96a] Adams, Scott, The Dilbert Principle: A Cubicle's Eye View 
of Bosses, Meetings, Management Fads and Other Workplace 
Afflictions, Harperbusiness, 1996. 
[Adams 96b] Adams, Scott, Dogbert's Top Secret Management 
Handbook, Harperbusiness, 1996. 
[Adams 97] Adams, Scott, Dilbert Future: Thriving on Stupidity in the 
21st Century, Harperbusiness, 1997. 
[Akroyd 96] Akroyd, M., "Anti Patterns Session Notes," Object World 
West, San Francisco, 1996. 
[Alexander 77] Alexander, Christopher, A Pattern Language, Oxford 
University Press, 1977. 
[Alexander 79] Alexander, Christopher, The Timeless Way of Building, 
Oxford University Press, 1979. 
[Augarde 91] Augarde, Tony, The Oxford Dictionary of Modern 
Quotations, Oxford University Press, 1991. 
[Bass 98] Bass, Len; Clements, Paul; Kazman, Rick, Software 
Architecture in Practice, Addison Wesley, 1998. 
[Bates 96] Bates, M. E., The Online Deskbook Pemberton Press, 1996. 
[Beck 96] Beck, K., "Guest Editor's Introduction to Special Issue on 
Design Patterns," OBJECT Magazine, SIGS Publications, January 1996. 
[Bezier 97] Bezier, B., "Introduction to Software Testing," 
International Conference on Computer Aided Testing, McLean, Virginia, 
1997. 
[Block 81] Block, P., Flawless Consulting: A Guide to Getting Your 
Expertise Used, Pfeiffer & Company, San Diego, 1981. 
[Blueprint 97] Blueprint Technologies, "Software Silhouettes," McLean, 
Virginia, 1997. 
[Booch 96] Booch, Grady, Object Solutions, Addison-Wesley-Longman, 
1996. 
[Booch 98] Booch, Grady; Jacobson, Ivar; Rumbaugh, James, The 
Unified Modeling Language User Guide, Addison Wesley, 1998. 
[Brodie 95] Brodie, Michael, Stonebraker, Michael, Migrating Legacy 
Systems: Gateways, Interfaces, and the Incremental Approach, 
Morgan Kaufmann Publishers, 1995. 
[Brooks 79] Brooks, Frederick P., The Mythical Man-Month, Addison-
Wesley, 1979. 



IT-SC 287

[Brown 95] Brown, K., "DesignByCommittee," on the Portland Patterns 
Repository Web Site, http://c2.com/ppr/index.html 
[Brown 98] Brown, W.; McCormick, H.; Malveau, R.; Mowbray, T., 
AntiPatterns: Refactoring Software, Architectures, and Projects in 
Crisis, John Wiley & Sons, 1998. 
[Buschmann 96] Buschmann, Frank; Meunier, Regine; Rohnert, Hans; 
Sommerlad, Peter; Stal, Michael, Pattern-Oriented Software 
Architecture: A System of Patterns, John Wiley & Sons, 1996. 
[C4ISR 96] C4I Integration Support Activity, "C4ISR Architecture 
Framework," Version 1.0, Integrated Architectures Panel, U.S. 
Government Document CISA-0000-104-96,  
Washington,  DC, June 1996. 
[Cargill 89] Cargill Carl F., Information Technology Standardization: 
Theory, Process, and Organizations, Digital Press, 1989. 
[Cockburn 98] Cockburn Alistair, Surviving Object-Oriented Projects: A 
Manager's Guide, Addison-Wesley, 1998. 
[Connell 87] Connell J. Rapid Structured Prototyping, Addison-Wesley, 
1987. 
[Cook 94] Cook S., Daniels, J., Designing Object Systems, Prentice 
Hall, 1994. 
[Coplien 94] Coplien James O. Object World briefing on Design 
Patterns, Hillside, 1994. 
[Coplien 99] Coplien James O., Multi-Paradigm Design for C++, 
Addison-Wesley, 1999. 
[Davis 93] Davis Alan M., Objects, Functions, and States, Prentice Hall, 
1993. 
[Dolberg 92] Dolberg S. H., "Integrating Applications in the Real 
World," Open Information Systems: Guide to UNIX and Other Open 
Systems, Patricia Seybold Group, Boston, July 1992. 
[D'Souza 98] D'Souza Desmond, Objects, Components, and 
Frameworks with UML: The Catalysis Approach, AddisonWesley, 1998. 
[Duell 97] Duell M. "Resign Patterns: Ailments of Unsuitable Project-
Disoriented Software," The Software Practitioner, Vol. 7, No. 3 (May–
June 1997), p. 14. 
[Foote 97] Foote, Brian, Yoder, Joseph, "Big Ball of Mud," Proceedings 
of Pattern Languages of Programming (PLoP '97), 1997. 
[Fowler 97] Fowler Martin, Analysis Patterns: Reusable Object Models, 
Addison-Wesley, 1997. 
[Gamma 94] Gamma E.; Helm R.; Johnson R.; Vlissides J., Design 
Patterns, Addison-Wesley, 1994. 
[Garlan 95] Garlan David; Allen R.; Ockerbloom J., "Architecture 
Mismatch: Why Reuse Is So Hard," IEEE Software, Vol. 12, No. 6 (Nov. 
1995), pp. 17–26. 



IT-SC 288

[Gilb 93] Gilb, Tom; Graham Dorothy; Finzi Susannah, Software 
Inspection, Addison Wesley, 1993. 
[Goldberg 95] Goldberg, A., Rubin, K. S., Succeeding with Objects: 
Decision Frameworks for Project Management, Addison-Wesley, 1995. 
[Griss 97] Griss M., "Software Reuse: Architecture, Process, and 
Organization for Business Success," Object World, San Francisco, 1997. 
[Halliwell 93] Halliwell C., "Camp Development and the Art of Building 
a Market through Standards," IEEE Micro, Vol. 13, No. 6, (Dec. 1993), 
pp. 10–18. 
[Harmon 96] Harmon Paul, Morrissey William, The Object Technology 
Casebook: Lessons from Award-Winning Business Applications, John 
Wiley &amp; Sons, 1996. 
[Herrington 91] Herrington D., Herrington, S., Meeting Power, The 
Herrington Group, Inc., Houston, TX, 1991. 
[Hilliard 96] Hilliard, R. Emery, D.; Rice, T., "Experiences Applying a 
Practical Architectural Method," in Reliable Software Technologies: Ada 
Europe '96, A. Strohmeier, ed., Springer-Verlag, Lecture Notes in 
Computer Science, Vol.1088, 1996. 
[Horowitz 93] Horowitz B. M., Strategic Buying for the Future, Libbey 
Publishing,  
Washington,  DC, 1993. 
[Hutt 94] Hutt A., ed., Object Oriented Analysis and Design, John 
Wiley & Sons, 1994. 
[ISO 96] International Standards Organization, Reference Model for 
Open Distributed Processing, International Standard 10746-1, ITU 
Recommendation X.901, 1996. 
[Jacobson 91] Jacobson, I., Lindstrom, F., "Reengineering of Old 
Systems to an Object-Oriented Architecture," OOPSLA Conference 
Proceedings, 1991. 
[Jacobson 92] Jacobson I., Object Oriented Software Engineering, 
Addison-Wesley, ACM, 1992. 
[Jacobson 97] Jacobson I.; Griss M.; Jonsson P., Software Reuse: 
Architecture Process and Organization for Business Success, Addison-
Wesley, 1997. 
[Jacobson 99] Jacobson Ivar; Booch Grady; Rumbaugh James, The 
Unified Software Development Process, Addison Wesley, 1999. 
[Johnson 93] Johnson R., "Tutorial on Object-Oriented Frameworks," 
OOPSLA93 Tutorial Notes, Association for Computing Machinery, 1993. 
[Johnson 95] Johnson J., "Creating Chaos," American Programmer, 
July 1995. 
[Katz 93] Katz, M.; Cornwell D.; Mowbray, T. J., "System Integration 
with Minimal Object Wrappers," Proceedings of TOOLS 93, August 
1993. 



IT-SC 289

[Kepner 81] Kepner, C. H., Tregoe, B. B.,The New Rational Manager, 
Kepner-Tregoe, Inc., Princeton, NJ, 1981. 
[Kitchenham 96] Kitchenham B., Software Metrics, Blackwell 
Publishers, 1996. 
[Kreindler 95] Kreindler, R. Jordan, Vlissides, John, Object-Oriented 
Patterns and Frameworks, Stanford University, August 1995. 
[Kruchten 95] Kruchten P. B., "The 4+1 View Model of Architecture," 
IEEE Software, November 1995, pp. 42–50. 
[Malveau 97] Malveau, R. C., Mowbray, T. J., CORBA Design Patterns, 
John Wiley & Sons, 1997. 
[Moore 96] Moore Geoffrey, Crossing the Chasm, Harper Business, 
1996. 
[Mowbray 95] Mowbray ThomasZahavi Ron, The Essential CORBA, 
John Wiley & Sons, 1995. 
[Mowbray 97a] Mowbray T.J., "The Seven Deadly Sins of Object-
Oriented Architecture," OBJECT Magazine, March 1997, pp. 22–24. 
[Mowbray 97b] Mowbray T.J., "What Is Architecture?" OBJECT 
Magazine, Architectures Column, September 1997. 
[Moynihan 89] Moynihan T.; McCluskey G.; Verbruggen R., "Riskman1: 
A Prototype Tool for Risk Analysis for Computer Software," Third 
International Conference on Computer Aided Software Engineering, 
London, 1989. 
[Opdyke 92] Opdyke W. F., Refactoring Object-Oriented Frameworks, 
Ph.D. Thesis, University of Illinois, Urbana, 1992. 
[Orfali 96] Orfali, Robert; Harkey, Dan; Edwards, Jeri, The Client-
Server Survival Guide, John Wiley & Sons, 1996. (Also see the third 
edition, published in 1999.) 
[Ousterhout 98] Ousterhout John A. "Scripting: Higher Level 
Programming for the 21st Century," IEEE Computer Magazine, March 
1998. http://www.scriptics.com/people/john.ousterhout/scripting.html 
[PLoP 94] Proceedings of the First Conference on Pattern Languages of 
Programs, August 1994. 
[PLoP 95] Proceedings of the Second Conference on Pattern Languages 
of Programs, August 1995. 
[Polya 71] Polya George, How to Solve It, Princeton University Press, 
1971. 
[Pree 95] Pree Wolfgang, Design Patterns for Object-Oriented Software 
Development, Addison-Wesley, 1995. 
[RDA 96] RDA Consultants, "Experiences Using CASE Tools on ROOP 
Projects," Tinomium, MD, 1996. 
[Rechtin 97] Rechtin, Eberhardt, Maier, Mark, The Art of Systems 
Architecting, CRC Press, 1997. (Also see the second edition, published 
in 2000.) 



IT-SC 290

[Riel 96] Riel A. J., Object-Oriented Design Heuristics, Addison-Wesley, 
1996. 
[Rising 00] Rising, Linda, Janoff, Norman S., "The Scrum Software 
Development Process for Small Teams," IEEE Software, vol. 17, no. 4, 
July/August 2000. 
[Roetzheim 91] Roetzheim W. H., Developing Software to Government 
Standards, Prentice Hall, 1991. 
[Rogers 97] Rogers Gregory F., Framework-Based Software 
Development in C++, Prentice Hall, 1997. 
[Schmidt 95a] Schmidt Douglas, "Using Design Patterns to Develop 
Reusable Object-Oriented Communication Software," Communications 
of the ACM, October 1995, pp. 65–74. 
[Schmidt 95b] Schmidt, Douglas C., Coplien James O., Pattern 
Languages of Program Design, Addison-Wesley, 1995. 
[Shaw 93] Shaw M., "Software Architecture for Shared Information 
Systems," Carnegie Mellon University, Software Engineering Institute, 
Technical Report No. CMU/SEI-93-TR-3, ESC-TR-93-180, March 1993. 
[Shaw 96] Shaw, Mary, Garlan, David, Software Architecture: 
Perspectives on an Emerging Discipline, Prentice Hall, 1996. 
[Spewak 92] Spewak, S.H., Hill, S.C., Enterprise Architecture Planning, 
John Wiley & Sons, 1992. 
[Strikeleather 96] Strikeleather J., "The Importance of Architecture," 
OBJECT, Vol. 6, No.2 (April 1996). 
[Taylor 92] Taylor D. A., Object-Oriented Information Systems, John 
Wiley & Sons, 1992. 
[VanGundy 88] VanGundy Arthur B., Techniques of Structured Problem 
Solving, Van Nostrand Reinhold, 1988. 
[Vlissides 96] Vlissides, John M.; Coplien, James O.; Kerth, Norman L., 
Pattern Languages of Program Design, Addison-Wesley, 1996. 
[Walden 95] Walden, Kim, Nerson, Jean-Marc, Seamless Object-
Oriented Software Architecture, Prentice Hall, 1995. 
[Webster 95] Webster Bruce F., Pitfalls of Object-Oriented 
Development, M & T Books, 1995. 
[Wirfs-Brock 90] Wirfs-Brock, Rebecca; Wilkerson, Brian; Weiner, 
Lauren, Designing Object-Oriented Software, Prentice Hall, 1990. 
[Yourdon 93] Yourdon, Edward, "Software Reusability," The Decline 
and Fall of the American Programmer, Prentice Hall, 1993. 
[Zachman 97] Zachman, John A.; Inmon, William H.; Geiger, Jonathan 
G., Data Stores, Data Warehousing, and the Zachman Framework: 
Managing Enterprise Knowledge, McGraw Hill, 1997. 
 




	Software Architect Bootcamp
	Introduction
	Thanks
	Table of contents
	Preface
	Acknowledgments
	Chapter 1 Introduction
	1.1 Advice for Software Architects
	1.2 Software Architecture as a Discipline
	1.3 Design Patterns and Software Architecture
	1.4 Conclusions
	1.5 Exercises

	Chapter 2 Software Architecture: Basic Training
	2.1 Software Paradigms
	2.2 Open Systems Technology
	2.3 Client Server Technology
	2.4 Software Application Experience
	2.5 Technology and Application Architecture
	2.6 Applying Standards to Application Systems
	2.7 Distributed Infrastructures
	2.8 Conclusions
	2.9 Exercises

	Chapter 3 Software Architecture: Going to War
	3.1 Software Architecture Paradigm Shift
	3.2 Doing Software Wrong
	3.3 Doing Software Right: Enterprise Architecture Development
	3.4 Bottom Line: Time, People, and Money
	3.5 Conclusions
	3.6 Exercises

	Chapter 4 Software Architecture: Drill School
	4.1 Architecture versus Programming
	4.2 Managing Complexity Using Architecture
	4.3 Systems Integration
	4.4 Making the Business Case
	4.5 Architecture Linkage to Software Development
	4.6 Architectural Software Notation
	4.7 Conclusions
	4.8 Exercises

	Chapter 5 Leadership Training
	5.1 Leadership Is a Necessary, Learnable Skill
	5.2 The Architect as Team Builder
	5.3 Always Insist on Excellence in Deliverables
	5.4 Architect's Walkthrough
	5.5 Conclusions
	5.6 Exercises

	Chapter 6 Software Architecture: Jump School
	6.1 Process
	6.2 Creating New Processes
	6.3 Teamwork
	6.4 Conclusions
	6.5 Exercises

	Chapter 7 Communications Training
	7.1 Communications Challenges
	7.2 Responsibility–Driven Development
	7.3 Communication Responsibilities
	7.4 Handling Feedback
	7.5 Exercises

	Chapter 8 Software Architecture: Intelligence Operations
	8.1 Architecture Mining
	8.2 Architecture Iteration
	8.3 Architecture Judgment
	8.4 Conclusions
	8.5 Exercises

	Chapter 9 Software Architecture: Psychological Warfare
	9.1 Alternative Learning
	9.2 Internal Control
	9.3 Expectation Management
	9.4 Psychology of Truth
	9.5 Perception Is Not Reality
	9.6 Exploiting Human Weaknesses
	9.7 Example: Reference Selling
	9.8 Psychology of Ownership
	9.9 Psychological Akido
	9.10 Intellectual Akido
	9.11 Conclusions
	9.12 Exercises

	Appendix A. Architecture Example: Test Results Reporting System
	A.1 Introduction
	A.2 Component Interoperability Challenge
	A.3 Target Architecture for the TRRS
	A.4 Target Enterprise Viewpoint
	A.5 Target Information Viewpoint
	A.6 Target Technology Viewpoint
	A.7 Prototype Implementation
	A.8 Prototype Computational Viewpoint
	A.9 TRRS Terminology
	A.10 Use Case Definitions
	A.11 Core Workflows
	A.12 Information Model
	A.13 Conclusions

	Appendix B. Design Templates and Examples
	B.1 Conceptual Design
	B.2 Relationship Service Conceptual Design
	B.3 High-Level Design
	B.4 Relationship Service High-Level Design

	Appendix C. Glossary of Software Architecture Terminology
	Appendix D. Acronyms
	Appendix E. Bibliography



