as terillg/

s Y o

U M L with
_Rational
Rose 2002

_M

lllllllll

Table of Contents

Mastering UML with Rational ROSE2002..........ccoeiiiiiiiiiiiie ettt r e e e e e s r e e e e e e aaan 1
Chapter 1: INtrOdUCTION 10 UMLL......oiiiiiiiiiiiiii ettt e e e et e e e e e s e bbb e e e e e e e e e s nne e e e e e e e e e nnnnnees 4
Introductionto the Object—Oriente@Paradigiml...........ccoui i e e e 4
ENCAPSUIATIAN. ...t e 5
1] g =T 1 7= g ot TP PP PP PPPPPPP €
POIYMOIPNISIIL. ... r et e e e e e e r e e e e e e e e e e e e e e e 8
What IS VISUBIMOGEIING?......cco it e e e e e e e e e e e e e r e e e e e e e e nnnees 8
SystemSOf GraphiCAINOTALION. ..o e e e s e e aeeeas 9
[T o o g1\ [o] ¢= L1 o] o TP TP PP 10
ObjectManagemenTechNOIOGYOMT)......cco i 10
Unified ModelingLangUAagEUML).........oouiii it e e e e e 11
Understandin@IML DIBQIAIMIS.uuuriiiieeiiiiiiir e e e ettt e e e e s r e e e e e e s s s e e e e e e e s aanbbneeeeeeeeaaanes 12
BUSINESAISECASEDIAGIAIMS. .. .eeiiiieiiiiiiitei et ettt e e e e e s e e e e e e e r e e e e e s s aabrrrreeeeeeaaans 13
USE CASEDIAGIAIMS. ..ottt e e e e ettt e e e e e et e et e e e e e s e bbb et et e e e e e s bbb e et e e e e e s e nnnr e e e e e e e e e e annnnes 14
ACHVITY DIBGIAIMIS.eeeiiieiiiiitte et e e e e ettt e e e e e e e et e e e e e e e et e e e e e e s b b e e e e e e e e e sanbbnnneeeeenaanns 14
S TeTo[BIT gl 3= To | = 1 4 L OO PPPPPP R PPPPPPPPRPPPN 16
CollaboratioNDIAGIAIMS.uuuiiiiieiiieiie et e e e et e e e e s e r e e e e e e s annbrnneeeeeeeans 17
ClaSSDIAGIAIMS ... e eieeeee ettt e e e e e e e e s e e et e e e e e e e b r e e e e e e e e e nnrenreeeeeeeaann 17
StAtECNAIDIAGIAIMS. ...t e e e s e e e e e e e e e e e e e e e 18
COMPONENDIAGIAIMS ...ttt e e et e e e e e e s e et e e e e s e e b e et e e e e e e aannnbrnreeeeeeaaans 19
DEPIOYMENIDIAGIAMS. ...ttt e e e e e e e e e e e e e e e e e s e e e e e e e e e e asnbnenreeeeeaaanns 21
Visual Modelingandthe SoftwareDevelopmeENPIrOCESS.couiiiii e 22
[0 oT=T o1 (] o PP P PP PPPPPRI 2/
ELADOTALION. ... e as 2/
(O] 0151 11 (o1 1[0) o PP P PP P RPPPPP 25
L2010 o OO PT PP PPPPPPRPPPRN 2¢
YU 0] 0 L= R 2
Chapter 2: A TOUE OF ROSE........ciiiiiiiiee ittt e e e et e e e e e et e et e e e e e s e s e et e e e e e e e nnbrnn e e e e e e e eannnns 27
WNALIS ROSEZ..... ettt ettt e e e e et et e e e e e e e et e e e e e e e s b b e e et e e e e e e e e reeaeas 2
GettiNGATOUNAIN ROSE ...t e e e e e e e e e e e e e e s r e e e e e e e e nnnnn e e eeens 30
PartSOf tNE SCIEEIN. ...t e e e e e e e e e 31
Exploring FourViews in @ROSEMOUEL............oooiiiiiiiiiiic e 38
USE CASEVIEWL. ...ttt e e e e ek et e e e o4 e e b e ettt e e e e e e r et e e e e e e e nr e e e e e e a e 38
LOGICAI VIBW. ...ttt e et e e e e e e r et e e e e s e e e e e e e e e e 40
COMPONENVIBW. ...ttt ettt e e e ettt e e e e e e e et e e e e e e e nb e e e e e e e e e s s nbnnneeeeeeeaanns 42
[D2=To1(0)Y] 0 41T 0 1AV PP P PP TPPPRPPR 43
WOTKINGWItN ROSE ...t e e e e e e e e e r e e e e e e e b b nneeeeeeeanes 45
CreatiNGMOUEIS ... e e e e r e e e e e e e e e e 45
SAVINGMOUEIS. ...t e e e e e e e e e e e e e e a e 46
ExportingandImportingMOUTEIScooiiiiiiiiie e a7
PublishingModelSto tNEWED............oeiiiieii e 48
Working With CONtrollE@dUNITS ... e 50
USINGthe MOl INTEGIATQL.........uuiiiiiieeiiie e e e e e e s e e eeas 52
WOTKING WIth INOTESceeeeeeee e e e e e e e e e s n e e eeas 53
WOrKiNg With PACKAGES........coi it 54
Adding FilesandURLSs to RoseMOdel EIEMENLS.............uvviiiiiiiiiiiiiieee e 56
Adding andDeletiNngDIAgIaMSccuurieeiieeeee et e e e e e e s r e e e e e e e aann 56
SetliNGGIODAIOPIIONS. ...ttt e e e e e e e e e e e s r e e e e e e s e e e e e e e e e anne 57
WOTKING WItH FONTS......eeeiiiiii e e e e e e eeeas 58

WOrKING WIth COIOTS. ... e e e s 58

Table of Contents

Chapter 2: A Tour of Rose

oYU 0] 0 E= T R 5
Chapter 3: BUSINESSMOUEIING.eiieiiiieeiie ettt e e e e e et e e e e e e e r e e e e e s e annbnnnreeeeeeaanns 61
INtroductionto BUSINESIMOUEIING.eveiiieiiiiiiie it e e e e e e 61
Why MOAEITNEBUSINESS?. ...ttt e e e ee e es 61
Do | Needto Do BUSINESIMOAEIING?.......eeeiiiieiiiiiie et e e 62
BusinesaModelingin anlteratiVEPTOCESS............uviiiiiiiiiiiiiieiie e 63
BUSINESS—MOUEINEEONCEPIS ... eeeieeii ittt e e r e e e e e e r e e e e e e e s s e e e aeeens 66
BUSINESGACTONS ...ttt e e e e e e e e e e e e e e e r e e e e e e e e e s 66
BUSINESSNOTKES. ...ttt ettt e e et e e e e e e e e e e e e e e e s reeeeens 67
BUSINESTISECASESttt e 68
BUSINESAISECASEDIAGIAIMS. .. .eeiiiieiiiiiiitti et e e e ettt e e e e st e e e e s e e e e e e e e s anbrrnreeeeeeaaans 69
ACHVITY DIBGIAIMIS.eeeiieeiiiiitteee e e e ettt e e e e e et e e e e e s e e et e e e e e e s b e e e e e e e e e e sanbbnnneeeeesaanns 70
BUSINESTENTIIES. ... eeeee ettt e e e e e et e e e e e e s e e e e e e e s s anbbn e e e e e e e e e aannes 72
OrganiZATIONUNIL. ..ottt e e e e e r e e e e e s e e e e e e e e e e e e e e e e e e e a e 73
WRNEIEDIO | STAIT?. ...ttt e e e e e et et e e e e e e e et e e e e e e e e e e e e e e e e nnnnneeeas 74
1dentifying the BUSINESSACIONS.cciiiiiiiiiie ettt e e e e e e e rr e e e e e e 74
Identifying the BUSINESSNOIKEIS ...t e e e 75
[dentifying the BUSINESIUSECASES.........uuiiiiiiieiiiiiii et e e e e 76
SNOWINGINEINTEIACHIONS. ...t e e e e e eeaeeas 76
DOCUMENTINGNE DELAIIS.eeiieiieeii e e e e e e e e e e 77
CreatingBusinesSJSECaSEDIAgIAIMS.uuiiiiieeeiiiirrere e e e e et e e e e e s s e e e e e e s s r e e e e e e s nannreees 78
DeletingBusinesS2JSeCaseDIiagramsS.oocuuriiiieeeeiiiiiie ettt e e s e e e e s e e e e 79
TheUseCaseDiagramTOOIDaLouiii e 80
AddING BUSINESSISECASES ...ttt e e e e e e e e e e e e e e e 80
BusSiNesdJseCaseSPECIfiCAIONS...........uuiiiiieiiiiiiei it e e s e e e e 81
Assigninga Priority t0 aBUSINESISECASE.uuiiiiiiiiiiiiiieiii e 83
Viewing Diagramsfor a BuSINESRISECASE........uuuiiiiieiiiiiiiiiiiee e 83
Viewing Relationshipgor a BUSINESSUSECASE.......cciieiiiiiiiiiiiiieee et 86
WOrKing With BUSINESTACIONS.......eeeeeiieeiiiiiie ettt e e e e e e e e e e e e e e r e e e e e e e s annnneees 87
AAAING BUSINESTACIONS ... ittt ettt e e e e e e e e e e r e e e e e e s e s be e e e e e e e e e e nnnnneeeeas 87
AddING ACIOr SPECITICALIONSuiieiieeee e ettt e e e e e e e s e e e e e e e e annrnee s 88
ASSIGNINGAN ACION STEIEOTYPE.eeeeeiiiiitie ittt e et e e e e e e e e e s e e e e e e e e s eeeeeeaaas 89
SettingBuSINESSACIOr MUIIPICITY.......veviiiiiiiieee e 89
Viewing Relationshipgor @ BUSINESSACION..........uuiiiiiiiiiiiiiieee e 90
Working With ReIAtIONSNIPS. ... e e e e e e e e e 91
ASSOCIAtIONREIALIONSNIN......eiiiiiieeii e e e e e e e e 91
GeneralizatiorRelatiONSNID.eiiiiiiii e 92
Working With OrganizationUNILS.oooeiiiiii e e e e e e e 94
AddING OrganizationUNITS.ceiiiiiiiiiiiei e e e e e e e e e e e e e 94
DeletingOrganizationUNITS.ueeiiiiee e e e e e e e 95
ACTIVITY DIBGIAITIS.ctteeieeee et ettt e ettt e e e e e e e et e e e e e e e e b bt et et e e e e e e b e e e et e e e e e e e nnnb e s e e e e e e e e nnnnnnneees 9t
AddING aNACHVILY DIAGIAIM........uuiiiiiiieeiiiiiiee et e e e e e e e s s r e e e e e e s e annreeees 96
Adding Detailsto an ACtIVItY DIBGIamL.........ueuiiiiiiiiiiiiiii e 97
YU 010 0 L= TR 10
Chapter 4: USECaSESANG ACTOIS........uiiiieiiee e ettt e e e et e e e e e e s e e e e e s e s s b e et e e e e e e e b neeeeaeeeeannnnees 104
USECaSEMOUEINGCONCEPLS.uueeeieeeeiiiiitie et e e e et e e e e e e e e e e e s s s r et e e e e e e ann e e e e e e e e e e annnnees 104
AACTOIS. .. 10«
[0 LT @2 1o < PP PPPPPPPPPR 10¢

THACEADIIITY. ... e e et e e e e e e e e e e e e e e e 107

Table of Contents

Chapter 4: UseCasesand Actors

FIOW OF BEVENTS ...ttt e e e e r e e e e e e s e b e e e e e e e e e e 108
REIATIONSNIPS ...t e e e e e e e e e 114
USE CASEDIAGIAIMS. ... eeeteeeiiattte ettt e e e e e ettt ettt e e e e s e e et e e e e e e e e s bbb e e et e e e e e e s b e e e e e e e e e e e e e Rn e e e e e e e e e e e nnnrrnees 11€
ACTIVITY DIBGIAITIS.etteeieieeee ettt e e ettt e e e e e e et e e e e e e e s bbb e et et e e e e e e bbb a e e et e e e e e e s b b e e e e e e e e e e nannnrnees 11¢
AACTIVITY ¢ttt oottt e e oo e et e e e e e e et e e e e e e e e e e e e e e n R n e e e e e e aann 12(
StartaNAdENA STALES.ceiiiiiiie e e e e e e s e e e e e 121
ODbjJectSANAODJECTFIOWS.iiiiiiieeeee e e e e s 121
THANSITIONS. .. ettt e oo e e e e e e e e e et e e e e e e e e s e b n e e e e e e e e e e e e e aeeean 122
SYNCRIONIZALION. ...t e e e e e e et e e e e e e e e e e e e e e e ennnees 122
Working with UseCasesn RatiONAIR0OSE............ccuuiiiiiiieeie e 123
TheUseCaseDiagramTOOIDA............cuiii e e e 123
CreatingUSECaSEDIAgIaMIS. ...t e e et e e e e e e e e s r e e e e e e a b r e e e e e e aaans 124
DeletingUSECASEDIAGIAIMScuiiiiaiiiiiiieie et e e e et e e e e e e e e e e e e s r e e e e e e s s nnnreeeaaeens 126
AQAING USECASES.....eeeiiieeiiiiitie ettt e et e e e e e e e e e e e e e e e s s s b b e e e e e e e e s s s nnneeaeeeeas 127
DIEtINGUSECASES. ...ttt ettt e e e et e e e e e e e e e e e e e e e e e e e 129
USECASESPECITICALIONS......eeeeiiieeiiiiiiei et s e e e e e e e e e e e e e s s b r e e e e e e e e anns 130
NAMINGAUSECASE.ueiieeeeeee ettt e e e e e e et e e e e e s e e e e e e e e s annnrn e e e e e e e e annnenees 131
Viewing PartiCipantSf @USECASE.uuiiiiiiiiiiiiieie et e e e e e 132
ASSIgNINGA USECASESTEIEOLYPE. ...ttt e et ettt e e e e e e e e r e e e e e eeeeens 132
AsSSIgNINGA PIIONtY 10 AUSECASE.......ceiiiiiiiiti ettt e e e e 133
Creatingan ADSIIACIUSECASE...........uiiiiiiiie ettt e s e e e e e 133
Viewing Diagramsior @USECASE.ccoiiiiiriiiiiee ettt e e 134
Viewing Relationshipgor aUSECASE...........uuiiiiiiiiiiiiiiice e 136
WOTKING WITN ACTOTS ...ttt e e e e e e e e e et e e e e e e e e e e e e e e annnrnees 137
Yo (o 1 g o AN ox (o] £ TP PTPP S PPPPPPPPPRPP 137
D221 [A g [o) AN od (o] £ PP PP RTPPPPPTI 139
ACTON SPECITICALIONSeeeeee ittt e e e e et e e e e e r e e e e e e e eeeaeeeas 139
NBIMINGACTOTS. ...ttt ettt e e e et e e e e e e s s e e et et e e e e e e nb b e et e e e e e e aannnbneneeeeeeeaannes 141
ASSIGNINGAN ACION STEIEOTYPE.ceeeeiiiiiiitee et e e et e e e e e e e e e e e e e s s e eeees 142
SettiNGACIOr MUILIPICITY. ... e e eas 142
CreatiNngan ADSTTACTACTON. ...ttt e e e e e e e e e e e e 143
Viewing RelationShipgor @nACIOL...........oiiiiiiiiiieee e 144
VIEWING @NACIOISINSTANCES.coi it e e e e e e e e s r e e e e e e aanes 145
Working With ReIAtIONSNIPS. ... e e e e e a e 145
ASSOCIAtIONREIALIONSNIN ... e e e e 145
INCIUAESREIALIONSINID. ...t e e e e e r e e e e e e aaan 146
EXtendsRelatioNShi.........oiiiee e 148
GeneralizatiorRelatioNSNID.uviiiii e 148
Working With ACHIVITY DIQGTAIMLS.......eeiieeiiiiiiiiiiie e ettt e e e e e e e s r e e e e e e s s rn e e e e e e e e aanne 149
The Activity DiagramTOOIDAL..............uiiiiiie e 149
CreatiNnGACTIVILY DIgIamMIS.uuiiiiiei ittt e s e e e e e s eeeeas 150
DeletingACHVILY DIBQIAIMS.ccoiiiiiitiiie e et e e e e e e e s r e e e e e e s s asn e e e eeeeeans 154
T o K] PO PPPPPT R PPPPPP 15
ProbIEMSTAIEMENL. ... e e e e e 154
Createa USECASEDIAGIAIML.uuiiiiiee ettt e e e e st e e e e e e s s e e e e e e s s s be e e e e e e e e e annnnnnneeeeas 154
YU 010 0 E= T TR 15
Chapter 5: ODJECT INTEIACTION..........uiiiiiieeiiii ettt e e e e e e e e e e e e e s s bbb e e e e e e e e s s sbnr e e e eeeeas 159
INEEIACTIONDIAGIAIMIS. ...ttt eeeieett et e e e ettt e e e et e e e e e s e bt e et e e e e e e s R s e e e et e e e e e e e snnn e e e e e e e e e e annnnnees 159
WIS AN ODJECT?. ...t e e e e e e e e e e e s e a e e e e e e e a e 161

Table of Contents

Chapter 5: Object Interaction

WRNEIEDIO | STAIT?. ...ttt e e e e e e e e e e s r e e e e e e e nnn i reeaeeeeas 162
FINAING ODJECTS. ... e nnnrne s 162
FINAINGTNEACIOL ...t e e et e e e e e e e e e e e e annrnee s 163
USING INtEracCtioNDIBGIAMS.civieeiiiiiiiee e et e e e e e e e e e e e e s s s nreeeaeeaans 164
S TeTo [DIt a3 = To | = L 4L PP PPPP P PPPP 164
The Sequenc®iagramToOOIDAL...........oooiiiiii e 165
COllabOratioNDIAGIAIMS. ...t ee ettt e e e e e e e e e et e e e e e s r e nnrnneees 166
The CollaborationDiagramTOOIDAL.cooiiiiiiie e 167
Working with Actorson anInteractionDIAgram...........couueiiiiiiiiiiiie e 167
WOrKING WIth OBJECLS ...t e e e e e e e e e e e e r e e e e e e e 168
Adding Objectsto an INteraCtioNDIAGIAINML...........uurrriieeiiiiiieieeee e e e e e e e e e 168
DeletingObjectsfrom anInteractionDIiagram..............ceeeeeiiiiiiiiiiieeees e 169
SettingOD]eCtSPECITICALIONS ... e et e e e e e e e e aanes 169
NAMINGANODJECL. ...ttt e e e e e e et e e e e e e e et e e e e e s snn e e eeaeeeas 170
Mappingan ObJECTIO @ CIASS........oiiiiiiiie ettt e e e e e e e e nnnes 171
SettiNgOD]ECIPEISISIENCE.....coii it e e e e 173
Using Multiple INStance®f @anNODJECT.........ooiiiiiiiiiiiiiee e 174
WOTKING WIth IMESSAGES. ... eieeeieeit ettt e et e e e e e e s r e e e e e e e a bbb n e e e e e e e aannes 175
Adding Message$o an InteractionDIagram............coueeeiiiiiriiiiieeeeaeiiire e e e e e e e e 175
Adding Message$o a SeqUENCEIAGIAMcciiiiiiiiiiiee e et e e e e s e e s e eeeeas 175
DeletingMessagesrom a SequenC®IAQIam.........c..uurriieeeiiiiieee e e e 176
ReorderingMessage a SequeNC®IAQIaM..........oiuuriiriiieeeiiaiieieeee e e e e e e 176
MessageNumberingin 8 SEqQUENCEIAGIANMYL.........uiiiiiiiiiiiiiiie e 177
Viewing the Focusof Controlin aSequenc®iagram.............c.ueevveeeriiiiiiiiieeeee i 178
Adding Message$o a CollaborationDiagraml.............cceeeeeiiiiiriirieeee e 179
DeletingMessagefrom a CollaborationDiagram..............cccouiiiimiiirieeennniiieeee e 180
MessageNumberingin a CollaborationDIiagram............ccuuereeeieeiiiiiiiiieie e 181
Adding DataFlowsto a CollaborationDiagram..............cueeeeriiiiiririeeeeeiiiree e 181
SettingMeSSagESPECITICALIONS.viiieiiiiitie e e e 182
NAMINGAMESSAGE......cc ettt e et e e e e s e e e e e e e e s e bbb e et e e e e e s s s brnrneeeeeaaaans 182
MappingaMesSSaga0 anOPEIALION.........coiiuriirieiee et e e e e e e e e e e e e e e e annes 183
SettingMessageSyNChronizatiomOPLIONS.........cuveeiiiiiiiieiie e 185
SetliNGMESSAGETEQUEINCY.uteeieeeeeeiiiitiee et e e e e et e e e e e e s e e e e e s s s r e e e e e e e e aannnneeeeeas 188
BN OF @LITEIINE. ...t e et e e e e r e e e e e e e e e as 18¢
WOTKING WITN SCIIPES ...ttt e e e e e e e e e e e e e e e reeaee s 189
SwitchingBetweenSequenc@andCollaborationDIagrams...........ccouurririiieeeenniiieeee e 191
Two—-PassApproachto INteraCtioNDIAGIaIMS.ocuurriiiieeeei e e e e e e 192
T o K] PP TP PPPPT T PPPPP 19
ProbIEMSTAIEMENL. ... e e e e e 195
CreatelNteraCtioNDIAGIAIMScoiiiiiiie et e e e ettt e e e e e e e e e s r e e e e e e e s annbnnrreeeeeaaaaas 195
YU 0] 0 L= TR 20
Chapter 6: ClasSeSaANU PACKAGES.........uuuiiiiiieiiiiiiie ittt e e e e e e e e e s e s r e e e e e e e e s b e e e e e e e e e annnnees 201
Logical View Of @ROSEMOUEL..........eeiiiiiiiiie e e e e e e e e e e 201
ClaSSDIAGIAIMS ...ttt e oo e et e e e e e s e e et e e e e e e n b e e et e e e e e e e n e e n e e e e e e e e e e e e eas 20:
WRNALIS CIASS?. ...ttt e et e e e e e e et e e e e e e e e e e e e 202
FINAING CIASSES ...ttt e e e et e e e e e e et e e e e e e e annnneeees 203
CreatingCIasSDIagraMS ..o e e e e e e e e e e s e e e e e e e s s eeeeas 205
DeletiNgClasSDIBgIaMS.uuuiiiiie ittt e e e e e e s e e e e e s e a b n e e e e e e 207
Organizingltemson a ClassDiagram.............uueiiiieeriiiiie e 207

Using the ClassDiagramTOOIDALoiiuiiiieiiiee e 208

Table of Contents

Chapter 6: Classesand Packages

WOTKING WIth CIASSES......eeieiieie it e e e e e e s e e e e e e e s s nnreeeeeaans 209
AAING CIASSES. ...t e e e e e e et e e e e e s s r e e e e e e e e annnnee s 209
(O Fo T SS] (=] (=T0 11 0T PSP OO PP PPPPPP 21°
ANAIYSIS STEIEOLYPES. ...ttt e 212
(O Fo] Y o1 S PP OP PP PPPPPPPR PPN 217
01T = (ol TP PP PP PPTTPP 22¢
WED MOUEIING STEIEOLYPES. ... eeeiieeeeeiiitt ettt e e e e e e eaee s 225
OtherLangUagESTEIEOTYPES.ccei ittt e e e ettt e e e e e e e r e e e e e s s rreeeeeaaaans 228
ClaSSSPECITICALIONS.eeee ittt e ettt et e e e e e e et e e e e e e s bbb e et e e e e e e s s e e e e e e e e e e e nnnnneeeeeas 23C
NAMINGACIASS ...t e et e e e e e et e b e et e e e e e e r e e e e e e e e e nnnnrnees 231
SettiNGCIASSVISIDIITYceeeeeiiie e 232
SettiNngCIasSMUIIPICITY ... 233
SettingStorageRequiremMeNntor 8 CIASS.coiiiiiiiiiiiie e 234
SetliNGCIASSPEISISIENCE. ...ttt e e e e e eas 234
SettiNGCIASSCONCUITEICY.....eeteeeeiiiiitiee et e e e e ettt e e e e e e e e e e e e e r e e e e e e asnbrrreeeeeeeaanes 235
Creatingan ADSTIACICIASS.ciiie it e e e 235
VIeWING CIAaSSATIDULES........ooi i 236
VIEWING ClaSSOPEIALIONS.uveieiiieeeieiiiiee it e e e e e e e e e e e s e e e e e e s s eeeeeeas 236
Viewing ClassRelatiONSNIPS.cooiiiiiiiii e e e 237
USINGNESTEACIASSES ...ttt e e e e e e e e e e e e r e e e e e e e aaan 237
Viewing thelnteractionDiagramsThatContaina Class.............ccccceeiviiiiiiiiiieeeeiiieeeeenn 238
SettingJavaClasSSPECITICALIONSuuiiiiieeiiiiiiii e e e e re e e e e e aans 239
SettingCORBA ClasSSPECITICALIONS.........cciiiiiiiieiiee et 241
WOrKING WIth PACKAGESceiiiiiiiiiie ettt e et e e e e e r e e e e e e e e 242
AAAING PACKAGES.ce ittt e e e e e e e e e e e s r e e e e e e s s neeeeeeeaanns 242
DelEtiNGPACKAGES. ... e eeeeeiiiiiie et e e e e 243
T o K] PO PPPPPT R PPPPPP 24
ProbIEMSTAIEMENL. ... e e e e e 244
Creatinga ClasSSDIAGIAIMLuui ittt e et e e e e e e e e e e s e e r e e e e e s s s annn e eeaeas 244
YU 0] 0 L= TR 25
Chapter 7: Attributes and OPEratiONS...........c..uiiiiiiieei e e e e s e e e e s s s e eeens 251
WOrKING WIth ATIITDULES. ... e e e e e e e e e e e e e e e e e e e annnees 251
FINAINGATIIDULES. ... e e e e e e e e e e e s e e e eee s 251
AAAING ATTIDULES. ... e s e ee e 252
DeletiNGALITDULEScee e e e e e e e r e e e e e e 255
SettingALribute SPECITICALIONS.coviiiiiiiii e 256
Settingthe Attribute CONTAINMENL. ... 264
Making an AttriDULE STALIC...........uveieeieee e 265
Specifyinga DerVEdAIIDULE.ue e 265
WOrKiNG With OPEIATIONSeeeeeiiieie ittt e e e e r et e e e e e s r e e e e e e e nnnn e e eeeas 266
FINAING OPEIALIONS. ...ttt e et e e e e s s e e e e e e e s b b e e e e e e e e e nnnenees 267
P Yo (o1 aTe K@) o =T = 11 [0] o L= TP PTPP T PPPPPPPPRRPPIN 268
DelEtiNGOPEIALIONS.eeeiieeeiiiite ittt e e e e e e e e s e e e e e e s e e et e e e e e s nnnr e 271
SettingOperatioNSPECITICALIONS.uuiiiiieeiiiiiiei it e e e e e e e e e aaans 272
Adding Argumentsto @NOPEIALION..........uueiiiieeiiiiiiiee et e e e eeens 278
Specifyingthe OperationProtOCOL.............uviiieii e 279
Specifyingthe OperationQUAalifiCatioNS.............couiiiiiiiiiiiii e 280
Specifyingthe OperatioNEXCEPLIONScc.iiiiiiiriieei e e e e e e e e 281
SpecCifyiNngthe OPEratiONSIZE...........oiiiiieieeee et e e e 281

Specifyingthe OpPerationTime........ooo oo 281

Table of Contents

Chapter 7: Attributes and Operations

Specifyingthe OperatioNCONCUITENCY........uutieeaiiiitiieieee e e e e e e e e s s e e reeeeeeas 282
Specifyingthe OperationPreCONAItIONS............euiiiiiiiiiiiiiie e 282
Specifyingthe OperationPOSICONAITIONS.cciiiiiiiiiiiiei e 283
Specifyingthe OperationNSEMANTICS.........cc.uvrireiiee e e e 284
DisplayingAttributesandOperation®n ClassDiagrams............ccooooiiiiiiiiiieeeee e 285
SNOWINGATIIIDULES. ...ttt e e e e e e e e e e e e e e e e e e eaeens 286
SNOWINGOPETALIONS ...ttt ettt e e e e s e e e e e e e e s r e e e e e e e s aanbrrneeeeeeesaannns 288
SNOWINGVISIDITY ... ee s 290
SNOWINGSIEIEOTYPES. ...ttt et e e e e e e s e e e e e e e e e e e e e e e e e e nnnees 291
MappiNgOPEratioNG0 MESSAGES.cceiiiuiiriiiiieeeeiait et e e e e e e e e e e s s s e e e e e e e s s annbrereeaeeeeeannnees 292
Mappingan Operationto a Messagen anInteractionDiagram............ccceevveeeeiiiiciinineeeeenn. 294
T o] PP P P PEP PP TPPPPP 29
ProbIEMSTAIEMENL. ... e e e 295
Add AttrDUtESANAOPETALIONS.eeeeeeiiiiiiiee et e e e e e e e e e e e e nnr e eeeens 296
YU 0] 0 L= SRR 30
Chapter 8: RElAtIONSINIPS. ... it e e e e e e et e e e e e e s bbb r e e e e e e s e nnbnnreeeeeenaaans 301
REIATIONSNIPS ...t e e e e e e s e e e e e e e e e e e e e e e e n e e e e e e e 30
TyPESOf REIAHONSNIPS.iiiiiiiieii e e e e e e e e e e annes 301
FINAING REIALIONSNIPS.....ceeieeeee e e e e e 303
ASSOCTALIONS. ...ttt ettt e ettt e e et s ettt e e oo e ettt e e oo e e e R e e e et e e e e e e n e e e e e e e s e e e e eeeas 30.
USIiNg Webh ASSOCIatiONSTEIEOLYPES.uveeiiiieeeiiiiiiee it e s 306
CreatiNGASSOCIALIONS.eteieiieee ettt e e e et e e e e e e e e e e e e e e e bbb e e e e e e e e e e s nbbr e e e e eeeeeaann 307
DlEtiNGASSOCIALIONS.eeeiieeeiiiiete ettt e e ettt e e e e e e e e e e e e e s r et e e e e e e e e e e e e e e e e nnrrenes 310
(D=7 oT=] g o [T o [or =TT PP PPPPPPRPRPPP 31
CreatiNngDEPENUENCIES.coiieetie ettt e e e e e e e e e s s s e e e e e e s e e e e eeas 313
DeletiNgDEPENUENCIES.ueieiiiee ittt e e e e e e e e e e e n e e e e e e e aaan 314
PaCKAGEDEPENUENCIEScc ettt e e e e e e e e e e e e e s r e e e e e e e s r e e e e e e e e nnr s 315
CreatingPackag@epenUENCIES..........cc.uuiiiiieeee et e e e e e e e e e eeas 316
DeletingPackagaDependENCIES.........uuiiiei ittt e e e 317
LYo o | (=T F= L1 0] o L TP PPPP PP PPPPPPPPPPPR 31
CreatiNgAGOIEIALIONS.eeeiieeei ittt e e e e et e e e e e e s e e e e e e e e s s bbb e et e e e e e s sansrnnneeeeeeeaannn 318
DeletiNgAGOIEUALIONS. ...ttt e e ettt eean 320
GENEIAIIZALIONS. ...t e ettt e oot e oo e e e e et e e e e e e e et e e e e e e e R n e e e e e e e e e e e e eas 32:
CreatiNngGENEIaliZALIONS.oiii ittt e e e e e e e e e e e e e 322
DeletingGeNeraliZatiONS...........uuiiiiieiiiie e e e e 323
Working With ReIAtIONSNIPS. ... e e e e e 324
SENGMUITIPICITY ... e e e e e e eaee s 324
UsiNg RelatioNSNIANGMES........ooiiiieieie e e 326
U SING StBIEOTYPES ... tteeeeeee e e ettt et e e e e et e e e et et e et e e e e e s e e et e e e e e e e e e e e e e e e e e nnnnrnnees 327
USING ROIES ...t e e e e e e e e e et e e e e e s s e e e e e e e e e e e e rneeaeas 328
SettiNGEXPOITCONIIOL ..ot e e e e e e e e e e e e e annes 330
Using StatiCRElatioONSNIPS ..o 331
UsIiNg FriendRelatioNSNIPS.cuiiiiiiieei e 332
SetlNGCONTAINIMEINT. ...t e e e e e e s e et e e e e s e e e e e e e e e e annnees 333
USING QUANTIEIS. ...t e e e e e e e s e r e e e e e e e eeeeas 334
USING LINK EIBMENTS ...t e s e e e e e 335
USING CONSITAINTS ... ettt e et e e ettt e e e e e s e e e e e e e e e s e e e e e e e e s s annnbnnneeeeeenaannes 336
T o K] PP PP PP PRSP TPPPP 33
ProbIEMSTAIEMENL. ... e e e e e 338

AddING REIALIONSNIPS ... e e e e e e e e 338

Table of Contents

Chapter 8: Relationships

YU 010 0 L= TR 34
Chapter 9: ODJECT BENAVIOL ...ttt e e e e e e e e e r e e e e e e e s eeaeeeas 341
StALECNAIDIAGIAIMS. ...ttt e e e et e e e e e e e e e e e e e e e b e e e e e e e e e reeeeas 341
Creatinga StateCharDIagramL...........ouiiiiiiee e 342
AQAING STALES. ...t e e e e et e e e e s e e e e e e e e e e e e e e e e e e e r e as 343
AddING SAtEDETAIIS. ... e e 344
AAAING TIANSITIONS ...t e e e e e e e e e e e e e s e r e e e e e e s aannrnees 349
AddiNg TranSItIoONDETAIIS ..o e e e 350
AdAING SPECIAISTALES.eiiie ittt e e e e e e e e e e e e e e neees 352
Using NestedStatesand StateHISTONY.........ovviiiiiiiiiiiee e 353
T o] TP PP PP PRPPT R TPPPPP 35
ProbIEMSTAIEMENL. ... e e e 355
Createa StateCharDIagram..........cooiiiiiiii e e e e e e 356
YU 0] 0 L= SRR 35
Chapter 10: COMPONENTVIEW.uieiiiiiee ittt e e e ettt e e e e s s e e e e e e e e s s b b e e e et e e e e e s s s bbb e e e e e e e e s s e nsnnrneeeeeeeas 360
WAt]S @ COMPONENTZ. ..ttt e e e e e e e e e e e e e s e bbb e e e e e e e e s b s n e e e e e e e e s annnnees 360
TYPESOT COMPONENTS ..ottt et e e e e e e e e r e e e e e s s e r e e e e e e e s s neeeeeeeas 360
COMPONENDIAGIAIMS ...ttt e e ettt e e e e e s e et e e e e s s e e e e e e e e e bbb e e e e e e e e e e e s bn s e e e e e e e e e aannnnnnneeeas 362
CreatingComMPONENDIAGIAMS.......uuiiiieiiiiirie et e e e e e s e e r e e e e e e e e annrenes 363
AdAING COMPONENES ...ttt e e e e e s e e e e e e e s s b b e e e e e e s e annbrnreeeeeeeaan 364
Adding ComMpPONENDELAIIS. ... 367
Adding ComMpPONENDEPENUENCIES.coiiiiiiiiiiiee et e e e e 372
T o K] TP PPPPTRTPPPPP 37
ProbIEMSTAIEMENL. ... e e e e e 373
YU 010 0 L= TR 38
Chapter 11: DePlOYMENTVIEWL........uuiiiiiieeiiiiiie e e ettt e e e e e e e e e e e e e s e e e e e e e e s s bb e e e e et e e e s s annnnnreneeeeeeas 381
[DI=To] ()Y 0 g =T g1 DI E=To | =10 1 I T TP P PP PPETPP PPN 381
Openingthe DeploymMentDIAgraL..........cuuiiiriiiiiieie e e e e 381
AQAING PrOCESSOIS. ..ottt ettt e et e e e e e s e e et e e e e e s e b e et e e e e e e e snnbrnrreeeeeeaanns 382
AddING ProCESSODETAIIS.......eeiiiiiiiiiite e e e e e e e e 384
AQAING DEBVICES. ...ttt e et e e e e e s e e e et e e e e s s bbb e e e e e e e e e e annnnnnees 387
AddING DEVICEDETAIIS ... e e e e e e e 389
AAAING CONNECTIONS. ...ttt ettt e e e e s e e e e e e e r e e e e e s e asnbrrreeeeeeeaan 391
AddING CONNECHOMELAIISeeiiiieeiiiit it e e e s eaeeeas 392
AQAING PIrOCESSES......cetteeiiiiee ettt e e e e et e e e e e e e s e e e et e e e e e e e e e e e e e e e e eannnrnee s 394
T o K] PP PP PPTTPPPP 3€
ProbIEMSTAIEMENL. ... e e e e e 397
CreateDeploymMenDIagram..........c.uuiiiiiee e e e e 397
YU 010 0 L= SRR 40
Chapter 12: Introduction to Code Generationand ReverseEngineering Using Rational Rose............ 401
Preparingfor COOEGENEIALION. iiiiee ettt e e et e e e e e e s e e e e e e e e e e e e e e e e e s annbnnneeeeeeeaanne 401
StepONe:CheCKINEMOUEL...........ooiiiii e 402
StepTWO: CreateCOMPONENTS.......ooi oo 404
StepThree:Map Classe$0 COMPONENTS.......coiiiuiriiiiieeee it e e e e e e 405
StepFour: Setthe Code—GeneratioRTOPEITIES.uuviiieeiiiiiieiee e 406
StepFive: Selecta Class,Componentpr PaCKage..........c..uvvvvvieeiiiiiiiiieiieee e 409

StEPSIX: GENEIAECOUE..........eeiiiiiiiie et 409

Table of Contents

Chapter 12: Introduction to Code Generation and ReverseEngineering Using Rational Rose

.. 410
Introductionto ReverseEngineerindJsingRatioNalROSE...........oooiiiiiiiiiiiiieee e 411
Model ElementsCreatedDuring REVEISEENGINEEIING.uurieiieiiiiiiiiiiiee e et e e e e e 412
ROUNA=TIIPENGINEEIINGttt e e e e s e et e e e e e e e e e e e e e e e s e e e e e e e e e e e nnnreees 415
YU 0] 0 L= TR 41
Chapter 13: ANSI C++ and Visual C++ Code Generation and ReverseEngineering............ccccoeecuvvveee. 417
GeneratingCodein ANSI C++andViSUBI CH......uiiiiiiiiiiiiiiieeeee e 417
Convertinga C++ Modelto anANSI CH+MOEL........occoiiiiiiiiiiiiiic e 418
ANSI C++ Code—GENEratiORTOPEITIES.cce ittt 419
ClaSSPIOPEITIES ...ttt e e e e e e e e e e e e e e e e 420
ALMDULE PrOPEITIES ...ttt e e e e e e e r e e e e e s annnee s 421
(@] 1=T gz 11 (0] 0 md (0] o 1] g1 =TSP PP PPPPPPPPPO 422
PackageClassCategory)PrOPEITIES.......cciii it e e e e ettt e e e e e e e e e annes 424
Componen{Module SpecCificatioN)PrOPEItIES.cc.uvviieieeee i 424
ROIE PIOPEITIES ...ttt ettt e e e e e e e e e e e e s b n e e e e e e e aannes 427
GENEraliZatiONPTOPEITIES ..ottt ettt e e e e e e e e s e e e e e e e ee s 428
Visual C++ Code—GeneratiORTOPEITIES.uuiiiiie it e et e e e e e e e e e e e e e e 428
ClasSSMOUEIASSISTANL..........uiiiiiiee ittt e e e e e e e e e s s s e e e e e e e e e aane 428
COMPONENPTOPEITIESiteeeiee e e ettt e e e e ettt e e e e e e e e e e e e e e s b e e e e e e e e s s assbrnreeeeeesaane 431
PrOJECIPIOPEITIES. ...ttt e e e e e e e e e e e e e e e e e e 433
Visual C++andATL ODJECTS.......c..eiiiiiiiieiee e 434
LCT=T gL = 1=T(0T [P PP PP PRSPPI 43!
CodeGENErAtEAOr CIASSES ... uuuiiiiiee ittt e et e e e e e e s s e e e e e e e s eeeeas 435
CodeGeneratedior AIHDULES...........oi e e e 439
CodeGeneratedior OPEIALIONS.cuuieeiiiiirireee e e e e e e e s e e e e e s e e e e e e s annrnnees 441
ViSUAl CH+ COUEGENEIALION.....ceeiieiiiiiiie e e ettt e e e e e e e e e e e e e e e e s e e e e e e e e e e nnnnreeeeas 443
ReverseENGINEENNGANSIE CHt . i e e e e e e e s e e e e s 443
ReVerseENGINEEINNOVISUBI CHt.....eiiiiiiiiiiiiiii et e e e e e e e e e e e e e e e e e nnnees 445
oYU 0] 0 L= TR 44
Chapter 14: Java Code Generationand ReVerseENGINEEIING.coouiiuiiimiiiieeiiaiiiiiiee e 447

(@Y= A/ L=L, VTP 44
Introductionto Rosel

... 448
BegIiNNINGAJAVAPTOJECT.cciiiiiiieii ettt ettt e e e e e s et e e e e e e e e e e e e e nannrees 449
Selectinga JavaFTaAMEWOTKcooiiiiiiiie e e e 449
Linking to IBM ViSUAIAGETOI JAVA......eeviiieiiiiiiiiiieee ettt 450
LinKing to MICroSOft VISUIJH.....eeeiiii it 451
JavaCode—GENEratiORTOPEITIES ...ttt e e e e e e e e e e e e e e e e e eas 451
PrOJECIPIOPEITIES. ...ttt e e e e e e e e e e e e e e e e e e e 452
ClaSSPIOPEITIES ...ttt e et e e e e e s e e e e e e e e e e 456
ALTDULE PrOPEITIES ...t e e e e e e e e e e e e s anneeees 458
(@] 01=T 2 11 (0] 0 md (0] o 1] g1 =TSP P OO PPPPPPPRTPP 459
MOAUIE PTOPEITIES ...ttt e e e e e e e e e e e e et e e e e e e eeeeeeeas 460
ROIE PIOPEITIES ...ttt e e e e s e e e e e e e e e b n e e e e e e e aannes 461
(CT=T oL = 1] 0o o o [= PSP TP PUPPPPPPRTTPR 46:
LCT=T Lo = 1=TC oL [O PP PP PPP P TPPPPP 46:.
ClASSES. ..ottt et e e e e e e e e e e e e e e e e e e 46!
F L] o U =T F PP PP TP PPPPPPPPPPPR 46F
(O] 1=] - 11 (0] 0 - OO PT PP 46¢

Table of Contents

Chapter 14: Java Code Generation and ReverseEngineering

UNIdIreCtioON@AlASSOCIALIONS.ceieeeiiiiiiieiie e e e ettt e e e e e e e e e e e e e s s nreeeeeeaans 471
Associationgvith a Multiplicity of ONeto Many..........cooiiiiiiiiiiiiee e 472
Associationgvith a Multiplicity of Manyto Many............occviiiiiieiiiiiiieee e 474
REfIEXIVEASSOCIALIONS. ...t e e e e e e e s e e e e e e e e aan 476
F Yo o | (=0 F= L1 0] o - PP PP PP PRPPPRPPPP 476
DependencCyRelAtIONSNIPS.iiiiiii e 478
GeneralizatiorRelatioNSNIPS...........uiiiiiii e 479
0 1=T g = (ol PP PPP P PPTRRP 48(
JAVABEANS. ... e e e e e e e e e e e e e e e e e e rreeee e e e e e eee s 48]
SUPPOITOr J2EE et e et e e e e e e et e e e e e e e e e e e e aann 48
|21 TSP PP PPPPR 48
SBIVIBLS. ..o e e e e e e e e e e e e e e e a s 48’
JAR GNAWAR FIES ...ttt e e e e e e e e e e e e e e 488
AutomatedJ2EEDEPIOYMENL.........oeiiiiiiiiiie e 489
REVEISEENGINEEIING. ... ettteeeiiett ettt e e et e e e e e s et e e e e e e s bbb e e e et e e e e e e e snb e e e e e e e e e s annnnenes 49C
YU 0] 0 L= SRR 49
Chapter 15: Visual BasicCode Generation and ReverseENgiNEering...........coouvuiiiiiieeenniiiiiiiieeee e 493
Startinga ViSUaI BASICPTOJECL. ...ttt e e e e e e e e e e r e e eeeas 494
Visual BasicCode—GeneratiORIOPEITIES.c..uuiiiiiieeeiiiiie et e e e e 494
ClaSSPIOPEITIES ...t e ettt e e e e e e e e e e e e e e e e 495
ALTDULE PrOPEITIES ...ttt e e e e e e e e e e e 498
(@] 1=T 2 11 (0] 0 md (0] o 1] g1 =TSP PP PPPPPPPPPRTPP 499
Module SPeCifiCatiONPIOPEITIESuiiiiieeiii e e e e 502
ROIE PIOPEITIES ...ttt e e e e e e e e e e s s b n e e e e e e e aannes 503
GENEraliZatiONPTOPEITIEScii ittt ettt e e e e e e e s e e e e e e e e e aas 504
Usingthe Code—GeneratioMViZard...............ccviiiiiiiiiiiiiiiic e 505
LCT=T Lo = 1=T(0T [PP PP PP PP PPPPPP 50!
ClASSES. ...ttt et e e e e e e e e e e e e e e e e e e 50!
F L] o U =T TP PP PPPPPPPPPPPR 53(
(O 01=] - 11 (0] o - OO TT PP 531
BidireCtioNalASSOCIALIONS.uiieiieieeee ettt e e e e e e e e e e e e nnnreees 531
UNIdIreCtiON@AlASSOCIALIONS......ceeieeiiiiiiie e e e et e e e e e e e e e e e e e s e s rnneeeaeeaans 533
Associationgvith a Multiplicity of ONeto Many..........coooiiiiiiiiiieeiiee e 534
Associationgvith a Multiplicity of Manyto Many............oocviiiiiieiiiiiiee e 534
REfIEXIVEASSOCIALIONS.eeeeieiiee ettt e e e e e e e e e e e e e e aan 535
F Yo o | (=To F= L1 0] o - TP PPPPPPPPPP 535
DependencCyRelAtIONSNIPS. ... 536
GeneralizatiorRelatioNSNIPS...........uiiiiie e 536
REVEISEENGINEEIING. ... ettteeeeiitt ettt e et e e e e e s e et e e e e e e s bbb e e et e e e e e e e snbn e e e e e e e e e s nnnnnnees 537
YU 010 0 L= TR 53
Chapter 16: XML DTD CodeGenerationand ReverseENgineering..........cooovcvvvveeeeeeeiniiiiiieeece e 541
OVBIVIBW. ..ttt e oottt e o444 okttt e 44444 ettt e e 42 o4 e R bR e e et e e e e e e e s b e e e e et e e e e e e nnnnnn e e e e e s 54
INTrOdUCTIONTO XIML DT D...ciiieiiiiitie ettt e e e et e e e e e e e e e e e e e s e r e e e e e e e e aannne 542
=T 41T | PO PP PP P PPPPPPPPPPPPP 54:
F L] o U =T OO PP PPPPPPPPRPPR 54:
ENtiti@SANANOTALIONSeiiiiiiiiii e e e e e e s r e e e e e e 543
DTD—0—UML M@PPING. et tiittteittee ettt e et e e e e e s e e e e e e e e e b e et e e e e e e annn e e e e e e e e e ennnnrnees 545
DTD Code—GeNEratiORTOPEITIESeiieeieeeeei ittt et e e e e et e e e e e e s r e e e e e s s rr e e e e e e e e e annnnneeeeeas 546

PrOJECIPIOPEITIES. ...t 546

Table of Contents
Chapter 16: XML DTD CodeGeneration and ReverseEngineering

ClaSSPIOPEITIES ..ottt e e e e e e e e e e e e s e e e e e 547
ALTDULE PrOPEITIES ...t e e e e e e e e e e e e e e e e 551
ROIE PIOPEITIES ...ttt e e e e s r e e e e e s e b nn e e e e e e e aannes 552
COMPONENPTOPEITIESeiteeeiie e ettt e et e e e e e e e e e e e e e e e s b b e e e e e e e e e s sansbrnreeeeeeeaann 553
(€12t gL =11 0o o o [= TP TP PUPPPPPPRTTPR 55¢
(CT=T Lo = 1=TC 0T [PP PP PPP PP 55:
ClASSES. ...ttt et e e e e e e e e e e e e e e e e e e 55!
F L] o UL =T PP P TP PPPPPPPPPPPR 562
REVErSEENGINEEINODTD.....ciiiiiiiite et e e e e e e et e e e e s e r e e e e e e s e b b e e e e e e e e e e aannne 564
YU 010 0 L= TR 56
Chapter 17: CORBA/IDL CodeGenerationand ReverseENgiNeering...........cveeeuririirrreeeeeennnnsinnneeeeens 567
CORBA/IDL Code—GENEratiORIOPEITIES. .. .ceiiiiiiiiiiiiiie ettt e e e e e e 567
PrOJECIPTOPEITIES. ...ttt e 568
ClaSSPIOPEITIES ...t e ettt e et e e e e e e e e e e e n e e e e e e 570
ALTDULE PrOPEITIES ...t e e e e e e e e e e e s annree s 575
(@ 1=T 2 11 (0] 0 md (0] o 1] g1 =TSP OO PPPPPPPPP 576
MOAUIE PTOPEITIES ...ttt ettt e e e e e et e e e e e e e e e e e e e e e e e e e aeeeas 578
ASSOCIAtION(ROIE) PIrOPEITIES. ...ttt e e e e e e e 579
DEPENUENCYPIOPEITIES.eieeeeeee e e ettt e et e e e e e st e e e e e e e e e e e e e s annnrnneeeeeeeeaan 580
LCT=T Lo = 1=T(0T [PP P PR PPPPPP 58:
ClASSES. ...ttt et e e e e e e e e e e e e e e e e e e 58
F L] o U =T SO PT PP PPPPPPPPRPPR 58¢
(@ 01=] - 11 (0] o - OO TT PP PPRPPRR 591
BidireCtioNal ASSOCIALIONS.uiieiiiieee ettt e e e e e e e e e e e e e e 591
UNIdIireCtiON@AlASSOCIALIONS.ceeeeeiiiiiieeiie e e e et e e e e e e e e r e e e e e s s neeeeeeeaaans 595
Associationgvith a Multiplicity of ONeto Many...........oooiiiiiiiiiiee e 595
Associationgvith a Multiplicity of Manyto Many............occuviiiiiieiiiiieee e 599
Associationswith BoundedVIUITIPICITYooiiiiiiiiiiceiii e 600
REfIEXIVEASSOCIALIONS. ...ttt e e e e e e s e e e e e e e e aan 602
F Yo o | (=To F= L1 0] o - PP PPPPPPPPPPPI 604
DependencCyRelAtIONSNIPS.uiiiiiii e 604
GeneralizatiorRelatioNSNIPS...........eiiiiiiie e 605
ReverseEngineeringCORBA SOUICECOUR.ccoiiiiiiiiiiie et 608
YU 010 0 L= TR 60
Chapter 18: ROSEDAtA MOUEIE..........ooiiii it e e e e e e e e s reeeaeeas 610
ObjectModelSandDataMOUEIS..........coiiiiiii e e e 610
CreatingaDataMOUEL............ooi et e e e e 612
LOGIC IN @DAAMOUEL.ceiiiiiiieee e e e e e e e 613
AdAING ADALADASE ... e i e 614
AdAING TADIESPACES......ceiiiiiiiiieii et e e e e e e e e e e e s e e rr e aeeeas 615
AAAING A SCNEMAL ...ttt e et e e e e e e e e e e e e e s s e e e e e e e 62!
Creatinga DataModel DIagraml.oouuiiiiiiieeeiiiii et e e e e eas 622
CreatingDomainPackage8NADOMEINS.iiiiiiiiiiiiiie e e e e s e e e e e e ennnnees 623
P Yo (o 1 aTo 1= o] (T SO PPP PP PPPPR PP 621
AAAING COIUMNS ... e e e e r e e e e e e e e r et e e e e e s a s neeeeeeenaanes 628
SetliNGAPTIMAIYKEY ... e e e e s e e e e e e e r e e e e e e e e 631
AAAING CONSIITAINTS. ...ttt e e e e e e e s s r e e e e e e e s e r e e e e e e e e annnrnees 631
P Yo (o 1 g o I g o o =1 £ ST PP PPPP T PPPPPPPRPPPRN 633

AAING INAEXES. ...ttt e e e e e e e et e e e e e e s e e e e e e e e e annnrnnees 635

Table of Contents
Chapter 18: RoseData Modeler

AddING StOrEAPTOCEUUIES ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e s e nnbnreeeeeeenaannnns 636
AddING REIALIONSNIDS ...ttt e e e e e e s s r et e e e e e e ereeaee s 639
Adding Referentiallntegrity RUIEScooi i 642
WOTKING WITN VIBWS......eeiiiiii et e e e e et e e e e e s e e e e e e e e 644
Generatingan ObjectModel from aDataMOdel............c.euiiiiiiiiiii e 648
Generatinga DataModel from an ODbjeCtMOTEL..........ccueiiiiiiiie e 649
Generatinga Databasérom aDataMOUEL............ooiiiiiiiii e 651
Updatingan EXistingDatabase............oooiii e 653
ReverseENgiNeeringaDAtADASE.uuiiiiiiiiiii e 655
YU 0] 0 L= SRR 65
Chapter 19: WED MOGEIINGeeeeeeeei ittt e e e et e e e e s e e e e e e e e e e e e e e e e e e annrnees 657
ModelingaWeD APPIICALION...........eeiiiii e e e e e e e e e ennnees 657
WED ClaSSSIEIROLYPES. ...ttt e e ettt ettt e e e e e r e e e e e e s e e e e e e e e e r e eeeaeeens 659
REIATIONSNIPS ..ot e e e e e e e e e e e 666
ReverseEngineeringa Web APPIICATION.ooiiiiiiiiiiee e 668
GeneratingCodefor aWebAPPICALION...........uuiiiiiiiiie e 670
YU 0] 0 L= SRR 67
Appendix: Getting Started With UMLoooii it e e e e e e 672
Building aBuSIiNeS2ISECaSEDIAGIAM.......iieeiiiieeeee ettt e e e e e r e e e e s s s e e e e e e e aaes 672
Building a Workflow (ACHIVILY) DIBOIAIM..........uiiiiiieieiiiiiire et e e e s e e e e e e aan 675
BUIldING @USECASEDIAGIAIT.cceeiiiiiiiieeieeee e et e e e e e e e e e e e e e e e e e e e s s s sbb e e e e e e s s s annnnrreeeeas 679
Building anINteractioNDIBgIAM.........cuiiii ittt e e e e e e e e e e s r e e e e e e e e aannes 684
BUIlAING @ CIaSSDIBGIANML.eeiiiieeiiiit ettt r e e e e e r e e e e e e e r e e e e e e e e nnnrnreeeeeens 688
LVZ=] o1V oTo =1 1 oo OO PP PP PPRPPP R PPPPRPPPRPPPTN 69:
AddiNg ClassRElAtIONSNIPS.......cieeiiii e e e 694
Building a StateCharDIagram.............uiiiiiieeeee e e e e e e e e e e s 696
Building @ ComMpPONENDIAGIANL..........utiiiiiieeee et e e e e e e e e e s e e aeeas 699

Building aDeploymMENDIAGIANL........cuiiie ittt e e e e e e e e e e e e e e e e e e e aannes 701

Mastering UML with Rational Rose 2002

Wendy Boggs
Michael Boggs

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved.
No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photograph, magnetic, or other record, without the prior agreement
and written permission of the publisher.

Associate Publisher: Richard Mills

Acquisitions Editor: Peter Arnold

Developmental Editor: Tom Cirtin

Editor: Donna Crossman

Production Editor: Mae Lum

Technical Editor: Eric Aker

Graphic lllustrator: Tony Jonick

Electronic Publishing Specialist: Jill Niles

Proofreaders: Emily Hsuan, Nelson Kim, Yariv Rabinovitch, Nancy Riddiough
Indexer: Nancy Guenther

CD Coordinator: Christine Detlefs

CD Technician: Kevin Ly

Book Designer: Maureen Forys, Happenstance Type-O—-Rama
Cover Designer: Design Site

Cover lllustrator: Tania Kac, Design Site

An earlier version of this book was published under the title Mastering UML with Rational Rose, © 1999,
SYBEX Inc.

Library of Congress Card Number: 2001096976
ISBN: 0-7821-4017-3

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United
States and/or other countries.

Mastering is a trademark of SYBEX Inc.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991-1999 Inbit Incorporated. All rights
reserved.FullShot is a trademark of Inbit Incorporated.

The CD interface was created using Macromedia Director, COPYRIGHT 1994, 1997-1999 Macromedia Inc
For more information on Macromedia and Macromedia Director, visit http://www.macromedia.com/.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon fi
release software whenever possible. Portions of the manuscript may be based upon pre-release versions
supplied by software manufacturer(s). The author and the publisher make no representation or warranties o

Mastering UML with Rational Rose 2002

any kind with regard to the completeness or accuracy of the contents herein and accept no liability of any kil
including but not limited to performance, merchantability, fitness for any particular purpose, or any losses or
damages of any kind caused or alleged to be caused directly or indirectly from this book.

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book that are available now or in the future conta
programs and/or text files (the "Software") to be used in connection with the book. SYBEX hereby grants to
you a license to use the Software, subject to the terms that follow. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless otherwise indicated and is protected by copyrigh
to SYBEX or other copyright owner(s) as indicated in the media files (the "Owner(s)"). You are hereby
granted a single—user license to use the Software for your personal, noncommercial use only. You may not
reproduce, sell, distribute, publish, circulate, or commercially exploit the Software, or any portion thereof,
without the written consent of SYBEX and the specific copyright owner(s) of any component software
included on this media.

In the event that the Software or components include specific license requirements or end-user agreements
statements of condition, disclaimers, limitations or warranties ("End-User License"), those End-User
Licenses supersede the terms and conditions herein as to that particular Software component. Your purcha:
acceptance, or use of the Software will constitute your acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply with all export laws and
regulations of the United States as such laws and regulations may exist from time to time.

Software Support

Components of the supplemental Software and any offers associated with them may be supported by the
specific Owner(s) of that material, but they are not supported by SYBEX. Information regarding any availabl
support may be obtained from the Owner(s) using the information provided in the appropriate read.me files
listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor any offer, SYBEX
bears no responsibility. This notice concerning support for the Software is provided for your information only
SYBEX is not the agent or principal of the Owner(s), and SYBEX is in no way responsible for providing any
support for the Software, nor is it liable or responsible for any support provided, or not provided, by the
Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical defects for a period of ninety (90) days after
purchase. The Software is not available from SYBEX in any other form or media than that enclosed herein ¢
posted to http://www.sybex.com/. If you discover a defect in the media during this warranty period, you may
obtain a replacement of identical format at no charge by sending the defective media, postage prepaid, with
proof of purchase to:

SYBEX Inc.

Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501

Mastering UML with Rational Rose 2002

Web _http://www.sybex.com/

After the 90—-day period, you can obtain replacement media of identical format by sending us the defective
disk, proof of purchase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed or implied, with respect to the Software or it:
contents, quality, performance, merchantability, or fitness for a particular purpose. In no event will SYBEX,
its distributors, or dealers be liable to you or any other party for direct, indirect, special, incidental,
consequential, or other damages arising out of the use of or inability to use the Software or its contents evel
advised of the possibility of such damage. In the event that the Software includes an online update feature,
SYBEX further disclaims any obligation to provide this feature for any specific duration other than the initial
posting.

The exclusion of implied warranties is not permitted by some states. Therefore, the above exclusion may no
apply to you. This warranty provides you with specific legal rights; there may be other rights that you may
have that vary from state to state. The pricing of the book with the Software by SYBEX reflects the allocatior
of risk and limitations on liability contained in this agreement of Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are distributed as shareware. Copyright laws apply to bott
shareware and ordinary commercial software, and the copyright Owner(s) retains all rights. If you try a
shareware program and continue using it, you are expected to register it. Individual programs differ on detai
of trial periods, registration, and payment. Please observe the requirements stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy—protected or encrypted. However, in all cases,
reselling or redistributing these files without authorization is expressly forbidden except as specifically
provided for by the Owner(s) therein.

Acknowledgments

A great deal of effort goes into writing a book. While some of this work is done by the authors, a lot of it is
done by a whole team of people. We would like to thank everyone involved in this book. Thanks to Richard
Mills and Jordan Gold at Sybex for making it possible, and to Tom Cirtin, who was instrumental in getting the
book ready for publication. Thanks to Eric Aker for performing the technical review. Thanks to the editorial
and production team at Sybex: Mae Lum, Donna Crossman, Jill Niles, Christine Detlefs, Kevin Ly, and Tony
Jonick. Thanks to indexer Nancy Guenther and thanks to the proofreaders: Emily Hsuan, Nelson Kim, Yariv
Rabinovitch, and Nancy Riddiough. We couldn't have done it without all of you.

Chapter 1: Introduction to UML

The pace of business is getting faster and faster, with a greater need to compete and sustain a market. In tt
age of e—-commerce, e-business, e—tailing, and other e's, "traditional" system development just doesn't cut i
anymore. Systems now must be developed in "Internet time." Also, this faster pace has increased the need
flexible systems. Before, a user could send a request to the data—processing center and wait two years for ¢
change. Now a user sends a request for change to the IT department and demands it in two weeks! Six-we
development cycles, demanding managers, demanding users, and even the concept of XP (extreme
programming) drive this point: System changes must happen fast!

This is where the Unified Modeling Language (UML) enters the picture. UML is the industry—standard
modeling notation for object-oriented systems, and is the premiere platform for rapid application
development. In this chapter, we describe how UML came into being, introduce the concepts of
object-oriented programming, and show you how to use UML to structure your applications.

Learning about the object—oriented paradigm and visual modeling

Exploring types of graphical notation

Looking at types of UML diagrams

Developing software using visual modeling

Introduction to the Object—Oriented Paradigm

Structured programming was the mainstream in the earlier days of software engineering. Programmers beg
developing standard blocks of code to perform operations like printing, and then copied and pasted that cod
into every application they wrote. While this reduced the development time for new applications, it was
difficult if a change was needed in that block of code, because the developer had to make the change
everywhere that code had been copied. Structured programming presented some challenges for which
object-oriented programming was designed to solve.

With object-oriented programming, developers create blocks of code, called objects. These objects are thel
used by the various applications. Should one of the objects require modification, a developer needs to make
the change only once. Companies are rushing out to adopt this technology and integrate it into their existing
applications. In fact, most applications being developed today are object-oriented. Some languages, such a
Java, require an object-oriented structure. But what does it mean?

The object-oriented paradigm is a different way of viewing applications. With the object-oriented approach,
you divide an application into many small chunks, or objects, that are fairly independent of one another. Yol
can then build the application by piecing all of these objects together. Think of it as building a castle out of
blocks. The first step is to make or buy some basic objects, the different types of blocks. Once you have the
building blocks, you can put them together to make your castle. Once you build or buy some basic objects ir
the computer world, you can simply put them together to create new applications.

Chapter 1: Introduction to UML

In the world of structured programming, to create a form with a list box, for example, you would need to write
voluminous code: the code to create the form itself, the code to create and populate the list box, and the coc
to create an OK button that will accept the value in the list box. With object-oriented programming, on the
other hand, you simply need to use three (typically prebuilt) objects: a form, a list box, and an OK button. Th
exercise of coding used to be along the lines of "create from scratch, but copy whatever you can find from o
programs to save some time." The newer paradigm is "put together a bunch of objects, and then just focus ¢
what's unique to this particular application."

One of the primary advantages of the object-oriented paradigm is the ability to build components once and
then use them over and over again. Just as you can reuse a toy building block in a castle or a house, you ce
reuse a basic piece of object-oriented design and code in an accounting system, an inventory system, or ar
order—processing system.

So, how is this object-oriented paradigm different from the traditional approach to development?
Traditionally, the approach to development has been to concern ourselves with the information that the syst
will maintain. With this approach, we ask the users what information they will need, design databases to hol
the information, provide screens to input the information, and print reports to display the information. In othe
words, we focus on the information and pay less attention to what is done with the information or the behavi
of the system. This approach is called data—centric and has been used to create thousands of systems over
years.

Data—centric modeling is great for database design and capturing information, but taking this approach whe
designing business applications presents some problems. One major challenge is that the requirements for
system will change over time. A system that is data—centric can handle a change to the database very easil
but a change to the business rules or to the behavior of the system is not so easy to implement.

The object-oriented paradigm has been developed in response to this problem. With the object-oriented
approach, we focus on both information and behavior. Accordingly, we now can develop systems that are
resilient and flexible to changes in information and/or behavior.

The benefit of flexibility can be realized only by designing an object-oriented system well. This requires
knowledge of some principles of object orientation: encapsulation, inheritance, and polymorphism.

Encapsulation

In object-oriented systems, we combine a piece of information with the specific behavior that acts upon that
information. Then we package these into an object. This is referred to as encapsulation. Another way to loo}
at encapsulation is that we divide the application into small parts of related functionality. For example, we

have information relating to a bank account, such as the account number, balance, customer name, addres:
account type, interest rate, and opening date. We also have behavior for a bank account: open, close, depo
withdraw, change type, change customer, and change address. We encapsulate this information and behav
together into an account object. As a result, any changes to the banking system regarding accounts can sin
be implemented in the account object. It works like a one—stop shop for all account information and behavio

Another benefit of encapsulation is that it limits the effects of changes to the system. Think of a system as a
body of water and the requirement change as a big rock. You drop the rock into the water
and—SPLASH!—big waves are created in all directions. They travel throughout the lake, bounce off the
shore, reverberate, and collide with other waves. In fact, some of the water may even splash over the shore
and out of the lake. In other words, the rock hitting the water caused a huge ripple effect. But if we
encapsulate our lake by dividing it into smaller bodies of water with barriers between them, then the
requirement change hits the system—SPLASH! As before, waves are created in all directions. But the wave

5

Chapter 1: Introduction to UML

can only go as far as one of the barriers, and then they stop. So, by encapsulating the lake, we have limited
ripple effect of dropping the rock in, as shown in Figure 1.1.

Figure 1.1: Encapsulation: Lake model

Let's apply this idea of encapsulation to the banking system. Recently, the bank management decided that i
the customer has a credit account at the bank, the credit account could be used as an overdraft for their
checking account. In a nonencapsulated system, we begin with a shotgun approach to impact analysis.
Basically, we do not know where all of the uses of withdraw functionality are in the system, so we have to
look everywhere. When we find it, we have to make some changes to incorporate this new requirement. If
we're really good, we probably found about 80 percent of the uses of withdraw within the system. With an
encapsulated system, we do not need to use the shotgun approach to analysis. We look at a model of our
system and simply find where the withdrawal behavior was encapsulated. After locating the functionality in
the account, we make our requirement change once, only in that object, and our task is complete! As you ce
see in Figure 1.2, only the Account class needs to change.

A concept similar to encapsulation is information hiding. Information hiding is the ability to hide the murky
details of an object from the outside world. To an object, the outside world means anything outside of itself,
even though that outside world includes the rest of the system. Information hiding provides the same benefit
as encapsulation: flexibility. We will explore this concept more in Chapter 6, "Classes and Packages."

Card Reader ATM Screen
£ Card Number 4 Prompt()
@ Accept Card() @ Acceptinput()
@ Eject Card()
Read Card()
Account Cash Dispenser
%Acwum Number {>Cash Balance
SOPIN Tl
) @ Provide Cash()
SO Balance Provide Receipt()
4 Open()
@ Withdraw Funds()
£% Deduct Funds()
£ Verity Funds()

Figure 1.2: Encapsulation: Banking model

Inheritance

Inheritance is the second of the fundamental object-oriented concepts. No, it has nothing to do with the
million dollars you're leaving for little Johnny. It has more to do with the nose you got from your father or
mother. In object-oriented systems, inheritance is a mechanism that lets you create new objects based on ¢
ones: The child object inherits the qualities of a parent object.

Chapter 1: Introduction to UML

You can see examples of inheritance in the natural world. There are hundreds of different types of mammal
dogs, cats, humans, whales, and so on. Each of these has certain characteristics that are unique and certai
characteristics that are common to the whole group, such as having hair, being warm-blooded, and nurturin
their young. In object-oriented terms, there is a mammal object that holds the common characteristics. This
object is the parent of the child objects cat, dog, human, whale, etc. The dog object inherits the characteristi
of the mammal object, and has some additional dog characteristics of its own, such as running in circles anc
slobbering. The object-oriented paradigm has borrowed this idea of inheritance from the natural world, as
shown in_Figure 1.3, so we can apply the same concept to our systems.

& 0O

Figure 1.3: Inheritance: Natural model

One of the major benefits of inheritance is ease of maintenance. When something changes that affects all

mammals, only the parent object needs to change—the child objects will automatically inherit the changes. |
mammals were suddenly to become cold-blooded, only the mammal object would need to change. The cat,
dog, human, whale, and other child objects would automatically inherit the new, cold—blooded characteristic

of mammals.

In an object-oriented system, an example of inheritance might be in the windows. Say we have a large syst
with 125 windows. One day, a customer requests a disclaimer message on all of the windows. In a system
without inheritance, we now have the rather tedious task of going into each one of the 125 windows and
making the change. If our system were object-oriented, we would have inherited all of the windows from a
common parent. Now, all we need to do is go into the parent and make the change once. All of the windows
will automatically inherit the change, as shown in Figure 1.4.

Root Window
Window 1 Window 2 Window 3

Figure 1.4: Inheritance: Window model

In a banking system, we might use inheritance for the different types of accounts we have. Our hypothetical
bank has four different types of accounts: checking, savings, credit card, and certificates of deposit. These

different types of accounts have some similarities. Each one has an account number, interest rate, and own
So, we can create a parent object called account to hold the common characteristics of all the accounts. The
child objects can have their own unique characteristics in addition to the inherited ones. The credit account,
for example, will also have a credit limit and minimum payment amount. The certificate of deposit will also

have a maturity date. Changes to the parent will affect all children, but the children are free to adapt without

7

Chapter 1: Introduction to UML

disturbing each other or their parents.
Polymorphism

The third principle of object orientation is polymorphism. The dictionary defines it as the occurrence of
different forms, stages, or types. Polymorphism means having many forms or implementations of a particula
functionality. As with inheritance, polymorphism can be seen in the natural world. Given the command, or
function, of "Speak!" a human may reply, "How do you do?" The dog may reply "Woof!" The cat may reply
"Meow!" but will probably just ignore you.

In terms of an object—oriented system, this means that we can have many implementations of a particular
functionality. For example, we might be building a graphic drawing system. When the user wants to draw
something, be it a line, circle, or rectangle, the system issues a draw command. The system is comprised of
many types of shapes, each of which contains the behavior to draw itself. So, when the user wants to draw
circle, the circle object's draw command is invoked. By using polymorphism, the system figures out as it is
running which type of shape is being drawn. Without polymorphism, the code for the draw function might
look like this:

Function Shape.drawMe()

{

SWITCH Shape.Type
Case "Circle"
Shape.drawCircle();
Case "Rectangle"
Shape.drawRectangle();
Case "Line"
Shape.drawLine();

END SWITCH

}

With polymorphism, the code for draw would just call a drawMe() function for the object being drawn, as in
this example:

Function draw()

{
Shape.drawMe();

Each shape (circle, line, rectangle, etc.) would then have a drawMe() function to draw the particular shape.

One of the benefits of polymorphism, as with the other principles of object orientation, is ease of maintenanc
What happens, for example, when the application now needs to draw a triangle? In the nonpolymorphic cas
a new drawTriangle() function has to be added to the shape object. Also, the drawMe() function of the shape
object has to be changed to accommodate the new type of shape. With polymorphism, we create a new
triangle object with a drawMe() function to draw itself. The draw() function that initiates the drawing
operation does not have to change at all.

What Is Visual Modeling?

If you were building a new addition to your house, you probably wouldn't start by just buying a bunch of
wood and nailing it together until it looks about right. Similarly, you'd be more than a little concerned if the

8

Chapter 1: Introduction to UML

contractor doing the job decided to "wing it" and work without plans. You'd want some blueprints to follow sc
you can plan and structure the addition before you start working. Odds are, the addition will last longer this
way. You wouldn't want the whole thing to come crashing down with the slightest rain.

Models do the same thing for us in the software world. They are the blueprints for systems. A blueprint help:
you plan an addition before you build it; a model helps you plan a system before you build it. It can help you
be sure the design is sound, the requirements have been met, and the system can withstand even a hurrica
requirement changes.

As you gather requirements for your system, you'll take the business needs of the users and map them into
requirements that your team can use and understand. Eventually, you'll want to take these requirements an:
generate code from them. By formally mapping the requirements to the code, you can ensure that the
requirements are actually met by the code, and that the code can easily be traced back to the requirements.
This process is called modeling. The result of the modeling process is the ability to trace the business need:
the requirements to the model to the code, and back again, without getting lost along the way.

Visual modeling is the process of taking the information from the model and displaying it graphically using a
standard set of graphical elements. A standard is vital to realizing one of the benefits of visual modeling:
communication. Communication between users, developers, analysts, testers, managers, and anyone else
involved with a project is the primary purpose of visual modeling. You could accomplish this communication
using nonvisual (textual) information, but on the whole, humans are visual creatures. We seem to be able to
understand complexity better when it is displayed to us visually as opposed to written textually. By producing
visual models of a system, we can show how the system works on several levels. We can model the
interactions between the users and a system. We can model the interactions of objects within a system. We
can even model the interactions between systems, if we so desire.

After creating these models, we can show them to all interested parties, and those parties can glean the
information they find valuable from the model. For example, users can visualize the interactions they will
make with the system from looking at a model. Analysts can visualize the interactions between objects from
the models. Developers can visualize the objects that need to be developed and what each one needs to
accomplish. Testers can visualize the interactions between objects and prepare test cases based on these
interactions. Project managers can see the whole system and how the parts interact. And chief information
officers can look at high—level models and see how systems in their organization interact with one another.
All'in all, visual models provide a powerful tool for showing the proposed system to all of the interested
parties.

Systems of Graphical Notation

One important consideration in visual modeling is what graphical notation to use to represent various aspec
of a system. This notation needs to be conveyed to all interested parties or the model will not be very useful
Many people have proposed notations for visual modeling. Some of the popular notations that have strong
support are Booch, Object Modeling Technology (OMT), and UML.

Rational Rose supports these three notations; however, UML is a standard that has been adopted by the
majority of the industry as well as the standards' governing boards such as ANSI and the Object Manageme
Group (OMG).

Chapter 1: Introduction to UML

Booch Notation

The Booch method is named for its inventor, Grady Booch, at Rational Software Corporation. He has writter
several books discussing the needs and benefits of visual modeling, and has developed a notation of graphi
symbols to represent various aspects of a model. For example, objects in this notation are represented by
clouds, illustrating the fact that objects can be almost anything. Booch's notation also includes various arrow
to represent the types of relationships between objects. We will discuss these types of objects and
relationships in Chapter 4, "Use Cases and Actors." Figure 1.5 is a sampling of the objects and relationships
represented in the Booch notation.

D)
- _/
Deposit Funds % Transfer Funds
/ - >\
N Customer
Withdraw Money Vlew Balance
fia ’u;ﬂ Reader : /" ATM Screen %
£ Card Number 7, ' & Prompt) <
. @ AcceptCard) QAccepnnpu:(]
« ®EjectCard)) s e e)
Read Card() \

\

PR P

oY by S N
o - st ——

y Account \s K< Cash Dispenser ',
P \ N !
.,OAﬁ;gn:’tl:umber Y X £ Cash Balance ‘

\ 1 1 7/
! £ Balance — @ Provide Cash()

\ ¢ N
,‘ Open() X (___ ‘5 Provide Receipt()
. & Withdraw Funds() 3 Lo e R e
\ f)oeductFunds() i z

£ Verify Funds() %

~ = - ™

- s =

Figure 1.5: Examples of symbols in the Booch notation
Object Management Technology (OMT)

The OMT notation comes from Dr. James Rumbaugh, who has written several books about systems analysi
and design. In an aptly titled book, Object-Oriented Modeling and Design (Prentice Hall, 1990), Rumbaugh
discusses the importance of modeling systems in real-world components called objects. OMT uses simpler
graphics than Booch to illustrate systems. A sampling of the objects and relationships represented in the ON
notation follows in Figure 1.6.

10

2N

o R,
Deposit Fund:\

Chapter 1: Introduction to UML

-

/ Transfer Funds

(\

Customer

wnhdraw Money View Balance

Card Reader ATM Screen
£ Card Number Prompt()

@ Accept Card() QAoceMInput()

@ Eject Card()

@ Read Card()

Account Cash Dispenser

%Mmum Number {£4>Cash Batance

SOPIN

3 @ Provide Cash()
EOBalance @ Provide Receipt()

4 Open()

@ Withdraw Funds()
£28 Deduct Funds()
£ Verity Funds()

Figure 1.6: Examples of symbols in the OMT notation
Unified Modeling Language (UML)

UML notation comes from a collaborative effort of Grady Booch, Dr. James Rumbaugh, Ivar Jacobson,
Rebecca Wirfs—Brock, Peter Yourdon, and many others. Jacobson is a scholar who has written about
capturing system requirements in packages of transactions called use cases. We will discuss use cases in c
in_Chapter 4. Jacobson also developed a method for system design called Object-Oriented Software
Engineering (OOSE) that focused on analysis. Booch, Rumbaugh, and Jacobson, commonly referred to as:
"three amigos," all work at Rational Software Corporation and focus on the standardization and refinement c
UML. UML symbols closely match those of the Booch and OMT notations, and also include elements from
other notations. Figure 1.7 shows a sample of UML notation.

11

Chapter 1: Introduction to UML

/"“’ ""\,
N s o S
Deposn Funds Transfer Funds
‘/ \ >
S Customer
Wuthdraw Money View Balance
Card Reader ATM Screen
£ Card Number _ 4 Prompt()
@ Accept Card() @ Acceptinput()
@ Eject Card()
@ Read Card()

Account l Cash Dispenser
£ hccount Number £2 Cash Batance
EOPIN .

Provide Cash{()
LOBalance] @ Provide Receipt()
@ Open()
@ Withdraw Funds()
£8 Deduct Funds()
£ Verity Funds()

Figure 1.7: Examples of symbols in UML notation

The consolidation of methods that became UML started in 1993. Each of the three amigos of UML began to
incorporate ideas from the other methodologies. Official unification of the methodologies continued until late
1995, when version 0.8 of the Unified Method was introduced. The Unified Method was refined and changec
to the Unified Modeling Language in 1996. UML 1.0 was ratified and given to the Object Technology Group
in 1997, and many major software development companies began adopting it. In 1997, OMG released UML
1.1 as an industry standard.

Over the past years, UML has evolved to incorporate new ideas such as web-based systems and data
modeling. The latest release is UML 1.3, which was ratified in 2000. The specification for UML 1.3 can be
found at the Object Management Group's website, http://www.omg.org/. UML 1.3 is the version used in this
book.

Understanding UML Diagrams

UML allows people to develop several different types of visual diagrams that represent various aspects of th
system. Rational Rose supports the development of the majority of these models, as follows:

Business Use Case diagram

Use Case diagram

Activity diagram

12

Chapter 1: Introduction to UML

Sequence diagram

Collaboration diagram

Class diagram

Statechart diagram

Component diagram

Deployment diagram

These model diagrams illustrate different aspects of the system. For example, the Collaboration diagram
shows the required interaction between the objects in order to perform some functionality of the system. Eac
diagram has a purpose and an intended audience.

Business Use Case Diagrams

Business Use Case diagrams are used to represent the functionality provided by an organization as a whole
They answer the questions "What does the business do?" and "Why are we building the system?" They are
used extensively during business modeling activities to set the context for the system and to form a foundati
for creating the use cases. An example of a simplified Business Use Case diagram for a financial institution
shown in_Eigure 1.8.

\ =

b4 / N //

Tellor Manage Accounts

elles N

e

= '__ /7 =
’/"‘:\\‘/.‘.an.}:_:c Credit Account -7
\ / o Customer
\ _/ \— e ’// —~— '
2

Credit Manager

Loan Money

% o

E)——C 2

A
Investment Manager Invest Money

Figure 1.8: Business Use Case diagram for a financial institution

Business Use Case diagrams are drawn from the organizational perspective. They do not differentiate betw
manual and automated processes. (Use Case diagrams, which will be discussed next, focus on the automa;
processes.) Business Use Case diagrams show the interactions between business use cases and business
Business use cases represent the processes that a business performs, and business actors represent roles
which the business interacts, such as customers or vendors. In other words, business actors represent anyc

13

Chapter 1: Introduction to UML

or anything outside the business that interacts with the business; they do not represent roles or workers witt
a business. Workers within a business are represented by business workers, which are discussed in Chapte

"Business Modeling."
Use Case Diagrams

Use Case diagrams show the interactions between use cases and actors. Use cases represent system
functionality, the requirements of the system from the user's perspective. Actors represent the people or
systems that provide or receive information from the system; they are among the stakeholders of a system.
Use Case diagrams, therefore, show which actors initiate use cases; they also illustrate that an actor receive
information from a use case. In essence, a Use Case diagram can illustrate the requirements of the system.

While Business Use Case diagrams are not concerned with what is automated, Use Case diagrams focus o
just the automated processes. There is not a one—to—one relationship between business use cases and use
cases. A single business use case may require 30 use cases, for example, to implement the process. An
example of a Use Case diagram for an Automated Teller Machine (ATM) system is shown in Figure 1.9.

T RN

(\~g B :‘/1
Trans1er Funds
T \/ Bank Officer
Deposit Funds \ % / Change PIN
e ~/ Customer e)
N ;) | \—.- 2 ./v —
Withdraw Money e 4 Make Payment Credit System
£)
View Balance

Figure 1.9: Use Case diagram for an Automated Teller Machine (ATM) system

This Use Case diagram shows the interactions between the use cases and actors of an ATM system. In this
example, the bank's customer initiates a number of use cases: Withdraw Money, Deposit Funds, Transfer
Funds, Make Payment, View Balance, and Change PIN. A few of the relationships are worthy of further
mention. The bank officer can also initiate the Change PIN use case. The Make Payment use case shows a
arrow going to the credit system. External systems may be actors and, in this case, the credit system is sho
as an actor because it is external to the ATM system. The arrow going from a use case to an actor illustrate:
that the use case produces some information that an actor uses. In this case, the Make Payment use case
provides credit card payment information to the credit system.

Much information can be gleaned from viewing Use Case diagrams. This one diagram shows the overall
functionality of the system. Users, project managers, analysts, developers, quality assurance engineers, ant
anyone else interested in the system as a whole can view these diagrams and understand what the system
supposed to accomplish.

Activity Diagrams
Activity diagrams illustrate the flow of functionality in a system. They may be used in business modeling to

show the business workflow. They may be used in requirements gathering to illustrate the flow of events
through a use case. These diagrams define where the workflow starts, where it ends, what activities occur

14

Chapter 1: Introduction to UML

during the workflow, and in what order the activities occur. An activity is a task that is performed during the
workflow.

The structure of an activity diagram is similar to a Statechart diagram, which we will discuss later in this
chapter. An example of an activity diagram is shown in Figure 1.10. The activities in the diagram are
represented by rounded rectangles. These are the steps that occur as you progress through the workflow.
Objects that are affected by the workflow are represented by squares. There is a start state, which represen
the beginning of the workflow, and an end state, which represents the end. Decision points are represented
diamonds.

Customer Service Credit Dept,
Representative Manager | Customer
{- i Collect Cus!omeri
| Information
Create New
Credt Account
Bl —
ot | Sat Credit Lim#
i |] &/ Check Customer Credit History

T

+ < Review Credit
[Doesa't History
meet Critesia] |], [Meets Criteria]

p . p X
Reject Account ‘ [Morom Aocouﬂl[
"4‘ v)
Account | Account | Acomp 1
|Denied) [Approved] e =|_Credit Terms |

(““-‘xh‘~ﬁ
| Sign paperwork |

3

Figure 1.10: Activity diagram for opening an account

You can see the object flow through the diagram by examining the dashed lines. The object flow shows you
which objects are used or created by an activity and how the object changes state as it progresses through
workflow. The solid lines, known as transitions, show how one activity leads to another in the process. If
needed, you can place greater detail on the transitions, describing the circumstances under which the transi
may or may not occur and what actions will be taken during the transition.

The activity diagram may be divided into vertical swimlanes. Each swimlane represents a different role withi
the workflow. By looking at the activities within a given swimlane, you can find out the responsibility of that
role. By looking at the transitions between activities in different swimlanes, you can find out who needs to
communicate with whom. All of this is very valuable information when trying to model or understand the
business process.

Activity diagrams do not need to be created for every workflow, but they are powerful communication tools,
especially with large and complex workflows.

15

Chapter 1: Introduction to UML

Sequence Diagrams

Sequence diagrams are used to show the flow of functionality through a use case. For example, the Withdre
Money use case has several possible sequences, such as withdrawing money, attempting to withdraw withc
available funds, attempting to withdraw with the wrong PIN, and several others. The normal scenario of
withdrawing $20 (without any problems such as entering the wrong PIN or insufficient funds in the account)
is shown in Figure 1.11.

Card ATM Joa's Cash

Joe : Customer Readar Screen Acoount Dispenser

I\'Acccm Card ! ! ! I

! 12 ReadCardNo | |

I <] | 1

! L3 Initialize Scroen_ | 1

' ! 4: Open Account N

3 5: Prompt for PIN !

r T

4 6: Enter PIN (1234)

8. Prompt for Transaction |
__ 9 Select Transaction (Withdraw) !

1
I
I
I LLVerty PN
I
I
I
I

10 Pro'np('ﬂx Amount
T

|
|
|
|
|
|
|
|
|
|
|
1 I
11: Emter Amount ($20)) | |
L12: Withdraw Funcs (520) !
113: Verity Funds ($20)

112 Doduct Funds ($20)
I

| 116: Provide Receipt |
i 17: Eject Card ! !
™ T 1 |

Figure 1.11: Sequence diagram for Joe withdrawing $20

|

I

I
r
IS
F
I |
I |
I 1
I |
I |
I |
I |
|

This Sequence diagram shows the flow of processing through the Withdraw Money use case. Any actors
involved are shown at the top of the diagram; the customer actor is shown in the above example. The objec
that the system needs in order to perform the Withdraw Money use case are also shown at the top of the
diagram. Each arrow represents a message passed between actor and object or object and object to perfor
needed functionality. One other note about Sequence diagrams—they display objects, not classes. Classes
represent types of objects, as we'll discuss later in Chapter 5, "Object Interaction.” Objects are specific;
instead of just customer, the Sequence diagram shows Joe.

The use case starts with the customer inserting his card into the card reader, an object indicated by the
rectangle at the top of the diagram. Then, the card reader reads the card number, opens Joe's account obje
and initializes the ATM screen. The screen prompts Joe for his PIN. He enters 1234. The screen verifies the
PIN with the account object and they match. The screen presents Joe with his options, and he chooses
withdraw. The screen then prompts Joe for the amount to withdraw. He chooses $20. Then, the screen
withdraws the funds from the account. This initiates a series of processes that the account object performs.
First, Joe's account verifies that the account contains at least $20. Then, it deducts the funds from the accot
Next, it instructs the cash dispenser to provide $20 in cash. Joe's account also instructs the dispenser to
provide a receipt. Lastly, it instructs the card reader to eject the card.

This Sequence diagram illustrated the entire flow of processing for the Withdraw Money use case by showir
a specific example of Joe withdrawing $20 from his account. Users can look at these diagrams to see the
specifics of their business processing. Analysts see the flow of processing in the Sequence diagrams.
Developers see objects that need to be developed and operations for those objects. Quality assurance

16

Chapter 1: Introduction to UML

engineers can see the details of the process and develop test cases based on the processing. Sequence di
are therefore useful for all stakeholders in the project.

Collaboration Diagrams

Collaboration diagrams show exactly the same information as the Sequence diagrams. However,
Collaboration diagrams show this information in a different way and with a different purpose. The Sequence
diagram illustrated in Figure 1.11 is shown in Figure 1.12 as a Collaboration diagram.

B: Enter PIN

Jo8:: Cushomer 9: Select Transaction (Withdraw)
Q 11: Enter Amount ($20)

<— 5: Prompt for PIN
8: Prompt for Transaction
10: Prompt for Amount

3: Initialize Screen

7: Verify PIN
12: Withdraw Funds ($20)

13: Veerity Funds ($20)
14 Deduct Funds ($20)

4: Open Account

17: Eppct Card

15: Provide Cash ($20)
= 16: Provide Receipt

Cash

Dispenser

Figure 1.12: Collaboration diagram for Joe withdrawing $20

In this Collaboration diagram, the objects are represented as rectangles and the actors are stick figures, as
before. Whereas the Sequence diagram illustrates the objects and actor interactions over time, the
Collaboration diagram shows the objects and actor interactions without reference to time. For example, in th
diagram, we see that the card reader instructs Joe's account to open and Joe's account instructs the card re
to eject the card. Also, objects that directly communicate with each other are shown with lines drawn betwee
them. If the ATM screen and cash dispenser directly communicated with one another, a line would be drawr
between them. The absence of a line means that no communication occurs directly between those two obje

Collaboration diagrams, therefore, show the same information as Sequence diagrams, but people look at
Collaboration diagrams for different reasons. Quality assurance engineers and system architects look at the
to see the distribution of processing between objects. Suppose that the Collaboration diagram was shaped |
a star, with several objects communicating with a central object. A system architect may conclude that the
system is too dependent on the central object and redesign the objects to distribute the processing power m
evenly. This type of interaction would have been difficult to see in a Sequence diagram.

Class Diagrams

Class diagrams show the interactions between classes in the system. Classes can be seen as the blueprint
objects, as we'll discuss_in Chapter 5. Joe's account, for example, is an object. An account is a blueprint for
Joe's checking account; an account is a class. Classes contain information and behavior that acts on that
information. The Account class contains the customer's PIN and behavior to check the PIN. A class on a Clz
diagram is created for each type of object in a Sequence or Collaboration diagram. The Class diagram for tt
system's Withdraw Money use case is illustrated in Figure 1.13.

17

Chapter 1: Introduction to UML

Card Reader | ATMScreen |
£ Card Number 4 Prompt()
@ Accept Card() ® Acceptinput()
@ Eject Card()
Read Card()
Account [Cash Dispenser
£20 Account Number | ¢ Cash Balance
EOPIN {
: | 4 Provide Cash()

£ Balance ‘ @ Provide Receipt()
4 Open() —_—
@ Withdraw Funds()

£8 Deduct Funds()

£ Verity Funds()

Figure 1.13: Class diagram for the ATM system's Withdraw Money use case

The Class diagram above shows the relationships between the classes that implement the Withdraw Money
use case. This is done with four classes: Card Reader, Account, ATM Screen, and Cash Dispenser. Each c
on a Class diagram is represented by a rectangle divided into three sectigns. The first section shows the cla
name. The second section shows the attributes the class contains. An attribute is a piece of information that
associated with a class. For example, the Account class contains three attributes: Account Number, PIN, an
Balance. The last section contains the operations of the class. An operation is some behavior that the class
will provide. The Account class contains four operations: Open, Withdraw Funds, Deduct Funds, and Verify
Funds.

The lines connecting classes show the communication relationships between the classes. For instance, the
Account class is connected with the ATM Screen class because the two directly communicate with each oth
The Card Reader is not connected to the Cash Dispenser because the two do not communicate. Another pc
of interest is that some attributes and operations have small padlocks to the left of them. The padlock indica
a private attribute or operation. Private attributes and operations can only be accessed from within the class
that contains them. The Account Number, PIN, and Balance are all private attributes of the Account class. Ir
addition, the Deduct Funds and Verify Funds operations are private to the Account class.

Developers use Class diagrams to actually develop the classes. Tools such as Rose generate skeletal code
classes, then developers flesh out the details in the language of their choice. Analysts use Class diagrams t
show the details of the system. Architects also look at Class diagrams to see the design of the system. If on
class contains too much functionality, an architect can see this in the Class diagram and split out the
functionality into multiple classes. Should no relationship exist between classes that communicate with each
other, an architect or developer can see this too. Class diagrams should be created to show the classes tha
work together in each use case, and comprehensive diagrams containing whole systems or subsystems car
created as well.

Statechart Diagrams

Statechart diagrams provide a way to model the various states in which an object can exist. While the Class
diagrams show a static picture of the classes and their relationships, Statechart diagrams are used to mode
more dynamic behavior of a system. These types of diagrams are extensively used in building real-time
systems. Rose can even generate the full code for a real-time system from the Statechart diagrams.

A Statechart diagram shows the behavior of an object. For example, a bank account can exist in several
different states. It can be open, closed, or overdrawn. An account may behave differently when it is in each

18

Chapter 1: Introduction to UML

these states. Statechart diagrams are used to show this information. Figure 1.14 shows an example of a
Statechart diagram for a bank account.

I Withdrawal[Balance <0 |

= /\&;
Open

‘ Overdrawn

J .;\/ Do: Send notice to customer

Customer Deposit[Balance <0

Requests
Closure

| check Balance Balance <0 for >30 days

I Closed
K3
Figure 1.14: Statechart diagram for the Account class

In this diagram, we can see the states in which an account can exist. We can also see how an account mov
from one state to another. For example, when an account is open and the customer requests the account's
closure, the account moves to the closed state. The customer's request is called the event and the event is:
causes a transition from one state to another.

If the account is open and the customer makes a withdrawal, the account may move to the overdrawn state.
This will only happen if the balance of the account is less than zero. We show this by placing [Balance < 0] «
the diagram. A condition enclosed in square brackets is called a guard condition, and controls when a
transition can or cannot occur.

There are two special states—the start state and the stop state. The start state is represented by a black do
the diagram, and indicates what state the object is in when it is first created. The stop state is represented b
bull's—eye, and shows what state the object is in just before it is destroyed. On a Statechart diagram, there i
one and only one start state. On the other hand, you can have no stop state, or there can be as many stop ¢
as you need.

Certain things may happen when the object is inside a particular state. In our example, when an account is
overdrawn, a notice is sent to the customer. Processes that occur while an object is in a certain state are ca
actions.

Statechart diagrams aren't created for every class; they are used only for very complex classes. If an object
the class can exist in several states, and behaves very differently in each of the states, you may want to cre
a Statechart diagram for it. Many projects won't need these diagrams at all. If they are created, developers v
use them when developing the classes.

Statechart diagrams are created for documentation only. When you generate code from your Rose model, n

code will be generated from the information on the Statechart diagrams. However, Rose add-ins are availal
for real-time systems that can generate executable code based on Statechart diagrams.

Component Diagrams

Component diagrams show you a physical view of your model, as well as the software components in your
system and the relationships between them. There are two types of components on the diagram: executable

19

Chapter 1: Introduction to UML

components and code libraries.

In Rose, each of the classes in the model is mapped to a source code component. Once the components he
been created, they are added to the Component diagram. Dependencies are then drawn between the
components. Component dependencies show the compile-time and run-time dependencies between the
components. Figure 1.15 illustrates one of the Component diagrams for the ATM system.

ATM exe

N

Card Reader L N Cash Dispenser

’ AN
’ Y
% } \\E %
- ATM Screen

s’ N h

Card Reader ,~ N Yo
1’ \\h ‘\
~ N
~
7 Cash Dispenser
7
ATM Screen “ g
s
§,

Figure 1.15: Component diagram for the ATM client

This Component diagram shows the client components in the ATM system. In this case, the team decided t
build the system using C++. Each class has its own header and body file, so each class is mapped to its ow
components in the diagram. For example, the ATM Screen class is mapped to the ATM Screen component.
The ATM Screen class is also mapped to a second ATM Screen component. These two components repres
the header and body of the ATM Screen class. The shaded component is called a package body. It represe
the body file (.cpp) of the ATM Screen class in C++. The unshaded component is called a package
specification. The package specification represents the header (.h) file of the C++ class. The component cal
ATM.exe is a task specification and represents a thread of processing. In this case, the thread of processinc
the executable program.

Components are connected by dashed lines showing the dependency relationships between them. For
example, the Card Reader class is dependent upon the ATM Screen class. This means that the ATM Scree
class must be available in order for the Card Reader class to compile. Once all of the classes have been
compiled, then the executable called ATMClient.exe can be created.

The ATM example has two threads of processing and therefore two executables. One executable comprise:
the ATM client, including the Cash Dispenser, Card Reader, and ATM Screen. The second executable
comprises the ATM server, including the Account component. The Component diagram for the ATM server |

shown in Figure 1.16.

Account Account ATMServer.exe

Figure 1.16: Component diagram for the ATM server

20

Chapter 1: Introduction to UML

As this example shows, there can be multiple Component diagrams for a system, depending on the number
subsystems or executables. Each subsystem is a package of components. In general, packages are collecti
of objects. In this case, packages are collections of components. The ATM example includes two packages:
the ATM client and the ATM server. Packages will be discussed more in Chapter 3.

Component diagrams are used by whoever is responsible for compiling the system. The diagrams will tell th
individual in what order the components need to be compiled. The diagrams will also show what run-time
components will be created as a result of the compilation. Component diagrams show the mapping of classe
to implementation components. These diagrams are also where code generation is initiated.

Deployment Diagrams

Deployment diagrams are the last type of diagram we will discuss. The Deployment diagram shows the
physical layout of the network and where the various components will reside. In our ATM example, the ATM
system comprises many subsystems running on separate physical devices, or nodes. The Deployment diag
for the ATM system is illustrated in Figure 1.17.

Oracle Server
<<LAN>>

Regional

ATM Server Printer

<<Private Network>> /~ ATMServer.exe <<Private Network>>

459 Eim St.
ATM

125 First St
ATM

ATMClient.exe ATMClient.exe
Figure 1.17: Deployment diagram for the ATM system

This Deployment diagram tells us much about the layout of the system. The ATM client executable will run
on multiple ATMs located at different sites. The ATM client will communicate over a private network with
the regional ATM server. The ATM server executable will run on the regional ATM server. The regional
ATM server will, in turn, communicate over the local area network (LAN) with the banking database server
running Oracle. Lastly, a printer is connected to the regional ATM server.

So, this one diagram shows us the physical setup for the system. Our ATM system will be following a
three—tier architecture with one tier each for the database, regional server, and client.

The Deployment diagram is used by the project manager, users, architect, and deployment staff to understa
the physical layout of the system and where the various subsystems will reside. This diagram helps the proj
manager communicate what the system will be like to the users. It also helps the staff responsible for
deployment to plan their deployment efforts.

All of these diagrams together describe the system from several different perspectives. In Chapter 3, we will

discuss each of these diagrams more closely and show how they are generated in Rational Rose. You will
be given the opportunity to try creating and using these diagrams in Rational Rose. But before we get into tf

21

Chapter 1: Introduction to UML

details of Rose, another aspect of software development projects deserves some attention—the process. W
this is not a methodology or process book, we do want to familiarize you with a process for development
using UML diagrams we have discussed.

Visual Modeling and the Software Development Process

Software development can be done in many ways. There are several different types of development proces:
that projects follow, including everything from the waterfall model to object-oriented processes. Each has its
benefits and disadvantages. In this section, we do not plan to tell you which one to use, but we will present ¢
overview of a process that focuses on visual modeling. Again, this is just an overview.

For a long time, software development followed the waterfall model. In this model, we analyzed the
requirements, designed a system, developed the system, tested the system, and deployed the system. As it
name suggests, we didn't flow back up this chain—water cannot go up. This method has been the documen
methodology used on thousands of projects, but we contend that it has not been used as purely as we woul
like to think. One of the main shortcomings of the waterfall model is that it is necessary to backtrack through
the steps. At the outset of a project following the waterfall model, we take on the daunting task of determinin
all of the system requirements. We do this through detailed discussions with the users and detailed
examination of business processes. After we're done, we make sure the users sign off on the voluminous
requirements we have written, even if they haven't read them yet. If we're really lucky, we might get about 8t
percent of the requirements of the system during this analysis stage.

Then, it's on to design. We sit down and determine the architecture of our system. We address issues such
where programs will reside and what hardware is necessary for acceptable performance. While doing this, v
may find out that some new issues have arisen. We then go back to the users and talk about the issues. Th
result in new requirements. So, we're back in analysis. After going back and forth a few times, we move to
development and begin coding the system.

While coding, we discover that a certain design decision is impossible to implement, so we go back to desig
and revisit the issue. After coding is done, testing begins. While testing, we learn that a requirement was no
detailed enough and the interpretation was incorrect. Now we have to go back to the analysis phase and re\
the requirement.

After some time, we finally finish the system and deliver it to the users. Since it took quite awhile and the
business has probably changed while we were building the system, the users respond less than enthusiasti
with, "That's just what | asked for, but not what | want!" This incantation by the users is a powerful spell that
causes the entire project team to age 10 years immediately!

So, after looking at this dismal scenario and wondering if you are in the right industry, what can you do to
make it better? Is the problem that the business changes so quickly? Is it that the users don't communicate
what they want? Is it that the users don't understand the project team? Is it that the team didn't follow a
process? The answers are yes, yes, yes, and no. The business changes very rapidly, and as software
professionals we need to keep up. The users do not always communicate what they want because what the
is second nature to them. Asking an accounting clerk who has been on the job for 30 years is roughly like
asking someone how you breathe. It becomes so second nature that it is difficult to describe. Another proble
is that the users don't always understand the project team. The team shows them flowcharts and produces
volumes of requirements text, but the users don't always understand what is being given to them. Can you
think of a way around this problem? Visual modeling can help. Lastly, the team did follow a process: the

22

Chapter 1: Introduction to UML

waterfall method (illustrated in Figure 1.18). Unfortunately, the plan and the execution of the method were
two different things.

2‘ Design l

Analysis

Code
Test

Deploy
Figure 1.18: Waterfall method

One of the problems is that the team planned to use the waterfall method, with its neat and orderly passage
through the stages of the project, but they had to backtrack throughout the project. Is this due to poor
planning? Probably not. Software development is a complex process and trying to do everything in neat stag
doesn't always work. If the need for backtracking had been ignored, then the system would have design flav
missing requirements, and possibly worse.

But over the years we have learned to plan the backtracking. With this insight comes iterative development.
Iterative development just means that we are going to do things over and over. In the object-oriented proce
we will go through the steps of analysis, design, development, testing, and deployment in small stages man
times (illustrated in Figure 1.19). There are many different implementations of iterative lifecycles. One such
implementation is the Rational Unified Process (RUP), which we will discuss briefly here. Please note that
this book does not explore the details of RUP. For more details, please see Rational's website at

http://www.rational.com/.

High-Level Analysis

/ e \

Deploy Design

\ Test ~¢————— Code /

Figure 1.19: Iterative method

It is impossible to learn all of the requirements during the early part of the project. New things are bound to
come out, so we plan for them by planning the project in iterations. With this concept, a project can be seen
a series of small waterfalls. Each one is designed to be big enough to mark the completion of an important
part of the project, but small enough to minimize the need for backtracking.

In the project, we go through four phases: inception, elaboration, construction, and transition. Inception is th
beginning of the project. We gather information and do proofs—of-concept. At the end of inception is a
go/no—go decision for the project. (A tenet of the Unified Process is a go/no—go decision at the end of each
phase.) In elaboration, use cases are detailed and architectural decisions are made. Elaboration includes sc
analysis, design, coding, and test planning. Construction is where the bulk of the coding is done. Transition
the final preparation and deployment of the system to the users. Next, we will discuss what each of these
phases means in an object—oriented project.

23

Chapter 1: Introduction to UML

Inception

The inception phase is the beginning of the project. Inception begins when someone says, "Gee, wouldn't it
great if we had a system to do...?" Then, someone researches the idea and management asks how long it
would take, how much it will cost, or how feasible the project is. Finding out the answers to these questions
what the inception phase is all about.

We begin this phase with business modeling. During this process, we analyze the business around the
proposed system. We discover what the high—level features of the system are and document them. We cree
business use cases, business actors, and Business Use Case diagrams. (We do not go into details about th
cases here, but provide just a sentence or two.) We may also create activity diagrams to model the workflow
Armed with this information, we then move on to analyze the system to be developed. We also provide
estimates to upper management. So, using Rose to support our project, we will create actors and use cases
produce Use Case diagrams. Inception ends when the research is done and management commits the
resources to work on the elaboration phase.

One more task remains in inception—the development of an iteration plan. An iteration plan is a plan
describing which use cases will be implemented during which iterations. If we find 10 use cases during
inception, we may draw up an iteration plan like this:

Iteration One Use Cases 1,5, 6
Iteration Two Use Cases 7, 9
Iteration Three Use Cases 2, 4, 8
Iteration Four Use Cases 3, 10

The plan tells us which use cases will be done first. Determining this plan requires looking at dependencies
between use cases and planning accordingly. If Use Case 3 is required in order for Use Case 5 to work, the
the plan described above is not feasible because Use Case 3 would be implemented during the fourth iterat
far after Use Case 5 is in the first iteration. We may have to adjust our plan to accommodate the dependenc

Using Rose in Inception

The inception phase begins with business modeling. Rose can be used to build the Business Use Case mot
including business use cases, business actors, and business workers. The next step involves determining w
use cases and actors are needed. Rose can be used to document these use cases and actors, and to creat
diagrams to show their relationships. The Use Case diagrams can be presented to the users to validate that
diagrams are a comprehensive view of the system features.

Elaboration

The elaboration phase of the project includes some planning, analysis, and architectural design. Following t
iteration plan, elaboration is done for each use case in the current iteration. Elaboration includes several
aspects of a project, such as coding proofs—of-concept, developing test cases, and making design decision
The elaboration phase focuses on setting the architectural foundation for the project.

The major tasks in the elaboration phase are detailing the use cases. In Chapter 4, we will discuss what the

details of a use case include. The low-level requirements of a use case include the flow of processing throu
the use case; what actors are involved with the use case; Sequence and Collaboration diagrams to show th

24

Chapter 1: Introduction to UML

flow of processing graphically; and Statechart diagrams to show any state changes that may occur during th
use case. The requirements, in the form of detailed use cases, are gathered into a document called a Softw
Requirement Specification (SRS). The SRS contains all of the details of the system requirements.

Other tasks are done in elaboration, such as refining the initial estimates, reviewing the SRS and use case
model for quality, and investigating risks. Rational Rose can help with refining the use case model and
creating the Sequence and Collaboration diagrams to show the graphical flow of processing. Class diagram
showing the objects to be built are also designed during the elaboration phase.

The elaboration phase is over when the high-risk and architecturally significant use cases have been fully
detailed and accepted by the users, proofs—of—concept have been completed to mitigate risks, and the initia
Class diagrams are complete. In other words, this phase is complete when the system architecture has beel
finalized.

Using Rose in Elaboration

The elaboration phase presents several opportunities to use Rational Rose. Since elaboration includes the
detailing of many of the system requirements, the use case model might require updating. Rational Rose m:
be used to create activity diagrams to illustrate the flow of events. As the flow of processing is detailed,
Sequence and Collaboration diagrams help illustrate the flow. They also help design the objects that will be
required for the system. Elaboration also involves preparing the initial design for the system so the develope
can begin its construction. This can be accomplished by creating Class diagrams and Statechart diagrams i
Rose. Finally, many of the system components will be identified during elaboration. Rose is used to create &
Component diagram to show these components and their relationships.

Construction

During the construction phase, the remainder of the system is analyzed, designed, and built. Using the
architecture from the elaboration phase as a foundation, the team will build the remainder of the system dur
construction. Tasks in the construction phase include determining any remaining requirements, developing t
software, and testing the software.

As the design is completed, Rational Rose can generate skeletal code for the system. In order to use this
feature for some languages, you need to create components and a Component diagram as an early part of
construction. Once you have created components and diagrammed their dependencies, code generation ca
begin. Code generation will provide as much code as possible based on the design. This does not mean the
you will get any business—specific code out of Rose. What you will get depends greatly on the language tha
is chosen, but generally includes class declarations, attribute declarations, scope declarations (public, privat
and protected), function prototypes, and inheritance statements. This saves time because this is tedious coc
write. After generating code, the developers can focus on the business—specific aspects of the project. As ¢
is completed, it should be reviewed by a peer group of developers to ensure that it meets standards, design
conventions, and is functional. After code review, the objects should be subjected to quality assurance revie
If any new attributes or functions are added during construction, or if any interactions between objects are
altered, then the new code should be updated in the Rose model through reverse engineering. We will cove
this topic further in Chapters 12 through 15 of this book.

Construction is over when the software is complete and tested. It's important to make sure that the model ar
software are synchronized; the model will be extremely valuable once the software enters maintenance moc

25

Chapter 1: Introduction to UML

Using Rose in Construction

As in the elaboration phase, Rose is used to create Sequence, Collaboration, Class, Statechart, and Compc
diagrams during construction. Rose is used to create components according to the object design. Compone
diagrams are created to show the compile—time dependencies between the components. After languages h
been selected for each component, the generation of skeletal code can be done. After code has been create
the developers, the model can be synchronized with the code through reverse engineering. Rose is also use
construction to create Deployment diagrams, which describe how the components are to be deployed.

Transition

The transition phase is when the completed software product is turned over to the user community. Tasks ir
this phase include completing the final software product, completing final acceptance testing, completing us
documentation, and preparing for user training. The Software Requirements Specification, Use Case
diagrams, Class diagrams, Component diagrams, and Deployment diagrams must be updated to reflect any
final changes. It is important to keep these models synchronized with the software product because the moc
will be used once the software product goes into maintenance mode. Several months after the completion o
the project, the models will be priceless in helping to make enhancements to the software.

Rose is used in the transition phase primarily to update the models as the software product is completed. In
particular, updates to the Component and Deployment diagrams are common during the transition phase.

Summary

Visual modeling and Rational Rose are useful at several different stages of the software development proce
Toward the beginning of the project, in inception, Rose is used to produce the business model and the use «
model. During elaboration and construction, Rose is used extensively to develop activity diagrams showing
the flow of events. Sequence and Collaboration diagrams show the objects that will be developed and how
they interact with one another. Class diagrams are also developed in Rose, showing how the objects relate
each other. Component diagrams are created using Rose to show the dependencies of the components in t
system and to allow you to generate skeletal code for the system.

Throughout construction, we use Rose to reverse engineer newly developed code back into the model to
incorporate any changes that arise during development. After construction, we move into transition, where
Rose is used to update any of the models created during the project.

In the_next chapter, we'll take a short tour of Rose. We'll examine the different features and capabilities of th
Rose tool, and talk about how to create and save a Rose model or elements of the model. We'll discuss hov
navigate Rose, the four views of the model that Rose provides, and how to publish your Rose model on the
Web.

26

Chapter 2: A Tour of Rose

This chapter concludes our introduction to UML and Rose. After reading this chapter, you will be armed with
enough information to embark on learning the fundamentals of designing systems with Rose. In this chapter
we discuss what Rational Rose is and what a Rational Rose model includes, and then take you on a visual
tour, discussing the various parts of the screen and how to navigate through the product. We'll discuss the f
views of a system that are available through Rose and how to work with Rose. Finally, we'll look at how to
publish a Rose model to the Web, and how to manage versions of a Rose model.

What Is Rose?

Rational Rose is a powerful visual modeling tool to aid in the analysis and design of object-oriented softwar
systems. It is used to model your system before you write any code, so you can be sure that the system is
architecturally sound from the beginning. Using the model, you can catch design flaws early, while they are
still inexpensive to fix.

Rational Rose supports business modeling, helping you to understand the business around the system. It h
with systems analysis by enabling you to design use cases and Use Case diagrams to show the system
functionality. It will let you design Interaction diagrams to show how the objects work together to provide the
needed functionality. Class diagrams can be created to show the classes in a system and how they relate tc
each other. Component diagrams can be developed to illustrate how the classes map to implementation
components. Finally, a Deployment diagram can be produced to show the network design for the system.

A Rose model is a picture of a system from various perspectives. It includes all of the UML diagrams, actors
use cases, objects, classes, components, and deployment nodes in a system. It describes in great detail wh
the system will include and how it will work, so developers can use the model as a blueprint for the system
being built.

A blueprint is a good analogy for a Rose model. Just as a house has a set of blueprints that let different
members of the construction crew see it from different perspectives (plumbing, electrical, and so on), a Ros¢
model contains a number of different diagrams that let the project team see the system from different
perspectives (customer, designer, project manager, tester, and so on).

Having a blueprint ahead of time helps alleviate an age-old problem. The team has talked to the customers
and documented the requirements. Now the developers are ready to code. One developer (we'll call him Bo
takes some of the requirements, makes certain design decisions, and writes some code. Jane, another
developer, takes some requirements, makes completely different design decisions, and writes some more
code.

This difference in programming style is perfectly natural; 20 developers given the same requirements may
code 20 different systems. The problem comes about when someone needs to understand or maintain the
system. Without conducting detailed interviews with each of the developers, it's hard for anyone to see what
design decisions were made, what the pieces of the system are, or what the overall structure of the system
Without a documented design, it's hard to be sure that the system you built is actually the system the users
in mind.

Traditionally, we follow a process that looks like this:

27

Chapter 2: A Tour of Rose

l Requirements ‘ - /CP\ > Code

The requirements are documented, but the design is inside Bob's brain, so no one other than Bob has a goc
idea of the system structure. If Bob leaves, that information leaves with him. If you've ever been the one
taking over for Bob, you can appreciate how difficult it can be to understand a system with little
documentation.

A Rose model gives us a process that looks like this:

| |
Requirements ‘ ————3 | Object Model‘ _— Code

Now the design is documented. We get rid of Bob (figuratively speaking, of course!) and replace our
dependency on him with a documented design. The developers can all gather to discuss the design decisiol
before the code is written. You don't have to worry about everyone going off in a separate direction with the
system design.

But the developers aren't the only ones to use the model:

The entire team will use the Business Use Case diagrams to get an understanding of the business
surrounding the system.

Customers and project managers will use the Use Case diagrams to get a high—level view of the
system and to agree on the project scope.

Project managers will use the Use Case diagrams and documentation to break the project down into
manageable pieces.

Analysts and customers will look at the use case documentation to see what functionality the system
will provide.

Technical writers will look at the use case documentation to begin to write the user manual and
training plans.

Analysts and developers will look at Sequence and Collaboration diagrams to see how the logic in th
system will flow, the objects in the system, and the messages between the objects.

Quality assurance staff will use the use case documentation and the Sequence and Collaboration
diagrams to get the information they need for testing scripts.

28

Chapter 2: A Tour of Rose

Developers will use the Class diagrams and Statechart diagrams to get a detailed view of the pieces
the system and how they relate.

Deployment staff will use the Component and Deployment diagrams to see what executable files,
DLL files, or other components will be created, and where these components will be deployed on the
network.

The whole team will use the model to be sure the requirements are traced to the code, and that the
code can be traced back to the requirements.

Rose, therefore, is a tool meant to be used by the entire project team. It is a repository of scope, analysis, a
design information that each team member can use to get the information they need.

In addition to the above, Rational Rose will help developers by generating skeletal code. It can do this for a
number of different languages available on the market, including C++, Ada, CORBA, Java, COM objects,
Visual Basic, and XML. Further, Rose can reverse engineer code and create a model based on an existing
system. Having a model in Rose for an existing application is very beneficial. When a change occurs to the
model, Rose can modify the code to incorporate the change. Similarly, when a change occurs in the code, y
can incorporate that change into the model automatically. These features help you keep the model and the
code synchronized, reducing the risk of having an outdated model.

Rose can also be extended using RoseScript, a programming language packaged with Rose. Using this
programming language, you can write code to automatically make changes to your model, create a report, ¢
perform other tasks with your Rose model.

There are three different versions of Rose currently available:

Rose Modeler, which allows you to create a model for your system, but will not support code
generation or reverse engineering.

Rose Professional, which allows you to generate code in one language.

Rose Enterprise, which allows you to generate code for C++, Java, Ada, CORBA, Visual Basic,
COM, Oracle8, and XML. A model can have components that are generated in different languages.

What 's New in Rose 2002

In the last several years, Rose has been enhanced to accommodate some of the newer UML notation and
diagrams. The following list includes the newest of the enhanced Rose features at the time of this writing:

A main diagram for each package can now be selected.

Items on a diagram can now be moved around using the arrow keys.

. 29

Chapter 2: A Tour of Rose

The Page Up and Page Down keys can now be used to scroll through a diagram.

Default C++ component styles can be set.

Directories and file extensions for C++ code generation can be specified.

It includes support for Microsoft Interface Definition Library (MIDL) round-trip engineering.

It includes support for J2EE deployment.

It includes additional support for the reverse engineering of Enterprise JavaBeans (EJBS).

What's New in Rose 2001A

Some other new Rose features include:

Business modeling, which was discussed briefly in Chapter 1. "Introduction to UML," focuses on the
world around the system, and helps to set the context for the use case model.

Activity diagrams, which can be used to describe the workflow through a business use case or the
flow of events through a use case.

Support for ANSI C++, which will be discussed in detail in the code generation and reverse
engineering section of this book. A model converter can be used to convert older Rose C++ models
Rose ANSI C++ models.

Tighter integration with Rational's ClearCase tool, which is used for version control.

Enhanced data—-modeling capabilities.

Modeling, code generation, and reverse engineering of Enterprise Java Beans.

Getting Around in Rose

In the next few sections of this chapter, we'll describe each part of the Rose interface. Rose is largely a
menu—driven application, with toolbars to help with commonly used features. Rose supports eight different
types of UML diagrams: Use Case diagrams, Activity diagrams, Sequence diagrams, Collaboration diagram

30

Chapter 2: A Tour of Rose

Class diagrams, Statechart diagrams, Component diagrams, and Deployment diagrams. Rose will present y
with a different toolbar for each of these diagrams. In the next nine chapters, we'll show you how to create a
of these types of diagrams.

In addition to the toolbars and menus, Rose includes context—sensitive shortcut menus, visible by
right—clicking an item. For example, right—clicking a class on a Class diagram will display a menu that
includes options for adding attributes or operations to the class, viewing or editing the class specifications,
generating code for the class, or viewing the generated code. When in doubt, right—click! Rose will almost
always give you helpful menu options.

One of the easiest ways to get around in Rose is to use the browser, which is the treeview on the left side o

the screen. With the browser, you can quickly and easily get to the diagrams and other elements of the mod
If you run into trouble while using Rose, press F1 at any time to access the extensive online help file.

Parts of the Screen

The five primary pieces of the Rose interface are the browser, the documentation window, the toolbars, the
diagram window, and the log. In this section, we'll look at each of these. Briefly, their purposes are:

Browser Used to quickly navigate through the model

Documentation window Used to view or update documentation of model elements
Toolbars Used for quick access to commonly used commands

Diagram window Used to display and edit one or more UML diagrams

Log Used to view errors and report the results of various commands

Figure 2.1 illustrates the various parts of the Rose interface.

otie

L T T e ——

L]
3
“
r
-
=
o
5
L
&
e

e

Browser Documentation Window Log Toolbars Diagram Window

Figure 2.1: The Rose interface

31

Chapter 2: A Tour of Rose

Browser

The browser is a hierarchical structure you can use to easily navigate through your Rose model. Anything y«

add to the model—actors, use cases, classes, components, and so on—will display in the browser. The
browser is shown in Figure 2.2.

(5 (untitled)
=3 Use Case View
~[E8 Main
<23 Fill Order
<2 Receive Order
«Z> Ship Order
3 Associations
=7 Logical View
- [H Main
~B Invoice
B Order
.3 Associations
=-{_J Component View
[l Main
/6 Deployment View
{28 Model Properties

Figure 2.2: Rose browser

Using the browser, you can

L]
Add model elements (use cases, actors, classes, components, diagrams, etc.)

View existing model elements
View existing relationships between model elements

Move model elements

Rename model elements

32

Chapter 2: A Tour of Rose

Add a model element to a diagram

Attach a file or URL to an element

Group elements into packages

Access the detailed specifications of an element

Open a diagram

There are four views in the browser: the Use Case view, the Logical view, the Component view, and the
Deployment view. Table 2.1 lists each of these views and the model elements found in the views.

Table 2.1: Views in Rational Rose

View Contents
Use Case view Business actors

Business workers

Business use cases
Business Use Case diagrams
Business Use Case realizations
Actors

Use cases

Associations

Use case documentation

Use Case diagrams

Activity diagrams

Sequence diagrams
Collaboration diagrams

Packages
Logical view Classes

33

Chapter 2: A Tour of Rose

Class diagrams
Associations
Interfaces

Sequence diagrams
Collaboration diagrams
Statechart diagrams

Packages
Component view Components

Interfaces
Component diagrams

Packages
Deployment view Processes

Processors

Connectors

Devices

Deployment diagram
Using the browser, you can view the model elements in each of these four views, move or edit elements, or
add new elements. By right—clicking an element in the browser, you can attach files or URLSs to the element,
access the detailed specifications of the element, delete the element, or rename the element.

The browser is organized in a treeview style. Each model element may contain other elements beneath it in
the hierarchy.

By default, the browser will appear in the upper-left area of the screen. You can move the browser to anoth:
location or hide the browser altogether.

To show or hide the browser:

1.
Right—click in the browser window.

2.
Select Hide from the shortcut menu. Rose will show or hide the browser.

OR

Select View - Browser. Rose will show or hide the browser.

34

Chapter 2: A Tour of Rose

Documentation Window

The documentation window is used to document the elements of your Rose model. For example, you may
want to write a short definition for each of your actors. You can enter this definition using the documentation
window, as shown in Figure 2.3.

Fle DM e Pt Bosen Bt Qs Tk AMBe Weios ey

BORBOOE@2 L L .0 40

B oo e 1Y

Documentation Window
Figure 2.3: The documentation window

When you add documentation to a class, anything you type in the documentation window will appear as a
comment in the generated code, reducing the need to go in later and comment on the system's code. The
documentation will also appear in the reports you can generate from Rose.

As you select different elements from the browser or on a diagram, the documentation window will
automatically be updated to display the documentation for the selected element.

Toolbars
Rose toolbars provide you with quick access to commonly used commands. There are two toolbars in Rose
the Standard toolbar and the Diagram toolbar, which is called the toolbox. The Standard toolbar contains

options you can use in any diagram. These options are shown in Table 2.2.The toolbox changes for each ty
of UML diagram. The different Diagram toolbars will be discussed in detail in the remainder of this book.

Table 2.2: Icons in Standard Toolbar

Icon Button Purpose

0O Create New Model Creates a new Rose model (.mdl) file.

= Open Existing Model Opens an existing Rose model (.mdl) file.

=] Save Model or Log Saves the Rose model (.mdl) file or the log for the current model.

35

Chapter 2: A Tour of Rose

Cut Moves text to the clipboard.

Copy Copies text to the clipboard.

Paste Pastes text from the clipboard.

Print Diagrams Prints one or more diagrams from the current model.
Context Sensitive Help Accesses the help file.

View Documentation Views the documentation window.

Browse Class Diagram Locates and opens a Class diagram.

Browse Interaction Diagram [Locates and opens a Sequence or Collaboration diagram.

Browse Component Diagram [Locates and opens a Component diagram.

Browse State Machine Diagrgirocates and opens a Statechart diagram.

Browse Deployment Diagram|Opens the Deployment diagram for the model.

Browse Parent Opens a diagram's parent diagram.

Browse Previous Diagram [Opens the diagram you were most recently viewing.

Zoom In Increases the zoom.

Zoom Out Decreases the zoom.

Fit in Window Sets the zoom so the entire diagram fits within the window.
Undo Fit in Window Undoes the Fit in Window command.

HEEEREEEEEEREEEEE

All of the toolbars can be customized. To customize a toolbar, select Tools - Options, then select the
Toolbars tab.

To show or hide the Standard toolbar:

1.
Select Tools - Options.

2.
Select the Toolbars tab.

3.
Use the Show Standard Toolbar check box to show or hide the Standard toolbar.

To show or hide the Diagram toolbar:

1.
Select Tools - Options.

2.
Select the Toolbars tab.

3.
Use the Show Diagram Toolbar check box to show or hide the Diagram toolbar (toolbox).

To customize a toolbar:

1. 36

Chapter 2: A Tour of Rose

Right—click the desired toolbar.

2.
Select the Customize option.

3.
Add or remove buttons to customize the toolbar by selecting the appropriate button and then clicking
the Add or Remove button, as shown in Figure 2.4.

Custoenize Toolbar = 2%
Ayadable hoobay busions: Clment ook butons: Close I
[Crestes an undeecionsl 205 4] Al
77 Crestes an astocistion class LJ
=0 Creates an rteface Help
3 Crostes 3 1esi0e selstorahp _J _‘|
3 Croates an rutavbisted class
B Croates an mstarkisted class | -
Craste: & buinass s cave. __UpJ
Etwuaumeene&mr I Separaor = MMI

Figure 2.4: Customizing a toolbar
Diagram Window

In the diagram window shown_in Figure 2.5, you can view UML diagrams in your model. As you make
changes to elements in a diagram, Rose will automatically update the browser as necessary. Similarly, whel
you make changes to an element using the browser, Rose will automatically update the appropriate diagran
By doing so, Rose helps you maintain a consistent model.

Chera Page

iure 2.5: Diagram window
Log

As you work on your Rose model, certain information will be posted to the log window. For example, when
you generate code, any errors that are generated are posted in the log window, shown in Figure 2.6.

37

Chapter 2: A Tour of Rose

1459

153454 Ugpdate Medel Progerties)

193455 Updatlng ssedel pupenies kom Sie CAPregram FlicsiRaticna\foscANSE Co viopp ply.
153456

1RG0 Update Medel Properties)

1531456 Ugdating medel propedios kom Se CiProgram FllesWatiena\fesei\dali Yroseadal 3 pty,
193450

153456 [Update Madel Prepertics)

193456 Ugdating sadol propertion Wom Se CPvagram Filos¥iasenalieseihndalSion cadall phy.
153455

199466 [Usdatn Model Properties)

1533456 Ugdating medel propedtics kom Sle CiPregram FilesWstienalRoseCOREA corda pty. <
193459

193459 gdate Made! Progerties)

1934:69 Ugdating medel propertios kom Sle C4Program Filoc¥t Nosel

15:35:01)

1SI5:01] Phgdate Madel Progerties]

15:35:01) Ugdating medel propedies kom Sie CAProgram FllesWRasienalResc\avarosejava, py.

sy

15:35:07) Ugdate Model Propertics)

15:35:00 Ugdating ssedel propedies kom Be CiPregram FilesWatenalReselOracieSforacicbpty.
151500

191500 Rgdate Medel Properties)

15:35:00) Ugdating medel propedies kom e CiPregram FilesRaSenal\ReseiTe sjotecip pty.

153509

19:35:09 Update Mede! Progenties)

lT.l‘i:ﬂfl Ugdating medel propedios kom e CiPregram Flles¥atienalRese\lypoLiblep/ri ﬂyl, s
« '

Figure 2.6: Log window

Exploring Four Views in a Rose Model

There are four views in a Rose model: the Use Case view, the Logical view, the Component view, and the
Deployment view. Each of these four views addresses a different audience and purpose. In the following
sections, we'll take a brief look at each of these views. In the remainder of this book, we'll discuss the detaile
model elements that appear in each of these views.

Use Case View

The Use Case view includes all of the actors, use cases, and Use Case diagrams in the system. It may also
include some Sequence and Collaboration diagrams. The Use Case view is an implementation—-independer
look at the system. It focuses on a high—level picture of what the system will do, without worrying about the
details of how the system will do_it. Figure 2.7 illustrates the Use Case view in the Rose browser.

38

Chapter 2: A Tour of Rose

se Case View
=-{_J Business Model
= Credit Department
@ Credit Manager
@ Credit Specialist
-3, Associations
3 Business Use Case Diagram
= Manage Credit Accounts
=87 StatesActivity Model2
(&) workflow: Add Account
< Manage Investments
—>’, Associations
E Main
£ Customer
[=-¢<Z> Deposit Money
: iy Direct Deposit
() Manual Deposit
‘ ?3, Associations
=7 Logical View
-3 Component View
(3 Deployment View
{28 Model Properties

Figure 2.7: Use Case view
The Use Case view includes:

Business use cases, which are workflows within the organization.

Business actors, which are people, companies, or other entities outside the organization who interact
with the business.

Business workers, which are roles within the organization
Organizational units, which are groups of business cases and/or business workers.

HE e w0

Activity diagrams, which are used to describe the workflow within a business use case or a flow of
events through a use case.

Actors, which are external entities that interact with the system being built.
Use cases, which are high—level pieces of functionality the system will provide.
Use case documentation, which details the flow through the use case, including any error handling. Thi

icon represents an external file that has been attached to your Rose model. The icon used will depend
upon the application you used to document the flow of events. Here, we used Microsoft Word.

Use Case diagrams, which show the actors, the use cases, and the interactions between them. There
typically several Use Case diagrams per system, each showing a subset of the actors and/or use case:

Interaction diagrams, which display the objects or classes involved in one flow through a use case.
There may be many Interaction diagrams for each use case. Interaction diagrams can be created in eit
the Use Case view or the Logical view. Any Interaction diagrams that are implementation—-independent
are typically created in the Use Case view. Any Interaction diagrams that are language—specific are
located in the Logical view.

@ O o]

|
)

39

Chapter 2: A Tour of Rose

(3 Packages, which are groups of use cases, actors, or other modeling elements. A package is a UML
mechanism that helps you to group related items together. In most cases, there are few enough use ca
and actors that packaging is not essential. However, it's a tool that is always available to help you
organize the Use Case view. In particular, it can be convenient to package these elements for
configuration management.

When the project first begins, the team may optionally produce a business model in the Use Case view. If th

task is undertaken, the team members that will be needed include the customer, the project manager, and

analysts who focus on business processes (frequently termed business analysts). The rest of the
team—including designers, coders, testers, and so on—will refer to the business model throughout the proje
to gain an understanding of the overall business and how the new system fits into its organizational structur

We will discuss the business model in more detail in Chapter 3, "Business Modeling."

Once the business model has been completed, the team moves on to the use case model. Customers, anal
and project managers will work with the use cases, Use Case diagrams, and use case documentation to ag
on a high-level view of the system.

Note This view focuses only on what the system will do. Implementation details should be left for future
discussions. In an object-oriented system, use cases are the system requirements.
As the project goes along, all members of the team can look at the Use Case view to get a high-level
understanding of the system being built. The use case documentation will describe the flow of events throug
a use case. With this information, quality assurance staff can begin to write testing scripts. Technical writers
can begin the user documentation. Analysts and customers can help ensure that all requirements were
captured. Developers can see what high—level pieces of the system will be created, and how the system log
should flow.

Once the customer has agreed to the use cases and actors, they have agreed to the system scope. The
development can then continue to the Logical view, which focuses more on how the system will implement
the behavior spelled out in the use cases.

Logical View

The Logical view, shown in Figure 2.8, focuses on how the system will implement the behavior in the use
cases. It provides a detailed picture of the pieces of the system, and describes how the pieces interrelate. T
Logical view includes, among other things, the specific classes that will be needed, the Class diagrams, anc
the Statechart diagrams. With these detailed elements, developers can construct a detailed design for the
system.

40

Chapter 2: A Tour of Rose

#-J Use Case View
EREE ogical View
& Main
=B Card Reader [Card Reader, Card Reader)
E l% Card Number
o ® Accept Card
L ® Eject Card

‘.. ® Read Card
-8 Account [Account, Account)
#-B Cash Dispenser [Cash Dispenser, Cash Dispe
B ATM Screen [ATM Screen, ATM Screen)
-3 Component Yiew
#-(F Deployment View

#H-H

< | M

Figure 2.8: Logical view

The Logical view includes:

=] Classes, which are the building blocks for a system. A class consists of a little bit of information
(its attributes) and a little bit of behavior (its operations), grouped together. For example, an
Employee class might store information about the employee's name, address, and social security
number, and might include behavior such as hiring or firing an employee. There are different type
of icons that are used for different types of classes. We will discuss these further in Chapter 6,

"Classes and Packages."

=] Class diagrams, which are used to view the classes in the system, their attributes and operations,
and their relationships to each other. Typically, a system will have several Class diagrams, each
showing a subset of all the classes.

iy Interaction diagrams, which include Sequence and Collaboration diagrams, are used to display th

) classes that participate in one flow of events through a use case. As we mentioned above,

@ Interaction diagrams can be created in either the Use Case view or the Logical view. Interaction

diagrams in the Use Case view tend to be high-level and implementation—-independent, while
Interaction diagrams in the Logical view are more detailed.

= Statechart diagrams, which show the dynamic behavior of an object. A Statechart diagram
includes all of the states in which a particular object can exist. It also illustrates how the object
moves from one state to another, what state the object is in when it is first created, and what state
the object is in when it is destroyed. A Statechart diagram can be useful in detailing business rule

G Packages, which are groups of related classes or other modeling elements. Packaging isn't
required, but it is certainly recommended. A typical system may have a hundred classes or more.
Packaging your classes can help reduce the complexity of your model. To get a general picture o
the system, you can look at the packages. To see a more detailed view, you can go into any of th
packages and view the classes inside.

Frequently, teams take a two—pass approach to the Logical view. In the first approach, they identify analysis

classes. Analysis classes are language—-independent classes. By focusing first on analysis classes, the tear

begin to see the structure of the system without getting bogged down in the implementation—specific details.

In UML, analysis classes can be represented using the following icons:

41

Chapter 2: A Tour of Rose

O O

Boundary Control Entity

The analysis classes might also appear on some Interaction diagrams in the Use Case view. Once the anal
classes have been identified, the team can change each one to a design class. A design class is a class tha
language—specific details. For example, we may have an analysis class that's responsible for talking to anot
system. We don't worry about what language the class will be written in—we focus only on what information
and behavior it will have. When we turn it into a design class, however, we look at the language—specific
details. We may decide that now we have a Java class. We might even decide that we need two Java class
actually implement what we uncovered in analysis—there isn't necessarily a one—to—one mapping between
analysis classes and design classes. Design classes are shown on the Interaction diagrams that appear in t
Logical view.

The focus of the Logical view is on the logical structure of the system. In this view, you identify the pieces of
the system, examine the information and behavior of the system, and examine the relationships between th
pieces. Reuse is one of the main considerations here. By carefully assigning information and behavior to
classes, grouping your classes together, and examining the relationships between the classes and the pack
you can identify classes and packages that can be reused. As you complete more and more projects, you C:
add new classes and packages to a reuse library. Future projects then become more of a process of assem
what you already have, rather than building everything from scratch.

Nearly everyone on the team will use information from the Logical view, but the primary users will be the
developers and architect. The developers will be concerned with what classes are created, what information
and behavior each class should have, and what relationships exist between the classes. The architect, who
more concerned with the structure of the overall system, is responsible for ensuring that the system has a
stable architecture, that reuse has been considered, and that the system will be flexible enough to change a
requirements change. Analysts will look at the classes and Class diagrams to help ensure that the business
requirements will be implemented in the code. Quality assurance staff will look at the classes, packages, an
Class diagrams to see what pieces of the system exist and need to be tested. They will also use the Statect
diagrams to see how a particular class should behave. The project manager will look at the classes and
diagrams to ensure that the system is well structured, and to get an estimate of how complex the system is.

Once you've identified the classes and diagrammed them, you can move on to the Component view, which
focuses more on the physical structure.

Component View

The Component view contains information about the code libraries, executable files, run—time libraries, and
other components in your model. A component is a physical module of code.

In Rose, components and Component diagrams are displayed in the Component view, as shown in Figure z
The Component view of the system allows you to see the relationships between the modules of code.

42

Chapter 2: A Tour of Rose

(5] Bank
#-CJ Use Case View
#-7J Logical View
- O e
) Main
=3 ATM Client
-2] ATM Screen
8] Card Reader
2] Cash Dispenser
L E ATM.exe
=3 ATM Server
2] Account
27 ATMServer.exe
(9 Deployment View
{23 Model Properties

Figure 2.9: Component view

The Component view includes:

€] Components, which are physical modules of code.

i3] Component diagrams, which show the components and their relationships to each other.
Relationships between the components let you know what the compilation dependencies are. With
this information, you can determine the compilation order of the components.

G Packages, which are groups of related components. As with packaging classes, reuse is one of the
considerations when packaging components. A group of related components may be very easy to
pick up and reuse in other applications, so long as the relationships between the group and other
groups are carefully monitored. We'll discuss these issues in detail later.

The main users of the Component view are those people responsible for controlling the code and compiling

and deploying the application. Some of the components will be code libraries. Others will be run—time

components, such as executable files or dynamic link library (DLL) files. Developers will also use the

Component view to see what code libraries have been created and which classes are contained in each coc

library.

Deployment View

The final view in Rose is the Deployment view. The Deployment view is concerned with the physical
deployment of the system, which may differ from the logical architecture of the system.

For example, the system may have a logical three-tier architecture. In other words, the interface may be
separated from the business logic, which is separated from the database logic. However, the deployment m

43

Chapter 2: A Tour of Rose

be two-tiered. The interface may be placed on one machine, while the business and database logic are loc:
on another machine.

Other issues, such as fault tolerance, network bandwidth, disaster recovery, and response time, are also
handled using the Deployment view. The Deployment view is shown in Figure 2.10.

(%1 Bank
#-J Use Case View

#-7J Logical View
-3 Component View
=) 125 First St. ATM
ATMClient.exe
459 Elm St. ATM
ATMClient.exe
= Banking Database Server
Oracle 8
Regional ATM Server
aTMServerexe
(P Printer
23 Model Properties

= D:}

Figure 2.10: Deployment view

The Deployment view includes:

i Processes, which are threads that execute in their own memory space.

) Processors, which include any machines with processing power. Each process will run on one or
more processors.

] Devices, which include any hardware without processing power. Examples are dumb terminals

and printers.
A Deployment diagram shows the processes and devices on the network and the physical connections
between them. The Deployment diagram will also display the processes, and show which processes run on
which machines.

Again, the whole team will use the information in the Deployment view to understand how the system will be
deployed. However, the primary users will be the staff responsible for distributing the application.

44

Chapter 2: A Tour of Rose

Working with Rose

Everything you do in Rose relates to a model. In this section, we will discuss how to use models. We will firs
look at how to create and save Rose models. Then, we will discuss team design considerations by using
controlled units, and show you how to publish a Rose model to the Web.

Creating Models

The first step in working with Rose is to create a model. Models can be either created from scratch or made
using an existing framework model. A Rose model and all diagrams, objects, and other model elements are
saved in a single file with the extension .mdl (model).

To create a model;

1.
Select File » New from the menu, or press the New button on the Standard toolbar.

2.
If the Framework Wizard is installed, then the list of available frameworks will be displayed, as in
Figure 2.11. Select the framework you want to use and click OK, or click Cancel to use no
framework.

Create New Model

Rational Rose

New | Existing | Recent |

(o

B B N B’
k12

Fell [hakeNew ciackede Dl >3
1 arrewcrd
b B A
\% :
ratonsl undiad VES Standard VCEATL 30 VOEMFCEO
procass
I Dot shoss tha dialog in the fuhuee Heb l

Figure 2.11: Framework Wizard
If you select a framework, Rose will automatically load the default packages, classes, and components that

come with that framework. For example, loading the J2EE framework provides default applet, beans, and
other classes, as can be seen in Figure 2.12.

45

Chapter 2: A Tour of Rose

furiied
% 3 Use Cate Vow
= O Logca View

H) Class Himeaechy
% B Appiet [Apgiet |

O Appiei_ontest | Appletontent |
MSab [ApcletShid)
(Audolip |

% 0 g

3
4

v 80w
Package Merachy

Associshons

Eumpg

g

-]

9
Pachage Hmaechy

mnmé'é'
{

Associsbors
¥ O Component View
O Deplogrment View
B8 Model Properta:

Figure 2.12: J2EE foundation

Although they cannot all be seen in the figure, the J2EE framework provides classes and interfaces within
each of the packages. Each one has the appropriate attributes and operations, so the team does not need t

manually enter them.

There are two benefits to using a framework:

The team does not need to spend unnecessary time modeling elements that already exist. The focus

the modeling effort is on what's unique to a project, not reinventing existing components (although
reusing them is fine!).

A framework helps provide consistency across projects. As we mentigned in Chapter 1, a primary
benefit of modeling is ensuring consistency between team members or even between entire teams.
Using the same framework in different projects ensures that both teams are building from the same

foundation.

Rose even gives you the option of creating your own framework. Using this approach, you collect and mode

the classes and components that form your organization's architectural foundation. Upon this foundation, yo
can design and build multiple systems.

Saving Models

As with any other application, it is good practice to save the file periodically. Rose is no exception. As
mentioned above, the entire model is saved in one file. In addition, you can save the log to a file.

To save a model:

46

Chapter 2: A Tour of Rose

Select File - Save from the menu.

OR

Click the Save button on the Standard toolbar.
To save the log:

1.
Select the log window.

2.
Select File —» Save Log As from the menu.

3.
Enter the filename of the log.

OR

1.
Select the log window.

2.
Click the Save button on the Standard toolbar.

3.
Enter the filename of the log.

Exporting and Importing Models

One of the main benefits of the object-oriented paradigm is reuse. Reuse can apply not only to the code bu
the models as well. To fully take advantage of reuse, Rose supports exporting and importing models and
model elements. You can export a model or a portion of a model and import it into other models.

To export a model:

1.
Select File — Export Model from the menu.

2.
Enter the name of the export file.

To export a package of classes:

1.
Select the package to export from a Class diagram.

2.
Select File —» Export <package> from the menu.

3.
47

Chapter 2: A Tour of Rose

Enter the name of the export file.
To export a class:

1.
Select the class to export from a Class diagram.

2.
Select File » Export <class> from the menu.

3.
Enter the name of the export file.

To import a model, package, or class:

1.
Select File —» Import Model from the menu.

2.
Select the file to import. Allowable file types are model (.mdl), petal (.ptl), category (.cat), or

subsystem (.sub).

Publishing Models to the Web

You can easily publish all or any part of your Rose model to the Web—either to an intranet, the Internet, or
filesystem site—using Rational Rose 2001A or 2002. This way, users who may need to view the model can
do so without having Rose installed and without printing a ream of model documentation. A model publishec

to the Web is shown in Figure 2.13.

Liwe Cane Diagram: Use Cane View | Vs

o

Figure 2.13: ATM model on the We
To publish a model to the Web:

1.
Select Tools - Web Publisher from the menu.

48

Chapter 2: A Tour of Rose

Select the model views and packages to publish from the Web Publisher window, as shown in the
Selections field in_Figure 2.14.

& Rose webpubicher 2%/
Lovel of Detad Pui
 Dec Oy I
" Intereadate e
| Liagama.
B]
Notston
" Bosch Help
" OMY —J
= UML Cloce
¥ Inchate Inbwsted ltoess
¥ Inchade Proparter
¥ Inchude Associations in Browses
HTML Root Fie Name
IE \Documents and Setirgs\Bark hin _J Preview
Elapsed Tere: 000004

Figure 2.14: Web Publisher window

3.
In the Level of Detalil field, select the desired level of detail. The Documentation Only option includes
only high-level information; none of the properties of the model elements are displayed. The
Intermediate option displays the properties found on the General tab on model element specification
The Full option publishes all properties, including those listed on the Detail tab on model element
specifications.

4.
Select the notation to use while publishing. Notation will default to the default notation in Rose.

5.
Choose whether or not to publish inherited items.

6.
Choose whether or not to publish properties.

7.
Choose whether or not to publish associations, which are the relationships between model elements
this box is selected, associations will appear in the browser treeview.

8.
Enter the name of the HTML root filename where the model will be published.

9

If you want to choose the graphic file format for the diagrams, select the Diagrams button. The
Diagram Options window will be displayed, ag in Figure 2.15.

49

Chapter 2: A Tour of Rose

4 Diagram Options '

— Publish Diagrams as oK.
" Don't Publish Diagrams

' \Windows Bitmaps

" Portable Network Graphics [PNG)
" JPEG

Cancel

Help

ik

Figure 2.15: Diagram Options window

Select the type of graphic format to use while publishing diagrams: Windows bitmaps, Portable
Network Graphics (PNGs), or JPEGs. You can also select to not publish diagrams.

10.
When ready, click Publish. Rose will create all of the web pages to publish your model.

11.
If desired, click Preview to see the published model.

Working with Controlled Units

Rose supports multiuser, parallel development through the use of controlled units. A controlled unit in Rose
can be any package within the Use Case view, Logical view, or Component view. In addition, the Deployme
view and the Model Properties units can also be placed under control. When a unit is controlled, all of the
model elements inside it are stored in a separate file from the rest of the model. This way, the separate file c
be controlled through the use of an SCC-compliant version control tool, such as Rational ClearCase or
Microsoft SourceSafe, or minimally within Rose directly. To create or manage a controlled unit, right—click
the package to control and select the Units option, as shown in Figure 2.16.

Lsu A @ VO REREY T» a@an

LRNTE B

B e L e ST p—

Figure 2.16: Managing units
Follow these steps to create a controlled unit:

1.
In the browser, right—click the package to be placed under control.

Chapter 2: A Tour of Rose

Select Units —» Control <package> from the menu.

3.
Enter the filename for the controlled unit. Notice that the icon in the browser now has a page symbol
on the folder to symbolize that the package is controlled.

In a parallel development environment, you may need to unload a package so that others can work on the
package. You may only modify a loaded package. An unloaded package is available for others to load and
modify. To unload a controlled unit:

1.
Right—click the package to be unloaded.

2

Select Units —» Unload <package> from the menu. Notice that the items in the package are removed
from the browser because they have been removed from the model.

To unload all controlled units in a view:

1.
Right—click the view.

2.
Select Units — Unload Subunits of <view> from the menu.

Periodically, you may want to reload a package that has just been updated by another development team. T
load a controlled unit:

1.
Right—click the package to be reloaded.

2.
Select Units - Reload <package> from the menu.

To uncontrol a controlled unit:

1.
Make sure the controlled unit is loaded.

2.
Right—click the package to be uncontrolled.

3

Select Units —» Uncontrol <package> from the menu. Note that the controlled unit's file is not deleted
from your computer.

At times, you may want to view certain items without modifying them. To protect from modifying controlled
units, mark the unit as write—protected.

To write—protect a controlled unit:

1.
51

Chapter 2: A Tour of Rose

Right—click the package to be write—protected.

2.
Select Units —» Write Protect <package> from the menu.

To write—enable a controlled unit;

1.
Right—click the package to be write—enabled.

2.
Select Units —» Write Enable <package> from the menu.

Using the Model Integrator

The Model Integrator in Rose is a way to compare and merge up to seven Rose models. This feature is

especially useful in situations with multiple designers. Each can work individually, and then all models can b
integrated into one.

When comparing models, Rose will show you the differences between them. To begin, select Tools — Mod
Integrator from the menu. You will see the screen shown in Figure 2.17. If you do not see a Model Integrato
option on the Tools menu, select Add Ins —» Add In Manager, and then select the Model Integrator.

[e s Al

He £ Vew Optens |

[
Diwiul] =i=] M[6l<[> %] 1] A] lzialals[s1r] 2

D enerces ?

Figure 2.17: The Model Integratorh

To compare two or more Rose models:

1.

Select File -~ Contributors from the menu.
2.

Press the [...] button to select the first model to compare.
3

Press the New button to add additional Rose models.

52

Chapter 2: A Tour of Rose

4,
Select additional files as needed, until all files you wish to compare have been selected.

5.
Press the Compare button. The differences will be displayed, as shown in Figure 2.18.

[motndsme ot mew o - comowermede alnix|

He £ Vew Optns e

Diwiw] =] wlale[pinn] 2f= A (1:islais|sir] 2]
< yre c] L foetpw] | Corbape |
& = Coposk Morwy G tute> Cse
wctarmm Ghore defost s Bork e
2 et > MATEL0 N
Hoetoe oat Aoor

M e
I D ot Dt
3 M Degost
52 fusnes Mocel

0 off Wobfow: Aad Ao
1| Somwe
T Manage rnestments —

- & lpecehd
£ 5 toumens Uoe Lve Do am
= § M
18 e Coe Yew Srndl Srton
1 Use Soee Vour Sark Offcw
42 Uvs Zaee Views Cupoch Furds

W Une Lase Vew e by s

Figure 2.18: Model differences

6.
Press the Merge button to merge rather than compare models. The Model Integrator will attempt to

merge the files for you. If there are any conflicts, you will see a message in the lower-right corner of
the window informing you of the number of unresolved items. Use the Previous Conflict and Next

Conflict toolbar buttons to navigate to the conflicts and resolve them.

7.
Once all conflicts are resolved, you may save the new model.

Working with Notes

A note is simply a small amount of text that you would like to add to a diagram. It can be related to the overe
diagram or to a particular element on the diagram. If it is related to a particular element, it is attached to that

element, as shown_in Figure 2.19.

53

Chapter 2: A Tour of Rose

” Deposit may be J‘ l/"_ N

done through the 1 87
ATM or by a teller T
v Transfer Funds
e :A\
~ ,,\\I | ; P "\I‘/f Bank Officer
N A g
Deposit Funds \ % / Change PIN
—— /(fu\!r)'lx‘r \ e
7~ N ;1\4(/ _—
C D | & 2
e P, X x Z
Withdraw Money o ~ Make Credit Payment Credit System
()
\ B

View Balance

Figure 2.19: Notes
To add a note to a diagram:

1.
Select the Note icon from the toolbar.

2.
Click anywhere inside the diagram to place the note.

3.
Select the Anchor Note to Item button from the toolbar.

4,
Drag and drop from the note to the item.

To remove a note from a diagram, simply select it and press the Delete key.

Working with Packages

A package is a UML construct that is used to group model elements together. You can create a package of
cases, actors, classes, or any other type of model element.

Packages are mainly used to organize the model. In the Use Case view, packages simply group the use cas
and actors into more manageable views. In the Logical view, packages are used for two purposes:

They can be used to group the classes and other model elements into logical groupings (i.e., all of tr
classes that deal with orders, all of the classes that deal with customers, etc.).

They can be used to show the physical deconstruction of the system into architectural layers. For
example, one package may hold the user interface elements, while another holds the business logic
and still another holds the database connection classes. The team can then model and analyze the

54

Chapter 2: A Tour of Rose

dependencies between the packages to evaluate the system's architecture.

Packages are a powerful UML tool in this respect. Analyzing the dependencies can show the team how
reusable a particular package is, what other packages may need to change if a particular package changes,
what the effect would be if a package were to change, and which architectural layers communicate directly
with which other architectural layers. A dependency indicates that a class in one package has a relationship
a class in another package.

In general, dependencies between architectural layers should flow from the user interface layer to the busin
logic layer to the database communications layer to the database itself, as shown in Figure 2.20.

| Co— |
ATM GUI Web Interface

— ¥ S — \ £ — X
Credit Business Checking Business Loan Business
objects objects objects

]l\ ¥ — N ¥
Legacy Oracle
Interface Interface

Figure 2.20: Dependencies in architectural layers

Also, as a general guideline, dependencies should not "skip" layers. For example, the user interface should
depend directly upon the database. The team may decide not to follow these guidelines, which is fine, but
modeling the architecture through packages is a great way of seeing the implications of these types of
architectural decisions. We will discuss this topic further in Chapter 6.

In the Component view, packages are again used to model the different layers, or tiers, of the system
architecture, but in this case the packages focus on components rather than classes. In the Deployment vie!
they can be used to separate different categories of processors or devices.

Packages can be created within packages to further organize the model. This can be especially helpful whe
modeling very large, complex systems or when modeling applications that communicate with a number of
other applications. While it is not necessary to use packages at all, they do help to keep the model organize

A second use for packages that is specific to Rational Rose is in version control, especially in a multiuser
environment. Packages can be used to split the Rose model into separate files, which can then be checked
and out using version control software such as Rational's ClearCase.

To add a package in Rose:

1.
Right—click in the model hierarchy shown in the browser. You can create a package directly under
one of the four views (Use Case, Logical, Component, or Deployment) by right—clicking either the
Use Case View option, the Logical View option, or the Component View option. Alternatively, you
can create a package underneath any existing package by right—clicking the existing package and
selecting New - Package.

55

Chapter 2: A Tour of Rose

The new package will appear in the browser. Single—click it to assign it a name.
To remove a package in Rose:

1

Right—click the package in the browser and select Delete. You will be prompted for confirmation
before the package is deleted.

2

The package will be removed from the model. Please note that any classes, diagrams, or other mod
elements within the package will be deleted.

Adding Files and URLs to Rose Model Elements

While the Rose model contains a great deal of information about the system, there are other documents, su
as the requirements document, vision statement, test scripts, and so on, that are located outside the Rose
model. It can be helpful to attach these files to specific elements within the Rose model. Once a Word file, fc
example, has been attached to the hierarchy in the browser window, you can launch Word and load that file
simply double—clicking the filename in the browser.

To attach a file or URL to a model element:

1.
Right—click the model element in the browser.

2.
Select New - File or New - URL.

3.
Select the appropriate file or URL in the files window.

4.
Once the file or URL has been attached, double—click it in the browser to open it.

5

To delete the file or URL, right—click it in the browser and select Delete. Note that this operation will

simply remove the attachment between the Rose model and the file; it will not delete the file from
your system.

Adding and Deleting Diagrams

A Rose model can contain many diagrams, each of which shows a slightly different view of the system. As ¢
collection, these diagrams should give the team a thorough understanding of the system from many differen
perspectives. The eight types of diagrams supported by Rational Rose are:

Use Case diagrams

Activity diagrams

56

Chapter 2: A Tour of Rose

Sequence diagrams

Collaboration diagrams

Statechart diagrams

Class diagrams

Component diagrams

Deployment diagrams

The Use Case view typically includes Use Case diagrams, Activity diagrams, Sequence diagrams, and
Collaboration diagrams. When you create a new Rose model, one Use Case diagram called "Main" is
automatically created in the Use Case view. This diagram cannot be removed.

The Logical view typically contains Sequence diagrams, Collaboration diagrams, Class diagrams, and
Statechart diagrams. In a new Rose model, one Class diagram called "Main" is automatically created for yol
in the Logical view. The Component view contains one or more Component diagrams, while the Deploymen
view contains a Deployment diagram. There is only one Deployment diagram per system.

To add a new diagram:

1.
Right—click a package in the browser. The new diagram will be added underneath the package you
have right—clicked.

2.
Select New - <diagram type>.

3.
Type the name of the new diagram.

4.
Double—click the new diagram to open it.

5.
To delete a diagram, right—click it in the browser and select Delete. Note that although the diagram i
deleted, the model elements, such as classes or use cases that were on the diagram, are not delete

Setting Global Options

Options such as the font and color are used for all model objects, including classes, use cases, interfaces,

57

Chapter 2: A Tour of Rose

packages, and so on. In this section, you will learn how to change the fonts and colors for model objects. Yc
can set the default fonts and colors by using the Tools - Options menu item.

Working with Fonts

In Rose, you can change the font of individual objects on a diagram, which can improve the readability of
your model. Fonts and font sizes are set using the Font window shown in Figure 2.21.

' Bashervlle Old Face
O Bauhour 33

T Bl MT ~j
ENects Sarrgle
I Strkeout
ru AaBbYyZz
Colkot
| [-l Serpt
I‘w’m!ﬂn :J

Figure 2.21: Font Selection window
To set the font or font size of an object on a diagram:

1.
Select the desired object or objects.

2.
Select Format — Font from the menu.

3.
Select the desired font, style, and size.

Working with Colors

In addition to changing the fonts, the colors of objects can be individually changed. You can change the line
color and fill color for an object by using the Color window in Figure 2.22.

58

Chapter 2: A Tour of Rose

ic colors:

i Tl HNE
HMTErENN
ETTEEN NN
HEMEEEENEN
EEEEEENEN
BN .

Custom colors:

W rrr
..

Define Custom Colors >> |

| oK I Cancel |

Figure 2.22: Color Selection

To change the line color of an object:

1.
Select the desired object or objects.

2.
Select Format — Line Color from the menu.

3.
Select the desired line color.

To change the fill color of an object:

1.
Select the desired object or objects.

2.
Select Format — Fill Color from the menu.

3.
Select the desired fill color.

Summary

At this point, you should be familiar enough with the basics of Rose to follow the Rose examples and
instructions in the remainder of this book.

There are four views within a Rose model:

Chapter 2: A Tour of Rose

The Use Case view, which describes the system from the stakeholders' perspective

The Logical view, which includes the classes, packages of classes, and other logical constructs withi
the system

The Component view, which focuses on the physical layout of the files

The Deployment view, which is concerned with the structure of the network on which the system will
be deployed

Through these four views, the members of a project team should have a complete picture of the system, frol

a high level to a very detailed level. As we progress through this book, we will fill in the details of each of
these four views.

60

Chapter 3: Business Modeling

While the rest of UML focuses on a system that will be built, business modeling instead concentrates on the
business around the system. In this chapter, we will examine the business itself, the entities that interact wit
it, and the workflows within it to truly understand the business environment before designing the system. We
can then be sure that the system will work to meet the unique goals of the unique business in which it exists

We'll begin by introducing the concept of business modeling and then discuss some of the reasons you may
want to model your business. Not every project requires business modeling. However, there are many
situations where business modeling adds a great deal of value. We'll discuss some of these situations.

We will then get into the specific elements within business modeling. Some of these elements are business
actors, business use cases, and business workers. We will discuss each of these and show you how to moc
them using Rose.

Introduction to business modeling

Business modeling concepts

Reasons for modeling a business

Working with business use cases, business actors, and business workers

Introduction to Business Modeling

Business modeling is the study of an organization. During the business—modeling process, you examine the
organization's structure and look at the roles within the company and how they interrelate. You also examine
the organization's workflows, the major processes within the company, how they work, how effective they
are, and whether there are any bottlenecks. You'll examine the outside entities, either individuals or other
companies, which interact with the business, and look at the implications of that interaction.

In short, you try to understand what is inside and outside the business, and how the inside and outside talk 1
each other. In UML, you'll document this information in the business model.

Why Model the Business?

There are many reasons to do business modeling. These reasons include gaining an understanding of your
organization and its software system, helping in a business process—re—engineering effort, and building a
powerful training tool, as explained in the following sections.

Understanding the Organizational Vision

Even if you are not building a software system, you can use business modeling to understand and documer

what your organization does. This is a wonderful way to develop a vision statement for your organization; th
diagrams in business modeling will help you understand what the outside world gains from its relationship

61

Chapter 3: Business Modeling

with your organization, as well as how your organization goes about accomplishing these goals. The busine
modeling does not apply only to the organizational level. A particular division within an organization may
want to go through the business—modeling process to develop its own division charter or mission statement

Business Process Re—engineering

Business modeling is also very helpful in a business process—re—engineering effort. One of the chief artifact
of the business—modeling process is the workflow diagram. These diagrams depict how a particular process
flows within the organization. It shows the individuals involved in the process, the steps within the process,
and the business entities that are involved in the process. A business process—re—engineering team will stal
by documenting the current process with workflow diagrams. They can then analyze these diagrams to look
for inefficiencies or other problems within the workflow. For example, they may discover that a particular
document goes from an analyst, to a manager for approval, back to the analyst for additional information, ar
then back to the manager. The process may be able to be improved by having the analyst fill out all of the
required information up front. This is just one example of how workflow diagrams can be analyzed.

The business process—re—engineering team will also use workflow diagrams to analyze possible future
workflows. By designing a humber of potential processes, the team will be better able to view and discuss tt
pros and cons of each approach and to select the new process that is most appropriate for the organization.

Training

Whether a new process has just been developed or a new staff member has just joined the team, the result:
business modeling can be a powerful training tool. The workflow diagrams illustrate who is involved in the
process, what the steps are, and what the artifacts are. Any member of the team can review these diagrams
understand how they fit into the process, what artifacts they are responsible for producing or receiving, and
with whom they need to communicate. These simple diagrams can save a great deal of organizational
headaches by clearly stating what each person's responsibilities are within a workflow. They help ensure the
everyone has a common understanding of the business processes and the roles within them.

Context for a Software Solution

Of course, many of us who are using UML are using it to build software. In this situation, business modeling
can help us understand the context of the system we are building. While this may sound trivial, it can have
serious consequences on the success or failure of a software project. If we fail to understand the business,
may make faulty assumptions about what the software should do and how it can best be used by the busine
community.

The "world around the system" is an important consideration when building software. Over the past several
years, as companies were using UML without business modeling, one of the concerns that arose was the
inability to understand how the system fit into the organization around it.

Enter business modeling. This solves the hole in the process by giving the team a view of the business itsel
the workflows within it, and the way the new system will help automate portions of the workflow.

Do | Need to Do Business Modeling?

Without the help of some gifted psychics, we can't give you a definite answer to that question. However, we
can give you some guidelines:

You may need to do business modeling if:

Chapter 3: Business Modeling

You and your workgroup are new to the organization.

The organization has undergone some recent business process re—engineering.

The organization is planning to go through business process re—engineering.

You are building software that will be used by a significant portion of the organization.

There are large and complex workflows within the organization that are not well documented.

You are a consultant in an organization you have not worked with before.

You may not need to do business modeling if:

You have a thorough understanding of the organization's structure, goals, business vision, and
stakeholders.

You are building software that will be used by only a small part of the organization, and will not have
an effect on the rest of the business.

The workflows within the organization are fairly straightforward and are well documented.

There simply isn't time. Let's be realistic; not all projects have the time needed to do a complete
business analysis. But be careful! Don't let lack of time be an excuse. Fight for the time if you feel
that business modeling would help ensure the success of your project.

Business Modeling in an Iterative Process

In an iterative process, the team goes through a series of steps multiple times, each time focusing on a
different part of the business or system. There are two approaches to business modeling in an iterative
environment. First, you can complete all of the business modeling up front, and then iterate through the
analysis, design, coding, testing, and deployment steps. Alternatively, you can include the business modelin
in the iterations. We'll discuss a few of the pros and cons of each approach, but first let's discuss where
business modeling falls in relation to the other steps in the lifecycle.

The typical sequence of steps in developing software is as follows (note that these are not all of the steps in
the lifecycle):

Business modeling

14

63

Chapter 3: Business Modeling

Business Use Case diagrams

.
Activity diagrams (workflows)

.
Analysis—level Class diagrams (business entities)

System use case modeling

¢
Actors

¢
Use cases

.
Use Case diagrams

Analysis

.
Use case flow of events

.
Supplementary specifications

.
Analysis—level Sequence and Collaboration diagrams

.
Analysis—level Class diagrams

Design

.
Design-level Sequence and Collaboration diagrams

.
Design-level Class diagrams

.
Statechart diagrams (if needed)

.
Component diagrams

64

Chapter 3: Business Modeling

Deployment diagrams

Coding

Testing

Deployment

As you can see, business modeling is the first step in the process. It is the first step whether you are using ¢
iterative lifecycle or a waterfall approach. The reason for this is that business modeling sets the context for t
rest of the project. As you go through the system's design, the business modeling will help you keep in mind
why you are building the system in the first place.

Business Modeling

"

Deploy Design

Wi /

Test g Code

Completing the business modeling up front, as opposed to iteratively, gives you the advantage of fully
understanding the business process before beginning to scope the system at all. Thus, you can determine fi
the beginning the areas of the workflow that most need to be automated and the areas in which the system:
most effectively help the organization. All of this leads to the ability to build a system that can have a greate!
positive impact on the company.

The disadvantage to this approach is that, as projects are often time—constrained, it can be unrealistic.
Unfortunately, it can lead to the cutting out of business modeling altogether. Your end users or customers m
want to get to the system quickly and may not be willing to wait for you to analyze the business first.

Business
/ Modeling \
Deploy Analysis
Test Design

65

Chapter 3: Business Modeling

Alternatively, you can complete the business modeling in iterations. This has the advantage of letting you

study the organization without delaying the building of the software system. You do, of course, run the risk ©
misunderstanding the company and building a software system that doesn't quite meet its needs. Or, you m
discover a previously unknown business process later in the game that has a significant impact on the syste

These types of risks can typically be controlled, but they are the downfalls of using this type of approach witl
business modeling.

Business—Modeling Concepts

In this section, we will discuss some of the fundamental concepts of business modeling. Ideas such as
business actors, business workers, and activity diagrams will help us understand the organization itself. In tt
section, we will cover the following concepts:

Business actors

Business workers

Business use cases

Business Use Case diagrams

Communication relationships between business use cases and business actors

Business entities

Activity diagrams
Again, it is important to remember that business modeling does not focus on what will and will not be
automated (although that information can be found in the workflows). Instead, it focuses on two areas. First,
what are the boundaries of the organization and with whom does it need to communicate? And second, whe
are the workflows within the organization and how can they be optimized?
Business Actors
A business actor is anyone or anything that is external to the organization but interacts with it. For example,
business actor for your organization might be its customers, its creditors, its investors, or its suppliers. Each
these actors has an interest in the actions of the company.

In UML, a business actor is modeled using the following icon:

66

Chapter 3: Business Modeling

Customer

Although the icon looks like a person, a business actor does not need to be an individual. It could represent
group of people or a company. We model business actors to understand who and what needs to interact wit
the business and how they interact with the business. When we are re—engineering processes or building ne
systems, we must always keep in mind that the organization must still meet the needs of these external
entities. What good would it be to a grocery store to streamline its processes by getting rid of the cash
registers? An extreme example, of course, but the idea is the same: We must keep in mind why the busines
there in the first place. Modeling business actors helps with this effort.

Business Workers

A business worker is a role within the organization. Notice that business workers are roles, not positions. A
single person may play many roles but hold only one position. The benefit of being role—based rather than
position—based is that positions tend to change over time, while roles remain fairly constant.

In UML, a business worker is modeled using the following icon:

A

Salesperson

We model business workers to understand the roles within the business and how these roles interact. By
describing each business worker, we can understand what the responsibilities of that role include, what skill
are required for that role, and other details. At a minimum, think about the following for a business worker:

What are the worker's responsibilities?

What skills does the worker need to carry out those responsibilities?

With what other workers does it interact?

In what workflows does it participate?

What are the worker's responsibilities within each workflow?

67

Chapter 3: Business Modeling

Business Use Cases

A business use case is a group of related workflows within the organization that provide value to the busine:
actors. In other words, the business use cases tell the reader what the organization does. More specifically,
they tell someone what the organization does that provides value to the businesses and individuals that
interact with it. The set of all business use cases for an organization should completely describe what the
business does.

Examples of business use cases for a retail store might include "Restock Inventory," "Price Products," "Sell
Products," "Refund Money," or "Deliver Products." For an e-business, they might include "Register New
User," "Create/Modify Order," "Fill Order," "Restock Inventory," or "Cancel Order." An investment house
might have "Buy Stock" and "Sell Stock," among others.

A company does not even have to be highly automated to use business modeling. A cattle rancher might ha
business use cases like "Buy Cattle," "Sell Cattle,” "Bottle Milk," or "Replenish Feed."

In UML, we use the following icon for business use cases:

2

Restock Inventory

The business use cases are typically named in the format "<verb><noun>," as in "Price Products." This is a
good standard to follow for several reasons. It keeps the business use cases consistent, even if multiple
analysts are defining them. Also, it makes the use cases easier for the end user to understand. "Price” alone
doesn't tell the user much about the business, nor would "Products.” Finally, and perhaps most importantly,
keeps the focus on what the business is doing—what it's accomplishing—not just what entities it uses.

Of course, even "Price Products" doesn't tell us much without some details. For each business use case, yo
will want to create some type of report that lets people know specifically what goes on within the use case.
Does a clerk use historical prices to set the current price? Do they use surveys to determine what the
customers are willing to pay? Do they do an in—depth study of the prices of each product in Egypt and Turke
and then average the two? Or do they just make up product prices as they go along? We won't know for sur
unless the specific workflow is documented somewhere.

The workflow can be documented in a couple of ways. The simplest in some situations is just to create a
numbered, step—by-step list of what happens as the use case progresses:

1.
The clerk talks to the manager to obtain a list of all new products to be priced.

2.
The clerk checks the store's purchase records to see how much the store paid for each new item.

3.
The clerk adds 10% to the purchase price to find the item's price.

4.
The clerk gives the new prices to the manager for approval.

5. 68

Chapter 3: Business Modeling

If the manager does not approve, the clerk and manager decide upon new prices.

6.
The clerk creates price tags for each new item.

7.
The clerk places price tags on each new item.

The problem with this approach is that if there is a lot of conditional logic, it can confuse the reader. In the
simple example above, the condition is fairly straightforward. Unfortunately, though, the real business world
isn't always so simple. A business worker may perform some actions if condition A occurs, others if conditiol
B occurs, and still others if condition C occurs. In this situation, it might be more beneficial to use an activity
diagram.

An activity diagram shows in graphical form what the steps are in a workflow, the sequence of the steps, an
who is responsible for performing each step. A sample activity diagram for the workflow described above
would look like Eigure 3.1.

& Clak | Minages
A &
&

RS e
/ Fageen I o
(o] e 3o, " pedut b

=)
> Produit/
0 Prce Lt g
= New]
/ v
= < prrar
s
I -
@ TROT0T W
n purthase prices)
-
Flaceve prodect &
pace W 1 ~
AKaptatis |
Sk W
| Mot Accaptatie |
— .
Y [T
Poodact!
Price Lt
|igeaved)
e o
g
LD (e
Pt 1ags on
temy

Figure 3.1: Activity diagram
We'll discuss activity diagrams, including the different symbols that appear on the diagram, later in this
chapter. For now, just look at the message the diagram is conveying. As before, we can see what the steps

in pricing products, but the graphical representation helps in making these steps easier to read and underst:
The difference is even more striking with large and complex workflows.

Business Use Case Diagrams

A Business Use Case diagram shows you the business use cases, business actors, and business workers f
organization and the interactions between them. It gives you a complete model of what the company does,

69

Chapter 3: Business Modeling

who is inside the company, and who is outside the company. It gives you the scope of the organization, so \
can see what it encompasses and where its borders are.

An example of a Business Use Case diagram is shqown in Figure 3.2.

) —
N\ / Deliver F!OUW"\

Driver
rall \ -
C D—

/ // SL”TT(_"u:ls
/\ \ 7
C_2

Clerk

Customer

Price Products

& &
l_ / i ST //
Manager Refund Mongy

Refund Money

Figure 3.2: Business Use Case diagram

This diagram is simple by design. It is intended to quickly convey high—level information about the business
without getting into all the details or confusing the reader with too much notation. If you have a large numbe
of business use cases, simply create multiple diagrams with each containing a subset of the use cases.

An arrow from a business actor or a business worker to a use case suggests that the actor or worker initiate
the use case. In this example, the clerk begins the process of pricing products. An arrow from a business us
case to a business actor suggests that the organization initiates communication with the business actor. In t
example, while the Deliver Products workflow is occurring, the organization (in this case, the driver)
communicates with the customer.

Activity Diagrams

An activity diagram is a way to model the workflow of a use case in graphical form. The diagram shows the
steps in the workflow, the decision points in the workflow, who is responsible for completing each step, and
the objects that are affected by the workflow.

An example of an activity diagram is shown_in Figure 3.3. In this example, a customer has received a
defective product and is asking for a refund.

70

Chapter 3: Business Modeling

~~~~~

Figure 3.3: Activity diagram

We can read the diagram as follows: The customer begins the process by writing a letter asking for a refund
The customer service representative reviews the letter. If the required documentation is missing, the custon
service representative writes a rejection notice and sends it to the customer, who now has a request that ha
been denied. If the documentation is present, the customer service representative files the request at the sa
time as the accounts payable clerk writes a check. Once these two steps are completed, the customer servi
representative notifies the customer, who now has a request that has been approved.

Let's examine the notation in this diagram. The first piece is the start state, which is the solid dot in the
upper-left portion of the diagram. This symbol lets you know where the process begins.

The rounded rectangles in the diagram are known as activities. An activity is simply a step in the workflow. |
is a task that a business worker performs. Notice that the diagram is divided into three vertical sections,
known as swimlanes. Along the top of the swimlanes, we can see the role that performs all of the activities i
the swimlane.

Within an activity, you can list the actions that occur for that activity. Actions are simply steps within the
activity. For example, if you have an activity called "create purchase order," the actions that make up that st
might include: "get the supplier's name and address," "enter the item(s) to be ordered with price and quantit;
"calculate the total," and "print the purchase order."” These are steps that are too small to be shown as their
own activities on a high—level business activity diagram but that add information about the process.

There are four types of actions:

Those that occur when you enter an activity. These are marked with the word entry.

Those that occur while an activity is occurring. These are the steps within the activity. These are
marked with the word do.



Chapter 3: Business Modeling

Those that occur when you leave an activity. These are marked with the word exit.

Those that occur when a specific event happens. These are marked with the word event.

Create Purchase Order

do/ Get supplier name and address

do! Enter items 1o buy with price and quantity
do/ Calculate total

do/ Print invoice

do/ Place invoice in envelope

The arrows connecting the activities are known as transitions. A transition lets you know which activity is
performed once the current activity has completed.

Add 10% to
purchase prices

Check purchase
records

In this example, as soon as the clerk finishes checking the purchase prices of the items, he or she begins th
process of adding 10% to those prices.

We can place guard conditions on the transitions to show when the transition occurs. Guard conditions are
placed in square brackets. In this example, the activity "create rejection letter" is only performed if the guard
condition "missing documentation" is true.

The horizontal bars are called synchronizations. They let you know that two or more activities occur
simultaneously. The upper synchronization shows a fork in which the control of the workflow is split into two
branches. Once those activities are complete, another synchronization, called a join, occurs. After the join, t
workflow again has only one thread of control. Synchronization bars may be either horizontal or vertical. In
the example shown previously_in Figure 3.3, the customer service representative files the request at the san
time the accounts payable clerk creates a refund check. Only after those two activities have completed does
the customer service representative notify the customer.

Finally, the square symbols represent objects. These objects are affected by the workflow, and change state
the workflow goes along. In this example, a request could be new, denied, or accepted. Dashed lines are us
to show which activities affect the state of an object. For example, the creation of a rejection letter sets the
state of the request to "denied."

Business Entities

A business entity is an object that the organization uses to conduct its business or produces during the cour
of its business. A business entity is, as its name implies, an entity that the business uses. Entities include th
things that the business workers deal with day to day. Examples might be sales order, account, shipping bo:
contract, small blue thumbtack—whatever is relevant to the business.

Look at that last statement carefully. You want to list the major items the business deals with, but without
getting carried away. If you are in the business of producing thumbtacks, a small blue thumbtack might
actually be a valid business entity. If not, it probably isn't worth worrying about. Ask questions like:

What products does the company produce?

72



Chapter 3: Business Modeling

What services does the company provide?

What items does the company purchase to do its work?

What are the items it delivers to/receives from its customers?

What items are passed from business worker to business worker for processing?

Another trick is to look at the nouns in the names of the business use cases you've defined. For the most pe
each noun is a business entity. We use the following icon for a business entity:

Account

You can refine the business entities by adding attributes. An attribute is a piece of information that describe:
the entity. For example, an entity called account might have attributes such as account number, account typ
(checking or savings), balance, date opened, date closed, and status.

Warning It can be very easy to get carried away with attribute modeling. Remember that the purpose here is
to elaborate on the business. You don't want to start designing a database yet! Include only those
attributes that will help someone more fully understand the business.

If you have defined attributes for the entity, they are displayed below the entity name, as shown here:

Account

- Account number
- Account type
- Balance
- Date opened
- Date closed
- Status

Organization Unit

An organization unit is simply a collection of business workers, business entities, or other business—modelin
elements. It is a mechanism that can be used to organize the business model.

Many companies are organized into divisions, groups, or units. Each of these can be modeled as an

organization unit. The organization unit will contain all of the business workers within that division, group, or
unit. In UML, the following icon is used to represent an organization unit:

73



Chapter 3: Business Modeling

/]

Marketing

Where Do | Start?

To begin, define the boundaries of your business—modeling effort. Are you modeling the entire organization
or just one division? Which workflows within the business are relevant to your current project? It might be
nice to analyze all the business workflows, but that could be quite an undertaking.

Once you have a clear definition of the scope of the project, it's very important to assemble the right team.
You will need individuals with business knowledge, as well as individuals with business—modeling
knowledge. In general, the people on the team do not need to be technical at all, and in fact it is sometimes
better if they are not. Technical teams might dive too quickly into the solution space—the system design.

Some of the important roles to consider include the following:

Team lead This person should have both business knowledge and modeling knowledge. He or she will be
responsible for coordinating the efforts of the other members of the team and for keeping discussions focust

Business representative(s) These people are representatives from different parts of the organization to be
modeled. They should be very familiar with the workflows of the business, including the current problems an
benefits of those workflows. They should be able to see both their workflows in detail and the organization a
a high level.

Business process re—engineer(s) These individuals should be familiar with current workflows, and they
should have an eye for finding efficiency problems and coming up with creative solutions. Ideally, they woul
have been involved in business process—re—engineering efforts in the past. They should be inquisitive but ni
belligerent, be excellent communicators (both written and verbal), and have the ability to decompose
problems into manageable pieces. This is an optional role, used for business process—-re—engineering effort

Business modeler(s) or business process analyst(s) This role is very similar to that of a business process
re—engineer, but in this case the business processes will not change. In this role, you need someone who
understands the business workflows, who communicates extremely well, and has good analysis skills.

Management representative(s) Someone must have the authority to decide what pieces of the business

will be covered by the business—modeling effort. This person can also help the team understand the
workflows from a manager's perspective.

Identifying the Business Actors

After the team has been assembled, begin identifying the business actors, business use cases, and busines
workers. This can be done in any order. To find the business actors, look at the scope of the project you are
undertaking and ask yourself what lies outside that scope. If you are modeling the entire business and you &

74



Chapter 3: Business Modeling

what lies outside the business boundaries, your answer would be a whole world of people, companies, and
other entities! You should therefore narrow the focus a little—for example, what lies just outside the
business? In other words, who or what communicates with the business? These are your business actors.

It can be very helpful to hold brainstorming sessions to find some initial business actors. You can also revie\
the project vision statement if one exists, the organization's marketing and other public relations materials,
business goals, and business vision. Each of these might help you determine the outside entities that are
important to the business.

Let's look at the example of an airline. Looking at the marketing materials for a particular airline, we find two
types: those trying to win new customers, and those trying to win new employees. We can therefore identify
two business actors: customers and potential employees (actual employees are business workers, because
lie within the scope of the organization). Reviewing some public relations materials, we find that they largely
focus on the needs and concerns of the shareholders, so we add another business actor called shareholder
Knowing that this is an airline, there are certain federal regulations they must adhere to. The Federal Aviatic
Administration (FAA) is concerned with whether these rules are followed, so it is an actor as well. The airline
buys its planes and many of its parts from a large plane manufacturer, which also is an actor. It buys the me
and drinks for its passengers from an outside catering company. These are just a few examples, but there a
frequently a number of business actors for an organization, especially a large organization. Figure 3.4 show
examples of some of the business actors for an airline.

»

Aurcraft

Potential Employee

Catering Company

« J ng

Figure 3.4: Business actors for an airline

Identifying the Business Workers

To identify business workers, again look first at the scope of your project. If you are modeling the entire
business, an organizational chart is a good place to start. Consider each role within the chart rather than ea
position to define the business workers. Remember that a single person may fill multiple roles. Once you ha
listed the business workers, begin detailing them. Document their responsibilities within the organization,
their required skills, and their interactions with other business workers and with business actors.

In the airline example, the business workers are all of the different roles within the company. If we were
modeling the entire organization, business workers would include, among others, pilots, co—pilots, navigator
stewards and stewardesses, mechanics, ticket sales staff, luggage handlers, and security guards. Figure 3.!
shows some of the business workers for an airline.

75



Chapter 3: Business Modeling

B Use Case Diagrane Airline / Business Workers C =10l x|

Luggage Handler

J J _v_léj
Figure 3.5: Business workers for an airline

Identifying the Business Use Cases

To identify business use cases, you can start with the vision or mission statement for the organization. Thes
should say, at a high level, what the business accomplishes that is of value to the outside world. An airline's
main service is flying a customer from one city to another, so let's begin with that idea.

You then ask what needs to happen in order to transport that customer from Los Angeles to New York. First
the airline needs to have a mechanism for the customer to purchase a ticket. It then must check in the
customer and their luggage; load the aircraft with fuel, luggage, and people; perform a safety check on the
plane flying from L.A. to New York; land; and unload the aircraft. Some business use cases might include
"Issue Ticket," "Check In Passengers," "Check In Luggage," "Perform Safety Check," "Load Aircraft,” "Land
Aircraft,” and "Unload Aircraft." Of course, these represent only the core workflow of the business. If you are
modeling the entire organization, you will need to think also about sales, marketing, accounting, and the oth
areas of the business.

Other ways to find business use cases might include brainstorming sessions, reviews of the organization's

processes and procedures, interviews with customers and other stakeholders, or your own business
knowledge. Be patient if this is time—consuming; this process is a little bit of art and a little bit of science.

Showing the Interactions
The next step is to draw one or more Business Use Case diagrams that show the interactions between the
business workers, business actors, and business use cases. An arrow from a business worker to a business

case suggests that the worker initiates the process represented by the use case. In the following example, t
safety coordinator initiates the process of performing a pre—flight safety check:

< e,
/O e {
WY &
Salety Coordinator Perform Pre-flight Safety Check

An arrow from a business actor to a business use case suggests that the actor initiates the process. For
example, a customer may initiate the "Issue Airline Ticket" process:

76



Chapter 3: Business Modeling

-2

Customer Issue Airline Ticket

If you have a large number of business use cases, actors, and workers, you may want to group them into
organizational units. This can help organize the model and make it easier for the reader to understand. If yo
take this approach, create a separate Business Use Case diagram for each organization unit.

An example of a Use Case diagram for an airline is shown in Figure 3.6.

N
TR 18 we Aume Boes S Gary Twh B Wik S T

A @ WO KHRpNHY T~ i

= |, oA

Figure 3.6: Business Use Case Diagram for an airline

Once the initial Use Case diagrams have been constructed, distribute them for feedback and finally for
approval.

Documenting the Details

This process will give you a high—level view of what is inside and outside the organization. What it will not
do yet is give you any of the workflow details behind any of the use cases. Therefore, the next step in the
process is to dive into those details.

For each business use case, document the workflow through the use case. As we discussed above, the
workflow could be documented using numbered steps, flowcharts, or activity diagrams. Remember to
document the primary flow, which is the normal course of events, and any alternate flows. If it is a complex
process or there are many alternate flows, an activity diagram may be the best way to document the workflo

If you are working with the Rational Unified Process, another artifact to create is a business use case report

which includes details about the use case such as the description, goals, workflow, relationships, and speci:
requirements.

After these details have been documented for all business use cases, you have a great picture of the

organization. The use cases tell you what the organization does. The workflows give you the details of how
each use case is accomplished. The actors tell you what is outside the organization that interacts with it. Th
business workers tell you the roles within the organization. The organization units tell you how the company

77



Chapter 3: Business Modeling

is structured. The business use case reports give you additional information about each use case. Finally, tf
Business Use Case diagrams tell you what the relationships are between all of those elements.

Next, let's take a look at how to model these UML concepts in Rational Rose.

Creating Business Use Case Diagrams

Business Use Case diagrams are created in the Use Case view within Rose. After they are created, they wi
appear in the browser hierarchy under Use Case view. A Business Use Case diagram will show some or all
the business actors, business workers, and business use cases in the model and the relationships between
You can place a specific business actor, worker, or use case on as many Use Case diagrams as you'd like.

Although you can create Business Use Case diagrams directly under the Use Case view, keep in mind that
your system use cases, system actors, and System Use Case diagrams will also be placed in the Use Case
view. It can be helpful to begin by creating a separate area for the business modeling. This is accomplished
adding a package, which will contain all of your business use cases, business actors, and other
business—modeling elements. Of course, you can create packages within this package to further organize y:
business model.

To create a Business Model package (optional):

1.
Right—click the Use Case View entry in the browser.

2.
Select New - Package.

3.
Enter the name of the new package, such as Business Model.

An example of a model that was organized using this method is shown in Figure 3.7. The Business Model
package contains all business use cases, business workers, business actors, and Business Activity diagran
while the System Model package contains all of the technical details for the system itself.

weinl
i

78



Chapter 3: Business Modeling

Figure 3.7: Business Model package
To create a new Business Use Case diagram:
1

Right—click the Business Model package in the Use Case view in the browser. If you did not create a
business—-modeling package within the Use Case view, right—click the Use Case View entry.

2.
Select New - Use Case Diagram from the shortcut menu.

3.
With the new diagram selected, type in the name of your new diagram.

4.
Double—click the name of the new diagram in the browser to open it.

To open an existing Business Use Case diagram:

1.
Locate the Business Use Case diagram in the Use Case view in the browser.

2.
Double—click the Business Use Case diagram's hame to open it.

OR

1.
Select Browse - Use Case Diagram.

2.
In the Package list box, select the package that contains the diagram you want to open.

3.
In the Use Case Diagrams list box, select the diagram you want to open.

4,
Press OK.

Deleting Business Use Case Diagrams

If you need to delete a Business Use Case diagram, you can do so in the browser. The business use cases
business actors, and other model elements on the diagram will not be deleted from the model. To delete a
diagram, simply right—click it in the browser and select the Delete option from the shortcut menu.

Warning Rose does not allow you to undo a deletion of a diagram or to delete the Use Case diagram called
Main.

79



Chapter 3: Business Modeling

The Use Case Diagram Toolbar

When creating a Business Use Case diagram, the toolbar that will display shows the icons that are typically
used for a System Use Case diagram. We will need to customize the toolbar to include the business—-model
icons.

To customize the Use Case toolbar:

1.
Right—click the Use Case toolbar and select the Customize option. The window displayed in Figure
3.8 will appear.
2/x|
[ ]
) Lre. !-:! L :J M
';) E::yca :r::: acho L‘ r‘ Creates & unidiectionsl assoc 'iJ
(@) Croates » n 7 Croates 8 deperdency o & n
() Crostes & 8 Craste: & generskeston ;
B0 Creates an cip/ o —-l
3 Creates » subaystem pachage l
CY R 2

Figure 3.8: Customizing the Use Case toolbar

2.
Find the business—modeling toolbar buttons in the Available Toolbar Buttons list box and press the
Add key to add them to the toolbar.

Table 3.1 lists the business—modeling icons that are available to add to the Use Case Diagram toolbar. Note
that there are other icons available on the toglbar. Table 3.1, however, lists only the business—modeling icor
We will discuss the other icons_in Chapter 4, "Use Cases and Actors."

Note In Rose, all of the business—modeling icons will be displayed in yellow.
Table 3.1: Business—Modeling Icons in the Use Case Diagram Toolbar

Icon Button Purpose
2 Business Actor Adds a new business actor, who is external to the organizat|on
@ Business Worker Adds a new business worker, who is internal to the organizgtion
Organization Unit Adds a new organization unit, which is used to group busingss
workers and other business—-modeling elements
O Business Use Case Adds a new business use case

Business Use Case RealizatigAdds a new business use case realization

8 Business Entity Adds a new business entity

Adding Business Use Cases

To add a business use case, first create or open a Use Case diagram and then add the new business use c
the diagram. When you create the business use case with this method, it is automatically added to the brow

To add a new business use case:

80



Chapter 3: Business Modeling

Select the Business Use Case button from the toolbar.

2

Click anywhere inside the Use Case diagram. The new use case will be named NewUseCase by
default.

3.
With the new use case selected, type in the name of the new use case.

4.
Note that the new use case has been automatically added to the browser under the Use Case view.

To add an existing business use case to a Use Case diagram:

1.
Drag the business use case from the browser to the open Use Case diagram and drop it anywhere i
the diagram.
OR
Select Query —» Add Use Cases. A dialog box will display, as in Figure 3.9, which will allow you to
select and add existing use cases.
| addusecases 21|
Packere | - |
Carcel I
Hep I
E.wCom : - | Selected Use Cases |
=it d |
?fav! :mfb: on plane
Sl patesroi il Lo Ean]
O 1 uggage
O lrapect plane
-
Figure 3.9: Adding existing business use cases to a Use Case diagram
2.
In the Package drop—down list box, select the package that contains the business use case(s) you w
to add.
3.
Move the business use case(s) you want to add from the Use Cases list box to the Selected Use Ca
list box.
4

Press OK to add the business use cases to the diagram.
Business Use Case Specifications

In Rose, you can specify the name, priority, and other details for each business use case through the use ce
specification window, shown in Figure 3.10.

81



Chapter 3: Business Modeling

2|
Package: Business Model
Stereotype: Ibusiness use case ;j
Rank: I [~ Abstract
Documentation:

| oK I Cancel Apply Browse ¥ I Help l

Figure 3.10: Use case specification window

In the following sections, we'll take a look at each of the specifications available on the tabs of this window.
But first, you should know the methods to use for viewing the specifications.

To open the business use case specifications:

1.
Right—click the business use case on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

OR

1.
Right—click the use case in the browser.

2.
Select Open Specification from the shortcut menu.

OR

1.
Select the use case on a Use Case diagram.

2.
Select Browse - Specification.

82



Chapter 3: Business Modeling

OR

1.
Select the use case on a Use Case diagram.

2.
Press Ctrl+B.

Assigning a Priority to a Business Use Case

To help you manage the project, you may want to prioritize the business use cases. You could use the prior
for example, to determine in what order the business use cases will be analyzed and documented. The Ros
specifications window provides a field called Rank, which can be used to prioritize the business use cases. |
does not set up a numbering scheme for you, but you can use letters, numbers, or any other way of prioritizi
the use cases.

To assign a priority to a business use case:

1.
Right—click the business use case in the browser or on the Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
On the General tab, enter the priority in the Rank field.

Viewing Diagrams for a Business Use Case

As you analyze a business use case, you may create a number of activity diagrams to document the workflc
Using the specification window or the browser, you can see a list of all of the diagrams for this particular
business use case. Note that this list does not show you on which diagrams the use case resides; instead it
shows you which diagrams contain some details for the use case.

To view the diagrams for a business use case:

1.
Right—click the business use case in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
The diagrams will be listed on the Diagrams tab of the specification window, as shown in Figure 3.11
In this example, the use case has five activity diagrams.

83



Chapter 3: Business Modeling

Use Case Specification for Inspect plane™

General Diagrams IFIelaticmsl Files |

| Title |

Perform inspection
Report problems
Plan aircraft repair
Perform repair
Order parts

W

| 0K I Cancel Bpply Browse v' Help

Figure 3.11: Diagrams tab of a use case specification window

OR

Look through the browser. The diagrams for the use case will appear underneath the business use case in t
browser, as shown in Figure 3.12.

4 % Cateeny Compary -
® CoPicx

# % Cuttomer
% maa

. % Lugpeps Hander

.

Meocharic
Navgatos
@ Piot
£ Potectial Evgloyee
Safety Coodnator
Secunty Guard
Stewand
@® Ticket Saespesion
3 Fllplane's gas tark
% O Fy plare
D Inspect kpgage
=4O wm
o theMechanc | Mechars: |
2 &7 Stae/Rctvity Model
3 Pedom nepachon
&) Rapaod problens
&) Pun ancialt iepae
&) Pedom separ
& Order pavts
% Load pastengers and upgege
© Load supphes on plane
O Perfom Prefight Salety Crack
© Purchaie Axine Ticket
© Repar plorm
O Unood passenger: and ggage

R

.

Figure 3.12: Diagrams for a use case

84



Chapter 3: Business Modeling

To open a diagram for a use case:
Double—click the diagram name on the Diagrams tab of the use case specification window.

OR

Right—click the diagram name on the Diagrams tab of the use case specification window and select Open
Diagram from the shortcut menu.

OR
Double—click the diagram in the browser.
To add a diagram to a use case:

1.
Right—click anywhere inside the Diagrams tab of the use case specification window.

2

From the shortcut menu, select the type of diagram (Use Case, Sequence, Collaboration, Statechart
Activity, or Class) you want to add.

3.
Enter the name of the new diagram.

OR

1.
Right—click the use case in the browser.

2.
Select New - (Collaboration Diagram, Sequence Diagram, Class Diagram, Use Case Diagram,
Statechart Diagram, Activity Diagram) from the shortcut menu.

3.
Enter the name of the new diagram.

To delete a diagram for a use case:

1.
Right—click the diagram name on the Diagrams tab of the use case specification window.

2.
Select Delete from the shortcut menu.

OR

1.
Right—click the diagram name in the browser.

2.

85



Chapter 3: Business Modeling

Select Delete from the shortcut menu.

Viewing Relationships for a Business Use Case

A relationship is a link between the business use case and a business actor or worker. It shows which busin
actor or worker initiates the business use case. As with diagrams, you can view the relationships for a
particular business use case either through the specifications window or directly in the Rose browser. In the
specifications window, the relationships are listed in the Relations tab, as shown in Figure 3.13.

9 v Coe soccicainfor Londpasscott 21
Goninl | Diagrame Aot | Fies |
Hame [Cert [ Sugles |

<N solenane > - Stewand 1 S050CKN0N (LN :‘J deward COLod pat
o solenarme> - Lugpage Handet n assocao \L ugsaon CAoad pat

oK I Ca:d] l&mavl Helo I
Figure 3.13: Relations tab of a use case specification window

To view the relationships for a use case:

1.
Right—click the use case in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
The relationships will be listed on the Relations tab. The actor or worker who initiates the use case («
who is a client of the use case's functionality) will be listed in the Client column. The business use
case itself (which supplies the functionality) is listed in the Supplier column.

OR

1.
Select the use case on a Use Case diagram.

2.
Select Report — Show Usage.

OR

Simply look at the hierarchy in the browser. The relationships for the business use case will be in the treevie
below the use case itself.

86



Chapter 3: Business Modeling

To view the relationship specifications:

1.
Double—click the relationship in the list.

2.
The relationship specification window will appear. See the section "Working with Relationships" later
in this chapter for a detailed description of relationship specifications.

OR

1.
Right—click the relationship in the list.

2.
Select Specification from the shortcut menu.

3.
The relationship specification window will appear. See the section "Working with Relationships" later
in this chapter for a detailed description of relationship specifications.

To delete a relationship:

1.
Right—click the relationship in the list.

2.
Select Delete from the shortcut menu.

Working with Business Actors

As you now know, a business actor is anyone or anything outside the business that interacts with it. Once y:
identify the business actors for your organization, the next step is to add them to the Rose model and create
relationships between the business actors and business use cases.

-2

Customer Issue Airline Ticket

Adding Business Actors

Like business use cases, business actors are added to the Rose model by adding them to a Use Case diag
The first step in the process is to create or open a Use Case diagram. Once you have, you can add busines
actors using the toolbar.

To add a business actor to a Use Case diagram:

1. 87



Chapter 3: Business Modeling

Select the Business Actor button from the toolbar (the yellow actor icon is a business actor).

2

Click anywhere inside the Use Case diagram. The new business actor will be named NewClass by
default.

3.
With the new actor selected, type in its name. Note that the new business actor has been automatice

added to the browser under the Use Case view.

Adding Actor Specifications

Details about the business actor, such as the name, relationships, and attributes, are controlled through the
business actor specifications window, shown in Figure 3.14.

x|
Relstions |  Corgorwrts | Mested | Flee |
Geoeed | Detal | Opessios | Ambues |
Hame: Custome] Paert:  Busewss Model
Iwe Class 'I
Swechpe [TEEEEEE 0000 -
Erxpost Contol
5 Pyble  Pigiacted © Pivate ( Juplementation
Documertaion
=
=
IGKIW] I&"‘"’"'I Heo |

Figure 3.14: Business actor specification window

As you work with classes later in this book, you may note that the actor specification window and the class
specification window are very similar. This is because Rose treats an actor as a specialized form of a class.
The actor specification window includes the same fields as the class specification window, but some of thes
fields are disabled for actors.

To open the business actor specifications:

1.
Right—click the business actor on the Use Case diagram.

2.
Select Open Specification from the shortcut menu.

OR

1.
Right—click the actor in the browser.

2.
Select Open Specification from the shortcut menu.

88



Chapter 3: Business Modeling

OR

1.
Select the actor on the Use Case diagram.

2.
Select Browse Specification.

OR

1.
Select the actor on the Use Case diagram.

2.
Press Ctrl+B.

Assigning an Actor Stereotype

A stereotype is a way to categorize model elements in UML. Stereotypes are used when you have many
different types of one element. For example, Visual Basic has a number of different types of classes: interfa
form, control, collection, and so on. Each of these is represented in UML as a different stereotype.

The same concept applies to business actors. You may have several different types of business actors: thos
from supplier companies, those from government agencies, those from customer companies, and so on. If y
would like, you can create your own stereotypes to categorize your business actors. You assign a stereotyp
a business actor in the specifications window.

To assign a business actor stereotype:

1.
Right—click the business actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Stereotype field, enter the business actor stereotype.

Warning If you change the stereotype of a business actor, Rose will no longer display the actor using the
UML actor symbol. It will display it as a box instead. This won't affect the rest of your model, but
may make the Use Case diagram harder to understand.

Setting Business Actor Multiplicity

Multiplicity refers to the number of instances you expect to have for a particular business actor. For example
you may expect to have 300,000 people play the role of customer. You can capture this information in the
specifications window.

Rose provides you with several multiplicity options:

Multiplicity Meaning

89



Chapter 3: Business Modeling

0..0 Zero

0.1 Zero or one

0..n Zero or more

1.1 Exactly one

1..n One or more

n (default) Many

Or, you can enter your own multiplicity, using one of the following formats:

Format Meaning Example

<number> Exactly <number> 3

<number 1>..<number 2> Between <number 1> and <number 2> |3..7

<number>..n <number> or more 3..n

<number 1>,<number 2> <number 1> or <number 2> 3,7

<number 1>,<number 2>.. <number 3> Exactly <number 1> or between <numbf, 7-9
2> and <number 3>

<number 1>..<number 2>, <number 3>..<number |[Between <number 1> and <number 2> (85, 7-1(Q
between <number 3> and <number 4>

To set business actor multiplicity:

1.
Right—click the business actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
Select the Detail tab.

4

Select from the Multiplicity drop—down list box, or type in the business actor's multiplicity using one
of the formats listed above.

Viewing Relationships for a Business Actor

As with business use cases, you can view all of the relationships for a business actor either by using the
Relations tab in the specification window or by going through the browser.

To view the relationships for a business actor:

1.
Right—click the business actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu. The relationships will be listed on the Relations
tab.

OR

90



Chapter 3: Business Modeling

Look at the browser window. All of the business actor's relationships will be listed under it in the
treeview.

To view the relationship specifications:

1.
Double—click the relationship in the list.

2.
The relationship specification window will appear. See the upcoming section "Working with
Relationships" for a detailed description of relationship specifications.

OR

1.
Right—click the relationship in the list.

2.
Select Specification from the shortcut menu.

3.
The relationship specification window will appear. See the upcoming section "Working with
Relationships" for a detailed description of relationship specifications.

To delete a relationship:

1.
Right—click the relationship in the list.

2.
Select Delete from the shortcut menu.

Working with Relationships

In business modeling, there are two types of relationships that are used: association relationships and
generalization relationships. Association relationships are links between business actors and business use
cases or between business workers and business use cases. Generalization relationships show an inheritar
structure among business—modeling elements. In this section, we will discuss these two types of relationshi
and how to model them in Rose.

Association Relationship

An association relationship is a relationship between a business actor or business worker and a business us
case. It indicates that a particular business actor or business worker initiates the functionality provided by th
use case. The relationship is shown as an arrow:

91



Chapter 3: Business Modeling

-2

Customer Issue Airline Ticket

The direction of the arrow indicates who initiates the communication. In the example above, the customer
initiates the Issue Airline Ticket transaction. In the following example, after the pilot initiates the "Cancel
Flight" business use case, the organization initiates communication with the customer.

—,

H——>— %

Pilot Cancel Flight Customer

We can see from the direction of the arrows that the pilot begins the process and that during the cancellatiol
of the flight, the organization is responsible for notifying the customer.

To add a communicates relationship:

1.
Select the Unidirectional Association toolbar button.

2.
Drag the mouse from the business actor or business worker to the business use case (or from the
business use case to the business actor or worker if the organization initiates the communication).

3.
Rose will draw a relationship between the business use case and the business actor or worker.

To delete a communicates relationship:

1.
Select the relationship on the Use Case diagram.

2.
Select Edit - Delete from Model, or press Ctrl+D.

Generalization Relationship

A generalization relationship is used when there are two or more business actors, business workers, or
business use cases that are very similar. As an example, there may be two different groups of people selling
airline tickets: phone representatives and staff who work at the airport counter for in—person sales. For the
most part, these two groups of people do the same job, but there are some differences in their responsibilitie

In UML, you can model this situation through a generalization relationship. We create a generic business

worker called ticket salesperson, and then create two more business workers, one for each type of salesper
You can see this example modeled in Figure 3.15.

92



Chapter 3: Business Modeling

7o\
‘\%//’

Ticket Salesperson
"

/

_—, e
&y c
\L / W, /)
Phone Ticket Salesperson  In-person Ticket Salesperson

Figure 3.15: Generalization relationship

In a generalization relationship, the arrow points from the specific actor to the generic actor. Someone readi
this diagram would say that there are two types of ticket salespeople: phone salesperson and counter
salesperson.

The generic actor may actually be an abstract actor. An abstract actor is one that is never directly instantiate
In this example, no one ever plays the role of a ticket salesperson; they are always either a phone salespers
or a counter salesperson. The ticket salesperson actor is just there to hold the commonality between phone
counter salespeople. Because no one ever directly plays that role, ticket salesperson is an abstract busines:
actor. Phone salesperson and counter salesperson, on the other hand, are examples of concrete business ¢
because people do directly play those roles.

A fairly recent evolution of UML is in generalization relationships between use cases. You can use this type
of relationship when you have two or more use cases that are very similar but that still have some difference
First, you create an abstract use case, much the same as we did for business actors. This abstract use case
holds the elements that are common between the other business use cases. You then inherit the other busi
use cases from the abstract business use case with a generalization relationship.

To add a generalization relationship:

1.
Add the business actors, business workers, or business use cases to the Use Case diagram.

2.
Select the Generalization button from the toolbar.

3.
Drag from the concrete business actor, worker, or use case to the abstract business actor, worker, o
use case.

4.
Open the specification window for the abstract business actor, worker, or use case.

5.
Select the Detall tab.

6.
Check the Abstract check box.

To delete a generalization relationship:

1.
93



Chapter 3: Business Modeling

Select the relationship on the Use Case diagram.

2.
Select Edit » Delete from Model, or press Ctrl+D.

Warning Be careful of using too many generalization relationships. Unless the reader is familiar with
generalizations, they may make the diagram very difficult to understand.

Working with Organization Units

As we discussed above, an organization unit is a UML construct used to group business actors, business
workers, and business use cases together. Typically, a UML organization unit corresponds to a division or
group within the organization. We might have organization units called Sales, Finance, Manufacturing, and
Human Resources for those divisions within the company. Each organization unit would hold the business
actors, workers, and use cases appropriate for that division. It can also be helpful to create a Use Case diag
specific to that organization unit, which shows only the business actors, workers, and use cases for that unit

As you know from earlier in this chapter, an organization unit is represented by the following symbol:

[ 1

24

Marketing

Adding Organization Units

In Rose, you can add organization units through a Use Case diagram. Once the units have been created, y«
can create new business actors, workers, or use cases inside them, or move existing business actors, work
or use cases into the new unit. You can create as many organization units as you need, and create organizz
units within organization units to further organize the business model.

To add an organization unit:

1.
Open a Use Case diagram.

2.
Use the Organization Unit toolbar button to add a new unit. It will be named NewPackage by default,
and will be automatically added to the browser.

3.
Type in the name of the new organization unit.

To move an item into an organization unit, go to the browser and drag and drop the item from its existing
location to the new organization unit.

94



Chapter 3: Business Modeling

Deleting Organization Units

Organization units can be deleted from the model using either the browser or a Use Case diagram. When y«
delete an organization unit, all business actors, business workers, business use cases, activity diagrams, ar
other model elements within it will also be deleted from the model.

To remove an organization unit from a diagram without deleting it from the model:

1.
Select the organization unit on a Use Case diagram.

2.
Press the Delete key.

3.
Note that the unit has been removed from the Use Case diagram, but it still exists in the browser anc
on other Use Case diagrams.

To delete an organization unit from the model:

1.
Right—click the unit in the browser.

2.
Select Delete from the shortcut menu.

OR

1.
Select the organization on a Use Case diagram.

2.
Select Edit » Delete from Model, or press Ctrl+D.

Warning When you delete an organization unit from the model, all business use cases, business actors, anc
other items in the unit will also be deleted from the model.

Activity Diagrams

In Rose, you can use an activity diagram to model the workflow through a particular business use case. The
main elements on an activity diagram are:

Swimlanes, which show who is responsible for performing the tasks on the diagram.

Activities, which are steps in the workflow.

Actions, which are steps within an activity. Actions may occur when entering the activity, exiting the
activity, while inside the activity, or upon a specific event.

95



Chapter 3: Business Modeling

Business objects, which are entities affected by the workflow.

Transitions, which show how the workflow moves from one activity to another.

Decision points, which show where a decision needs to be made during the workflow.

Synchronizations, which show when two or more steps in the workflow occur simultaneously.

The start state, which shows where the workflow begins.

The end state, which shows where the workflow ends.

In this section, we'll take a look at how to model these different parts of the activity diagram using Rose.
Adding an Activity Diagram

You can create as many activity diagrams as you need for a particular business use case. The activity
diagrams for a business use case will appear in the State/Activity Model area under the business use case i
the browser.

To add an activity diagram:

1.
Right—click the business use case in the browser.

2.
Select New - Activity Diagram from the menu.

3.
Rose will create an entry in the browser called State/Activity Model under the business use case, as
shown in Figure 3.16. The new activity diagram will appear under the State/Activity Model entry.

s Ty Piane
#- Inspect luggage
=+ Inspect plane
% theMechanic [ Mechanic )
=& Stateddctivity Model
(& Perform inspection
& Report problems
&) Plan aircraft repair
(&) Perform repair
j (&) Order parts
[+ Load passengers and luggage
-~ Load supplies on plane

o1 Desk Do flialab © S fabis Clanil

Figure 3.16: Adding an activity diagram

[+

96



Chapter 3: Business Modeling

Name the new activity diagram.

5.
Double—click the diagram to open it.

Adding Details to an Activity Diagram

Once the diagram has been created, the next step is to add the swimlanes, activities, and other details to it.
This is accomplished using the Activity Diagram toolbar. Table 3.2 lists the icons available on the Activity

Diagram toolbar and the purpose of each.

Table 3.2: Icons on the Activity Diagram Toolbar

Icon Button Purpose
[P} Selection Tool Returns the cursor to an arrow to select a toolbar button
ABC Text Box Adds a text box to the diagram
= Note Adds a note to the diagram
Anchor Note to Item Connects a note to an item in the diagram
S State Adds a state to the diagram
& Activity Adds an activity to the diagram
. Start State Adds a start state to the diagram
@ End State Adds an end state to the diagram
7 State Transition Transitions from one activity or state to another
8 Transition to Self Transitions to the current activity or state
— Horizontal Synchronization |Shows where two or more activities occur simultaneously
I Vertical Synchronization Shows where two or more activities occur simultaneously
<& Decision Shows decision points in the workflow
g Swimlane Shows who is responsible for completing activities
=| Object Shows an object that is affected by the workflow
Object Flow Shows what activities change the state of the object

To add a swimlane to the diagram:

1

Select the Swimlane toolbar button.
2

Click inside the diagram. A new swimlane will appear, and will be titled NewSwimlane by default, as
shown in_Figure 3.17.

97



Chapter 3: Business Modeling

f > ! _5_"

Figure 3.17: Swimlane in an activity diagram

3.
Name the new swimlane, using the name of a business worker or organization unit.

To add a start state to the diagram:

1.
Select the Start State toolbar button.

2.
Click inside the diagram within the swimlane for the worker or unit who will start the workflow.

To add activities to the diagram:

1.
Select the Activity toolbar button.

2

Click inside the diagram within the swimlane for the worker or unit who is responsible for performing
the activity.

3.
Name the new activity.

To add actions to the activities:

1.
Right—click the activity.

2.
Select the Open Specification option. The activity specification window will appear.

3.

98



Chapter 3: Business Modeling

Select the Actions tab.

4.
Right—click inside the tab and select Insert. The default action type, called Entry, will appear in the

Type column, as shown_in Figure 3.18.
21x]

Activity Specification for Create Pur

General Actions thansitions Swimlanesl

Type l Action Expression l

Do/ Get supplier name and address
Do/ Enter items to buy with price and quantity
Do/ Calculate total

Do/ Print invoice

an

| oK I Cancel Spply Browse v Help

Figure 3.18: Adding actions to an activity

5.
Double-click the new action. The action specification window will appear.
6.
In the When drop—down list box, select the appropriate option:
.
On Entry for actions that occur when entering the activity
.
On Exit for actions that occur when leaving the activity
.
Do for actions that occur within the activity
.
On Event for actions that occur when a specific event happens
7

Enter the action's name, as shown in Figure 3.19.

99



Chapter 3: Business Modeling

Action Specification for Untitled

Detail I

‘When: | Do ;]
—n Event

Event: I

Arauments: I

[Condition I

Type: IAclion :_I

MName: lF’Iace invoice in envelope]

Sendarguments: I

Send target: I

| oK I Cancell Apply Browse v Help

Figure 3.19: Action specification window

8.
If the action was on an event, enter the event that triggers the action, any arguments to the event, ar
any guard conditions. A guard condition must be true for the action to occur.

9.
Click OK to close the action specification.

10.
Click OK to close the activity specification.

To add a business object:

1.
Select the Object toolbar button.

Note The Object button does not appear by default when you install Rose. You may need to
customize the toolbar to see it.
2.
Click inside the diagram within the swimlane for the worker or unit responsible for performing the
activity that will affect the object.

3.
Name the new obiject.

To draw transitions between activities:

1.

100



Chapter 3: Business Modeling

Select the State Transition toolbar button.

2.
Drag and drop from one activity to another.

To set a condition on the transition:

1.
Right—click the transition.

2.
Select the Open Specification option.

3.
Select the Detail tab.

4

Type the condition in the Guard Condition field. When the condition is displayed on the diagram, it
will be surrounded by square brackets to indicate that it is a guard condition, as shown in Figure 3.2(
You can also type the guard condition directly on the transition by enclosing it in square brackets.

/ Create rejection

Figure 3.20: Guard conditions on transitions
To add a decision point:

1.
Select the Decision toolbar button.

2.
Click inside the diagram to place the decision.

3.
Draw two or more transitions from the decision, one for each decision possibility.

To add a synchronization:

1.
Select the Haorizontal or Vertical Synchronization toolbar button.

2.
Click inside the diagram to place the synchronization.

3

Draw two or more transitions from the synchronization, one to each activity that will occur

simultaneously, as shown_in Figure 3.21.

101



Chapter 3: Business Modeling

| Valid request with documerdatign |

e

- - - -
File request \ Create refurd
\ check

“Notify customer
{ ‘

Figure 3.21: Synchronization in an activity diagram
To show which activities affect a business object:

1.
Select the Object Flow toolbar button.

2.
Drag and drop from the activity that changes the state of the object to the object itself. A dashed arrc
will appear between the two. Figure 3.22 shows an example of how creating a rejection letter sets th
state of the request object to Denied.

Create rejection
o letter fia
- Refund | . ...

Request
[Denied]

Figure 3.22: Object flow in an activity diagram

Summary

In this chapter we discussed business modeling. We began by examining why we would want to do busines
modeling in the first place. It is not right for all projects, but there are many times when business modeling
can add a great deal of value to a project. We then moved on to discuss some of the fundamental elements
business modeling, including business actors, business use cases, business workers, and organization unit:
and how you would find some of these things in your organization.

From there, we moved into a discussion of the details of a business use case. You model the flow through &
use case either by using text or via an activity diagram. Activity diagrams have the advantage of clarity and
ease of use, especially when considering a workflow that is large and complex. We examined the different
pieces of an activity diagram, including swimlanes, activities, actions, objects, transitions, and
synchronizations.

Once we examined the business—modeling ideas, we moved on to how these items can be modeled using
Rational Rose. We walked through the Rose toolbars and specification windows to examine the details of th

102



Chapter 3: Business Modeling

elements that can be added to a Rose model.
In the_next chapter, we'll begin the process of system modeling. Business modeling isn't as concerned with

what is automated by a particular system. System modeling, in contrast, is focused on the implementation o
particular software project. Business modeling helps us set the context for the system model.

103



Chapter 4. Use Cases and Actors

Use cases and actors define the scope of the system you are building. Use cases include anything that is w
the system; actors include anything that is external to the system. We'll start this chapter by discussing som
of the fundamental concepts of use case, or system, modeling: use case, actor, association relationship,
includes relationship, extends relationship, generalization relationship, flow of events, activity diagram, and
Use Case diagram. Then, we'll look at how to model each of these in Rose.

At the end of the chapter, we provide an exercise that builds on the business case of Chapter 3, "Business
Modeling," by adding use cases, actors, and Use Case diagrams to a Rose model.

Using the Use Case view and Use Case diagrams

Working with use cases, actors, and relationships

Using notes

Adding and deleting Use Case packages

Use Case Modeling Concepts

In this section, we'll discuss some of the fundamental concepts of use case modeling: use cases, actors,
relationships, activity diagrams, and Use Case diagrams. If you have gone through the business modeling
process, you will notice the similarities between what we will discuss here and business modeling. Business
modeling also works with actors, use cases, relationships, activity diagrams, and Use Case diagrams. The
difference is that business modeling focuses on the organization, while system modeling focuses on the
system being built. The terms system use case or system actor are sometimes used to differentiate them frc
business use cases or business actors.

ltem Business Modeling System Modeling

Use case Describes what the business doe®escribes what a system within the
business does

Actor External to the organization External to the system (may be
internal to the organization)

Business worker Internal to the organization Not used

In the last chapter, we went through the business modeling process for an airline. During that example, we
focused on the business of being an airline, not on what systems we would build. Now, we focus in on a
particular system. Assume that we are building a ticket reservation system for the airline. It will eventually le
people call in or go online to order plane tickets and to change or cancel a reservation.

Actors

An actor is anyone or anything that interacts with the system being built. As we will see shortly, use cases
describe anything that is inside the system's scope. Actors are anything that is outside the system's scope. |

104



Chapter 4: Use Cases and Actors

UML, actors are represented with stick figures:

Customer

There are three primary types of actors: users of the system, other systems that will interact with the system
being built, and time.

The first type of actor is a physical person, or a user. These are the most common actors, and are present ir
just about every system. For our flight reservation system, actors are the people who will be directly using tt
system. Because we know some of the functionality will be available over the Internet, customers can direct
use the system. We also know that customers can call in to a customer service representative to make a

reservation. The customer service representative will directly use the system, so this role is an actor as well

When naming actors, remember to use role names rather than position names. A given individual will play
many roles. John Doe may be a customer service representative, but if he goes online to buy a ticket for
himself, he is playing the role of a customer. Using role names rather than position names will give you a
more stable picture of your actors. Position names change over time, as roles and responsibilities are move
from one position to another. By using roles, you won't need to update your model every time a new positior
is added or a position changes.

The second type of actor is another system. For example, the airline's reservation system may need to
interface with an external application to validate credit cards for purchases. In this example, the external cre
application is an actor. It is another system that we won't be changing at all, so it is outside the scope of the
current project, but it does need to interface with our new system. Any systems like this, which lie just beyor
the boundaries of our application, are actors.

The third type of actor that is commonly used is time. Time becomes an actor when the passing of a certain
amount of time triggers some event in the system. For example, part of our airline's promotions may be the
chance to win a free ticket. Every day at 3:00 p.m. the system may automatically select a random customer
give a free ticket to. Because time is outside of our control, it is an actor.

Use Cases

A use case is a high—level piece of functionality that the system will provide. In other words, a use case
illustrates how someone might use the system. Let's begin by looking at an example.

Along with our actors, we need to define the use cases for the airline reservation system. It really doesn't
matter if you identify the use cases or the actors first. In fact, these two steps are usually done together. To
identify the use cases, we answer the question: What will the system do that provides value to the outside
world? We can see from our brief vision statement above that it will let users purchase tickets, change a
reservation, or cancel a reservation. These are all good candidates for use cases; each is some piece of
functionality the system will provide that is of value to the end user. Notice that we didn't include a use case,
such as "Get Flight Information” from the legacy system. This is a behind-the—scenes piece of logic that the
end user really doesn't care about, so it doesn't qualify as a use case. "Purchase Ticket," "Change
Reservation," or "Cancel Reservation," on the other hand, are things that the end user would care about anc
high—level pieces of functionality the system will provide, so they are good use cases. In UML, a use case is

105



Chapter 4: Use Cases and Actors

represented by the following symbol:

C_ D

Purchase Ticket

The advantage of looking at a system with use cases is the ability to dissociate the implementation of the
system from the reason the system is there in the first place. It helps you focus on what is truly
important—meeting the customer's needs and expectations without being instantly overwhelmed by
implementation details. By looking at the use cases, the customer can see what functionality will be providet
and can agree to the system scope before the project goes any further.

Use cases take a different approach than traditional methods. Splitting the project into use cases is a
process—oriented, not an implementation—oriented, way of looking at the system. It is therefore different fron
the functional decomposition approach that is so often taken. While functional decomposition focuses on ho
to break the problem down further and further into pieces that the system will handle, the use case approact
focuses first on what the user expects from the system.

When you are beginning a project, a natural question is: How do | go about finding the use cases? A good v
to begin is to examine any documentation the customers have provided. For example, a high—level scope ol
vision document can frequently help you identify the use cases. Consider also each of the stakeholders of tt
project. Ask yourself what functionality each stakeholder expects from the system. For each stakeholder, as
guestions such as:

What will the stakeholder need to do with the system?

Will the stakeholder need to maintain any information (create, read, update, delete)?

Does the stakeholder need to inform the system about any external events?

Does the system need to notify the stakeholder about certain changes or events?

As we mentioned before, use cases are an implementation—independent, high—level view of what the user
expects from the system. Let's examine each piece of this definition separately.

First, the use cases are implementation—independent. As you are defining the use cases, assume you are
building a manual system. Your use cases should be able to be built in Java, C++, Visual Basic, or on papel
Use cases focus on what the system should do, not how the system will do it. We'll get into the how later on
the process.

Secondly, the use cases are a high-level view of the system. Your collection of use cases should let the

customers easily see, at a very high level, your entire system. There should not be so many use cases that
customer is forced to wade through pages and pages of documentation just to see what the system will do. .
the same time, there should be enough use cases to completely describe what the system will do. A typical
system will have somewhere between 20 and 70 use cases. (If your system has 3000 use cases, you've los
benefit of simplicity.) You can use different types of relationships, called includes and extends relationships,

106



Chapter 4: Use Cases and Actors

to break down the use cases a little if you need to. You can also package the use cases together to form gre
of use cases to help you organize them better. We'll explore these topics later in this chapter.

Finally, the use cases should be focused on what the user will get out of the system. Each use case should
represent a complete transaction between the user and the system that results in something of value to the
user. The use cases should be named in user terms, not technical terms, and should be meaningful to the
customer. We wouldn't have a use case, for example, called "Interface with the Bank's Credit System to
Validate the Credit Card Number." The customer is trying to purchase a ticket, so that's what we call the use
case: "Purchase Ticket." Use cases are typically named with verbs or short verb phrases in the format "<ver
<noun>," and describe what the customer sees as the end result. The customer doesn't care how many oth
systems you have to interface with, what specific steps need to be taken, or how many lines of code you ne
to confirm a Visa card. That customer cares only that a ticket was purchased. Again, you focus on the result
the user expects from the system, not the steps that were taken to achieve the result.

So, when you have the final list of use cases, how do you know if you've found them all? Some questions to
ask are:

Is each functional requirement in at least one use case? If a requirement is not in a use case, it will r
be implemented.

Have you considered how each stakeholder will be using the system?

What information will each stakeholder be providing for the system?

What information will each stakeholder be receiving from the system?

Have you considered maintenance issues? Someone will need to start the system and shut it down.

Have you identified all of the external systems with which the system will need to interact?

What information will each external system be providing to the system and receiving from the
system?

Traceability

As with business modeling, a very important concept to consider at this point is traceability. Each of the
system use cases should be able to be traced back to a business use case. The system use case is what
implements part of the functionality in the business use case.

This is not a one—to—one mapping. Business use cases tend to be very high level, so many system use cas
may be needed to support a single business use case. For example, an airline has a business use case call
"Repair Plane." If we build a system to support this use case, it will have a lot of system use cases in it, suct
as "Enter Problem," "Check Inventory for Available Parts," "Receive Part from Inventory," "Order Part,"

"Schedule Maintenance," and so on. Each of these system use cases would be traced to the business use c

107



Chapter 4: Use Cases and Actors

called "Repair Plane."

Every system use case must be traced back to a business use case, but not all business use cases will be
supported by system use cases. Hypothetically, if the business use case called "Unload Passengers and
Luggage" is a completely manual process, then it would not have any supporting system use cases at all. H
is an example of how system use cases might map to business use cases:

Business Use Case System Use Cases

Repair Plane Enter Problem; Check Inventory for Parts; Receive Part from
Inventory; Order Part; Schedule Maintenance

Load Supplies on Plane Determine Needed Supplies; Check Supply Availability; Reserve

Supplies; Receive Supplies

Perform Preflight Safety Check  |Confirm Luggage Inspection; Confirm Passenger Check-In; Inspgct
Plane Exterior; Check Status of Emergency Equipment
If you are using a requirements management tool, such as Rational's Requisite Pro, you can map the systel
use cases to business use cases directly in the tool. If not, it is important to set up a process, even in a simg
spreadsheet or database, to ensure that the system use cases are mapped to business use cases. The real
purpose of traceability is ensuring that, at the end of the day when the system is built and implemented, all ¢
the requirements are met and all of the code can be traced back to a requirement.

After the system use cases are traced to business use cases, the next step is to trace the requirements to t
system use cases. Each functional requirement must be traced to a system use case, because the system (
cases describe the functionality that will be provided by the system. The system design is driven by the use
cases, so if a requirement is not traced to a use case, it will not be considered in the design and may not en
in the final system.

Note Notice that we said functional requirements. There are non—functional requirements, such as system
response time or the number of concurrent users supported that do not need to be traced to system u:
cases. These are typically maintained in a Supplementary Specification document.

Again, if you are using a tool such as Requisite Pro, you can trace the requirements to use cases in the tool

not, set up a method to ensure that each requirement is traced to a use case. As we go through the whole

process, traceability should be shown as in Figure 4.1.

Business _.’:‘(“»‘"-“va —-Flow of _y_Sequence/Colaboration _, Class _y,_Component Code

,,,,, Events Diagram Nagyar Dagram

Figure 4.1: Traceability through the life cycle

Flow of Events

The use cases begin to describe what your system will do. To actually build the system, though, you'll need
more specific details. These details are written as the flow of events. The purpose of the flow of events is to
document the flow of logic through the use case. This document will describe in detail what the user of the
system will do and what the system itself will do.

Although it is detailed, the flow of events is still implementation—-independent. You can assume as you are
writing the flow that there will be an automated system. However, you shouldn't yet be concerned with
whether the system will be built in C++, PowerBuilder, or Java. The goal here is describing what the system
will do, not how the system will do it. The flow of events typically includes:

108



Chapter 4: Use Cases and Actors

A brief description

Preconditions

Primary flow of events

Alternate flow of events

Postconditions
Let's look at these items one at a time.
Description

Each use case should include a short description that explains what the use case will do. The Purchase Ticl
use case from our airline example might have a description like the following: The Purchase Ticket use case
will allow a customer to view available flight information, check availability, and purchase a ticket with a
credit card.

The description should be short and to the point, but should include the different types of users who will be
executing the use case and the end result the user expects to achieve through the use case. As the project
progresses (especially with a very long project), these use case definitions will help the whole team rememt
why each use case is included in the project and what the use case is intended to do. They also help reduce
confusion among the team members by documenting a clear purpose for the use case.

Preconditions

The preconditions for a use case list any conditions that have to be met before the use case can start at all.
example, a precondition might be that another use case has been executed or that the user has the necess:
access rights to run the current use case. Not all use cases will have preconditions.

Use Case diagrams aren't intended to show in which order the use cases are executed. Preconditions, how:
can be used to document some of this type of information. For example, the precondition for one use case r
be that another use case has run.

Primary and Alternate Flow of Events

The specific details of the use case are described in the primary and alternate flow of events. The flow of
events describes, step—by-step, what will happen to execute the functionality in the use case. The flow of
events focuses on what the system will do, not how it will do it, and is written from the user's perspective. Tt
primary and alternate flow of events include:

How the use case starts

The various paths through the use case

. 109



Chapter 4: Use Cases and Actors

The normal, or primary, flow through the use case

Any deviations from the primary flow, known as alternate flows, through the use case

Any error flows

How the use case ends

Along with the flow of events in text form, activity diagrams are frequently used. In this section, we'll talk
about the option of using text. We'll go over activity diagrams later in this chapter.

There are three types of flows: the primary, alternate, and error flows. The primary flow is the "happy day"
scenario, or the most frequently used path through the use case. When purchasing a ticket, the primary flow
a successful ticket purchase. Alternate flows are deviations from the primary flow that do not suggest an err
condition. For example, a customer may purchase a ticket using frequent—flyer miles, the customer's credit
card may not be valid, or the requested flight may not be available. Each of these is a legitimate scenario th:
the system will be expected to handle, but doesn't suggest that something has gone wrong with the system
itself. Finally, error flows are deviations from the primary or alternate flows that suggest some sort of error
condition. For example, the system may be unable to verify the credit card or the flight availability. Error
flows suggest that there is a problem with the system itself.

Using our "Purchase Ticket" use case example, the flow of events might look like the steps in the following
sections.

Primary Flow
The steps for the primary flow of events include:

1.
The use case begins when the customer selects the option to view flight information.

2.
The system prompts for the departure and destination cities and the departure and return dates.

3.
The user enters the departure and destination city, departure date, and return date.

4,
The system displays a list of available flights, including the fare.

Al: There are no available flights.

5.
The user selects the flight they would like to reserve.

6.
The system displays all available fare options for that flight.

7.
110



Chapter 4: Use Cases and Actors

The user selects the fare option they would like to reserve.
A2: The user selects a free ticket through frequent—flyer membership.

8.
The system displays the fare that the user will pay.

9.
The user confirms the rate.

10.
The system prompts for a credit card type, number, name, and expiration date.

11.
The user enters the card type, number, name, and expiration date.

12.
The system submits the credit purchase.

A6: Account not found
A7: Insufficient funds
E1: Credit system not accessible

13.
The system reserves a seat on the plane for the user.

14.
The system generates and displays a confirmation code to the user.

15.
The user confirms receipt of the code.

16.
The use case ends.

Alternate Flows
Al: No available flights

1.
The system displays a message that there are no available flights for the departure and destination
cities, departure date, and return date entered.

2.
The user confirms the message.

3.
The flow returns to the primary flow, step 2.

111



Chapter 4: Use Cases and Actors

A2: Free ticket through frequent—flyer membership

1.
The system prompts for the frequent—flyer number.

2.
The user enters the number.

3.
The system confirms the validity of the number.

A3: Invalid number

4.
The system confirms that there are enough miles on this membership to qualify for the free ticket.

A4: Not enough miles to qualify for a free ticket
A5: No frequent—flyer tickets available

5.
The ticket fare is set to $0.

6.
The flow returns to the primary flow, step 8.

A3: Invalid frequent—flyer number

1.
The system displays a message that the frequent—flyer number is invalid.

2.
The user reenters the number or selects the option to cancel the frequent—flyer request.

3.
If the user reenters the number, the flow returns to step 1 of alternate flow A2.

4.
If the user cancels the frequent—flyer request, the flow returns to step 6 of the primary flow.

A4: Not enough frequent—flyer miles to qualify for free ticket

1.
The system displays a message that there are not enough miles to qualify. The message contains th
required number of miles and the number of miles available.

2.
The flow returns to step 6 of the primary flow.

A5: No frequent—flyer tickets available

1.
112



Chapter 4: Use Cases and Actors

The system displays a message that there are no frequent-flyer tickets available for the selected flig

2.
The flow returns to step 6 of the primary flow.

A6: Credit account not found

3.
The system displays a message that the credit account was not found.

4.
The flow returns to step 10 of the primary flow.

A7: Insufficient funds

1

The system displays a message that there were not enough funds on the card to complete the
transaction.

2.
The flow returns to step 10 of the primary flow.

Error Flows
E1: Credit system not available

1.
The system displays a message that the credit system is not available.

2.
The flow returns to step 10 of the primary flow.

Notice the pattern in the flow of events: the user does something, then the system does something in respor
then the user does something, then the system responds, and so on. Keeping to this pattern as much as
possible helps you ensure that you have a complete understanding of how the conversation between the us
and the system should flow. When documenting the flow of events, you can use numbered lists as we have
done here, text in paragraph form, bulleted lists, or even flowcharts. With the user/system pattern, another
way to document the flow is by using a table:

User Action System Response
Select option to view flight information Prompt for departure and destination cities, departure
and arrival dates

Enter departure and destination cities, departire afi2isplay flight number, departure time, and arrival
arrival dates time for available flights

113



Chapter 4: Use Cases and Actors

How Detailed Does This Need to Be?

The classic question when documenting a flow of events is how detailed should it be? To answer that
question, keep in mind the reviewers of the document. There are three primary users of the flow of events:

1.
The customers will be reviewing this document to make sure it accurately reflects their expectations.
The flow of events must be detailed enough so that both you and the customer have the same
understanding of the system. The more gaps you leave in the details, the greater the potential for
disconnects in expectations. At the same time, you don't want to get into implementation details that
the customers won't understand or won't care about. A short answer for most customers is: get as
detailed as you can without getting into the implementation. Try to avoid phrases such as "The syste
will take frequent flyers into account.” What does "into account” mean? You want to be sure that bot!
you and the customer understand what that phrase means in that situation.

The system designers will be using it to create the system design and eventually to build the system
The flow of events must give them enough information to understand the sequence of events that
needs to occur through the use case. Although the flow of events isn't implementation—specific (try t
avoid words like "menu," "window," "treeview," or other phrases that will tie the developers to a
particular implementation), it does have a lot of information about how the system is supposed to
behave. Be sure there is no ambiguity about what the users want, so that the designers will underste
the users' needs.

The quality assurance team will use the flow of events to create test scripts. Because the flow of
events lists step—by-step what the system should do, the testing team can use it as a basis for
comparison against what the system does do when all is said and done. The flow of events won't be
test script by itself, but it can serve as great input into a test case.

As you are writing the flow, focus on what and be sure to avoid detailed discussions of how. Think of writing
a recipe. In a recipe, you would say "Add two eggs." You wouldn't say "Go to the refrigerator. Get two eggs
from the door. Pick up the first egg. Crack the egg against the side of the bowil...." In a flow of events, you
might say "Validate the user ID," but you wouldn't specify that this is done by looking at a particular table in :
database. Focus on the information that is exchanged between the user and the system, not on the details ¢
how the system will be implemented.

Postconditions

Postconditions are conditions that must always be true after the use case has finished executing. Like
preconditions, postconditions can be used to add information about the order in which the use cases are rur
If, for example, one use case must always be run after another use case, you can document this in the
postconditions. Not every use case will have postconditions.

Relationships

So far, we have taken a look at use cases and actors individually. Now we'll explore the relationships betwe
use cases and actors to get a full picture of our system.

The association relationship is used to show the relationship between a use case and an actor.

114



Chapter 4: Use Cases and Actors

There are three types of relationships between use cases: an includes relationship, an extends relationship,
a generalization relationship. These relationships are used when there is a certain amount of commonality
between the use cases.

There is only one relationship allowed between actors. This is a generalization relationship.

Association Relationship

The relationship between an actor and a use case is an association relationship. In UML, association
relationships are diagrammed using an arrow:

>C_ D

Customer Purchase Ticket

In this example, the use case initiates communication with the credit system actor. As the "Purchase Ticket"
use case is being run, the reservation system initiates communication with the credit system to check the ca
and complete the transaction. Although information flows in both directions—from the reservation system to
the credit system and back again—the arrow indicates only who initiated the communication.

CI Ty C»
A3 N /.—«‘ -—»\y N -
AN——C >— A

Customer Purchase Ticket Credit System

With the exception of use cases in includes and extends relationships, every use case must be initiated by ¢
actor.

Includes Relationship

An includes relationship allows one use case to use the functionality provided by another use case. This
relationship can be used in one of two cases.

First, if two or more use cases have a large piece of functionality that is identical, this functionality can be
split into its own use case. Each of the other use cases can then have an includes relationship with this new
case.

The second case where an includes relationship is helpful is a situation in which a single use case has an
unusually large amount of functionality. An includes relationship can be used to model two smaller use case
instead.

Includes relationships are shown in Rose with dashed arrows and the word <<include>>, as in Figure 4.2.

<<include>>

s N =C )
Nz o N
Purchase Ticket Check Credit

Figure 4.2: An includes relationship

115



Chapter 4: Use Cases and Actors

In this example, the "Check Credit" use case will check that a valid card number was entered and that the
credit account has sufficient funds to complete the transaction. Because this functionality is used during the
Purchase Ticket process, there is an includes relationship between them.

An includes relationship suggests that one use case always uses the functionality provided by another. No
matter how you proceed through the Purchase Ticket use case, the "Check Credit" use case is always run.

Extends Relationship
In contrast, an extends relationship allows one use case the option to extend the functionality provided by
another use case. It is very similar to an includes relationship, because in both of these types of relationship

you separate some common functionality into its own use case.

In UML, the extends relationship is shown as a dashed arrow with the word <<extend>>, as in Figure 4.3.

- P .
( ) T - ———— — ( \
N & N A

Change Reservation Check Credit

Figure 4.3: An extends relationship

In this example, the "Check Credit" use case extends the "Change Reservation" use case. While the "Chan
Reservation" use case is running, "Check Credit" runs if and only if the amount of the reservation has
changed. If the amount has not changed, "Check Credit" does not need to run.

Because "Check Credit" is optionally run, there is an extends relationship between the use cases. The arrov
drawn from the use case that is optionally run ("Check Credit") to the use case that is being extended
("Change Reservation").

Generalization Relationship

A generalization relationship is used to show that several actors or use cases have some commonality. For

example, you may have two types of customers: corporate customers and individual customers. You can
model this relationship using the notation displayed in Figure 4.4.

116



Chapter 4: Use Cases and Actors

Customer

Corporate Customer Individual Customer
Figure 4.4: Actor generalization relationship

This diagram shows our two types of customers: individual and corporate. Because the individual and
corporate actors will be directly instantiated, they are called concrete actors. Because the customer actor is
never directly instantiated, it is an abstract actor. It exists only to show that there are two types of customers

We can break down things even further if we need to. Say there are two types of corporate customers:
government agencies and private companies. We can modify the diagram to look like Figure 4.5.

Customer

AR
A

Corporate Customer Individual Customer

7R
A

Private Company Government Agency

Figure 4.5: Modified actor generalization relationship

It isn't always necessary to create these types of relationships. In general, they are needed only if one type
actor behaves differently than another type, as far as the system is concerned. If the corporate customers w
be initiating some use cases that individual customers will not, it's probably worth including the actor
generalizations. If both types of customers use the same use cases, it's probably not necessary to show an
generalization. If both types use the same use cases, but slightly differently, it still isn't worth including the
generalization. The slight differences are documented in the flow of events for the use cases.

117



Chapter 4: Use Cases and Actors

Tip The point of these diagrams is communication. If including an actor generalization would give the team
some useful information, then include it. Otherwise, don't clutter up the diagrams with them.

The same concept is true for use cases. If you have a base set of functionality that one or more use cases

expand upon, you can create a generic use case and then inherit the other use cases from it with a

generalization relationship.

Use Case Diagrams

A Use Case diagram shows you some of the use cases in your system, some of the actors in your system, :
the relationships between them. As you know, a use case is a high—level piece of functionality that the syste
will provide. An actor is anyone or anything that interacts with the system being built. An example of a Use
Case diagram is shown_in Figure 4.6.

Figure 4.6: Sémple Use Case diagram

In this diagram, we see the system actors, the system use cases, and the relationships between them. Becz
the system will be available both online and over the phone, the customer and customer service representat
can initiate the same use cases. We have one extends relationship and one includes relationship. There are
eight major pieces of functionality the system will provide: purchasing tickets, changing a reservation,
checking credit, canceling a reservation, viewing a customer itinerary, reserving a hotel room, reserving a
rental car, and setting up the flight schedule.

One of the major benefits of Use Case diagrams is communication. Your customers can look at this diagran
and receive a great deal of information. By looking at the use cases, they will know what functionality will be
included in the system. By looking at the actors, they will know exactly who will be interfacing with the
system. By looking at the set of use cases and actors, they will know exactly what the scope of the project w
be. This can help them identify up front any missing functionality. For example, someone could look at the
diagram above and say, "That's great, but | also need the ability to check my frequent—flyer membership to
see how many miles | have." If so, all we need to do is add another use case called "View Frequent-Flyer
Information.”

Frequently, you will want to create several Use Case diagrams for a single system. A high—level diagram,
usually called Main in Rational Rose, will show you just the packages, or groupings, of use cases. Other

118



Chapter 4: Use Cases and Actors

diagrams will show you sets of use cases and actors. You may also want to create a single diagram with all
the use cases and all of the actors. How many Use Case diagrams you create and what you name them is
entirely up to you. Be sure that the diagrams have enough information to be useful, but are not so crowded
to be confusing.

Tip Rational Rose can automatically create diagrams with all modeling elements in a package. In the rose.ir
set the AutoConstructMainDiagrams=Yes flag to enable this feature and a main diagram will be
automatically created for each package with all modeling elements of the package.

Use Case diagrams fulfill a specific purpose: to document the actors (everything outside the system scope),

the use cases (everything inside the system scope), and their relationships. Some things to keep in mind as

are creating Use Case diagrams include:

Do not model actor—-to—actor associations (although generalizations are OK). By definition, the actor:
are outside the scope of the current project. The communication between the actors, therefore, is als
outside the scope of what you're building. You can use a workflow diagram to examine the actor
associations.

Do not draw an association directly between two use cases (although includes or extends relationshi
are OK). The diagrams show what use cases are available, but don't show in which order the use ca
will be executed, so there shouldn't be an association between use cases.

Every use case must be initiated by an actor. That is, there should be an arrow starting with an actor
and ending with the use case. Again, the exception here is an includes or extends relationship.

Think of the database as a layer underneath the entire Use Case diagram. You can enter informatior
the database using one use case, and then access that information from the database in another ust
case. You don't have to draw associations from one use case to another to show information flow.

Activity Diagrams

An activity diagram is another way to model the flow of events. Using text, as we did in the example above,
useful, but it can be difficult to read and understand if the logic is complex, if there are a lot of alternate flows
or if your customers simply prefer diagrams over text.

An activity diagram shows you the same information as a textual flow of events would. We use activity
diagrams in business modeling to depict the workflow through a business process. Here, we will use them t
depict the flow through a piece of the system.

Figure 4.7 is the activity diagram that corresponds to the flow of events for purchasing an airline ticket from
earlier in this chapter.

119



Chapter 4: Use Cases and Actors

Figure 4.7: Activity diagram

As you can see, the activity diagram can be an easier way to communicate the steps in the flow. Let's ook ¢
the different pieces of notation in this diagram.

Activity

As the name implies, an activity is one of the essential pieces of an activity diagram. An activity is simply a
step in the process. The steps we outlined in the text above become our activities here. An activity is models

using the following symbol:

Select Flight

We can add more detailed steps to the activity by using actions. Actions are smaller steps that take place
within an activity. They may occur at one of four times:

Upon entering the activity. An entry action occurs as soon as the activity begins, and is marked with
the word "entry."

When exiting the activity. An exit action occurs as you are leaving the activity, and is marked with the
word "exit."

While performing the activity. These actions occur while in the activity and continue until you leave
the activity. They are marked with the word "do."

120



Chapter 4: Use Cases and Actors

Upon a specific event. These actions happen if and only if a specific event occurs. They are marked
by the word "event," followed by the event name.

Display Available Flights

entry/ Find all flights for selected cities/dates

entry/ Determane flights with available seats

do! Display list of flights with available seats

do/ Highlight flight with lowest fare

event/ User requests fare informationV Display fare information

Actions are optional, but they can give us detailed information that will help us complete the system design
later. If actions are included, they are displayed inside the activity, regardless of which of the above four
categories they fall into. Here is an example of an activity with actions:

{ b
| Display fare |
i w0 S

r \/ \
= Emter credit | oo Ticket
[Invalid account, | information | ~ | [Unconfirmed)
msufficient funds, I\ o -

credit system not avaitable]

Vi [Approved]
! - Ticket

- 2
| Reserve seal [======>
» J

|Purchased]

1)

Generate
confirmation number

In this example, the actions show the steps within the "display available flights" activity. When the activity
first begins, the system will find all flights for the selected cities and dates, and then determine which of thes
flights has available seats. While inside the activity, the system displays a list of flights and highlights the on

with the lowest fare. Finally, upon the event that the user wishes to see fare information, the system will
display the fare information.

Start and End States

The start and end states let you know where the flow begins and ends. Each activity diagram must have a s
state, which is drawn as a solid dot, to signify where the flow begins.

End states are optional on the diagram. They show you where the flow ends, and are represented by a
bull's—eye. You can have more than one end state on the diagram, but only a single start state.

Objects and Object Flows

An object is an entity that is affected by the flow. It may be used or changed by an activity in the flow. On an
activity diagram, you can display the object and its state so that you can understand where and how the
object's state changes.

Objects are linked to activities through object flows. An object flow is a dashed arrow drawn from an activity
to the object it changes, or from the object to the activity that needs to use it.

121



Chapter 4: Use Cases and Actors

In this example, once the user enters their credit information, a ticket is created with a status of
"unconfirmed." Once the credit processing is complete and the credit is approved, the "reserve seat" activity
occurs, which sets the state of the ticket to "purchased." These are both examples of how an activity can
change an object.

An object can also serve as input into an activity. In this example, in order to generate a confirmation numbe
the system must have a purchased ticket. The ticket is therefore input into the "generate confirmation numbs
activity. In either case, the relationships between the activities and the objects are drawn as dashed arrows
are known as an object flow.

Transitions

A transition shows how the flow of control moves from one activity to another. In the simplest situation, a
transition is simply an arrow from one activity to another:

P

L =5 | Generate confirmation
Resprve seat e | :
J L numbes

In this simple situation, we can assume that as soon as one activity ends, the next begins.

We can, however, set limitations on the transition to control when the transition occurs. This can be done
either by using an event or a guard condition. If an event is specified for a transition, the event must happen
order for the transition to occur. The transition arrow is labeled with the event name, along with any
arguments in parenthesis.

Here we can see that if the user changes their mind and performs a cancel event, the purchase price will be
refunded and the ticket will be canceled.

X e \ p
2 N Cancel [ Refund credit = Cancel
Reserve seat  p——-—=> —

|  purchase reservation

—]—] : ? J

P |
Generate confirmation
number

While an event triggers a transition, a guard condition controls whether or not the transition can occur. If a
guard condition is present, it must be true in order for the transition to occur. The guard condition is listed
along the transition arrow, following any event, and is enclosed in square brackets:

New reservation (7 y
[ Reserve seat 1 oW ] .| Generate confirmatson
i i | - number

L —

In this example, a new confirmation number is needed only if there is a new reservation made. If we are
changing an existing reservation, the old confirmation number will remain. Because we need to generate a
confirmation number only if this is a new reservation, "New reservation" becomes our guard condition.

Synchronization

A synchronization is a way to show that two or more branches of a flow occur in parallel. In our example, if
we want to show that the system would—at the same time—reserve a seat, generate a confirmation numbe
generate a receipt, and e—mail a receipt before displaying the confirmation number, the diagram would look

122



Chapter 4: Use Cases and Actors

like this:

\
Display fare

I IY ¢ J

—
Enter credit
information

|Invalid account,
insufficient funds,
credit system not available]

\l /

Wy [Approved]

v v ‘ \
) ]
(Re,\'urvuscax ‘ Generate [ Generate and ’
¥

J

Lconhmm'ov\ numbe.'J e-mail receipt
\\'5 f /

S
I,
Display
confirmation number |

The synchronizations are displayed as solid bars, and show where the logic forks and where it comes back
together. A synchronization can be either horizontal or vertical.

Working with Use Cases in Rational Rose

In this section, we'll review how to create, update, and delete use cases and Use Case diagrams in Rose. W
look at the Use Case Diagram toolbar, which can be used to add use cases, actors, relationships, and other
elements to the Use Case diagrams. Then, we'll discuss creating, deleting, and setting the specifications of
use case in Rose.

It's not unusual to create a number of Use Case diagrams for a given project. Each would show a different
subset of the use cases and actors. Rose provides you with one default Use Case diagram called Main, whi
can be used to show just the packages of use cases and actors, or show all the use cases and actors if you
prefer. You can create as many Use Case diagrams as you need in a Rose model.

The Use Case Diagram Toolbar

When a Use Case diagram is opened, the Diagram toolbar changes to show icons used in Use Case diagra
In the toolbar, Rose provides shortcuts for all of the commonly used functions for a Use Case diagram. Som
of the buttons you will have available are shown in Table 4.1. In the remainder of this chapter, we'll discuss

how to use each of these toolbar buttons to add use cases, actors, and other details to your Use Case diagr

Tip The buttons below are the defaults for the toolbar. As with any other toolbar, Rose toolbars can be
customized. If you do not see all of the buttons listed, right—click the toolbar and select Customize.
Table 4.1: Icons in the Use Case Diagram Toolbar

Icon Button Purpose
[*} Selects/Deselects an Item Returns the cursor to an arrow so you can select an item.

123



Chapter 4: Use Cases and Actors

HEC Text Box Adds a text box to the diagram.
Note Adds a note to the diagram.
Anchor Note to Item Connects a note to a use case or actor on the diagram.
=] Package Adds a new package to the diagram.
< Use Case Adds a new use case to the diagram.
2 Actor Adds a new actor to the diagram.
r Unidirectional Association Draws a relationship between an actor and a use case.
2 Dependency or Instantiates |Draws a dependency between items on the diagram.
Generalization Draws a includes or an extends relationship between use cases, or
draws an inheritance relationship between actors.

Creating Use Case Diagrams

In Rose, Use Case diagrams are created in the Use Case view. The Use Case view contains all of the
following:

Use cases

Actors

Communication relationships between use cases and actors

Includes and extends relationships between use cases

Actor generalization relationships

Use Case diagrams

Activity diagrams

Use Case realizations

Sequence and Collaboration diagrams

We'll talk about all of the above except Sequence and Collaboration diagrams, which we'll cover in Chapter
"Object Interaction.” The Use Case view is largely implementation—independent. The use cases and actors
describe the project scope without getting into implementation details like the programming language that w
be used. We will add implementation details starting with the Sequence diagrams in Chapter 5.

124



Chapter 4: Use Cases and Actors

Rose provides you with one default Use Case diagram called Main. You can create as many additional
diagrams as you need to model your system.

To access the Main Use Case diagram, do the following:

1.
Click the + (plus sign) next to the Use Case view in the browser to open it.

2

The Main Use Case diagram will be visible. Note that Use Case diagrams in Rose have the following
icon on their left:

3

Double—-click the Main diagram to open it. The title bar will change to include [Use Case Diagram:
Use Case View / Main].

To create a new Use Case diagram:

1.
Right—click the package Use Case view in the browser.

2.
Select New - Use Case Diagram from the shortcut menu, as shown in Figure 4.8.

T inl
A e ABDL Weas

Lew D@ RCIRNRNE T+ L. .0O0

Figure 4.8: Adding a new Use Case diagram

3.
With the new diagram selected, type in the name of your new diagram.

4.
Double—-click the name of your new diagram in the browser to open it.

To open an existing Use Case diagram:

1.

125



Chapter 4: Use Cases and Actors

Locate the Use Case diagram in the Use Case view in the browser.

2.
Double—click the Use Case diagram's name to open it.

OR

1.
Select Browse - Use Case Diagram. The window displayed in Figure 4.9 will appear.

Setect ne Cave Disgraen 21x]

Reame |  Deete | [ Ok | cocel |  He |

Figure 4.9: Opening an existing Use Case diagram

2.
In the Package list box, select the package that contains the diagram you want to open.

3.
In the Use Case Diagrams list box, select the diagram you want to open.

4,
Press OK.

To add an item to a Use Case diagram, use the toolbar buttons as described in the sections later in this cha
to add use cases, actors, and relationships to the diagram.

There are two ways to remove an item from a Use Case diagram. The first will remove the item from the ope
diagram, but will leave the item in the browser and on other diagrams. To remove an item from the current
diagram only, highlight the item in the diagram and press the Delete key. The second method will delete the
item from the entire model—from all diagrams as well as the browser. To remove an item from the entire
model, highlight the item in the browser, right—click to see the shortcut menu, and select Delete from the
shortcut menu. Or you can highlight the item in the diagram and press Ctrl+D.

Deleting Use Case Diagrams

You may need to delete some of the Use Case diagrams you've created. Toward the beginning of a project,
not uncommon to create many Use Case diagrams as you brainstorm the scope. Some of the diagrams ma
contain the use cases, others will show the actors, and still others will show a subset of the use cases and tl
actors. As the project goes along, you may find the need to clean up some of these old diagrams. You can
delete a Use Case diagram directly in the browser. Be careful, though—once you've deleted a diagram, you
cannot undo the deletion.

To delete a Use Case diagram:

1.

126



Chapter 4: Use Cases and Actors

Right—click the diagram in the browser.

2.
Select Delete from the shortcut menu.

Warning Rose does not allow you to undo a deletion of a diagram or to delete the Main Use Case diagram.
Deleting a Use Case diagram will not delete the model elements that were on it. Those will stay in the brows
and on any other diagrams.

Adding Use Cases

There are two ways to add a use case to the model. You can add the use case to the active Use Case diag!
Or you can add the new use case directly into the browser, and then add it to a Use Case diagram from the
browser.

To add a new use case to a Use Case diagram:

1.
Select the Use Case button from the toolbar.

2

Click anywhere inside the Use Case diagram. The new use case will be named NewUseCase by
default.

3.
With the new use case selected, type in the name of the new use case.

4,
Note that the new use case has been automatically added to the browser, under the Use Case view.

OR

1.
Select Tools — Create - Use Case, as shown in Figure 4.10.

whrinl

Figure 4.10: Adding a use case to a Use Case diagram

127



Chapter 4: Use Cases and Actors

Click anywhere inside the Use Case diagram to place the new use case. The new use case will be
called NewUseCase by default.

3.
With the new use case selected, type in the name of the new use case.

4.
Note that the new use case has been automatically added to the browser, under the Use Case view.

To add an existing use case to a Use Case diagram:
Drag the use case from the browser to the open Use Case diagram.
OR

1

Select Query —» Add Use Cases. A dialog box will display, as in Figure 4.11, that will allow you to
select and add existing use cases.

<> Redorve Rental Ca
= Set up Fiight Schadule
< Check, Crode

Figure 4.11: Adding existing use cases to a Use Case diagram

2.
In the Package drop—down list box, select the package that contains the use case(s) you want to ad

3.
Move the use case(s) you want to add from the Use Cases list box to the Selected Use Cases list bc

4.
Press OK to add the use cases to the diagram.

To add a use case to the browser:

1.
Right-click the Use Case view package in the browser.

2.
From the shortcut menu, select New - Use Case.

3.
The new use case, called NewUseCase by default, will appear in the browser. To the left of the new

128



Chapter 4: Use Cases and Actors

use case will be the Use Case icon.

4.
With the new use case selected, type in the name of the new use case.

5.
To then add the use case to the diagram, drag the new use case from the browser to the diagram.

Deleting Use Cases

There are two ways to delete a use case. It can be removed from a single diagram or removed from the enti
model and all diagrams. As with Use Case diagrams, it's hot uncommon to have many extra use cases towe
the beginning of a project. They can be very useful for brainstorming the scope of the project. Once the final
set of use cases has been agreed upon, however, you will need to go in and delete any extraneous use cas

To remove a use case from a Use Case diagram:

1.
Select the use case on the diagram.

2.
Press Delete.

3.
Note that the use case has been removed from the Use Case diagram, but still exists in the browser
and on other Use Case diagrams.

To remove a use case from the model:

1.
Select the use case on the diagram.

2.
Select Edit » Delete from Model, or press Ctrl+D.

3.
Rose will remove the use case from all Use Case diagrams, as well as the browser.

OR

1.
Right—click the use case in the browser.

2.
Select Delete from the shortcut menu.

3.
Rose will remove the use case from all Use Case diagrams, as well as the browser.

129



Chapter 4: Use Cases and Actors

Use Case Specifications

Rose provides detailed specifications for each use case. These specifications can help you document the
specific attributes of the use case, such as the use case name, priority, and stereotype. Figure 4.12 shows t
use case specification window, which is used to set the use case specifications. In the following sections, we
take a look at each of the specifications available on the tabs of this window.

Use Case Specification for Purchase Ticke! 2%

General lDiagramsl Relations | Files |

N ETON Purchase Ticke Package: System Model
Stereotype: l ZI

Rank: I [~ Abstract
Documentation:

| oK I Cancel Apply Browse ¥ I Help l

Figure 4.12: Use case specification window

To open the use case specifications:

1.
Right—click the use case on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

OR

1.
Right—click the use case in the browser.

2.
Select Open Specification from the shortcut menu.

OR

1.
Select the use case on a Use Case diagram.

2. 130



Chapter 4: Use Cases and Actors

Select Browse - Specification, or press Ctrl+B.

Naming a Use Case
Each use case in the model should be given a unigue name. The use case should be nhamed from the
perspective of your customer, as the use cases will help determine the project scope. The use case hame

should also be implementation—independent. Try to avoid phrases, such as Internet, that tie the use case to
specific implementation. Use cases are typically named with verbs or short verb phrases.

There are two ways to name a use case. You can use the use case specification window or name the use ¢
directly on the diagram.

To name a use case:

1.
Select the use case in the browser or on the Use Case diagram.

2.
Type the use case name.

OR

1.
Right—click the use case in the Use Case diagram or browser.

2.
Select Open Specification from the shortcut menu.

3.
In the Name field, enter the use case name.

To add documentation to a use case;

1.
Select the use case in the browser.

2.
In the documentation window, type the use case description.

OR

1.
Right—click the use case in the browser or on the Use Case diagram.

2.
From the shortcut menu, select Open Specification.

3.
In the specification window, type the use case description in the Documentation area.

131



Chapter 4: Use Cases and Actors

Viewing Participants of a Use Case

You may want to see a listing of all of the classes and operations that participate in a particular use case. As
the project progresses and you add or change requirements, it can be very helpful to know what classes mif
be affected by the change. In our airline example, we will need to know which classes are used by which us
case as the requirements evolve and the use cases change.

Even after the system is complete, you may need an inventory of which classes are included in each use ca
As the system moves into maintenance mode, you will need to control the scope of upgrades and changes.
Rose, you can view the use case participants using the Report menu.

To view the classes and operations participating in a use case:

1.
Select the use case on a Use Case diagram.

2.
Select Report — Show Participants in UC.

3.
The Participants window will appear, as shown in Figure 4.13.

Participants in Purchase Ticket £ x|

Clas 1 (Logcs View) I~ Componeris
Class 2 (Lopc View) o Classes

I Operatons

M Duply Pacert ™ Duplay Typn

| |[Concd | Rt | e |
Figure 4.13: Use case Participants window

Checking the Display Parent check box will display the package that owns each of the classes participating
the use case. The parent appears in parentheses after the class or operation name.

Checking the Display Type check box will add a notation next to each item in the list box to let you know
whether the item is a class or an operation. The type appears in parentheses after the class or operation na

Use the Components, Classes, and Operations check boxes to control whether components, classes,
operations, or all three appear in the list box. Use the Open It button to view the specifications for an item in
the list, and use the Goto It button to select the item in the browser.

Assigning a Use Case Stereotype

In UML, stereotypes are used to help you categorize your model elements. Say, for example, you had two
primary types of use cases, type A and type B. You can create two new use case stereotypes, A and B.
Stereotypes aren't used very often for use cases; they are used more for other model elements, such as cla
and relationships. However, you do have the option of adding a use case stereotype if you'd like.

To assign a use case stereotype:

1. 132



Chapter 4: Use Cases and Actors

Right—click the use case in the browser or on the Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
Enter the stereotype in the Stereotype field.

Assigning a Priority to a Use Case

As you define your use cases, you might want to assign a priority to each. By adding priorities, you'll know ir
what order you'll be working on the use cases as the project progresses. In the use case specification in Ro
you can enter the use case priority description using the Rank field.

To assign a priority to a use case:

1.
Right—click the use case in the browser or on the Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
On the General tab, enter the priority in the Rank field.

Creating an Abstract Use Case

An abstract use case is one that is not started directly by an actor. Instead, an abstract use case provides s
additional functionality that can be used by other use cases. Abstract use cases are the use cases that
participate in an includes or extends relationship. Figure 4.14 includes examples of abstract use cases.

N
ccincludes> 7 S e i
- Purchase Ticket
-~
2o
ol o
N 0
> 5 ~
Check Credit S
~
~
ccextend>> NN
LR B

Change Reservation

Figure 4.14: Abstract use cases

In this example, "Check Credit" is an abstract use case. The actor will run either the "Purchase Ticket" or
"Change Reservation" use case, but not the "Check Credit" use case directly. See the section later in this
chapter titled "Working with Relationships" for a description of how to draw the arrows between the use
cases.

To create an abstract use case:

1.
Create the use case in the browser or on a Use Case diagram.

2. 133



Chapter 4: Use Cases and Actors

Right—click the use case in the browser or on the diagram.

3.
Select Open Specification from the shortcut menu.

4.,
Check the Abstract check box.

Viewing Diagrams for a Use Case

In the use case specifications, you can see all of the activity diagrams, Sequence diagrams, Collaboration
diagrams, Class diagrams, Use Case diagrams, and Statechart diagrams that have been defined under the
case in the browser. Figure 4.15 shows the Diagrams tab in the use case specification window. On this tab,
you will see the Rose icons that indicate the type of diagram, as well as the diagram name. Double—clicking
any of the diagrams will open the diagram in the diagram window.

Use Case Specification for Purchase Ticke! 2| x|

General Diagrams IReIationsl Files |

| Title |
My  Sequence Diagram 1
(&) Purchase Ticket
[z  Collaboration Diagram 1
My  Sequence Diagram 2

| oK I Cancel Apply Browse v Help

Figure 4.15: Use case specification window's Diagrams tab

To view the diagrams for a use case:

1.
Right—click the use case in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
The diagrams will be listed on the Diagrams tab of the specification window.

134



Chapter 4: Use Cases and Actors

OR

Look through the browser. The diagrams for the use case will appear underneath the use case in the brows
To open a diagram for a use case:

Double—click the diagram name on the Diagrams tab of the use case specification window.

OR

1.
Right—click the diagram name on the Diagrams tab of the use case specification window.

2.
Select Open Diagram from the shortcut menu.

OR
Double—click the diagram in the browser.
To add a diagram to a use case:

1.
Right—click anywhere inside the Diagrams tab of the use case specification window.

2.
From the shortcut menu, select the type of diagram (Use Case, Sequence, Collaboration, State, or
Class) you want to add.

3.
Enter the name of the new diagram.

OR

1.
Right—click the use case in the browser.

2.
Select New - (Activity Diagram, Collaboration Diagram, Sequence Diagram, Class Diagram, Use
Case Diagram) from the shortcut menu.

3.
Enter the name of the new diagram.

To delete a diagram from a use case:

1.
Right—click the diagram name on the Diagrams tab of the use case specification window.

2.
Select Delete from the shortcut menu.

135



Chapter 4: Use Cases and Actors

OR

1.
Right—click the diagram name in the browser.

2.
Select Delete from the shortcut menu.

Viewing Relationships for a Use Case

The Relations tab in the use case specification window will list all of the relationships the use case participat
in, either to other use cases or to actors, as shown in Figure 4.16. The list includes the relationship name ar
the names of the items joined by the relationship. The relationship name will include any role names or
relationship names you have added to the relationship.

[ use Case Specification for Purchase Ticket 2ix|

Genail| Oiagars  Fedatons | Fies |

[ Ciert [ Sugpler I
¥ Customer >Puschare Ticket

hon « ¥ Customer Seevce < Puschare Tickat

~Puchate Tekot 5§ Credt System

s Purchare Tcket <5 Check Crade

[ox ] oo | | fome~| Heo |
Figure 4.16: Use case specification Relations tab

To view the relationships for a use case:

1.
Right—click the use case in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
The relationships will be listed on the Relations tab.

OR

1.
Select the use case on a Use Case diagram.

2.
Select Report — Show Usage.

To view the relationship specifications:

1.
136



Chapter 4: Use Cases and Actors

Double—click the relationship in the list.

2.
The relationship specification window will appear. (See the upcoming "Working with Relationships"
section for a detailed description of relationship specifications.)

OR

1.
Right—click the relationship in the list.

2.
Select Specification from the shortcut menu.

3.
The relationship specification window will appear. (See the upcoming section titled "Working with
Relationships" for a detailed description of relationship specifications.)

To delete a relationship:

1.
Right—click the relationship in the list.

2.
Select Delete from the shortcut menu.

Working with Actors

In this section, we'll take a look at how to model actors using Rational Rose. As with use cases, you can kee
a lot of details—name, stereotype, relationships, multiplicity, and so on—about an actor in a Rose model. W
maintain these details in the actor specification window. Rose uses the same specification window for actors
and classes, so we'll see some fields that don't apply to actors.

Adding Actors

As with use cases, there are two ways to add an actor: to an open Use Case diagram or directly into the
browser. An actor in the browser can then be added to one or more Use Case diagrams.

To add an actor to a Use Case diagram:

1.
Select the Actor button from the toolbar.

2.
Click anywhere inside the Use Case diagram. The new actor will be named NewClass by default.

3.

137



Chapter 4: Use Cases and Actors

With the new actor selected, type in the name of the new actor. Note that the new actor has been
automatically added to the browser, under the Use Case view.

OR

1.
Select Tools — Create - Actor, as shown in Figure 4.17.

TR U8 ww Aume Bes S Gary tek AMBE Wiehe A o

DJW  aF & vro xEDINEND |
" tras -~

i e e+

L
= -

= l J 'l%
Figure 4.17: Adding an actor to a Use Case diagram

2

Click anywhere inside the Use Case diagram to place the new actor. The new actor will be called
NewClass by default.

3

With the new actor selected, type in the name of the new actor. Note that the new actor has been
automatically added to the browser, under the Use Case view.

To add an actor to the browser:

1.
Right-click the Use Case view package in the browser.

2.
Select New — Actor.

3

The new actor, called NewClass by default, will appear in the browser. To the left of the actor's hame
will be the Actor icon.

4,
With the new actor selected, type in the name of the new actor.

5.
To then add the actor to the diagram, drag the new actor from the browser to the diagram.

138



Chapter 4: Use Cases and Actors

Deleting Actors

As with use cases, there are two ways to delete an actor: from a single diagram or from the entire model. If
you delete an actor from the entire model, it will be removed from the browser as well as all Use Case
diagrams. If you delete an actor from a single diagram, it will remain in the browser and on other Use Case
diagrams.

To remove an actor from a Use Case diagram:

1.
Select the actor on the diagram.

2.
Press Delete.

To remove an actor from the model:

1.
Select the actor on the diagram.

2.
Select Edit » Delete from Model, or press Ctrl+D.

OR

1.
Right—click the actor in the browser.

2.
Select Delete from the shortcut menu.

Rose will remove the actor from all Use Case diagrams as well as the browser. All relationships the deleted
actor has with other modeling elements will also be removed.

Actor Specifications
Like a use case, each actor has certain detailed specifications in Rose. In the actor specification window, as

shown in_Figure 4.18, you can specify the actor's name, stereotype, multiplicity, and other details. In the nex
several sections, we'll take a look at each of the specifications you can set for an actor.

139



Chapter 4: Use Cases and Actors

Class Specification for Customer 21x|
Relations l Components I Nested ] Files
General I Detsl | Operations | Attibutes
Name: Parent:  System Model
Type: I Class lJ
Stereotype: I v ]

— Export Control
¢ Public: € Protected € Frivate. € Implementation
Documentation:
[

| oK I Cancell Aoply Browse vI Help I

Figure 4.18: Actor specification window

As you work with classes later in this book, you may note that the actor specification window and the class
specification window are very similar. This is because Rose treats an actor as a specialized form of a class.
The actor specification window includes the same fields as the class specification window, but some of thes
fields are disabled for actors.

To open the actor specifications:

1.
Right-click the actor on the Use Case diagram.

OR
Right—click the actor in the browser.

2.
Select Open Specification from the shortcut menu. The actor specification window will appear.

OR

1.
Select the actor on the Use Case diagram.

2.
Select Browse Specification, or press Ctrl+B. The actor specification window will appear.

140



Chapter 4: Use Cases and Actors

Most of the tab pages in the actor specification will apply to classes, but will not apply to actors. The tab
pages that include information about actors are the General tab, the Detail tab, the Relations tab, and the Fi
tab. Some of the options on these tabs apply only to classes. The options that are available for actors are
described below.

Naming Actors

Each actor should be given a uniqgue name. You can hame an actor by using the actor specification window
by typing the name directly onto a Use Case diagram or into the browser.

To name an actor:

1.
Right—click the actor in the Use Case diagram or browser.

2.
Select Open Specification from the shortcut menu.

3.
In the Name field, enter the actor name.

OR

1.
Select the actor in the browser or on the Use Case diagram.

2.
Type in the actor name.

To add documentation to an actor:

1.
Select the actor in the browser.

2.
In the documentation window, type the actor description.

OR

1.
Right—click the actor in the browser or on the Use Case diagram.

2.
From the shortcut menu, select Open Specification.

3.
In the specification window, type the actor description in the Documentation area.

141



Chapter 4: Use Cases and Actors

Assigning an Actor Stereotype

As with use cases, you can assign a stereotype to an actor in the specifications window. However, if you
change the stereotype of an actor, Rose will change the icon used to represent the actor on a Use Case
diagram. Rather than using the actor symbol, Rose will use the standard rectangle that is used to represent
class.

Other than "Actor," there are no stereotypes provided for an actor. You can, however, define your own actor
stereotypes and use these in your Rose model.

To assign an actor stereotype:

1.
Right—click the actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Stereotype field, enter the actor stereotype.

Warning If you change the stereotype of an actor, Rose will no longer display the actor using the UML actor
symbol. Rose will treat the actor like any other class.

Setting Actor Multiplicity

You can specify in Rose how many instances of a particular actor you expect to have. For example, you ma
want to know that there are many people playing the role of the customer actor, but only one person playing
the role of the manager actor. You can use the Multiplicity field to note this.

Rose provides you with several multiplicity options:

Multiplicity Meaning
0..0 Zero

0.1 Zero or one
0..n Zero or more
1.1 Exactly one
1..n One or more
n (default) Many

Or, you can enter your own multiplicity options, using one of the following formats:

Format
<number>
<number 1>..<number 2>

Meaning
Exactly <number>
Between <number 1> and <number 2>

<number>..n

<number> or more

<number 1>,<number 2>

<number 1> or <number 2>

<number 1>, <number 2> .. <number 3>

Exactly <number 1> or between <numb
2> and <number 3>

142



Chapter 4: Use Cases and Actors

<number 1> .. <number 2>, <number 3> .. <number 4> Between <number 1> and <number 2> or
between <number 3> and <number 4>

To set actor multiplicity:

1.
Right—click the actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
Select the Detail tab.

4,
Select from the Multiplicity drop—down list box, or type in the actor's multiplicity using one of the
formats listed above.

Creating an Abstract Actor

An abstract actor is an actor that has no instances. In other words, the actor's multiplicity is exactly zero. Fo
example, you may have several actors: hourly employee, salaried employee, and temporary employee. All
these are types of a fourth actor, employee. However, no one in the company is just an employee—everyon
is either hourly, salaried, or temporary. The employee actor just exists to show that there is some commona
between hourly, salaried, and temporary employees.

There are no instances of an employee actor, so it is an abstract actor. Figure 4.19 shows an example of an
abstract actor called "employee.”

A

Employee
Hourly Employee Salaried Employee Temporary Employee

Figure 4.19: Abstract actor
To create an abstract actor:

1.
Create the actor in the browser or on a Use Case diagram.

2.
Right—click the actor in the browser or on the diagram.

3.
Select Open Specification from the shortcut menu.

4. 143



Chapter 4: Use Cases and Actors

Select the Detail tab.

5.
Check the Abstract check box.

Viewing Relationships for an Actor

The Relations tab in the actor specification window lists all of the relationships in which the actor participate:
Figure 4.20 shows the Relations tab of the window. This tab includes all relationships the actor has with use
cases, as well as the relationships to other actors. The list includes the relationship hame and the actors or |
cases that participate in the relationship. From this tab, you can view, add, or delete relationships.

0]
Gerwind | Detad | Operations | Ause: Feloions | Components | Nettsd| Fies |
[V Stow rhentnd
Name | Paert | Erd Class |

o kenanny | Puchase Tekal m assocation (urmsned> Customer Puschace Tcket
onoaclename> | Changs Retenvaton n 22300

on cunnamed Customer Crharge Reservabon
> Cancel Reservation m atsocabon curramed> Cuthomer Cancel Resarvation
View ineray i ass0caion <unamed Cuthomer View lewiary

ve Hotel Room n associstion <unnamed Cuttomes Reserve Hotel Room
> Raseeve Aeortal Ca m assocation Curmamed> Custtomer Reserve Rertsl Cor

ok | Coeel | | powe~| Heo |
Figure 4.20: Actor specification window's Relations tab

To view the relationships for an actor:

1.
Right—click the actor in the browser or on a Use Case diagram.

2

Select Open Specification from the shortcut menu. The relationships will be listed on the Relations
tab.

To view the relationship specifications:

1.
Double—click the relationship in the list.

2.
The relationship specification window will appear. (See the upcoming "Working with Relationships"
section for a detailed description of relationship specifications.)

OR

1.
Right—click the relationship in the list.

2.

144



Chapter 4: Use Cases and Actors

Select Specification from the shortcut menu.

3.
The relationship specification window will appear. (See the upcoming "Working with Relationships"
section for a detailed description of relationship specifications.)

To delete a relationship:

1.
Right—click the relationship in the list.

2.
Select Delete from the shortcut menu.

Viewing an Actor's Instances

As you are modeling the system, you may want to know on which Sequence and Collaboration diagrams a
particular actor resides. Rose provides this ability through the Report menu.

To view all Sequence and Collaboration diagrams containing the actor:

1.
Select the actor on a Use Case diagram.

2.
Select Report » Show Instances.

3.
Rose will display a list of all Sequence and Collaboration diagrams that contain the actor. To open a
diagram, double—click it in the list box or press the Browse button.

Working with Relationships

UML supports several types of relationships for use cases and actors. These include association relationshi
includes relationships, extends relationships, and generalization relationships. Association relationships
describe the relationships between the actors and the use cases. Includes and extends relationships descril
relationships between the use cases. Generalization relationships describe inheritance relationships among
cases or actors.

Association Relationship

An association relationship, as we discussed in_the "Use Case Modeling Concepts" section earlier in this
chapter, is a relationship between an actor and a use case. The direction of the relationship shows whether
system or the actor initiates the communication. Once communication is established, information can flow in
both directions.

To add an association relationship:

1.
145



Chapter 4: Use Cases and Actors

Select the Unidirectional Association toolbar button.

2.
Drag the mouse from the actor to the use case (or from the use case to the actor).

3.
Rose will draw a relationship between the use case and the actor.

To delete an association relationship:

1.
Select the relationship on the Use Case diagram.

2.
Select Edit » Delete from Model, or press Ctrl+D.

Includes Relationship

An includes relationship is used whenever one use case needs to use the functionality provided by another.
This relationship implies that one use case always uses the other.

To add an includes relationship:

1.
Select the Dependency toolbar button.

2.
Drag from one use case to the use case being used (from the concrete use case to the abstract use
case).

3.
Rose will draw a dependency between the two use cases.

4.
Right—click the relationship's line and select Open Specification.

5.
Rose will open the dependency specification, as shown in Figure 4.21.

146



Chapter 4: Use Cases and Actors

B pependency Specification for Untitled 2| x|
General |
Name; I Class: Purchase Ticket
Stereotype: I e I
Documentation:

| OK I Cancel Apply Browse vl Help I

Figure 4.21: Dependency specification

6.
In the Stereotype drop—down list box, select include.

7.
Click OK to close the specification window.

8.
The word <<include>> should appear over the dependency arrow. If it does not, right—click on the
relationship's line and be sure there is a check mark next to the Stereotype Label field.

9.
Open the use case specification window of the abstract use case.

10.
Check the Abstract check box.

Note You can also customize the toolbar to provide a button for an includes relationship. Right—click the
toolbar and select Customize, then add the Includes Relationship icon.
To delete an includes relationship:

1.
Select the relationship on the Use Case diagram.

2.
Select Edit — Delete from Model, or press Ctrl+D.

147



Chapter 4: Use Cases and Actors

Extends Relationship

In an extends relationship, one use case optionally extends the functionality provided by another. In Rose,
extends relationships are modeled much the same as includes relationships.

To add an extends relationship:

1.
Select the Dependency toolbar button.

2.
Drag from the use case providing the extending functionality to the use case being extended (from tt
abstract use case to the concrete use case).

3.
Rose will draw a dependency between the two use cases.

4.
Right—click on the relationship's line and select Open Specification.

5.
Rose will open the dependency specification.

6.
In the Stereotype drop—down list box, select extend.

7.
Click OK to close the specification window.

8

The word <<extend>> should appear over the dependency arrow. If it does not, right—click on the
relationship's line and be sure there is a check mark next to the Stereotype Label field.

9.
Open the use case specification window of the Abstract use case.

10.
Check the Abstract check box.

To delete an extends relationship:

1.
Select the relationship on the Use Case diagram.

2.
Select Edit » Delete from Model, or press Ctrl+D.

Generalization Relationship

As we discussed above, a generalization relationship is used to show an inheritance among actors or use ci

148



Chapter 4: Use Cases and Actors

An inheritance relationship suggests that one actor or use case, for example, has some base characteristics
are shared by other actors or use cases. All actors or use cases that have a generalization relationship with
will "inherit" those base characteristics.

To add a generalization:

1.
Add the actors or use cases to the Use Case diagram.

2.
Select the Generalization button from the toolbar.

3.
Drag from the actor or use case to the generalized actor or use case.

To delete a generalization relationship:

1.
Select the relationship on the Use Case diagram.

2.
Select Edit » Delete from Model, or press Ctrl+D.

Working with Activity Diagrams

With Rose, you can create one or more activity diagrams for a use case. Activity diagrams are typically usec
to model the flow of events through the use case. Any activity diagrams for a use case will appear in the
browser, underneath the appropriate use case.

The Activity Diagram Toolbar

The Activity Diagram toolbar is used to add activities, transitions, objects, and other elements to an activity
diagram. Table 4.2 lists the icons in the Activity Diagram toolbar and explains their meaning.

Table 4.2: Icons in the Use Case Diagram Toolbar

Icon Button Purpose
Iy Selects/Deselects an Iltem  |Returns the cursor to an arrow so you can select an item.
ABC Text Box Adds a text box to the diagram.
= Note Adds a note to the diagram.
Anchor Note to Iltem Connects a note to a use case or actor on the diagram.
State Adds a state for an object.
) Activity Adds a new activity to the diagram.

149



Chapter 4: Use Cases and Actors

. Start State Shows where the workflow begins.
@ End State Shows where the workflow ends.
i State Transition Adds a transition from one activity to another.
8 Transition to Self Adds a transition from one activity to itself.
— Horizontal Synchronization [Adds a horizontal synchronization.
I Vertical Synchronization Adds a vertical synchronization.
& Decision Adds a decision point in the workflow.
g Swimlane Adds a swimlane (usually used in business modeling).
8 Object Adds an object to the diagram.
Object Flow Connects an object to an activity.

Creating Activity Diagrams

To add an activity diagram, we use the browser window. Once the diagram is created, we can add activities
transitions, and other activity diagram elements. In this section, we'll discuss the different pieces of an activi
diagram and how to add them.

To add an activity diagram:

1.
Right—click the use case in the browser.

2.
Select New — Activity Diagram.

3.
If this is the first activity diagram for a use case, Rose will create an entry titled State/Activity Model
under the use case in the browser. The new activity diagram, and any other activity diagrams for this
use case, will be placed under this State/Activity Model entry.

4.
Type the name of the new diagram.

Adding Activities and Actions

An activity is a step in the flow. Activities are shown on the diagrams as rounded rectangles. We can also ac
actions to the activity to show any detailed steps within the activity. There are four types of actions: those th:
occur when entering the activity, those that occur while exiting the activity, those that occur while inside the
activity, and those that occur upon a specific event.

To add an activity:

1.
Select the Activity icon from the toolbar.

2.

150



Chapter 4: Use Cases and Actors

Click anywhere inside the diagram to place the activity.

3.
Type in the activity name.

To add an action:

1.
Right—click the activity.

2.
Select Open Specification.

3.
Select the Actions tab.

4.
Right—click anywhere in the whitespace within the tab and select Insert.

5.
A new action will be added to the list. Its default type will be Entry.

6.
Double—click the new action (the word Entry). The action specification window will open.

7.
In the When drop—down list box, select the On Entry, On Exit, Do, or On Event option.

8.
If you selected On Event, enter the event, any arguments, and the condition in the appropriate fields

9.
Enter the name of the action in the Name field.

10.
Press OK to return to the activity specification window.

11.
To delete an action, right—click it on the Actions tab of the activity specification window and select
Delete.

12.
Right—click to enter another action, or press OK to close the activity specification window.

Adding Objects and Object Flows

An object is an entity that is affected by or used by the workflow. We can model both the object and the stat
that the object is in. We can also show how an object is affected by or used by a workflow through object
flows. A dashed arrow between an object and an activity represents an object flow.

To add an object:

1. 151



Chapter 4: Use Cases and Actors

Select the Object icon from the toolbar.

2.
Click anywhere inside the diagram to place the object.

3.
Type the object's name.

4.
Right—click and select Open Specification.

5.
If you have defined a class for the object, select that class in the Class field.

6.
If you would like to mark the object's state, select a state from the drop—down list box in the State
field. If there are no available states or if you'd like to add one, select <new>. The State Specificatior
window will open. Enter the name of the new state and press OK.

To add an object flow:

1.
Select the Object Flow icon from the toolbar.

2.
Drag and drop from the activity that changes the object to the object itself, or from the object to the
activity that uses it.

3.
Rose will draw an object flow (dashed arrow).

Adding Transitions and Guard Conditions

A transition shows the movement from one activity to another. We can add an event to the transition that
shows what event triggers the transition. We can also add a guard condition, which controls whether or not 1
transition can occur.

To add a transition:

1.
Select the Transition icon from the toolbar.

2.
Drag and drop from one activity to another.

3.
Rose will draw a transition between the two activities.

To add an event:
1.

152



Chapter 4: Use Cases and Actors

Right—click the transition.

2.
Select Open Specification. The transition specification window will appear.

3.
Type the event in the Event field. If there are any arguments for the event, enter them in the
Arguments field.
To add a guard condition:

1.
Right—click the transition.

2.
Select Open Specification. The transition specification window will appear.

3.
Select the Detail tab.

4.
Type the guard condition in the Guard Condition field.

Note You can also add guard conditions directly on the transition arrow. Enclose the guard condition within
square brackets.
Adding Synchronizations and Decisions

Finally, we can show synchronous activity and conditions in the logic of the flow by using of horizontal
synchronizations, vertical synchronizations, and decision points.

To add a synchronization:

1.
Select the Horizontal or Vertical Synchronization icon from the toolbar.

2.
Click anywhere inside the diagram to place the synchronization.

3.
Draw transitions from activities to the synchronization or from the synchronization to one or more
activities.

To add a decision:

1.
Select the Decision icon from the toolbar.

2.
Click anywhere inside the diagram to place the decision.

3.

153



Chapter 4: Use Cases and Actors

Draw transitions from activities to the decision, or from the decision to one or more activities. Place
guard conditions on all transitions leaving the decision, so the reader can know under what condition
each path is followed.

Deleting Activity Diagrams

To delete an activity diagram, simply right—click it in the browser and select Delete. Note that, although the
diagram has been deleted, all of the activities and other elements on the diagram are still in the Rose model
You can see these elements in the browser.

To delete all of the elements that were on the diagram, right—click each element one at a time in the browse
and select Delete. Or, you can right—click the State/Activity Model listing for the use case in the browser anc
select Delete. All activity diagrams, along with all activities and other items on the diagrams for that use cast
will be deleted from the model.

Note The activity diagram must stay where it was created. You cannot move an activity diagram from one
use case, class, or package to another. Also remember that you cannot copy a state or other element
from one activity diagram to another.

Exercise
In this exercise, we'll create the Use Case diagram for the order—processing system.

Problem Statement

After Andy and April got the business model done, Andy started working on the Use Case diagram for the
e-business system. Andy started by looking at each of the business use cases and deciding which ones wo
be best automated with the e-business system. He decided that the "Purchase Items," "Purchase Inventory
"Stock Inventory," "Determine Items to Sell," and "Fulfill Order" business use cases would be best automate
in the system. Andy started working out the system use cases and system actors based on the business ust
cases and actors involved. He then developed the system use case model based on this information and
interviews with others in the firm.

Create a Use Case Diagram

Create the Use Case diagram for the order—processing system. The steps for creating the diagram are outli
below. Your final Use Case diagram should look_like Figure 4.22.

154



Chapter 4: Use Cases and Actors

Add ltem to

Shopping Cart
/‘ T View
 _ /) Shopping Cant
T ™ '-'IG:I :fmus
o
| _7\_ _ /_L_ tem
b —{'—-’/_ ’\ ) O

- O—A
CU&JC’I‘H\} \ Purchase ltems Credt
\ ~ ( = in Shoppang Cant System
Sor=so —
/ Remove ltem
Y o ) from Shopping Cart

\\ Browse ltems
( for Sale

P
Prowde
Feadback
O
A —C_ D
"‘-'Ml*“l"‘xxo Stock
Manager \ =7 Irventory
b —*—\ Return ltem (
10 Stock
C ) ok
Ship Order
Shipping
Sevvice
Add New Ttem
for Sale

¥ B .
=

SO
P\IGHSHM\‘ _*_‘\ Remave Bem
Manages = < . for Sale
Purchase
Iiventory

Figure 4.22: E-Business System Use Case diagram

Exercise Steps:

Add the System Use Case Model Package, Use Case Diagram, Use Cases, and Actors

1.
Right—click the Use Case View package in the browser and select New - Package.

2.
Name the new package System Use Case Model.

3.
Right—click the System Use Case Model package and select New — Use Case Diagram.

4.
Name the new diagram Main.

5.
Double—click the Main Use Case diagram in the browser to open the diagram.

6.
Use the Use Case toolbar button to add a new use case to the diagram.

7.
155



Chapter 4: Use Cases and Actors

Name this new use case Add Item to Shopping Cart.

8.
Repeat steps 6 and 7 to add the remaining use cases to the diagram. The use cases are:

' View Shopping Cart
View Details of Items
Purchase Items in Shopping Cart
Remove Item from Shopping Cart
Browse Items for Sale
Provide Feedback
Stock Inventory
Return Item to Stock
Ship Order
Add New Item for Sale
Remove Item for Sale
Purchase Inventory

9.
Use the Actor toolbar button to add a new actor to the diagram.

10.
Name this new actor Customer.

11.
Repeat steps 9 and 10 to add the remaining actors to the diagram. The actors are:

¢

156



Chapter 4: Use Cases and Actors

Credit System

.
Warehouse Manager

.
Shipping Service

.
Purchasing Manager

Add Associations
1

Use the Unidirectional Association toolbar button to draw the association between the customer acto
and the "Add Item to Shopping Cart" use case.

2.
Repeat step 1 to add the rest of the associations to the diagram.

Add Use Case Descriptions

1.
Select the "Add Item to Shopping Cart" use case in the browser.

2.
Using the documentation window, add the following description to the "Enter New Order" use case:
This use case allows the customer to add an item for sale to their shopping cart for purchase.

3.
Using the documentation window, add descriptions to the remaining use cases.

Add Actor Descriptions

1.
Select the customer actor in the browser.

2.
Using the documentation window, add the following description to the salesperson actor: The
customer is the individual who is purchasing items from the organization.

3.
Using the documentation window, add descriptions to the remaining actors.

Summary
In this chapter, we discussed how to work with use cases, actors, and Use Case diagrams. The requiremen

the system to be built are the set of all use cases and actors. You begin by creating a Main Use Case diagrz
to show the overall view of the system. Then, you can create additional diagrams to illustrate the interaction:

157



Chapter 4: Use Cases and Actors

between actors and use cases. Use cases can include or extend other use cases. Otherwise, they cannot d
communicate with each other. One use case includes another when the functionality will always be needed.
One use case extends another when the functionality is optionally needed. If a use case is included by or

extends another use case, that use case is abstract. Use cases in which actors directly participate are conci

Actors can communicate with use cases, illustrating which actors participate in which use cases. Actors can
also inherit from one another. For example, a student may be an actor in the system. We may need to furthe
refine the role of student into full-time student and part-time student. We do this by inheriting the full-time
and part-time students from the student actor.

Use cases and Use Case diagrams are useful ways to describe system functionality. In the next chapter, we

will discuss the use of Sequence and Collaboration diagrams, which are used to show the interactions betw
objects and actors.

158



Chapter 5: Object Interaction

In this chapter, we will discuss how to model the interactions between the objects in the system. The two
types of Interaction diagrams we'll take a look at in this chapter are Sequence diagrams and Collaboration
diagrams. Both show the objects participating in a flow through a use case and the messages that are sent
between the objects. Sequence diagrams are ordered by time; Collaboration diagrams are organized arount
the objects themselves.

In the exercise at the end of the chapter, we will build a sample Sequence diagram.

Looking at Sequence and Collaboration diagrams

Adding objects to Sequence and Collaboration diagrams

Using messages with Sequence and Collaboration diagrams

Switching between Sequence and Collaboration diagrams

Using the two—pass approach to create Interaction diagrams

Interaction Diagrams

An Interaction diagram shows you, step—by-step, one of the flows through a use case: what objects are
needed for the flow, what messages the objects send to each other, what actor initiates the flow, and what
order the messages are sent. In our airline example, we have several alternate flows through the "Purchase
Ticket" use case. Therefore, we will have several Interaction diagrams for this use case. We'll have the "hap
day" Interaction diagram, which shows what happens when all goes well. And we'll have additional diagram:
showing what happens with the alternate flows, such as what happens when someone requests a
frequent—flyer ticket, what happens when someone's credit card is denied, and so on. All of the different
scenarios that our system will need to implement are documented in an Interaction diagram.

The two types of Interaction diagrams we'll talk about are Sequence diagrams and Collaboration diagrams. .
Sequence diagram is ordered by time. Figure 5.1 is an example of a Sequence diagram.

159



Chapter 5: Object Interaction

L T N
TRPS 1 e AwnE wame e ban DY W o e
OFE RO 3 VT 2RRZA T A4ARN
B L L e L e
P R e e T S e e £ I
s it | Sudes Do | Date | Suas . S lsscte ke ) Sagas - Ae_ skt
4 s 3

e B

i i it

~
) 3. T X
=5 M-t

- . pe-
Bumt] A0S [Sremmdim o | (IR ¥ s | @ruvares | LD ERAIOLLN wom

Figure 5.1: Sequence diagram

A Collaboration diagram shows the same information, but is organized differently. Figure 5.2 is an example
of a Collaboration diagram.

i
TIWe AR e AveE e g b MDY wiein;

OJE ‘BN 3 PO 2RRZA T+ 40N

[EE) (eadt srremn brmee

Figure 5.2: Collaboration diagram

Although a Sequence diagram and a Collaboration diagram show you the same information, there are a cot
of differences between these two diagrams. Sequence diagrams can show a focus of control; Collaboration
diagrams can show a data flow. We'll talk about these differences when discussing messages below.

Interaction diagrams contain a lot of the same detail that is spelled out in the flow of events, but here the
information is presented in a way that is more useful to the developers. While the flow of events focuses on
what the system needs to do, Sequence and Collaboration diagrams help to define how the system will do i
These diagrams focus on the objects that will be created to implement the functionality spelled out in the ust
cases. Sequence and Collaboration diagrams can show objects, classes, or both.

Before we get into the details of Sequence and Collaboration diagrams, let's review the concept of an objec
and a class. If you are familiar with object—oriented concepts, skip to the section titled "Where Do | Start?"

160



Chapter 5: Object Interaction

What Is an Object?

We see obijects all around us. The chair you're sitting in, the book you're reading, and the lightbulb that's
helping you see are all examples of objects in the real world. An object in the software world is very much th
same.

An object is something that encapsulates information and behavior. It's a term that represents some concret
real-world thing. Examples of objects are:

Flight #1020

The house at 7638 Main Street

The yellow flower just outside my kitchen window

In the airline example, some of the objects would include an airplane, a flight, a passenger, a piece of lugga
or a ticket.

Every object encapsulates some information and some behavior. There might be a flight #1020 object, for
example, that has some information: The departure date is May 24, the departure time is 9:40 p.m., the fligh
number is 1020, and the departure city is Los Angeles. The flight object also has some behavior: It knows
how to add a passenger to the flight, remove a passenger from the flight, and determine when it is full.

The pieces of information held by an object are known as its attributes. Although the values of the attributes
will change over time (flight 1020 will have a departure date of May 25 the next day), the attributes
themselves will not change. Flight 1020 will always have a departure date, a departure time, a flight number
and a departure city.

The behaviors an object has are known as its operations. In this case, the operations for the flight include
adding a passenger, removing a passenger, and checking to see when the flight is full. In Rose, objects are
added to the Interaction diagrams. When dragging an actor (which in Rose is a class stereotype) or some of
class onto an Interaction diagram, an object instantiation of that class will automatically be created. Removit
an object from a diagram in Rose will not delete the class from the model.

What Is a Class?

A class is something that provides a blueprint for an object. In other words, a class defines what information
an object can hold and what behavior it can have. For example, classes for flight #1020, the house at 7638
Main Street, and the yellow flower just outside my kitchen window would be: Flight, House, and Flower. The
House class would just specify that a house has a height, width, number of rooms, and square footage. The
House at 7638 Main Street object might have a height of 40 feet, a width of 60 feet, 10 rooms, and 2000
square feet. A class is a more generic term that simply provides a template for objects.

161



Chapter 5: Object Interaction

Class

— Attribute

+ Operation()

Think of a class as a blueprint for a house, and the objects as the 25 houses that were all built from that
blueprint. We'll talk more about classes in_the next chapter.

Where Do | Start?

To create a Sequence or Collaboration diagram, we first go through the flow of events and determine how
many of the flows will need an Interaction diagram. You can create a diagram for just the primary flow or for
all the alternate flows and error flows as well. If two alternate or error flows are very similar, they may be
combined onto one diagram. The more diagrams you create, the more thorough your exploration of how the
system should be built and the easier the rest of the steps in the process will be. (Class diagrams, Compone
diagrams, and Deployment diagrams will be covered in the coming chapters.) The trade—off, of course, is
time. It can take quite some time to build a detailed Sequence or Collaboration diagram, because great man
design decisions need to be made at this point.

Patterns can come to the rescue here. You can build patterns for common logic. They include things such a
retrieving data from the database, checking the user's security level, error handling and logging, interproces
communication, and so on. If you document these patterns in their own Sequence diagrams, it isn't necessa
for every diagram to show how you check the user's security level; you can simply reference the security
pattern. These types of patterns are also excellent candidates for reuse in other projects.

The steps involved in creating a Sequence or Collaboration diagram are:

Find the objects.

Find the actor.

Add messages to the diagram.

We will discuss each of these steps in the next sections.
Finding Objects

A good way to find some initial objects is to examine the nouns in your flow of events. Another good place tc
look is in the scenario documents. A scenario is a specific instance of a flow of events. The flow of events fo
the "Purchase Ticket" use case has several scenarios. For example, John Doe purchases a ticket for flight
#1020; John requests and gets a frequent—flyer ticket for flight #1020; John requests a frequent—flyer ticket
for flight #1020, but there are no seats available; John requests a frequent—flyer ticket for flight #1020, but h
does not have enough frequent—flyer miles. More scenarios would be developed to explain exceptions, suct
what happens if there's a problem with the credit card, if John is already booked for flight #1020, or if the
credit system can't be accessed. Any exceptions like these that should be programmed into the system shol

162



Chapter 5: Object Interaction

be captured in the flow of events and on a Sequence or Collaboration diagram.

Most use cases will have a number of Sequence and Collaboration diagrams, one for each scenario througt
the flow of events. These diagrams can be built at a high level of abstraction, to show how systems
communicate, or at a very detailed level, showing exactly what classes need to participate in a particular
scenario.

As you look at the nouns in your scenarios, some of the nouns will be actors, some will be objects, and som
will be attributes of an object. When you're building your Interaction diagrams, the nouns will tell you what
the objects will be. If you're looking at a noun and wondering whether it's an object or an attribute, ask
whether it has any behavior. If it's information only, it's probably an attribute. If it has some behaviors also, it
may be an object. Another check is whether it has attributes of its own. Is a passenger an attribute of a flight
or an object of its own? The answer to that question really depends on the application you are building. If all
you need to store is the name of the passenger, then it can be modeled as an attribute of a flight. If, howeve
you also want to store the passenger's address, credit card information, and phone number, then it would be
better modeled as a separate object.

Not all of the objects will be in the flow of events. Forms, for example, may not appear in the flow of events,
but will have to appear on the diagram in order to allow the actor to enter or view information. Other objects
that probably won't appear in the flow of events are control objects.

You should consider each of these categories as you identify objects:

Entity objects These are objects that hold information. They may eventually map to some of the tables and
fields in the database. Many of the nouns in the flow of events will give you entity objects. Entity objects in
our airline example might be flight #1020, passenger John Doe, or ticket #1347A. These are business entitie
that have meaning to the end user.

Boundary objects These are objects that lie on the boundary between the system and the outside world. In
other words, these are the forms and windows of the application and the interfaces to other applications.
Forms may appear in the flow of events, but interfaces probably won't. As you go through the logic in the
flow of events, ask whether any other system will need to be involved to carry out the logic in the flow. If so,
you may need one or more interface objects.

Control objects These are optional objects that control the flow through the use case. They don't carry out
any business functionality in and of themselves. Instead, they coordinate the other objects and control the
overall logic flow. For example, a control object would know that the user's security level should be checked
before a particular report is run. The control object wouldn't check the security level or run the report, it
simply holds the sequencing logic and the business rules for the scenario. It would first tell another object to
check the security, and then tell the report to run. Control objects won't appear in the flow of events. Using
them is, instead, a design decision; if you decide to use control objects, add one to your Sequence or
Collaboration diagram.

Finding the Actor

Once you have identified the objects for your Interaction diagram, the next step is to identify the necessary
actor. An actor on an Interaction diagram is the external stimulus that starts the workflow for a flow of events
You can identify the actor by looking at the flow of events and determining who or what starts the process.

There may be more than one actor for a given Interaction diagram. Each actor that receives a message fron
sends a message to the system in a particular scenario should be shown on the diagram for that scenario.

163



Chapter 5: Object Interaction

Using Interaction Diagrams

From the diagrams, designers and developers can determine the classes they will need to develop, the
relationships between the classes, and the operations or responsibilities of each class. The Interaction
diagrams become the cornerstones upon which the rest of the design is built.

Sequence diagrams are ordered by time. They are useful if someone wants to review the flow of logic throu
a scenario. Although Collaboration diagrams include sequencing information, it is easier to see on a Sequer
diagram.

Collaboration diagrams are useful if you want to assess the impact of a change. It's very easy to see on a
Collaboration diagram which objects communicate with which other objects. If you need to change an objec
you can easily see which other objects might be affected.

Interaction diagrams contain:
Objects An Interaction diagram can use object names, class hames, or both.

Messages Through a message, one object or class can request that another carry out some specific functic
For example, a form may ask a report object to print itself.

One thing to remember as you create the Interaction diagrams is that you are assigning responsibility to
objects. When you add a message to an Interaction diagram, you are assigning a responsibility to the objec
receiving the message. Be sure to assign the appropriate responsibilities to the appropriate objects. In most
applications, screens and forms shouldn't do any business processing. They should only allow the user to e
and view information. By separating the front—end from the business logic, you've created an architecture th
reduces the ripple effect of changes. If the business logic needs to change, the interface shouldn't be affecte
If you change the format of a screen or two, the business logic won't need to be changed. Other objects shc
be assigned appropriate responsibilities as well. For example, if you need to print a list of all flights in an
airline's schedule, flight #1020 shouldn't be responsible for that. The responsibilities of the flight #1020 objec
should focus on just that flight. Another object can be responsible for looking at all of the flights in order to
generate a report.

Another way to look at responsibilities is to consider the entity, boundary, and control categories we discuss
earlier in the "Finding Objects" section. Entity objects should hold information and conduct business
functionality. Boundary classes (forms and windows) should display and receive information, but should alsc
do minimal business processing. Boundary classes (interfaces) should send information to another system ¢
receive information from another system, but again do minimal business processing. Control classes should
take care of the sequencing.

Sequence Diagrams

Let's begin by taking a look at Sequence diagrams. Sequence diagrams are Interaction diagrams that are
ordered by time; you read the diagram from the top to the bottom. As we mentioned above, each use case v
have a number of alternate flows. Each Sequence diagram represents one of the flows through a use case.
example,_Figure 5.3 is the Sequence diagram that shows John Doe purchasing a ticket for flight #1020.

164



Chapter 5: Object Interaction

We can read this diagram by looking at the objects and messages. The objects that participate in the flow al
shown in rectangles across the top of the diagram. In this example, there are a number of objects: the flight
search form, flight list form, fare information form, credit form, and confirmation form are all client pages
that are displayed to the end user. The remaining objects constitute the server—side logic and include servel
pages, interfaces, and other server—side objects. Notice that some of the objects have the same name as th
classes. It is not necessary to name the objects differently from the classes.

O e

TRPE 1 e AvnE e e ban MDY e

DWE ‘B0 3 PT 2R T+ A4AN

¥

Pve) D02 [ Oremmdion. Lowm | R e | @i LIRS vom

Figure 5.3: Sequence diagram for purchasing a ticket

The process begins when John Doe selects his departure and destination cities and departure and return de
The FlightFinder server—side object looks for flights that match the criteria and builds the FlightListForm,
which displays all matching flights. John selects his flight, and the FlightDetails server—side object looks for
fare information for that flight. Once fare information has been retrieved, it is displayed using the
FarelnfoForm. John confirms the rate, and the CreditForm is displayed. John enters his credit information, a
the CreditProcessor object interfaces to the external credit system to confirm John's credit. Once the credit |
been confirmed, a seat is reserved, the confirmation number is generated, and the confirmation is displayed
John.

Each object has a lifeline, drawn as a vertical dashed line below the object. The lifeline begins when the objs
is instantiated and ends when the object is destroyed. A message is drawn between the lifelines of two obje
to show that the objects communicate. Each message represents one object making a function call of anoth
Later in the process, as we define operations for the classes, each message will become an operation.
Messages can also be reflexive, showing that an object is calling one of its own operations.

The Sequence Diagram Toolbar
When a Sequence diagram is opened, the Diagram toolbar changes to let you add objects, messages, and

items to the diagram. Table 5.1 lists the buttons available in the Sequence Diagram toolbar and explains the
purpose of each. In the following sections, we'll discuss adding each of these items.

Table 5.1: Icons in the Sequence Diagram Toolbar

Icon Button Purpose
[P} Selects or Deselects an Item [Returns the cursor to an arrow to select an item.

165



Chapter 5: Object Interaction

ABC Text Box Adds a text box to the diagram.
Note Adds a note to the diagram.
Anchor Note to Item Connects a note to an item in the diagram.
= Object Adds a new object to the diagram.
= Object Message Draws a message between two objects.
= Message to Self Draws a reflexive message.
V4 Return Message Shows a return from a procedure call.
& Destruction Marker Shows when an object is destroyed.
7 Procedure Call Draws a procedure call between two objects.
27 Asynchronous Message Draws an asynchronous message between two objects.

Collaboration Diagrams

Like Sequence diagrams, Collaboration diagrams are used to show the flow through a specific scenario of a
use case. While Sequence diagrams are ordered by time, Collaboration diagrams focus more on the
relationships between the objects. Figure 5.4 is the Collaboration diagram for John Doe purchasing a ticket
flight #1020.

Ty o

&

- eadl aews bemee

Figure 5.4: Collaboration diagram for John purchasing a ticket

As you can see, the information that was in the Sequence diagram in Figure 5.3 is still here in the
Collaboration diagram, but this diagram gives us a different view of the flow. In this diagram, it's easier to se
the relationships between the objects. However, it's a little more difficult to see the sequencing information.

For this reason, you may want to create both a Sequence and a Collaboration diagram for a scenario. Altho
they serve the same purpose and contain the same information, each gives you a slightly different view. In
Rose, you can create a Sequence diagram from a Collaboration diagram (or vice—versa) either by pressing
or selecting Browse — Create (Sequence/Collaboration) Diagram.

166



Chapter 5: Object Interaction

The Collaboration Diagram Toolbar

The Collaboration diagram toolbar is very similar to the Sequence diagram toolbar. There are a few options
available here that aren't available in a Sequence diagram, such as an object link and data flows. The

following sections describe how to use each of these toolbar buttons to add items to the_diagram. Table 5.2
shows the toolbar buttons available on the Collaboration diagram toolbar.

Table 5.2: Icons in the Collaboration Diagram Toolbar

Working with Actors on an Interaction Diagram

Cts or

Icon Button Purpose
=5 Selects or Deselects an Item |Returns the cursor to an arrow to select an item.
X Text Box Adds a text box to the diagram.
Note Adds a note to the diagram.
— Anchor Note to Item Connects a note to an item on the diagram.
¥} Object Adds a new object to the diagram.
ABC Class Instance Adds a new class instance to the diagram.
Object Link Creates a path for communication between two objects.
Link to Self Shows that an object can call its own operations.
= Link Message Adds a message between two objects or from an object to itself.
[En] Reverse Link Message Adds a message in the opposite direction between two obje
from an object to itself.
/ Data Token Shows information flow between two objects.
Reverse Data Token Shows information flow in the opposite direction between tw
objects.

Most Sequence and Collaboration diagrams have an actor object. The actor object is the external stimulus t
tells the system to run some functionality. The actor objects for the Interaction diagram will include the actor
that interact with the use case on the Use Case diagram.

To create an actor object on an Interaction diagram:

Open the Interaction diagram.

Select the actor in the browser.

Drag the actor from the browser to the open diagram.

To remove an actor object from an Interaction diagram:

167



Chapter 5: Object Interaction

Select the actor on the Interaction diagram.

2.
Select Edit » Delete from Model, or press Ctrl+D.

Note Deleting an actor from the diagram does not delete the actor from the model.

Working with Objects

The Sequence and Collaboration diagrams show you the objects that participate in one flow through a
particular use case. Once the actor object has been added to the diagram, the next step is to add other obje
As we discussed above, you can find the objects that participate in a particular Sequence or Collaboration
diagram by examining the nouns in the flow of events and scenario documents. After this step, we will go in
and add the messages between the objects.

Adding Obijects to an Interaction Diagram

One of the first steps in creating a Sequence or a Collaboration diagram is adding the objects. Look at the
nouns from your flow of events and scenarios to start finding objects.

To add an object to a Sequence diagram:

1.
Select the Object toolbar button.

2.
Click in the location on the diagram where you want the object to reside. In a Sequence diagram,
objects are arranged in a row near the top.

Note In Rose 2001A and 2002, you can move an object down from the top to the point at which it is
created.
3.
Type the name of the new object.

4.
Once you have added the objects, you can rearrange them by dragging and dropping. You can inser
an object between two existing objects by clicking between the two existing objects in step two.

To add an object to a Collaboration diagram:

1.
Select the Object toolbar button.

2.
Click in the location on the diagram where you want the object to reside. In a Collaboration diagram,
objects can be located anywhere.

3.
Type the name of the new object.

168



Chapter 5: Object Interaction

Deleting Objects from an Interaction Diagram

As you build your Interaction diagrams, you may need to delete some of the objects. When you delete an
object from the diagram, Rose will automatically delete any messages that start or end with that object and
automatically renumber all of the remaining messages.

When you delete an object from a Sequence diagram, Rose will automatically delete the object from the
Collaboration diagram but will not delete the corresponding class from the model. Similarly, when you delete
an object from a Collaboration diagram, Rose will remove it from the Sequence diagram. If you change your
mind, you can use the Undo option on the Edit menu.

To remove an object from a Sequence or Collaboration diagram:

1.
Select the object in the Sequence or Collaboration diagram.

2.
Select Edit » Delete from Model, or press Ctrl+D.

Note Deleting an object from the diagram does not delete the corresponding class from the model.

If you have several copies of an object on a single diagram and all copies have the same name and the san
class, you can press Delete to remove one copy of the object. Pressing Ctrl+D or selecting Delete from Moo
will remove all copies.

Setting Object Specifications

There are a number of different fields that Rose provides to add some detail to the objects in your diagram.
For example, you can set the object's name, its class, its persistence, and whether there are multiple instan
of the object. You can also add documentation to the object in the object specification window, shown in
Figure 5.5. Adding documentation to an object does not add the documentation to the class, and adding
documentation to an object on one diagram does not add the documentation to the object on other diagram:
In the following sections, we'll take a look at each of the options available on the object specification window

169



Chapter 5: Object Interaction

Object Specification for FlightListForm 21x|
General I
Name; FquhtListForrr
Class: |[Unspeciﬁed] LI
Documentation:
— Persistence
" Persistent " Static ¢ Transient
™ Multiple instances
| oK I Cancel Apply Browse v Help

Figure 5.5: Object specification window
To open the object specifications:

1.
Right—click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

OR

1.
Select the object in the Sequence or Collaboration diagram.

2.
Select Browse - Specification, or press Ctrl+B.

Naming an Object

Each object on a Sequence or Collaboration diagram should be given a unique name. However, for readabi
you may have multiple copies of a single object on the diagram, and in this case each copy will have the sat
name. While class names are very generic (Employee and Company, for example), object names are very
specific (John Doe and Rational Software Corporation). On an Interaction diagram, you may have two objec
that are instances of the same class. For example, in an inventory system, you may have one instance of a
class, called Engine, which communicates with another instance of Part, called Carburetor. You can enter tt
name of each object on the diagram in the object specification window, or directly on the diagram.

To name an object:

1. 170



OR

Chapter 5: Object Interaction

Right—click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Name field, enter the object's name. You may also use this field to change the name of the
object later on.

1.
Select the object in the Sequence or Collaboration diagram.

2.
Right—click so that a cursor shows up in the object.

3.
Type the object name.

To add documentation to an object:

OR

1.
Right—click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Documentation field, you can enter documentation for the object.

1.
Select the object in the Sequence or Collaboration diagram.

2.
Type the object documentation in the documentation window.

Mapping an Object to a Class

On a Sequence or Collaboration diagram, each object may be mapped to a class. For example, flight #1020
may be mapped to a class called Flight. In the object specification window, you can use the Class field to se

the object's class. By default, the class will be set to (Unspecified).

When selecting a class for the object, you can either use an existing class from your model or create a new

class for the object. In the procedures below, we describe both of these approaches.

By the time you are ready to generate code, all of the objects should be mapped to classes. To map an obje

to an existing class:

1.
171



Chapter 5: Object Interaction

Right—click the object in the Interaction diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Class drop—down list box, type the class name or select an option from the drop—down list box

4.
Once you have mapped the object to a class, the class name will appear with the object name on the
diagram, preceded by a colon. You can toggle the display of the class name by right—clicking the
object and selecting Show Class.

OR

1.
Select the class in the Logical view of the browser.

2.
Drag the class from the browser to the object in the diagram.

3.
Once you have mapped the object to a class, the class name will appear with the object name on the
diagram, preceded by a colon:

Flight 1020 :
Flight

To remove an object's class mapping:

1.
Right—click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Class drop—down list box, select (Unspecified).

To create a new class for the object:

1.
Right—click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
172



Chapter 5: Object Interaction

Select <New> in the Class drop—down list box. Rose will take you to the specification window for the
new class.

To ensure all objects have been mapped to classes:

1.
Select Report » Show Unresolved Objects.

2.
Rose will display a list of all objects in the model that have not yet been mapped to a class.

To show only the object name on the diagram:

1.
Right—click the object in the Sequence or Collaboration diagram.

2.
De-select Show Class.

To show both the object and class hame on the diagram:

1.
Right—click the object in the Sequence or Collaboration diagram.

2.
Select Show Class.

To show only the class name on the diagram:

1.
If you would rather use only the class name, and not see the object's hame at all on the diagram,
right—click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
Delete the object name from the Name field. Rose will display the object using only the class name.
Again, the class name is preceded by a colon.

- Flight

Setting Object Persistence

In Rose, you can set the persistence option for each object in the diagram. Rose provides you with three

173



Chapter 5: Object Interaction

options:

Persistent A persistent object is one that will be saved to a database or to some other form of persistent
storage. The implication here is that the object will continue to exist, even after the program has terminated.

Static A static object is one that stays in memory until the program is terminated. It lives beyond the
execution of this Sequence diagram, but is not saved to persistent storage. There is, at most, one instance
static object in memory at any given time.

Transient A transient object is one that stays in memory only for a short time (until the logic in the
Sequence diagram has finished, for example).

To set the persistence of an object:

1.
Right—click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Persistence field, select the appropriate radio button: Persistent, Static, or Transient.

Note If you have set the persistence of the object's class to Persistent, you may set the object's persistence
Persistent, Static, or Transient. If you have set the persistence of the object's class to Transient, you n
set the object's persistence to Static or Transient.

Using Multiple Instances of an Object

Rose provides the option of using one icon to represent multiple instances of the same class. Say, for exam
that you would like to represent a list of employees on a Sequence or Collaboration diagram. Rather than
showing each employee as a separate object, you can use the multiple instances icon to show the employe
list. The UML notation for multiple instances looks like this:

Flight

To use multiple instances of an object:

1.
Right—click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3

Set the Multiple Instances check box to on or off. Rose will use the appropriate icon (single instance
or multiple instances) on a Collaboration diagram and use the single instance icon on a Sequence

174



Chapter 5: Object Interaction

diagram.

Working with Messages

A message is a communication between objects in which one object (the client) asks another object (the
supplier) to do something. By the time you generate code, a message will translate to a function call. In this
example, one form is asking another to display itself:

Form 1 Form 2

Lo Display

Adding Messages to an Interaction Diagram

Once you have placed the objects on your Sequence or Collaboration diagram, the next step is to add the
messages sent between the objects. On a Sequence diagram, messages can be added by drawing an arro\
between the lifelines of two objects. On a Collaboration diagram, you must first add a link between two
objects. Then you can add messages to the link.

Adding Messages to a Sequence Diagram

In a Sequence diagram, messages are drawn between the lifelines of the objects or from an object's lifeline
itself. Messages are shown in chronological order, from the top of the diagram to the bottom.

To add a message to a Sequence diagram:

1.
Select the Object Message button from the toolbar.

2

Drag the mouse from the lifeline of the object or actor sending the message to the object or actor
receiving the message, as shown in Figure 5.6.

Object 1 Object 2

? ;

Figure 5.6: Adding a message to a Sequence diagram

175



Chapter 5: Object Interaction

Type in the text of the message.
To add a reflexive message to a Sequence diagram:

1.
Select the Message to Self toolbar button.

2.
Click on the lifeline of the object sending and receiving the message, as shown in Figure 5.7.

Object 1

Figure 5.7: Adding a reflexive message to a Sequence diagram

3.
With the new message still selected, type in the text of the message.

Deleting Messages from a Sequence Diagram

As you work on your Sequence diagram, you may need to delete some of the messages that you've drawn.
you delete a message, Rose will automatically renumber all of the remaining messages.

To delete a message from a Sequence diagram:

1.
Select the message to be deleted.

2.
Select Edit —» Delete from Model, or press Ctrl+D.

Reordering Messages in a Sequence Diagram

At times, you may want to reorder the messages in your Sequence diagram. In Rose, reordering messages
very easy to do; you simply drag and drop the message into its new location. As the messages are reordere
they will automatically be renumbered.

To reorder the messages in a Sequence diagram:

1.
Select the message to be moved (select the arrow, not the text).

2.

176



Chapter 5: Object Interaction

Drag the message up or down in the diagram. Rose will automatically renumber the messages as yc
reorder them.

Message Numbering in a Sequence Diagram

Although you read the diagram from top to bottom, you have the option of using numbers on each message
display the message order, as shown in Figure 5.8. Message numbering is optional on Interaction diagrams
By default, numbering is disabled for Sequence diagrams.

"l | 'F.ﬁ
Figure 5.8: Message numbering on a Sequence diagram

To turn message numbering on or off:

1.
Select Tools - Options.

2.
Select the Diagram tab.

3.
Set the Sequence Numbering check box to on or off, as shown in Figure 5.9.

177



Chapter 5: Object Interaction

2%
CORBA | Java | Oracied | Cos | MSVE | COM | Virual Basic | 50L_DTD
General  Disgram | Browser | Nctaton | Tookburs | ANSI Coe | AdsE3 | Ade3S

Companrents Display
' Show vsbilly ¥ Ureesolved adomments
& Show stersctypes ™ Unit adomesents
~ Show ¥ Colab ol
' Show of ststates W, Sequance numbemng
' Show o cpeeatorn mtarchacal Meztage:
1™ Suppeess ambutes ™ Focus of control
I~ Sugpeess opmations ™ Theoe-Tise Diagram
Mezsa0e Sonstuer
& Type Orly © Name s Type
C Nore Orly  None
- Miscalaneous ~Gnd
¥ Deoutie cich 1o Sagram M Snaptogd
F Ausomaic ieiizng Gid see |5
¥ Class Name Completion || Fieks Disghap
W Apgegston whole o081 | | [ Shgw ok speciber
Steveotyps diply
 Nern  Latel " Docaration & deon
[V Show kbl on selabors and atsocMions

[Tk ] caca | | Hee |

Figure 5.9: Message numbering check box
Viewing the Focus of Control in a Sequence Diagram

In a Sequence diagram, you have the option of showing the focus of control, which lets you know which
object has control at a particular point in time. As shown in Figure 5.10, a small rectangle represents the foc
of control. This is one of the differences between a Sequence and a Collaboration diagram; the focus of
control is shown only on a Sequence diagram.

4t base brhos ol [\ s e Puwvhasn Tabet | Prions Tabat |
CEE S T

..... Lrwmeen b se Liene | menm i e [ramen | rpemin | i

o s 20 g

. —— e e

¥

ol 1

Figure 5.10: Focus of control on a Sequence diagram

To turn the focus of control on or off:

1.
Select Tools - Options.

2.
Select the Diagram tab.

3. 178



Chapter 5: Object Interaction

Set the Focus of Control check box to on or off, as shown in Figure 5.11.

| opons 20

CORBA | Java | Oracke8 | Coo | MSVC | COM | Vinual Basic | 500 DTO |
Generad  Disgram | Browser | Nctaton | Tookurs | ANSI Coe | AdsE3 | Ade3S |

Compatments Display

' Show visbildy ¥ Uneetolved adomments
& Show sterechypes ™ Urt adomeents

V Show P Cok

I Show of sittetes
¥ Show ol cpsestionn

rumbeing
WV Sequence numbemng
™ Hisarchical Messages

™ Suppress ambutes ¥, Focus of conol

™ Sugpeess opaations I'Lshn‘hub\qw
Mezsa9e Soratuer
@ Type Orly ™ Name ard Type
" Noe Orly "Pfom
Miscalaneout Grd
 Doutie cick 1o Sagram F Snxpto gnd
W Ausomaic 1eiizng Gnd see l‘;
™ Class Name Completion Fcke Divglay
W Apgegstonwhole topst | | [~ Show o spacier
Stecectype dipley
 Nern  Latel " Docaation & deon
[V Show kbl on selabors and atsocMions
0k | Cocd | mew | e |

Figure 5.11: Focus of Control check box

Adding Messages to a Collaboration Diagram

Before you can add messages to a Collaboration diagram, you have to establish a path of communication
between two objects. This path is called a link, and is created using the Object Link toolbar button. Once the
link has been added, you can add messages between the objects.

To add a message to a Collaboration diagram:

1.
Select the Object Link toolbar button.

2.
Drag from one object to the other to create the link.

3.
Select the Link Message or Reverse Link Message toolbar button.

4.
Click the link between the two objects. Rose will draw the message arrow, as shown in Figure 5.12.

Object 2

Figure 5.12: Adding a message to a Collaboration diagram

1

[t 1' L o

5.
With the new message selected, type the text of the message.

To add a reflexive message to a Collaboration diagram:

1. 179



Chapter 5: Object Interaction

Select the Link to Self toolbar button.
2

Click the object sending and receiving the message. Rose will draw a reflexive link on the object. It
will appear above the object and look like a half-circle.

Object 1

3.
Select the Link Message toolbar button.

4.
Click the object's reflexive link. Rose will add the message arrow, as shown in Figure 5.13.

1. Message

[

Object 1

Figure 5.13: Adding a reflexive message to a Collaboration diagram

5.
With the new message still selected, enter the text of the message.

Note If you are adding more than one reflexive message to an object in a Collaboration diagram, skip steps
one and two for each additional message.
Deleting Messages from a Collaboration Diagram

As with Sequence diagrams, you can delete messages from a Collaboration diagram. When you delete a
message, Rose will automatically renumber the remaining messages.

To delete a message from a Collaboration diagram:

1.
Select the message to delete.

2.
Select Edit — Delete From Model, or press Ctrl+D.

180



Chapter 5: Object Interaction

Message Numbering in a Collaboration Diagram

With a Sequence diagram, you know that you read the diagram from top to bottom, so message numbering
isn't necessary. A Collaboration diagram, however, loses its sequencing information if you remove the
message numbering.

You do have the option in Rose of turning off message numbering in a Collaboration diagram. To turn
message numbering on or off:

1.
Select Tools — Options.

2.
Select the Diagram tab.

3.
Set the Collaboration and Sequence Numbering check box to on or off.

Adding Data Flows to a Collaboration Diagram

We mentioned earlier that one of the differences between a Sequence and a Collaboration diagram is the u:
of the focus of control. The other difference is in the use of data flow. Collaboration diagrams show data
flows; Sequence diagrams do not.

Data flows are used to show the information that is returned when one object sends a message to another.
general, you don't add data flows to every message on a Collaboration diagram, because it can clutter the
diagram with information that's not really valuable. If a message just returns a comment such as "OK, the
message was received and everything worked fine" or "Oops! There was an error in running the requested
function," it's probably not worth showing on the diagram. But if a message returns a structure, say a list of
employees working for the company, this may be significant enough to show on a diagram.

When you eventually map each message to an operation of a class, the information in the data flows will be
added to the operation's details. As a general rule, don't waste too much time worrying about data flows nov
Add them to the diagram if you think they're significant enough to help the developers. If not, leave them ou!

To add a data flow to a Collaboration diagram:

1.
Select the Data Token or Reverse Data Token toolbar button.

2.
Click on the message that will be returning data. Rose will automatically add the data flow arrow to
the diagram, as shown_in Figure 5.14.

= - O 13 Flo - -
Object 1| _10bject 2

Figure 5.14: Adding a data flow to a Collaboration diagram

181



Chapter 5: Object Interaction

With the new data flow still selected, type in the data that will be returned.

Setting Message Specifications

In Rose, you can set a number of different options to add detail to each message. As with use cases and ac
you can add names and documentation to messages. You can also set synchronization and frequency optic
In this section, we'll discuss each of the options you can set for a message.

To open the message specifications:

Double—click the message on the diagram. The message specification window will appear, as_shown in Figt
5.15.

Message Specification for Message 2x|
General I Detail |
Documentation:
=
|
| oK I Cancel Apply Browse v ‘ Help I

Figure 5.15: Message specification window
OR

1.
Select the message on the diagram.

2.
Select Browse - Specification, or press Ctrl+B.

Naming a Message
In the message specification window, you can name the message or change the name, and add documenta

Each message should have a name that indicates the purpose of the message. Later, as you map each of tl
messages to operations, the message name will be replaced with the operation name.

182



Chapter 5: Object Interaction

To nhame a message:

1.
Double—click the message on the Sequence or Collaboration diagram.

2.
If you have mapped the receiving object to a class, the operations of that class will appear in the
Name drop—-down list box. Select an entry from the list or type in the name of the message.

OR

1.
Select the message on the Sequence or Collaboration diagram.

2.
Type the message name.

Note If you have mapped the receiving object to a class, the name of the receiving class will appear next to
the name, in the Class field. This field cannot be modified. To change the receiving class, map the
object to another class in the object specification window.

To add documentation to a message:

1.
Double—click the message to open the message specification window.

2.
In the Documentation area, enter comments for the message. You may, for example, want to enter &
little bit of pseudocode that describes what the message will do.

OR

1.
Select the message on the Sequence or Collaboration diagram.

2.
Enter comments in the Documentation window.

Mapping a Message to an Operation
Before you generate code, each message on your Sequence and Collaboration diagrams should be mappe

an operation of a class. In this example, the message "Request Some Functionality” will be mapped to an
operation of the Supplier class.

183



Chapter 5: Object Interaction

To map a message to an existing operation:

1

Be sure the receiving object (the supplier) has been mapped to a class.

2

Right—click the message in the Sequence or Collaboration diagram.

3.
A list of the supplier's operations will appear.

4.
Select the operation from the list, as shown in Figure 5.16.

Chent | [ Supplier
| Llass

1. Request Some Functionality
Open Specication. .,
<hew oper ation >
Inkiskoe )

Desplay()
Foemak »

Ed »

Figure 5.16: Mapping a message to an existing operation
To remove a message's operation mapping:

1

Double-click the message in the Sequence or Collaboration diagram.

2

In the Name field, delete the operation name and enter the new message name.

To create a new operation for the message:

1

Be sure the receiving object (the supplier) has been mapped to a class.

2

Right—click the message in the Sequence or Collaboration diagram.

3.
Select <new operation>.

4

Enter the new operation's name and details. (The options available on the operation specification
window are discussed in detail in Chapter_7, "Attributes and Operations.")

5

Click OK to close the operation specification window and add the new operation.

6.

184



Chapter 5: Object Interaction

Right—click the message.

7.
Select the new operation from the list that appears.

To ensure each message has been mapped to an operation:

1.
Select Report » Show Unresolved Messages.

2.
Rose will display a list of all messages that have not yet been mapped to operations.

Setting Message Synchronization Options

In the Detail tab of the message specification window, as shown in Figure 5.17, you can specify the
concurrency of the message being sent.

Message Specification for Until:leﬂ | ﬂ_)ﬂ

General Detall

— Sunchronization
' Simple
" Synchronous
" Balking

" Timeout
" Procedure Call

" Asynchronous

" Retumn

-~ Frequency
&' Aperiodic

" Periodic

| oK I Cancel Apply Browse v Help

Figure 5.17: Setting synchronization options

The arrows on the diagram will change if you set the concurrency to Balking, Timeout, or Asynchronous. Yo
have seven synchronization options:

Simple This is the default value for messages. This option specifies that the message runs in a single threa
of control. On the Sequence diagram, simple messages use this symbol:

185



Chapter 5: Object Interaction

1 Simple Message

Synchronous Use this option when the client sends the message and waits until the supplier has acted upo
the message. On the Sequence diagram, synchronous messages will appear this way:

Balking With this option, the client sends the message to the supplier. If the supplier is not immediately
ready to accept the message, the client abandons the message. On the Sequence diagram, balking messac

appear like this:

1. Balking Message

Timeout Using this option, the client sends the message to the supplier and waits a specified amount of
time. If the supplier isn't ready to receive the message in that time, the client abandons the message. On the

Sequence diagram, timeout messages appear using this arrow:

Client | fisig applier

Asynchronous With this option, the client sends the message to the supplier. The client then continues
processing, without waiting to see if the message was received or not. On the Sequence diagram,

asynchronous messages look like this:

186



Chapter 5: Object Interaction

1: Asynchronous Message

Procedure Call With this option, the client sends the message to the supplier. The client then must wait
until the entire nested sequence of messages is processed before continuing. On the Sequence diagram,
procedure call messages look like this:

Client Supplier

1: Procedure Call

Return This option indicates the return from a procedure call. On the Sequence diagram, return messages
look like this:

Client Supplier

1: Procedure Call

2: Return Message

To set the message synchronization:

1.
Double—click the message on the Sequence or Collaboration diagram.

2.
In the message specification window, select the Detail tab.

3.
Select the desired synchronization option from the radio buttons in the window.

187



Chapter 5: Object Interaction

Setting Message Frequency

Message frequency lets you mark a message to be sent at regular intervals. Say, for example, you have a
message that should run once every 30 seconds. You can set that message to be periodic. The frequency
options are available in the Detail tab of the message specification window, as shown in Figure 5.18.

Message Specification for Untitled

General Detall

— Sunchronization
' Simple
" Synchronous
" Balking

" Timeout
" Procedure Call

" Asynchronous

" Retumn

-~ Frequency
&' Aperiodic

" Periodic

| oK I Cancel I Apply I Browse ¥ Help

Figure 5.18: Setting message frequency

There are two frequency options:
Periodic This option suggests that the message is sent on a regular, periodic basis.

Aperiodic This option suggests that the message is not sent on a regular basis. It may be sent only once or
at irregular points in time.

Note Message frequency will not change the appearance of the Sequence or Collaboration diagram.
To set the message frequency:

1.
Double-click the message in the Sequence or Collaboration diagram.

2.
In the message specification window, select the Detail tab.

3.
Select the desired frequency option from the radio buttons in the lower part of the window.

188



Chapter 5: Object Interaction

End of a Lifeline

Rose 2001A and 2002 give you greater control over the display of an object's lifeline on a Sequence diagrat
Specifically, they give you the ability to position an object at the point at which it is instantiated and the
ability to add a destruction marker to indicate when the object is destroyed.

Let's first look at the beginning of the lifeline. As a scenario progresses, objects will be created and destroye
In Rose 2001A and 2002, you can move an object vertically to indicate where it is created:

‘ Qbect 1 ‘ [ Obiect2

\
1: Perform function Object 3

2. Instantiate

You can also indicate when an object is removed from memory. This can be especially helpful in optimizing
design, because it gives you a quick way to see when memory is "cleaned up" in a specific scenario.

The destruction marker is used to indicate the end of a lifeline. It appears as an "X" on the lifeline itself, and
the lifeline will not extend beyond it:

[

Obisct 1 | [ o ect 2 | Obiect s ‘

1: Perdorm function

5. Pesform some more processing

To add a lifeline:

1.
Select the Destruction Marker icon from the toolbar.

2.
Click on the object's lifeline, at the point where it is removed from memory.

Working with Scripts

In Rose, notes are typically used to add a comment to an object. Scripts, on the other hand, are usually use

189



Chapter 5: Object Interaction

add a comment to a message. Scripts are only used on Sequence diagrams. They are usually placed on the
side of the diagram, opposite the message they refer to.

You can use a script to clarify the meaning of a message. You may have a message that reads "Validate Us
In the script, you can expand on the meaning: "Validate the ID to be sure that the user exists and that the
password is correct."

You can also use scripts to enter some conditional logic in your diagram. Figure 5.19 illustrates some sampl
scripts in a Sequence diagram.

Figure 5.19: Using scripts in a Sequence diagram

In general, try to avoid putting so much conditional logic on the diagram that the diagram loses its simplicity.
By the time you add the details of a nested If statement inside a nested If statement inside a nested If
statement, your diagram will probably be cluttered. On the other hand, there are times when you need to sh
a little bit of conditional logic. Just balance the two extremes. As long as the diagram is easily readable and
understandable, you should be fine. If the conditional logic gets too complicated, just create additional
Sequence diagrams: one to deal with the if part, one to deal with the else part, and so on.

Besides If statements, you can use scripts to show loops and other pseudocode on your diagram. Scripts w
generate any code, but they will let the developers know how the logic is intended to flow.

To add a script to a Sequence diagram:

1.
Select the Text Box toolbar button.

2.
Click in the location on the diagram where you want the script to reside. Usually this is near the left
edge of the diagram.

3.
With the text box selected, type the text of the script.

4.

190



Chapter 5: Object Interaction

Select the text box. Press and hold down Shift and select the message.

5.
Select Edit —» Attach Script.

6.
Now, when you move the message up or down in the diagram, the script will move along with it.

To detach a script from a message:

1.
Select the script.

2.
Select Edit » Detach Script.

Switching Between Sequence and Collaboration Diagrams

Typically, you create either a Sequence or a Collaboration diagram for a particular scenario. Without a
modeling tool like Rose, it can be too time—consuming to create both, especially because both show you the
same information.

In Rose, however, it's very easy to create a Sequence diagram from a Collaboration diagram, or to create a
Collaboration diagram from a Sequence diagram. Once you have both a Sequence and a Collaboration
diagram for a scenario, it's very easy to switch between the two.

To create a Collaboration diagram from a Sequence diagram:

1.
Open the Sequence diagram.

2.
Select Browse - Create Collaboration diagram, or press F5.

3.
Rose will create a Collaboration diagram with the same name as the open Sequence diagram.

To create a Sequence diagram from a Collaboration diagram:

1.
Open the Collaboration diagram.

2.
Select Browse - Create Sequence diagram, or press F5.

3.
Rose will create a Sequence diagram with the same name as the open Collaboration diagram.

191



Chapter 5: Object Interaction

To switch between Sequence and Collaboration diagrams:

1.
Open the Sequence or Collaboration diagram.

2.
Select Browse - Go to (Sequence or Collaboration) Diagram, or press F5.

3.
Rose will look for a Sequence or Collaboration diagram with the same name as the open diagram.

Two—Pass Approach to Interaction Diagrams

Frequently, people use a two—pass approach to creating Interaction diagrams. On the first pass, they focus
higher—level information that the customers will be concerned with. Messages aren't mapped to operations

yet, and objects may not be mapped to classes. These diagrams let just the analysts, customers, and anyor
else interested in the business flow see how the logic will flow in the system.

The first pass of a Sequence diagram might look like Figure 5.20.

Actes | Tom Object | Dats Objact |

Open form

{ Enter indormation
Save information
Croate
Populste with informatson:
R AR NN X

Save

Figure 5.20: First—pass Sequence diagram

In the second pass, once the customers have agreed to the flow from the first—pass diagram, the team adds
more of the detail. The diagram at this point may lose its usefulness to the customer, but will become very
useful to the developers, testers, and other members of the project team.

To begin, some additional objects may be added to the diagram. Each Interaction diagram may have a cont
object, which is responsible for controlling the sequencing through a scenario. All of the Interaction diagram:

for a use case may share the same control object, so you have one control object that handles all of the
sequencing information for the use case.

If you add a control object, your Sequence diagram will typically look something like Figure 5.21.

192



Chapter 5: Object Interaction

[ Ache 1 oem Obgect | Cantool Objact | 0ot Objact |

Fopuiate with in

Figure 5.21: Sequence diagram with control object

Notice that the control object doesn't carry out any business processing; it just sends off messages to the ot
objects. The control object is responsible for coordinating the efforts of the other objects and delegating
responsibility. For this reason, control objects are sometimes called manager objects.

The benefit of using a control object is separating the business logic from the sequencing logic. If the
sequencing needs to change, only the control object will be affected.

You may also want to add some objects to handle things like security, error handling, or database
connectivity. Many of these objects are generic enough to be built once and reused in many applications. Le
take a look at the database issues, for example.

There are two commonly used options when trying to save information to a database or retrieve information
from a database. Say we're trying to save a new employee, John Doe, to the database. The John Doe objec
can either know about the database, in which case it saves itself to the database, or it can be completely
separated from the database logic, in which case another object has to handle saving John to the database.
Let's start with John knowing about the database, as shown in Figure 5.22.

In this situation, there is no separation of application logic and database logic. The John Doe object takes c:
of application logic, such as hiring and firing John Doe, as well as database logic, including saving John to tl
database and retrieving him later. Should the database need to change, the change will ripple through more
the application this way, because many objects will contain some database logic. On the other hand, this
approach can be easy to model and implement.

193



Chapter 5: Object Interaction

Akt | Famm Oojest | | Jovn Dae |

Actar | Ecem Obyect “ [Casteod Obiact | aie |

Fopulate with irdarmatioh

Save

Figure 5.22: Application logic integrated with database logic

Another option is to separate the application logic from the database logic. In this situation, you will need to
create another object to deal with the database logic. We'll call this new object Transaction Manager. The
John Doe object will still hold the business logic; it will know how to hire or fire John, or how to give him a
raise. The Transaction Manager object will know how to retrieve John from the database or save him to the
database. The Sequence diagram might look something like Figure 5.23.

Al | Fom Object | [ | Johs Des | Toane action Mana |

Rogulate with informatio

Figure 5.23: Application logic separated from database logic

The advantage of this approach is that now it's easier to reuse the John Doe object in another application w
a different database, or with no database at all. It also helps minimize the impact of a requirement change.
Database changes won't affect the application logic, and application changes won't affect the database logic
The disadvantage here can be that you'll need a little more time to model and implement this solution.

These are two of the more common approaches, although there are some other approaches you can take w
dealing with database issues. Whichever decision you make, be sure to keep the approach consistent acros
Interaction diagrams.

Aside from database issues, you may add objects now for things like error handling, security, or interproces
communication. These details won't interest the customer, but will be critical for the developers.

194



Chapter 5: Object Interaction

Once you've added all of the objects, the next step is to map each of the objects to classes. You can map th
objects to existing classes or create new classes for the objects (see the earlier section titled "Mapping an
Object to a Class"). Then, you map each of the messages in the diagram to an operation (see the earlier se
titled "Mapping a Message to an Operation"). Finally, you go into the object and message specifications if yc
need to set things like object persistence, message synchronization, and message frequency.

Exercise

In this exercise, we'll build a Sequence and a Collaboration diagram to add an item to the shopping cart in o
web-based e-commerce system.

Problem Statement

After talking with April and building the system use case model, Andy began looking at the particular
functionality that the system would have to perform. Andy started a detailed analysis of the features needed
The "Add Item to Shopping Cart" use case was one with a higher priority to the users and one with a higher
element of risk. To allow plenty of time to deal with the risks of this use case, Andy decided to tackle it first
by creating a Sequence and a Collaboration diagram.

Create Interaction Diagrams

Create the Sequence diagram and Collaboration diagram to add an item to the shopping cart. Your complet
Sequence diagram should look like Figure 5.24.

art Interface

Product Mar Froduct kems Vhite Crew 2t bemns

Figure 5.24: Sequence diagram to add an item to the shopping cart

This is just one of the diagrams you would need to model the full "Add Item to Shopping Cart" use case. Thi
diagram shows what happens when everything goes right. You would need some additional diagrams to

195



Chapter 5: Object Interaction

model what happens when things go wrong, or when the user selects different options. Each alternate flow i
the use case may be modeled in its own Interaction diagram.

Exercise Steps:

Setup

1.
Select Tools — Options.

2.
Select the Diagram tab.

3.
Be sure that Sequence Numbering, Collaboration Numbering, and Focus of Control are all checked.

4.
Click OK to exit the Options window.

Create the Sequence Diagram

1.
Right—click Add Item to Shopping Cart in the system use case model in the browser.

2.
Select New - Sequence Diagram.

3.
Name the new diagram Main Flow.

4.
Double—click the new diagram to open it.

Add Actor and Obijects to the Diagram

1.
Drag the Customer actor from the browser onto the diagram.

2.
Select the Object button from the toolbar.

3.
Click near the top of the diagram to add the object.

4.
Name the new object Cart Interface.

5.
Repeat steps 3 and 4 to add the other objects to the diagram.

14

196



Chapter 5: Object Interaction

Cart Mgr

.
Product Mgr

.
Product Items

.
White Crew Socks

¢
Cart Items

Add Messages to the Diagram

1.
Select the Object Message toolbar button.

2.
Drag from the lifeline of the Customer actor to the lifeline of the Cart Interface object.

3.
With the message selected, type Add white crew socks to cart.

4.
Repeat steps 2 and 3 to add additional messages to the diagram, as shown below.

.
Add white crew socks to cart (between Cart Interface and Cart Mgr)

.
Get white crew socks (between Cart Mgr and Product Mgr)

.
Find product (white crew socks) (between Product Mgr and Product Items)

.
Get product (between Product Items and White Crew Socks)

.
Add white crew socks to cart (between Cart Mgr and Cart Items)

5.
Select the Message to Self button from the toolbar.

6.
Below the last message, click on the lifeline of the Cart Items object to add a reflexive message.

7.
Name this new message Add white crew socks to cart.

197



Chapter 5: Object Interaction

Create a Collaboration Diagram

To create a Collaboration diagram from the Sequence diagram, you can press F5, or if you would rather cre
a Collaboration diagram from scratch, follow the steps outlined here.

Create the Collaboration Diagram

1.
Right—click Add Item to Shopping Cart in the system use case model in the browser.

2.
Select New - Collaboration diagram.

3.
Name the new diagram Main Flow.

4.
Double—click the new diagram to open it.

Add Actor and Obijects to the Diagram

1.
Drag the Customer actor from the browser onto the diagram.

2.
Select the Object button from the toolbar.

3.
Click anywhere inside the diagram to add the object.

4.
Name the new object Cart Interface.

5.
Repeat steps 2 through 4 to add the other objects to the diagram, as shown below.

.
Cart Mgr

.
Product Mgr

.
Product Items

.
White Crew Socks

¢
Cart Items

198



Chapter 5: Object Interaction

Add Messages to the Diagram

1.
Select the Object Link toolbar button.

2.
Drag from the Customer actor to the Cart Interface object.

3.
Repeat steps 1 and 2 to add links between the following:

.
Cart Interface and Cart Mgr

.
Cart Mgr and Product Mgr

.
Product Mgr and Product Items

.
Product Items and White Crew Socks

.
Cart Mgr and Cart Items

4.
Select the Link Message toolbar button.

5.
Click on the link between Customer and Cart Interface.

6

With the message selected, type Add white crew socks to cart.

7

Repeat steps 4 through 6 to add additional messages to the diagram, as shown in Figure 5.25.

14

Add white crew socks to cart (between Cart Interface and Cart Mgr)

¢

Get white crew socks (between Cart Mgr and Product Mgr)

¢

Find product (white crew socks) (between Product Mgr and Product Items)

¢

Get product (between Product Items and White Crew Socks)

199



Chapter 5: Object Interaction

Add white crew socks to cart (between Cart Mgr and Cart Items)

- !

Figure 5.25: Collaboration diagram

Summary

In this chapter, we have discussed one of the most versatile concepts in UML: Interaction diagrams. Object
Interaction diagrams show how objects work together in order to implement the functionality of a use case.
There are two types of Interaction diagrams: Sequence diagrams and Collaboration diagrams. Both of these
show the same information, just from different perspectives.

Sequence diagrams show the flow of control through time. A Sequence diagram is created for each alternat
path through a use case. They are useful for viewing the functionality as a use case progresses.

Collaboration diagrams show the flow of control, but not across time. Collaboration diagrams illustrate the
relationships between objects and show messages between objects. From a Collaboration diagram, a syste
designer can see which objects may be bottlenecks or discover which objects need to directly communicate
with each other. Collaboration diagrams can also show data flows between objects; Sequence diagrams do
have this capability. Through Rose, Sequence diagrams and Collaboration diagrams are interchangeable.
When a change is made on one, the corresponding diagram changes as well.

Typically, each Interaction diagram goes through a two—pass approach. In the first pass, most of the technic
details are left off of the diagrams. These diagrams can be shown to the users who can verify that the proce
is captured correctly. Once the first-pass diagrams have been validated, the second-pass diagrams can be
created. The audience of the second-pass diagrams is not the users, but the project team, including the
designer, developers, and analysts. The second pass incorporates many details into the Interaction diagran
Each object of the diagrams is mapped to a class. Each message on the diagrams is mapped to an operatic
a class. Model—-quality reports can be generated to show any unmapped objects or messages.

After completing the second—pass Interaction diagrams, some classes that the system requires have been

created in Rose. In the next chapter, we will discuss how to create the class diagrams that developers use t
actually develop classes.

200



Chapter 6. Classes and Packages

In the_previous chapter, we discussed how objects interact in order to give a system its functionality. Now w
will look at the classes themselves and how to organize them into packages. Objects that are modeled in Rc
correspond to classes in the Logical view. In this chapter, we will discuss how to create classes, packages,
Class diagrams in the Logical view.

Creating Class diagrams

Adding classes to the model

Working with classes and packages

Logical View of a Rose Model

In this chapter, we'll discuss some of the items that are stored in the Logical view of a Rose model. As we
mentioned in the previous chapter, you can create Sequence and Collaboration diagrams in the Logical viev
Other items that you can add to the Logical view include:

Classes, including attributes and operations

Packages

Class diagrams

Use Case diagrams

Associations

State/activity models with Statechart diagrams

We'll begin by creating classes and Class diagrams. In the next few chapters, we'll add details, such as
attributes and operations, to the Class diagrams and add relationships between the classes and packages.

Class Diagrams

201



Chapter 6: Classes and Packages

A Class diagram is used to display some of the classes and packages in your system. It gives you a static
picture of the pieces in the system and of the relationships between them. In Rose, a Class diagram has the
following symbol next to it:

B

You will usually create several Class diagrams for a single system. Some will display a subset of the classe:
and their relationships. Others might display a subset of classes, including their attributes and operations. S
others may display only the packages of classes and the relationships between the packages. You can crea
many Class diagrams as you need to get a full picture of your system.

By default, there is one Class diagram, called Main, directly under the Logical View entry. This Class
diagram displays the packages of classes in your model. Inside each package is another diagram called Ma
which includes all of the classes inside that package. In Rose, double—clicking a package in a Class diagrar
will automatically open its Main Class diagram. If a Main Class diagram does not exist, double-clicking the
package will create it.

Note In the Rose.ini configuration file, set AutoConstructMainDiagrams=Yes to automatically create a
Package Overview diagram for each package.

Class diagrams are good design tools for the team. They help the developers see and plan the structure of 1

system before the code is written, helping to ensure that the system is well designed from the beginning. An

example of a Class diagram is shown in Figure 6.1.

e Ll e e e ]

.....

ORI OIRGEIOES L LB )

Figure 6.1: Class diagram
What Is a Class?

A class is something that encapsulates information and behavior. Traditionally, we've approached systems
with the idea that we have the information over here on the database side and the behavior over there on th
application side. One of the differences with the object-oriented approach is the joining of a little bit of
information with the behavior that affects the information. We take a little bit of information and a little bit of
behavior, and encapsulate them into something called a class.

For example, in a personnel system, we may have a class called Employee. This class will contain some

information, such as an employee 1D, name, address, and phone number. The Employee class will also hav
some behavior, such as knowing how to hire or fire an employee or giving an employee a raise.

202



Chapter 6: Classes and Packages

In UML, a class is shown using the following notation:

Class

— Attribute

+ Operation()

The top section of the class holds the class name and, optionally, its stereotype. The middle section holds tt
attributes, or the information that a class holds. The lower section holds the operations, or the behavior of a
class. If you would like, you can hide the attributes and/or the operations of the class in order to make your
diagrams easier to read.

You can also show the visibility of each attribute and operation, the data type of each attribute, and the
signature of each operation on these diagrams. We will discuss these options in the next chapter.

This Employee class will become a template for employee objects. An object is an instance of a class. For
example, objects of the Employee class might be John Doe, Fred Smith, and the other employees of the
company.

The Employee class dictates what information and behavior the employee objects will have. Continuing the
above example, a John Doe object can hold the following information: John Doe's hame, his address, his
phone number, and his salary. The John Doe object will also know how to hire John Doe, fire John Doe, anc
give John Doe a raise. The object has the information and the behavior specified in its class.

Finding Classes

A good place to start when finding classes is the flow of events for your use cases. Looking at the nouns in 1
flow of events will let you know what some of the classes are. When looking at the nouns, they will be one o
four things:

An actor

A class

An attribute of a class

An expression that is not an actor, a class, or an attribute

By filtering out all of the nouns except for the classes, you will have many of the classes identified for your
system.

Alternatively, you can examine the objects in your Sequence and Collaboration diagrams. Look for

commonality between the objects to find classes. For example, you may have created a Sequence diagram
shows the payroll process. In this diagram, you may have illustrated how John Doe and Fred Smith were pa

203



Chapter 6: Classes and Packages

Now, you examine the John Doe and Fred Smith objects. Both have similar attributes: Each holds the
appropriate employee's name, address, and telephone number. Both have similar operations: Each knows t
to hire and fire the appropriate employee. So at this point, an Employee class is created, and it will become
template for the John Doe and Fred Smith objects.

In our airline example, we use two instances of the flight #1020 object. Now that we are defining classes, we
can create a single class, called Flight, which will serve as the template for these two objects.

Each object in your Sequence and Collaboration diagrams should be mapped to the appropriate class. Plea
refer to the previous chapter for details about mapping objects to classes in Interaction diagrams.

Along with the flow of events, Interaction diagrams are a great place to start when looking for classes.
However, there are some classes you may not find in these places. There are three different stereotypes to
consider when looking for classes: entity, boundary, and control. Not all of these will be found in the flow of
events or the Interaction diagrams. We'll talk about entity, boundary, and control classes in the stereotypes
section later in this chapter.

Before we do, however, there's an important process note to make here. In some organizations, people pref
to create the Sequence and Collaboration diagrams first, and then create the Class diagrams, as we have d
here. However, others prefer to create the Class diagrams first, and then use the classes as a "dictionary” o
objects and relationships that are available on the Sequence and Collaboration diagrams.

If you prefer to create Class diagrams first, you would begin, as we described earlier, by examining the flow
of events and looking at the nouns. You would use this as a basis, and decide what other classes you woulc
need in order to implement the system. You would review any foundation class libraries you might have, anc
include these classes on the diagram. You would group your classes into packages and architectural layers,
and then build the Sequence and Collaboration diagrams.

There are pros and cons to both approaches. In either case, a majority of the design work and design decisi
is performed in the two steps of creating Sequence/Collaboration diagrams and creating Class diagrams.

One of the benefits of creating Sequence diagrams first is that you can carefully examine, step—by-step, wh
objects are needed to carry out the functionality in the flow of events, and be sure each class is used. You
don't have to worry too much, however, that you may include a class in your model that isn't really used. Als
Sequence diagrams are wonderful group exercises. Creating them first gives you the flexibility to get a bunc
of designers together and brainstorm the most efficient design, creating and deleting objects as needed unti
you have the best design. You are not limited to the list of classes you've already defined.

On the other hand, this opens up the team to design problems. Different subgroups may design the diagran
very differently, leading to overlaps in class responsibilities, inconsistencies in design, and, ultimately,
architectural problems. For example, without laying out the classes and their relationships first, a team is fre
to allow the user interface to communicate directly with the database.

If you create the Class diagrams first, then you have the opportunity to decide the architectural layers and
communication patterns before you build the Sequence diagrams. When you are building the Sequence
diagrams later, you know you won't violate the architecture as long as you follow the relationships laid out ol
the Class diagram. This approach can be a little restrictive, however, and teams may need to revisit the Cla:
diagrams to make modifications as they lay out the design of the Sequence diagrams.

Either way, you should be able to trace requirements through the process. The flow of events should reflect
the rules laid out in the requirements. The steps in the Sequence and Collaboration diagrams should map tc

204



Chapter 6: Classes and Packages

the steps in the flow of events (not a one—for-one mapping, but the sequence should be the same). The obj
in the Sequence and Collaboration diagrams should map to the classes in the Class diagrams. A single clas
may appear on many Sequence and Collaboration diagrams and may even appear several times on the sar
Sequence or Collaboration diagram as different objects of the same class.

Creating Class Diagrams

In Rose, Class diagrams are created in the Logical view. Again, you can create as many Class diagrams as
need to provide a complete picture of your system.

When you create a new model, Rose automatically creates a Main Class diagram under the Logical view.
Typically, you use this diagram to display the packages of classes in your model. You can create additional
Class diagrams directly underneath the Logical view or within any existing package.

In Rose 2002, you can set a default Main diagram for each package, even if the diagram is not titled "Main."
In the browser, right—click the diagram you wish to make the default, and select the Set as Default Diagram
option.

To access the Main Class diagram:

1.
Click the + (plus sign) next to the Logical View entry in the browser to open it.
2.
The Main Class diagram will be visible. Note that Class diagrams in Rose have the following icon on
their right:
Gl
3

Double—-click the Main Class diagram to open it.

Note When you first start Rose and load a model, the Main Class diagram will automatically open.
To create a new Class diagram:

1.
Right—click the Logical View entry in the browser.

2.
Select New - Class diagram from the shortcut menu.

3.
Enter the name of the new diagram.

4.
Double—click the diagram in the browser to open it.

To open an existing Class diagram:

1.
Locate the Class diagram in the Logical view of the browser.

2. 205



Chapter 6: Classes and Packages

Double—click the diagram to open it.

OR
1.
Select Browse - Class Diagram. The window displayed in Figure 6.2 will appear.
21x]
Package Clsss Diagsama

Charge Reservaton :] New:

Check Crackt

Rename |  Deetn | [ Ok ]  Coce | M |
Figure 6.2: Opening an existing Class diagram

2.
In the Package list box, select the package that contains the diagram you want to open.

3.
In the Class Diagrams list box, select the diagram you want to open.

4,
Press OK.

To add an item to a Class diagram, use the Class Diagram toolbar buttons to add items to the diagram. Or,
can go to Tools - Create and select the item you wish to create. In the following sections, we'll describe ho
to add the various items to a Class diagram.

There are two ways to remove an item from the diagram. To remove an item from the current diagram only:

1.
Select the item on the diagram.

2.
Press Delete.

To remove an item from the model:

1.
Select the item on the diagram.

2.
Select Edit — Delete from Model, or press Ctrl+D.

OR

1.
Right—click the item in the browser.

2.
206



Chapter 6: Classes and Packages

Select Delete from the shortcut menu.

Deleting Class Diagrams

As you add and remove classes from your model, you may need to delete some of the Class diagrams you
have created. In Rose, you can delete Class diagrams using the browser. When you delete a diagram, the
classes contained on the diagram will not be deleted. They will still exist in the browser and on other
diagrams.

To delete a Class diagram:

1.
Right—click the Class diagram in the browser.

2.
Select Delete from the shortcut menu.

Organizing Items on a Class Diagram

As more and more classes and relationships are added to a diagram, it can become very cluttered and diffic
to read. Rose provides the option of automatically arranging all of the classes on the diagram.

As you add attributes and operations to a class or resize the classes on the diagram, you may end up with &
class that is too large or too small. Rose can automatically resize all of the classes to fit the text within them
Using these two options, you can turn a diagram that looks like Figure 6.3 into a diagram that looks like

Figure 6.4.

Class1

- Attribute1
- Attrib%e2

+ Operatiéqjo

\@IaSSQ

- Altrib...
A
%

Class3 : gper.i.
~ Attributed % i
Attributes (=

- Attributeb l/

\ Class4

endtiagd
s

Figure 6.3: Class diagram without resizing and automatic layout

207



Chapter 6: Classes and Packages

Class3

- Altnbuted
AttnbuteS

- Alinbuteb

[Attrbuted |
+ Operation2()

+ Operation3()
)

__Classl
|- Attnbutel
|- Altribute2

+ Operation1()

Figure 6.4: Class diagram with resizing and automatic layout

To lay out the items on a Class diagram, select Format — Layout Diagram. Rose will automatically align the
classes in the diagram.

To resize the items on a Class diagram, select Format — Autosize All. Rose will automatically resize each
class on the diagram to fit the class name, attributes, and operations within the class.

Using the Class Diagram Toolbar

In this chapter, we'll discuss how to add classes to the model and to a diagram. In the following sections, we
talk about the options provided by each of these toolbar buttons, with the exception of those dealing with
relationships. We will discuss the relationship toolbar buttons in Chapter 8, "Relationships."

If you don't see all of these buttons on the toolbar, right—click the toolbar and select Customize. From this

dialog box, you can add each of the buttons listed in Table 6.1.

Table 6.1: Icons Used in the Class Diagram Toolbar

Icon Button Purpose

[P Selects or Deselects an Item |Returns the cursor to an arrow to select an item.
ABC Text Box Adds a text box to the diagram.

Note Adds a note to the diagram.

Anchor Note to ltem Connects a note to an item on the diagram.

g Class Adds a new class to the diagram.

) Interface Adds a new interface class to the diagram.

r Association Draws an association relationship.

r Aggregation Draws an aggregation relationship.

208



Chapter 6: Classes and Packages

o Association Class Links an association class to an association relationship.
=] Package Adds a new package to the diagram.
2 Dependency or Instantiates |Draws a dependency relationship.
5 Generalization Draws a generalization relationship.
o Realize Draws a realizes relationship.
By Parameterized Class Adds a new parameterized class to the diagram.
5 Class Utility Adds a new class utility to the diagram.
By Parameterized Class Utility [Adds a new parameterized class utility to the diagram.
Instantiated Class Adds a new instantiated class to the diagram.
=) Instantiated Class Utility Adds a new instantiated class utility to the diagram.
€ Domain Adds a new domain to the diagram.
[®] Domain Package Adds a new domain package to the diagram.
& Server Page Adds a new server page to the diagram.
=i Client Page Adds a new client page to the diagram.
= Form Adds a new HTML form to the diagram.
4 COM Obiject Adds a new COM object to the diagram.
Applet Adds a new applet to the diagram.

Working with Classes

Once you've created your Class diagrams, the next step is to add classes to the model. There are several ty
of classes you can add: regular classes, parameterized classes, instantiated classes, class utilities, and so
We'll talk about each of these types of classes in the sections that follow.

We'll also discuss the options Rose provides to add detail to your classes. You can name each class, assig!
stereotype, set its visibility, and set a number of other options. We'll discuss each of these options below.

In this chapter, we'll cover how to view the attributes, operations, and relationships for your classes. In the
next few chapters, we'll discuss the details of adding and maintaining attributes, operations, and relationshif

Adding Classes

To begin, let's add a standard class. You can add a class by using the toolbar, the browser, or the menu.
First, you can add a new class to the browser only. In this case, it will be available to add to any diagram, bt
won't exist on a diagram to start with. Alternatively, you can add a new class to a diagram. If you add a new
class to a diagram, it will be automatically added to the browser as well.

To add a new class to a Class diagram:

1.
Select the Class button from the toolbar. The cursor changes to a plus sign (+) when moved to the

209



Chapter 6: Classes and Packages

diagram.

2.
Click anywhere inside the Class diagram. The new class will be named NewClass by default.

3.
Rose will display a list of all existing classes. To place an existing class on the diagram, double—click
the existing class in the list, as shown in Figure 6.5. To create a new class, replace the word NewCle
with the new class name. Note that the new class has also been automatically added to the browser
the Logical view.

1 Class Dusgrame Logical View / Main 3 =101/

{Potential Employes
|Safety Coordinater
|Secunty Guaed
;f-w‘lf-n'-l’d

|Ticket Salesperson

| |

| | ng

Figure 6.5: Adding a new class

Note If you want to create a new class with the same name as a class in a different package, open the class
specification window and enter the class name. You will see a warning telling you that classes with the
same name now exist in multiple packages.

OR

1.
Select Tools - Create - Class.

2

Click anywhere inside the Class diagram to place the new class. The new class will be named
NewClass by default.

3.
Rose will display a list of all existing classes. To place an existing class on the diagram, double-click
the existing class in the list. To create a new class, replace the word NewClass with the new class
name. Note that the new class has automatically been added to the browser in the Logical view.

Note You may also create new parameterized classes, class utilities, parameterized class utilities, instantiat
classes, and instantiated class utilities using the Tools - Create menu. A detailed discussion of these
types of classes appears later in this chapter.

To add a new class using an Interaction diagram:

1.

210



Chapter 6: Classes and Packages

Open a Sequence or Collaboration diagram.

2

Right—click an object in the diagram.

3

Select Open Specification from the shortcut menu.

4

Select <New> in the Class drop—down list box. Rose will take you to the specification window for the

new class.

5

In the class specification window, enter the class hame in the Name field.

Note Because Interaction diagrams are in the Use Case view of the browser, new classes created with this
method are created in the Use Case view. To move them to the Logical view, drag and drop the class

in the browser.
To add an existing class to a Class diagram:

Drag the class from the browser to the open Class diagram.

OR
1.
Select Query — Add Classes. The Add Classes dialog box will appear, as shown in Figure 6.6.
21
Packere | - |
Carcel I
e
Ooxw:’ o - Selected Claroes 1
e |
Hv;'l,', "' |
S
ad | of
Figure 6.6: Adding existing classes to a Class diagram
2.
In the Package drop—down list box, select the package that contains the class(es) you want to add tc
the diagram.
3.
Move the class(es) you want to add from the Classes list box to the Selected Classes list box. To ad
all the classes, press the All button.
4,
Press OK.
5.

211



Chapter 6: Classes and Packages

Rose will add the selected class(es) to the open diagram.
To add a class to the browser:

1.
Right—click Logical View in the browser. To add a class to a package, right—click the package name.

2.
From the shortcut menu, select New - Class. To add a class utility or an interface, select New —
Class Utility or New — Interface. The new class, called NewClass by default, will appear in the
browser.

3.
Select the new class and type its name.

4.
To then add the new class to a Class diagram, drag it from the browser to the open diagram.

Class Stereotypes

A stereotype is a mechanism you can use to categorize your classes. Say, for example, you want to quickly
find all of the forms in the model. You could create a Form stereotype, and to find your forms later, you
would just need to look for the classes with the Form stereotype.

This feature helps you more thoroughly understand the responsibilities of each class in your model. Classes
with a Form stereotype are responsible for displaying information to the user and receiving information from
the user. Classes with the Visual Basic Collection stereotype are responsible for grouping entities together
into a dataset or other type of collection. Each stereotype has its own types of responsibilities.

Stereotypes also help in the code—generation process. When Rose generates code, it looks at the class
stereotypes to determine what type of class to create in the target programming language.

Rose comes with a number of built—in stereotypes. Some are used during the analysis process, when you
haven't yet determined what language you will be using. Others are specific to a particular language, and ar
used in the detailed design process. These different types of stereotypes are important; they allow you to st:
assigning responsibilities to classes in the analysis process without tying the model to a specific language.

In this section, we will discuss the stereotypes for analysis and language—dependent design that come with
Rose.

Analysis Stereotypes

During analysis, you may want to categorize your classes according to the functions they perform. There are
three primary class stereotypes in UML that are used for analysis: boundary, entity, and control.

212



Chapter 6: Classes and Packages

Boundary Classes
Boundary classes are those classes that lie on the boundary between your system and the rest of the world

These would include all of your forms, reports, interfaces to hardware such as printers or scanners, and
interfaces to other systems. The UML representation of a boundary class looks like this:

BoundaryClass

To find and identify boundary classes, you can examine your Use Case diagram. At a minimum, there must
one boundary class for every actor—use case interaction. The boundary class is what allows the actor to
interact with the system.

—C__D
7/

Actor 4 Use case

Boundary
class

You don't necessarily have to create a unique boundary class for every actor—use case pair. For example, s
you have two actors that both initiate the same use case. They might both use the same boundary class to
communicate with the system.

Boundary
class
W
\ \
\ \
\
~—C_ D
\ =7
Actor \ Use case
Actor 2

213



Chapter 6: Classes and Packages

Entity Classes

Entity classes hold information that you may save to persistent storage. In our airline reservation system, th
Flight class is a good example of an entity class. Entity classes are usually found in the flow of events and ir
Interaction diagrams. They are the classes that have the most meaning to the user and are typically named
using business—domain terminology.

Look at the nouns in your flow of events. Many of these nouns will be the entity classes in the system.
Another good place to look is in the database structure. If some database design has already been done, lo
the table names. An entity class may need to be created for a table. While the table holds a record's
information permanently, the entity class will hold the information in memory while the system is running.

In UML, entity classes are represented by the following symbol:

EntityClass

By tying our database design to the object model, we can trace many of the fields in the database back to a
requirement. The requirements determine the flow of events. The flow of events determines the objects, the
classes, and the attributes of the classes. Each attribute in an entity class may become a field in the databa:
Using this approach, we can trace each database field back to a requirement and reduce the risk of collectir
information no one uses.

Control Classes

Finally, let's take a look at control classes. Control classes are responsible for coordinating the efforts of oth
classes. They are optional, but if a control class is used, there is typically one control class per use case, wt
controls the sequencing of events through the use case. On an Interaction diagram, a control class has
coordinating responsibilities, as you can see in Figure 6.7.

| I} scquence Diagrank Use Case View / NewDilagrom =laix]
Atar | Femobiet | Coatwtodiest | Eatayobpeat |
-
-~
Artor Esum objecs Conteol object | | Eatity obzedt
‘Enter information :
} i
! Save wdmation .|
R
Save
Croate
-
;’UbLI.’!L‘ with irdorriation
iSave 10 database
= :
M|

Figure 6.7: Control class on a Sequence diagram

214



Chapter 6: Classes and Packages

Notice that the control class doesn't carry out any functionality itself, and other classes don't send many
messages to it. Instead, it sends out a lot of messages. The control class simply delegates responsibility to 1
other classes. Control classes are responsible for knowing and carrying out the business rules of an
organization. They execute alternative flows and know what to do in case of an error. For this reason, contrc
classes are sometimes called manager classes. In UML, control classes are drawn using the following symt

ControlClass

There may be other control classes that are shared among several use cases. For example, we may have a
SecurityManager class that is responsible for controlling events related to security. We may have a
TransactionManager class that is responsible for coordinating messages related to database transactions. V
may have other managers to deal with other common functionality, such as resource contention, distributed
processing, or error handling.

These types of control classes can be a good way to isolate functionality that is used across the system.
Encapsulating security coordination, for example, into a SecurityManager can help minimize the impact of
change. If the sequencing of the security logic needs to change, only the SecurityManager will be affected.

Additional Class Stereotypes

In addition to the stereotypes mentioned above, you can add your own stereotypes to the model. In the
Stereotype field, you can enter the new stereotype, and from that point on, it will be available in your current
Rose model.

To assign a class stereotype:

1.
Open the class specification window by right—clicking the class and selecting Open Specification.

2.
Select a stereotype from the drop—down list box or type in the stereotype name.

To display the stereotype name on the diagram:

1.
Right—click a class on a Class diagram.

2.
From the shortcut menu, select Options — Stereotype Display — Label. The stereotype name will
appear, enclosed in double angle brackets (<< >>), just above the class name.

<<boundary>>
BoundaryClass

215



Chapter 6: Classes and Packages

To display the Stereotype icon on the diagram:

1.
Right—click a class on a Class diagram.

2.
From the shortcut menu, select Options — Stereotype Display — Icon.

3.
The representation of the class will change to the appropriate icon. This example shows the icon for

an Interface class:

O

BoundaryClass

Note Not all of the stereotypes have icons. If there is no icon for a stereotype, only the stereotype name will
appear on the diagram.
To turn off the stereotype display on the diagram:

1.
Right—click a class on a Class diagram.

2.
From the shortcut menu, select Options — Stereotype Display — None. The class will still have a
stereotype, visible in the class specification window, but the stereotype will not display on the
diagram.

To change the default stereotype display option:

1.
Select Tools - Options.

2.
Select the Diagram tab.

3

In the Compartments area, as shown in Figure 6.8, select or deselect the Show Stereotypes check b
to control whether or not the stereotype will display.

216



Chapter 6: Classes and Packages

2ix

CORBA | Java | Oracke8 | Coo | MSVC | COM | Vinual Basic | 500 DTO |
Generad  Disgram | Browser | Nctaton | Tookurs | ANSI Coe | AdsE3 | Ade3S |

Companments Display

' Show visbildy ¥ Uneetolved adomments
& Show sterechypes ™ Urt adomeents

V Show M ot rmbeing

P Show of sttibedes
¥ Show ol cpsestionn
™ Suppeess ambutes

™ Sequence numbenng
™ Hisarchical Messages

™ Focus of control

I~ Sugpeess opmations I Theee-Tisr Diagram
Mez1a0e Soratuer
& Type Orly ™ Name ardd Type
€ Noore Orly " Nooe
Miszalyeous Grd
' Deoutie cick 1o dagian W Snapto gnd
W Ausomaic 1eiizng Gnd see IS
™ Class Name Completion Ficks Dl
W Apgegstonwhole topst | | [~ Show ol rpeciier
Stecectype diply
 Nern  Latel " Docaation & deon
[V Show kbl on selabors and ats0cMIONS L}
£
0k | Coce | | Hee |

Figure 6.8: Changing the default stereotype display

4,
In the Stereotype Display area, select the default display type (None, Label, Decoration, or Icon).

To add a new stereotype to the current Rose model:

1.
Open the class specification window.

2.
Type a new stereotype in the Stereotype field. The new stereotype will now be available in the
drop—down list box as you add more classes, but only in the current Rose model.

3.
To add a new Stereotype icon for the new stereotype, see the online help ("Stereotype Configuratior
File").

Class Types

In design, we want to categorize our classes using the terminology of the particular programming language
are going to use. For example, if we are using Visual Basic, we may have stereotypes such as Class Modul
Collection, or Form. If we are using Java, we would need stereotypes for session objects, servlets, interface
and so on.

Rose supports a number of different stereotypes for its different language options. This section describes th

types of classes that are available. In the following sections, we'll discuss stereotypes for several of the
languages supported by Rational Rose.

217



Chapter 6: Classes and Packages

Parameterized Class

A parameterized class, the first of the special types of classes we'll discuss, is a class that is used to create
family of other classes. Typically, a parameterized class is some sort of container; it is also known as a
template. Not all languages directly support templates; you can use them in C++, Visual C++, or Ada.

For example, you may have a parameterized class called List. Using instances of the parameterized class,
can create some classes called EmployeeList, OrderList, or AccountList, as described below.

In UML, a parameterized class is displayed using this notation:

— e e e )

Parameterized

To add a parameterized class:

1.
Select the Parameterized Class button from the toolbar.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

OR

1.
Add a class to a Class diagram or to the browser using one of the methods listed above.

2.
Open the class specification window.

3.
In the Type field, select ParameterizedClass.

4,
Press OK.

OR

1.
Select Tools —. Create —. Parameterized Class.

2.
Click anywhere inside the diagram to place the new class.

3.
218



Chapter 6: Classes and Packages

Type the name of the class.
Setting Arguments for a Parameterized Class

The arguments for the class are displayed in the dashed-line box. The arguments are placeholders for the
items that the parameterized class will contain. Using our example from the last section, we can replace the
parameter item with a specific thing, such as Employee, to instantiate an EmployeelList class.

The argument can be another class, a data type, or a constant expression. You can add as many argument:
you need.

To add an argument:

1.
Open the class specification window by right—clicking the class and selecting Open Specification.

2.
Select the Detail tab.

3.
Right—click anywhere inside the white space in the Formal Arguments area.

4,
Select Insert from the shortcut menu.

5.
Type the argument name.

6

Click below the Type column header to display a drop—down list of argument types, as shown in
Figure 6.9. Select one of the types in the list or enter your own.

219



Chapter 6: Classes and Packages

Class Specification for Parameterized 21x|
Relations I Components | Nested l Files I Java
General Detail | Operations I Attributes
Multiplicity: ~~ |n e
Space: I

—Persistence————————  ~ Concurrency
" Persistent ¢ Sequential
{* Transient " Guarded
" Active
[~ Abstract " Synchronous
Formal Arguments:
MName I Type l Default Value ]
tem i
| oK I Cancel I Aoply l Browse vI Help

Figure 6.9: Adding an argument to a parameterized class

7.
Click below the Default Value column header to enter a default value for the argument. A default

value is not required.
To delete an argument:

1.
Open the class specification window.

2.
Select the Detall tab.

3.
Right-click on the argument you wish to delete.

4,
Select Delete from the shortcut menu.

Instantiated Class

An instantiated class is a parameterized class that has actual values for the arguments. From our last exam
we know that we have a list of items. Now, we can supply a value for the Items argument, to see that we ha
a list of employees. UML notation for an instantiated class is a class with the argument name enclosed in

angle brackets (< >):

220



Chapter 6: Classes and Packages

<|nstantiated>

The number of actual values in an instantiated class must match the number of formal arguments in the
parameterized class that it instantiates. If an argument is another class, then there should be a dependency
that class.

To add an instantiated class:

1.
Select the Instantiated Class button from the toolbar.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class with the arguments in angle brackets (< >).

OR

1.
Add a class to a Class diagram or to the browser using one of the methods listed above.

2.
Open the class specification window.

3.
In the Type field, select InstantiatedClass.

4.
Click OK.

OR

1.
Select Tools — Create - Instantiated Class.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

Class Utility
A class utility is a collection of operations. For example, you may have some mathematical

functions—squareroot(), cuberoot(), and so on—that are used throughout your system but don't fit well into
any particular class. These functions can be gathered together and encapsulated into a class utility for use |

221



Chapter 6: Classes and Packages

the other classes in the system.

Utility classes are frequently used to extend the functionality provided by the programming language or to
hold collections of generic, reusable pieces of functionality that are used in many systems.

A class utility will appear as a shadowed class on the diagram with this symbol:

ClassUtility

To add a class utility:

1.
Select the Class Utility button from the toolbar.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.
OR
1.
Add a class to a Class diagram or to the browser using one of the methods listed above.
2.
Open the class specification window.
3.
In the Type field, select ClassUtility.
4,
Press OK.
OR
1

Select Tools - Create — Class Utility.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

222



Chapter 6: Classes and Packages

Parameterized Class Utility

A parameterized class utility is a parameterized class that contains a set of operations. It is the template tha
used to create class utilities. It appears on a Class diagram with the following symbol:

ParameterizedUtility

To add a parameterized class utility:

1.
Select the Parameterized Class Utility button from the toolbar.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

OR

1.
Add a class to a Class diagram or to the browser using one of the methods listed above.

2.
Open the class specification window.

3.
In the Type field, select ParameterizedClassUtility.

4,
Press OK.

OR

1.
Select Tools — Create — Parameterized Class Ultility.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

Instantiated Class Utility

An instantiated class utility is a parameterized class utility that has values set for the parameters. It appears
a Class diagram as follows:

223



Chapter 6: Classes and Packages

InstantiatedUtility

To add an instantiated class utility:

1.
Select the Instantiated Class Utility button from the toolbar.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

OR
1.
Add a class to a Class diagram or to the browser using one of the methods listed above.
2.
Open the class specification window.
3.
In the Type field, select InstantiatedClassUtility.
4.
Click OK.
OR
1.
Select Tools — Create - Instantiated Class Utility.
2.
Click anywhere inside the diagram to place the new class.
3.
Type the name of the class.
Interfaces

One guideline in object-oriented programming is to separate the implementation of a class from its interface
Most object-oriented languages now support the concept of an interface, which contains only the method
signatures (without the implementation) for a class.

For example, we may have a class that deals with security. It has methods called ChecklID, CheckPassworc
and LogSecurityViolation. The CheckID operation takes the user ID as a parameter and returns a Boolean
signifying whether or not the ID is valid. CheckPassword takes the password entered by the user and also
returns a Boolean. LogSecurityViolation takes no parameters.

224



Chapter 6: Classes and Packages

Various pieces of the system will need to call the CheckID operation, for example. The typical approach is tc
create a class, which we'll call Securitylmplementer, that contains all three of the security methods as well a
code to implement the functions.

One option is to allow the rest of the system to directly call methods of the Securitylmplementer class
whenever they need security functionality. A problem could occur, however, if the Security—Implementer
class changes. What happens if we change the way that the methods work or if we want to replace our
C++-based security class with a Java—based security class? There could be ripple effects throughout the
system.

So rather than take this approach, we create the Securitylmplementer class with its methods and their
implementations, but we also create a Securitylnterface class, which holds only the operation signatures.
Other classes will reference the interface rather than the implementer class so that if the implementer needs
change, the rest of the system won't be affected.

This concept has been used as the basis for interface definition language (IDL), which allows you to define
language-independent interfaces. In Rose, an interface is modeled as a class with a circle icon, which is oft
called a "lollipop," as follows:

ImplementationClass

&)

Interface

Web Modeling Stereotypes

One of the new features in Rose is the support of web modeling stereotypes. Using this feature, you can mc
thoroughly describe the structure of your web applications, labeling which classes in the model correspond t
client pages, server pages, applets, session objects, or other web constructs.

Note You can read more about this topic_in Chapter 19, "Web Modeling."

In this section, we'll briefly discuss each of the stereotypes available in Rose Web Modeler. If you are using
these stereotypes, you may first want to customize the Class Diagram toolbar to be able to see buttons for
these. To do so, open a Class diagram and right—click the Class Diagram toolbar. Select Customize, find the
web stereotype buttons, and then add them to the toolbar.

Many of these stereotypes have their own symbols on a Class diagram. In Rose, you can view the classes \
their symbols by right—clicking the class and selecting Options - Stereotype Display - lcon. To switch bacl
to stereotypes with text labels instead, select the Label option.

Note If you have changed the stereotype display to Icon but you're still not seeing the symbols, be sure the
default language on the Notation tab of Tools — Options is set to Web Modeler before you create the
classes. If the classes are already created, be sure they are mapped to a component whose language
set to Web Modeler (see Chapter 10, "Component View," for component mapping).

Client Page

A client page is an HTML-formatted page that is displayed on the client machine by a web browser. A client
page may have some embedded logic with JavaScript or VBScript, but typically will carry out only user
interface logic. In most situations, business logic should, whenever possible, be carried out on the server.

In Rose, a client page is modeled with the following symbol:

225



Chapter 6: Classes and Packages

Client Page

Server Page

A server page is a page that is executed on the server and typically carries out business, rather than user
interface, functionality. The server page can communicate with the resources available on the server, such ¢
the database, other server pages, and business objects. The separation between client and server pages he
the team to separate the business logic from the user interface.

In Rose, a server page is modeled with the following symbol:

Form

A form is a simple HTML page that doesn't do business processing. It exists only to display information to th
end user and to allow the end user to enter some information in simple fields. Once the user enters the
information, the form passes control to a server page, which carries out any business logic in response to th
information on the form.

On a Class diagram, a form looks like this:

Application

One of the challenges in web programming is the inability to keep track of the client's state. In other words,
once a client has made a request to the server and the server has processed the request, the server does n
keep track of where the client is or what it is doing. If the client needs something else, it needs to establish &
new connection to the server and send a new request.

When using Active Server Pages (ASP), an application object helps with this problem. It allows the server tc
keep track of some information across all of the clients that are currently using the system. All clients share

226



Chapter 6: Classes and Packages

the same application object.

In Rose, an application object is modeled as a class with a Web Application stereotype:

<<\Web Application=>
YWeb Application

Applet

An applet is a Java construct. It is a (typically small) compiled program that is downloaded to the client and
runs on the client machine. Applets are frequently used to add some functionality to the user interface that i
not generally available. Although ActiveX controls serve the same purpose, they are not currently supported
by all browsers.

Applets are shown on a Class diagram with the following symbol:

[

Applet

Session

Session objects exist for largely the same reason as application objects. The difference is that while all clien
share the same application object, a session object is unique to a particular client. It allows the server to kee
track of what the client is doing and what it has requested in the past—in other words, the state of the client.

A session object is modeled as a class with a Web Session stereotype:

<<Web Session=>
Session

COM Object

The COM object stereotype is used to model ActiveX components. Although not all browsers currently
support ActiveX, there are a number of ActiveX controls in use today (and more are being created all the
time!). As long as you know that your clients are running Microsoft's Internet Explorer or another browser
that supports ActiveX, you can use these controls to enhance the user interface. Like applets, ActiveX contr
run on the client machine.

COM obijects appear on the Class diagram with the following symbol:

227



Chapter 6: Classes and Packages

COM Object

Other Language Stereotypes

In addition to the stereotypes discussed above, Rose supports different stereotypes for Visual Basic, Java,
XML, CORBA, COM, and other types of classes. Table 6.2 lists the stereotypes for the different languages
available in Rose.

Table 6.2: Language-Specific Stereotypes in Rose

Language Stereotypes
Visual Basic Add-InDesigner
ADO Class

Class Module
Collection
Custom Webitem
Data Environment
Data Report
DHTML Page
Enum

Form

MDI Form

Module

MTS Class
Property Page
Template Webitem
Type

User Control

228



Chapter 6: Classes and Packages

User Document
User Connection

Web Class

Java EJB Entity

EJB Home Interface
EJBPrimaryKey
EJBRemotelnterface
EJBSession
Generic Servlet

HTTP Servlet

CORBA Constant
Enumeration
Exception
Struct
Typedef
Union

Value

Custom Value

COM Alias

Coclass

Enum

Module

Struct

Union

Oracle 8 Nested Table
Object Table

Object Type

229




Chapter 6: Classes and Packages

Object View
Relational Table
Relational View

VARRAY
XML DTD Element

DTD Entity
DTD Sequence Group

DTD Notation

Class Specifications

Most of the options that you can set for a class are available on the class specification window, as shown in
Figure 6.10. For example, this window allows you to set the class stereotype, visibility, and persistence. In i
following sections, we'll talk about each of the options available on the tabs of this window.

Class Specification for ¥BClass ' 2| x|

Components I Nested I Files I Visual Basic I
General I Detal | Operations | Attibutes | Relations |
Name: Parent:  Loagical View
Type: lCIass :_I

Stereotype: ICIass Module ZI

— Export Control

¢ Public ¢ Protected ¢ Private ¢ Implementation
Documentation:

| oK I Cancell Apply Browse vI Help l

Figure 6.10: Class specification window

If you are examining the specifications for a Java, XML, or CORBA class, the specification window that
appears is slightly different, as shown below in Figure 6.11. All of the options on this window are also
available through the standard specification window.

230



Chapter 6: Classes and Packages

[4 Glsespeciication 21x]
Class |
Name lﬁ Germiate
™ Finaice
Modfers
r I
v r - Statec Instigkone

™ Instence intiskoer

publc >
o ¥ Defat Coratrucior

V' Germeate Code I~ Disable Autotyne

Consmuctor Viebdty fousic -

Evterds X2 4] inglements t":lxlfl‘l
DocComment
3
E2
ok | caxsl | |

Figure 6.11: Java specification window
To open the class specifications:

1.
Right—click the class on a Class diagram.

2.
Select Open Specification from the shortcut menu.

OR

1.
Right—click the class in the browser.

2.
Select Open Specification from the shortcut menu.

OR

1.
Select the class on a Class diagram.

2.
Select Browse - Specification, or press Ctrl+B.

Naming a Class
Each class in your Rose model should be given a unique hame. Most organizations have a naming convent
to follow when naming a class. In general, however, classes are named using a singular noun. In our airline

reservation system, for example, we may have a class called Flight and another called Airplane. (We would
not call them flights and airplanes.)

231



Chapter 6: Classes and Packages

Class names typically do not include spaces. This is for practical reasons as well as readability—many
programming languages do not support spaces in class names. Try to keep your class names relatively sho
While ListOfEmployeesThatAreOnProbation is a very good description of what that class does, it can make
the code rather unreadable. EmployeeList might be a better class name in this case.

Whether to use uppercase or lowercase letters really depends on your organization. If we have a class that
list of employees, it could be called employeelist, Employeelist, EmployeeList, or EMPLOYEELIST. Again,
each company typically has a naming convention. Just be sure that whichever approach is decided upon is
used for all classes.

To name a class:

1.
Select the class in the browser or on the Class diagram.

2.
Type the class name.

OR

1.
Open the class specification window.

2.
In the Name field, enter the class name.

To add documentation to a class:

1.
Select the class in the browser.

2.
In the documentation window, type the class documentation.

OR

1.
Open the class specification window.

2.
In the specification window, type the information in the Documentation area.

Setting Class Visibility

The Visibility option determines whether or not a class can be seen outside of its package. It is controlled
through the Export Control field in the specification window. There are three visibility options for a class:

Public Suggests that the class can be seen by all of the other classes in the system.

Protected or Private Suggests that the class can be seen in nested classes, friends, or within the same clas

232



Chapter 6: Classes and Packages

Package or Implementation Suggests that the class can be seen only by other classes in the same packag
To set class visibility:

1.
Right—click the class in the browser or on a Class diagram.

2.
Select Open Specification from the shortcut menu.

3.
Set the export control to Public, Protected, Private, or Implementation.

If a class has protected, private, or package visibility, it cannot be seen by classes in other packages. An
access violation occurs in one of two situations:

When there is a relationship between two classes in different packages, but there is ho dependency
relationship between the packages themselves

When there is a relationship between classes in different packages, and the supplier class has
implementation visibility

In Rose, open a Class diagram and select Report — Show Access Violations to check for one of these two
problems.

Setting Class Multiplicity

The Multiplicity field gives you a place to set the number of instances that you expect to have of a class. In
the employee tracking system, we can probably expect to have many instances of the Employee class—one
for John Doe, one for Fred Smith, and so on. The multiplicity for the Employee class, then, would be n.
Control classes, however, frequently have a multiplicity of 1. As you're running the application, you probably
need only one instance of a security manager.

In Rose, the following multiplicity options are available in the drop—down list box:

Multiplicity Meaning

n (default) Many

0..0 Zero

0..1 Zero or one

0..n Zero or more

1.1 Exactly one

1..n One or more

Or you can enter your own multiplicity, using one of the following formats:
Format Meaning

<number> Exactly <number>

233



Chapter 6: Classes and Packages

<number 1>..<number 2> Between <number 1> and <number 2>

<number>..n <number> or more

<number 1>,<number 2> <number 1> or <number 2>

<number 1>, <number 2> .. <number 3> Exactly <number 1> or between <number 2> and
<number 3>

<number 1> .. <number 2>, <number 3> .. <numliBetween <number 1> and <number 2> or between

4> <number 3> and <number 4>

To set class multiplicity:

1.
Open the class specification window.

2.
Select the Detail tab.

3

From the Multiplicity drop—down list box, select the multiplicity. Or type in a multiplicity option that
is not available in the drop—down list box.

Setting Storage Requirements for a Class

As you are building your model, you may want to note the amount of relative or absolute memory you expec
each object of the class to require. The Space field in the class specification window is used for this purpose

You cannot use the Space field for class utilities, instantiated class utilities, or parameterized class utilities.
To set class space:

1.
Open the class specification window.

2.
Select the Detail tab.

3.
Enter the storage requirements for the class in the Space field.

Setting Class Persistence

In Rose, you can generate DDL (data definition language) from your model. The DDL defines the structure
your database.

When you generate DDL, Rose will look for classes that have been set to Persistent. The Persistence field i
the class specification window is used to specify whether a class is Persistent or Transient:

Persistent Suggests that the class will live beyond the execution of the application. In other words, the
information in objects of the class will be saved to a database or some other form of persistent storage.

Transient Suggests that information in objects of the class will not be saved to persistent storage.

234



Chapter 6: Classes and Packages

You cannot use the Persistence field for class utilities, instantiated class utilities, or parameterized class
utilities.

To set the persistence of a class:

1.
Open the class specification window.

2.
Select the Detail tab.

3.
Select Persistent or Transient in the Persistence area.

Setting Class Concurrency

Concurrency is used to describe how the class behaves in the presence of multiple threads of control. There
are four concurrency options:

Sequential This is the default setting, and suggests that the class will behave normally (i.e., the operations
will perform as expected) when there is only one thread of control, but the behavior of the class is not
guaranteed in the presence of multiple threads of control.

Guarded Suggests that the class will behave as expected when there are multiple threads of control, but th
classes in the different threads will need to collaborate with each other to ensure that they don't interfere wit
each other.

Active Suggests that the class will have its own thread of control.

Synchronous Suggests that the class will behave as expected, with multiple threads of control. There won't
be any collaboration required with other classes, because the class will deal with the mutual exclusion on its
own.

To set the concurrency of a class:

1.
Open the class specification window.

2.
Select the Detail tab.

3.
Select a concurrency radio button in the Concurrency area.

Creating an Abstract Class
An abstract class is a class that will not be instantiated. In other words, if Class A is abstract, there will neve

be any objects of Type A in memory. A class is defined as being abstract if at least one operation of the clas
is abstract. Rose does not enforce this rule.

235



Chapter 6: Classes and Packages

Abstract classes are typically used in inheritance structures. They hold some information and behavior that |
common to some other classes. For example, we may have an Animal class, which has some attributes call
height, color, and species. From this class, we inherit three other classes—Cat, Dog, and Bird. Each of thes
will inherit height, color, and species from the Animal class, and will have its own unique attributes and
operations as well.

When the application is run, there are no animal objects created—all of the objects are cats, dogs, or birds.
The Animal class is an abstract class that just holds the commonality between cats, dogs, and birds.

In UML, an abstract class is shown on a Class diagram with its name in italics:

AbstractClass

To create an abstract class:

1.
Create a class using one of the methods described above.

2.
Open the class specification window.

3.
Select the Detail tab.

4.
Check the Abstract check box.

Viewing Class Attributes

In the_next chapter, we'll talk in detail about adding, deleting, and working with attributes for a class. Part of
the class specification window allows you to see the attributes that have already been created for a class. F
additional information about attributes and operations, please refer to Chapter 7. "Attributes and Operations

To view the class attributes:

1.
Open the class specification window.

2

Select the Attributes tab. The attributes for the class, including the attribute visibility, stereotype,
name, data type, and default value, will be listed on this tab.

Viewing Class Operations

In the_next chapter, we'll discuss the details of adding, deleting, and maintaining the operations for a class.
Here, in the class specification window, you can view the operations for a class. For additional information
about operations, please refer to the next chapter.

To view the class operations:

1. 236



Chapter 6: Classes and Packages

Open the class specification window.

2.
Select the Operations tab. The operations for the class, including the operation visibility, stereotype,
signature, and return type, will be listed on this tab.

Viewing Class Relationships

In_Chapter 8, we will discuss in detail the different types of relationships you can add to classes. We'll talk
about adding and deleting relationships and setting the detailed information about each relationship. In the
class specification window, you can view all of the relationships that have been added to a class. For
additional information about relationships between classes, please refer to Chapter 8.

To view the class relationships:

1.
Open the class specification window.

2.
Select the Relations tab. All of the relationships in which the class participates will be listed on this
tab.

Using Nested Classes

In Rose, you can nest one class inside another. You can also nest additional classes inside the nested clas:
as many levels of depth as necessary.

To create a nested class:

1.
Open the class specification window for the parent class.

2.
Select the Nested tab.

3.
Right—click anywhere inside the white space on the Nested tab.

4.,
Select Insert from the shortcut menu.

5.
Type the name of the nested class.

OR

1.
Create and name the parent class.

2.

237



Chapter 6: Classes and Packages

Create and name a class for the nested class.

3.
In the browser, drag and drop the nested class onto the parent class.

To display a nested class on a Class diagram:

1.
Open a Class diagram.

2.
Select Query - Add Classes.

3.
Move the nested class from the Classes list box to the Selected Classes list box. The nested class w
display with the format ParentClass::NestedClass.

4.
Click OK. The nested class will appear on the diagram, with the parent class name in parentheses.

NestedClass

(from ParentClass)

To delete a nested class from the model:

1.
Open the class specification window for the parent class.

2.
Select the Nested tab.

3.
Right—click on the name of the nested class you wish to delete.

4.
Select Delete from the shortcut menu. The nested class will be removed from all Class diagrams.

OR

1.
Right—click the nested class in the browser.

2.
Select Delete.

Viewing the Interaction Diagrams That Contain a Class

When you need to change a class, it can be helpful to know exactly where in the system the class is being
used. The two types of Interaction diagrams—Sequence diagrams and Collaboration diagrams—will let you

238



Chapter 6: Classes and Packages

know exactly where and how each class is being used. You can use the Report menu to see which Sequent
and Collaboration diagrams contain objects of a particular class.

To view all Sequence and Collaboration diagrams that contain a certain class:

1.
Select the class on a Class diagram.

2.
Select Report » Show Instances.

3.
Rose will display a list of all Sequence and Collaboration diagrams that contain objects of that class,
as shown in Figure 6.12. To open a diagram, double—click it in the list, or click the Browse button.

%

saichfom n Sequance Disgrans Puchase Ticket / Puchate T

FhohtSas > c b kot
FiohrSaschFom n Colsborahon Diagram Purchase Ticket / Puschare Tckat
n Seqaence Disgrame Charge Reservation / Change Reservation
n Sequerce Dugram: Cancel Resarvaton / Corcel Reservation
i Collstoration Diagrame: Cancel Retervaton / NewDuagan

[(Biowe | coxe | He |

Figure 6.12: Viewing class instances

Setting Java Class Specifications

In Rose, Java classes have two specification windows: the standard specification, as described above, and
Java specification window. The Java specification window is used to set Java—specific fields, such as wheth
to generate a default constructor. Figure 6.13 shows the Java Class Specification window.

(e — 2
Class I
Name ﬁ Germiate
™ Finaice
i T Bty
ity ™ Instance intiskoer
publc 'l T el

¥ Defat Coratrucior

I Intedace
V' Germtate Code I~ Disable Autotyne

Consmuctor Viebdty fousic -

Evtends X2 $] Inglemerts m|><|9|6|
DocComment

3

=

ok | caxsl | |

Figure 6.13: Java Class Specification window

Using this window, you can set the following:

239



Chapter 6: Classes and Packages

Name is equivalent to setting the name on the standard specification window.

Visibility controls whether the class is public and can be seen by all classes, or is visible only to
classes in the same package. Possible values are Public or Package. Setting the value to Package i
equivalent to setting the Export Control to Implementation in the standard specification window.

Abstract sets the class to be abstract, which implies that the class will never be directly instantiated.
Setting this flag on the Java specification window is equivalent to checking the Abstract check box ol
the Detail tab of the standard specification window.

Final determines whether subclasses of the class may be created. If the Final flag is set to True,
subclasses may not be created.

Generate is a set of four flags that determine whether to generate a finalize method, static initializer,
instance initializer, and/or default constructor when generating code.

Interface sets whether this class is an interface. Checking this box is equivalent to setting the class
stereotype to Interface in the standard specification window.

Generate Code controls whether Rose will generate code for this class. By default, this option is
selected.

Disable Autosync will disable autosync for this class. Autosync is a feature that will automatically
initiate the code—generation process when a Java element is modified. To enable or disable autosyn
for the entire model, select Tools - Java — Project Specification and then the Detail tab. At the
bottom of the screen is an option for autosynchronization.

Constructor Visibility sets the visibility of the class's constructor to Public, Package, Private, or
Protected.

Extends indicates whether the class is a subclass of another. If so, the parent class is listed.

Implements indicates whether the class implements the functionality listed in an interface. If so, the
interface is listed.

DocComment provides comments for the class. This is equivalent to typing comments in the
Documentation field of the standard specification window.

240



Chapter 6: Classes and Packages

Setting CORBA Class Specifications

As with Java, CORBA classes have their own specification window. You can use this window to set
CORBA-specific information, such as enumeration attribute ordering or constant types and values. The
specification window will vary slightly, depending upon the stereotype of the CORBA class you are working
with. An example of the CORBA specification window is shown in Figure 6.14.

2ix]

Chul

Nove [N

Shesectype l

Implemartaton Type [‘:'-J

Conatant Vahe [+

DocComment

ok | Cocel | | s |
Figure 6.14: CORBA Class Specifications

Using the CORBA specification window, you can set the following information. Note that some of these
options are available only for certain CORBA stereotypes.

Name sets the name of the class. This is equivalent to setting the name on the standard specificatiol
window.

Stereotype displays the stereotype of the class. To change the stereotype, open the standard
specification window.

Implementation Type (Constant, Typedef) sets the data type of the constant or typedef.

Constant Value (Constant) sets the value of the constant.

Array Dimensions (Typedef) sets the dimensions of the typedef's declarator.

Attribute/Role Ordering (Enumeration, Union, Exception, Struct, Value, Custom Value) is used to
set the order of the attributes in the class. When code is generated, the attributes will be generated il
this order.

Inherits From (Value, Custom Value) sets the parent class, if the class is inherited.

241



Chapter 6: Classes and Packages

Switch Type (Union) is the variable used for the case statements generated for the class.

Working with Packages

A package is used to group together classes that have some commonality. In UML, a package is displayed
with this symbol:

[ ]

Package

There are a few common approaches when packaging classes, but you can group the classes together how
you'd like. One approach is to group the classes together by stereotype. With this approach, you have one
package with your client page classes, one with your server page classes, one with your applets, and so on
This can be a helpful approach to take for deployment's sake—all the forms that will go on the client machin
are already packaged together.

Another approach is to group the classes together by functionality. For example, you might have a package
called Security, which holds all of the classes that deal with application security. You might have some othel
packages called Employee Maintenance, Reporting, or Error Handling. The advantage of this approach is in
reuse. If you carefully group your classes together, you end up with packages that are fairly independent of
one another. In this example, you can just pick up the Security package and reuse it in other applications.

Finally, you can use a combination of these approaches. Packages can be nested inside each other to furth
organize your classes. At a high level, you may group your classes by functionality to create your Security

package. Within this package, you can have some other packages, grouping the security classes by
functionality or stereotype.

Adding Packages

The next step in creating your model is adding some packages. Class packages are created in the Logical v
of the browser.

To add an existing package to a Class diagram:
Drag the package from the browser onto the Class diagram.
To add a new package to a Class diagram:

1.
Select the Package toolbar button.

2.
Click anywhere inside the Class diagram to place the package.

3.
242



Chapter 6: Classes and Packages

Type the package name.
To add a package to the browser:

1.
Right—click Logical View in the browser. To create a package inside an existing package, right—click
the existing package in the browser.

2.
Select New - Package.

3.
Type the name of the new package.

To move an item into a package:

In the browser, drag the item from its existing location to the new package.

Deleting Packages

You can delete a package from a Class diagram or from the entire model. If you delete a package from the
model, the package and all of its contents will be removed.

To remove a package from a Class diagram:

1.
Sel