

Table of Contents
Mastering UML with Rational Rose 2002..1

Chapter 1: Introduction to UML...4
Introduction to the Object−Oriented Paradigm...4

Encapsulation..5
Inheritance..6
Polymorphism...8

What Is Visual Modeling?...8
Systems of Graphical Notation..9

Booch Notation...10
Object Management Technology (OMT)...10
Unified Modeling Language (UML)..11

Understanding UML Diagrams..12
Business Use Case Diagrams..13
Use Case Diagrams...14
Activity Diagrams...14
Sequence Diagrams...16
Collaboration Diagrams..17
Class Diagrams...17
Statechart Diagrams..18
Component Diagrams...19
Deployment Diagrams..21

Visual Modeling and the Software Development Process...22
Inception...24
Elaboration..24
Construction..25
Transition..26

Summary..26

Chapter 2: A Tour of Rose...27
What Is Rose?..27
Getting Around in Rose...30

Parts of the Screen..31
Exploring Four Views in a Rose Model..38

Use Case View..38
Logical View...40
Component View..42
Deployment View...43

Working with Rose..45
Creating Models..45
Saving Models..46
Exporting and Importing Models..47
Publishing Models to the Web..48
Working with Controlled Units..50
Using the Model Integrator...52
Working with Notes..53
Working with Packages..54
Adding Files and URLs to Rose Model Elements..56
Adding and Deleting Diagrams..56

Setting Global Options...57
Working with Fonts..58
Working with Colors..58

Table of Contents
Chapter 2: A Tour of Rose

Summary..59

Chapter 3: Business Modeling...61
Introduction to Business Modeling..61

Why Model the Business?..61
Do I Need to Do Business Modeling?..62
Business Modeling in an Iterative Process...63

Business−Modeling Concepts..66
Business Actors...66
Business Workers...67
Business Use Cases...68
Business Use Case Diagrams..69
Activity Diagrams...70
Business Entities...72
Organization Unit...73

Where Do I Start?..74
Identifying the Business Actors..74
Identifying the Business Workers...75
Identifying the Business Use Cases..76
Showing the Interactions..76
Documenting the Details..77

Creating Business Use Case Diagrams..78
Deleting Business Use Case Diagrams...79
The Use Case Diagram Toolbar..80
Adding Business Use Cases..80
Business Use Case Specifications...81
Assigning a Priority to a Business Use Case..83
Viewing Diagrams for a Business Use Case..83
Viewing Relationships for a Business Use Case..86

Working with Business Actors..87
Adding Business Actors..87
Adding Actor Specifications...88
Assigning an Actor Stereotype...89
Setting Business Actor Multiplicity..89
Viewing Relationships for a Business Actor..90

Working with Relationships..91
Association Relationship..91
Generalization Relationship..92

Working with Organization Units..94
Adding Organization Units...94
Deleting Organization Units...95

Activity Diagrams..95
Adding an Activity Diagram...96
Adding Details to an Activity Diagram..97

Summary..102

Chapter 4: Use Cases and Actors..104
Use Case Modeling Concepts..104

Actors..104
Use Cases..105
Traceability...107

Table of Contents
Chapter 4: Use Cases and Actors

Flow of Events..108
Relationships...114

Use Case Diagrams..118
Activity Diagrams..119

Activity...120
Start and End States..121
Objects and Object Flows...121
Transitions..122
Synchronization..122

Working with Use Cases in Rational Rose..123
The Use Case Diagram Toolbar..123
Creating Use Case Diagrams..124
Deleting Use Case Diagrams..126
Adding Use Cases...127
Deleting Use Cases...129
Use Case Specifications..130
Naming a Use Case...131
Viewing Participants of a Use Case..132
Assigning a Use Case Stereotype...132
Assigning a Priority to a Use Case...133
Creating an Abstract Use Case...133
Viewing Diagrams for a Use Case..134
Viewing Relationships for a Use Case...136

Working with Actors..137
Adding Actors...137
Deleting Actors...139
Actor Specifications..139
Naming Actors..141
Assigning an Actor Stereotype...142
Setting Actor Multiplicity...142
Creating an Abstract Actor...143
Viewing Relationships for an Actor...144
Viewing an Actor's Instances..145

Working with Relationships..145
Association Relationship..145
Includes Relationship..146
Extends Relationship..148
Generalization Relationship..148

Working with Activity Diagrams...149
The Activity Diagram Toolbar...149
Creating Activity Diagrams..150
Deleting Activity Diagrams..154

Exercise..154
Problem Statement..154
Create a Use Case Diagram..154

Summary..157

Chapter 5: Object Interaction...159
Interaction Diagrams..159

What Is an Object?..161
What Is a Class?..161

Table of Contents
Chapter 5: Object Interaction

Where Do I Start?...162
Finding Objects...162
Finding the Actor..163
Using Interaction Diagrams..164

Sequence Diagrams..164
The Sequence Diagram Toolbar...165

Collaboration Diagrams...166
The Collaboration Diagram Toolbar...167

Working with Actors on an Interaction Diagram..167
Working with Objects..168

Adding Objects to an Interaction Diagram...168
Deleting Objects from an Interaction Diagram...169
Setting Object Specifications..169
Naming an Object...170
Mapping an Object to a Class...171
Setting Object Persistence..173
Using Multiple Instances of an Object...174

Working with Messages...175
Adding Messages to an Interaction Diagram..175
Adding Messages to a Sequence Diagram..175
Deleting Messages from a Sequence Diagram...176
Reordering Messages in a Sequence Diagram..176
Message Numbering in a Sequence Diagram...177
Viewing the Focus of Control in a Sequence Diagram..178
Adding Messages to a Collaboration Diagram...179
Deleting Messages from a Collaboration Diagram...180
Message Numbering in a Collaboration Diagram..181
Adding Data Flows to a Collaboration Diagram..181
Setting Message Specifications..182
Naming a Message..182
Mapping a Message to an Operation..183
Setting Message Synchronization Options...185
Setting Message Frequency..188

End of a Lifeline..189
Working with Scripts...189
Switching Between Sequence and Collaboration Diagrams..191
Two−Pass Approach to Interaction Diagrams...192
Exercise..195

Problem Statement..195
Create Interaction Diagrams...195

Summary..200

Chapter 6: Classes and Packages..201
Logical View of a Rose Model..201
Class Diagrams..201

What Is a Class?..202
Finding Classes...203
Creating Class Diagrams..205
Deleting Class Diagrams..207
Organizing Items on a Class Diagram..207
Using the Class Diagram Toolbar...208

Table of Contents
Chapter 6: Classes and Packages

Working with Classes..209
Adding Classes...209

Class Stereotypes...212
Analysis Stereotypes...212
Class Types...217
Interfaces...224
Web Modeling Stereotypes...225
Other Language Stereotypes...228

Class Specifications...230
Naming a Class...231
Setting Class Visibility...232
Setting Class Multiplicity...233
Setting Storage Requirements for a Class...234
Setting Class Persistence..234
Setting Class Concurrency..235
Creating an Abstract Class..235
Viewing Class Attributes..236
Viewing Class Operations..236
Viewing Class Relationships..237
Using Nested Classes..237
Viewing the Interaction Diagrams That Contain a Class...238
Setting Java Class Specifications..239
Setting CORBA Class Specifications...241

Working with Packages...242
Adding Packages...242
Deleting Packages...243

Exercise..244
Problem Statement..244
Creating a Class Diagram...244

Summary..250

Chapter 7: Attributes and Operations..251
Working with Attributes..251

Finding Attributes...251
Adding Attributes...252
Deleting Attributes..255
Setting Attribute Specifications..256
Setting the Attribute Containment..264
Making an Attribute Static..265
Specifying a Derived Attribute...265

Working with Operations...266
Finding Operations...267
Adding Operations..268
Deleting Operations..271
Setting Operation Specifications..272
Adding Arguments to an Operation..278
Specifying the Operation Protocol..279
Specifying the Operation Qualifications...280
Specifying the Operation Exceptions...281
Specifying the Operation Size..281
Specifying the Operation Time...281

Table of Contents
Chapter 7: Attributes and Operations

Specifying the Operation Concurrency...282
Specifying the Operation Preconditions...282
Specifying the Operation Postconditions..283
Specifying the Operation Semantics...284

Displaying Attributes and Operations on Class Diagrams..285
Showing Attributes...286
Showing Operations..288
Showing Visibility..290
Showing Stereotypes...291

Mapping Operations to Messages..292
Mapping an Operation to a Message on an Interaction Diagram...294

Exercise..295
Problem Statement..295
Add Attributes and Operations...296

Summary..300

Chapter 8: Relationships..301
Relationships..301

Types of Relationships..301
Finding Relationships...303

Associations...304
Using Web Association Stereotypes...306
Creating Associations...307
Deleting Associations...310

Dependencies...311
Creating Dependencies...313
Deleting Dependencies...314

Package Dependencies...315
Creating Package Dependencies...316
Deleting Package Dependencies...317

Aggregations..317
Creating Aggregations..318
Deleting Aggregations..320

Generalizations..321
Creating Generalizations...322
Deleting Generalizations...323

Working with Relationships..324
Setting Multiplicity...324
Using Relationship Names..326
Using Stereotypes...327
Using Roles...328
Setting Export Control..330
Using Static Relationships..331
Using Friend Relationships...332
Setting Containment...333
Using Qualifiers..334
Using Link Elements..335
Using Constraints..336

Exercise..338
Problem Statement..338
Adding Relationships..338

Table of Contents
Chapter 8: Relationships

Summary..340

Chapter 9: Object Behavior...341
Statechart Diagrams...341

Creating a Statechart Diagram..342
Adding States..343
Adding State Details...344
Adding Transitions...349
Adding Transition Details...350
Adding Special States...352
Using Nested States and State History...353

Exercise..355
Problem Statement..355
Create a Statechart Diagram...356

Summary..359

Chapter 10: Component View...360
What Is a Component?...360

Types of Components...360
Component Diagrams..362

Creating Component Diagrams..363
Adding Components...364
Adding Component Details..367
Adding Component Dependencies...372

Exercise..373
Problem Statement..373

Summary..380

Chapter 11: Deployment View...381
Deployment Diagrams...381

Opening the Deployment Diagram...381
Adding Processors..382
Adding Processor Details..384
Adding Devices...387
Adding Device Details..389
Adding Connections...391
Adding Connection Details...392
Adding Processes..394

Exercise..397
Problem Statement..397
Create Deployment Diagram..397

Summary..400

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose.............401
Preparing for Code Generation..401

Step One: Check the Model..402
Step Two: Create Components...404
Step Three: Map Classes to Components...405
Step Four: Set the Code−Generation Properties...406
Step Five: Select a Class, Component, or Package...409
Step Six: Generate Code...409

Table of Contents
Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

What Gets Generated?...410
Introduction to Reverse Engineering Using Rational Rose...411
Model Elements Created During Reverse Engineering...412
Round−Trip Engineering...415
Summary..415

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering.............................417
Generating Code in ANSI C++ and Visual C++...417
Converting a C++ Model to an ANSI C++ Model..418
ANSI C++ Code−Generation Properties...419

Class Properties...420
Attribute Properties...421
Operation Properties...422
Package (Class Category) Properties..424
Component (Module Specification) Properties..424
Role Properties..427
Generalization Properties..428

Visual C++ Code−Generation Properties..428
Class Model Assistant...428
Component Properties...431
Project Properties..433
Visual C++ and ATL Objects...434

Generated Code..435
Code Generated for Classes..435
Code Generated for Attributes..439
Code Generated for Operations..441

Visual C++ Code Generation...443
Reverse Engineering ANSI C++..443
Reverse Engineering Visual C++..445
Summary..445

Chapter 14: Java Code Generation and Reverse Engineering...447
Overview..447
Introduction to Rose J..448
Beginning a Java Project..449

Selecting a Java Framework...449
Linking to IBM VisualAge for Java...450
Linking to Microsoft Visual J++..451

Java Code−Generation Properties..451
Project Properties..452
Class Properties...456
Attribute Properties...458
Operation Properties...459
Module Properties...460
Role Properties..461

Generating Code..462
Generated Code..462

Classes..463
Attributes..465
Operations...466
Bidirectional Associations..468

Table of Contents
Chapter 14: Java Code Generation and Reverse Engineering

Unidirectional Associations..471
Associations with a Multiplicity of One to Many...472
Associations with a Multiplicity of Many to Many..474
Reflexive Associations...476
Aggregations...476
Dependency Relationships..478
Generalization Relationships..479
Interfaces...480
Java Beans...481

Support for J2EE..484
EJBs..484
Servlets..487
JAR and WAR Files...488
Automated J2EE Deployment..489

Reverse Engineering..490
Summary..491

Chapter 15: Visual Basic Code Generation and Reverse Engineering..493
Starting a Visual Basic Project..494
Visual Basic Code−Generation Properties..494

Class Properties...495
Attribute Properties...498
Operation Properties...499
Module Specification Properties...502
Role Properties..503
Generalization Properties..504

Using the Code−Generation Wizard..505
Generated Code..509

Classes..509
Attributes..530
Operations...531
Bidirectional Associations..531
Unidirectional Associations..533
Associations with a Multiplicity of One to Many...534
Associations with a Multiplicity of Many to Many..534
Reflexive Associations...535
Aggregations...535
Dependency Relationships..536
Generalization Relationships..536

Reverse Engineering..537
Summary..539

Chapter 16: XML DTD Code Generation and Reverse Engineering..541
Overview..541
Introduction to XML DTD...542

Elements..542
Attributes..543
Entities and Notations...543

DTD−to−UML Mapping...545
DTD Code−Generation Properties...546

Project Properties..546

Table of Contents
Chapter 16: XML DTD Code Generation and Reverse Engineering

Class Properties...547
Attribute Properties...551
Role Properties..552
Component Properties...553

Generating Code..554
Generated Code..554

Classes..555
Attributes..562

Reverse Engineering DTD...564
Summary..565

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering..567
CORBA/IDL Code−Generation Properties...567

Project Properties..568
Class Properties...570
Attribute Properties...575
Operation Properties...576
Module Properties...578
Association (Role) Properties...579
Dependency Properties...580

Generated Code..581
Classes..581
Attributes..588
Operations...591
Bidirectional Associations..591
Unidirectional Associations..595
Associations with a Multiplicity of One to Many...595
Associations with a Multiplicity of Many to Many..599
Associations with Bounded Multiplicity..600
Reflexive Associations...602
Aggregations...604
Dependency Relationships..604
Generalization Relationships..605
Reverse Engineering CORBA Source Code...608

Summary..609

Chapter 18: Rose Data Modeler..610
Object Models and Data Models..610
Creating a Data Model...612
Logic in a Data Model...613
Adding a Database...614

Adding Tablespaces..615
Adding a Schema...621

Creating a Data Model Diagram...622
Creating Domain Packages and Domains..623
Adding Tables..626

Adding Columns...628
Setting a Primary Key...631
Adding Constraints...631
Adding Triggers..633
Adding Indexes...635

Table of Contents
Chapter 18: Rose Data Modeler

Adding Stored Procedures...636
Adding Relationships...639

Adding Referential Integrity Rules...642
Working with Views..644
Generating an Object Model from a Data Model..648
Generating a Data Model from an Object Model..649
Generating a Database from a Data Model..651
Updating an Existing Database..653
Reverse Engineering a Database..655
Summary..656

Chapter 19: Web Modeling..657
Modeling a Web Application...657

Web Class Stereotypes..659
Relationships...666

Reverse Engineering a Web Application...668
Generating Code for a Web Application...670
Summary..671

Appendix: Getting Started with UML..672
Building a Business Use Case Diagram...672
Building a Workflow (Activity) Diagram..675
Building a Use Case Diagram..679
Building an Interaction Diagram...684
Building a Class Diagram..688
Web Modeling...691
Adding Class Relationships...694
Building a Statechart Diagram...696
Building a Component Diagram..699
Building a Deployment Diagram...701

Mastering UML with Rational Rose 2002
Wendy Boggs
Michael Boggs

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved.
No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photograph, magnetic, or other record, without the prior agreement
and written permission of the publisher.

Associate Publisher: Richard Mills
Acquisitions Editor: Peter Arnold
Developmental Editor: Tom Cirtin
Editor: Donna Crossman
Production Editor: Mae Lum
Technical Editor: Eric Aker
Graphic Illustrator: Tony Jonick
Electronic Publishing Specialist: Jill Niles
Proofreaders: Emily Hsuan, Nelson Kim, Yariv Rabinovitch, Nancy Riddiough
Indexer: Nancy Guenther
CD Coordinator: Christine Detlefs
CD Technician: Kevin Ly
Book Designer: Maureen Forys, Happenstance Type−O−Rama
Cover Designer: Design Site
Cover Illustrator: Tania Kac, Design Site

An earlier version of this book was published under the title Mastering UML with Rational Rose, © 1999,
SYBEX Inc.

Library of Congress Card Number: 2001096976

ISBN: 0−7821−4017−3

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United
States and/or other countries.

Mastering is a trademark of SYBEX Inc.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991−1999 Inbit Incorporated. All rights
reserved.FullShot is a trademark of Inbit Incorporated.

The CD interface was created using Macromedia Director, COPYRIGHT 1994, 1997–1999 Macromedia Inc.
For more information on Macromedia and Macromedia Director, visit http://www.macromedia.com/.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final
release software whenever possible. Portions of the manuscript may be based upon pre−release versions
supplied by software manufacturer(s). The author and the publisher make no representation or warranties of

1

any kind with regard to the completeness or accuracy of the contents herein and accept no liability of any kind
including but not limited to performance, merchantability, fitness for any particular purpose, or any losses or
damages of any kind caused or alleged to be caused directly or indirectly from this book.

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book that are available now or in the future contain
programs and/or text files (the "Software") to be used in connection with the book. SYBEX hereby grants to
you a license to use the Software, subject to the terms that follow. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless otherwise indicated and is protected by copyright
to SYBEX or other copyright owner(s) as indicated in the media files (the "Owner(s)"). You are hereby
granted a single−user license to use the Software for your personal, noncommercial use only. You may not
reproduce, sell, distribute, publish, circulate, or commercially exploit the Software, or any portion thereof,
without the written consent of SYBEX and the specific copyright owner(s) of any component software
included on this media.

In the event that the Software or components include specific license requirements or end−user agreements,
statements of condition, disclaimers, limitations or warranties ("End−User License"), those End−User
Licenses supersede the terms and conditions herein as to that particular Software component. Your purchase,
acceptance, or use of the Software will constitute your acceptance of such End−User Licenses.

By purchase, use or acceptance of the Software you further agree to comply with all export laws and
regulations of the United States as such laws and regulations may exist from time to time.

Software Support

Components of the supplemental Software and any offers associated with them may be supported by the
specific Owner(s) of that material, but they are not supported by SYBEX. Information regarding any available
support may be obtained from the Owner(s) using the information provided in the appropriate read.me files or
listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor any offer, SYBEX
bears no responsibility. This notice concerning support for the Software is provided for your information only.
SYBEX is not the agent or principal of the Owner(s), and SYBEX is in no way responsible for providing any
support for the Software, nor is it liable or responsible for any support provided, or not provided, by the
Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical defects for a period of ninety (90) days after
purchase. The Software is not available from SYBEX in any other form or media than that enclosed herein or
posted to http://www.sybex.com/. If you discover a defect in the media during this warranty period, you may
obtain a replacement of identical format at no charge by sending the defective media, postage prepaid, with
proof of purchase to:

SYBEX Inc.
Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501

Mastering UML with Rational Rose 2002

2

Web: http://www.sybex.com/

After the 90−day period, you can obtain replacement media of identical format by sending us the defective
disk, proof of purchase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed or implied, with respect to the Software or its
contents, quality, performance, merchantability, or fitness for a particular purpose. In no event will SYBEX,
its distributors, or dealers be liable to you or any other party for direct, indirect, special, incidental,
consequential, or other damages arising out of the use of or inability to use the Software or its contents even if
advised of the possibility of such damage. In the event that the Software includes an online update feature,
SYBEX further disclaims any obligation to provide this feature for any specific duration other than the initial
posting.

The exclusion of implied warranties is not permitted by some states. Therefore, the above exclusion may not
apply to you. This warranty provides you with specific legal rights; there may be other rights that you may
have that vary from state to state. The pricing of the book with the Software by SYBEX reflects the allocation
of risk and limitations on liability contained in this agreement of Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are distributed as shareware. Copyright laws apply to both
shareware and ordinary commercial software, and the copyright Owner(s) retains all rights. If you try a
shareware program and continue using it, you are expected to register it. Individual programs differ on details
of trial periods, registration, and payment. Please observe the requirements stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy−protected or encrypted. However, in all cases,
reselling or redistributing these files without authorization is expressly forbidden except as specifically
provided for by the Owner(s) therein.

Acknowledgments

A great deal of effort goes into writing a book. While some of this work is done by the authors, a lot of it is
done by a whole team of people. We would like to thank everyone involved in this book. Thanks to Richard
Mills and Jordan Gold at Sybex for making it possible, and to Tom Cirtin, who was instrumental in getting the
book ready for publication. Thanks to Eric Aker for performing the technical review. Thanks to the editorial
and production team at Sybex: Mae Lum, Donna Crossman, Jill Niles, Christine Detlefs, Kevin Ly, and Tony
Jonick. Thanks to indexer Nancy Guenther and thanks to the proofreaders: Emily Hsuan, Nelson Kim, Yariv
Rabinovitch, and Nancy Riddiough. We couldn't have done it without all of you.

Mastering UML with Rational Rose 2002

3

Chapter 1: Introduction to UML
The pace of business is getting faster and faster, with a greater need to compete and sustain a market. In this
age of e−commerce, e−business, e−tailing, and other e's, "traditional" system development just doesn't cut it
anymore. Systems now must be developed in "Internet time." Also, this faster pace has increased the need for
flexible systems. Before, a user could send a request to the data−processing center and wait two years for a
change. Now a user sends a request for change to the IT department and demands it in two weeks! Six−week
development cycles, demanding managers, demanding users, and even the concept of XP (extreme
programming) drive this point: System changes must happen fast!

This is where the Unified Modeling Language (UML) enters the picture. UML is the industry−standard
modeling notation for object−oriented systems, and is the premiere platform for rapid application
development. In this chapter, we describe how UML came into being, introduce the concepts of
object−oriented programming, and show you how to use UML to structure your applications.

•
Learning about the object−oriented paradigm and visual modeling

•
Exploring types of graphical notation

•
Looking at types of UML diagrams

•
Developing software using visual modeling

Introduction to the Object−Oriented Paradigm

Structured programming was the mainstream in the earlier days of software engineering. Programmers began
developing standard blocks of code to perform operations like printing, and then copied and pasted that code
into every application they wrote. While this reduced the development time for new applications, it was
difficult if a change was needed in that block of code, because the developer had to make the change
everywhere that code had been copied. Structured programming presented some challenges for which
object−oriented programming was designed to solve.

With object−oriented programming, developers create blocks of code, called objects. These objects are then
used by the various applications. Should one of the objects require modification, a developer needs to make
the change only once. Companies are rushing out to adopt this technology and integrate it into their existing
applications. In fact, most applications being developed today are object−oriented. Some languages, such as
Java, require an object−oriented structure. But what does it mean?

The object−oriented paradigm is a different way of viewing applications. With the object−oriented approach,
you divide an application into many small chunks, or objects, that are fairly independent of one another. You
can then build the application by piecing all of these objects together. Think of it as building a castle out of
blocks. The first step is to make or buy some basic objects, the different types of blocks. Once you have these
building blocks, you can put them together to make your castle. Once you build or buy some basic objects in
the computer world, you can simply put them together to create new applications.

4

In the world of structured programming, to create a form with a list box, for example, you would need to write
voluminous code: the code to create the form itself, the code to create and populate the list box, and the code
to create an OK button that will accept the value in the list box. With object−oriented programming, on the
other hand, you simply need to use three (typically prebuilt) objects: a form, a list box, and an OK button. The
exercise of coding used to be along the lines of "create from scratch, but copy whatever you can find from old
programs to save some time." The newer paradigm is "put together a bunch of objects, and then just focus on
what's unique to this particular application."

One of the primary advantages of the object−oriented paradigm is the ability to build components once and
then use them over and over again. Just as you can reuse a toy building block in a castle or a house, you can
reuse a basic piece of object−oriented design and code in an accounting system, an inventory system, or an
order−processing system.

So, how is this object−oriented paradigm different from the traditional approach to development?
Traditionally, the approach to development has been to concern ourselves with the information that the system
will maintain. With this approach, we ask the users what information they will need, design databases to hold
the information, provide screens to input the information, and print reports to display the information. In other
words, we focus on the information and pay less attention to what is done with the information or the behavior
of the system. This approach is called data−centric and has been used to create thousands of systems over the
years.

Data−centric modeling is great for database design and capturing information, but taking this approach when
designing business applications presents some problems. One major challenge is that the requirements for the
system will change over time. A system that is data−centric can handle a change to the database very easily,
but a change to the business rules or to the behavior of the system is not so easy to implement.

The object−oriented paradigm has been developed in response to this problem. With the object−oriented
approach, we focus on both information and behavior. Accordingly, we now can develop systems that are
resilient and flexible to changes in information and/or behavior.

The benefit of flexibility can be realized only by designing an object−oriented system well. This requires
knowledge of some principles of object orientation: encapsulation, inheritance, and polymorphism.

Encapsulation

In object−oriented systems, we combine a piece of information with the specific behavior that acts upon that
information. Then we package these into an object. This is referred to as encapsulation. Another way to look
at encapsulation is that we divide the application into small parts of related functionality. For example, we
have information relating to a bank account, such as the account number, balance, customer name, address,
account type, interest rate, and opening date. We also have behavior for a bank account: open, close, deposit,
withdraw, change type, change customer, and change address. We encapsulate this information and behavior
together into an account object. As a result, any changes to the banking system regarding accounts can simply
be implemented in the account object. It works like a one−stop shop for all account information and behavior.

Another benefit of encapsulation is that it limits the effects of changes to the system. Think of a system as a
body of water and the requirement change as a big rock. You drop the rock into the water
and—SPLASH!—big waves are created in all directions. They travel throughout the lake, bounce off the
shore, reverberate, and collide with other waves. In fact, some of the water may even splash over the shore
and out of the lake. In other words, the rock hitting the water caused a huge ripple effect. But if we
encapsulate our lake by dividing it into smaller bodies of water with barriers between them, then the
requirement change hits the system—SPLASH! As before, waves are created in all directions. But the waves

Chapter 1: Introduction to UML

5

can only go as far as one of the barriers, and then they stop. So, by encapsulating the lake, we have limited the
ripple effect of dropping the rock in, as shown in Figure 1.1.

Figure 1.1: Encapsulation: Lake model

Let's apply this idea of encapsulation to the banking system. Recently, the bank management decided that if
the customer has a credit account at the bank, the credit account could be used as an overdraft for their
checking account. In a nonencapsulated system, we begin with a shotgun approach to impact analysis.
Basically, we do not know where all of the uses of withdraw functionality are in the system, so we have to
look everywhere. When we find it, we have to make some changes to incorporate this new requirement. If
we're really good, we probably found about 80 percent of the uses of withdraw within the system. With an
encapsulated system, we do not need to use the shotgun approach to analysis. We look at a model of our
system and simply find where the withdrawal behavior was encapsulated. After locating the functionality in
the account, we make our requirement change once, only in that object, and our task is complete! As you can
see in Figure 1.2, only the Account class needs to change.

A concept similar to encapsulation is information hiding. Information hiding is the ability to hide the murky
details of an object from the outside world. To an object, the outside world means anything outside of itself,
even though that outside world includes the rest of the system. Information hiding provides the same benefit
as encapsulation: flexibility. We will explore this concept more in Chapter 6, "Classes and Packages."

Figure 1.2: Encapsulation: Banking model

Inheritance

Inheritance is the second of the fundamental object−oriented concepts. No, it has nothing to do with the
million dollars you're leaving for little Johnny. It has more to do with the nose you got from your father or
mother. In object−oriented systems, inheritance is a mechanism that lets you create new objects based on old
ones: The child object inherits the qualities of a parent object.

Chapter 1: Introduction to UML

6

You can see examples of inheritance in the natural world. There are hundreds of different types of mammals:
dogs, cats, humans, whales, and so on. Each of these has certain characteristics that are unique and certain
characteristics that are common to the whole group, such as having hair, being warm−blooded, and nurturing
their young. In object−oriented terms, there is a mammal object that holds the common characteristics. This
object is the parent of the child objects cat, dog, human, whale, etc. The dog object inherits the characteristics
of the mammal object, and has some additional dog characteristics of its own, such as running in circles and
slobbering. The object−oriented paradigm has borrowed this idea of inheritance from the natural world, as
shown in Figure 1.3, so we can apply the same concept to our systems.

Figure 1.3: Inheritance: Natural model

One of the major benefits of inheritance is ease of maintenance. When something changes that affects all
mammals, only the parent object needs to change—the child objects will automatically inherit the changes. If
mammals were suddenly to become cold−blooded, only the mammal object would need to change. The cat,
dog, human, whale, and other child objects would automatically inherit the new, cold−blooded characteristic
of mammals.

In an object−oriented system, an example of inheritance might be in the windows. Say we have a large system
with 125 windows. One day, a customer requests a disclaimer message on all of the windows. In a system
without inheritance, we now have the rather tedious task of going into each one of the 125 windows and
making the change. If our system were object−oriented, we would have inherited all of the windows from a
common parent. Now, all we need to do is go into the parent and make the change once. All of the windows
will automatically inherit the change, as shown in Figure 1.4.

Figure 1.4: Inheritance: Window model

In a banking system, we might use inheritance for the different types of accounts we have. Our hypothetical
bank has four different types of accounts: checking, savings, credit card, and certificates of deposit. These
different types of accounts have some similarities. Each one has an account number, interest rate, and owner.
So, we can create a parent object called account to hold the common characteristics of all the accounts. The
child objects can have their own unique characteristics in addition to the inherited ones. The credit account,
for example, will also have a credit limit and minimum payment amount. The certificate of deposit will also
have a maturity date. Changes to the parent will affect all children, but the children are free to adapt without

Chapter 1: Introduction to UML

7

disturbing each other or their parents.

Polymorphism

The third principle of object orientation is polymorphism. The dictionary defines it as the occurrence of
different forms, stages, or types. Polymorphism means having many forms or implementations of a particular
functionality. As with inheritance, polymorphism can be seen in the natural world. Given the command, or
function, of "Speak!" a human may reply, "How do you do?" The dog may reply "Woof!" The cat may reply
"Meow!" but will probably just ignore you.

In terms of an object−oriented system, this means that we can have many implementations of a particular
functionality. For example, we might be building a graphic drawing system. When the user wants to draw
something, be it a line, circle, or rectangle, the system issues a draw command. The system is comprised of
many types of shapes, each of which contains the behavior to draw itself. So, when the user wants to draw a
circle, the circle object's draw command is invoked. By using polymorphism, the system figures out as it is
running which type of shape is being drawn. Without polymorphism, the code for the draw function might
look like this:

Function Shape.drawMe()
{
SWITCH Shape.Type
Case "Circle"
Shape.drawCircle();
Case "Rectangle"
Shape.drawRectangle();
Case "Line"
Shape.drawLine();
END SWITCH
}

With polymorphism, the code for draw would just call a drawMe() function for the object being drawn, as in
this example:

Function draw()
{
Shape.drawMe();
}

Each shape (circle, line, rectangle, etc.) would then have a drawMe() function to draw the particular shape.

One of the benefits of polymorphism, as with the other principles of object orientation, is ease of maintenance.
What happens, for example, when the application now needs to draw a triangle? In the nonpolymorphic case,
a new drawTriangle() function has to be added to the shape object. Also, the drawMe() function of the shape
object has to be changed to accommodate the new type of shape. With polymorphism, we create a new
triangle object with a drawMe() function to draw itself. The draw() function that initiates the drawing
operation does not have to change at all.

What Is Visual Modeling?

If you were building a new addition to your house, you probably wouldn't start by just buying a bunch of
wood and nailing it together until it looks about right. Similarly, you'd be more than a little concerned if the

Chapter 1: Introduction to UML

8

contractor doing the job decided to "wing it" and work without plans. You'd want some blueprints to follow so
you can plan and structure the addition before you start working. Odds are, the addition will last longer this
way. You wouldn't want the whole thing to come crashing down with the slightest rain.

Models do the same thing for us in the software world. They are the blueprints for systems. A blueprint helps
you plan an addition before you build it; a model helps you plan a system before you build it. It can help you
be sure the design is sound, the requirements have been met, and the system can withstand even a hurricane of
requirement changes.

As you gather requirements for your system, you'll take the business needs of the users and map them into
requirements that your team can use and understand. Eventually, you'll want to take these requirements and
generate code from them. By formally mapping the requirements to the code, you can ensure that the
requirements are actually met by the code, and that the code can easily be traced back to the requirements.
This process is called modeling. The result of the modeling process is the ability to trace the business needs to
the requirements to the model to the code, and back again, without getting lost along the way.

Visual modeling is the process of taking the information from the model and displaying it graphically using a
standard set of graphical elements. A standard is vital to realizing one of the benefits of visual modeling:
communication. Communication between users, developers, analysts, testers, managers, and anyone else
involved with a project is the primary purpose of visual modeling. You could accomplish this communication
using nonvisual (textual) information, but on the whole, humans are visual creatures. We seem to be able to
understand complexity better when it is displayed to us visually as opposed to written textually. By producing
visual models of a system, we can show how the system works on several levels. We can model the
interactions between the users and a system. We can model the interactions of objects within a system. We
can even model the interactions between systems, if we so desire.

After creating these models, we can show them to all interested parties, and those parties can glean the
information they find valuable from the model. For example, users can visualize the interactions they will
make with the system from looking at a model. Analysts can visualize the interactions between objects from
the models. Developers can visualize the objects that need to be developed and what each one needs to
accomplish. Testers can visualize the interactions between objects and prepare test cases based on these
interactions. Project managers can see the whole system and how the parts interact. And chief information
officers can look at high−level models and see how systems in their organization interact with one another.
All in all, visual models provide a powerful tool for showing the proposed system to all of the interested
parties.

Systems of Graphical Notation

One important consideration in visual modeling is what graphical notation to use to represent various aspects
of a system. This notation needs to be conveyed to all interested parties or the model will not be very useful.
Many people have proposed notations for visual modeling. Some of the popular notations that have strong
support are Booch, Object Modeling Technology (OMT), and UML.

Rational Rose supports these three notations; however, UML is a standard that has been adopted by the
majority of the industry as well as the standards' governing boards such as ANSI and the Object Management
Group (OMG).

Chapter 1: Introduction to UML

9

Booch Notation

The Booch method is named for its inventor, Grady Booch, at Rational Software Corporation. He has written
several books discussing the needs and benefits of visual modeling, and has developed a notation of graphical
symbols to represent various aspects of a model. For example, objects in this notation are represented by
clouds, illustrating the fact that objects can be almost anything. Booch's notation also includes various arrows
to represent the types of relationships between objects. We will discuss these types of objects and
relationships in Chapter 4, "Use Cases and Actors." Figure 1.5 is a sampling of the objects and relationships
represented in the Booch notation.

Figure 1.5: Examples of symbols in the Booch notation

Object Management Technology (OMT)

The OMT notation comes from Dr. James Rumbaugh, who has written several books about systems analysis
and design. In an aptly titled book, Object−Oriented Modeling and Design (Prentice Hall, 1990), Rumbaugh
discusses the importance of modeling systems in real−world components called objects. OMT uses simpler
graphics than Booch to illustrate systems. A sampling of the objects and relationships represented in the OMT
notation follows in Figure 1.6.

Chapter 1: Introduction to UML

10

Figure 1.6: Examples of symbols in the OMT notation

Unified Modeling Language (UML)

UML notation comes from a collaborative effort of Grady Booch, Dr. James Rumbaugh, Ivar Jacobson,
Rebecca Wirfs−Brock, Peter Yourdon, and many others. Jacobson is a scholar who has written about
capturing system requirements in packages of transactions called use cases. We will discuss use cases in detail
in Chapter 4. Jacobson also developed a method for system design called Object−Oriented Software
Engineering (OOSE) that focused on analysis. Booch, Rumbaugh, and Jacobson, commonly referred to as the
"three amigos," all work at Rational Software Corporation and focus on the standardization and refinement of
UML. UML symbols closely match those of the Booch and OMT notations, and also include elements from
other notations. Figure 1.7 shows a sample of UML notation.

Chapter 1: Introduction to UML

11

Figure 1.7: Examples of symbols in UML notation

The consolidation of methods that became UML started in 1993. Each of the three amigos of UML began to
incorporate ideas from the other methodologies. Official unification of the methodologies continued until late
1995, when version 0.8 of the Unified Method was introduced. The Unified Method was refined and changed
to the Unified Modeling Language in 1996. UML 1.0 was ratified and given to the Object Technology Group
in 1997, and many major software development companies began adopting it. In 1997, OMG released UML
1.1 as an industry standard.

Over the past years, UML has evolved to incorporate new ideas such as web−based systems and data
modeling. The latest release is UML 1.3, which was ratified in 2000. The specification for UML 1.3 can be
found at the Object Management Group's website, http://www.omg.org/. UML 1.3 is the version used in this
book.

Understanding UML Diagrams

UML allows people to develop several different types of visual diagrams that represent various aspects of the
system. Rational Rose supports the development of the majority of these models, as follows:

•
Business Use Case diagram

•
Use Case diagram

•
Activity diagram

•

Chapter 1: Introduction to UML

12

Sequence diagram

•
Collaboration diagram

•
Class diagram

•
Statechart diagram

•
Component diagram

•
Deployment diagram

These model diagrams illustrate different aspects of the system. For example, the Collaboration diagram
shows the required interaction between the objects in order to perform some functionality of the system. Each
diagram has a purpose and an intended audience.

Business Use Case Diagrams

Business Use Case diagrams are used to represent the functionality provided by an organization as a whole.
They answer the questions "What does the business do?" and "Why are we building the system?" They are
used extensively during business modeling activities to set the context for the system and to form a foundation
for creating the use cases. An example of a simplified Business Use Case diagram for a financial institution is
shown in Figure 1.8.

Figure 1.8: Business Use Case diagram for a financial institution

Business Use Case diagrams are drawn from the organizational perspective. They do not differentiate between
manual and automated processes. (Use Case diagrams, which will be discussed next, focus on the automated
processes.) Business Use Case diagrams show the interactions between business use cases and business actors.
Business use cases represent the processes that a business performs, and business actors represent roles with
which the business interacts, such as customers or vendors. In other words, business actors represent anyone

Chapter 1: Introduction to UML

13

or anything outside the business that interacts with the business; they do not represent roles or workers within
a business. Workers within a business are represented by business workers, which are discussed in Chapter 3,
"Business Modeling."

Use Case Diagrams

Use Case diagrams show the interactions between use cases and actors. Use cases represent system
functionality, the requirements of the system from the user's perspective. Actors represent the people or
systems that provide or receive information from the system; they are among the stakeholders of a system.
Use Case diagrams, therefore, show which actors initiate use cases; they also illustrate that an actor receives
information from a use case. In essence, a Use Case diagram can illustrate the requirements of the system.

While Business Use Case diagrams are not concerned with what is automated, Use Case diagrams focus on
just the automated processes. There is not a one−to−one relationship between business use cases and use
cases. A single business use case may require 30 use cases, for example, to implement the process. An
example of a Use Case diagram for an Automated Teller Machine (ATM) system is shown in Figure 1.9.

Figure 1.9: Use Case diagram for an Automated Teller Machine (ATM) system

This Use Case diagram shows the interactions between the use cases and actors of an ATM system. In this
example, the bank's customer initiates a number of use cases: Withdraw Money, Deposit Funds, Transfer
Funds, Make Payment, View Balance, and Change PIN. A few of the relationships are worthy of further
mention. The bank officer can also initiate the Change PIN use case. The Make Payment use case shows an
arrow going to the credit system. External systems may be actors and, in this case, the credit system is shown
as an actor because it is external to the ATM system. The arrow going from a use case to an actor illustrates
that the use case produces some information that an actor uses. In this case, the Make Payment use case
provides credit card payment information to the credit system.

Much information can be gleaned from viewing Use Case diagrams. This one diagram shows the overall
functionality of the system. Users, project managers, analysts, developers, quality assurance engineers, and
anyone else interested in the system as a whole can view these diagrams and understand what the system is
supposed to accomplish.

Activity Diagrams

Activity diagrams illustrate the flow of functionality in a system. They may be used in business modeling to
show the business workflow. They may be used in requirements gathering to illustrate the flow of events
through a use case. These diagrams define where the workflow starts, where it ends, what activities occur

Chapter 1: Introduction to UML

14

during the workflow, and in what order the activities occur. An activity is a task that is performed during the
workflow.

The structure of an activity diagram is similar to a Statechart diagram, which we will discuss later in this
chapter. An example of an activity diagram is shown in Figure 1.10. The activities in the diagram are
represented by rounded rectangles. These are the steps that occur as you progress through the workflow.
Objects that are affected by the workflow are represented by squares. There is a start state, which represents
the beginning of the workflow, and an end state, which represents the end. Decision points are represented by
diamonds.

Figure 1.10: Activity diagram for opening an account

You can see the object flow through the diagram by examining the dashed lines. The object flow shows you
which objects are used or created by an activity and how the object changes state as it progresses through the
workflow. The solid lines, known as transitions, show how one activity leads to another in the process. If
needed, you can place greater detail on the transitions, describing the circumstances under which the transition
may or may not occur and what actions will be taken during the transition.

The activity diagram may be divided into vertical swimlanes. Each swimlane represents a different role within
the workflow. By looking at the activities within a given swimlane, you can find out the responsibility of that
role. By looking at the transitions between activities in different swimlanes, you can find out who needs to
communicate with whom. All of this is very valuable information when trying to model or understand the
business process.

Activity diagrams do not need to be created for every workflow, but they are powerful communication tools,
especially with large and complex workflows.

Chapter 1: Introduction to UML

15

Sequence Diagrams

Sequence diagrams are used to show the flow of functionality through a use case. For example, the Withdraw
Money use case has several possible sequences, such as withdrawing money, attempting to withdraw without
available funds, attempting to withdraw with the wrong PIN, and several others. The normal scenario of
withdrawing $20 (without any problems such as entering the wrong PIN or insufficient funds in the account)
is shown in Figure 1.11.

Figure 1.11: Sequence diagram for Joe withdrawing $20

This Sequence diagram shows the flow of processing through the Withdraw Money use case. Any actors
involved are shown at the top of the diagram; the customer actor is shown in the above example. The objects
that the system needs in order to perform the Withdraw Money use case are also shown at the top of the
diagram. Each arrow represents a message passed between actor and object or object and object to perform the
needed functionality. One other note about Sequence diagrams—they display objects, not classes. Classes
represent types of objects, as we'll discuss later in Chapter 5, "Object Interaction." Objects are specific;
instead of just customer, the Sequence diagram shows Joe.

The use case starts with the customer inserting his card into the card reader, an object indicated by the
rectangle at the top of the diagram. Then, the card reader reads the card number, opens Joe's account object,
and initializes the ATM screen. The screen prompts Joe for his PIN. He enters 1234. The screen verifies the
PIN with the account object and they match. The screen presents Joe with his options, and he chooses
withdraw. The screen then prompts Joe for the amount to withdraw. He chooses $20. Then, the screen
withdraws the funds from the account. This initiates a series of processes that the account object performs.
First, Joe's account verifies that the account contains at least $20. Then, it deducts the funds from the account.
Next, it instructs the cash dispenser to provide $20 in cash. Joe's account also instructs the dispenser to
provide a receipt. Lastly, it instructs the card reader to eject the card.

This Sequence diagram illustrated the entire flow of processing for the Withdraw Money use case by showing
a specific example of Joe withdrawing $20 from his account. Users can look at these diagrams to see the
specifics of their business processing. Analysts see the flow of processing in the Sequence diagrams.
Developers see objects that need to be developed and operations for those objects. Quality assurance

Chapter 1: Introduction to UML

16

engineers can see the details of the process and develop test cases based on the processing. Sequence diagrams
are therefore useful for all stakeholders in the project.

Collaboration Diagrams

Collaboration diagrams show exactly the same information as the Sequence diagrams. However,
Collaboration diagrams show this information in a different way and with a different purpose. The Sequence
diagram illustrated in Figure 1.11 is shown in Figure 1.12 as a Collaboration diagram.

Figure 1.12: Collaboration diagram for Joe withdrawing $20

In this Collaboration diagram, the objects are represented as rectangles and the actors are stick figures, as
before. Whereas the Sequence diagram illustrates the objects and actor interactions over time, the
Collaboration diagram shows the objects and actor interactions without reference to time. For example, in this
diagram, we see that the card reader instructs Joe's account to open and Joe's account instructs the card reader
to eject the card. Also, objects that directly communicate with each other are shown with lines drawn between
them. If the ATM screen and cash dispenser directly communicated with one another, a line would be drawn
between them. The absence of a line means that no communication occurs directly between those two objects.

Collaboration diagrams, therefore, show the same information as Sequence diagrams, but people look at
Collaboration diagrams for different reasons. Quality assurance engineers and system architects look at these
to see the distribution of processing between objects. Suppose that the Collaboration diagram was shaped like
a star, with several objects communicating with a central object. A system architect may conclude that the
system is too dependent on the central object and redesign the objects to distribute the processing power more
evenly. This type of interaction would have been difficult to see in a Sequence diagram.

Class Diagrams

Class diagrams show the interactions between classes in the system. Classes can be seen as the blueprint for
objects, as we'll discuss in Chapter 5. Joe's account, for example, is an object. An account is a blueprint for
Joe's checking account; an account is a class. Classes contain information and behavior that acts on that
information. The Account class contains the customer's PIN and behavior to check the PIN. A class on a Class
diagram is created for each type of object in a Sequence or Collaboration diagram. The Class diagram for the
system's Withdraw Money use case is illustrated in Figure 1.13.

Chapter 1: Introduction to UML

17

Figure 1.13: Class diagram for the ATM system's Withdraw Money use case

The Class diagram above shows the relationships between the classes that implement the Withdraw Money
use case. This is done with four classes: Card Reader, Account, ATM Screen, and Cash Dispenser. Each class
on a Class diagram is represented by a rectangle divided into three sections. The first section shows the class
name. The second section shows the attributes the class contains. An attribute is a piece of information that is
associated with a class. For example, the Account class contains three attributes: Account Number, PIN, and
Balance. The last section contains the operations of the class. An operation is some behavior that the class
will provide. The Account class contains four operations: Open, Withdraw Funds, Deduct Funds, and Verify
Funds.

The lines connecting classes show the communication relationships between the classes. For instance, the
Account class is connected with the ATM Screen class because the two directly communicate with each other.
The Card Reader is not connected to the Cash Dispenser because the two do not communicate. Another point
of interest is that some attributes and operations have small padlocks to the left of them. The padlock indicates
a private attribute or operation. Private attributes and operations can only be accessed from within the class
that contains them. The Account Number, PIN, and Balance are all private attributes of the Account class. In
addition, the Deduct Funds and Verify Funds operations are private to the Account class.

Developers use Class diagrams to actually develop the classes. Tools such as Rose generate skeletal code for
classes, then developers flesh out the details in the language of their choice. Analysts use Class diagrams to
show the details of the system. Architects also look at Class diagrams to see the design of the system. If one
class contains too much functionality, an architect can see this in the Class diagram and split out the
functionality into multiple classes. Should no relationship exist between classes that communicate with each
other, an architect or developer can see this too. Class diagrams should be created to show the classes that
work together in each use case, and comprehensive diagrams containing whole systems or subsystems can be
created as well.

Statechart Diagrams

Statechart diagrams provide a way to model the various states in which an object can exist. While the Class
diagrams show a static picture of the classes and their relationships, Statechart diagrams are used to model the
more dynamic behavior of a system. These types of diagrams are extensively used in building real−time
systems. Rose can even generate the full code for a real−time system from the Statechart diagrams.

A Statechart diagram shows the behavior of an object. For example, a bank account can exist in several
different states. It can be open, closed, or overdrawn. An account may behave differently when it is in each of

Chapter 1: Introduction to UML

18

these states. Statechart diagrams are used to show this information. Figure 1.14 shows an example of a
Statechart diagram for a bank account.

Figure 1.14: Statechart diagram for the Account class

In this diagram, we can see the states in which an account can exist. We can also see how an account moves
from one state to another. For example, when an account is open and the customer requests the account's
closure, the account moves to the closed state. The customer's request is called the event and the event is what
causes a transition from one state to another.

If the account is open and the customer makes a withdrawal, the account may move to the overdrawn state.
This will only happen if the balance of the account is less than zero. We show this by placing [Balance < 0] on
the diagram. A condition enclosed in square brackets is called a guard condition, and controls when a
transition can or cannot occur.

There are two special states—the start state and the stop state. The start state is represented by a black dot on
the diagram, and indicates what state the object is in when it is first created. The stop state is represented by a
bull's−eye, and shows what state the object is in just before it is destroyed. On a Statechart diagram, there is
one and only one start state. On the other hand, you can have no stop state, or there can be as many stop states
as you need.

Certain things may happen when the object is inside a particular state. In our example, when an account is
overdrawn, a notice is sent to the customer. Processes that occur while an object is in a certain state are called
actions.

Statechart diagrams aren't created for every class; they are used only for very complex classes. If an object of
the class can exist in several states, and behaves very differently in each of the states, you may want to create
a Statechart diagram for it. Many projects won't need these diagrams at all. If they are created, developers will
use them when developing the classes.

Statechart diagrams are created for documentation only. When you generate code from your Rose model, no
code will be generated from the information on the Statechart diagrams. However, Rose add−ins are available
for real−time systems that can generate executable code based on Statechart diagrams.

Component Diagrams

Component diagrams show you a physical view of your model, as well as the software components in your
system and the relationships between them. There are two types of components on the diagram: executable

Chapter 1: Introduction to UML

19

components and code libraries.

In Rose, each of the classes in the model is mapped to a source code component. Once the components have
been created, they are added to the Component diagram. Dependencies are then drawn between the
components. Component dependencies show the compile−time and run−time dependencies between the
components. Figure 1.15 illustrates one of the Component diagrams for the ATM system.

Figure 1.15: Component diagram for the ATM client

This Component diagram shows the client components in the ATM system. In this case, the team decided to
build the system using C++. Each class has its own header and body file, so each class is mapped to its own
components in the diagram. For example, the ATM Screen class is mapped to the ATM Screen component.
The ATM Screen class is also mapped to a second ATM Screen component. These two components represent
the header and body of the ATM Screen class. The shaded component is called a package body. It represents
the body file (.cpp) of the ATM Screen class in C++. The unshaded component is called a package
specification. The package specification represents the header (.h) file of the C++ class. The component called
ATM.exe is a task specification and represents a thread of processing. In this case, the thread of processing is
the executable program.

Components are connected by dashed lines showing the dependency relationships between them. For
example, the Card Reader class is dependent upon the ATM Screen class. This means that the ATM Screen
class must be available in order for the Card Reader class to compile. Once all of the classes have been
compiled, then the executable called ATMClient.exe can be created.

The ATM example has two threads of processing and therefore two executables. One executable comprises
the ATM client, including the Cash Dispenser, Card Reader, and ATM Screen. The second executable
comprises the ATM server, including the Account component. The Component diagram for the ATM server is
shown in Figure 1.16.

Figure 1.16: Component diagram for the ATM server

Chapter 1: Introduction to UML

20

As this example shows, there can be multiple Component diagrams for a system, depending on the number of
subsystems or executables. Each subsystem is a package of components. In general, packages are collections
of objects. In this case, packages are collections of components. The ATM example includes two packages:
the ATM client and the ATM server. Packages will be discussed more in Chapter 3.

Component diagrams are used by whoever is responsible for compiling the system. The diagrams will tell this
individual in what order the components need to be compiled. The diagrams will also show what run−time
components will be created as a result of the compilation. Component diagrams show the mapping of classes
to implementation components. These diagrams are also where code generation is initiated.

Deployment Diagrams

Deployment diagrams are the last type of diagram we will discuss. The Deployment diagram shows the
physical layout of the network and where the various components will reside. In our ATM example, the ATM
system comprises many subsystems running on separate physical devices, or nodes. The Deployment diagram
for the ATM system is illustrated in Figure 1.17.

Figure 1.17: Deployment diagram for the ATM system

This Deployment diagram tells us much about the layout of the system. The ATM client executable will run
on multiple ATMs located at different sites. The ATM client will communicate over a private network with
the regional ATM server. The ATM server executable will run on the regional ATM server. The regional
ATM server will, in turn, communicate over the local area network (LAN) with the banking database server
running Oracle. Lastly, a printer is connected to the regional ATM server.

So, this one diagram shows us the physical setup for the system. Our ATM system will be following a
three−tier architecture with one tier each for the database, regional server, and client.

The Deployment diagram is used by the project manager, users, architect, and deployment staff to understand
the physical layout of the system and where the various subsystems will reside. This diagram helps the project
manager communicate what the system will be like to the users. It also helps the staff responsible for
deployment to plan their deployment efforts.

All of these diagrams together describe the system from several different perspectives. In Chapter 3, we will
discuss each of these diagrams more closely and show how they are generated in Rational Rose. You will also
be given the opportunity to try creating and using these diagrams in Rational Rose. But before we get into the

Chapter 1: Introduction to UML

21

details of Rose, another aspect of software development projects deserves some attention—the process. While
this is not a methodology or process book, we do want to familiarize you with a process for development
using UML diagrams we have discussed.

Visual Modeling and the Software Development Process

Software development can be done in many ways. There are several different types of development processes
that projects follow, including everything from the waterfall model to object−oriented processes. Each has its
benefits and disadvantages. In this section, we do not plan to tell you which one to use, but we will present an
overview of a process that focuses on visual modeling. Again, this is just an overview.

For a long time, software development followed the waterfall model. In this model, we analyzed the
requirements, designed a system, developed the system, tested the system, and deployed the system. As its
name suggests, we didn't flow back up this chain—water cannot go up. This method has been the documented
methodology used on thousands of projects, but we contend that it has not been used as purely as we would
like to think. One of the main shortcomings of the waterfall model is that it is necessary to backtrack through
the steps. At the outset of a project following the waterfall model, we take on the daunting task of determining
all of the system requirements. We do this through detailed discussions with the users and detailed
examination of business processes. After we're done, we make sure the users sign off on the voluminous
requirements we have written, even if they haven't read them yet. If we're really lucky, we might get about 80
percent of the requirements of the system during this analysis stage.

Then, it's on to design. We sit down and determine the architecture of our system. We address issues such as
where programs will reside and what hardware is necessary for acceptable performance. While doing this, we
may find out that some new issues have arisen. We then go back to the users and talk about the issues. These
result in new requirements. So, we're back in analysis. After going back and forth a few times, we move to
development and begin coding the system.

While coding, we discover that a certain design decision is impossible to implement, so we go back to design
and revisit the issue. After coding is done, testing begins. While testing, we learn that a requirement was not
detailed enough and the interpretation was incorrect. Now we have to go back to the analysis phase and revisit
the requirement.

After some time, we finally finish the system and deliver it to the users. Since it took quite awhile and the
business has probably changed while we were building the system, the users respond less than enthusiastically
with, "That's just what I asked for, but not what I want!" This incantation by the users is a powerful spell that
causes the entire project team to age 10 years immediately!

So, after looking at this dismal scenario and wondering if you are in the right industry, what can you do to
make it better? Is the problem that the business changes so quickly? Is it that the users don't communicate
what they want? Is it that the users don't understand the project team? Is it that the team didn't follow a
process? The answers are yes, yes, yes, and no. The business changes very rapidly, and as software
professionals we need to keep up. The users do not always communicate what they want because what they do
is second nature to them. Asking an accounting clerk who has been on the job for 30 years is roughly like
asking someone how you breathe. It becomes so second nature that it is difficult to describe. Another problem
is that the users don't always understand the project team. The team shows them flowcharts and produces
volumes of requirements text, but the users don't always understand what is being given to them. Can you
think of a way around this problem? Visual modeling can help. Lastly, the team did follow a process: the

Chapter 1: Introduction to UML

22

waterfall method (illustrated in Figure 1.18). Unfortunately, the plan and the execution of the method were
two different things.

Figure 1.18: Waterfall method

One of the problems is that the team planned to use the waterfall method, with its neat and orderly passage
through the stages of the project, but they had to backtrack throughout the project. Is this due to poor
planning? Probably not. Software development is a complex process and trying to do everything in neat stages
doesn't always work. If the need for backtracking had been ignored, then the system would have design flaws,
missing requirements, and possibly worse.

But over the years we have learned to plan the backtracking. With this insight comes iterative development.
Iterative development just means that we are going to do things over and over. In the object−oriented process,
we will go through the steps of analysis, design, development, testing, and deployment in small stages many
times (illustrated in Figure 1.19). There are many different implementations of iterative lifecycles. One such
implementation is the Rational Unified Process (RUP), which we will discuss briefly here. Please note that
this book does not explore the details of RUP. For more details, please see Rational's website at
http://www.rational.com/.

Figure 1.19: Iterative method

It is impossible to learn all of the requirements during the early part of the project. New things are bound to
come out, so we plan for them by planning the project in iterations. With this concept, a project can be seen as
a series of small waterfalls. Each one is designed to be big enough to mark the completion of an important
part of the project, but small enough to minimize the need for backtracking.

In the project, we go through four phases: inception, elaboration, construction, and transition. Inception is the
beginning of the project. We gather information and do proofs−of−concept. At the end of inception is a
go/no−go decision for the project. (A tenet of the Unified Process is a go/no−go decision at the end of each
phase.) In elaboration, use cases are detailed and architectural decisions are made. Elaboration includes some
analysis, design, coding, and test planning. Construction is where the bulk of the coding is done. Transition is
the final preparation and deployment of the system to the users. Next, we will discuss what each of these
phases means in an object−oriented project.

Chapter 1: Introduction to UML

23

Inception

The inception phase is the beginning of the project. Inception begins when someone says, "Gee, wouldn't it be
great if we had a system to do…?" Then, someone researches the idea and management asks how long it
would take, how much it will cost, or how feasible the project is. Finding out the answers to these questions is
what the inception phase is all about.

We begin this phase with business modeling. During this process, we analyze the business around the
proposed system. We discover what the high−level features of the system are and document them. We create
business use cases, business actors, and Business Use Case diagrams. (We do not go into details about the use
cases here, but provide just a sentence or two.) We may also create activity diagrams to model the workflow.
Armed with this information, we then move on to analyze the system to be developed. We also provide
estimates to upper management. So, using Rose to support our project, we will create actors and use cases and
produce Use Case diagrams. Inception ends when the research is done and management commits the
resources to work on the elaboration phase.

One more task remains in inception—the development of an iteration plan. An iteration plan is a plan
describing which use cases will be implemented during which iterations. If we find 10 use cases during
inception, we may draw up an iteration plan like this:

Iteration One Use Cases 1, 5, 6

Iteration Two Use Cases 7, 9

Iteration Three Use Cases 2, 4, 8

Iteration Four Use Cases 3, 10
The plan tells us which use cases will be done first. Determining this plan requires looking at dependencies
between use cases and planning accordingly. If Use Case 3 is required in order for Use Case 5 to work, then
the plan described above is not feasible because Use Case 3 would be implemented during the fourth iteration,
far after Use Case 5 is in the first iteration. We may have to adjust our plan to accommodate the dependencies.

Using Rose in Inception

The inception phase begins with business modeling. Rose can be used to build the Business Use Case model,
including business use cases, business actors, and business workers. The next step involves determining what
use cases and actors are needed. Rose can be used to document these use cases and actors, and to create the
diagrams to show their relationships. The Use Case diagrams can be presented to the users to validate that the
diagrams are a comprehensive view of the system features.

Elaboration

The elaboration phase of the project includes some planning, analysis, and architectural design. Following the
iteration plan, elaboration is done for each use case in the current iteration. Elaboration includes several
aspects of a project, such as coding proofs−of−concept, developing test cases, and making design decisions.
The elaboration phase focuses on setting the architectural foundation for the project.

The major tasks in the elaboration phase are detailing the use cases. In Chapter 4, we will discuss what the
details of a use case include. The low−level requirements of a use case include the flow of processing through
the use case; what actors are involved with the use case; Sequence and Collaboration diagrams to show the

Chapter 1: Introduction to UML

24

flow of processing graphically; and Statechart diagrams to show any state changes that may occur during the
use case. The requirements, in the form of detailed use cases, are gathered into a document called a Software
Requirement Specification (SRS). The SRS contains all of the details of the system requirements.

Other tasks are done in elaboration, such as refining the initial estimates, reviewing the SRS and use case
model for quality, and investigating risks. Rational Rose can help with refining the use case model and
creating the Sequence and Collaboration diagrams to show the graphical flow of processing. Class diagrams
showing the objects to be built are also designed during the elaboration phase.

The elaboration phase is over when the high−risk and architecturally significant use cases have been fully
detailed and accepted by the users, proofs−of−concept have been completed to mitigate risks, and the initial
Class diagrams are complete. In other words, this phase is complete when the system architecture has been
finalized.

Using Rose in Elaboration

The elaboration phase presents several opportunities to use Rational Rose. Since elaboration includes the
detailing of many of the system requirements, the use case model might require updating. Rational Rose may
be used to create activity diagrams to illustrate the flow of events. As the flow of processing is detailed,
Sequence and Collaboration diagrams help illustrate the flow. They also help design the objects that will be
required for the system. Elaboration also involves preparing the initial design for the system so the developers
can begin its construction. This can be accomplished by creating Class diagrams and Statechart diagrams in
Rose. Finally, many of the system components will be identified during elaboration. Rose is used to create a
Component diagram to show these components and their relationships.

Construction

During the construction phase, the remainder of the system is analyzed, designed, and built. Using the
architecture from the elaboration phase as a foundation, the team will build the remainder of the system during
construction. Tasks in the construction phase include determining any remaining requirements, developing the
software, and testing the software.

As the design is completed, Rational Rose can generate skeletal code for the system. In order to use this
feature for some languages, you need to create components and a Component diagram as an early part of
construction. Once you have created components and diagrammed their dependencies, code generation can
begin. Code generation will provide as much code as possible based on the design. This does not mean that
you will get any business−specific code out of Rose. What you will get depends greatly on the language that
is chosen, but generally includes class declarations, attribute declarations, scope declarations (public, private,
and protected), function prototypes, and inheritance statements. This saves time because this is tedious code to
write. After generating code, the developers can focus on the business−specific aspects of the project. As code
is completed, it should be reviewed by a peer group of developers to ensure that it meets standards, design
conventions, and is functional. After code review, the objects should be subjected to quality assurance review.
If any new attributes or functions are added during construction, or if any interactions between objects are
altered, then the new code should be updated in the Rose model through reverse engineering. We will cover
this topic further in Chapters 12 through 15 of this book.

Construction is over when the software is complete and tested. It's important to make sure that the model and
software are synchronized; the model will be extremely valuable once the software enters maintenance mode.

Chapter 1: Introduction to UML

25

Using Rose in Construction

As in the elaboration phase, Rose is used to create Sequence, Collaboration, Class, Statechart, and Component
diagrams during construction. Rose is used to create components according to the object design. Component
diagrams are created to show the compile−time dependencies between the components. After languages have
been selected for each component, the generation of skeletal code can be done. After code has been created by
the developers, the model can be synchronized with the code through reverse engineering. Rose is also used in
construction to create Deployment diagrams, which describe how the components are to be deployed.

Transition

The transition phase is when the completed software product is turned over to the user community. Tasks in
this phase include completing the final software product, completing final acceptance testing, completing user
documentation, and preparing for user training. The Software Requirements Specification, Use Case
diagrams, Class diagrams, Component diagrams, and Deployment diagrams must be updated to reflect any
final changes. It is important to keep these models synchronized with the software product because the models
will be used once the software product goes into maintenance mode. Several months after the completion of
the project, the models will be priceless in helping to make enhancements to the software.

Rose is used in the transition phase primarily to update the models as the software product is completed. In
particular, updates to the Component and Deployment diagrams are common during the transition phase.

Summary

Visual modeling and Rational Rose are useful at several different stages of the software development process.
Toward the beginning of the project, in inception, Rose is used to produce the business model and the use case
model. During elaboration and construction, Rose is used extensively to develop activity diagrams showing
the flow of events. Sequence and Collaboration diagrams show the objects that will be developed and how
they interact with one another. Class diagrams are also developed in Rose, showing how the objects relate to
each other. Component diagrams are created using Rose to show the dependencies of the components in the
system and to allow you to generate skeletal code for the system.

Throughout construction, we use Rose to reverse engineer newly developed code back into the model to
incorporate any changes that arise during development. After construction, we move into transition, where
Rose is used to update any of the models created during the project.

In the next chapter, we'll take a short tour of Rose. We'll examine the different features and capabilities of the
Rose tool, and talk about how to create and save a Rose model or elements of the model. We'll discuss how to
navigate Rose, the four views of the model that Rose provides, and how to publish your Rose model on the
Web.

Chapter 1: Introduction to UML

26

Chapter 2: A Tour of Rose
This chapter concludes our introduction to UML and Rose. After reading this chapter, you will be armed with
enough information to embark on learning the fundamentals of designing systems with Rose. In this chapter,
we discuss what Rational Rose is and what a Rational Rose model includes, and then take you on a visual
tour, discussing the various parts of the screen and how to navigate through the product. We'll discuss the four
views of a system that are available through Rose and how to work with Rose. Finally, we'll look at how to
publish a Rose model to the Web, and how to manage versions of a Rose model.

What Is Rose?

Rational Rose is a powerful visual modeling tool to aid in the analysis and design of object−oriented software
systems. It is used to model your system before you write any code, so you can be sure that the system is
architecturally sound from the beginning. Using the model, you can catch design flaws early, while they are
still inexpensive to fix.

Rational Rose supports business modeling, helping you to understand the business around the system. It helps
with systems analysis by enabling you to design use cases and Use Case diagrams to show the system
functionality. It will let you design Interaction diagrams to show how the objects work together to provide the
needed functionality. Class diagrams can be created to show the classes in a system and how they relate to
each other. Component diagrams can be developed to illustrate how the classes map to implementation
components. Finally, a Deployment diagram can be produced to show the network design for the system.

A Rose model is a picture of a system from various perspectives. It includes all of the UML diagrams, actors,
use cases, objects, classes, components, and deployment nodes in a system. It describes in great detail what
the system will include and how it will work, so developers can use the model as a blueprint for the system
being built.

A blueprint is a good analogy for a Rose model. Just as a house has a set of blueprints that let different
members of the construction crew see it from different perspectives (plumbing, electrical, and so on), a Rose
model contains a number of different diagrams that let the project team see the system from different
perspectives (customer, designer, project manager, tester, and so on).

Having a blueprint ahead of time helps alleviate an age−old problem. The team has talked to the customers
and documented the requirements. Now the developers are ready to code. One developer (we'll call him Bob)
takes some of the requirements, makes certain design decisions, and writes some code. Jane, another
developer, takes some requirements, makes completely different design decisions, and writes some more
code.

This difference in programming style is perfectly natural; 20 developers given the same requirements may
code 20 different systems. The problem comes about when someone needs to understand or maintain the
system. Without conducting detailed interviews with each of the developers, it's hard for anyone to see what
design decisions were made, what the pieces of the system are, or what the overall structure of the system is.
Without a documented design, it's hard to be sure that the system you built is actually the system the users had
in mind.

Traditionally, we follow a process that looks like this:

27

The requirements are documented, but the design is inside Bob's brain, so no one other than Bob has a good
idea of the system structure. If Bob leaves, that information leaves with him. If you've ever been the one
taking over for Bob, you can appreciate how difficult it can be to understand a system with little
documentation.

A Rose model gives us a process that looks like this:

Now the design is documented. We get rid of Bob (figuratively speaking, of course!) and replace our
dependency on him with a documented design. The developers can all gather to discuss the design decisions
before the code is written. You don't have to worry about everyone going off in a separate direction with the
system design.

But the developers aren't the only ones to use the model:

•
The entire team will use the Business Use Case diagrams to get an understanding of the business
surrounding the system.

•
Customers and project managers will use the Use Case diagrams to get a high−level view of the
system and to agree on the project scope.

•
Project managers will use the Use Case diagrams and documentation to break the project down into
manageable pieces.

•
Analysts and customers will look at the use case documentation to see what functionality the system
will provide.

•
Technical writers will look at the use case documentation to begin to write the user manual and
training plans.

•
Analysts and developers will look at Sequence and Collaboration diagrams to see how the logic in the
system will flow, the objects in the system, and the messages between the objects.

•
Quality assurance staff will use the use case documentation and the Sequence and Collaboration
diagrams to get the information they need for testing scripts.

•

Chapter 2: A Tour of Rose

28

Developers will use the Class diagrams and Statechart diagrams to get a detailed view of the pieces of
the system and how they relate.

•
Deployment staff will use the Component and Deployment diagrams to see what executable files,
DLL files, or other components will be created, and where these components will be deployed on the
network.

•
The whole team will use the model to be sure the requirements are traced to the code, and that the
code can be traced back to the requirements.

Rose, therefore, is a tool meant to be used by the entire project team. It is a repository of scope, analysis, and
design information that each team member can use to get the information they need.

In addition to the above, Rational Rose will help developers by generating skeletal code. It can do this for a
number of different languages available on the market, including C++, Ada, CORBA, Java, COM objects,
Visual Basic, and XML. Further, Rose can reverse engineer code and create a model based on an existing
system. Having a model in Rose for an existing application is very beneficial. When a change occurs to the
model, Rose can modify the code to incorporate the change. Similarly, when a change occurs in the code, you
can incorporate that change into the model automatically. These features help you keep the model and the
code synchronized, reducing the risk of having an outdated model.

Rose can also be extended using RoseScript, a programming language packaged with Rose. Using this
programming language, you can write code to automatically make changes to your model, create a report, or
perform other tasks with your Rose model.

There are three different versions of Rose currently available:

•
Rose Modeler, which allows you to create a model for your system, but will not support code
generation or reverse engineering.

•
Rose Professional, which allows you to generate code in one language.

•
Rose Enterprise, which allows you to generate code for C++, Java, Ada, CORBA, Visual Basic,
COM, Oracle8, and XML. A model can have components that are generated in different languages.

What 's New in Rose 2002

In the last several years, Rose has been enhanced to accommodate some of the newer UML notation and
diagrams. The following list includes the newest of the enhanced Rose features at the time of this writing:

•
A main diagram for each package can now be selected.

•
Items on a diagram can now be moved around using the arrow keys.

•

Chapter 2: A Tour of Rose

29

The Page Up and Page Down keys can now be used to scroll through a diagram.

•
Default C++ component styles can be set.

•
Directories and file extensions for C++ code generation can be specified.

•
It includes support for Microsoft Interface Definition Library (MIDL) round−trip engineering.

•
It includes support for J2EE deployment.

•
It includes additional support for the reverse engineering of Enterprise JavaBeans (EJBs).

What's New in Rose 2001A

Some other new Rose features include:

•
Business modeling, which was discussed briefly in Chapter 1, "Introduction to UML," focuses on the
world around the system, and helps to set the context for the use case model.

•
Activity diagrams, which can be used to describe the workflow through a business use case or the
flow of events through a use case.

•
Support for ANSI C++, which will be discussed in detail in the code generation and reverse
engineering section of this book. A model converter can be used to convert older Rose C++ models to
Rose ANSI C++ models.

•
Tighter integration with Rational's ClearCase tool, which is used for version control.

•
Enhanced data−modeling capabilities.

•
Modeling, code generation, and reverse engineering of Enterprise Java Beans.

Getting Around in Rose

In the next few sections of this chapter, we'll describe each part of the Rose interface. Rose is largely a
menu−driven application, with toolbars to help with commonly used features. Rose supports eight different
types of UML diagrams: Use Case diagrams, Activity diagrams, Sequence diagrams, Collaboration diagrams,

Chapter 2: A Tour of Rose

30

Class diagrams, Statechart diagrams, Component diagrams, and Deployment diagrams. Rose will present you
with a different toolbar for each of these diagrams. In the next nine chapters, we'll show you how to create all
of these types of diagrams.

In addition to the toolbars and menus, Rose includes context−sensitive shortcut menus, visible by
right−clicking an item. For example, right−clicking a class on a Class diagram will display a menu that
includes options for adding attributes or operations to the class, viewing or editing the class specifications,
generating code for the class, or viewing the generated code. When in doubt, right−click! Rose will almost
always give you helpful menu options.

One of the easiest ways to get around in Rose is to use the browser, which is the treeview on the left side of
the screen. With the browser, you can quickly and easily get to the diagrams and other elements of the model.
If you run into trouble while using Rose, press F1 at any time to access the extensive online help file.

Parts of the Screen

The five primary pieces of the Rose interface are the browser, the documentation window, the toolbars, the
diagram window, and the log. In this section, we'll look at each of these. Briefly, their purposes are:

Browser Used to quickly navigate through the model

Documentation window Used to view or update documentation of model elements

Toolbars Used for quick access to commonly used commands

Diagram window Used to display and edit one or more UML diagrams

Log Used to view errors and report the results of various commands

Figure 2.1 illustrates the various parts of the Rose interface.

Figure 2.1: The Rose interface

Chapter 2: A Tour of Rose

31

Browser

The browser is a hierarchical structure you can use to easily navigate through your Rose model. Anything you
add to the model—actors, use cases, classes, components, and so on—will display in the browser. The
browser is shown in Figure 2.2.

Figure 2.2: Rose browser

Using the browser, you can

•
Add model elements (use cases, actors, classes, components, diagrams, etc.)

•
View existing model elements

•
View existing relationships between model elements

•
Move model elements

•
Rename model elements

•

Chapter 2: A Tour of Rose

32

Add a model element to a diagram

•
Attach a file or URL to an element

•
Group elements into packages

•
Access the detailed specifications of an element

•
Open a diagram

There are four views in the browser: the Use Case view, the Logical view, the Component view, and the
Deployment view. Table 2.1 lists each of these views and the model elements found in the views.

Table 2.1: Views in Rational Rose

View Contents

Use Case view Business actors

Business workers

Business use cases

Business Use Case diagrams

Business Use Case realizations

Actors

Use cases

Associations

Use case documentation

Use Case diagrams

Activity diagrams

Sequence diagrams

Collaboration diagrams

Packages

Logical view Classes

Chapter 2: A Tour of Rose

33

Class diagrams

Associations

Interfaces

Sequence diagrams

Collaboration diagrams

Statechart diagrams

Packages

Component view Components

Interfaces

Component diagrams

Packages

Deployment view Processes

Processors

Connectors

Devices

Deployment diagram
Using the browser, you can view the model elements in each of these four views, move or edit elements, or
add new elements. By right−clicking an element in the browser, you can attach files or URLs to the element,
access the detailed specifications of the element, delete the element, or rename the element.

The browser is organized in a treeview style. Each model element may contain other elements beneath it in
the hierarchy.

By default, the browser will appear in the upper−left area of the screen. You can move the browser to another
location or hide the browser altogether.

To show or hide the browser:

1.
Right−click in the browser window.

2.
Select Hide from the shortcut menu. Rose will show or hide the browser.

OR

Select View → Browser. Rose will show or hide the browser.

Chapter 2: A Tour of Rose

34

Documentation Window

The documentation window is used to document the elements of your Rose model. For example, you may
want to write a short definition for each of your actors. You can enter this definition using the documentation
window, as shown in Figure 2.3.

Figure 2.3: The documentation window

When you add documentation to a class, anything you type in the documentation window will appear as a
comment in the generated code, reducing the need to go in later and comment on the system's code. The
documentation will also appear in the reports you can generate from Rose.

As you select different elements from the browser or on a diagram, the documentation window will
automatically be updated to display the documentation for the selected element.

Toolbars

Rose toolbars provide you with quick access to commonly used commands. There are two toolbars in Rose:
the Standard toolbar and the Diagram toolbar, which is called the toolbox. The Standard toolbar contains
options you can use in any diagram. These options are shown in Table 2.2.The toolbox changes for each type
of UML diagram. The different Diagram toolbars will be discussed in detail in the remainder of this book.

Table 2.2: Icons in Standard Toolbar

Icon Button Purpose

Create New Model Creates a new Rose model (.mdl) file.

Open Existing Model Opens an existing Rose model (.mdl) file.

Save Model or Log Saves the Rose model (.mdl) file or the log for the current model.

Chapter 2: A Tour of Rose

35

Cut Moves text to the clipboard.

Copy Copies text to the clipboard.

Paste Pastes text from the clipboard.

Print Diagrams Prints one or more diagrams from the current model.

Context Sensitive Help Accesses the help file.

View Documentation Views the documentation window.

Browse Class Diagram Locates and opens a Class diagram.

Browse Interaction Diagram Locates and opens a Sequence or Collaboration diagram.

Browse Component Diagram Locates and opens a Component diagram.

Browse State Machine DiagramLocates and opens a Statechart diagram.

Browse Deployment Diagram Opens the Deployment diagram for the model.

Browse Parent Opens a diagram's parent diagram.

Browse Previous Diagram Opens the diagram you were most recently viewing.

Zoom In Increases the zoom.

Zoom Out Decreases the zoom.

Fit in Window Sets the zoom so the entire diagram fits within the window.

Undo Fit in Window Undoes the Fit in Window command.

All of the toolbars can be customized. To customize a toolbar, select Tools → Options, then select the
Toolbars tab.

To show or hide the Standard toolbar:

1.
Select Tools → Options.

2.
Select the Toolbars tab.

3.
Use the Show Standard Toolbar check box to show or hide the Standard toolbar.

To show or hide the Diagram toolbar:

1.
Select Tools → Options.

2.
Select the Toolbars tab.

3.
Use the Show Diagram Toolbar check box to show or hide the Diagram toolbar (toolbox).

To customize a toolbar:

1.

Chapter 2: A Tour of Rose

36

Right−click the desired toolbar.

2.
Select the Customize option.

3.
Add or remove buttons to customize the toolbar by selecting the appropriate button and then clicking
the Add or Remove button, as shown in Figure 2.4.

Figure 2.4: Customizing a toolbar

Diagram Window

In the diagram window shown in Figure 2.5, you can view UML diagrams in your model. As you make
changes to elements in a diagram, Rose will automatically update the browser as necessary. Similarly, when
you make changes to an element using the browser, Rose will automatically update the appropriate diagrams.
By doing so, Rose helps you maintain a consistent model.

Figure 2.5: Diagram window

Log

As you work on your Rose model, certain information will be posted to the log window. For example, when
you generate code, any errors that are generated are posted in the log window, shown in Figure 2.6.

Chapter 2: A Tour of Rose

37

Figure 2.6: Log window

Exploring Four Views in a Rose Model

There are four views in a Rose model: the Use Case view, the Logical view, the Component view, and the
Deployment view. Each of these four views addresses a different audience and purpose. In the following
sections, we'll take a brief look at each of these views. In the remainder of this book, we'll discuss the detailed
model elements that appear in each of these views.

Use Case View

The Use Case view includes all of the actors, use cases, and Use Case diagrams in the system. It may also
include some Sequence and Collaboration diagrams. The Use Case view is an implementation−independent
look at the system. It focuses on a high−level picture of what the system will do, without worrying about the
details of how the system will do it. Figure 2.7 illustrates the Use Case view in the Rose browser.

Chapter 2: A Tour of Rose

38

Figure 2.7: Use Case view

The Use Case view includes:

Business use cases, which are workflows within the organization.

Business actors, which are people, companies, or other entities outside the organization who interact
with the business.

Business workers, which are roles within the organization

Organizational units, which are groups of business cases and/or business workers.

Activity diagrams, which are used to describe the workflow within a business use case or a flow of
events through a use case.

Actors, which are external entities that interact with the system being built.

Use cases, which are high−level pieces of functionality the system will provide.

Use case documentation, which details the flow through the use case, including any error handling. This
icon represents an external file that has been attached to your Rose model. The icon used will depend
upon the application you used to document the flow of events. Here, we used Microsoft Word.

Use Case diagrams, which show the actors, the use cases, and the interactions between them. There are
typically several Use Case diagrams per system, each showing a subset of the actors and/or use cases.

Interaction diagrams, which display the objects or classes involved in one flow through a use case.
There may be many Interaction diagrams for each use case. Interaction diagrams can be created in either
the Use Case view or the Logical view. Any Interaction diagrams that are implementation−independent
are typically created in the Use Case view. Any Interaction diagrams that are language−specific are
located in the Logical view.

Chapter 2: A Tour of Rose

39

Packages, which are groups of use cases, actors, or other modeling elements. A package is a UML
mechanism that helps you to group related items together. In most cases, there are few enough use cases
and actors that packaging is not essential. However, it's a tool that is always available to help you
organize the Use Case view. In particular, it can be convenient to package these elements for
configuration management.

When the project first begins, the team may optionally produce a business model in the Use Case view. If this
task is undertaken, the team members that will be needed include the customer, the project manager, and
analysts who focus on business processes (frequently termed business analysts). The rest of the
team—including designers, coders, testers, and so on—will refer to the business model throughout the project
to gain an understanding of the overall business and how the new system fits into its organizational structure.
We will discuss the business model in more detail in Chapter 3, "Business Modeling."

Once the business model has been completed, the team moves on to the use case model. Customers, analysts,
and project managers will work with the use cases, Use Case diagrams, and use case documentation to agree
on a high−level view of the system.

Note This view focuses only on what the system will do. Implementation details should be left for future
discussions. In an object−oriented system, use cases are the system requirements.

As the project goes along, all members of the team can look at the Use Case view to get a high−level
understanding of the system being built. The use case documentation will describe the flow of events through
a use case. With this information, quality assurance staff can begin to write testing scripts. Technical writers
can begin the user documentation. Analysts and customers can help ensure that all requirements were
captured. Developers can see what high−level pieces of the system will be created, and how the system logic
should flow.

Once the customer has agreed to the use cases and actors, they have agreed to the system scope. The
development can then continue to the Logical view, which focuses more on how the system will implement
the behavior spelled out in the use cases.

Logical View

The Logical view, shown in Figure 2.8, focuses on how the system will implement the behavior in the use
cases. It provides a detailed picture of the pieces of the system, and describes how the pieces interrelate. The
Logical view includes, among other things, the specific classes that will be needed, the Class diagrams, and
the Statechart diagrams. With these detailed elements, developers can construct a detailed design for the
system.

Chapter 2: A Tour of Rose

40

Figure 2.8: Logical view

The Logical view includes:

Classes, which are the building blocks for a system. A class consists of a little bit of information
(its attributes) and a little bit of behavior (its operations), grouped together. For example, an
Employee class might store information about the employee's name, address, and social security
number, and might include behavior such as hiring or firing an employee. There are different types
of icons that are used for different types of classes. We will discuss these further in Chapter 6,
"Classes and Packages."

Class diagrams, which are used to view the classes in the system, their attributes and operations,
and their relationships to each other. Typically, a system will have several Class diagrams, each
showing a subset of all the classes.

Interaction diagrams, which include Sequence and Collaboration diagrams, are used to display the
classes that participate in one flow of events through a use case. As we mentioned above,
Interaction diagrams can be created in either the Use Case view or the Logical view. Interaction
diagrams in the Use Case view tend to be high−level and implementation−independent, while
Interaction diagrams in the Logical view are more detailed.

Statechart diagrams, which show the dynamic behavior of an object. A Statechart diagram
includes all of the states in which a particular object can exist. It also illustrates how the object
moves from one state to another, what state the object is in when it is first created, and what state
the object is in when it is destroyed. A Statechart diagram can be useful in detailing business rules.

Packages, which are groups of related classes or other modeling elements. Packaging isn't
required, but it is certainly recommended. A typical system may have a hundred classes or more.
Packaging your classes can help reduce the complexity of your model. To get a general picture of
the system, you can look at the packages. To see a more detailed view, you can go into any of the
packages and view the classes inside.

Frequently, teams take a two−pass approach to the Logical view. In the first approach, they identify analysis
classes. Analysis classes are language−independent classes. By focusing first on analysis classes, the team can
begin to see the structure of the system without getting bogged down in the implementation−specific details.
In UML, analysis classes can be represented using the following icons:

Chapter 2: A Tour of Rose

41

The analysis classes might also appear on some Interaction diagrams in the Use Case view. Once the analysis
classes have been identified, the team can change each one to a design class. A design class is a class that has
language−specific details. For example, we may have an analysis class that's responsible for talking to another
system. We don't worry about what language the class will be written in—we focus only on what information
and behavior it will have. When we turn it into a design class, however, we look at the language−specific
details. We may decide that now we have a Java class. We might even decide that we need two Java classes to
actually implement what we uncovered in analysis—there isn't necessarily a one−to−one mapping between
analysis classes and design classes. Design classes are shown on the Interaction diagrams that appear in the
Logical view.

The focus of the Logical view is on the logical structure of the system. In this view, you identify the pieces of
the system, examine the information and behavior of the system, and examine the relationships between the
pieces. Reuse is one of the main considerations here. By carefully assigning information and behavior to
classes, grouping your classes together, and examining the relationships between the classes and the packages,
you can identify classes and packages that can be reused. As you complete more and more projects, you can
add new classes and packages to a reuse library. Future projects then become more of a process of assembling
what you already have, rather than building everything from scratch.

Nearly everyone on the team will use information from the Logical view, but the primary users will be the
developers and architect. The developers will be concerned with what classes are created, what information
and behavior each class should have, and what relationships exist between the classes. The architect, who is
more concerned with the structure of the overall system, is responsible for ensuring that the system has a
stable architecture, that reuse has been considered, and that the system will be flexible enough to change as
requirements change. Analysts will look at the classes and Class diagrams to help ensure that the business
requirements will be implemented in the code. Quality assurance staff will look at the classes, packages, and
Class diagrams to see what pieces of the system exist and need to be tested. They will also use the Statechart
diagrams to see how a particular class should behave. The project manager will look at the classes and
diagrams to ensure that the system is well structured, and to get an estimate of how complex the system is.

Once you've identified the classes and diagrammed them, you can move on to the Component view, which
focuses more on the physical structure.

Component View

The Component view contains information about the code libraries, executable files, run−time libraries, and
other components in your model. A component is a physical module of code.

In Rose, components and Component diagrams are displayed in the Component view, as shown in Figure 2.9.
The Component view of the system allows you to see the relationships between the modules of code.

Chapter 2: A Tour of Rose

42

Figure 2.9: Component view

The Component view includes:

Components, which are physical modules of code.

Component diagrams, which show the components and their relationships to each other.
Relationships between the components let you know what the compilation dependencies are. With
this information, you can determine the compilation order of the components.

Packages, which are groups of related components. As with packaging classes, reuse is one of the
considerations when packaging components. A group of related components may be very easy to
pick up and reuse in other applications, so long as the relationships between the group and other
groups are carefully monitored. We'll discuss these issues in detail later.

The main users of the Component view are those people responsible for controlling the code and compiling
and deploying the application. Some of the components will be code libraries. Others will be run−time
components, such as executable files or dynamic link library (DLL) files. Developers will also use the
Component view to see what code libraries have been created and which classes are contained in each code
library.

Deployment View

The final view in Rose is the Deployment view. The Deployment view is concerned with the physical
deployment of the system, which may differ from the logical architecture of the system.

For example, the system may have a logical three−tier architecture. In other words, the interface may be
separated from the business logic, which is separated from the database logic. However, the deployment may

Chapter 2: A Tour of Rose

43

be two−tiered. The interface may be placed on one machine, while the business and database logic are located
on another machine.

Other issues, such as fault tolerance, network bandwidth, disaster recovery, and response time, are also
handled using the Deployment view. The Deployment view is shown in Figure 2.10.

Figure 2.10: Deployment view

The Deployment view includes:

Processes, which are threads that execute in their own memory space.

Processors, which include any machines with processing power. Each process will run on one or
more processors.

Devices, which include any hardware without processing power. Examples are dumb terminals
and printers.

A Deployment diagram shows the processes and devices on the network and the physical connections
between them. The Deployment diagram will also display the processes, and show which processes run on
which machines.

Again, the whole team will use the information in the Deployment view to understand how the system will be
deployed. However, the primary users will be the staff responsible for distributing the application.

Chapter 2: A Tour of Rose

44

Working with Rose

Everything you do in Rose relates to a model. In this section, we will discuss how to use models. We will first
look at how to create and save Rose models. Then, we will discuss team design considerations by using
controlled units, and show you how to publish a Rose model to the Web.

Creating Models

The first step in working with Rose is to create a model. Models can be either created from scratch or made
using an existing framework model. A Rose model and all diagrams, objects, and other model elements are
saved in a single file with the extension .mdl (model).

To create a model:

1.
Select File → New from the menu, or press the New button on the Standard toolbar.

2.
If the Framework Wizard is installed, then the list of available frameworks will be displayed, as in
Figure 2.11. Select the framework you want to use and click OK, or click Cancel to use no
framework.

Figure 2.11: Framework Wizard

If you select a framework, Rose will automatically load the default packages, classes, and components that
come with that framework. For example, loading the J2EE framework provides default applet, beans, and
other classes, as can be seen in Figure 2.12.

Chapter 2: A Tour of Rose

45

Figure 2.12: J2EE foundation

Although they cannot all be seen in the figure, the J2EE framework provides classes and interfaces within
each of the packages. Each one has the appropriate attributes and operations, so the team does not need to
manually enter them.

There are two benefits to using a framework:

•
The team does not need to spend unnecessary time modeling elements that already exist. The focus of
the modeling effort is on what's unique to a project, not reinventing existing components (although
reusing them is fine!).

•
A framework helps provide consistency across projects. As we mentioned in Chapter 1, a primary
benefit of modeling is ensuring consistency between team members or even between entire teams.
Using the same framework in different projects ensures that both teams are building from the same
foundation.

Rose even gives you the option of creating your own framework. Using this approach, you collect and model
the classes and components that form your organization's architectural foundation. Upon this foundation, you
can design and build multiple systems.

Saving Models

As with any other application, it is good practice to save the file periodically. Rose is no exception. As
mentioned above, the entire model is saved in one file. In addition, you can save the log to a file.

To save a model:

Chapter 2: A Tour of Rose

46

Select File → Save from the menu.

OR

Click the Save button on the Standard toolbar.

To save the log:

1.
Select the log window.

2.
Select File → Save Log As from the menu.

3.
Enter the filename of the log.

OR

1.
Select the log window.

2.
Click the Save button on the Standard toolbar.

3.
Enter the filename of the log.

Exporting and Importing Models

One of the main benefits of the object−oriented paradigm is reuse. Reuse can apply not only to the code but to
the models as well. To fully take advantage of reuse, Rose supports exporting and importing models and
model elements. You can export a model or a portion of a model and import it into other models.

To export a model:

1.
Select File → Export Model from the menu.

2.
Enter the name of the export file.

To export a package of classes:

1.
Select the package to export from a Class diagram.

2.
Select File → Export <package> from the menu.

3.

Chapter 2: A Tour of Rose

47

Enter the name of the export file.

To export a class:

1.
Select the class to export from a Class diagram.

2.
Select File → Export <class> from the menu.

3.
Enter the name of the export file.

To import a model, package, or class:

1.
Select File → Import Model from the menu.

2.
Select the file to import. Allowable file types are model (.mdl), petal (.ptl), category (.cat), or
subsystem (.sub).

Publishing Models to the Web

You can easily publish all or any part of your Rose model to the Web—either to an intranet, the Internet, or a
filesystem site—using Rational Rose 2001A or 2002. This way, users who may need to view the model can
do so without having Rose installed and without printing a ream of model documentation. A model published
to the Web is shown in Figure 2.13.

Figure 2.13: ATM model on the Web

To publish a model to the Web:

1.
Select Tools → Web Publisher from the menu.

2.

Chapter 2: A Tour of Rose

48

Select the model views and packages to publish from the Web Publisher window, as shown in the
Selections field in Figure 2.14.

Figure 2.14: Web Publisher window

3.
In the Level of Detail field, select the desired level of detail. The Documentation Only option includes
only high−level information; none of the properties of the model elements are displayed. The
Intermediate option displays the properties found on the General tab on model element specifications.
The Full option publishes all properties, including those listed on the Detail tab on model element
specifications.

4.
Select the notation to use while publishing. Notation will default to the default notation in Rose.

5.
Choose whether or not to publish inherited items.

6.
Choose whether or not to publish properties.

7.
Choose whether or not to publish associations, which are the relationships between model elements. If
this box is selected, associations will appear in the browser treeview.

8.
Enter the name of the HTML root filename where the model will be published.

9.
If you want to choose the graphic file format for the diagrams, select the Diagrams button. The
Diagram Options window will be displayed, as in Figure 2.15.

Chapter 2: A Tour of Rose

49

Figure 2.15: Diagram Options window

Select the type of graphic format to use while publishing diagrams: Windows bitmaps, Portable
Network Graphics (PNGs), or JPEGs. You can also select to not publish diagrams.

10.
When ready, click Publish. Rose will create all of the web pages to publish your model.

11.
If desired, click Preview to see the published model.

Working with Controlled Units

Rose supports multiuser, parallel development through the use of controlled units. A controlled unit in Rose
can be any package within the Use Case view, Logical view, or Component view. In addition, the Deployment
view and the Model Properties units can also be placed under control. When a unit is controlled, all of the
model elements inside it are stored in a separate file from the rest of the model. This way, the separate file can
be controlled through the use of an SCC−compliant version control tool, such as Rational ClearCase or
Microsoft SourceSafe, or minimally within Rose directly. To create or manage a controlled unit, right−click
the package to control and select the Units option, as shown in Figure 2.16.

Figure 2.16: Managing units

Follow these steps to create a controlled unit:

1.
In the browser, right−click the package to be placed under control.

2.

Chapter 2: A Tour of Rose

50

Select Units → Control <package> from the menu.

3.
Enter the filename for the controlled unit. Notice that the icon in the browser now has a page symbol
on the folder to symbolize that the package is controlled.

In a parallel development environment, you may need to unload a package so that others can work on the
package. You may only modify a loaded package. An unloaded package is available for others to load and
modify. To unload a controlled unit:

1.
Right−click the package to be unloaded.

2.
Select Units → Unload <package> from the menu. Notice that the items in the package are removed
from the browser because they have been removed from the model.

To unload all controlled units in a view:

1.
Right−click the view.

2.
Select Units → Unload Subunits of <view> from the menu.

Periodically, you may want to reload a package that has just been updated by another development team. To
load a controlled unit:

1.
Right−click the package to be reloaded.

2.
Select Units → Reload <package> from the menu.

To uncontrol a controlled unit:

1.
Make sure the controlled unit is loaded.

2.
Right−click the package to be uncontrolled.

3.
Select Units → Uncontrol <package> from the menu. Note that the controlled unit's file is not deleted
from your computer.

At times, you may want to view certain items without modifying them. To protect from modifying controlled
units, mark the unit as write−protected.

To write−protect a controlled unit:

1.

Chapter 2: A Tour of Rose

51

Right−click the package to be write−protected.

2.
Select Units → Write Protect <package> from the menu.

To write−enable a controlled unit:

1.
Right−click the package to be write−enabled.

2.
Select Units → Write Enable <package> from the menu.

Using the Model Integrator

The Model Integrator in Rose is a way to compare and merge up to seven Rose models. This feature is
especially useful in situations with multiple designers. Each can work individually, and then all models can be
integrated into one.

When comparing models, Rose will show you the differences between them. To begin, select Tools → Model
Integrator from the menu. You will see the screen shown in Figure 2.17. If you do not see a Model Integrator
option on the Tools menu, select Add Ins → Add In Manager, and then select the Model Integrator.

Figure 2.17: The Model Integrator

To compare two or more Rose models:

1.
Select File → Contributors from the menu.

2.
Press the […] button to select the first model to compare.

3.
Press the New button to add additional Rose models.

Chapter 2: A Tour of Rose

52

4.
Select additional files as needed, until all files you wish to compare have been selected.

5.
Press the Compare button. The differences will be displayed, as shown in Figure 2.18.

Figure 2.18: Model differences

6.
Press the Merge button to merge rather than compare models. The Model Integrator will attempt to
merge the files for you. If there are any conflicts, you will see a message in the lower−right corner of
the window informing you of the number of unresolved items. Use the Previous Conflict and Next
Conflict toolbar buttons to navigate to the conflicts and resolve them.

7.
Once all conflicts are resolved, you may save the new model.

Working with Notes

A note is simply a small amount of text that you would like to add to a diagram. It can be related to the overall
diagram or to a particular element on the diagram. If it is related to a particular element, it is attached to that
element, as shown in Figure 2.19.

Chapter 2: A Tour of Rose

53

Figure 2.19: Notes

To add a note to a diagram:

1.
Select the Note icon from the toolbar.

2.
Click anywhere inside the diagram to place the note.

3.
Select the Anchor Note to Item button from the toolbar.

4.
Drag and drop from the note to the item.

To remove a note from a diagram, simply select it and press the Delete key.

Working with Packages

A package is a UML construct that is used to group model elements together. You can create a package of use
cases, actors, classes, or any other type of model element.

Packages are mainly used to organize the model. In the Use Case view, packages simply group the use cases
and actors into more manageable views. In the Logical view, packages are used for two purposes:

•
They can be used to group the classes and other model elements into logical groupings (i.e., all of the
classes that deal with orders, all of the classes that deal with customers, etc.).

•
They can be used to show the physical deconstruction of the system into architectural layers. For
example, one package may hold the user interface elements, while another holds the business logic,
and still another holds the database connection classes. The team can then model and analyze the

Chapter 2: A Tour of Rose

54

dependencies between the packages to evaluate the system's architecture.

Packages are a powerful UML tool in this respect. Analyzing the dependencies can show the team how
reusable a particular package is, what other packages may need to change if a particular package changes,
what the effect would be if a package were to change, and which architectural layers communicate directly
with which other architectural layers. A dependency indicates that a class in one package has a relationship to
a class in another package.

In general, dependencies between architectural layers should flow from the user interface layer to the business
logic layer to the database communications layer to the database itself, as shown in Figure 2.20.

Figure 2.20: Dependencies in architectural layers

Also, as a general guideline, dependencies should not "skip" layers. For example, the user interface should not
depend directly upon the database. The team may decide not to follow these guidelines, which is fine, but
modeling the architecture through packages is a great way of seeing the implications of these types of
architectural decisions. We will discuss this topic further in Chapter 6.

In the Component view, packages are again used to model the different layers, or tiers, of the system
architecture, but in this case the packages focus on components rather than classes. In the Deployment view,
they can be used to separate different categories of processors or devices.

Packages can be created within packages to further organize the model. This can be especially helpful when
modeling very large, complex systems or when modeling applications that communicate with a number of
other applications. While it is not necessary to use packages at all, they do help to keep the model organized.

A second use for packages that is specific to Rational Rose is in version control, especially in a multiuser
environment. Packages can be used to split the Rose model into separate files, which can then be checked in
and out using version control software such as Rational's ClearCase.

To add a package in Rose:

1.
Right−click in the model hierarchy shown in the browser. You can create a package directly under
one of the four views (Use Case, Logical, Component, or Deployment) by right−clicking either the
Use Case View option, the Logical View option, or the Component View option. Alternatively, you
can create a package underneath any existing package by right−clicking the existing package and
selecting New → Package.

2.

Chapter 2: A Tour of Rose

55

The new package will appear in the browser. Single−click it to assign it a name.

To remove a package in Rose:

1.
Right−click the package in the browser and select Delete. You will be prompted for confirmation
before the package is deleted.

2.
The package will be removed from the model. Please note that any classes, diagrams, or other model
elements within the package will be deleted.

Adding Files and URLs to Rose Model Elements

While the Rose model contains a great deal of information about the system, there are other documents, such
as the requirements document, vision statement, test scripts, and so on, that are located outside the Rose
model. It can be helpful to attach these files to specific elements within the Rose model. Once a Word file, for
example, has been attached to the hierarchy in the browser window, you can launch Word and load that file by
simply double−clicking the filename in the browser.

To attach a file or URL to a model element:

1.
Right−click the model element in the browser.

2.
Select New → File or New → URL.

3.
Select the appropriate file or URL in the files window.

4.
Once the file or URL has been attached, double−click it in the browser to open it.

5.
To delete the file or URL, right−click it in the browser and select Delete. Note that this operation will
simply remove the attachment between the Rose model and the file; it will not delete the file from
your system.

Adding and Deleting Diagrams

A Rose model can contain many diagrams, each of which shows a slightly different view of the system. As a
collection, these diagrams should give the team a thorough understanding of the system from many different
perspectives. The eight types of diagrams supported by Rational Rose are:

•
Use Case diagrams

•
Activity diagrams

•

Chapter 2: A Tour of Rose

56

Sequence diagrams

•
Collaboration diagrams

•
Statechart diagrams

•
Class diagrams

•
Component diagrams

•
Deployment diagrams

The Use Case view typically includes Use Case diagrams, Activity diagrams, Sequence diagrams, and
Collaboration diagrams. When you create a new Rose model, one Use Case diagram called "Main" is
automatically created in the Use Case view. This diagram cannot be removed.

The Logical view typically contains Sequence diagrams, Collaboration diagrams, Class diagrams, and
Statechart diagrams. In a new Rose model, one Class diagram called "Main" is automatically created for you
in the Logical view. The Component view contains one or more Component diagrams, while the Deployment
view contains a Deployment diagram. There is only one Deployment diagram per system.

To add a new diagram:

1.
Right−click a package in the browser. The new diagram will be added underneath the package you
have right−clicked.

2.
Select New → <diagram type>.

3.
Type the name of the new diagram.

4.
Double−click the new diagram to open it.

5.
To delete a diagram, right−click it in the browser and select Delete. Note that although the diagram is
deleted, the model elements, such as classes or use cases that were on the diagram, are not deleted.

Setting Global Options

Options such as the font and color are used for all model objects, including classes, use cases, interfaces,

Chapter 2: A Tour of Rose

57

packages, and so on. In this section, you will learn how to change the fonts and colors for model objects. You
can set the default fonts and colors by using the Tools → Options menu item.

Working with Fonts

In Rose, you can change the font of individual objects on a diagram, which can improve the readability of
your model. Fonts and font sizes are set using the Font window shown in Figure 2.21.

Figure 2.21: Font Selection window

To set the font or font size of an object on a diagram:

1.
Select the desired object or objects.

2.
Select Format → Font from the menu.

3.
Select the desired font, style, and size.

Working with Colors

In addition to changing the fonts, the colors of objects can be individually changed. You can change the line
color and fill color for an object by using the Color window in Figure 2.22.

Chapter 2: A Tour of Rose

58

Figure 2.22: Color Selection

To change the line color of an object:

1.
Select the desired object or objects.

2.
Select Format → Line Color from the menu.

3.
Select the desired line color.

To change the fill color of an object:

1.
Select the desired object or objects.

2.
Select Format → Fill Color from the menu.

3.
Select the desired fill color.

Summary

At this point, you should be familiar enough with the basics of Rose to follow the Rose examples and
instructions in the remainder of this book.

There are four views within a Rose model:

•

Chapter 2: A Tour of Rose

59

The Use Case view, which describes the system from the stakeholders' perspective

•
The Logical view, which includes the classes, packages of classes, and other logical constructs within
the system

•
The Component view, which focuses on the physical layout of the files

•
The Deployment view, which is concerned with the structure of the network on which the system will
be deployed

Through these four views, the members of a project team should have a complete picture of the system, from
a high level to a very detailed level. As we progress through this book, we will fill in the details of each of
these four views.

Chapter 2: A Tour of Rose

60

Chapter 3: Business Modeling
While the rest of UML focuses on a system that will be built, business modeling instead concentrates on the
business around the system. In this chapter, we will examine the business itself, the entities that interact with
it, and the workflows within it to truly understand the business environment before designing the system. We
can then be sure that the system will work to meet the unique goals of the unique business in which it exists.

We'll begin by introducing the concept of business modeling and then discuss some of the reasons you may
want to model your business. Not every project requires business modeling. However, there are many
situations where business modeling adds a great deal of value. We'll discuss some of these situations.

We will then get into the specific elements within business modeling. Some of these elements are business
actors, business use cases, and business workers. We will discuss each of these and show you how to model
them using Rose.

•
Introduction to business modeling

•
Business modeling concepts

•
Reasons for modeling a business

•
Working with business use cases, business actors, and business workers

Introduction to Business Modeling

Business modeling is the study of an organization. During the business−modeling process, you examine the
organization's structure and look at the roles within the company and how they interrelate. You also examine
the organization's workflows, the major processes within the company, how they work, how effective they
are, and whether there are any bottlenecks. You'll examine the outside entities, either individuals or other
companies, which interact with the business, and look at the implications of that interaction.

In short, you try to understand what is inside and outside the business, and how the inside and outside talk to
each other. In UML, you'll document this information in the business model.

Why Model the Business?

There are many reasons to do business modeling. These reasons include gaining an understanding of your
organization and its software system, helping in a business process–re−engineering effort, and building a
powerful training tool, as explained in the following sections.

Understanding the Organizational Vision

Even if you are not building a software system, you can use business modeling to understand and document
what your organization does. This is a wonderful way to develop a vision statement for your organization; the
diagrams in business modeling will help you understand what the outside world gains from its relationship

61

with your organization, as well as how your organization goes about accomplishing these goals. The business
modeling does not apply only to the organizational level. A particular division within an organization may
want to go through the business−modeling process to develop its own division charter or mission statement.

Business Process Re−engineering

Business modeling is also very helpful in a business process–re−engineering effort. One of the chief artifacts
of the business−modeling process is the workflow diagram. These diagrams depict how a particular process
flows within the organization. It shows the individuals involved in the process, the steps within the process,
and the business entities that are involved in the process. A business process–re−engineering team will start
by documenting the current process with workflow diagrams. They can then analyze these diagrams to look
for inefficiencies or other problems within the workflow. For example, they may discover that a particular
document goes from an analyst, to a manager for approval, back to the analyst for additional information, and
then back to the manager. The process may be able to be improved by having the analyst fill out all of the
required information up front. This is just one example of how workflow diagrams can be analyzed.

The business process–re−engineering team will also use workflow diagrams to analyze possible future
workflows. By designing a number of potential processes, the team will be better able to view and discuss the
pros and cons of each approach and to select the new process that is most appropriate for the organization.

Training

Whether a new process has just been developed or a new staff member has just joined the team, the results of
business modeling can be a powerful training tool. The workflow diagrams illustrate who is involved in the
process, what the steps are, and what the artifacts are. Any member of the team can review these diagrams to
understand how they fit into the process, what artifacts they are responsible for producing or receiving, and
with whom they need to communicate. These simple diagrams can save a great deal of organizational
headaches by clearly stating what each person's responsibilities are within a workflow. They help ensure that
everyone has a common understanding of the business processes and the roles within them.

Context for a Software Solution

Of course, many of us who are using UML are using it to build software. In this situation, business modeling
can help us understand the context of the system we are building. While this may sound trivial, it can have
serious consequences on the success or failure of a software project. If we fail to understand the business, we
may make faulty assumptions about what the software should do and how it can best be used by the business
community.

The "world around the system" is an important consideration when building software. Over the past several
years, as companies were using UML without business modeling, one of the concerns that arose was the
inability to understand how the system fit into the organization around it.

Enter business modeling. This solves the hole in the process by giving the team a view of the business itself,
the workflows within it, and the way the new system will help automate portions of the workflow.

Do I Need to Do Business Modeling?

Without the help of some gifted psychics, we can't give you a definite answer to that question. However, we
can give you some guidelines:

You may need to do business modeling if:

•

Chapter 3: Business Modeling

62

You and your workgroup are new to the organization.

•
The organization has undergone some recent business process re−engineering.

•
The organization is planning to go through business process re−engineering.

•
You are building software that will be used by a significant portion of the organization.

•
There are large and complex workflows within the organization that are not well documented.

•
You are a consultant in an organization you have not worked with before.

You may not need to do business modeling if:

•
You have a thorough understanding of the organization's structure, goals, business vision, and
stakeholders.

•
You are building software that will be used by only a small part of the organization, and will not have
an effect on the rest of the business.

•
The workflows within the organization are fairly straightforward and are well documented.

•
There simply isn't time. Let's be realistic; not all projects have the time needed to do a complete
business analysis. But be careful! Don't let lack of time be an excuse. Fight for the time if you feel
that business modeling would help ensure the success of your project.

Business Modeling in an Iterative Process

In an iterative process, the team goes through a series of steps multiple times, each time focusing on a
different part of the business or system. There are two approaches to business modeling in an iterative
environment. First, you can complete all of the business modeling up front, and then iterate through the
analysis, design, coding, testing, and deployment steps. Alternatively, you can include the business modeling
in the iterations. We'll discuss a few of the pros and cons of each approach, but first let's discuss where
business modeling falls in relation to the other steps in the lifecycle.

The typical sequence of steps in developing software is as follows (note that these are not all of the steps in
the lifecycle):

•
Business modeling

♦

Chapter 3: Business Modeling

63

Business Use Case diagrams

♦
Activity diagrams (workflows)

♦
Analysis−level Class diagrams (business entities)

•
System use case modeling

♦
Actors

♦
Use cases

♦
Use Case diagrams

•
Analysis

♦
Use case flow of events

♦
Supplementary specifications

♦
Analysis−level Sequence and Collaboration diagrams

♦
Analysis−level Class diagrams

•
Design

♦
Design−level Sequence and Collaboration diagrams

♦
Design−level Class diagrams

♦
Statechart diagrams (if needed)

♦
Component diagrams

♦

Chapter 3: Business Modeling

64

Deployment diagrams

•
Coding

•
Testing

•
Deployment

As you can see, business modeling is the first step in the process. It is the first step whether you are using an
iterative lifecycle or a waterfall approach. The reason for this is that business modeling sets the context for the
rest of the project. As you go through the system's design, the business modeling will help you keep in mind
why you are building the system in the first place.

Completing the business modeling up front, as opposed to iteratively, gives you the advantage of fully
understanding the business process before beginning to scope the system at all. Thus, you can determine from
the beginning the areas of the workflow that most need to be automated and the areas in which the system can
most effectively help the organization. All of this leads to the ability to build a system that can have a greater
positive impact on the company.

The disadvantage to this approach is that, as projects are often time−constrained, it can be unrealistic.
Unfortunately, it can lead to the cutting out of business modeling altogether. Your end users or customers may
want to get to the system quickly and may not be willing to wait for you to analyze the business first.

Chapter 3: Business Modeling

65

Alternatively, you can complete the business modeling in iterations. This has the advantage of letting you
study the organization without delaying the building of the software system. You do, of course, run the risk of
misunderstanding the company and building a software system that doesn't quite meet its needs. Or, you may
discover a previously unknown business process later in the game that has a significant impact on the system.
These types of risks can typically be controlled, but they are the downfalls of using this type of approach with
business modeling.

Business−Modeling Concepts

In this section, we will discuss some of the fundamental concepts of business modeling. Ideas such as
business actors, business workers, and activity diagrams will help us understand the organization itself. In this
section, we will cover the following concepts:

•
Business actors

•
Business workers

•
Business use cases

•
Business Use Case diagrams

•
Communication relationships between business use cases and business actors

•
Business entities

•
Activity diagrams

Again, it is important to remember that business modeling does not focus on what will and will not be
automated (although that information can be found in the workflows). Instead, it focuses on two areas. First,
what are the boundaries of the organization and with whom does it need to communicate? And second, what
are the workflows within the organization and how can they be optimized?

Business Actors

A business actor is anyone or anything that is external to the organization but interacts with it. For example, a
business actor for your organization might be its customers, its creditors, its investors, or its suppliers. Each of
these actors has an interest in the actions of the company.

In UML, a business actor is modeled using the following icon:

Chapter 3: Business Modeling

66

Although the icon looks like a person, a business actor does not need to be an individual. It could represent a
group of people or a company. We model business actors to understand who and what needs to interact with
the business and how they interact with the business. When we are re−engineering processes or building new
systems, we must always keep in mind that the organization must still meet the needs of these external
entities. What good would it be to a grocery store to streamline its processes by getting rid of the cash
registers? An extreme example, of course, but the idea is the same: We must keep in mind why the business is
there in the first place. Modeling business actors helps with this effort.

Business Workers

A business worker is a role within the organization. Notice that business workers are roles, not positions. A
single person may play many roles but hold only one position. The benefit of being role−based rather than
position−based is that positions tend to change over time, while roles remain fairly constant.

In UML, a business worker is modeled using the following icon:

We model business workers to understand the roles within the business and how these roles interact. By
describing each business worker, we can understand what the responsibilities of that role include, what skills
are required for that role, and other details. At a minimum, think about the following for a business worker:

•
What are the worker's responsibilities?

•
What skills does the worker need to carry out those responsibilities?

•
With what other workers does it interact?

•
In what workflows does it participate?

•
What are the worker's responsibilities within each workflow?

Chapter 3: Business Modeling

67

Business Use Cases

A business use case is a group of related workflows within the organization that provide value to the business
actors. In other words, the business use cases tell the reader what the organization does. More specifically,
they tell someone what the organization does that provides value to the businesses and individuals that
interact with it. The set of all business use cases for an organization should completely describe what the
business does.

Examples of business use cases for a retail store might include "Restock Inventory," "Price Products," "Sell
Products," "Refund Money," or "Deliver Products." For an e−business, they might include "Register New
User," "Create/Modify Order," "Fill Order," "Restock Inventory," or "Cancel Order." An investment house
might have "Buy Stock" and "Sell Stock," among others.

A company does not even have to be highly automated to use business modeling. A cattle rancher might have
business use cases like "Buy Cattle," "Sell Cattle," "Bottle Milk," or "Replenish Feed."

In UML, we use the following icon for business use cases:

The business use cases are typically named in the format "<verb><noun>," as in "Price Products." This is a
good standard to follow for several reasons. It keeps the business use cases consistent, even if multiple
analysts are defining them. Also, it makes the use cases easier for the end user to understand. "Price" alone
doesn't tell the user much about the business, nor would "Products." Finally, and perhaps most importantly, it
keeps the focus on what the business is doing—what it's accomplishing—not just what entities it uses.

Of course, even "Price Products" doesn't tell us much without some details. For each business use case, you
will want to create some type of report that lets people know specifically what goes on within the use case.
Does a clerk use historical prices to set the current price? Do they use surveys to determine what the
customers are willing to pay? Do they do an in−depth study of the prices of each product in Egypt and Turkey
and then average the two? Or do they just make up product prices as they go along? We won't know for sure
unless the specific workflow is documented somewhere.

The workflow can be documented in a couple of ways. The simplest in some situations is just to create a
numbered, step−by−step list of what happens as the use case progresses:

1.
The clerk talks to the manager to obtain a list of all new products to be priced.

2.
The clerk checks the store's purchase records to see how much the store paid for each new item.

3.
The clerk adds 10% to the purchase price to find the item's price.

4.
The clerk gives the new prices to the manager for approval.

5.

Chapter 3: Business Modeling

68

If the manager does not approve, the clerk and manager decide upon new prices.

6.
The clerk creates price tags for each new item.

7.
The clerk places price tags on each new item.

The problem with this approach is that if there is a lot of conditional logic, it can confuse the reader. In the
simple example above, the condition is fairly straightforward. Unfortunately, though, the real business world
isn't always so simple. A business worker may perform some actions if condition A occurs, others if condition
B occurs, and still others if condition C occurs. In this situation, it might be more beneficial to use an activity
diagram.

An activity diagram shows in graphical form what the steps are in a workflow, the sequence of the steps, and
who is responsible for performing each step. A sample activity diagram for the workflow described above
would look like Figure 3.1.

Figure 3.1: Activity diagram

We'll discuss activity diagrams, including the different symbols that appear on the diagram, later in this
chapter. For now, just look at the message the diagram is conveying. As before, we can see what the steps are
in pricing products, but the graphical representation helps in making these steps easier to read and understand.
The difference is even more striking with large and complex workflows.

Business Use Case Diagrams

A Business Use Case diagram shows you the business use cases, business actors, and business workers for an
organization and the interactions between them. It gives you a complete model of what the company does,

Chapter 3: Business Modeling

69

who is inside the company, and who is outside the company. It gives you the scope of the organization, so you
can see what it encompasses and where its borders are.

An example of a Business Use Case diagram is shown in Figure 3.2.

Figure 3.2: Business Use Case diagram

This diagram is simple by design. It is intended to quickly convey high−level information about the business
without getting into all the details or confusing the reader with too much notation. If you have a large number
of business use cases, simply create multiple diagrams with each containing a subset of the use cases.

An arrow from a business actor or a business worker to a use case suggests that the actor or worker initiates
the use case. In this example, the clerk begins the process of pricing products. An arrow from a business use
case to a business actor suggests that the organization initiates communication with the business actor. In this
example, while the Deliver Products workflow is occurring, the organization (in this case, the driver)
communicates with the customer.

Activity Diagrams

An activity diagram is a way to model the workflow of a use case in graphical form. The diagram shows the
steps in the workflow, the decision points in the workflow, who is responsible for completing each step, and
the objects that are affected by the workflow.

An example of an activity diagram is shown in Figure 3.3. In this example, a customer has received a
defective product and is asking for a refund.

Chapter 3: Business Modeling

70

Figure 3.3: Activity diagram

We can read the diagram as follows: The customer begins the process by writing a letter asking for a refund.
The customer service representative reviews the letter. If the required documentation is missing, the customer
service representative writes a rejection notice and sends it to the customer, who now has a request that has
been denied. If the documentation is present, the customer service representative files the request at the same
time as the accounts payable clerk writes a check. Once these two steps are completed, the customer service
representative notifies the customer, who now has a request that has been approved.

Let's examine the notation in this diagram. The first piece is the start state, which is the solid dot in the
upper−left portion of the diagram. This symbol lets you know where the process begins.

The rounded rectangles in the diagram are known as activities. An activity is simply a step in the workflow. It
is a task that a business worker performs. Notice that the diagram is divided into three vertical sections,
known as swimlanes. Along the top of the swimlanes, we can see the role that performs all of the activities in
the swimlane.

Within an activity, you can list the actions that occur for that activity. Actions are simply steps within the
activity. For example, if you have an activity called "create purchase order," the actions that make up that step
might include: "get the supplier's name and address," "enter the item(s) to be ordered with price and quantity,"
"calculate the total," and "print the purchase order." These are steps that are too small to be shown as their
own activities on a high−level business activity diagram but that add information about the process.

There are four types of actions:

•
Those that occur when you enter an activity. These are marked with the word entry.

•
Those that occur while an activity is occurring. These are the steps within the activity. These are
marked with the word do.

•

Chapter 3: Business Modeling

71

Those that occur when you leave an activity. These are marked with the word exit.

•
Those that occur when a specific event happens. These are marked with the word event.

The arrows connecting the activities are known as transitions. A transition lets you know which activity is
performed once the current activity has completed.

In this example, as soon as the clerk finishes checking the purchase prices of the items, he or she begins the
process of adding 10% to those prices.

We can place guard conditions on the transitions to show when the transition occurs. Guard conditions are
placed in square brackets. In this example, the activity "create rejection letter" is only performed if the guard
condition "missing documentation" is true.

The horizontal bars are called synchronizations. They let you know that two or more activities occur
simultaneously. The upper synchronization shows a fork in which the control of the workflow is split into two
branches. Once those activities are complete, another synchronization, called a join, occurs. After the join, the
workflow again has only one thread of control. Synchronization bars may be either horizontal or vertical. In
the example shown previously in Figure 3.3, the customer service representative files the request at the same
time the accounts payable clerk creates a refund check. Only after those two activities have completed does
the customer service representative notify the customer.

Finally, the square symbols represent objects. These objects are affected by the workflow, and change state as
the workflow goes along. In this example, a request could be new, denied, or accepted. Dashed lines are used
to show which activities affect the state of an object. For example, the creation of a rejection letter sets the
state of the request to "denied."

Business Entities

A business entity is an object that the organization uses to conduct its business or produces during the course
of its business. A business entity is, as its name implies, an entity that the business uses. Entities include the
things that the business workers deal with day to day. Examples might be sales order, account, shipping box,
contract, small blue thumbtack—whatever is relevant to the business.

Look at that last statement carefully. You want to list the major items the business deals with, but without
getting carried away. If you are in the business of producing thumbtacks, a small blue thumbtack might
actually be a valid business entity. If not, it probably isn't worth worrying about. Ask questions like:

•
What products does the company produce?

•

Chapter 3: Business Modeling

72

What services does the company provide?

•
What items does the company purchase to do its work?

•
What are the items it delivers to/receives from its customers?

•
What items are passed from business worker to business worker for processing?

Another trick is to look at the nouns in the names of the business use cases you've defined. For the most part,
each noun is a business entity. We use the following icon for a business entity:

You can refine the business entities by adding attributes. An attribute is a piece of information that describes
the entity. For example, an entity called account might have attributes such as account number, account type
(checking or savings), balance, date opened, date closed, and status.

Warning It can be very easy to get carried away with attribute modeling. Remember that the purpose here is
to elaborate on the business. You don't want to start designing a database yet! Include only those
attributes that will help someone more fully understand the business.

If you have defined attributes for the entity, they are displayed below the entity name, as shown here:

Organization Unit

An organization unit is simply a collection of business workers, business entities, or other business−modeling
elements. It is a mechanism that can be used to organize the business model.

Many companies are organized into divisions, groups, or units. Each of these can be modeled as an
organization unit. The organization unit will contain all of the business workers within that division, group, or
unit. In UML, the following icon is used to represent an organization unit:

Chapter 3: Business Modeling

73

Where Do I Start?

To begin, define the boundaries of your business−modeling effort. Are you modeling the entire organization
or just one division? Which workflows within the business are relevant to your current project? It might be
nice to analyze all the business workflows, but that could be quite an undertaking.

Once you have a clear definition of the scope of the project, it's very important to assemble the right team.
You will need individuals with business knowledge, as well as individuals with business−modeling
knowledge. In general, the people on the team do not need to be technical at all, and in fact it is sometimes
better if they are not. Technical teams might dive too quickly into the solution space—the system design.

Some of the important roles to consider include the following:

Team lead This person should have both business knowledge and modeling knowledge. He or she will be
responsible for coordinating the efforts of the other members of the team and for keeping discussions focused.

Business representative(s) These people are representatives from different parts of the organization to be
modeled. They should be very familiar with the workflows of the business, including the current problems and
benefits of those workflows. They should be able to see both their workflows in detail and the organization at
a high level.

Business process re−engineer(s) These individuals should be familiar with current workflows, and they
should have an eye for finding efficiency problems and coming up with creative solutions. Ideally, they would
have been involved in business process–re−engineering efforts in the past. They should be inquisitive but not
belligerent, be excellent communicators (both written and verbal), and have the ability to decompose
problems into manageable pieces. This is an optional role, used for business process–re−engineering efforts.

Business modeler(s) or business process analyst(s) This role is very similar to that of a business process
re−engineer, but in this case the business processes will not change. In this role, you need someone who
understands the business workflows, who communicates extremely well, and has good analysis skills.

Management representative(s) Someone must have the authority to decide what pieces of the business
will be covered by the business−modeling effort. This person can also help the team understand the
workflows from a manager's perspective.

Identifying the Business Actors

After the team has been assembled, begin identifying the business actors, business use cases, and business
workers. This can be done in any order. To find the business actors, look at the scope of the project you are
undertaking and ask yourself what lies outside that scope. If you are modeling the entire business and you ask

Chapter 3: Business Modeling

74

what lies outside the business boundaries, your answer would be a whole world of people, companies, and
other entities! You should therefore narrow the focus a little—for example, what lies just outside the
business? In other words, who or what communicates with the business? These are your business actors.

It can be very helpful to hold brainstorming sessions to find some initial business actors. You can also review
the project vision statement if one exists, the organization's marketing and other public relations materials,
business goals, and business vision. Each of these might help you determine the outside entities that are
important to the business.

Let's look at the example of an airline. Looking at the marketing materials for a particular airline, we find two
types: those trying to win new customers, and those trying to win new employees. We can therefore identify
two business actors: customers and potential employees (actual employees are business workers, because they
lie within the scope of the organization). Reviewing some public relations materials, we find that they largely
focus on the needs and concerns of the shareholders, so we add another business actor called shareholder.
Knowing that this is an airline, there are certain federal regulations they must adhere to. The Federal Aviation
Administration (FAA) is concerned with whether these rules are followed, so it is an actor as well. The airline
buys its planes and many of its parts from a large plane manufacturer, which also is an actor. It buys the meals
and drinks for its passengers from an outside catering company. These are just a few examples, but there are
frequently a number of business actors for an organization, especially a large organization. Figure 3.4 shows
examples of some of the business actors for an airline.

Figure 3.4: Business actors for an airline

Identifying the Business Workers

To identify business workers, again look first at the scope of your project. If you are modeling the entire
business, an organizational chart is a good place to start. Consider each role within the chart rather than each
position to define the business workers. Remember that a single person may fill multiple roles. Once you have
listed the business workers, begin detailing them. Document their responsibilities within the organization,
their required skills, and their interactions with other business workers and with business actors.

In the airline example, the business workers are all of the different roles within the company. If we were
modeling the entire organization, business workers would include, among others, pilots, co−pilots, navigators,
stewards and stewardesses, mechanics, ticket sales staff, luggage handlers, and security guards. Figure 3.5
shows some of the business workers for an airline.

Chapter 3: Business Modeling

75

Figure 3.5: Business workers for an airline

Identifying the Business Use Cases

To identify business use cases, you can start with the vision or mission statement for the organization. These
should say, at a high level, what the business accomplishes that is of value to the outside world. An airline's
main service is flying a customer from one city to another, so let's begin with that idea.

You then ask what needs to happen in order to transport that customer from Los Angeles to New York. First,
the airline needs to have a mechanism for the customer to purchase a ticket. It then must check in the
customer and their luggage; load the aircraft with fuel, luggage, and people; perform a safety check on the
plane flying from L.A. to New York; land; and unload the aircraft. Some business use cases might include
"Issue Ticket," "Check In Passengers," "Check In Luggage," "Perform Safety Check," "Load Aircraft," "Land
Aircraft," and "Unload Aircraft." Of course, these represent only the core workflow of the business. If you are
modeling the entire organization, you will need to think also about sales, marketing, accounting, and the other
areas of the business.

Other ways to find business use cases might include brainstorming sessions, reviews of the organization's
processes and procedures, interviews with customers and other stakeholders, or your own business
knowledge. Be patient if this is time−consuming; this process is a little bit of art and a little bit of science.

Showing the Interactions

The next step is to draw one or more Business Use Case diagrams that show the interactions between the
business workers, business actors, and business use cases. An arrow from a business worker to a business use
case suggests that the worker initiates the process represented by the use case. In the following example, the
safety coordinator initiates the process of performing a pre−flight safety check:

An arrow from a business actor to a business use case suggests that the actor initiates the process. For
example, a customer may initiate the "Issue Airline Ticket" process:

Chapter 3: Business Modeling

76

If you have a large number of business use cases, actors, and workers, you may want to group them into
organizational units. This can help organize the model and make it easier for the reader to understand. If you
take this approach, create a separate Business Use Case diagram for each organization unit.

An example of a Use Case diagram for an airline is shown in Figure 3.6.

Figure 3.6: Business Use Case Diagram for an airline

Once the initial Use Case diagrams have been constructed, distribute them for feedback and finally for
approval.

Documenting the Details

This process will give you a high−level view of what is inside and outside the organization. What it will not
do yet is give you any of the workflow details behind any of the use cases. Therefore, the next step in the
process is to dive into those details.

For each business use case, document the workflow through the use case. As we discussed above, the
workflow could be documented using numbered steps, flowcharts, or activity diagrams. Remember to
document the primary flow, which is the normal course of events, and any alternate flows. If it is a complex
process or there are many alternate flows, an activity diagram may be the best way to document the workflow.

If you are working with the Rational Unified Process, another artifact to create is a business use case report,
which includes details about the use case such as the description, goals, workflow, relationships, and special
requirements.

After these details have been documented for all business use cases, you have a great picture of the
organization. The use cases tell you what the organization does. The workflows give you the details of how
each use case is accomplished. The actors tell you what is outside the organization that interacts with it. The
business workers tell you the roles within the organization. The organization units tell you how the company

Chapter 3: Business Modeling

77

is structured. The business use case reports give you additional information about each use case. Finally, the
Business Use Case diagrams tell you what the relationships are between all of those elements.

Next, let's take a look at how to model these UML concepts in Rational Rose.

Creating Business Use Case Diagrams

Business Use Case diagrams are created in the Use Case view within Rose. After they are created, they will
appear in the browser hierarchy under Use Case view. A Business Use Case diagram will show some or all of
the business actors, business workers, and business use cases in the model and the relationships between them.
You can place a specific business actor, worker, or use case on as many Use Case diagrams as you'd like.

Although you can create Business Use Case diagrams directly under the Use Case view, keep in mind that
your system use cases, system actors, and System Use Case diagrams will also be placed in the Use Case
view. It can be helpful to begin by creating a separate area for the business modeling. This is accomplished by
adding a package, which will contain all of your business use cases, business actors, and other
business−modeling elements. Of course, you can create packages within this package to further organize your
business model.

To create a Business Model package (optional):

1.
Right−click the Use Case View entry in the browser.

2.
Select New → Package.

3.
Enter the name of the new package, such as Business Model.

An example of a model that was organized using this method is shown in Figure 3.7. The Business Model
package contains all business use cases, business workers, business actors, and Business Activity diagrams,
while the System Model package contains all of the technical details for the system itself.

Chapter 3: Business Modeling

78

Figure 3.7: Business Model package

To create a new Business Use Case diagram:

1.
Right−click the Business Model package in the Use Case view in the browser. If you did not create a
business−modeling package within the Use Case view, right−click the Use Case View entry.

2.
Select New → Use Case Diagram from the shortcut menu.

3.
With the new diagram selected, type in the name of your new diagram.

4.
Double−click the name of the new diagram in the browser to open it.

To open an existing Business Use Case diagram:

1.
Locate the Business Use Case diagram in the Use Case view in the browser.

2.
Double−click the Business Use Case diagram's name to open it.

OR

1.
Select Browse → Use Case Diagram.

2.
In the Package list box, select the package that contains the diagram you want to open.

3.
In the Use Case Diagrams list box, select the diagram you want to open.

4.
Press OK.

Deleting Business Use Case Diagrams

If you need to delete a Business Use Case diagram, you can do so in the browser. The business use cases,
business actors, and other model elements on the diagram will not be deleted from the model. To delete a
diagram, simply right−click it in the browser and select the Delete option from the shortcut menu.

Warning Rose does not allow you to undo a deletion of a diagram or to delete the Use Case diagram called
Main.

Chapter 3: Business Modeling

79

The Use Case Diagram Toolbar

When creating a Business Use Case diagram, the toolbar that will display shows the icons that are typically
used for a System Use Case diagram. We will need to customize the toolbar to include the business−modeling
icons.

To customize the Use Case toolbar:

1.
Right−click the Use Case toolbar and select the Customize option. The window displayed in Figure
3.8 will appear.

Figure 3.8: Customizing the Use Case toolbar

2.
Find the business−modeling toolbar buttons in the Available Toolbar Buttons list box and press the
Add key to add them to the toolbar.

Table 3.1 lists the business−modeling icons that are available to add to the Use Case Diagram toolbar. Note
that there are other icons available on the toolbar. Table 3.1, however, lists only the business−modeling icons.
We will discuss the other icons in Chapter 4, "Use Cases and Actors."

Note In Rose, all of the business−modeling icons will be displayed in yellow.
Table 3.1: Business−Modeling Icons in the Use Case Diagram Toolbar

Icon Button Purpose

Business Actor Adds a new business actor, who is external to the organization

Business Worker Adds a new business worker, who is internal to the organization

Organization Unit Adds a new organization unit, which is used to group business
workers and other business−modeling elements

Business Use Case Adds a new business use case

Business Use Case RealizationAdds a new business use case realization

Business Entity Adds a new business entity

Adding Business Use Cases

To add a business use case, first create or open a Use Case diagram and then add the new business use case to
the diagram. When you create the business use case with this method, it is automatically added to the browser.

To add a new business use case:

1.

Chapter 3: Business Modeling

80

Select the Business Use Case button from the toolbar.

2.
Click anywhere inside the Use Case diagram. The new use case will be named NewUseCase by
default.

3.
With the new use case selected, type in the name of the new use case.

4.
Note that the new use case has been automatically added to the browser under the Use Case view.

To add an existing business use case to a Use Case diagram:

1.
Drag the business use case from the browser to the open Use Case diagram and drop it anywhere in
the diagram.

OR

Select Query → Add Use Cases. A dialog box will display, as in Figure 3.9, which will allow you to
select and add existing use cases.

Figure 3.9: Adding existing business use cases to a Use Case diagram

2.
In the Package drop−down list box, select the package that contains the business use case(s) you want
to add.

3.
Move the business use case(s) you want to add from the Use Cases list box to the Selected Use Cases
list box.

4.
Press OK to add the business use cases to the diagram.

Business Use Case Specifications

In Rose, you can specify the name, priority, and other details for each business use case through the use case
specification window, shown in Figure 3.10.

Chapter 3: Business Modeling

81

Figure 3.10: Use case specification window

In the following sections, we'll take a look at each of the specifications available on the tabs of this window.
But first, you should know the methods to use for viewing the specifications.

To open the business use case specifications:

1.
Right−click the business use case on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

OR

1.
Right−click the use case in the browser.

2.
Select Open Specification from the shortcut menu.

OR

1.
Select the use case on a Use Case diagram.

2.
Select Browse → Specification.

Chapter 3: Business Modeling

82

OR

1.
Select the use case on a Use Case diagram.

2.
Press Ctrl+B.

Assigning a Priority to a Business Use Case

To help you manage the project, you may want to prioritize the business use cases. You could use the priority,
for example, to determine in what order the business use cases will be analyzed and documented. The Rose
specifications window provides a field called Rank, which can be used to prioritize the business use cases. It
does not set up a numbering scheme for you, but you can use letters, numbers, or any other way of prioritizing
the use cases.

To assign a priority to a business use case:

1.
Right−click the business use case in the browser or on the Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
On the General tab, enter the priority in the Rank field.

Viewing Diagrams for a Business Use Case

As you analyze a business use case, you may create a number of activity diagrams to document the workflow.
Using the specification window or the browser, you can see a list of all of the diagrams for this particular
business use case. Note that this list does not show you on which diagrams the use case resides; instead it
shows you which diagrams contain some details for the use case.

To view the diagrams for a business use case:

1.
Right−click the business use case in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
The diagrams will be listed on the Diagrams tab of the specification window, as shown in Figure 3.11.
In this example, the use case has five activity diagrams.

Chapter 3: Business Modeling

83

Figure 3.11: Diagrams tab of a use case specification window

OR

Look through the browser. The diagrams for the use case will appear underneath the business use case in the
browser, as shown in Figure 3.12.

Figure 3.12: Diagrams for a use case

Chapter 3: Business Modeling

84

To open a diagram for a use case:

Double−click the diagram name on the Diagrams tab of the use case specification window.

OR

Right−click the diagram name on the Diagrams tab of the use case specification window and select Open
Diagram from the shortcut menu.

OR

Double−click the diagram in the browser.

To add a diagram to a use case:

1.
Right−click anywhere inside the Diagrams tab of the use case specification window.

2.
From the shortcut menu, select the type of diagram (Use Case, Sequence, Collaboration, Statechart,
Activity, or Class) you want to add.

3.
Enter the name of the new diagram.

OR

1.
Right−click the use case in the browser.

2.
Select New → (Collaboration Diagram, Sequence Diagram, Class Diagram, Use Case Diagram,
Statechart Diagram, Activity Diagram) from the shortcut menu.

3.
Enter the name of the new diagram.

To delete a diagram for a use case:

1.
Right−click the diagram name on the Diagrams tab of the use case specification window.

2.
Select Delete from the shortcut menu.

OR

1.
Right−click the diagram name in the browser.

2.

Chapter 3: Business Modeling

85

Select Delete from the shortcut menu.

Viewing Relationships for a Business Use Case

A relationship is a link between the business use case and a business actor or worker. It shows which business
actor or worker initiates the business use case. As with diagrams, you can view the relationships for a
particular business use case either through the specifications window or directly in the Rose browser. In the
specifications window, the relationships are listed in the Relations tab, as shown in Figure 3.13.

Figure 3.13: Relations tab of a use case specification window

To view the relationships for a use case:

1.
Right−click the use case in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
The relationships will be listed on the Relations tab. The actor or worker who initiates the use case (or
who is a client of the use case's functionality) will be listed in the Client column. The business use
case itself (which supplies the functionality) is listed in the Supplier column.

OR

1.
Select the use case on a Use Case diagram.

2.
Select Report → Show Usage.

OR

Simply look at the hierarchy in the browser. The relationships for the business use case will be in the treeview
below the use case itself.

Chapter 3: Business Modeling

86

To view the relationship specifications:

1.
Double−click the relationship in the list.

2.
The relationship specification window will appear. See the section "Working with Relationships" later
in this chapter for a detailed description of relationship specifications.

OR

1.
Right−click the relationship in the list.

2.
Select Specification from the shortcut menu.

3.
The relationship specification window will appear. See the section "Working with Relationships" later
in this chapter for a detailed description of relationship specifications.

To delete a relationship:

1.
Right−click the relationship in the list.

2.
Select Delete from the shortcut menu.

Working with Business Actors

As you now know, a business actor is anyone or anything outside the business that interacts with it. Once you
identify the business actors for your organization, the next step is to add them to the Rose model and create
relationships between the business actors and business use cases.

Adding Business Actors

Like business use cases, business actors are added to the Rose model by adding them to a Use Case diagram.
The first step in the process is to create or open a Use Case diagram. Once you have, you can add business
actors using the toolbar.

To add a business actor to a Use Case diagram:

1.

Chapter 3: Business Modeling

87

Select the Business Actor button from the toolbar (the yellow actor icon is a business actor).

2.
Click anywhere inside the Use Case diagram. The new business actor will be named NewClass by
default.

3.
With the new actor selected, type in its name. Note that the new business actor has been automatically
added to the browser under the Use Case view.

Adding Actor Specifications

Details about the business actor, such as the name, relationships, and attributes, are controlled through the
business actor specifications window, shown in Figure 3.14.

Figure 3.14: Business actor specification window

As you work with classes later in this book, you may note that the actor specification window and the class
specification window are very similar. This is because Rose treats an actor as a specialized form of a class.
The actor specification window includes the same fields as the class specification window, but some of these
fields are disabled for actors.

To open the business actor specifications:

1.
Right−click the business actor on the Use Case diagram.

2.
Select Open Specification from the shortcut menu.

OR

1.
Right−click the actor in the browser.

2.
Select Open Specification from the shortcut menu.

Chapter 3: Business Modeling

88

OR

1.
Select the actor on the Use Case diagram.

2.
Select Browse Specification.

OR

1.
Select the actor on the Use Case diagram.

2.
Press Ctrl+B.

Assigning an Actor Stereotype

A stereotype is a way to categorize model elements in UML. Stereotypes are used when you have many
different types of one element. For example, Visual Basic has a number of different types of classes: interface,
form, control, collection, and so on. Each of these is represented in UML as a different stereotype.

The same concept applies to business actors. You may have several different types of business actors: those
from supplier companies, those from government agencies, those from customer companies, and so on. If you
would like, you can create your own stereotypes to categorize your business actors. You assign a stereotype to
a business actor in the specifications window.

To assign a business actor stereotype:

1.
Right−click the business actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Stereotype field, enter the business actor stereotype.

Warning If you change the stereotype of a business actor, Rose will no longer display the actor using the
UML actor symbol. It will display it as a box instead. This won't affect the rest of your model, but
may make the Use Case diagram harder to understand.

Setting Business Actor Multiplicity

Multiplicity refers to the number of instances you expect to have for a particular business actor. For example,
you may expect to have 300,000 people play the role of customer. You can capture this information in the
specifications window.

Rose provides you with several multiplicity options:

Multiplicity Meaning

Chapter 3: Business Modeling

89

0..0 Zero

0..1 Zero or one

0..n Zero or more

1..1 Exactly one

1..n One or more

n (default) Many
Or, you can enter your own multiplicity, using one of the following formats:

Format Meaning Example

<number> Exactly <number> 3

<number 1>..<number 2> Between <number 1> and <number 2> 3..7

<number>..n <number> or more 3..n

<number 1>,<number 2> <number 1> or <number 2> 3, 7

<number 1>,<number 2>.. <number 3> Exactly <number 1> or between <number
2> and <number 3>

3, 7–9

<number 1>..<number 2>, <number 3>..<number 4>Between <number 1> and <number 2> or
between <number 3> and <number 4>

3–5, 7–10

To set business actor multiplicity:

1.
Right−click the business actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
Select the Detail tab.

4.
Select from the Multiplicity drop−down list box, or type in the business actor's multiplicity using one
of the formats listed above.

Viewing Relationships for a Business Actor

As with business use cases, you can view all of the relationships for a business actor either by using the
Relations tab in the specification window or by going through the browser.

To view the relationships for a business actor:

1.
Right−click the business actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu. The relationships will be listed on the Relations
tab.

OR

Chapter 3: Business Modeling

90

Look at the browser window. All of the business actor's relationships will be listed under it in the
treeview.

To view the relationship specifications:

1.
Double−click the relationship in the list.

2.
The relationship specification window will appear. See the upcoming section "Working with
Relationships" for a detailed description of relationship specifications.

OR

1.
Right−click the relationship in the list.

2.
Select Specification from the shortcut menu.

3.
The relationship specification window will appear. See the upcoming section "Working with
Relationships" for a detailed description of relationship specifications.

To delete a relationship:

1.
Right−click the relationship in the list.

2.
Select Delete from the shortcut menu.

Working with Relationships

In business modeling, there are two types of relationships that are used: association relationships and
generalization relationships. Association relationships are links between business actors and business use
cases or between business workers and business use cases. Generalization relationships show an inheritance
structure among business−modeling elements. In this section, we will discuss these two types of relationships
and how to model them in Rose.

Association Relationship

An association relationship is a relationship between a business actor or business worker and a business use
case. It indicates that a particular business actor or business worker initiates the functionality provided by the
use case. The relationship is shown as an arrow:

Chapter 3: Business Modeling

91

The direction of the arrow indicates who initiates the communication. In the example above, the customer
initiates the Issue Airline Ticket transaction. In the following example, after the pilot initiates the "Cancel
Flight" business use case, the organization initiates communication with the customer.

We can see from the direction of the arrows that the pilot begins the process and that during the cancellation
of the flight, the organization is responsible for notifying the customer.

To add a communicates relationship:

1.
Select the Unidirectional Association toolbar button.

2.
Drag the mouse from the business actor or business worker to the business use case (or from the
business use case to the business actor or worker if the organization initiates the communication).

3.
Rose will draw a relationship between the business use case and the business actor or worker.

To delete a communicates relationship:

1.
Select the relationship on the Use Case diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Generalization Relationship

A generalization relationship is used when there are two or more business actors, business workers, or
business use cases that are very similar. As an example, there may be two different groups of people selling
airline tickets: phone representatives and staff who work at the airport counter for in−person sales. For the
most part, these two groups of people do the same job, but there are some differences in their responsibilities.

In UML, you can model this situation through a generalization relationship. We create a generic business
worker called ticket salesperson, and then create two more business workers, one for each type of salesperson.
You can see this example modeled in Figure 3.15.

Chapter 3: Business Modeling

92

Figure 3.15: Generalization relationship

In a generalization relationship, the arrow points from the specific actor to the generic actor. Someone reading
this diagram would say that there are two types of ticket salespeople: phone salesperson and counter
salesperson.

The generic actor may actually be an abstract actor. An abstract actor is one that is never directly instantiated.
In this example, no one ever plays the role of a ticket salesperson; they are always either a phone salesperson
or a counter salesperson. The ticket salesperson actor is just there to hold the commonality between phone and
counter salespeople. Because no one ever directly plays that role, ticket salesperson is an abstract business
actor. Phone salesperson and counter salesperson, on the other hand, are examples of concrete business actors
because people do directly play those roles.

A fairly recent evolution of UML is in generalization relationships between use cases. You can use this type
of relationship when you have two or more use cases that are very similar but that still have some differences.
First, you create an abstract use case, much the same as we did for business actors. This abstract use case
holds the elements that are common between the other business use cases. You then inherit the other business
use cases from the abstract business use case with a generalization relationship.

To add a generalization relationship:

1.
Add the business actors, business workers, or business use cases to the Use Case diagram.

2.
Select the Generalization button from the toolbar.

3.
Drag from the concrete business actor, worker, or use case to the abstract business actor, worker, or
use case.

4.
Open the specification window for the abstract business actor, worker, or use case.

5.
Select the Detail tab.

6.
Check the Abstract check box.

To delete a generalization relationship:

1.

Chapter 3: Business Modeling

93

Select the relationship on the Use Case diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Warning Be careful of using too many generalization relationships. Unless the reader is familiar with
generalizations, they may make the diagram very difficult to understand.

Working with Organization Units

As we discussed above, an organization unit is a UML construct used to group business actors, business
workers, and business use cases together. Typically, a UML organization unit corresponds to a division or
group within the organization. We might have organization units called Sales, Finance, Manufacturing, and
Human Resources for those divisions within the company. Each organization unit would hold the business
actors, workers, and use cases appropriate for that division. It can also be helpful to create a Use Case diagram
specific to that organization unit, which shows only the business actors, workers, and use cases for that unit.

As you know from earlier in this chapter, an organization unit is represented by the following symbol:

Adding Organization Units

In Rose, you can add organization units through a Use Case diagram. Once the units have been created, you
can create new business actors, workers, or use cases inside them, or move existing business actors, workers,
or use cases into the new unit. You can create as many organization units as you need, and create organization
units within organization units to further organize the business model.

To add an organization unit:

1.
Open a Use Case diagram.

2.
Use the Organization Unit toolbar button to add a new unit. It will be named NewPackage by default,
and will be automatically added to the browser.

3.
Type in the name of the new organization unit.

To move an item into an organization unit, go to the browser and drag and drop the item from its existing
location to the new organization unit.

Chapter 3: Business Modeling

94

Deleting Organization Units

Organization units can be deleted from the model using either the browser or a Use Case diagram. When you
delete an organization unit, all business actors, business workers, business use cases, activity diagrams, and all
other model elements within it will also be deleted from the model.

To remove an organization unit from a diagram without deleting it from the model:

1.
Select the organization unit on a Use Case diagram.

2.
Press the Delete key.

3.
Note that the unit has been removed from the Use Case diagram, but it still exists in the browser and
on other Use Case diagrams.

To delete an organization unit from the model:

1.
Right−click the unit in the browser.

2.
Select Delete from the shortcut menu.

OR

1.
Select the organization on a Use Case diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Warning When you delete an organization unit from the model, all business use cases, business actors, and
other items in the unit will also be deleted from the model.

Activity Diagrams

In Rose, you can use an activity diagram to model the workflow through a particular business use case. The
main elements on an activity diagram are:

•
Swimlanes, which show who is responsible for performing the tasks on the diagram.

•
Activities, which are steps in the workflow.

•
Actions, which are steps within an activity. Actions may occur when entering the activity, exiting the
activity, while inside the activity, or upon a specific event.

•

Chapter 3: Business Modeling

95

Business objects, which are entities affected by the workflow.

•
Transitions, which show how the workflow moves from one activity to another.

•
Decision points, which show where a decision needs to be made during the workflow.

•
Synchronizations, which show when two or more steps in the workflow occur simultaneously.

•
The start state, which shows where the workflow begins.

•
The end state, which shows where the workflow ends.

In this section, we'll take a look at how to model these different parts of the activity diagram using Rose.

Adding an Activity Diagram

You can create as many activity diagrams as you need for a particular business use case. The activity
diagrams for a business use case will appear in the State/Activity Model area under the business use case in
the browser.

To add an activity diagram:

1.
Right−click the business use case in the browser.

2.
Select New → Activity Diagram from the menu.

3.
Rose will create an entry in the browser called State/Activity Model under the business use case, as
shown in Figure 3.16. The new activity diagram will appear under the State/Activity Model entry.

Figure 3.16: Adding an activity diagram

4.

Chapter 3: Business Modeling

96

Name the new activity diagram.

5.
Double−click the diagram to open it.

Adding Details to an Activity Diagram

Once the diagram has been created, the next step is to add the swimlanes, activities, and other details to it.
This is accomplished using the Activity Diagram toolbar. Table 3.2 lists the icons available on the Activity
Diagram toolbar and the purpose of each.

Table 3.2: Icons on the Activity Diagram Toolbar

Icon Button Purpose

Selection Tool Returns the cursor to an arrow to select a toolbar button

Text Box Adds a text box to the diagram

Note Adds a note to the diagram

Anchor Note to Item Connects a note to an item in the diagram

State Adds a state to the diagram

Activity Adds an activity to the diagram

Start State Adds a start state to the diagram

End State Adds an end state to the diagram

State Transition Transitions from one activity or state to another

Transition to Self Transitions to the current activity or state

Horizontal Synchronization Shows where two or more activities occur simultaneously

Vertical Synchronization Shows where two or more activities occur simultaneously

Decision Shows decision points in the workflow

Swimlane Shows who is responsible for completing activities

Object Shows an object that is affected by the workflow

Object Flow Shows what activities change the state of the object

To add a swimlane to the diagram:

1.
Select the Swimlane toolbar button.

2.
Click inside the diagram. A new swimlane will appear, and will be titled NewSwimlane by default, as
shown in Figure 3.17.

Chapter 3: Business Modeling

97

Figure 3.17: Swimlane in an activity diagram

3.
Name the new swimlane, using the name of a business worker or organization unit.

To add a start state to the diagram:

1.
Select the Start State toolbar button.

2.
Click inside the diagram within the swimlane for the worker or unit who will start the workflow.

To add activities to the diagram:

1.
Select the Activity toolbar button.

2.
Click inside the diagram within the swimlane for the worker or unit who is responsible for performing
the activity.

3.
Name the new activity.

To add actions to the activities:

1.
Right−click the activity.

2.
Select the Open Specification option. The activity specification window will appear.

3.

Chapter 3: Business Modeling

98

Select the Actions tab.

4.
Right−click inside the tab and select Insert. The default action type, called Entry, will appear in the
Type column, as shown in Figure 3.18.

Figure 3.18: Adding actions to an activity

5.
Double−click the new action. The action specification window will appear.

6.
In the When drop−down list box, select the appropriate option:

♦
On Entry for actions that occur when entering the activity

♦
On Exit for actions that occur when leaving the activity

♦
Do for actions that occur within the activity

♦
On Event for actions that occur when a specific event happens

7.
Enter the action's name, as shown in Figure 3.19.

Chapter 3: Business Modeling

99

Figure 3.19: Action specification window

8.
If the action was on an event, enter the event that triggers the action, any arguments to the event, and
any guard conditions. A guard condition must be true for the action to occur.

9.
Click OK to close the action specification.

10.
Click OK to close the activity specification.

To add a business object:

1.
Select the Object toolbar button.

Note The Object button does not appear by default when you install Rose. You may need to
customize the toolbar to see it.

2.
Click inside the diagram within the swimlane for the worker or unit responsible for performing the
activity that will affect the object.

3.
Name the new object.

To draw transitions between activities:

1.

Chapter 3: Business Modeling

100

Select the State Transition toolbar button.

2.
Drag and drop from one activity to another.

To set a condition on the transition:

1.
Right−click the transition.

2.
Select the Open Specification option.

3.
Select the Detail tab.

4.
Type the condition in the Guard Condition field. When the condition is displayed on the diagram, it
will be surrounded by square brackets to indicate that it is a guard condition, as shown in Figure 3.20.
You can also type the guard condition directly on the transition by enclosing it in square brackets.

Figure 3.20: Guard conditions on transitions

To add a decision point:

1.
Select the Decision toolbar button.

2.
Click inside the diagram to place the decision.

3.
Draw two or more transitions from the decision, one for each decision possibility.

To add a synchronization:

1.
Select the Horizontal or Vertical Synchronization toolbar button.

2.
Click inside the diagram to place the synchronization.

3.
Draw two or more transitions from the synchronization, one to each activity that will occur
simultaneously, as shown in Figure 3.21.

Chapter 3: Business Modeling

101

Figure 3.21: Synchronization in an activity diagram

To show which activities affect a business object:

1.
Select the Object Flow toolbar button.

2.
Drag and drop from the activity that changes the state of the object to the object itself. A dashed arrow
will appear between the two. Figure 3.22 shows an example of how creating a rejection letter sets the
state of the request object to Denied.

Figure 3.22: Object flow in an activity diagram

Summary

In this chapter we discussed business modeling. We began by examining why we would want to do business
modeling in the first place. It is not right for all projects, but there are many times when business modeling
can add a great deal of value to a project. We then moved on to discuss some of the fundamental elements of
business modeling, including business actors, business use cases, business workers, and organization units,
and how you would find some of these things in your organization.

From there, we moved into a discussion of the details of a business use case. You model the flow through a
use case either by using text or via an activity diagram. Activity diagrams have the advantage of clarity and
ease of use, especially when considering a workflow that is large and complex. We examined the different
pieces of an activity diagram, including swimlanes, activities, actions, objects, transitions, and
synchronizations.

Once we examined the business−modeling ideas, we moved on to how these items can be modeled using
Rational Rose. We walked through the Rose toolbars and specification windows to examine the details of the

Chapter 3: Business Modeling

102

elements that can be added to a Rose model.

In the next chapter, we'll begin the process of system modeling. Business modeling isn't as concerned with
what is automated by a particular system. System modeling, in contrast, is focused on the implementation of a
particular software project. Business modeling helps us set the context for the system model.

Chapter 3: Business Modeling

103

Chapter 4: Use Cases and Actors
Use cases and actors define the scope of the system you are building. Use cases include anything that is within
the system; actors include anything that is external to the system. We'll start this chapter by discussing some
of the fundamental concepts of use case, or system, modeling: use case, actor, association relationship,
includes relationship, extends relationship, generalization relationship, flow of events, activity diagram, and
Use Case diagram. Then, we'll look at how to model each of these in Rose.

At the end of the chapter, we provide an exercise that builds on the business case of Chapter 3, "Business
Modeling," by adding use cases, actors, and Use Case diagrams to a Rose model.

•
Using the Use Case view and Use Case diagrams

•
Working with use cases, actors, and relationships

•
Using notes

•
Adding and deleting Use Case packages

Use Case Modeling Concepts

In this section, we'll discuss some of the fundamental concepts of use case modeling: use cases, actors,
relationships, activity diagrams, and Use Case diagrams. If you have gone through the business modeling
process, you will notice the similarities between what we will discuss here and business modeling. Business
modeling also works with actors, use cases, relationships, activity diagrams, and Use Case diagrams. The
difference is that business modeling focuses on the organization, while system modeling focuses on the
system being built. The terms system use case or system actor are sometimes used to differentiate them from
business use cases or business actors.

Item Business Modeling System Modeling

Use case Describes what the business doesDescribes what a system within the
business does

Actor External to the organization External to the system (may be
internal to the organization)

Business worker Internal to the organization Not used
In the last chapter, we went through the business modeling process for an airline. During that example, we
focused on the business of being an airline, not on what systems we would build. Now, we focus in on a
particular system. Assume that we are building a ticket reservation system for the airline. It will eventually let
people call in or go online to order plane tickets and to change or cancel a reservation.

Actors

An actor is anyone or anything that interacts with the system being built. As we will see shortly, use cases
describe anything that is inside the system's scope. Actors are anything that is outside the system's scope. In

104

UML, actors are represented with stick figures:

There are three primary types of actors: users of the system, other systems that will interact with the system
being built, and time.

The first type of actor is a physical person, or a user. These are the most common actors, and are present in
just about every system. For our flight reservation system, actors are the people who will be directly using the
system. Because we know some of the functionality will be available over the Internet, customers can directly
use the system. We also know that customers can call in to a customer service representative to make a
reservation. The customer service representative will directly use the system, so this role is an actor as well.

When naming actors, remember to use role names rather than position names. A given individual will play
many roles. John Doe may be a customer service representative, but if he goes online to buy a ticket for
himself, he is playing the role of a customer. Using role names rather than position names will give you a
more stable picture of your actors. Position names change over time, as roles and responsibilities are moved
from one position to another. By using roles, you won't need to update your model every time a new position
is added or a position changes.

The second type of actor is another system. For example, the airline's reservation system may need to
interface with an external application to validate credit cards for purchases. In this example, the external credit
application is an actor. It is another system that we won't be changing at all, so it is outside the scope of the
current project, but it does need to interface with our new system. Any systems like this, which lie just beyond
the boundaries of our application, are actors.

The third type of actor that is commonly used is time. Time becomes an actor when the passing of a certain
amount of time triggers some event in the system. For example, part of our airline's promotions may be the
chance to win a free ticket. Every day at 3:00 p.m. the system may automatically select a random customer to
give a free ticket to. Because time is outside of our control, it is an actor.

Use Cases

A use case is a high−level piece of functionality that the system will provide. In other words, a use case
illustrates how someone might use the system. Let's begin by looking at an example.

Along with our actors, we need to define the use cases for the airline reservation system. It really doesn't
matter if you identify the use cases or the actors first. In fact, these two steps are usually done together. To
identify the use cases, we answer the question: What will the system do that provides value to the outside
world? We can see from our brief vision statement above that it will let users purchase tickets, change a
reservation, or cancel a reservation. These are all good candidates for use cases; each is some piece of
functionality the system will provide that is of value to the end user. Notice that we didn't include a use case,
such as "Get Flight Information" from the legacy system. This is a behind−the−scenes piece of logic that the
end user really doesn't care about, so it doesn't qualify as a use case. "Purchase Ticket," "Change
Reservation," or "Cancel Reservation," on the other hand, are things that the end user would care about and
high−level pieces of functionality the system will provide, so they are good use cases. In UML, a use case is

Chapter 4: Use Cases and Actors

105

represented by the following symbol:

The advantage of looking at a system with use cases is the ability to dissociate the implementation of the
system from the reason the system is there in the first place. It helps you focus on what is truly
important—meeting the customer's needs and expectations without being instantly overwhelmed by
implementation details. By looking at the use cases, the customer can see what functionality will be provided,
and can agree to the system scope before the project goes any further.

Use cases take a different approach than traditional methods. Splitting the project into use cases is a
process−oriented, not an implementation−oriented, way of looking at the system. It is therefore different from
the functional decomposition approach that is so often taken. While functional decomposition focuses on how
to break the problem down further and further into pieces that the system will handle, the use case approach
focuses first on what the user expects from the system.

When you are beginning a project, a natural question is: How do I go about finding the use cases? A good way
to begin is to examine any documentation the customers have provided. For example, a high−level scope or
vision document can frequently help you identify the use cases. Consider also each of the stakeholders of the
project. Ask yourself what functionality each stakeholder expects from the system. For each stakeholder, ask
questions such as:

•
What will the stakeholder need to do with the system?

•
Will the stakeholder need to maintain any information (create, read, update, delete)?

•
Does the stakeholder need to inform the system about any external events?

•
Does the system need to notify the stakeholder about certain changes or events?

As we mentioned before, use cases are an implementation−independent, high−level view of what the user
expects from the system. Let's examine each piece of this definition separately.

First, the use cases are implementation−independent. As you are defining the use cases, assume you are
building a manual system. Your use cases should be able to be built in Java, C++, Visual Basic, or on paper.
Use cases focus on what the system should do, not how the system will do it. We'll get into the how later on in
the process.

Secondly, the use cases are a high−level view of the system. Your collection of use cases should let the
customers easily see, at a very high level, your entire system. There should not be so many use cases that the
customer is forced to wade through pages and pages of documentation just to see what the system will do. At
the same time, there should be enough use cases to completely describe what the system will do. A typical
system will have somewhere between 20 and 70 use cases. (If your system has 3000 use cases, you've lost the
benefit of simplicity.) You can use different types of relationships, called includes and extends relationships,

Chapter 4: Use Cases and Actors

106

to break down the use cases a little if you need to. You can also package the use cases together to form groups
of use cases to help you organize them better. We'll explore these topics later in this chapter.

Finally, the use cases should be focused on what the user will get out of the system. Each use case should
represent a complete transaction between the user and the system that results in something of value to the
user. The use cases should be named in user terms, not technical terms, and should be meaningful to the
customer. We wouldn't have a use case, for example, called "Interface with the Bank's Credit System to
Validate the Credit Card Number." The customer is trying to purchase a ticket, so that's what we call the use
case: "Purchase Ticket." Use cases are typically named with verbs or short verb phrases in the format "<verb>
<noun>," and describe what the customer sees as the end result. The customer doesn't care how many other
systems you have to interface with, what specific steps need to be taken, or how many lines of code you need
to confirm a Visa card. That customer cares only that a ticket was purchased. Again, you focus on the result
the user expects from the system, not the steps that were taken to achieve the result.

So, when you have the final list of use cases, how do you know if you've found them all? Some questions to
ask are:

•
Is each functional requirement in at least one use case? If a requirement is not in a use case, it will not
be implemented.

•
Have you considered how each stakeholder will be using the system?

•
What information will each stakeholder be providing for the system?

•
What information will each stakeholder be receiving from the system?

•
Have you considered maintenance issues? Someone will need to start the system and shut it down.

•
Have you identified all of the external systems with which the system will need to interact?

•
What information will each external system be providing to the system and receiving from the
system?

Traceability

As with business modeling, a very important concept to consider at this point is traceability. Each of the
system use cases should be able to be traced back to a business use case. The system use case is what
implements part of the functionality in the business use case.

This is not a one−to−one mapping. Business use cases tend to be very high level, so many system use cases
may be needed to support a single business use case. For example, an airline has a business use case called
"Repair Plane." If we build a system to support this use case, it will have a lot of system use cases in it, such
as "Enter Problem," "Check Inventory for Available Parts," "Receive Part from Inventory," "Order Part,"
"Schedule Maintenance," and so on. Each of these system use cases would be traced to the business use case

Chapter 4: Use Cases and Actors

107

called "Repair Plane."

Every system use case must be traced back to a business use case, but not all business use cases will be
supported by system use cases. Hypothetically, if the business use case called "Unload Passengers and
Luggage" is a completely manual process, then it would not have any supporting system use cases at all. Here
is an example of how system use cases might map to business use cases:

Business Use Case System Use Cases

Repair Plane Enter Problem; Check Inventory for Parts; Receive Part from
Inventory; Order Part; Schedule Maintenance

Load Supplies on Plane Determine Needed Supplies; Check Supply Availability; Reserve
Supplies; Receive Supplies

Perform Preflight Safety Check Confirm Luggage Inspection; Confirm Passenger Check−In; Inspect
Plane Exterior; Check Status of Emergency Equipment

If you are using a requirements management tool, such as Rational's Requisite Pro, you can map the system
use cases to business use cases directly in the tool. If not, it is important to set up a process, even in a simple
spreadsheet or database, to ensure that the system use cases are mapped to business use cases. The real
purpose of traceability is ensuring that, at the end of the day when the system is built and implemented, all of
the requirements are met and all of the code can be traced back to a requirement.

After the system use cases are traced to business use cases, the next step is to trace the requirements to the
system use cases. Each functional requirement must be traced to a system use case, because the system use
cases describe the functionality that will be provided by the system. The system design is driven by the use
cases, so if a requirement is not traced to a use case, it will not be considered in the design and may not end up
in the final system.

Note Notice that we said functional requirements. There are non−functional requirements, such as system
response time or the number of concurrent users supported that do not need to be traced to system use
cases. These are typically maintained in a Supplementary Specification document.

Again, if you are using a tool such as Requisite Pro, you can trace the requirements to use cases in the tool. If
not, set up a method to ensure that each requirement is traced to a use case. As we go through the whole
process, traceability should be shown as in Figure 4.1.

Figure 4.1: Traceability through the life cycle

Flow of Events

The use cases begin to describe what your system will do. To actually build the system, though, you'll need
more specific details. These details are written as the flow of events. The purpose of the flow of events is to
document the flow of logic through the use case. This document will describe in detail what the user of the
system will do and what the system itself will do.

Although it is detailed, the flow of events is still implementation−independent. You can assume as you are
writing the flow that there will be an automated system. However, you shouldn't yet be concerned with
whether the system will be built in C++, PowerBuilder, or Java. The goal here is describing what the system
will do, not how the system will do it. The flow of events typically includes:

•

Chapter 4: Use Cases and Actors

108

A brief description

•
Preconditions

•
Primary flow of events

•
Alternate flow of events

•
Postconditions

Let's look at these items one at a time.

Description

Each use case should include a short description that explains what the use case will do. The Purchase Ticket
use case from our airline example might have a description like the following: The Purchase Ticket use case
will allow a customer to view available flight information, check availability, and purchase a ticket with a
credit card.

The description should be short and to the point, but should include the different types of users who will be
executing the use case and the end result the user expects to achieve through the use case. As the project
progresses (especially with a very long project), these use case definitions will help the whole team remember
why each use case is included in the project and what the use case is intended to do. They also help reduce
confusion among the team members by documenting a clear purpose for the use case.

Preconditions

The preconditions for a use case list any conditions that have to be met before the use case can start at all. For
example, a precondition might be that another use case has been executed or that the user has the necessary
access rights to run the current use case. Not all use cases will have preconditions.

Use Case diagrams aren't intended to show in which order the use cases are executed. Preconditions, however,
can be used to document some of this type of information. For example, the precondition for one use case may
be that another use case has run.

Primary and Alternate Flow of Events

The specific details of the use case are described in the primary and alternate flow of events. The flow of
events describes, step−by−step, what will happen to execute the functionality in the use case. The flow of
events focuses on what the system will do, not how it will do it, and is written from the user's perspective. The
primary and alternate flow of events include:

•
How the use case starts

•
The various paths through the use case

•

Chapter 4: Use Cases and Actors

109

The normal, or primary, flow through the use case

•
Any deviations from the primary flow, known as alternate flows, through the use case

•
Any error flows

•
How the use case ends

Along with the flow of events in text form, activity diagrams are frequently used. In this section, we'll talk
about the option of using text. We'll go over activity diagrams later in this chapter.

There are three types of flows: the primary, alternate, and error flows. The primary flow is the "happy day"
scenario, or the most frequently used path through the use case. When purchasing a ticket, the primary flow is
a successful ticket purchase. Alternate flows are deviations from the primary flow that do not suggest an error
condition. For example, a customer may purchase a ticket using frequent−flyer miles, the customer's credit
card may not be valid, or the requested flight may not be available. Each of these is a legitimate scenario that
the system will be expected to handle, but doesn't suggest that something has gone wrong with the system
itself. Finally, error flows are deviations from the primary or alternate flows that suggest some sort of error
condition. For example, the system may be unable to verify the credit card or the flight availability. Error
flows suggest that there is a problem with the system itself.

Using our "Purchase Ticket" use case example, the flow of events might look like the steps in the following
sections.

Primary Flow

The steps for the primary flow of events include:

1.
The use case begins when the customer selects the option to view flight information.

2.
The system prompts for the departure and destination cities and the departure and return dates.

3.
The user enters the departure and destination city, departure date, and return date.

4.
The system displays a list of available flights, including the fare.

A1: There are no available flights.

5.
The user selects the flight they would like to reserve.

6.
The system displays all available fare options for that flight.

7.

Chapter 4: Use Cases and Actors

110

The user selects the fare option they would like to reserve.

A2: The user selects a free ticket through frequent−flyer membership.

8.
The system displays the fare that the user will pay.

9.
The user confirms the rate.

10.
The system prompts for a credit card type, number, name, and expiration date.

11.
The user enters the card type, number, name, and expiration date.

12.
The system submits the credit purchase.

A6: Account not found

A7: Insufficient funds

E1: Credit system not accessible

13.
The system reserves a seat on the plane for the user.

14.
The system generates and displays a confirmation code to the user.

15.
The user confirms receipt of the code.

16.
The use case ends.

Alternate Flows

A1: No available flights

1.
The system displays a message that there are no available flights for the departure and destination
cities, departure date, and return date entered.

2.
The user confirms the message.

3.
The flow returns to the primary flow, step 2.

Chapter 4: Use Cases and Actors

111

A2: Free ticket through frequent−flyer membership

1.
The system prompts for the frequent−flyer number.

2.
The user enters the number.

3.
The system confirms the validity of the number.

A3: Invalid number

4.
The system confirms that there are enough miles on this membership to qualify for the free ticket.

A4: Not enough miles to qualify for a free ticket

A5: No frequent−flyer tickets available

5.
The ticket fare is set to $0.

6.
The flow returns to the primary flow, step 8.

A3: Invalid frequent−flyer number

1.
The system displays a message that the frequent−flyer number is invalid.

2.
The user reenters the number or selects the option to cancel the frequent−flyer request.

3.
If the user reenters the number, the flow returns to step 1 of alternate flow A2.

4.
If the user cancels the frequent−flyer request, the flow returns to step 6 of the primary flow.

A4: Not enough frequent−flyer miles to qualify for free ticket

1.
The system displays a message that there are not enough miles to qualify. The message contains the
required number of miles and the number of miles available.

2.
The flow returns to step 6 of the primary flow.

A5: No frequent−flyer tickets available

1.

Chapter 4: Use Cases and Actors

112

The system displays a message that there are no frequent−flyer tickets available for the selected flight.

2.
The flow returns to step 6 of the primary flow.

A6: Credit account not found

3.
The system displays a message that the credit account was not found.

4.
The flow returns to step 10 of the primary flow.

A7: Insufficient funds

1.
The system displays a message that there were not enough funds on the card to complete the
transaction.

2.
The flow returns to step 10 of the primary flow.

Error Flows

E1: Credit system not available

1.
The system displays a message that the credit system is not available.

2.
The flow returns to step 10 of the primary flow.

Notice the pattern in the flow of events: the user does something, then the system does something in response,
then the user does something, then the system responds, and so on. Keeping to this pattern as much as
possible helps you ensure that you have a complete understanding of how the conversation between the user
and the system should flow. When documenting the flow of events, you can use numbered lists as we have
done here, text in paragraph form, bulleted lists, or even flowcharts. With the user/system pattern, another
way to document the flow is by using a table:

User Action System Response

Select option to view flight information Prompt for departure and destination cities, departure
and arrival dates

Enter departure and destination cities, departire and
arrival dates

Display flight number, departure time, and arrival
time for available flights

… …

… …

… …

… …

Chapter 4: Use Cases and Actors

113

How Detailed Does This Need to Be?

The classic question when documenting a flow of events is how detailed should it be? To answer that
question, keep in mind the reviewers of the document. There are three primary users of the flow of events:

1.
The customers will be reviewing this document to make sure it accurately reflects their expectations.
The flow of events must be detailed enough so that both you and the customer have the same
understanding of the system. The more gaps you leave in the details, the greater the potential for
disconnects in expectations. At the same time, you don't want to get into implementation details that
the customers won't understand or won't care about. A short answer for most customers is: get as
detailed as you can without getting into the implementation. Try to avoid phrases such as "The system
will take frequent flyers into account." What does "into account" mean? You want to be sure that both
you and the customer understand what that phrase means in that situation.

2.
The system designers will be using it to create the system design and eventually to build the system.
The flow of events must give them enough information to understand the sequence of events that
needs to occur through the use case. Although the flow of events isn't implementation−specific (try to
avoid words like "menu," "window," "treeview," or other phrases that will tie the developers to a
particular implementation), it does have a lot of information about how the system is supposed to
behave. Be sure there is no ambiguity about what the users want, so that the designers will understand
the users' needs.

3.
The quality assurance team will use the flow of events to create test scripts. Because the flow of
events lists step−by−step what the system should do, the testing team can use it as a basis for
comparison against what the system does do when all is said and done. The flow of events won't be a
test script by itself, but it can serve as great input into a test case.

As you are writing the flow, focus on what and be sure to avoid detailed discussions of how. Think of writing
a recipe. In a recipe, you would say "Add two eggs." You wouldn't say "Go to the refrigerator. Get two eggs
from the door. Pick up the first egg. Crack the egg against the side of the bowl…." In a flow of events, you
might say "Validate the user ID," but you wouldn't specify that this is done by looking at a particular table in a
database. Focus on the information that is exchanged between the user and the system, not on the details of
how the system will be implemented.

Postconditions

Postconditions are conditions that must always be true after the use case has finished executing. Like
preconditions, postconditions can be used to add information about the order in which the use cases are run.
If, for example, one use case must always be run after another use case, you can document this in the
postconditions. Not every use case will have postconditions.

Relationships

So far, we have taken a look at use cases and actors individually. Now we'll explore the relationships between
use cases and actors to get a full picture of our system.

The association relationship is used to show the relationship between a use case and an actor.

Chapter 4: Use Cases and Actors

114

There are three types of relationships between use cases: an includes relationship, an extends relationship, and
a generalization relationship. These relationships are used when there is a certain amount of commonality
between the use cases.

There is only one relationship allowed between actors. This is a generalization relationship.

Association Relationship

The relationship between an actor and a use case is an association relationship. In UML, association
relationships are diagrammed using an arrow:

In this example, the use case initiates communication with the credit system actor. As the "Purchase Ticket"
use case is being run, the reservation system initiates communication with the credit system to check the card
and complete the transaction. Although information flows in both directions—from the reservation system to
the credit system and back again—the arrow indicates only who initiated the communication.

With the exception of use cases in includes and extends relationships, every use case must be initiated by an
actor.

Includes Relationship

An includes relationship allows one use case to use the functionality provided by another use case. This
relationship can be used in one of two cases.

First, if two or more use cases have a large piece of functionality that is identical, this functionality can be
split into its own use case. Each of the other use cases can then have an includes relationship with this new use
case.

The second case where an includes relationship is helpful is a situation in which a single use case has an
unusually large amount of functionality. An includes relationship can be used to model two smaller use cases
instead.

Includes relationships are shown in Rose with dashed arrows and the word <<include>>, as in Figure 4.2.

Figure 4.2: An includes relationship

Chapter 4: Use Cases and Actors

115

In this example, the "Check Credit" use case will check that a valid card number was entered and that the
credit account has sufficient funds to complete the transaction. Because this functionality is used during the
Purchase Ticket process, there is an includes relationship between them.

An includes relationship suggests that one use case always uses the functionality provided by another. No
matter how you proceed through the Purchase Ticket use case, the "Check Credit" use case is always run.

Extends Relationship

In contrast, an extends relationship allows one use case the option to extend the functionality provided by
another use case. It is very similar to an includes relationship, because in both of these types of relationships,
you separate some common functionality into its own use case.

In UML, the extends relationship is shown as a dashed arrow with the word <<extend>>, as in Figure 4.3.

Figure 4.3: An extends relationship

In this example, the "Check Credit" use case extends the "Change Reservation" use case. While the "Change
Reservation" use case is running, "Check Credit" runs if and only if the amount of the reservation has
changed. If the amount has not changed, "Check Credit" does not need to run.

Because "Check Credit" is optionally run, there is an extends relationship between the use cases. The arrow is
drawn from the use case that is optionally run ("Check Credit") to the use case that is being extended
("Change Reservation").

Generalization Relationship

A generalization relationship is used to show that several actors or use cases have some commonality. For
example, you may have two types of customers: corporate customers and individual customers. You can
model this relationship using the notation displayed in Figure 4.4.

Chapter 4: Use Cases and Actors

116

Figure 4.4: Actor generalization relationship

This diagram shows our two types of customers: individual and corporate. Because the individual and
corporate actors will be directly instantiated, they are called concrete actors. Because the customer actor is
never directly instantiated, it is an abstract actor. It exists only to show that there are two types of customers.

We can break down things even further if we need to. Say there are two types of corporate customers:
government agencies and private companies. We can modify the diagram to look like Figure 4.5.

Figure 4.5: Modified actor generalization relationship

It isn't always necessary to create these types of relationships. In general, they are needed only if one type of
actor behaves differently than another type, as far as the system is concerned. If the corporate customers will
be initiating some use cases that individual customers will not, it's probably worth including the actor
generalizations. If both types of customers use the same use cases, it's probably not necessary to show an actor
generalization. If both types use the same use cases, but slightly differently, it still isn't worth including the
generalization. The slight differences are documented in the flow of events for the use cases.

Chapter 4: Use Cases and Actors

117

Tip The point of these diagrams is communication. If including an actor generalization would give the team
some useful information, then include it. Otherwise, don't clutter up the diagrams with them.

The same concept is true for use cases. If you have a base set of functionality that one or more use cases
expand upon, you can create a generic use case and then inherit the other use cases from it with a
generalization relationship.

Use Case Diagrams

A Use Case diagram shows you some of the use cases in your system, some of the actors in your system, and
the relationships between them. As you know, a use case is a high−level piece of functionality that the system
will provide. An actor is anyone or anything that interacts with the system being built. An example of a Use
Case diagram is shown in Figure 4.6.

Figure 4.6: Sample Use Case diagram

In this diagram, we see the system actors, the system use cases, and the relationships between them. Because
the system will be available both online and over the phone, the customer and customer service representative
can initiate the same use cases. We have one extends relationship and one includes relationship. There are
eight major pieces of functionality the system will provide: purchasing tickets, changing a reservation,
checking credit, canceling a reservation, viewing a customer itinerary, reserving a hotel room, reserving a
rental car, and setting up the flight schedule.

One of the major benefits of Use Case diagrams is communication. Your customers can look at this diagram
and receive a great deal of information. By looking at the use cases, they will know what functionality will be
included in the system. By looking at the actors, they will know exactly who will be interfacing with the
system. By looking at the set of use cases and actors, they will know exactly what the scope of the project will
be. This can help them identify up front any missing functionality. For example, someone could look at the
diagram above and say, "That's great, but I also need the ability to check my frequent−flyer membership to
see how many miles I have." If so, all we need to do is add another use case called "View Frequent−Flyer
Information."

Frequently, you will want to create several Use Case diagrams for a single system. A high−level diagram,
usually called Main in Rational Rose, will show you just the packages, or groupings, of use cases. Other

Chapter 4: Use Cases and Actors

118

diagrams will show you sets of use cases and actors. You may also want to create a single diagram with all of
the use cases and all of the actors. How many Use Case diagrams you create and what you name them is
entirely up to you. Be sure that the diagrams have enough information to be useful, but are not so crowded as
to be confusing.

Tip Rational Rose can automatically create diagrams with all modeling elements in a package. In the rose.ini,
set the AutoConstructMainDiagrams=Yes flag to enable this feature and a main diagram will be
automatically created for each package with all modeling elements of the package.

Use Case diagrams fulfill a specific purpose: to document the actors (everything outside the system scope),
the use cases (everything inside the system scope), and their relationships. Some things to keep in mind as you
are creating Use Case diagrams include:

•
Do not model actor−to−actor associations (although generalizations are OK). By definition, the actors
are outside the scope of the current project. The communication between the actors, therefore, is also
outside the scope of what you're building. You can use a workflow diagram to examine the actor
associations.

•
Do not draw an association directly between two use cases (although includes or extends relationships
are OK). The diagrams show what use cases are available, but don't show in which order the use cases
will be executed, so there shouldn't be an association between use cases.

•
Every use case must be initiated by an actor. That is, there should be an arrow starting with an actor
and ending with the use case. Again, the exception here is an includes or extends relationship.

•
Think of the database as a layer underneath the entire Use Case diagram. You can enter information in
the database using one use case, and then access that information from the database in another use
case. You don't have to draw associations from one use case to another to show information flow.

Activity Diagrams

An activity diagram is another way to model the flow of events. Using text, as we did in the example above, is
useful, but it can be difficult to read and understand if the logic is complex, if there are a lot of alternate flows,
or if your customers simply prefer diagrams over text.

An activity diagram shows you the same information as a textual flow of events would. We use activity
diagrams in business modeling to depict the workflow through a business process. Here, we will use them to
depict the flow through a piece of the system.

Figure 4.7 is the activity diagram that corresponds to the flow of events for purchasing an airline ticket from
earlier in this chapter.

Chapter 4: Use Cases and Actors

119

Figure 4.7: Activity diagram

As you can see, the activity diagram can be an easier way to communicate the steps in the flow. Let's look at
the different pieces of notation in this diagram.

Activity

As the name implies, an activity is one of the essential pieces of an activity diagram. An activity is simply a
step in the process. The steps we outlined in the text above become our activities here. An activity is modeled
using the following symbol:

We can add more detailed steps to the activity by using actions. Actions are smaller steps that take place
within an activity. They may occur at one of four times:

•
Upon entering the activity. An entry action occurs as soon as the activity begins, and is marked with
the word "entry."

•
When exiting the activity. An exit action occurs as you are leaving the activity, and is marked with the
word "exit."

•
While performing the activity. These actions occur while in the activity and continue until you leave
the activity. They are marked with the word "do."

•

Chapter 4: Use Cases and Actors

120

Upon a specific event. These actions happen if and only if a specific event occurs. They are marked
by the word "event," followed by the event name.

Actions are optional, but they can give us detailed information that will help us complete the system design
later. If actions are included, they are displayed inside the activity, regardless of which of the above four
categories they fall into. Here is an example of an activity with actions:

In this example, the actions show the steps within the "display available flights" activity. When the activity
first begins, the system will find all flights for the selected cities and dates, and then determine which of these
flights has available seats. While inside the activity, the system displays a list of flights and highlights the one
with the lowest fare. Finally, upon the event that the user wishes to see fare information, the system will
display the fare information.

Start and End States

The start and end states let you know where the flow begins and ends. Each activity diagram must have a start
state, which is drawn as a solid dot, to signify where the flow begins.

End states are optional on the diagram. They show you where the flow ends, and are represented by a
bull's−eye. You can have more than one end state on the diagram, but only a single start state.

Objects and Object Flows

An object is an entity that is affected by the flow. It may be used or changed by an activity in the flow. On an
activity diagram, you can display the object and its state so that you can understand where and how the
object's state changes.

Objects are linked to activities through object flows. An object flow is a dashed arrow drawn from an activity
to the object it changes, or from the object to the activity that needs to use it.

Chapter 4: Use Cases and Actors

121

In this example, once the user enters their credit information, a ticket is created with a status of
"unconfirmed." Once the credit processing is complete and the credit is approved, the "reserve seat" activity
occurs, which sets the state of the ticket to "purchased." These are both examples of how an activity can
change an object.

An object can also serve as input into an activity. In this example, in order to generate a confirmation number,
the system must have a purchased ticket. The ticket is therefore input into the "generate confirmation number"
activity. In either case, the relationships between the activities and the objects are drawn as dashed arrows and
are known as an object flow.

Transitions

A transition shows how the flow of control moves from one activity to another. In the simplest situation, a
transition is simply an arrow from one activity to another:

In this simple situation, we can assume that as soon as one activity ends, the next begins.

We can, however, set limitations on the transition to control when the transition occurs. This can be done
either by using an event or a guard condition. If an event is specified for a transition, the event must happen in
order for the transition to occur. The transition arrow is labeled with the event name, along with any
arguments in parenthesis.

Here we can see that if the user changes their mind and performs a cancel event, the purchase price will be
refunded and the ticket will be canceled.

While an event triggers a transition, a guard condition controls whether or not the transition can occur. If a
guard condition is present, it must be true in order for the transition to occur. The guard condition is listed
along the transition arrow, following any event, and is enclosed in square brackets:

In this example, a new confirmation number is needed only if there is a new reservation made. If we are
changing an existing reservation, the old confirmation number will remain. Because we need to generate a
confirmation number only if this is a new reservation, "New reservation" becomes our guard condition.

Synchronization

A synchronization is a way to show that two or more branches of a flow occur in parallel. In our example, if
we want to show that the system would—at the same time—reserve a seat, generate a confirmation number,
generate a receipt, and e−mail a receipt before displaying the confirmation number, the diagram would look

Chapter 4: Use Cases and Actors

122

like this:

The synchronizations are displayed as solid bars, and show where the logic forks and where it comes back
together. A synchronization can be either horizontal or vertical.

Working with Use Cases in Rational Rose

In this section, we'll review how to create, update, and delete use cases and Use Case diagrams in Rose. We'll
look at the Use Case Diagram toolbar, which can be used to add use cases, actors, relationships, and other
elements to the Use Case diagrams. Then, we'll discuss creating, deleting, and setting the specifications of a
use case in Rose.

It's not unusual to create a number of Use Case diagrams for a given project. Each would show a different
subset of the use cases and actors. Rose provides you with one default Use Case diagram called Main, which
can be used to show just the packages of use cases and actors, or show all the use cases and actors if you
prefer. You can create as many Use Case diagrams as you need in a Rose model.

The Use Case Diagram Toolbar

When a Use Case diagram is opened, the Diagram toolbar changes to show icons used in Use Case diagrams.
In the toolbar, Rose provides shortcuts for all of the commonly used functions for a Use Case diagram. Some
of the buttons you will have available are shown in Table 4.1. In the remainder of this chapter, we'll discuss
how to use each of these toolbar buttons to add use cases, actors, and other details to your Use Case diagrams.

Tip The buttons below are the defaults for the toolbar. As with any other toolbar, Rose toolbars can be
customized. If you do not see all of the buttons listed, right−click the toolbar and select Customize.

Table 4.1: Icons in the Use Case Diagram Toolbar

Icon Button Purpose

Selects/Deselects an Item Returns the cursor to an arrow so you can select an item.

Chapter 4: Use Cases and Actors

123

Text Box Adds a text box to the diagram.

Note Adds a note to the diagram.

Anchor Note to Item Connects a note to a use case or actor on the diagram.

Package Adds a new package to the diagram.

Use Case Adds a new use case to the diagram.

Actor Adds a new actor to the diagram.

Unidirectional Association Draws a relationship between an actor and a use case.

Dependency or Instantiates Draws a dependency between items on the diagram.

Generalization Draws a includes or an extends relationship between use cases, or
draws an inheritance relationship between actors.

Creating Use Case Diagrams

In Rose, Use Case diagrams are created in the Use Case view. The Use Case view contains all of the
following:

•
Use cases

•
Actors

•
Communication relationships between use cases and actors

•
Includes and extends relationships between use cases

•
Actor generalization relationships

•
Use Case diagrams

•
Activity diagrams

•
Use Case realizations

•
Sequence and Collaboration diagrams

We'll talk about all of the above except Sequence and Collaboration diagrams, which we'll cover in Chapter 5,
"Object Interaction." The Use Case view is largely implementation−independent. The use cases and actors
describe the project scope without getting into implementation details like the programming language that will
be used. We will add implementation details starting with the Sequence diagrams in Chapter 5.

Chapter 4: Use Cases and Actors

124

Rose provides you with one default Use Case diagram called Main. You can create as many additional
diagrams as you need to model your system.

To access the Main Use Case diagram, do the following:

1.
Click the + (plus sign) next to the Use Case view in the browser to open it.

2.
The Main Use Case diagram will be visible. Note that Use Case diagrams in Rose have the following
icon on their left:

3.
Double−click the Main diagram to open it. The title bar will change to include [Use Case Diagram:
Use Case View / Main].

To create a new Use Case diagram:

1.
Right−click the package Use Case view in the browser.

2.
Select New → Use Case Diagram from the shortcut menu, as shown in Figure 4.8.

Figure 4.8: Adding a new Use Case diagram

3.
With the new diagram selected, type in the name of your new diagram.

4.
Double−click the name of your new diagram in the browser to open it.

To open an existing Use Case diagram:

1.

Chapter 4: Use Cases and Actors

125

Locate the Use Case diagram in the Use Case view in the browser.

2.
Double−click the Use Case diagram's name to open it.

OR

1.
Select Browse → Use Case Diagram. The window displayed in Figure 4.9 will appear.

Figure 4.9: Opening an existing Use Case diagram

2.
In the Package list box, select the package that contains the diagram you want to open.

3.
In the Use Case Diagrams list box, select the diagram you want to open.

4.
Press OK.

To add an item to a Use Case diagram, use the toolbar buttons as described in the sections later in this chapter
to add use cases, actors, and relationships to the diagram.

There are two ways to remove an item from a Use Case diagram. The first will remove the item from the open
diagram, but will leave the item in the browser and on other diagrams. To remove an item from the current
diagram only, highlight the item in the diagram and press the Delete key. The second method will delete the
item from the entire model—from all diagrams as well as the browser. To remove an item from the entire
model, highlight the item in the browser, right−click to see the shortcut menu, and select Delete from the
shortcut menu. Or you can highlight the item in the diagram and press Ctrl+D.

Deleting Use Case Diagrams

You may need to delete some of the Use Case diagrams you've created. Toward the beginning of a project, it's
not uncommon to create many Use Case diagrams as you brainstorm the scope. Some of the diagrams may
contain the use cases, others will show the actors, and still others will show a subset of the use cases and the
actors. As the project goes along, you may find the need to clean up some of these old diagrams. You can
delete a Use Case diagram directly in the browser. Be careful, though—once you've deleted a diagram, you
cannot undo the deletion.

To delete a Use Case diagram:

1.

Chapter 4: Use Cases and Actors

126

Right−click the diagram in the browser.

2.
Select Delete from the shortcut menu.

Warning Rose does not allow you to undo a deletion of a diagram or to delete the Main Use Case diagram.
Deleting a Use Case diagram will not delete the model elements that were on it. Those will stay in the browser
and on any other diagrams.

Adding Use Cases

There are two ways to add a use case to the model. You can add the use case to the active Use Case diagram.
Or you can add the new use case directly into the browser, and then add it to a Use Case diagram from the
browser.

To add a new use case to a Use Case diagram:

1.
Select the Use Case button from the toolbar.

2.
Click anywhere inside the Use Case diagram. The new use case will be named NewUseCase by
default.

3.
With the new use case selected, type in the name of the new use case.

4.
Note that the new use case has been automatically added to the browser, under the Use Case view.

OR

1.
Select Tools → Create → Use Case, as shown in Figure 4.10.

Figure 4.10: Adding a use case to a Use Case diagram

2.

Chapter 4: Use Cases and Actors

127

Click anywhere inside the Use Case diagram to place the new use case. The new use case will be
called NewUseCase by default.

3.
With the new use case selected, type in the name of the new use case.

4.
Note that the new use case has been automatically added to the browser, under the Use Case view.

To add an existing use case to a Use Case diagram:

Drag the use case from the browser to the open Use Case diagram.

OR

1.
Select Query → Add Use Cases. A dialog box will display, as in Figure 4.11, that will allow you to
select and add existing use cases.

Figure 4.11: Adding existing use cases to a Use Case diagram

2.
In the Package drop−down list box, select the package that contains the use case(s) you want to add.

3.
Move the use case(s) you want to add from the Use Cases list box to the Selected Use Cases list box.

4.
Press OK to add the use cases to the diagram.

To add a use case to the browser:

1.
Right−click the Use Case view package in the browser.

2.
From the shortcut menu, select New → Use Case.

3.
The new use case, called NewUseCase by default, will appear in the browser. To the left of the new

Chapter 4: Use Cases and Actors

128

use case will be the Use Case icon.

4.
With the new use case selected, type in the name of the new use case.

5.
To then add the use case to the diagram, drag the new use case from the browser to the diagram.

Deleting Use Cases

There are two ways to delete a use case. It can be removed from a single diagram or removed from the entire
model and all diagrams. As with Use Case diagrams, it's not uncommon to have many extra use cases toward
the beginning of a project. They can be very useful for brainstorming the scope of the project. Once the final
set of use cases has been agreed upon, however, you will need to go in and delete any extraneous use cases.

To remove a use case from a Use Case diagram:

1.
Select the use case on the diagram.

2.
Press Delete.

3.
Note that the use case has been removed from the Use Case diagram, but still exists in the browser
and on other Use Case diagrams.

To remove a use case from the model:

1.
Select the use case on the diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

3.
Rose will remove the use case from all Use Case diagrams, as well as the browser.

OR

1.
Right−click the use case in the browser.

2.
Select Delete from the shortcut menu.

3.
Rose will remove the use case from all Use Case diagrams, as well as the browser.

Chapter 4: Use Cases and Actors

129

Use Case Specifications

Rose provides detailed specifications for each use case. These specifications can help you document the
specific attributes of the use case, such as the use case name, priority, and stereotype. Figure 4.12 shows the
use case specification window, which is used to set the use case specifications. In the following sections, we'll
take a look at each of the specifications available on the tabs of this window.

Figure 4.12: Use case specification window

To open the use case specifications:

1.
Right−click the use case on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

OR

1.
Right−click the use case in the browser.

2.
Select Open Specification from the shortcut menu.

OR

1.
Select the use case on a Use Case diagram.

2.

Chapter 4: Use Cases and Actors

130

Select Browse → Specification, or press Ctrl+B.

Naming a Use Case

Each use case in the model should be given a unique name. The use case should be named from the
perspective of your customer, as the use cases will help determine the project scope. The use case name
should also be implementation−independent. Try to avoid phrases, such as Internet, that tie the use case to a
specific implementation. Use cases are typically named with verbs or short verb phrases.

There are two ways to name a use case. You can use the use case specification window or name the use case
directly on the diagram.

To name a use case:

1.
Select the use case in the browser or on the Use Case diagram.

2.
Type the use case name.

OR

1.
Right−click the use case in the Use Case diagram or browser.

2.
Select Open Specification from the shortcut menu.

3.
In the Name field, enter the use case name.

To add documentation to a use case:

1.
Select the use case in the browser.

2.
In the documentation window, type the use case description.

OR

1.
Right−click the use case in the browser or on the Use Case diagram.

2.
From the shortcut menu, select Open Specification.

3.
In the specification window, type the use case description in the Documentation area.

Chapter 4: Use Cases and Actors

131

Viewing Participants of a Use Case

You may want to see a listing of all of the classes and operations that participate in a particular use case. As
the project progresses and you add or change requirements, it can be very helpful to know what classes might
be affected by the change. In our airline example, we will need to know which classes are used by which use
case as the requirements evolve and the use cases change.

Even after the system is complete, you may need an inventory of which classes are included in each use case.
As the system moves into maintenance mode, you will need to control the scope of upgrades and changes. In
Rose, you can view the use case participants using the Report menu.

To view the classes and operations participating in a use case:

1.
Select the use case on a Use Case diagram.

2.
Select Report → Show Participants in UC.

3.
The Participants window will appear, as shown in Figure 4.13.

Figure 4.13: Use case Participants window

Checking the Display Parent check box will display the package that owns each of the classes participating in
the use case. The parent appears in parentheses after the class or operation name.

Checking the Display Type check box will add a notation next to each item in the list box to let you know
whether the item is a class or an operation. The type appears in parentheses after the class or operation name.

Use the Components, Classes, and Operations check boxes to control whether components, classes,
operations, or all three appear in the list box. Use the Open It button to view the specifications for an item in
the list, and use the Goto It button to select the item in the browser.

Assigning a Use Case Stereotype

In UML, stereotypes are used to help you categorize your model elements. Say, for example, you had two
primary types of use cases, type A and type B. You can create two new use case stereotypes, A and B.
Stereotypes aren't used very often for use cases; they are used more for other model elements, such as classes
and relationships. However, you do have the option of adding a use case stereotype if you'd like.

To assign a use case stereotype:

1.

Chapter 4: Use Cases and Actors

132

Right−click the use case in the browser or on the Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
Enter the stereotype in the Stereotype field.

Assigning a Priority to a Use Case

As you define your use cases, you might want to assign a priority to each. By adding priorities, you'll know in
what order you'll be working on the use cases as the project progresses. In the use case specification in Rose,
you can enter the use case priority description using the Rank field.

To assign a priority to a use case:

1.
Right−click the use case in the browser or on the Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
On the General tab, enter the priority in the Rank field.

Creating an Abstract Use Case

An abstract use case is one that is not started directly by an actor. Instead, an abstract use case provides some
additional functionality that can be used by other use cases. Abstract use cases are the use cases that
participate in an includes or extends relationship. Figure 4.14 includes examples of abstract use cases.

Figure 4.14: Abstract use cases

In this example, "Check Credit" is an abstract use case. The actor will run either the "Purchase Ticket" or
"Change Reservation" use case, but not the "Check Credit" use case directly. See the section later in this
chapter titled "Working with Relationships" for a description of how to draw the arrows between the use
cases.

To create an abstract use case:

1.
Create the use case in the browser or on a Use Case diagram.

2.

Chapter 4: Use Cases and Actors

133

Right−click the use case in the browser or on the diagram.

3.
Select Open Specification from the shortcut menu.

4.
Check the Abstract check box.

Viewing Diagrams for a Use Case

In the use case specifications, you can see all of the activity diagrams, Sequence diagrams, Collaboration
diagrams, Class diagrams, Use Case diagrams, and Statechart diagrams that have been defined under the use
case in the browser. Figure 4.15 shows the Diagrams tab in the use case specification window. On this tab,
you will see the Rose icons that indicate the type of diagram, as well as the diagram name. Double−clicking
any of the diagrams will open the diagram in the diagram window.

Figure 4.15: Use case specification window's Diagrams tab

To view the diagrams for a use case:

1.
Right−click the use case in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
The diagrams will be listed on the Diagrams tab of the specification window.

Chapter 4: Use Cases and Actors

134

OR

Look through the browser. The diagrams for the use case will appear underneath the use case in the browser.

To open a diagram for a use case:

Double−click the diagram name on the Diagrams tab of the use case specification window.

OR

1.
Right−click the diagram name on the Diagrams tab of the use case specification window.

2.
Select Open Diagram from the shortcut menu.

OR

Double−click the diagram in the browser.

To add a diagram to a use case:

1.
Right−click anywhere inside the Diagrams tab of the use case specification window.

2.
From the shortcut menu, select the type of diagram (Use Case, Sequence, Collaboration, State, or
Class) you want to add.

3.
Enter the name of the new diagram.

OR

1.
Right−click the use case in the browser.

2.
Select New → (Activity Diagram, Collaboration Diagram, Sequence Diagram, Class Diagram, Use
Case Diagram) from the shortcut menu.

3.
Enter the name of the new diagram.

To delete a diagram from a use case:

1.
Right−click the diagram name on the Diagrams tab of the use case specification window.

2.
Select Delete from the shortcut menu.

Chapter 4: Use Cases and Actors

135

OR

1.
Right−click the diagram name in the browser.

2.
Select Delete from the shortcut menu.

Viewing Relationships for a Use Case

The Relations tab in the use case specification window will list all of the relationships the use case participates
in, either to other use cases or to actors, as shown in Figure 4.16. The list includes the relationship name and
the names of the items joined by the relationship. The relationship name will include any role names or
relationship names you have added to the relationship.

Figure 4.16: Use case specification Relations tab

To view the relationships for a use case:

1.
Right−click the use case in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
The relationships will be listed on the Relations tab.

OR

1.
Select the use case on a Use Case diagram.

2.
Select Report → Show Usage.

To view the relationship specifications:

1.

Chapter 4: Use Cases and Actors

136

Double−click the relationship in the list.

2.
The relationship specification window will appear. (See the upcoming "Working with Relationships"
section for a detailed description of relationship specifications.)

OR

1.
Right−click the relationship in the list.

2.
Select Specification from the shortcut menu.

3.
The relationship specification window will appear. (See the upcoming section titled "Working with
Relationships" for a detailed description of relationship specifications.)

To delete a relationship:

1.
Right−click the relationship in the list.

2.
Select Delete from the shortcut menu.

Working with Actors

In this section, we'll take a look at how to model actors using Rational Rose. As with use cases, you can keep
a lot of details—name, stereotype, relationships, multiplicity, and so on—about an actor in a Rose model. We
maintain these details in the actor specification window. Rose uses the same specification window for actors
and classes, so we'll see some fields that don't apply to actors.

Adding Actors

As with use cases, there are two ways to add an actor: to an open Use Case diagram or directly into the
browser. An actor in the browser can then be added to one or more Use Case diagrams.

To add an actor to a Use Case diagram:

1.
Select the Actor button from the toolbar.

2.
Click anywhere inside the Use Case diagram. The new actor will be named NewClass by default.

3.

Chapter 4: Use Cases and Actors

137

With the new actor selected, type in the name of the new actor. Note that the new actor has been
automatically added to the browser, under the Use Case view.

OR

1.
Select Tools → Create → Actor, as shown in Figure 4.17.

Figure 4.17: Adding an actor to a Use Case diagram

2.
Click anywhere inside the Use Case diagram to place the new actor. The new actor will be called
NewClass by default.

3.
With the new actor selected, type in the name of the new actor. Note that the new actor has been
automatically added to the browser, under the Use Case view.

To add an actor to the browser:

1.
Right−click the Use Case view package in the browser.

2.
Select New → Actor.

3.
The new actor, called NewClass by default, will appear in the browser. To the left of the actor's name
will be the Actor icon.

4.
With the new actor selected, type in the name of the new actor.

5.
To then add the actor to the diagram, drag the new actor from the browser to the diagram.

Chapter 4: Use Cases and Actors

138

Deleting Actors

As with use cases, there are two ways to delete an actor: from a single diagram or from the entire model. If
you delete an actor from the entire model, it will be removed from the browser as well as all Use Case
diagrams. If you delete an actor from a single diagram, it will remain in the browser and on other Use Case
diagrams.

To remove an actor from a Use Case diagram:

1.
Select the actor on the diagram.

2.
Press Delete.

To remove an actor from the model:

1.
Select the actor on the diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

OR

1.
Right−click the actor in the browser.

2.
Select Delete from the shortcut menu.

Rose will remove the actor from all Use Case diagrams as well as the browser. All relationships the deleted
actor has with other modeling elements will also be removed.

Actor Specifications

Like a use case, each actor has certain detailed specifications in Rose. In the actor specification window, as
shown in Figure 4.18, you can specify the actor's name, stereotype, multiplicity, and other details. In the next
several sections, we'll take a look at each of the specifications you can set for an actor.

Chapter 4: Use Cases and Actors

139

Figure 4.18: Actor specification window

As you work with classes later in this book, you may note that the actor specification window and the class
specification window are very similar. This is because Rose treats an actor as a specialized form of a class.
The actor specification window includes the same fields as the class specification window, but some of these
fields are disabled for actors.

To open the actor specifications:

1.
Right−click the actor on the Use Case diagram.

OR

Right−click the actor in the browser.

2.
Select Open Specification from the shortcut menu. The actor specification window will appear.

OR

1.
Select the actor on the Use Case diagram.

2.
Select Browse Specification, or press Ctrl+B. The actor specification window will appear.

Chapter 4: Use Cases and Actors

140

Most of the tab pages in the actor specification will apply to classes, but will not apply to actors. The tab
pages that include information about actors are the General tab, the Detail tab, the Relations tab, and the Files
tab. Some of the options on these tabs apply only to classes. The options that are available for actors are
described below.

Naming Actors

Each actor should be given a unique name. You can name an actor by using the actor specification window or
by typing the name directly onto a Use Case diagram or into the browser.

To name an actor:

1.
Right−click the actor in the Use Case diagram or browser.

2.
Select Open Specification from the shortcut menu.

3.
In the Name field, enter the actor name.

OR

1.
Select the actor in the browser or on the Use Case diagram.

2.
Type in the actor name.

To add documentation to an actor:

1.
Select the actor in the browser.

2.
In the documentation window, type the actor description.

OR

1.
Right−click the actor in the browser or on the Use Case diagram.

2.
From the shortcut menu, select Open Specification.

3.
In the specification window, type the actor description in the Documentation area.

Chapter 4: Use Cases and Actors

141

Assigning an Actor Stereotype

As with use cases, you can assign a stereotype to an actor in the specifications window. However, if you
change the stereotype of an actor, Rose will change the icon used to represent the actor on a Use Case
diagram. Rather than using the actor symbol, Rose will use the standard rectangle that is used to represent a
class.

Other than "Actor," there are no stereotypes provided for an actor. You can, however, define your own actor
stereotypes and use these in your Rose model.

To assign an actor stereotype:

1.
Right−click the actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Stereotype field, enter the actor stereotype.

Warning If you change the stereotype of an actor, Rose will no longer display the actor using the UML actor
symbol. Rose will treat the actor like any other class.

Setting Actor Multiplicity

You can specify in Rose how many instances of a particular actor you expect to have. For example, you may
want to know that there are many people playing the role of the customer actor, but only one person playing
the role of the manager actor. You can use the Multiplicity field to note this.

Rose provides you with several multiplicity options:

Multiplicity Meaning

0..0 Zero

0..1 Zero or one

0..n Zero or more

1..1 Exactly one

1..n One or more

n (default) Many
Or, you can enter your own multiplicity options, using one of the following formats:

Format Meaning

<number> Exactly <number>

<number 1>..<number 2> Between <number 1> and <number 2>

<number>..n <number> or more

<number 1>,<number 2> <number 1> or <number 2>

<number 1> , <number 2> .. <number 3> Exactly <number 1> or between <number
2> and <number 3>

Chapter 4: Use Cases and Actors

142

<number 1> .. <number 2> , <number 3> .. <number 4> Between <number 1> and <number 2> or
between <number 3> and <number 4>

To set actor multiplicity:

1.
Right−click the actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu.

3.
Select the Detail tab.

4.
Select from the Multiplicity drop−down list box, or type in the actor's multiplicity using one of the
formats listed above.

Creating an Abstract Actor

An abstract actor is an actor that has no instances. In other words, the actor's multiplicity is exactly zero. For
example, you may have several actors: hourly employee, salaried employee, and temporary employee. All of
these are types of a fourth actor, employee. However, no one in the company is just an employee—everyone
is either hourly, salaried, or temporary. The employee actor just exists to show that there is some commonality
between hourly, salaried, and temporary employees.

There are no instances of an employee actor, so it is an abstract actor. Figure 4.19 shows an example of an
abstract actor called "employee."

Figure 4.19: Abstract actor

To create an abstract actor:

1.
Create the actor in the browser or on a Use Case diagram.

2.
Right−click the actor in the browser or on the diagram.

3.
Select Open Specification from the shortcut menu.

4.

Chapter 4: Use Cases and Actors

143

Select the Detail tab.

5.
Check the Abstract check box.

Viewing Relationships for an Actor

The Relations tab in the actor specification window lists all of the relationships in which the actor participates.
Figure 4.20 shows the Relations tab of the window. This tab includes all relationships the actor has with use
cases, as well as the relationships to other actors. The list includes the relationship name and the actors or use
cases that participate in the relationship. From this tab, you can view, add, or delete relationships.

Figure 4.20: Actor specification window's Relations tab

To view the relationships for an actor:

1.
Right−click the actor in the browser or on a Use Case diagram.

2.
Select Open Specification from the shortcut menu. The relationships will be listed on the Relations
tab.

To view the relationship specifications:

1.
Double−click the relationship in the list.

2.
The relationship specification window will appear. (See the upcoming "Working with Relationships"
section for a detailed description of relationship specifications.)

OR

1.
Right−click the relationship in the list.

2.

Chapter 4: Use Cases and Actors

144

Select Specification from the shortcut menu.

3.
The relationship specification window will appear. (See the upcoming "Working with Relationships"
section for a detailed description of relationship specifications.)

To delete a relationship:

1.
Right−click the relationship in the list.

2.
Select Delete from the shortcut menu.

Viewing an Actor's Instances

As you are modeling the system, you may want to know on which Sequence and Collaboration diagrams a
particular actor resides. Rose provides this ability through the Report menu.

To view all Sequence and Collaboration diagrams containing the actor:

1.
Select the actor on a Use Case diagram.

2.
Select Report → Show Instances.

3.
Rose will display a list of all Sequence and Collaboration diagrams that contain the actor. To open a
diagram, double−click it in the list box or press the Browse button.

Working with Relationships

UML supports several types of relationships for use cases and actors. These include association relationships,
includes relationships, extends relationships, and generalization relationships. Association relationships
describe the relationships between the actors and the use cases. Includes and extends relationships describe the
relationships between the use cases. Generalization relationships describe inheritance relationships among use
cases or actors.

Association Relationship

An association relationship, as we discussed in the "Use Case Modeling Concepts" section earlier in this
chapter, is a relationship between an actor and a use case. The direction of the relationship shows whether the
system or the actor initiates the communication. Once communication is established, information can flow in
both directions.

To add an association relationship:

1.

Chapter 4: Use Cases and Actors

145

Select the Unidirectional Association toolbar button.

2.
Drag the mouse from the actor to the use case (or from the use case to the actor).

3.
Rose will draw a relationship between the use case and the actor.

To delete an association relationship:

1.
Select the relationship on the Use Case diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Includes Relationship

An includes relationship is used whenever one use case needs to use the functionality provided by another.
This relationship implies that one use case always uses the other.

To add an includes relationship:

1.
Select the Dependency toolbar button.

2.
Drag from one use case to the use case being used (from the concrete use case to the abstract use
case).

3.
Rose will draw a dependency between the two use cases.

4.
Right−click the relationship's line and select Open Specification.

5.
Rose will open the dependency specification, as shown in Figure 4.21.

Chapter 4: Use Cases and Actors

146

Figure 4.21: Dependency specification

6.
In the Stereotype drop−down list box, select include.

7.
Click OK to close the specification window.

8.
The word <<include>> should appear over the dependency arrow. If it does not, right−click on the
relationship's line and be sure there is a check mark next to the Stereotype Label field.

9.
Open the use case specification window of the abstract use case.

10.
Check the Abstract check box.

Note You can also customize the toolbar to provide a button for an includes relationship. Right−click the
toolbar and select Customize, then add the Includes Relationship icon.

To delete an includes relationship:

1.
Select the relationship on the Use Case diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Chapter 4: Use Cases and Actors

147

Extends Relationship

In an extends relationship, one use case optionally extends the functionality provided by another. In Rose,
extends relationships are modeled much the same as includes relationships.

To add an extends relationship:

1.
Select the Dependency toolbar button.

2.
Drag from the use case providing the extending functionality to the use case being extended (from the
abstract use case to the concrete use case).

3.
Rose will draw a dependency between the two use cases.

4.
Right−click on the relationship's line and select Open Specification.

5.
Rose will open the dependency specification.

6.
In the Stereotype drop−down list box, select extend.

7.
Click OK to close the specification window.

8.
The word <<extend>> should appear over the dependency arrow. If it does not, right−click on the
relationship's line and be sure there is a check mark next to the Stereotype Label field.

9.
Open the use case specification window of the Abstract use case.

10.
Check the Abstract check box.

To delete an extends relationship:

1.
Select the relationship on the Use Case diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Generalization Relationship

As we discussed above, a generalization relationship is used to show an inheritance among actors or use cases.

Chapter 4: Use Cases and Actors

148

An inheritance relationship suggests that one actor or use case, for example, has some base characteristics that
are shared by other actors or use cases. All actors or use cases that have a generalization relationship with it
will "inherit" those base characteristics.

To add a generalization:

1.
Add the actors or use cases to the Use Case diagram.

2.
Select the Generalization button from the toolbar.

3.
Drag from the actor or use case to the generalized actor or use case.

To delete a generalization relationship:

1.
Select the relationship on the Use Case diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Working with Activity Diagrams

With Rose, you can create one or more activity diagrams for a use case. Activity diagrams are typically used
to model the flow of events through the use case. Any activity diagrams for a use case will appear in the
browser, underneath the appropriate use case.

The Activity Diagram Toolbar

The Activity Diagram toolbar is used to add activities, transitions, objects, and other elements to an activity
diagram. Table 4.2 lists the icons in the Activity Diagram toolbar and explains their meaning.

Table 4.2: Icons in the Use Case Diagram Toolbar

Icon Button Purpose

Selects/Deselects an Item Returns the cursor to an arrow so you can select an item.

Text Box Adds a text box to the diagram.

Note Adds a note to the diagram.

Anchor Note to Item Connects a note to a use case or actor on the diagram.

State Adds a state for an object.

Activity Adds a new activity to the diagram.

Chapter 4: Use Cases and Actors

149

Start State Shows where the workflow begins.

End State Shows where the workflow ends.

State Transition Adds a transition from one activity to another.

Transition to Self Adds a transition from one activity to itself.

Horizontal Synchronization Adds a horizontal synchronization.

Vertical Synchronization Adds a vertical synchronization.

Decision Adds a decision point in the workflow.

Swimlane Adds a swimlane (usually used in business modeling).

Object Adds an object to the diagram.

Object Flow Connects an object to an activity.

Creating Activity Diagrams

To add an activity diagram, we use the browser window. Once the diagram is created, we can add activities,
transitions, and other activity diagram elements. In this section, we'll discuss the different pieces of an activity
diagram and how to add them.

To add an activity diagram:

1.
Right−click the use case in the browser.

2.
Select New → Activity Diagram.

3.
If this is the first activity diagram for a use case, Rose will create an entry titled State/Activity Model
under the use case in the browser. The new activity diagram, and any other activity diagrams for this
use case, will be placed under this State/Activity Model entry.

4.
Type the name of the new diagram.

Adding Activities and Actions

An activity is a step in the flow. Activities are shown on the diagrams as rounded rectangles. We can also add
actions to the activity to show any detailed steps within the activity. There are four types of actions: those that
occur when entering the activity, those that occur while exiting the activity, those that occur while inside the
activity, and those that occur upon a specific event.

To add an activity:

1.
Select the Activity icon from the toolbar.

2.

Chapter 4: Use Cases and Actors

150

Click anywhere inside the diagram to place the activity.

3.
Type in the activity name.

To add an action:

1.
Right−click the activity.

2.
Select Open Specification.

3.
Select the Actions tab.

4.
Right−click anywhere in the whitespace within the tab and select Insert.

5.
A new action will be added to the list. Its default type will be Entry.

6.
Double−click the new action (the word Entry). The action specification window will open.

7.
In the When drop−down list box, select the On Entry, On Exit, Do, or On Event option.

8.
If you selected On Event, enter the event, any arguments, and the condition in the appropriate fields.

9.
Enter the name of the action in the Name field.

10.
Press OK to return to the activity specification window.

11.
To delete an action, right−click it on the Actions tab of the activity specification window and select
Delete.

12.
Right−click to enter another action, or press OK to close the activity specification window.

Adding Objects and Object Flows

An object is an entity that is affected by or used by the workflow. We can model both the object and the state
that the object is in. We can also show how an object is affected by or used by a workflow through object
flows. A dashed arrow between an object and an activity represents an object flow.

To add an object:

1.

Chapter 4: Use Cases and Actors

151

Select the Object icon from the toolbar.

2.
Click anywhere inside the diagram to place the object.

3.
Type the object's name.

4.
Right−click and select Open Specification.

5.
If you have defined a class for the object, select that class in the Class field.

6.
If you would like to mark the object's state, select a state from the drop−down list box in the State
field. If there are no available states or if you'd like to add one, select <new>. The State Specification
window will open. Enter the name of the new state and press OK.

To add an object flow:

1.
Select the Object Flow icon from the toolbar.

2.
Drag and drop from the activity that changes the object to the object itself, or from the object to the
activity that uses it.

3.
Rose will draw an object flow (dashed arrow).

Adding Transitions and Guard Conditions

A transition shows the movement from one activity to another. We can add an event to the transition that
shows what event triggers the transition. We can also add a guard condition, which controls whether or not the
transition can occur.

To add a transition:

1.
Select the Transition icon from the toolbar.

2.
Drag and drop from one activity to another.

3.
Rose will draw a transition between the two activities.

To add an event:

1.

Chapter 4: Use Cases and Actors

152

Right−click the transition.

2.
Select Open Specification. The transition specification window will appear.

3.
Type the event in the Event field. If there are any arguments for the event, enter them in the
Arguments field.

To add a guard condition:

1.
Right−click the transition.

2.
Select Open Specification. The transition specification window will appear.

3.
Select the Detail tab.

4.
Type the guard condition in the Guard Condition field.

Note You can also add guard conditions directly on the transition arrow. Enclose the guard condition within
square brackets.

Adding Synchronizations and Decisions

Finally, we can show synchronous activity and conditions in the logic of the flow by using of horizontal
synchronizations, vertical synchronizations, and decision points.

To add a synchronization:

1.
Select the Horizontal or Vertical Synchronization icon from the toolbar.

2.
Click anywhere inside the diagram to place the synchronization.

3.
Draw transitions from activities to the synchronization or from the synchronization to one or more
activities.

To add a decision:

1.
Select the Decision icon from the toolbar.

2.
Click anywhere inside the diagram to place the decision.

3.

Chapter 4: Use Cases and Actors

153

Draw transitions from activities to the decision, or from the decision to one or more activities. Place
guard conditions on all transitions leaving the decision, so the reader can know under what conditions
each path is followed.

Deleting Activity Diagrams

To delete an activity diagram, simply right−click it in the browser and select Delete. Note that, although the
diagram has been deleted, all of the activities and other elements on the diagram are still in the Rose model.
You can see these elements in the browser.

To delete all of the elements that were on the diagram, right−click each element one at a time in the browser
and select Delete. Or, you can right−click the State/Activity Model listing for the use case in the browser and
select Delete. All activity diagrams, along with all activities and other items on the diagrams for that use case,
will be deleted from the model.

Note The activity diagram must stay where it was created. You cannot move an activity diagram from one
use case, class, or package to another. Also remember that you cannot copy a state or other element
from one activity diagram to another.

Exercise

In this exercise, we'll create the Use Case diagram for the order−processing system.

Problem Statement

After Andy and April got the business model done, Andy started working on the Use Case diagram for the
e−business system. Andy started by looking at each of the business use cases and deciding which ones would
be best automated with the e−business system. He decided that the "Purchase Items," "Purchase Inventory,"
"Stock Inventory," "Determine Items to Sell," and "Fulfill Order" business use cases would be best automated
in the system. Andy started working out the system use cases and system actors based on the business use
cases and actors involved. He then developed the system use case model based on this information and
interviews with others in the firm.

Create a Use Case Diagram

Create the Use Case diagram for the order−processing system. The steps for creating the diagram are outlined
below. Your final Use Case diagram should look like Figure 4.22.

Chapter 4: Use Cases and Actors

154

Figure 4.22: E−Business System Use Case diagram

Exercise Steps:

Add the System Use Case Model Package, Use Case Diagram, Use Cases, and Actors

1.
Right−click the Use Case View package in the browser and select New → Package.

2.
Name the new package System Use Case Model.

3.
Right−click the System Use Case Model package and select New → Use Case Diagram.

4.
Name the new diagram Main.

5.
Double−click the Main Use Case diagram in the browser to open the diagram.

6.
Use the Use Case toolbar button to add a new use case to the diagram.

7.

Chapter 4: Use Cases and Actors

155

Name this new use case Add Item to Shopping Cart.

8.
Repeat steps 6 and 7 to add the remaining use cases to the diagram. The use cases are:

♦
View Shopping Cart

♦
View Details of Items

♦
Purchase Items in Shopping Cart

♦
Remove Item from Shopping Cart

♦
Browse Items for Sale

♦
Provide Feedback

♦
Stock Inventory

♦
Return Item to Stock

♦
Ship Order

♦
Add New Item for Sale

♦
Remove Item for Sale

♦
Purchase Inventory

9.
Use the Actor toolbar button to add a new actor to the diagram.

10.
Name this new actor Customer.

11.
Repeat steps 9 and 10 to add the remaining actors to the diagram. The actors are:

♦

Chapter 4: Use Cases and Actors

156

Credit System

♦
Warehouse Manager

♦
Shipping Service

♦
Purchasing Manager

Add Associations

1.
Use the Unidirectional Association toolbar button to draw the association between the customer actor
and the "Add Item to Shopping Cart" use case.

2.
Repeat step 1 to add the rest of the associations to the diagram.

Add Use Case Descriptions

1.
Select the "Add Item to Shopping Cart" use case in the browser.

2.
Using the documentation window, add the following description to the "Enter New Order" use case:
This use case allows the customer to add an item for sale to their shopping cart for purchase.

3.
Using the documentation window, add descriptions to the remaining use cases.

Add Actor Descriptions

1.
Select the customer actor in the browser.

2.
Using the documentation window, add the following description to the salesperson actor: The
customer is the individual who is purchasing items from the organization.

3.
Using the documentation window, add descriptions to the remaining actors.

Summary

In this chapter, we discussed how to work with use cases, actors, and Use Case diagrams. The requirements of
the system to be built are the set of all use cases and actors. You begin by creating a Main Use Case diagram
to show the overall view of the system. Then, you can create additional diagrams to illustrate the interactions

Chapter 4: Use Cases and Actors

157

between actors and use cases. Use cases can include or extend other use cases. Otherwise, they cannot directly
communicate with each other. One use case includes another when the functionality will always be needed.
One use case extends another when the functionality is optionally needed. If a use case is included by or
extends another use case, that use case is abstract. Use cases in which actors directly participate are concrete.

Actors can communicate with use cases, illustrating which actors participate in which use cases. Actors can
also inherit from one another. For example, a student may be an actor in the system. We may need to further
refine the role of student into full−time student and part−time student. We do this by inheriting the full−time
and part−time students from the student actor.

Use cases and Use Case diagrams are useful ways to describe system functionality. In the next chapter, we
will discuss the use of Sequence and Collaboration diagrams, which are used to show the interactions between
objects and actors.

Chapter 4: Use Cases and Actors

158

Chapter 5: Object Interaction
In this chapter, we will discuss how to model the interactions between the objects in the system. The two
types of Interaction diagrams we'll take a look at in this chapter are Sequence diagrams and Collaboration
diagrams. Both show the objects participating in a flow through a use case and the messages that are sent
between the objects. Sequence diagrams are ordered by time; Collaboration diagrams are organized around
the objects themselves.

In the exercise at the end of the chapter, we will build a sample Sequence diagram.

•
Looking at Sequence and Collaboration diagrams

•
Adding objects to Sequence and Collaboration diagrams

•
Using messages with Sequence and Collaboration diagrams

•
Switching between Sequence and Collaboration diagrams

•
Using the two−pass approach to create Interaction diagrams

Interaction Diagrams

An Interaction diagram shows you, step−by−step, one of the flows through a use case: what objects are
needed for the flow, what messages the objects send to each other, what actor initiates the flow, and what
order the messages are sent. In our airline example, we have several alternate flows through the "Purchase
Ticket" use case. Therefore, we will have several Interaction diagrams for this use case. We'll have the "happy
day" Interaction diagram, which shows what happens when all goes well. And we'll have additional diagrams
showing what happens with the alternate flows, such as what happens when someone requests a
frequent−flyer ticket, what happens when someone's credit card is denied, and so on. All of the different
scenarios that our system will need to implement are documented in an Interaction diagram.

The two types of Interaction diagrams we'll talk about are Sequence diagrams and Collaboration diagrams. A
Sequence diagram is ordered by time. Figure 5.1 is an example of a Sequence diagram.

159

Figure 5.1: Sequence diagram

A Collaboration diagram shows the same information, but is organized differently. Figure 5.2 is an example
of a Collaboration diagram.

Figure 5.2: Collaboration diagram

Although a Sequence diagram and a Collaboration diagram show you the same information, there are a couple
of differences between these two diagrams. Sequence diagrams can show a focus of control; Collaboration
diagrams can show a data flow. We'll talk about these differences when discussing messages below.

Interaction diagrams contain a lot of the same detail that is spelled out in the flow of events, but here the
information is presented in a way that is more useful to the developers. While the flow of events focuses on
what the system needs to do, Sequence and Collaboration diagrams help to define how the system will do it.
These diagrams focus on the objects that will be created to implement the functionality spelled out in the use
cases. Sequence and Collaboration diagrams can show objects, classes, or both.

Before we get into the details of Sequence and Collaboration diagrams, let's review the concept of an object
and a class. If you are familiar with object−oriented concepts, skip to the section titled "Where Do I Start?"

Chapter 5: Object Interaction

160

What Is an Object?

We see objects all around us. The chair you're sitting in, the book you're reading, and the lightbulb that's
helping you see are all examples of objects in the real world. An object in the software world is very much the
same.

An object is something that encapsulates information and behavior. It's a term that represents some concrete,
real−world thing. Examples of objects are:

•
Flight #1020

•
The house at 7638 Main Street

•
The yellow flower just outside my kitchen window

In the airline example, some of the objects would include an airplane, a flight, a passenger, a piece of luggage,
or a ticket.

Every object encapsulates some information and some behavior. There might be a flight #1020 object, for
example, that has some information: The departure date is May 24, the departure time is 9:40 p.m., the flight
number is 1020, and the departure city is Los Angeles. The flight object also has some behavior: It knows
how to add a passenger to the flight, remove a passenger from the flight, and determine when it is full.

The pieces of information held by an object are known as its attributes. Although the values of the attributes
will change over time (flight 1020 will have a departure date of May 25 the next day), the attributes
themselves will not change. Flight 1020 will always have a departure date, a departure time, a flight number,
and a departure city.

The behaviors an object has are known as its operations. In this case, the operations for the flight include
adding a passenger, removing a passenger, and checking to see when the flight is full. In Rose, objects are
added to the Interaction diagrams. When dragging an actor (which in Rose is a class stereotype) or some other
class onto an Interaction diagram, an object instantiation of that class will automatically be created. Removing
an object from a diagram in Rose will not delete the class from the model.

What Is a Class?

A class is something that provides a blueprint for an object. In other words, a class defines what information
an object can hold and what behavior it can have. For example, classes for flight #1020, the house at 7638
Main Street, and the yellow flower just outside my kitchen window would be: Flight, House, and Flower. The
House class would just specify that a house has a height, width, number of rooms, and square footage. The
House at 7638 Main Street object might have a height of 40 feet, a width of 60 feet, 10 rooms, and 2000
square feet. A class is a more generic term that simply provides a template for objects.

Chapter 5: Object Interaction

161

Think of a class as a blueprint for a house, and the objects as the 25 houses that were all built from that
blueprint. We'll talk more about classes in the next chapter.

Where Do I Start?

To create a Sequence or Collaboration diagram, we first go through the flow of events and determine how
many of the flows will need an Interaction diagram. You can create a diagram for just the primary flow or for
all the alternate flows and error flows as well. If two alternate or error flows are very similar, they may be
combined onto one diagram. The more diagrams you create, the more thorough your exploration of how the
system should be built and the easier the rest of the steps in the process will be. (Class diagrams, Component
diagrams, and Deployment diagrams will be covered in the coming chapters.) The trade−off, of course, is
time. It can take quite some time to build a detailed Sequence or Collaboration diagram, because great many
design decisions need to be made at this point.

Patterns can come to the rescue here. You can build patterns for common logic. They include things such as
retrieving data from the database, checking the user's security level, error handling and logging, interprocess
communication, and so on. If you document these patterns in their own Sequence diagrams, it isn't necessary
for every diagram to show how you check the user's security level; you can simply reference the security
pattern. These types of patterns are also excellent candidates for reuse in other projects.

The steps involved in creating a Sequence or Collaboration diagram are:

•
Find the objects.

•
Find the actor.

•
Add messages to the diagram.

We will discuss each of these steps in the next sections.

Finding Objects

A good way to find some initial objects is to examine the nouns in your flow of events. Another good place to
look is in the scenario documents. A scenario is a specific instance of a flow of events. The flow of events for
the "Purchase Ticket" use case has several scenarios. For example, John Doe purchases a ticket for flight
#1020; John requests and gets a frequent−flyer ticket for flight #1020; John requests a frequent−flyer ticket
for flight #1020, but there are no seats available; John requests a frequent−flyer ticket for flight #1020, but he
does not have enough frequent−flyer miles. More scenarios would be developed to explain exceptions, such as
what happens if there's a problem with the credit card, if John is already booked for flight #1020, or if the
credit system can't be accessed. Any exceptions like these that should be programmed into the system should

Chapter 5: Object Interaction

162

be captured in the flow of events and on a Sequence or Collaboration diagram.

Most use cases will have a number of Sequence and Collaboration diagrams, one for each scenario through
the flow of events. These diagrams can be built at a high level of abstraction, to show how systems
communicate, or at a very detailed level, showing exactly what classes need to participate in a particular
scenario.

As you look at the nouns in your scenarios, some of the nouns will be actors, some will be objects, and some
will be attributes of an object. When you're building your Interaction diagrams, the nouns will tell you what
the objects will be. If you're looking at a noun and wondering whether it's an object or an attribute, ask
whether it has any behavior. If it's information only, it's probably an attribute. If it has some behaviors also, it
may be an object. Another check is whether it has attributes of its own. Is a passenger an attribute of a flight
or an object of its own? The answer to that question really depends on the application you are building. If all
you need to store is the name of the passenger, then it can be modeled as an attribute of a flight. If, however,
you also want to store the passenger's address, credit card information, and phone number, then it would be
better modeled as a separate object.

Not all of the objects will be in the flow of events. Forms, for example, may not appear in the flow of events,
but will have to appear on the diagram in order to allow the actor to enter or view information. Other objects
that probably won't appear in the flow of events are control objects.

You should consider each of these categories as you identify objects:

Entity objects These are objects that hold information. They may eventually map to some of the tables and
fields in the database. Many of the nouns in the flow of events will give you entity objects. Entity objects in
our airline example might be flight #1020, passenger John Doe, or ticket #1347A. These are business entities
that have meaning to the end user.

Boundary objects These are objects that lie on the boundary between the system and the outside world. In
other words, these are the forms and windows of the application and the interfaces to other applications.
Forms may appear in the flow of events, but interfaces probably won't. As you go through the logic in the
flow of events, ask whether any other system will need to be involved to carry out the logic in the flow. If so,
you may need one or more interface objects.

Control objects These are optional objects that control the flow through the use case. They don't carry out
any business functionality in and of themselves. Instead, they coordinate the other objects and control the
overall logic flow. For example, a control object would know that the user's security level should be checked
before a particular report is run. The control object wouldn't check the security level or run the report, it
simply holds the sequencing logic and the business rules for the scenario. It would first tell another object to
check the security, and then tell the report to run. Control objects won't appear in the flow of events. Using
them is, instead, a design decision; if you decide to use control objects, add one to your Sequence or
Collaboration diagram.

Finding the Actor

Once you have identified the objects for your Interaction diagram, the next step is to identify the necessary
actor. An actor on an Interaction diagram is the external stimulus that starts the workflow for a flow of events.
You can identify the actor by looking at the flow of events and determining who or what starts the process.

There may be more than one actor for a given Interaction diagram. Each actor that receives a message from or
sends a message to the system in a particular scenario should be shown on the diagram for that scenario.

Chapter 5: Object Interaction

163

Using Interaction Diagrams

From the diagrams, designers and developers can determine the classes they will need to develop, the
relationships between the classes, and the operations or responsibilities of each class. The Interaction
diagrams become the cornerstones upon which the rest of the design is built.

Sequence diagrams are ordered by time. They are useful if someone wants to review the flow of logic through
a scenario. Although Collaboration diagrams include sequencing information, it is easier to see on a Sequence
diagram.

Collaboration diagrams are useful if you want to assess the impact of a change. It's very easy to see on a
Collaboration diagram which objects communicate with which other objects. If you need to change an object,
you can easily see which other objects might be affected.

Interaction diagrams contain:

Objects An Interaction diagram can use object names, class names, or both.

Messages Through a message, one object or class can request that another carry out some specific function.
For example, a form may ask a report object to print itself.

One thing to remember as you create the Interaction diagrams is that you are assigning responsibility to
objects. When you add a message to an Interaction diagram, you are assigning a responsibility to the object
receiving the message. Be sure to assign the appropriate responsibilities to the appropriate objects. In most
applications, screens and forms shouldn't do any business processing. They should only allow the user to enter
and view information. By separating the front−end from the business logic, you've created an architecture that
reduces the ripple effect of changes. If the business logic needs to change, the interface shouldn't be affected.
If you change the format of a screen or two, the business logic won't need to be changed. Other objects should
be assigned appropriate responsibilities as well. For example, if you need to print a list of all flights in an
airline's schedule, flight #1020 shouldn't be responsible for that. The responsibilities of the flight #1020 object
should focus on just that flight. Another object can be responsible for looking at all of the flights in order to
generate a report.

Another way to look at responsibilities is to consider the entity, boundary, and control categories we discussed
earlier in the "Finding Objects" section. Entity objects should hold information and conduct business
functionality. Boundary classes (forms and windows) should display and receive information, but should also
do minimal business processing. Boundary classes (interfaces) should send information to another system or
receive information from another system, but again do minimal business processing. Control classes should
take care of the sequencing.

Sequence Diagrams

Let's begin by taking a look at Sequence diagrams. Sequence diagrams are Interaction diagrams that are
ordered by time; you read the diagram from the top to the bottom. As we mentioned above, each use case will
have a number of alternate flows. Each Sequence diagram represents one of the flows through a use case. For
example, Figure 5.3 is the Sequence diagram that shows John Doe purchasing a ticket for flight #1020.

Chapter 5: Object Interaction

164

We can read this diagram by looking at the objects and messages. The objects that participate in the flow are
shown in rectangles across the top of the diagram. In this example, there are a number of objects: the flight
search form, flight list form, fare information form, credit form, and confirmation form are all client pages
that are displayed to the end user. The remaining objects constitute the server−side logic and include server
pages, interfaces, and other server−side objects. Notice that some of the objects have the same name as their
classes. It is not necessary to name the objects differently from the classes.

Figure 5.3: Sequence diagram for purchasing a ticket

The process begins when John Doe selects his departure and destination cities and departure and return dates.
The FlightFinder server−side object looks for flights that match the criteria and builds the FlightListForm,
which displays all matching flights. John selects his flight, and the FlightDetails server−side object looks for
fare information for that flight. Once fare information has been retrieved, it is displayed using the
FareInfoForm. John confirms the rate, and the CreditForm is displayed. John enters his credit information, and
the CreditProcessor object interfaces to the external credit system to confirm John's credit. Once the credit has
been confirmed, a seat is reserved, the confirmation number is generated, and the confirmation is displayed to
John.

Each object has a lifeline, drawn as a vertical dashed line below the object. The lifeline begins when the object
is instantiated and ends when the object is destroyed. A message is drawn between the lifelines of two objects
to show that the objects communicate. Each message represents one object making a function call of another.
Later in the process, as we define operations for the classes, each message will become an operation.
Messages can also be reflexive, showing that an object is calling one of its own operations.

The Sequence Diagram Toolbar

When a Sequence diagram is opened, the Diagram toolbar changes to let you add objects, messages, and other
items to the diagram. Table 5.1 lists the buttons available in the Sequence Diagram toolbar and explains the
purpose of each. In the following sections, we'll discuss adding each of these items.

Table 5.1: Icons in the Sequence Diagram Toolbar

Icon Button Purpose

Selects or Deselects an Item Returns the cursor to an arrow to select an item.

Chapter 5: Object Interaction

165

Text Box Adds a text box to the diagram.

Note Adds a note to the diagram.

Anchor Note to Item Connects a note to an item in the diagram.

Object Adds a new object to the diagram.

Object Message Draws a message between two objects.

Message to Self Draws a reflexive message.

Return Message Shows a return from a procedure call.

Destruction Marker Shows when an object is destroyed.

Procedure Call Draws a procedure call between two objects.

Asynchronous Message Draws an asynchronous message between two objects.

Collaboration Diagrams

Like Sequence diagrams, Collaboration diagrams are used to show the flow through a specific scenario of a
use case. While Sequence diagrams are ordered by time, Collaboration diagrams focus more on the
relationships between the objects. Figure 5.4 is the Collaboration diagram for John Doe purchasing a ticket for
flight #1020.

Figure 5.4: Collaboration diagram for John purchasing a ticket

As you can see, the information that was in the Sequence diagram in Figure 5.3 is still here in the
Collaboration diagram, but this diagram gives us a different view of the flow. In this diagram, it's easier to see
the relationships between the objects. However, it's a little more difficult to see the sequencing information.

For this reason, you may want to create both a Sequence and a Collaboration diagram for a scenario. Although
they serve the same purpose and contain the same information, each gives you a slightly different view. In
Rose, you can create a Sequence diagram from a Collaboration diagram (or vice−versa) either by pressing F5
or selecting Browse → Create (Sequence/Collaboration) Diagram.

Chapter 5: Object Interaction

166

The Collaboration Diagram Toolbar

The Collaboration diagram toolbar is very similar to the Sequence diagram toolbar. There are a few options
available here that aren't available in a Sequence diagram, such as an object link and data flows. The
following sections describe how to use each of these toolbar buttons to add items to the diagram. Table 5.2
shows the toolbar buttons available on the Collaboration diagram toolbar.

Table 5.2: Icons in the Collaboration Diagram Toolbar

Icon Button Purpose

Selects or Deselects an Item Returns the cursor to an arrow to select an item.

Text Box Adds a text box to the diagram.

Note Adds a note to the diagram.

Anchor Note to Item Connects a note to an item on the diagram.

Object Adds a new object to the diagram.

Class Instance Adds a new class instance to the diagram.

Object Link Creates a path for communication between two objects.

Link to Self Shows that an object can call its own operations.

Link Message Adds a message between two objects or from an object to itself.

Reverse Link Message Adds a message in the opposite direction between two objects or
from an object to itself.

Data Token Shows information flow between two objects.

Reverse Data Token Shows information flow in the opposite direction between two
objects.

Working with Actors on an Interaction Diagram

Most Sequence and Collaboration diagrams have an actor object. The actor object is the external stimulus that
tells the system to run some functionality. The actor objects for the Interaction diagram will include the actors
that interact with the use case on the Use Case diagram.

To create an actor object on an Interaction diagram:

1.
Open the Interaction diagram.

2.
Select the actor in the browser.

3.
Drag the actor from the browser to the open diagram.

To remove an actor object from an Interaction diagram:

1.

Chapter 5: Object Interaction

167

Select the actor on the Interaction diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Note Deleting an actor from the diagram does not delete the actor from the model.

Working with Objects

The Sequence and Collaboration diagrams show you the objects that participate in one flow through a
particular use case. Once the actor object has been added to the diagram, the next step is to add other objects.
As we discussed above, you can find the objects that participate in a particular Sequence or Collaboration
diagram by examining the nouns in the flow of events and scenario documents. After this step, we will go in
and add the messages between the objects.

Adding Objects to an Interaction Diagram

One of the first steps in creating a Sequence or a Collaboration diagram is adding the objects. Look at the
nouns from your flow of events and scenarios to start finding objects.

To add an object to a Sequence diagram:

1.
Select the Object toolbar button.

2.
Click in the location on the diagram where you want the object to reside. In a Sequence diagram,
objects are arranged in a row near the top.

Note In Rose 2001A and 2002, you can move an object down from the top to the point at which it is
created.

3.
Type the name of the new object.

4.
Once you have added the objects, you can rearrange them by dragging and dropping. You can insert
an object between two existing objects by clicking between the two existing objects in step two.

To add an object to a Collaboration diagram:

1.
Select the Object toolbar button.

2.
Click in the location on the diagram where you want the object to reside. In a Collaboration diagram,
objects can be located anywhere.

3.
Type the name of the new object.

Chapter 5: Object Interaction

168

Deleting Objects from an Interaction Diagram

As you build your Interaction diagrams, you may need to delete some of the objects. When you delete an
object from the diagram, Rose will automatically delete any messages that start or end with that object and
automatically renumber all of the remaining messages.

When you delete an object from a Sequence diagram, Rose will automatically delete the object from the
Collaboration diagram but will not delete the corresponding class from the model. Similarly, when you delete
an object from a Collaboration diagram, Rose will remove it from the Sequence diagram. If you change your
mind, you can use the Undo option on the Edit menu.

To remove an object from a Sequence or Collaboration diagram:

1.
Select the object in the Sequence or Collaboration diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Note Deleting an object from the diagram does not delete the corresponding class from the model.
If you have several copies of an object on a single diagram and all copies have the same name and the same
class, you can press Delete to remove one copy of the object. Pressing Ctrl+D or selecting Delete from Model
will remove all copies.

Setting Object Specifications

There are a number of different fields that Rose provides to add some detail to the objects in your diagram.
For example, you can set the object's name, its class, its persistence, and whether there are multiple instances
of the object. You can also add documentation to the object in the object specification window, shown in
Figure 5.5. Adding documentation to an object does not add the documentation to the class, and adding
documentation to an object on one diagram does not add the documentation to the object on other diagrams.
In the following sections, we'll take a look at each of the options available on the object specification window.

Chapter 5: Object Interaction

169

Figure 5.5: Object specification window

To open the object specifications:

1.
Right−click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

OR

1.
Select the object in the Sequence or Collaboration diagram.

2.
Select Browse → Specification, or press Ctrl+B.

Naming an Object

Each object on a Sequence or Collaboration diagram should be given a unique name. However, for readability
you may have multiple copies of a single object on the diagram, and in this case each copy will have the same
name. While class names are very generic (Employee and Company, for example), object names are very
specific (John Doe and Rational Software Corporation). On an Interaction diagram, you may have two objects
that are instances of the same class. For example, in an inventory system, you may have one instance of a Part
class, called Engine, which communicates with another instance of Part, called Carburetor. You can enter the
name of each object on the diagram in the object specification window, or directly on the diagram.

To name an object:

1.

Chapter 5: Object Interaction

170

Right−click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Name field, enter the object's name. You may also use this field to change the name of the
object later on.

OR

1.
Select the object in the Sequence or Collaboration diagram.

2.
Right−click so that a cursor shows up in the object.

3.
Type the object name.

To add documentation to an object:

1.
Right−click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Documentation field, you can enter documentation for the object.

OR

1.
Select the object in the Sequence or Collaboration diagram.

2.
Type the object documentation in the documentation window.

Mapping an Object to a Class

On a Sequence or Collaboration diagram, each object may be mapped to a class. For example, flight #1020
may be mapped to a class called Flight. In the object specification window, you can use the Class field to set
the object's class. By default, the class will be set to (Unspecified).

When selecting a class for the object, you can either use an existing class from your model or create a new
class for the object. In the procedures below, we describe both of these approaches.

By the time you are ready to generate code, all of the objects should be mapped to classes. To map an object
to an existing class:

1.

Chapter 5: Object Interaction

171

Right−click the object in the Interaction diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Class drop−down list box, type the class name or select an option from the drop−down list box.

4.
Once you have mapped the object to a class, the class name will appear with the object name on the
diagram, preceded by a colon. You can toggle the display of the class name by right−clicking the
object and selecting Show Class.

OR

1.
Select the class in the Logical view of the browser.

2.
Drag the class from the browser to the object in the diagram.

3.
Once you have mapped the object to a class, the class name will appear with the object name on the
diagram, preceded by a colon:

To remove an object's class mapping:

1.
Right−click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Class drop−down list box, select (Unspecified).

To create a new class for the object:

1.
Right−click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.

Chapter 5: Object Interaction

172

Select <New> in the Class drop−down list box. Rose will take you to the specification window for the
new class.

To ensure all objects have been mapped to classes:

1.
Select Report → Show Unresolved Objects.

2.
Rose will display a list of all objects in the model that have not yet been mapped to a class.

To show only the object name on the diagram:

1.
Right−click the object in the Sequence or Collaboration diagram.

2.
De−select Show Class.

To show both the object and class name on the diagram:

1.
Right−click the object in the Sequence or Collaboration diagram.

2.
Select Show Class.

To show only the class name on the diagram:

1.
If you would rather use only the class name, and not see the object's name at all on the diagram,
right−click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
Delete the object name from the Name field. Rose will display the object using only the class name.
Again, the class name is preceded by a colon.

Setting Object Persistence

In Rose, you can set the persistence option for each object in the diagram. Rose provides you with three

Chapter 5: Object Interaction

173

options:

Persistent A persistent object is one that will be saved to a database or to some other form of persistent
storage. The implication here is that the object will continue to exist, even after the program has terminated.

Static A static object is one that stays in memory until the program is terminated. It lives beyond the
execution of this Sequence diagram, but is not saved to persistent storage. There is, at most, one instance of a
static object in memory at any given time.

Transient A transient object is one that stays in memory only for a short time (until the logic in the
Sequence diagram has finished, for example).

To set the persistence of an object:

1.
Right−click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
In the Persistence field, select the appropriate radio button: Persistent, Static, or Transient.

Note If you have set the persistence of the object's class to Persistent, you may set the object's persistence to
Persistent, Static, or Transient. If you have set the persistence of the object's class to Transient, you may
set the object's persistence to Static or Transient.

Using Multiple Instances of an Object

Rose provides the option of using one icon to represent multiple instances of the same class. Say, for example,
that you would like to represent a list of employees on a Sequence or Collaboration diagram. Rather than
showing each employee as a separate object, you can use the multiple instances icon to show the employee
list. The UML notation for multiple instances looks like this:

To use multiple instances of an object:

1.
Right−click the object in the Sequence or Collaboration diagram.

2.
Select Open Specification from the shortcut menu.

3.
Set the Multiple Instances check box to on or off. Rose will use the appropriate icon (single instance
or multiple instances) on a Collaboration diagram and use the single instance icon on a Sequence

Chapter 5: Object Interaction

174

diagram.

Working with Messages

A message is a communication between objects in which one object (the client) asks another object (the
supplier) to do something. By the time you generate code, a message will translate to a function call. In this
example, one form is asking another to display itself:

Adding Messages to an Interaction Diagram

Once you have placed the objects on your Sequence or Collaboration diagram, the next step is to add the
messages sent between the objects. On a Sequence diagram, messages can be added by drawing an arrow
between the lifelines of two objects. On a Collaboration diagram, you must first add a link between two
objects. Then you can add messages to the link.

Adding Messages to a Sequence Diagram

In a Sequence diagram, messages are drawn between the lifelines of the objects or from an object's lifeline to
itself. Messages are shown in chronological order, from the top of the diagram to the bottom.

To add a message to a Sequence diagram:

1.
Select the Object Message button from the toolbar.

2.
Drag the mouse from the lifeline of the object or actor sending the message to the object or actor
receiving the message, as shown in Figure 5.6.

Figure 5.6: Adding a message to a Sequence diagram

3.

Chapter 5: Object Interaction

175

Type in the text of the message.

To add a reflexive message to a Sequence diagram:

1.
Select the Message to Self toolbar button.

2.
Click on the lifeline of the object sending and receiving the message, as shown in Figure 5.7.

Figure 5.7: Adding a reflexive message to a Sequence diagram

3.
With the new message still selected, type in the text of the message.

Deleting Messages from a Sequence Diagram

As you work on your Sequence diagram, you may need to delete some of the messages that you've drawn. If
you delete a message, Rose will automatically renumber all of the remaining messages.

To delete a message from a Sequence diagram:

1.
Select the message to be deleted.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Reordering Messages in a Sequence Diagram

At times, you may want to reorder the messages in your Sequence diagram. In Rose, reordering messages is
very easy to do; you simply drag and drop the message into its new location. As the messages are reordered,
they will automatically be renumbered.

To reorder the messages in a Sequence diagram:

1.
Select the message to be moved (select the arrow, not the text).

2.

Chapter 5: Object Interaction

176

Drag the message up or down in the diagram. Rose will automatically renumber the messages as you
reorder them.

Message Numbering in a Sequence Diagram

Although you read the diagram from top to bottom, you have the option of using numbers on each message to
display the message order, as shown in Figure 5.8. Message numbering is optional on Interaction diagrams.
By default, numbering is disabled for Sequence diagrams.

Figure 5.8: Message numbering on a Sequence diagram

To turn message numbering on or off:

1.
Select Tools → Options.

2.
Select the Diagram tab.

3.
Set the Sequence Numbering check box to on or off, as shown in Figure 5.9.

Chapter 5: Object Interaction

177

Figure 5.9: Message numbering check box

Viewing the Focus of Control in a Sequence Diagram

In a Sequence diagram, you have the option of showing the focus of control, which lets you know which
object has control at a particular point in time. As shown in Figure 5.10, a small rectangle represents the focus
of control. This is one of the differences between a Sequence and a Collaboration diagram; the focus of
control is shown only on a Sequence diagram.

Figure 5.10: Focus of control on a Sequence diagram

To turn the focus of control on or off:

1.
Select Tools → Options.

2.
Select the Diagram tab.

3.

Chapter 5: Object Interaction

178

Set the Focus of Control check box to on or off, as shown in Figure 5.11.

Figure 5.11: Focus of Control check box

Adding Messages to a Collaboration Diagram

Before you can add messages to a Collaboration diagram, you have to establish a path of communication
between two objects. This path is called a link, and is created using the Object Link toolbar button. Once the
link has been added, you can add messages between the objects.

To add a message to a Collaboration diagram:

1.
Select the Object Link toolbar button.

2.
Drag from one object to the other to create the link.

3.
Select the Link Message or Reverse Link Message toolbar button.

4.
Click the link between the two objects. Rose will draw the message arrow, as shown in Figure 5.12.

Figure 5.12: Adding a message to a Collaboration diagram

5.
With the new message selected, type the text of the message.

To add a reflexive message to a Collaboration diagram:

1.

Chapter 5: Object Interaction

179

Select the Link to Self toolbar button.

2.
Click the object sending and receiving the message. Rose will draw a reflexive link on the object. It
will appear above the object and look like a half−circle.

3.
Select the Link Message toolbar button.

4.
Click the object's reflexive link. Rose will add the message arrow, as shown in Figure 5.13.

Figure 5.13: Adding a reflexive message to a Collaboration diagram

5.
With the new message still selected, enter the text of the message.

Note If you are adding more than one reflexive message to an object in a Collaboration diagram, skip steps
one and two for each additional message.

Deleting Messages from a Collaboration Diagram

As with Sequence diagrams, you can delete messages from a Collaboration diagram. When you delete a
message, Rose will automatically renumber the remaining messages.

To delete a message from a Collaboration diagram:

1.
Select the message to delete.

2.
Select Edit → Delete From Model, or press Ctrl+D.

Chapter 5: Object Interaction

180

Message Numbering in a Collaboration Diagram

With a Sequence diagram, you know that you read the diagram from top to bottom, so message numbering
isn't necessary. A Collaboration diagram, however, loses its sequencing information if you remove the
message numbering.

You do have the option in Rose of turning off message numbering in a Collaboration diagram. To turn
message numbering on or off:

1.
Select Tools → Options.

2.
Select the Diagram tab.

3.
Set the Collaboration and Sequence Numbering check box to on or off.

Adding Data Flows to a Collaboration Diagram

We mentioned earlier that one of the differences between a Sequence and a Collaboration diagram is the use
of the focus of control. The other difference is in the use of data flow. Collaboration diagrams show data
flows; Sequence diagrams do not.

Data flows are used to show the information that is returned when one object sends a message to another. In
general, you don't add data flows to every message on a Collaboration diagram, because it can clutter the
diagram with information that's not really valuable. If a message just returns a comment such as "OK, the
message was received and everything worked fine" or "Oops! There was an error in running the requested
function," it's probably not worth showing on the diagram. But if a message returns a structure, say a list of
employees working for the company, this may be significant enough to show on a diagram.

When you eventually map each message to an operation of a class, the information in the data flows will be
added to the operation's details. As a general rule, don't waste too much time worrying about data flows now.
Add them to the diagram if you think they're significant enough to help the developers. If not, leave them out.

To add a data flow to a Collaboration diagram:

1.
Select the Data Token or Reverse Data Token toolbar button.

2.
Click on the message that will be returning data. Rose will automatically add the data flow arrow to
the diagram, as shown in Figure 5.14.

Figure 5.14: Adding a data flow to a Collaboration diagram

3.

Chapter 5: Object Interaction

181

With the new data flow still selected, type in the data that will be returned.

Setting Message Specifications

In Rose, you can set a number of different options to add detail to each message. As with use cases and actors,
you can add names and documentation to messages. You can also set synchronization and frequency options.
In this section, we'll discuss each of the options you can set for a message.

To open the message specifications:

Double−click the message on the diagram. The message specification window will appear, as shown in Figure
5.15.

Figure 5.15: Message specification window

OR

1.
Select the message on the diagram.

2.
Select Browse → Specification, or press Ctrl+B.

Naming a Message

In the message specification window, you can name the message or change the name, and add documentation.
Each message should have a name that indicates the purpose of the message. Later, as you map each of the
messages to operations, the message name will be replaced with the operation name.

Chapter 5: Object Interaction

182

To name a message:

1.
Double−click the message on the Sequence or Collaboration diagram.

2.
If you have mapped the receiving object to a class, the operations of that class will appear in the
Name drop−down list box. Select an entry from the list or type in the name of the message.

OR

1.
Select the message on the Sequence or Collaboration diagram.

2.
Type the message name.

Note If you have mapped the receiving object to a class, the name of the receiving class will appear next to
the name, in the Class field. This field cannot be modified. To change the receiving class, map the
object to another class in the object specification window.

To add documentation to a message:

1.
Double−click the message to open the message specification window.

2.
In the Documentation area, enter comments for the message. You may, for example, want to enter a
little bit of pseudocode that describes what the message will do.

OR

1.
Select the message on the Sequence or Collaboration diagram.

2.
Enter comments in the Documentation window.

Mapping a Message to an Operation

Before you generate code, each message on your Sequence and Collaboration diagrams should be mapped to
an operation of a class. In this example, the message "Request Some Functionality" will be mapped to an
operation of the Supplier class.

Chapter 5: Object Interaction

183

To map a message to an existing operation:

1.
Be sure the receiving object (the supplier) has been mapped to a class.

2.
Right−click the message in the Sequence or Collaboration diagram.

3.
A list of the supplier's operations will appear.

4.
Select the operation from the list, as shown in Figure 5.16.

Figure 5.16: Mapping a message to an existing operation

To remove a message's operation mapping:

1.
Double−click the message in the Sequence or Collaboration diagram.

2.
In the Name field, delete the operation name and enter the new message name.

To create a new operation for the message:

1.
Be sure the receiving object (the supplier) has been mapped to a class.

2.
Right−click the message in the Sequence or Collaboration diagram.

3.
Select <new operation>.

4.
Enter the new operation's name and details. (The options available on the operation specification
window are discussed in detail in Chapter 7, "Attributes and Operations.")

5.
Click OK to close the operation specification window and add the new operation.

6.

Chapter 5: Object Interaction

184

Right−click the message.

7.
Select the new operation from the list that appears.

To ensure each message has been mapped to an operation:

1.
Select Report → Show Unresolved Messages.

2.
Rose will display a list of all messages that have not yet been mapped to operations.

Setting Message Synchronization Options

In the Detail tab of the message specification window, as shown in Figure 5.17, you can specify the
concurrency of the message being sent.

Figure 5.17: Setting synchronization options

The arrows on the diagram will change if you set the concurrency to Balking, Timeout, or Asynchronous. You
have seven synchronization options:

Simple This is the default value for messages. This option specifies that the message runs in a single thread
of control. On the Sequence diagram, simple messages use this symbol:

Chapter 5: Object Interaction

185

Synchronous Use this option when the client sends the message and waits until the supplier has acted upon
the message. On the Sequence diagram, synchronous messages will appear this way:

Balking With this option, the client sends the message to the supplier. If the supplier is not immediately
ready to accept the message, the client abandons the message. On the Sequence diagram, balking messages
appear like this:

Timeout Using this option, the client sends the message to the supplier and waits a specified amount of
time. If the supplier isn't ready to receive the message in that time, the client abandons the message. On the
Sequence diagram, timeout messages appear using this arrow:

Asynchronous With this option, the client sends the message to the supplier. The client then continues
processing, without waiting to see if the message was received or not. On the Sequence diagram,
asynchronous messages look like this:

Chapter 5: Object Interaction

186

Procedure Call With this option, the client sends the message to the supplier. The client then must wait
until the entire nested sequence of messages is processed before continuing. On the Sequence diagram,
procedure call messages look like this:

Return This option indicates the return from a procedure call. On the Sequence diagram, return messages
look like this:

To set the message synchronization:

1.
Double−click the message on the Sequence or Collaboration diagram.

2.
In the message specification window, select the Detail tab.

3.
Select the desired synchronization option from the radio buttons in the window.

Chapter 5: Object Interaction

187

Setting Message Frequency

Message frequency lets you mark a message to be sent at regular intervals. Say, for example, you have a
message that should run once every 30 seconds. You can set that message to be periodic. The frequency
options are available in the Detail tab of the message specification window, as shown in Figure 5.18.

Figure 5.18: Setting message frequency

There are two frequency options:

Periodic This option suggests that the message is sent on a regular, periodic basis.

Aperiodic This option suggests that the message is not sent on a regular basis. It may be sent only once or
at irregular points in time.

Note Message frequency will not change the appearance of the Sequence or Collaboration diagram.
To set the message frequency:

1.
Double−click the message in the Sequence or Collaboration diagram.

2.
In the message specification window, select the Detail tab.

3.
Select the desired frequency option from the radio buttons in the lower part of the window.

Chapter 5: Object Interaction

188

End of a Lifeline

Rose 2001A and 2002 give you greater control over the display of an object's lifeline on a Sequence diagram.
Specifically, they give you the ability to position an object at the point at which it is instantiated and the
ability to add a destruction marker to indicate when the object is destroyed.

Let's first look at the beginning of the lifeline. As a scenario progresses, objects will be created and destroyed.
In Rose 2001A and 2002, you can move an object vertically to indicate where it is created:

You can also indicate when an object is removed from memory. This can be especially helpful in optimizing a
design, because it gives you a quick way to see when memory is "cleaned up" in a specific scenario.

The destruction marker is used to indicate the end of a lifeline. It appears as an "X" on the lifeline itself, and
the lifeline will not extend beyond it:

To add a lifeline:

1.
Select the Destruction Marker icon from the toolbar.

2.
Click on the object's lifeline, at the point where it is removed from memory.

Working with Scripts

In Rose, notes are typically used to add a comment to an object. Scripts, on the other hand, are usually used to

Chapter 5: Object Interaction

189

add a comment to a message. Scripts are only used on Sequence diagrams. They are usually placed on the left
side of the diagram, opposite the message they refer to.

You can use a script to clarify the meaning of a message. You may have a message that reads "Validate User."
In the script, you can expand on the meaning: "Validate the ID to be sure that the user exists and that the
password is correct."

You can also use scripts to enter some conditional logic in your diagram. Figure 5.19 illustrates some sample
scripts in a Sequence diagram.

Figure 5.19: Using scripts in a Sequence diagram

In general, try to avoid putting so much conditional logic on the diagram that the diagram loses its simplicity.
By the time you add the details of a nested If statement inside a nested If statement inside a nested If
statement, your diagram will probably be cluttered. On the other hand, there are times when you need to show
a little bit of conditional logic. Just balance the two extremes. As long as the diagram is easily readable and
understandable, you should be fine. If the conditional logic gets too complicated, just create additional
Sequence diagrams: one to deal with the if part, one to deal with the else part, and so on.

Besides If statements, you can use scripts to show loops and other pseudocode on your diagram. Scripts won't
generate any code, but they will let the developers know how the logic is intended to flow.

To add a script to a Sequence diagram:

1.
Select the Text Box toolbar button.

2.
Click in the location on the diagram where you want the script to reside. Usually this is near the left
edge of the diagram.

3.
With the text box selected, type the text of the script.

4.

Chapter 5: Object Interaction

190

Select the text box. Press and hold down Shift and select the message.

5.
Select Edit → Attach Script.

6.
Now, when you move the message up or down in the diagram, the script will move along with it.

To detach a script from a message:

1.
Select the script.

2.
Select Edit → Detach Script.

Switching Between Sequence and Collaboration Diagrams

Typically, you create either a Sequence or a Collaboration diagram for a particular scenario. Without a
modeling tool like Rose, it can be too time−consuming to create both, especially because both show you the
same information.

In Rose, however, it's very easy to create a Sequence diagram from a Collaboration diagram, or to create a
Collaboration diagram from a Sequence diagram. Once you have both a Sequence and a Collaboration
diagram for a scenario, it's very easy to switch between the two.

To create a Collaboration diagram from a Sequence diagram:

1.
Open the Sequence diagram.

2.
Select Browse → Create Collaboration diagram, or press F5.

3.
Rose will create a Collaboration diagram with the same name as the open Sequence diagram.

To create a Sequence diagram from a Collaboration diagram:

1.
Open the Collaboration diagram.

2.
Select Browse → Create Sequence diagram, or press F5.

3.
Rose will create a Sequence diagram with the same name as the open Collaboration diagram.

Chapter 5: Object Interaction

191

To switch between Sequence and Collaboration diagrams:

1.
Open the Sequence or Collaboration diagram.

2.
Select Browse → Go to (Sequence or Collaboration) Diagram, or press F5.

3.
Rose will look for a Sequence or Collaboration diagram with the same name as the open diagram.

Two−Pass Approach to Interaction Diagrams

Frequently, people use a two−pass approach to creating Interaction diagrams. On the first pass, they focus on
higher−level information that the customers will be concerned with. Messages aren't mapped to operations
yet, and objects may not be mapped to classes. These diagrams let just the analysts, customers, and anyone
else interested in the business flow see how the logic will flow in the system.

The first pass of a Sequence diagram might look like Figure 5.20.

Figure 5.20: First−pass Sequence diagram

In the second pass, once the customers have agreed to the flow from the first−pass diagram, the team adds
more of the detail. The diagram at this point may lose its usefulness to the customer, but will become very
useful to the developers, testers, and other members of the project team.

To begin, some additional objects may be added to the diagram. Each Interaction diagram may have a control
object, which is responsible for controlling the sequencing through a scenario. All of the Interaction diagrams
for a use case may share the same control object, so you have one control object that handles all of the
sequencing information for the use case.

If you add a control object, your Sequence diagram will typically look something like Figure 5.21.

Chapter 5: Object Interaction

192

Figure 5.21: Sequence diagram with control object

Notice that the control object doesn't carry out any business processing; it just sends off messages to the other
objects. The control object is responsible for coordinating the efforts of the other objects and delegating
responsibility. For this reason, control objects are sometimes called manager objects.

The benefit of using a control object is separating the business logic from the sequencing logic. If the
sequencing needs to change, only the control object will be affected.

You may also want to add some objects to handle things like security, error handling, or database
connectivity. Many of these objects are generic enough to be built once and reused in many applications. Let's
take a look at the database issues, for example.

There are two commonly used options when trying to save information to a database or retrieve information
from a database. Say we're trying to save a new employee, John Doe, to the database. The John Doe object
can either know about the database, in which case it saves itself to the database, or it can be completely
separated from the database logic, in which case another object has to handle saving John to the database.
Let's start with John knowing about the database, as shown in Figure 5.22.

In this situation, there is no separation of application logic and database logic. The John Doe object takes care
of application logic, such as hiring and firing John Doe, as well as database logic, including saving John to the
database and retrieving him later. Should the database need to change, the change will ripple through more of
the application this way, because many objects will contain some database logic. On the other hand, this
approach can be easy to model and implement.

Chapter 5: Object Interaction

193

Figure 5.22: Application logic integrated with database logic

Another option is to separate the application logic from the database logic. In this situation, you will need to
create another object to deal with the database logic. We'll call this new object Transaction Manager. The
John Doe object will still hold the business logic; it will know how to hire or fire John, or how to give him a
raise. The Transaction Manager object will know how to retrieve John from the database or save him to the
database. The Sequence diagram might look something like Figure 5.23.

Figure 5.23: Application logic separated from database logic

The advantage of this approach is that now it's easier to reuse the John Doe object in another application with
a different database, or with no database at all. It also helps minimize the impact of a requirement change.
Database changes won't affect the application logic, and application changes won't affect the database logic.
The disadvantage here can be that you'll need a little more time to model and implement this solution.

These are two of the more common approaches, although there are some other approaches you can take when
dealing with database issues. Whichever decision you make, be sure to keep the approach consistent across
Interaction diagrams.

Aside from database issues, you may add objects now for things like error handling, security, or interprocess
communication. These details won't interest the customer, but will be critical for the developers.

Chapter 5: Object Interaction

194

Once you've added all of the objects, the next step is to map each of the objects to classes. You can map the
objects to existing classes or create new classes for the objects (see the earlier section titled "Mapping an
Object to a Class"). Then, you map each of the messages in the diagram to an operation (see the earlier section
titled "Mapping a Message to an Operation"). Finally, you go into the object and message specifications if you
need to set things like object persistence, message synchronization, and message frequency.

Exercise

In this exercise, we'll build a Sequence and a Collaboration diagram to add an item to the shopping cart in our
web−based e−commerce system.

Problem Statement

After talking with April and building the system use case model, Andy began looking at the particular
functionality that the system would have to perform. Andy started a detailed analysis of the features needed.
The "Add Item to Shopping Cart" use case was one with a higher priority to the users and one with a higher
element of risk. To allow plenty of time to deal with the risks of this use case, Andy decided to tackle it first
by creating a Sequence and a Collaboration diagram.

Create Interaction Diagrams

Create the Sequence diagram and Collaboration diagram to add an item to the shopping cart. Your completed
Sequence diagram should look like Figure 5.24.

Figure 5.24: Sequence diagram to add an item to the shopping cart

This is just one of the diagrams you would need to model the full "Add Item to Shopping Cart" use case. This
diagram shows what happens when everything goes right. You would need some additional diagrams to

Chapter 5: Object Interaction

195

model what happens when things go wrong, or when the user selects different options. Each alternate flow in
the use case may be modeled in its own Interaction diagram.

Exercise Steps:

Setup

1.
Select Tools → Options.

2.
Select the Diagram tab.

3.
Be sure that Sequence Numbering, Collaboration Numbering, and Focus of Control are all checked.

4.
Click OK to exit the Options window.

Create the Sequence Diagram

1.
Right−click Add Item to Shopping Cart in the system use case model in the browser.

2.
Select New → Sequence Diagram.

3.
Name the new diagram Main Flow.

4.
Double−click the new diagram to open it.

Add Actor and Objects to the Diagram

1.
Drag the Customer actor from the browser onto the diagram.

2.
Select the Object button from the toolbar.

3.
Click near the top of the diagram to add the object.

4.
Name the new object Cart Interface.

5.
Repeat steps 3 and 4 to add the other objects to the diagram.

♦

Chapter 5: Object Interaction

196

Cart Mgr

♦
Product Mgr

♦
Product Items

♦
White Crew Socks

♦
Cart Items

Add Messages to the Diagram

1.
Select the Object Message toolbar button.

2.
Drag from the lifeline of the Customer actor to the lifeline of the Cart Interface object.

3.
With the message selected, type Add white crew socks to cart.

4.
Repeat steps 2 and 3 to add additional messages to the diagram, as shown below.

♦
Add white crew socks to cart (between Cart Interface and Cart Mgr)

♦
Get white crew socks (between Cart Mgr and Product Mgr)

♦
Find product (white crew socks) (between Product Mgr and Product Items)

♦
Get product (between Product Items and White Crew Socks)

♦
Add white crew socks to cart (between Cart Mgr and Cart Items)

5.
Select the Message to Self button from the toolbar.

6.
Below the last message, click on the lifeline of the Cart Items object to add a reflexive message.

7.
Name this new message Add white crew socks to cart.

Chapter 5: Object Interaction

197

Create a Collaboration Diagram

To create a Collaboration diagram from the Sequence diagram, you can press F5, or if you would rather create
a Collaboration diagram from scratch, follow the steps outlined here.

Create the Collaboration Diagram

1.
Right−click Add Item to Shopping Cart in the system use case model in the browser.

2.
Select New → Collaboration diagram.

3.
Name the new diagram Main Flow.

4.
Double−click the new diagram to open it.

Add Actor and Objects to the Diagram

1.
Drag the Customer actor from the browser onto the diagram.

2.
Select the Object button from the toolbar.

3.
Click anywhere inside the diagram to add the object.

4.
Name the new object Cart Interface.

5.
Repeat steps 2 through 4 to add the other objects to the diagram, as shown below.

♦
Cart Mgr

♦
Product Mgr

♦
Product Items

♦
White Crew Socks

♦
Cart Items

Chapter 5: Object Interaction

198

Add Messages to the Diagram

1.
Select the Object Link toolbar button.

2.
Drag from the Customer actor to the Cart Interface object.

3.
Repeat steps 1 and 2 to add links between the following:

♦
Cart Interface and Cart Mgr

♦
Cart Mgr and Product Mgr

♦
Product Mgr and Product Items

♦
Product Items and White Crew Socks

♦
Cart Mgr and Cart Items

4.
Select the Link Message toolbar button.

5.
Click on the link between Customer and Cart Interface.

6.
With the message selected, type Add white crew socks to cart.

7.
Repeat steps 4 through 6 to add additional messages to the diagram, as shown in Figure 5.25.

♦
Add white crew socks to cart (between Cart Interface and Cart Mgr)

♦
Get white crew socks (between Cart Mgr and Product Mgr)

♦
Find product (white crew socks) (between Product Mgr and Product Items)

♦
Get product (between Product Items and White Crew Socks)

♦

Chapter 5: Object Interaction

199

Add white crew socks to cart (between Cart Mgr and Cart Items)

Figure 5.25: Collaboration diagram

Summary

In this chapter, we have discussed one of the most versatile concepts in UML: Interaction diagrams. Object
Interaction diagrams show how objects work together in order to implement the functionality of a use case.
There are two types of Interaction diagrams: Sequence diagrams and Collaboration diagrams. Both of these
show the same information, just from different perspectives.

Sequence diagrams show the flow of control through time. A Sequence diagram is created for each alternative
path through a use case. They are useful for viewing the functionality as a use case progresses.

Collaboration diagrams show the flow of control, but not across time. Collaboration diagrams illustrate the
relationships between objects and show messages between objects. From a Collaboration diagram, a system
designer can see which objects may be bottlenecks or discover which objects need to directly communicate
with each other. Collaboration diagrams can also show data flows between objects; Sequence diagrams do not
have this capability. Through Rose, Sequence diagrams and Collaboration diagrams are interchangeable.
When a change is made on one, the corresponding diagram changes as well.

Typically, each Interaction diagram goes through a two−pass approach. In the first pass, most of the technical
details are left off of the diagrams. These diagrams can be shown to the users who can verify that the process
is captured correctly. Once the first−pass diagrams have been validated, the second−pass diagrams can be
created. The audience of the second−pass diagrams is not the users, but the project team, including the
designer, developers, and analysts. The second pass incorporates many details into the Interaction diagrams.
Each object of the diagrams is mapped to a class. Each message on the diagrams is mapped to an operation of
a class. Model−quality reports can be generated to show any unmapped objects or messages.

After completing the second−pass Interaction diagrams, some classes that the system requires have been
created in Rose. In the next chapter, we will discuss how to create the class diagrams that developers use to
actually develop classes.

Chapter 5: Object Interaction

200

Chapter 6: Classes and Packages
In the previous chapter, we discussed how objects interact in order to give a system its functionality. Now we
will look at the classes themselves and how to organize them into packages. Objects that are modeled in Rose
correspond to classes in the Logical view. In this chapter, we will discuss how to create classes, packages, and
Class diagrams in the Logical view.

•
Creating Class diagrams

•
Adding classes to the model

•
Working with classes and packages

Logical View of a Rose Model

In this chapter, we'll discuss some of the items that are stored in the Logical view of a Rose model. As we
mentioned in the previous chapter, you can create Sequence and Collaboration diagrams in the Logical view.
Other items that you can add to the Logical view include:

•
Classes, including attributes and operations

•
Packages

•
Class diagrams

•
Use Case diagrams

•
Associations

•
State/activity models with Statechart diagrams

We'll begin by creating classes and Class diagrams. In the next few chapters, we'll add details, such as
attributes and operations, to the Class diagrams and add relationships between the classes and packages.

Class Diagrams

201

A Class diagram is used to display some of the classes and packages in your system. It gives you a static
picture of the pieces in the system and of the relationships between them. In Rose, a Class diagram has the
following symbol next to it:

You will usually create several Class diagrams for a single system. Some will display a subset of the classes
and their relationships. Others might display a subset of classes, including their attributes and operations. Still
others may display only the packages of classes and the relationships between the packages. You can create as
many Class diagrams as you need to get a full picture of your system.

By default, there is one Class diagram, called Main, directly under the Logical View entry. This Class
diagram displays the packages of classes in your model. Inside each package is another diagram called Main,
which includes all of the classes inside that package. In Rose, double−clicking a package in a Class diagram
will automatically open its Main Class diagram. If a Main Class diagram does not exist, double−clicking the
package will create it.

Note In the Rose.ini configuration file, set AutoConstructMainDiagrams=Yes to automatically create a
Package Overview diagram for each package.

Class diagrams are good design tools for the team. They help the developers see and plan the structure of the
system before the code is written, helping to ensure that the system is well designed from the beginning. An
example of a Class diagram is shown in Figure 6.1.

Figure 6.1: Class diagram

What Is a Class?

A class is something that encapsulates information and behavior. Traditionally, we've approached systems
with the idea that we have the information over here on the database side and the behavior over there on the
application side. One of the differences with the object−oriented approach is the joining of a little bit of
information with the behavior that affects the information. We take a little bit of information and a little bit of
behavior, and encapsulate them into something called a class.

For example, in a personnel system, we may have a class called Employee. This class will contain some
information, such as an employee ID, name, address, and phone number. The Employee class will also have
some behavior, such as knowing how to hire or fire an employee or giving an employee a raise.

Chapter 6: Classes and Packages

202

In UML, a class is shown using the following notation:

The top section of the class holds the class name and, optionally, its stereotype. The middle section holds the
attributes, or the information that a class holds. The lower section holds the operations, or the behavior of a
class. If you would like, you can hide the attributes and/or the operations of the class in order to make your
diagrams easier to read.

You can also show the visibility of each attribute and operation, the data type of each attribute, and the
signature of each operation on these diagrams. We will discuss these options in the next chapter.

This Employee class will become a template for employee objects. An object is an instance of a class. For
example, objects of the Employee class might be John Doe, Fred Smith, and the other employees of the
company.

The Employee class dictates what information and behavior the employee objects will have. Continuing the
above example, a John Doe object can hold the following information: John Doe's name, his address, his
phone number, and his salary. The John Doe object will also know how to hire John Doe, fire John Doe, and
give John Doe a raise. The object has the information and the behavior specified in its class.

Finding Classes

A good place to start when finding classes is the flow of events for your use cases. Looking at the nouns in the
flow of events will let you know what some of the classes are. When looking at the nouns, they will be one of
four things:

•
An actor

•
A class

•
An attribute of a class

•
An expression that is not an actor, a class, or an attribute

By filtering out all of the nouns except for the classes, you will have many of the classes identified for your
system.

Alternatively, you can examine the objects in your Sequence and Collaboration diagrams. Look for
commonality between the objects to find classes. For example, you may have created a Sequence diagram that
shows the payroll process. In this diagram, you may have illustrated how John Doe and Fred Smith were paid.

Chapter 6: Classes and Packages

203

Now, you examine the John Doe and Fred Smith objects. Both have similar attributes: Each holds the
appropriate employee's name, address, and telephone number. Both have similar operations: Each knows how
to hire and fire the appropriate employee. So at this point, an Employee class is created, and it will become the
template for the John Doe and Fred Smith objects.

In our airline example, we use two instances of the flight #1020 object. Now that we are defining classes, we
can create a single class, called Flight, which will serve as the template for these two objects.

Each object in your Sequence and Collaboration diagrams should be mapped to the appropriate class. Please
refer to the previous chapter for details about mapping objects to classes in Interaction diagrams.

Along with the flow of events, Interaction diagrams are a great place to start when looking for classes.
However, there are some classes you may not find in these places. There are three different stereotypes to
consider when looking for classes: entity, boundary, and control. Not all of these will be found in the flow of
events or the Interaction diagrams. We'll talk about entity, boundary, and control classes in the stereotypes
section later in this chapter.

Before we do, however, there's an important process note to make here. In some organizations, people prefer
to create the Sequence and Collaboration diagrams first, and then create the Class diagrams, as we have done
here. However, others prefer to create the Class diagrams first, and then use the classes as a "dictionary" of
objects and relationships that are available on the Sequence and Collaboration diagrams.

If you prefer to create Class diagrams first, you would begin, as we described earlier, by examining the flow
of events and looking at the nouns. You would use this as a basis, and decide what other classes you would
need in order to implement the system. You would review any foundation class libraries you might have, and
include these classes on the diagram. You would group your classes into packages and architectural layers,
and then build the Sequence and Collaboration diagrams.

There are pros and cons to both approaches. In either case, a majority of the design work and design decisions
is performed in the two steps of creating Sequence/Collaboration diagrams and creating Class diagrams.

One of the benefits of creating Sequence diagrams first is that you can carefully examine, step−by−step, what
objects are needed to carry out the functionality in the flow of events, and be sure each class is used. You
don't have to worry too much, however, that you may include a class in your model that isn't really used. Also,
Sequence diagrams are wonderful group exercises. Creating them first gives you the flexibility to get a bunch
of designers together and brainstorm the most efficient design, creating and deleting objects as needed until
you have the best design. You are not limited to the list of classes you've already defined.

On the other hand, this opens up the team to design problems. Different subgroups may design the diagrams
very differently, leading to overlaps in class responsibilities, inconsistencies in design, and, ultimately,
architectural problems. For example, without laying out the classes and their relationships first, a team is free
to allow the user interface to communicate directly with the database.

If you create the Class diagrams first, then you have the opportunity to decide the architectural layers and
communication patterns before you build the Sequence diagrams. When you are building the Sequence
diagrams later, you know you won't violate the architecture as long as you follow the relationships laid out on
the Class diagram. This approach can be a little restrictive, however, and teams may need to revisit the Class
diagrams to make modifications as they lay out the design of the Sequence diagrams.

Either way, you should be able to trace requirements through the process. The flow of events should reflect
the rules laid out in the requirements. The steps in the Sequence and Collaboration diagrams should map to

Chapter 6: Classes and Packages

204

the steps in the flow of events (not a one−for−one mapping, but the sequence should be the same). The objects
in the Sequence and Collaboration diagrams should map to the classes in the Class diagrams. A single class
may appear on many Sequence and Collaboration diagrams and may even appear several times on the same
Sequence or Collaboration diagram as different objects of the same class.

Creating Class Diagrams

In Rose, Class diagrams are created in the Logical view. Again, you can create as many Class diagrams as you
need to provide a complete picture of your system.

When you create a new model, Rose automatically creates a Main Class diagram under the Logical view.
Typically, you use this diagram to display the packages of classes in your model. You can create additional
Class diagrams directly underneath the Logical view or within any existing package.

In Rose 2002, you can set a default Main diagram for each package, even if the diagram is not titled "Main."
In the browser, right−click the diagram you wish to make the default, and select the Set as Default Diagram
option.

To access the Main Class diagram:

1.
Click the + (plus sign) next to the Logical View entry in the browser to open it.

2.
The Main Class diagram will be visible. Note that Class diagrams in Rose have the following icon on
their right:

3.
Double−click the Main Class diagram to open it.

Note When you first start Rose and load a model, the Main Class diagram will automatically open.
To create a new Class diagram:

1.
Right−click the Logical View entry in the browser.

2.
Select New → Class diagram from the shortcut menu.

3.
Enter the name of the new diagram.

4.
Double−click the diagram in the browser to open it.

To open an existing Class diagram:

1.
Locate the Class diagram in the Logical view of the browser.

2.

Chapter 6: Classes and Packages

205

Double−click the diagram to open it.

OR

1.
Select Browse → Class Diagram. The window displayed in Figure 6.2 will appear.

Figure 6.2: Opening an existing Class diagram

2.
In the Package list box, select the package that contains the diagram you want to open.

3.
In the Class Diagrams list box, select the diagram you want to open.

4.
Press OK.

To add an item to a Class diagram, use the Class Diagram toolbar buttons to add items to the diagram. Or, you
can go to Tools → Create and select the item you wish to create. In the following sections, we'll describe how
to add the various items to a Class diagram.

There are two ways to remove an item from the diagram. To remove an item from the current diagram only:

1.
Select the item on the diagram.

2.
Press Delete.

To remove an item from the model:

1.
Select the item on the diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

OR

1.
Right−click the item in the browser.

2.

Chapter 6: Classes and Packages

206

Select Delete from the shortcut menu.

Deleting Class Diagrams

As you add and remove classes from your model, you may need to delete some of the Class diagrams you
have created. In Rose, you can delete Class diagrams using the browser. When you delete a diagram, the
classes contained on the diagram will not be deleted. They will still exist in the browser and on other
diagrams.

To delete a Class diagram:

1.
Right−click the Class diagram in the browser.

2.
Select Delete from the shortcut menu.

Organizing Items on a Class Diagram

As more and more classes and relationships are added to a diagram, it can become very cluttered and difficult
to read. Rose provides the option of automatically arranging all of the classes on the diagram.

As you add attributes and operations to a class or resize the classes on the diagram, you may end up with a
class that is too large or too small. Rose can automatically resize all of the classes to fit the text within them.
Using these two options, you can turn a diagram that looks like Figure 6.3 into a diagram that looks like
Figure 6.4.

Figure 6.3: Class diagram without resizing and automatic layout

Chapter 6: Classes and Packages

207

Figure 6.4: Class diagram with resizing and automatic layout

To lay out the items on a Class diagram, select Format → Layout Diagram. Rose will automatically align the
classes in the diagram.

To resize the items on a Class diagram, select Format → Autosize All. Rose will automatically resize each
class on the diagram to fit the class name, attributes, and operations within the class.

Using the Class Diagram Toolbar

In this chapter, we'll discuss how to add classes to the model and to a diagram. In the following sections, we'll
talk about the options provided by each of these toolbar buttons, with the exception of those dealing with
relationships. We will discuss the relationship toolbar buttons in Chapter 8, "Relationships."

If you don't see all of these buttons on the toolbar, right−click the toolbar and select Customize. From this
dialog box, you can add each of the buttons listed in Table 6.1.

Table 6.1: Icons Used in the Class Diagram Toolbar

Icon Button Purpose

Selects or Deselects an Item Returns the cursor to an arrow to select an item.

Text Box Adds a text box to the diagram.

Note Adds a note to the diagram.

Anchor Note to Item Connects a note to an item on the diagram.

Class Adds a new class to the diagram.

Interface Adds a new interface class to the diagram.

Association Draws an association relationship.

Aggregation Draws an aggregation relationship.

Chapter 6: Classes and Packages

208

Association Class Links an association class to an association relationship.

Package Adds a new package to the diagram.

Dependency or Instantiates Draws a dependency relationship.

Generalization Draws a generalization relationship.

Realize Draws a realizes relationship.

Parameterized Class Adds a new parameterized class to the diagram.

Class Utility Adds a new class utility to the diagram.

Parameterized Class Utility Adds a new parameterized class utility to the diagram.

Instantiated Class Adds a new instantiated class to the diagram.

Instantiated Class Utility Adds a new instantiated class utility to the diagram.

Domain Adds a new domain to the diagram.

Domain Package Adds a new domain package to the diagram.

Server Page Adds a new server page to the diagram.

Client Page Adds a new client page to the diagram.

Form Adds a new HTML form to the diagram.

COM Object Adds a new COM object to the diagram.

Applet Adds a new applet to the diagram.

Working with Classes

Once you've created your Class diagrams, the next step is to add classes to the model. There are several types
of classes you can add: regular classes, parameterized classes, instantiated classes, class utilities, and so on.
We'll talk about each of these types of classes in the sections that follow.

We'll also discuss the options Rose provides to add detail to your classes. You can name each class, assign it a
stereotype, set its visibility, and set a number of other options. We'll discuss each of these options below.

In this chapter, we'll cover how to view the attributes, operations, and relationships for your classes. In the
next few chapters, we'll discuss the details of adding and maintaining attributes, operations, and relationships.

Adding Classes

To begin, let's add a standard class. You can add a class by using the toolbar, the browser, or the menu.

First, you can add a new class to the browser only. In this case, it will be available to add to any diagram, but
won't exist on a diagram to start with. Alternatively, you can add a new class to a diagram. If you add a new
class to a diagram, it will be automatically added to the browser as well.

To add a new class to a Class diagram:

1.
Select the Class button from the toolbar. The cursor changes to a plus sign (+) when moved to the

Chapter 6: Classes and Packages

209

diagram.

2.
Click anywhere inside the Class diagram. The new class will be named NewClass by default.

3.
Rose will display a list of all existing classes. To place an existing class on the diagram, double−click
the existing class in the list, as shown in Figure 6.5. To create a new class, replace the word NewClass
with the new class name. Note that the new class has also been automatically added to the browser in
the Logical view.

Figure 6.5: Adding a new class

Note If you want to create a new class with the same name as a class in a different package, open the class
specification window and enter the class name. You will see a warning telling you that classes with the
same name now exist in multiple packages.

OR

1.
Select Tools → Create → Class.

2.
Click anywhere inside the Class diagram to place the new class. The new class will be named
NewClass by default.

3.
Rose will display a list of all existing classes. To place an existing class on the diagram, double−click
the existing class in the list. To create a new class, replace the word NewClass with the new class
name. Note that the new class has automatically been added to the browser in the Logical view.

Note You may also create new parameterized classes, class utilities, parameterized class utilities, instantiated
classes, and instantiated class utilities using the Tools → Create menu. A detailed discussion of these
types of classes appears later in this chapter.

To add a new class using an Interaction diagram:

1.

Chapter 6: Classes and Packages

210

Open a Sequence or Collaboration diagram.

2.
Right−click an object in the diagram.

3.
Select Open Specification from the shortcut menu.

4.
Select <New> in the Class drop−down list box. Rose will take you to the specification window for the
new class.

5.
In the class specification window, enter the class name in the Name field.

Note Because Interaction diagrams are in the Use Case view of the browser, new classes created with this
method are created in the Use Case view. To move them to the Logical view, drag and drop the classes
in the browser.

To add an existing class to a Class diagram:

Drag the class from the browser to the open Class diagram.

OR

1.
Select Query → Add Classes. The Add Classes dialog box will appear, as shown in Figure 6.6.

Figure 6.6: Adding existing classes to a Class diagram

2.
In the Package drop−down list box, select the package that contains the class(es) you want to add to
the diagram.

3.
Move the class(es) you want to add from the Classes list box to the Selected Classes list box. To add
all the classes, press the All button.

4.
Press OK.

5.

Chapter 6: Classes and Packages

211

Rose will add the selected class(es) to the open diagram.

To add a class to the browser:

1.
Right−click Logical View in the browser. To add a class to a package, right−click the package name.

2.
From the shortcut menu, select New → Class. To add a class utility or an interface, select New →
Class Utility or New → Interface. The new class, called NewClass by default, will appear in the
browser.

3.
Select the new class and type its name.

4.
To then add the new class to a Class diagram, drag it from the browser to the open diagram.

Class Stereotypes

A stereotype is a mechanism you can use to categorize your classes. Say, for example, you want to quickly
find all of the forms in the model. You could create a Form stereotype, and to find your forms later, you
would just need to look for the classes with the Form stereotype.

This feature helps you more thoroughly understand the responsibilities of each class in your model. Classes
with a Form stereotype are responsible for displaying information to the user and receiving information from
the user. Classes with the Visual Basic Collection stereotype are responsible for grouping entities together
into a dataset or other type of collection. Each stereotype has its own types of responsibilities.

Stereotypes also help in the code−generation process. When Rose generates code, it looks at the class
stereotypes to determine what type of class to create in the target programming language.

Rose comes with a number of built−in stereotypes. Some are used during the analysis process, when you
haven't yet determined what language you will be using. Others are specific to a particular language, and are
used in the detailed design process. These different types of stereotypes are important; they allow you to start
assigning responsibilities to classes in the analysis process without tying the model to a specific language.

In this section, we will discuss the stereotypes for analysis and language−dependent design that come with
Rose.

Analysis Stereotypes

During analysis, you may want to categorize your classes according to the functions they perform. There are
three primary class stereotypes in UML that are used for analysis: boundary, entity, and control.

Chapter 6: Classes and Packages

212

Boundary Classes

Boundary classes are those classes that lie on the boundary between your system and the rest of the world.
These would include all of your forms, reports, interfaces to hardware such as printers or scanners, and
interfaces to other systems. The UML representation of a boundary class looks like this:

To find and identify boundary classes, you can examine your Use Case diagram. At a minimum, there must be
one boundary class for every actor–use case interaction. The boundary class is what allows the actor to
interact with the system.

You don't necessarily have to create a unique boundary class for every actor–use case pair. For example, say
you have two actors that both initiate the same use case. They might both use the same boundary class to
communicate with the system.

Chapter 6: Classes and Packages

213

Entity Classes

Entity classes hold information that you may save to persistent storage. In our airline reservation system, the
Flight class is a good example of an entity class. Entity classes are usually found in the flow of events and in
Interaction diagrams. They are the classes that have the most meaning to the user and are typically named
using business−domain terminology.

Look at the nouns in your flow of events. Many of these nouns will be the entity classes in the system.
Another good place to look is in the database structure. If some database design has already been done, look at
the table names. An entity class may need to be created for a table. While the table holds a record's
information permanently, the entity class will hold the information in memory while the system is running.

In UML, entity classes are represented by the following symbol:

By tying our database design to the object model, we can trace many of the fields in the database back to a
requirement. The requirements determine the flow of events. The flow of events determines the objects, the
classes, and the attributes of the classes. Each attribute in an entity class may become a field in the database.
Using this approach, we can trace each database field back to a requirement and reduce the risk of collecting
information no one uses.

Control Classes

Finally, let's take a look at control classes. Control classes are responsible for coordinating the efforts of other
classes. They are optional, but if a control class is used, there is typically one control class per use case, which
controls the sequencing of events through the use case. On an Interaction diagram, a control class has
coordinating responsibilities, as you can see in Figure 6.7.

Figure 6.7: Control class on a Sequence diagram

Chapter 6: Classes and Packages

214

Notice that the control class doesn't carry out any functionality itself, and other classes don't send many
messages to it. Instead, it sends out a lot of messages. The control class simply delegates responsibility to the
other classes. Control classes are responsible for knowing and carrying out the business rules of an
organization. They execute alternative flows and know what to do in case of an error. For this reason, control
classes are sometimes called manager classes. In UML, control classes are drawn using the following symbol:

There may be other control classes that are shared among several use cases. For example, we may have a
SecurityManager class that is responsible for controlling events related to security. We may have a
TransactionManager class that is responsible for coordinating messages related to database transactions. We
may have other managers to deal with other common functionality, such as resource contention, distributed
processing, or error handling.

These types of control classes can be a good way to isolate functionality that is used across the system.
Encapsulating security coordination, for example, into a SecurityManager can help minimize the impact of
change. If the sequencing of the security logic needs to change, only the SecurityManager will be affected.

Additional Class Stereotypes

In addition to the stereotypes mentioned above, you can add your own stereotypes to the model. In the
Stereotype field, you can enter the new stereotype, and from that point on, it will be available in your current
Rose model.

To assign a class stereotype:

1.
Open the class specification window by right−clicking the class and selecting Open Specification.

2.
Select a stereotype from the drop−down list box or type in the stereotype name.

To display the stereotype name on the diagram:

1.
Right−click a class on a Class diagram.

2.
From the shortcut menu, select Options → Stereotype Display → Label. The stereotype name will
appear, enclosed in double angle brackets (<< >>), just above the class name.

Chapter 6: Classes and Packages

215

To display the Stereotype icon on the diagram:

1.
Right−click a class on a Class diagram.

2.
From the shortcut menu, select Options → Stereotype Display → Icon.

3.
The representation of the class will change to the appropriate icon. This example shows the icon for
an Interface class:

Note Not all of the stereotypes have icons. If there is no icon for a stereotype, only the stereotype name will
appear on the diagram.

To turn off the stereotype display on the diagram:

1.
Right−click a class on a Class diagram.

2.
From the shortcut menu, select Options → Stereotype Display → None. The class will still have a
stereotype, visible in the class specification window, but the stereotype will not display on the
diagram.

To change the default stereotype display option:

1.
Select Tools → Options.

2.
Select the Diagram tab.

3.
In the Compartments area, as shown in Figure 6.8, select or deselect the Show Stereotypes check box
to control whether or not the stereotype will display.

Chapter 6: Classes and Packages

216

Figure 6.8: Changing the default stereotype display

4.
In the Stereotype Display area, select the default display type (None, Label, Decoration, or Icon).

To add a new stereotype to the current Rose model:

1.
Open the class specification window.

2.
Type a new stereotype in the Stereotype field. The new stereotype will now be available in the
drop−down list box as you add more classes, but only in the current Rose model.

3.
To add a new Stereotype icon for the new stereotype, see the online help ("Stereotype Configuration
File").

Class Types

In design, we want to categorize our classes using the terminology of the particular programming language we
are going to use. For example, if we are using Visual Basic, we may have stereotypes such as Class Module,
Collection, or Form. If we are using Java, we would need stereotypes for session objects, servlets, interfaces,
and so on.

Rose supports a number of different stereotypes for its different language options. This section describes the
types of classes that are available. In the following sections, we'll discuss stereotypes for several of the
languages supported by Rational Rose.

Chapter 6: Classes and Packages

217

Parameterized Class

A parameterized class, the first of the special types of classes we'll discuss, is a class that is used to create a
family of other classes. Typically, a parameterized class is some sort of container; it is also known as a
template. Not all languages directly support templates; you can use them in C++, Visual C++, or Ada.

For example, you may have a parameterized class called List. Using instances of the parameterized class, you
can create some classes called EmployeeList, OrderList, or AccountList, as described below.

In UML, a parameterized class is displayed using this notation:

To add a parameterized class:

1.
Select the Parameterized Class button from the toolbar.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

OR

1.
Add a class to a Class diagram or to the browser using one of the methods listed above.

2.
Open the class specification window.

3.
In the Type field, select ParameterizedClass.

4.
Press OK.

OR

1.
Select Tools → Create → Parameterized Class.

2.
Click anywhere inside the diagram to place the new class.

3.

Chapter 6: Classes and Packages

218

Type the name of the class.

Setting Arguments for a Parameterized Class

The arguments for the class are displayed in the dashed−line box. The arguments are placeholders for the
items that the parameterized class will contain. Using our example from the last section, we can replace the
parameter item with a specific thing, such as Employee, to instantiate an EmployeeList class.

The argument can be another class, a data type, or a constant expression. You can add as many arguments as
you need.

To add an argument:

1.
Open the class specification window by right−clicking the class and selecting Open Specification.

2.
Select the Detail tab.

3.
Right−click anywhere inside the white space in the Formal Arguments area.

4.
Select Insert from the shortcut menu.

5.
Type the argument name.

6.
Click below the Type column header to display a drop−down list of argument types, as shown in
Figure 6.9. Select one of the types in the list or enter your own.

Chapter 6: Classes and Packages

219

Figure 6.9: Adding an argument to a parameterized class

7.
Click below the Default Value column header to enter a default value for the argument. A default
value is not required.

To delete an argument:

1.
Open the class specification window.

2.
Select the Detail tab.

3.
Right−click on the argument you wish to delete.

4.
Select Delete from the shortcut menu.

Instantiated Class

An instantiated class is a parameterized class that has actual values for the arguments. From our last example,
we know that we have a list of items. Now, we can supply a value for the Items argument, to see that we have
a list of employees. UML notation for an instantiated class is a class with the argument name enclosed in
angle brackets (< >):

Chapter 6: Classes and Packages

220

The number of actual values in an instantiated class must match the number of formal arguments in the
parameterized class that it instantiates. If an argument is another class, then there should be a dependency on
that class.

To add an instantiated class:

1.
Select the Instantiated Class button from the toolbar.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class with the arguments in angle brackets (< >).

OR

1.
Add a class to a Class diagram or to the browser using one of the methods listed above.

2.
Open the class specification window.

3.
In the Type field, select InstantiatedClass.

4.
Click OK.

OR

1.
Select Tools → Create → Instantiated Class.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

Class Utility

A class utility is a collection of operations. For example, you may have some mathematical
functions—squareroot(), cuberoot(), and so on—that are used throughout your system but don't fit well into
any particular class. These functions can be gathered together and encapsulated into a class utility for use by

Chapter 6: Classes and Packages

221

the other classes in the system.

Utility classes are frequently used to extend the functionality provided by the programming language or to
hold collections of generic, reusable pieces of functionality that are used in many systems.

A class utility will appear as a shadowed class on the diagram with this symbol:

To add a class utility:

1.
Select the Class Utility button from the toolbar.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

OR

1.
Add a class to a Class diagram or to the browser using one of the methods listed above.

2.
Open the class specification window.

3.
In the Type field, select ClassUtility.

4.
Press OK.

OR

1.
Select Tools → Create → Class Utility.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

Chapter 6: Classes and Packages

222

Parameterized Class Utility

A parameterized class utility is a parameterized class that contains a set of operations. It is the template that is
used to create class utilities. It appears on a Class diagram with the following symbol:

To add a parameterized class utility:

1.
Select the Parameterized Class Utility button from the toolbar.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

OR

1.
Add a class to a Class diagram or to the browser using one of the methods listed above.

2.
Open the class specification window.

3.
In the Type field, select ParameterizedClassUtility.

4.
Press OK.

OR

1.
Select Tools → Create → Parameterized Class Utility.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

Instantiated Class Utility

An instantiated class utility is a parameterized class utility that has values set for the parameters. It appears on
a Class diagram as follows:

Chapter 6: Classes and Packages

223

To add an instantiated class utility:

1.
Select the Instantiated Class Utility button from the toolbar.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

OR

1.
Add a class to a Class diagram or to the browser using one of the methods listed above.

2.
Open the class specification window.

3.
In the Type field, select InstantiatedClassUtility.

4.
Click OK.

OR

1.
Select Tools → Create → Instantiated Class Utility.

2.
Click anywhere inside the diagram to place the new class.

3.
Type the name of the class.

Interfaces

One guideline in object−oriented programming is to separate the implementation of a class from its interface.
Most object−oriented languages now support the concept of an interface, which contains only the method
signatures (without the implementation) for a class.

For example, we may have a class that deals with security. It has methods called CheckID, CheckPassword,
and LogSecurityViolation. The CheckID operation takes the user ID as a parameter and returns a Boolean
signifying whether or not the ID is valid. CheckPassword takes the password entered by the user and also
returns a Boolean. LogSecurityViolation takes no parameters.

Chapter 6: Classes and Packages

224

Various pieces of the system will need to call the CheckID operation, for example. The typical approach is to
create a class, which we'll call SecurityImplementer, that contains all three of the security methods as well as
code to implement the functions.

One option is to allow the rest of the system to directly call methods of the SecurityImplementer class
whenever they need security functionality. A problem could occur, however, if the Security−Implementer
class changes. What happens if we change the way that the methods work or if we want to replace our
C++−based security class with a Java−based security class? There could be ripple effects throughout the
system.

So rather than take this approach, we create the SecurityImplementer class with its methods and their
implementations, but we also create a SecurityInterface class, which holds only the operation signatures.
Other classes will reference the interface rather than the implementer class so that if the implementer needs to
change, the rest of the system won't be affected.

This concept has been used as the basis for interface definition language (IDL), which allows you to define
language−independent interfaces. In Rose, an interface is modeled as a class with a circle icon, which is often
called a "lollipop," as follows:

Web Modeling Stereotypes

One of the new features in Rose is the support of web modeling stereotypes. Using this feature, you can more
thoroughly describe the structure of your web applications, labeling which classes in the model correspond to
client pages, server pages, applets, session objects, or other web constructs.

Note You can read more about this topic in Chapter 19, "Web Modeling."
In this section, we'll briefly discuss each of the stereotypes available in Rose Web Modeler. If you are using
these stereotypes, you may first want to customize the Class Diagram toolbar to be able to see buttons for
these. To do so, open a Class diagram and right−click the Class Diagram toolbar. Select Customize, find the
web stereotype buttons, and then add them to the toolbar.

Many of these stereotypes have their own symbols on a Class diagram. In Rose, you can view the classes with
their symbols by right−clicking the class and selecting Options → Stereotype Display → Icon. To switch back
to stereotypes with text labels instead, select the Label option.

Note If you have changed the stereotype display to Icon but you're still not seeing the symbols, be sure the
default language on the Notation tab of Tools → Options is set to Web Modeler before you create the
classes. If the classes are already created, be sure they are mapped to a component whose language is
set to Web Modeler (see Chapter 10, "Component View," for component mapping).

Client Page

A client page is an HTML−formatted page that is displayed on the client machine by a web browser. A client
page may have some embedded logic with JavaScript or VBScript, but typically will carry out only user
interface logic. In most situations, business logic should, whenever possible, be carried out on the server.

In Rose, a client page is modeled with the following symbol:

Chapter 6: Classes and Packages

225

Server Page

A server page is a page that is executed on the server and typically carries out business, rather than user
interface, functionality. The server page can communicate with the resources available on the server, such as
the database, other server pages, and business objects. The separation between client and server pages helps
the team to separate the business logic from the user interface.

In Rose, a server page is modeled with the following symbol:

Form

A form is a simple HTML page that doesn't do business processing. It exists only to display information to the
end user and to allow the end user to enter some information in simple fields. Once the user enters the
information, the form passes control to a server page, which carries out any business logic in response to the
information on the form.

On a Class diagram, a form looks like this:

Application

One of the challenges in web programming is the inability to keep track of the client's state. In other words,
once a client has made a request to the server and the server has processed the request, the server does not
keep track of where the client is or what it is doing. If the client needs something else, it needs to establish a
new connection to the server and send a new request.

When using Active Server Pages (ASP), an application object helps with this problem. It allows the server to
keep track of some information across all of the clients that are currently using the system. All clients share

Chapter 6: Classes and Packages

226

the same application object.

In Rose, an application object is modeled as a class with a Web Application stereotype:

Applet

An applet is a Java construct. It is a (typically small) compiled program that is downloaded to the client and
runs on the client machine. Applets are frequently used to add some functionality to the user interface that is
not generally available. Although ActiveX controls serve the same purpose, they are not currently supported
by all browsers.

Applets are shown on a Class diagram with the following symbol:

Session

Session objects exist for largely the same reason as application objects. The difference is that while all clients
share the same application object, a session object is unique to a particular client. It allows the server to keep
track of what the client is doing and what it has requested in the past—in other words, the state of the client.

A session object is modeled as a class with a Web Session stereotype:

COM Object

The COM object stereotype is used to model ActiveX components. Although not all browsers currently
support ActiveX, there are a number of ActiveX controls in use today (and more are being created all the
time!). As long as you know that your clients are running Microsoft's Internet Explorer or another browser
that supports ActiveX, you can use these controls to enhance the user interface. Like applets, ActiveX controls
run on the client machine.

COM objects appear on the Class diagram with the following symbol:

Chapter 6: Classes and Packages

227

Other Language Stereotypes

In addition to the stereotypes discussed above, Rose supports different stereotypes for Visual Basic, Java,
XML, CORBA, COM, and other types of classes. Table 6.2 lists the stereotypes for the different languages
available in Rose.

Table 6.2: Language−Specific Stereotypes in Rose

Language Stereotypes

Visual Basic Add−InDesigner

ADO Class

Class Module

Collection

Custom Webitem

Data Environment

Data Report

DHTML Page

Enum

Form

MDI Form

Module

MTS Class

Property Page

Template Webitem

Type

User Control

Chapter 6: Classes and Packages

228

User Document

User Connection

Web Class

Java EJB Entity

EJB Home Interface

EJBPrimaryKey

EJBRemoteInterface

EJBSession

Generic Servlet

HTTP Servlet

CORBA Constant

Enumeration

Exception

Struct

Typedef

Union

Value

Custom Value

COM Alias

Coclass

Enum

Module

Struct

Union

Oracle 8 Nested Table

Object Table

Object Type

Chapter 6: Classes and Packages

229

Object View

Relational Table

Relational View

VARRAY

XML DTD Element

DTD Entity

DTD Sequence Group

DTD Notation

Class Specifications

Most of the options that you can set for a class are available on the class specification window, as shown in
Figure 6.10. For example, this window allows you to set the class stereotype, visibility, and persistence. In the
following sections, we'll talk about each of the options available on the tabs of this window.

Figure 6.10: Class specification window

If you are examining the specifications for a Java, XML, or CORBA class, the specification window that
appears is slightly different, as shown below in Figure 6.11. All of the options on this window are also
available through the standard specification window.

Chapter 6: Classes and Packages

230

Figure 6.11: Java specification window

To open the class specifications:

1.
Right−click the class on a Class diagram.

2.
Select Open Specification from the shortcut menu.

OR

1.
Right−click the class in the browser.

2.
Select Open Specification from the shortcut menu.

OR

1.
Select the class on a Class diagram.

2.
Select Browse → Specification, or press Ctrl+B.

Naming a Class

Each class in your Rose model should be given a unique name. Most organizations have a naming convention
to follow when naming a class. In general, however, classes are named using a singular noun. In our airline
reservation system, for example, we may have a class called Flight and another called Airplane. (We would
not call them flights and airplanes.)

Chapter 6: Classes and Packages

231

Class names typically do not include spaces. This is for practical reasons as well as readability—many
programming languages do not support spaces in class names. Try to keep your class names relatively short.
While ListOfEmployeesThatAreOnProbation is a very good description of what that class does, it can make
the code rather unreadable. EmployeeList might be a better class name in this case.

Whether to use uppercase or lowercase letters really depends on your organization. If we have a class that is a
list of employees, it could be called employeelist, Employeelist, EmployeeList, or EMPLOYEELIST. Again,
each company typically has a naming convention. Just be sure that whichever approach is decided upon is
used for all classes.

To name a class:

1.
Select the class in the browser or on the Class diagram.

2.
Type the class name.

OR

1.
Open the class specification window.

2.
In the Name field, enter the class name.

To add documentation to a class:

1.
Select the class in the browser.

2.
In the documentation window, type the class documentation.

OR

1.
Open the class specification window.

2.
In the specification window, type the information in the Documentation area.

Setting Class Visibility

The Visibility option determines whether or not a class can be seen outside of its package. It is controlled
through the Export Control field in the specification window. There are three visibility options for a class:

Public Suggests that the class can be seen by all of the other classes in the system.

Protected or Private Suggests that the class can be seen in nested classes, friends, or within the same class.

Chapter 6: Classes and Packages

232

Package or Implementation Suggests that the class can be seen only by other classes in the same package.

To set class visibility:

1.
Right−click the class in the browser or on a Class diagram.

2.
Select Open Specification from the shortcut menu.

3.
Set the export control to Public, Protected, Private, or Implementation.

If a class has protected, private, or package visibility, it cannot be seen by classes in other packages. An
access violation occurs in one of two situations:

•
When there is a relationship between two classes in different packages, but there is no dependency
relationship between the packages themselves

•
When there is a relationship between classes in different packages, and the supplier class has
implementation visibility

In Rose, open a Class diagram and select Report → Show Access Violations to check for one of these two
problems.

Setting Class Multiplicity

The Multiplicity field gives you a place to set the number of instances that you expect to have of a class. In
the employee tracking system, we can probably expect to have many instances of the Employee class—one
for John Doe, one for Fred Smith, and so on. The multiplicity for the Employee class, then, would be n.
Control classes, however, frequently have a multiplicity of 1. As you're running the application, you probably
need only one instance of a security manager.

In Rose, the following multiplicity options are available in the drop−down list box:

Multiplicity Meaning

n (default) Many

0..0 Zero

0..1 Zero or one

0..n Zero or more

1..1 Exactly one

1..n One or more
Or you can enter your own multiplicity, using one of the following formats:

Format Meaning

<number> Exactly <number>

Chapter 6: Classes and Packages

233

<number 1>..<number 2> Between <number 1> and <number 2>

<number>..n <number> or more

<number 1>,<number 2> <number 1> or <number 2>

<number 1> , <number 2> .. <number 3> Exactly <number 1> or between <number 2> and
<number 3>

<number 1> .. <number 2> , <number 3> .. <number
4>

Between <number 1> and <number 2> or between
<number 3> and <number 4>

To set class multiplicity:

1.
Open the class specification window.

2.
Select the Detail tab.

3.
From the Multiplicity drop−down list box, select the multiplicity. Or type in a multiplicity option that
is not available in the drop−down list box.

Setting Storage Requirements for a Class

As you are building your model, you may want to note the amount of relative or absolute memory you expect
each object of the class to require. The Space field in the class specification window is used for this purpose.

You cannot use the Space field for class utilities, instantiated class utilities, or parameterized class utilities.

To set class space:

1.
Open the class specification window.

2.
Select the Detail tab.

3.
Enter the storage requirements for the class in the Space field.

Setting Class Persistence

In Rose, you can generate DDL (data definition language) from your model. The DDL defines the structure of
your database.

When you generate DDL, Rose will look for classes that have been set to Persistent. The Persistence field in
the class specification window is used to specify whether a class is Persistent or Transient:

Persistent Suggests that the class will live beyond the execution of the application. In other words, the
information in objects of the class will be saved to a database or some other form of persistent storage.

Transient Suggests that information in objects of the class will not be saved to persistent storage.

Chapter 6: Classes and Packages

234

You cannot use the Persistence field for class utilities, instantiated class utilities, or parameterized class
utilities.

To set the persistence of a class:

1.
Open the class specification window.

2.
Select the Detail tab.

3.
Select Persistent or Transient in the Persistence area.

Setting Class Concurrency

Concurrency is used to describe how the class behaves in the presence of multiple threads of control. There
are four concurrency options:

Sequential This is the default setting, and suggests that the class will behave normally (i.e., the operations
will perform as expected) when there is only one thread of control, but the behavior of the class is not
guaranteed in the presence of multiple threads of control.

Guarded Suggests that the class will behave as expected when there are multiple threads of control, but the
classes in the different threads will need to collaborate with each other to ensure that they don't interfere with
each other.

Active Suggests that the class will have its own thread of control.

Synchronous Suggests that the class will behave as expected, with multiple threads of control. There won't
be any collaboration required with other classes, because the class will deal with the mutual exclusion on its
own.

To set the concurrency of a class:

1.
Open the class specification window.

2.
Select the Detail tab.

3.
Select a concurrency radio button in the Concurrency area.

Creating an Abstract Class

An abstract class is a class that will not be instantiated. In other words, if Class A is abstract, there will never
be any objects of Type A in memory. A class is defined as being abstract if at least one operation of the class
is abstract. Rose does not enforce this rule.

Chapter 6: Classes and Packages

235

Abstract classes are typically used in inheritance structures. They hold some information and behavior that is
common to some other classes. For example, we may have an Animal class, which has some attributes called
height, color, and species. From this class, we inherit three other classes—Cat, Dog, and Bird. Each of these
will inherit height, color, and species from the Animal class, and will have its own unique attributes and
operations as well.

When the application is run, there are no animal objects created—all of the objects are cats, dogs, or birds.
The Animal class is an abstract class that just holds the commonality between cats, dogs, and birds.

In UML, an abstract class is shown on a Class diagram with its name in italics:

To create an abstract class:

1.
Create a class using one of the methods described above.

2.
Open the class specification window.

3.
Select the Detail tab.

4.
Check the Abstract check box.

Viewing Class Attributes

In the next chapter, we'll talk in detail about adding, deleting, and working with attributes for a class. Part of
the class specification window allows you to see the attributes that have already been created for a class. For
additional information about attributes and operations, please refer to Chapter 7, "Attributes and Operations."

To view the class attributes:

1.
Open the class specification window.

2.
Select the Attributes tab. The attributes for the class, including the attribute visibility, stereotype,
name, data type, and default value, will be listed on this tab.

Viewing Class Operations

In the next chapter, we'll discuss the details of adding, deleting, and maintaining the operations for a class.
Here, in the class specification window, you can view the operations for a class. For additional information
about operations, please refer to the next chapter.

To view the class operations:

1.

Chapter 6: Classes and Packages

236

Open the class specification window.

2.
Select the Operations tab. The operations for the class, including the operation visibility, stereotype,
signature, and return type, will be listed on this tab.

Viewing Class Relationships

In Chapter 8, we will discuss in detail the different types of relationships you can add to classes. We'll talk
about adding and deleting relationships and setting the detailed information about each relationship. In the
class specification window, you can view all of the relationships that have been added to a class. For
additional information about relationships between classes, please refer to Chapter 8.

To view the class relationships:

1.
Open the class specification window.

2.
Select the Relations tab. All of the relationships in which the class participates will be listed on this
tab.

Using Nested Classes

In Rose, you can nest one class inside another. You can also nest additional classes inside the nested class, to
as many levels of depth as necessary.

To create a nested class:

1.
Open the class specification window for the parent class.

2.
Select the Nested tab.

3.
Right−click anywhere inside the white space on the Nested tab.

4.
Select Insert from the shortcut menu.

5.
Type the name of the nested class.

OR

1.
Create and name the parent class.

2.

Chapter 6: Classes and Packages

237

Create and name a class for the nested class.

3.
In the browser, drag and drop the nested class onto the parent class.

To display a nested class on a Class diagram:

1.
Open a Class diagram.

2.
Select Query → Add Classes.

3.
Move the nested class from the Classes list box to the Selected Classes list box. The nested class will
display with the format ParentClass::NestedClass.

4.
Click OK. The nested class will appear on the diagram, with the parent class name in parentheses.

To delete a nested class from the model:

1.
Open the class specification window for the parent class.

2.
Select the Nested tab.

3.
Right−click on the name of the nested class you wish to delete.

4.
Select Delete from the shortcut menu. The nested class will be removed from all Class diagrams.

OR

1.
Right−click the nested class in the browser.

2.
Select Delete.

Viewing the Interaction Diagrams That Contain a Class

When you need to change a class, it can be helpful to know exactly where in the system the class is being
used. The two types of Interaction diagrams—Sequence diagrams and Collaboration diagrams—will let you

Chapter 6: Classes and Packages

238

know exactly where and how each class is being used. You can use the Report menu to see which Sequence
and Collaboration diagrams contain objects of a particular class.

To view all Sequence and Collaboration diagrams that contain a certain class:

1.
Select the class on a Class diagram.

2.
Select Report → Show Instances.

3.
Rose will display a list of all Sequence and Collaboration diagrams that contain objects of that class,
as shown in Figure 6.12. To open a diagram, double−click it in the list, or click the Browse button.

Figure 6.12: Viewing class instances

Setting Java Class Specifications

In Rose, Java classes have two specification windows: the standard specification, as described above, and a
Java specification window. The Java specification window is used to set Java−specific fields, such as whether
to generate a default constructor. Figure 6.13 shows the Java Class Specification window.

Figure 6.13: Java Class Specification window

Using this window, you can set the following:

•

Chapter 6: Classes and Packages

239

Name is equivalent to setting the name on the standard specification window.

•
Visibility controls whether the class is public and can be seen by all classes, or is visible only to
classes in the same package. Possible values are Public or Package. Setting the value to Package is
equivalent to setting the Export Control to Implementation in the standard specification window.

•
Abstract sets the class to be abstract, which implies that the class will never be directly instantiated.
Setting this flag on the Java specification window is equivalent to checking the Abstract check box on
the Detail tab of the standard specification window.

•
Final determines whether subclasses of the class may be created. If the Final flag is set to True,
subclasses may not be created.

•
Generate is a set of four flags that determine whether to generate a finalize method, static initializer,
instance initializer, and/or default constructor when generating code.

•
Interface sets whether this class is an interface. Checking this box is equivalent to setting the class
stereotype to Interface in the standard specification window.

•
Generate Code controls whether Rose will generate code for this class. By default, this option is
selected.

•
Disable Autosync will disable autosync for this class. Autosync is a feature that will automatically
initiate the code−generation process when a Java element is modified. To enable or disable autosync
for the entire model, select Tools → Java → Project Specification and then the Detail tab. At the
bottom of the screen is an option for autosynchronization.

•
Constructor Visibility sets the visibility of the class's constructor to Public, Package, Private, or
Protected.

•
Extends indicates whether the class is a subclass of another. If so, the parent class is listed.

•
Implements indicates whether the class implements the functionality listed in an interface. If so, the
interface is listed.

•
DocComment provides comments for the class. This is equivalent to typing comments in the
Documentation field of the standard specification window.

Chapter 6: Classes and Packages

240

Setting CORBA Class Specifications

As with Java, CORBA classes have their own specification window. You can use this window to set
CORBA−specific information, such as enumeration attribute ordering or constant types and values. The
specification window will vary slightly, depending upon the stereotype of the CORBA class you are working
with. An example of the CORBA specification window is shown in Figure 6.14.

Figure 6.14: CORBA Class Specifications

Using the CORBA specification window, you can set the following information. Note that some of these
options are available only for certain CORBA stereotypes.

•
Name sets the name of the class. This is equivalent to setting the name on the standard specification
window.

•
Stereotype displays the stereotype of the class. To change the stereotype, open the standard
specification window.

•
Implementation Type (Constant, Typedef) sets the data type of the constant or typedef.

•
Constant Value (Constant) sets the value of the constant.

•
Array Dimensions (Typedef) sets the dimensions of the typedef's declarator.

•
Attribute/Role Ordering (Enumeration, Union, Exception, Struct, Value, Custom Value) is used to
set the order of the attributes in the class. When code is generated, the attributes will be generated in
this order.

•
Inherits From (Value, Custom Value) sets the parent class, if the class is inherited.

•

Chapter 6: Classes and Packages

241

Switch Type (Union) is the variable used for the case statements generated for the class.

Working with Packages

A package is used to group together classes that have some commonality. In UML, a package is displayed
with this symbol:

There are a few common approaches when packaging classes, but you can group the classes together however
you'd like. One approach is to group the classes together by stereotype. With this approach, you have one
package with your client page classes, one with your server page classes, one with your applets, and so on.
This can be a helpful approach to take for deployment's sake—all the forms that will go on the client machine
are already packaged together.

Another approach is to group the classes together by functionality. For example, you might have a package
called Security, which holds all of the classes that deal with application security. You might have some other
packages called Employee Maintenance, Reporting, or Error Handling. The advantage of this approach is in
reuse. If you carefully group your classes together, you end up with packages that are fairly independent of
one another. In this example, you can just pick up the Security package and reuse it in other applications.

Finally, you can use a combination of these approaches. Packages can be nested inside each other to further
organize your classes. At a high level, you may group your classes by functionality to create your Security
package. Within this package, you can have some other packages, grouping the security classes by
functionality or stereotype.

Adding Packages

The next step in creating your model is adding some packages. Class packages are created in the Logical view
of the browser.

To add an existing package to a Class diagram:

Drag the package from the browser onto the Class diagram.

To add a new package to a Class diagram:

1.
Select the Package toolbar button.

2.
Click anywhere inside the Class diagram to place the package.

3.

Chapter 6: Classes and Packages

242

Type the package name.

To add a package to the browser:

1.
Right−click Logical View in the browser. To create a package inside an existing package, right−click
the existing package in the browser.

2.
Select New → Package.

3.
Type the name of the new package.

To move an item into a package:

In the browser, drag the item from its existing location to the new package.

Deleting Packages

You can delete a package from a Class diagram or from the entire model. If you delete a package from the
model, the package and all of its contents will be removed.

To remove a package from a Class diagram:

1.
Select the package on the Class diagram.

2.
Press the Delete key.

Note that the package has been removed from the Class diagram, but still exists in the browser and on other
Class diagrams.

To remove a package from the model:

1.
Right−click the package in the browser.

2.
Select Delete from the shortcut menu.

OR

1.
Select the package on a Class diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

Warning

Chapter 6: Classes and Packages

243

When you delete a package from the model, all classes and diagrams within the package will also
be deleted.

Exercise

In this exercise, we'll take the classes we created last time and group them into packages. Then we'll create
some Class diagrams to show the classes in the system and the packages.

Problem Statement

From the Interaction diagrams, Andy could see that the system met the business needs of the company. So he
spoke with Karen, the lead developer.

•
"Here are the Interaction diagrams for adding a new order."

•
"Great! I'll get going on development."

Karen took a look at the classes in the Rose model. She decided to group them together by stereotype. So, she
created packages called Entities, Boundaries, and Control, and moved each class into the appropriate package.
Then, she created a Class diagram in each package: a Main Class diagram to display the packages and an
Enter New Order Class diagram to show all of the classes for that use case.

Creating a Class Diagram

Group the classes that we've identified so far into packages. Create a Class diagram to display the packages,
Class diagrams to display the classes in each package, and a Class diagram to display all of the classes in the
"Enter New Order" use case.

Exercise Steps:

Setup

1.
Select Tools → Options.

2.
Select the Diagram tab.

3.
Be sure the Show Stereotypes check box is selected.

4.
Be sure the Show All Attributes and Show All Operations check boxes are selected.

5.
Be sure the Suppress Attributes and Suppress Operations check boxes are not checked.

Create Packages

1.

Chapter 6: Classes and Packages

244

Right−click Logical View in the browser.

2.
Select New → Package.

3.
Name the new package Entities.

4.
Repeat steps 1–3 to create a Boundaries package and a Control package.

At this point, the browser should look like Figure 6.15.

Figure 6.15: Packages for the shopping cart system

Create Main Class Diagram

1.
Double−click the Main Class diagram, directly underneath the Logical View in the browser, to open
the diagram.

2.
Drag the Entities package from the browser to the diagram.

3.
Drag the Boundaries and Control packages from the browser to the diagram.

The Main Class diagram should look like Figure 6.16.

Chapter 6: Classes and Packages

245

Figure 6.16: Main Class diagram for the shopping cart system

Create Class Diagram with All Classes in the "Add Item to Shopping Cart" Use Case

1.
Right−click Logical View in the browser.

2.
Select New → Class Diagram.

3.
Name the new Class diagram Add Item to Shopping Cart.

4.
Double−click the Add Item to Shopping Cart Class diagram in the browser to open it.

5.
Select the Class toolbar button and add the following classes to the diagram: CartMgr, CartInterface,
ProductMgr, Product, ProductCollection, CartCollection, and CartItem.

The Class diagram should look like Figure 6.17.

Figure 6.17: Add Item to Shopping Cart Class Diagram

Add Stereotypes to the Classes

1.
Right−click the CartInterface class in the diagram.

2.

Chapter 6: Classes and Packages

246

Select Open Specification from the shortcut menu.

3.
In the stereotype field, type Boundary.

4.
Click OK.

5.
Right−click the CartMgr class in the diagram.

6.
Select Open Specification from the shortcut menu.

7.
In the stereotype field, type Control.

8.
Click OK.

9.
Repeat steps 1–4 to assign the CartCollection, Product, ProductCollection, and CartItem classes the
entity stereotype.

The Class diagram should look like Figure 6.18.

Figure 6.18: Stereotypes for classes in Add Item to Shopping Cart use case

Group Classes into Packages

1.
In the browser, drag the CartInterface class to the Boundaries package.

2.
Drag the CartMgr and ProductMgr classes to the Control package.

3.

Chapter 6: Classes and Packages

247

Drag the CartCollection, Product, ProductCollection, and CartItem classes to the Entities package.

The classes and packages in the browser are shown in Figure 6.19.

Figure 6.19: Classes and packages in the Add Item to Shopping Cart use case

Add Class Diagrams to Each Package

1.
In the browser, right−click the Boundaries package.

2.
Select New → Class Diagram.

3.
Name the new diagram Main.

4.
Double−click the new diagram to open it.

5.
Drag the CartInterface class from the browser to the diagram.

The Main Class diagram for the Boundaries package should look like Figure 6.20.

Chapter 6: Classes and Packages

248

Figure 6.20: Main Class diagram for Boundaries package

6.
Close the diagram.

7.
Right−click the Entities package in the browser.

8.
Select New → Class Diagram.

9.
Name the new diagram Main.

10.
Double−click the new diagram to open it.

11.
Drag the CartCollection, Product, ProductCollection, and CartItem classes from the browser to the
diagram.

The Main Class diagram for the Entities package should look like Figure 6.21.

Figure 6.21: Main Class diagram for Entities package

12.
Close the diagram.

13.
Right−click the Control package in the browser.

14.

Chapter 6: Classes and Packages

249

Select New → Class Diagram.

15.
Name the new diagram Main.

16.
Double−click the new diagram to open it.

17.
Drag the CartMgr and ProductMgr classes from the browser to the diagram.

18.
Close the diagram.

The Main Class diagram for the Control package should look like Figure 6.22.

Figure 6.22: Main Class diagram for Control package

Summary

In this chapter, we discussed classes, Class diagrams, and packages. By now, we have greatly improved our
view of the system that is being built. By the end of the last chapter, we had created Object Interaction
diagrams such as Collaboration diagrams and Sequence diagrams. These illustrate the interactions required for
the system to perform its functions. In this chapter, we created Class diagrams to show the static behavior in
the system. We also organized the classes into packages in order to better understand the system. Next, we
will look in detail at the attributes and operations of the classes.

Chapter 6: Classes and Packages

250

Chapter 7: Attributes and Operations
In the previous chapter, we looked at classes and packages. Remember that classes are encapsulated attributes
(data) and the operations (behaviors) that act on those attributes. Now we will discuss working with attributes
and operations. We will begin by talking about how to find attributes, add them to the Rose model, and add
details about the attributes. We will then look at finding operations, adding them to the model, and adding
details to the operations. Next, we will look at displaying attributes and operations on Class diagrams. Lastly,
we will discuss how to map operations to messages on Interaction diagrams.

Working with Attributes

An attribute is a piece of information associated with a class. For example, a Company class might have
attributes called Name, Address, and NumberOfEmployees. A Ticket class might have attributes called
FlightNumber, Cost, and PassengerName.

In Rose, you may add one or more attributes to each of the classes in the model. The following sections
describe how to find attributes, add them to the model, delete them from the model, and set the detailed
specifications for each attribute.

Finding Attributes

There are many sources of attributes. To begin, you can take your use case documentation and look for nouns
in your flow of events. Some of the nouns will be objects or classes, some will be actors, and others will be
attributes. For example, your flow of events may read "The user enters the employee's name, address, social
security number, and phone number," letting you know that the Employee class has attributes called Name,
Address, SSN, and Phone. In our airline example, the user is looking for a flight and enters a departure and
destination city as well as a departure date. From this, we know that a Flight class would have attributes called
DepartureCity, DestinationCity, and DepartureDate.

Another good place to look is the requirements document. There may be requirements that outline what
information should be collected by the system. Any piece of information that is collected should be an
attribute in a class.

Finally, you can check the database structure. If your database structure has already been defined, the fields in
the tables will give you a good idea of what your attributes are. Frequently, there's a one−to−one mapping
between database tables and entity classes. Going back to our previous example, a Flight table may have
fields called DepartureCity, DestinationCity, and DepartureDate. The corresponding class, called Flight, will
have attributes called DepartureCity, DestinationCity, and DepartureDate. It's important to note that there isn't
always a one−to−one mapping between the database tables and the classes. There are different considerations
when designing your database and designing your classes. Relational databases, for example, don't directly
support inheritance.

However, when you identify attributes, be sure that each one can be traced back to a requirement. This can
help solve the classic problem of an application capturing a great deal of information that nobody uses. Each
requirement should be traced back to the flow of events of a use case, to a particular requirement, or to an
existing database table. If you cannot trace the requirement, you cannot be sure that it is needed by the
customer. This can be a bit of a deviation from some older methodologies—rather than create the database
structure first and then wrap the system around it, you're building the system and the database at the same
time to conform to the same requirements.

251

As you identify attributes, carefully assign them to the appropriate classes. An attribute should be a piece of
information related to the class. For example, an Employee class might have name and address information,
but shouldn't include information about the products the employee's company manufactures. A Product class
would be a better place to store information about products.

Be cautious of classes with too many attributes. If you find that a particular class has a large number of
attributes, it might be an indication that the class should be split into two smaller classes. If you have a class
with more than about 10 or 15 attributes, be sure to take a close look at it. The class may be perfectly
legitimate; just be sure that all of the attributes are needed and truly belong to that class. Similarly, be cautious
of classes with too few attributes. Again, it may be perfectly legitimate. Control classes, for example, tend to
have very few attributes. However, it may also be a sign that two or more classes should be combined. If you
have a class with only one or two attributes, it may be worth a closer look.

Sometimes you may run into a piece of information and wonder whether it's an attribute or a class. For
example, let's look at an attribute like Company Name. The question you face might be: Is the company name
an attribute of a Person class, or should Company be its own class? The answer really depends on the
application you are writing. If you need to keep information about the company and there is some behavior
associated with a company, it may be its own class. For example, you may be building a system to keep track
of your customers. In this case, you'll want to keep some information about the companies you sell products
or services to. You may want to know how many employees the company has, the company's name and
address, the name of your contact with the company, and so on.

On the other hand, you may not need to know specific information about the company. You may be writing an
application that will generate letters to your contacts in other organizations. When generating the letters, you
will need to know a company name. However, you don't need to know any more information about the
company. In this case, you could consider the company name to be an attribute of a Contact class.

Another thing to consider is whether the piece of information in question has behavior. If the Company has
some behavior in your application, it is better modeled as a class. If the company has no behavior, it may be
better modeled as an attribute.

Once you've identified the attributes, the next step is to add them to your Rose model. In the following
sections, we'll discuss how to add attributes and add details to the attributes, such as the data type and default
value.

Adding Attributes

As you identify attributes, you can add them to the appropriate class in your Rose model. There are three main
pieces of information you can supply for each attribute: the attribute name, the data type, and the initial value.
Before you can generate code for your model, you must supply a name and data type for each attribute. Initial
values are optional.

There are three ways to add an attribute. You may type the attribute directly onto a Class diagram, add the
attribute using the browser, or add the attribute using the class specification window.

Once you've added an attribute, you can add documentation for it. Typically, attribute documentation would
include a short description or definition of the attribute. Any attribute documentation will be included as a
comment in the code generated from the model. By documenting the attributes as you go along, you are
beginning to document the code as well.

To add an attribute to a class:

1.

Chapter 7: Attributes and Operations

252

Right−click the class on a Class diagram.

2.
Select New → Attribute.

3.
Type the attribute name, using the format Name : Data Type = Initial Value. For example:

Address : String

IDNumber : Integer = 0

The data type is required in order to generate code, but the initial value is optional.

4.
To add more attributes, press Enter and type the new attributes directly on the Class diagram.

OR

1.
Right−click the class in the browser.

2.
Select New → Attribute.

3.
A new attribute, called "name" by default, will appear under the class in the browser. Type the name
of the new attribute. Attribute data types and default values cannot be assigned in the browser; you
can enter them on the Class diagram, as we'll discuss shortly.

OR

1.
Open the class specification window for the attribute's class.

2.
Select the Attributes tab. If the class already has some attributes, they will be listed here.

3.
Right−click anywhere inside the Attributes area, as in Figure 7.1.

Chapter 7: Attributes and Operations

253

Figure 7.1: Adding a new attribute in the class specification window

4.
Select Insert from the shortcut menu.

5.
Type the name of the new attribute.

6.
Enter the visibility, stereotype, data type, and initial value in the appropriate columns. We'll discuss
each of these in detail in the following sections.

To add documentation to an attribute:

1.
Select the attribute in the browser.

2.
Type the attribute documentation in the documentation window.

OR

1.
Select the attribute on a Class diagram.

2.
Type the attribute documentation in the documentation window.

Chapter 7: Attributes and Operations

254

OR

1.
Right−click the attribute in the browser.

2.
Select Open Specification from the shortcut menu.

3.
Enter the attribute documentation in the Documentation area of the class attribute specification
window.

OR

1.
Open the class specification window for the attribute's class.

2.
Select the Attributes tab.

3.
Select the attribute.

4.
Type the attribute documentation in the documentation window.

Deleting Attributes

At times, you may find that you need to delete an attribute you have created. This is most common when the
system requirements change, removing the need for a particular attribute. In Rose, the quickest way to delete
an attribute is typically through the browser. However, you can also use a Class diagram to delete an attribute.
When an attribute is deleted from one Class diagram, Rose will automatically remove it from the model,
including any other Class diagrams on which it appeared.

To delete an attribute from a class:

1.
Right−click the attribute in the browser.

2.
Select Delete from the shortcut menu.

OR

1.
Select the attribute on a Class diagram.

2.
Use the Backspace key to erase the attribute name, data type, and initial value from the diagram.

3.

Chapter 7: Attributes and Operations

255

Single−click anywhere on the diagram.

4.
Rose will confirm the deletion before the attribute is removed.

OR

1.
Open the class specification window for the attribute's class.

2.
Select the Attributes tab.

3.
Right−click the attribute you want to delete.

4.
Select Delete from the shortcut menu.

5.
Rose will confirm the deletion before the attribute is removed.

Setting Attribute Specifications

As with other Rose model elements, there are a number of detailed specifications you can add to an attribute.
These include, among other things, the attribute data type, initial value, stereotype, and visibility. In the next
several sections, we'll take a look at each specification.

All of the specifications are viewed or changed on the attribute specification window, as shown in Figure 7.2.

Chapter 7: Attributes and Operations

256

Figure 7.2: Attribute specification window

To open the attribute specifications:

1.
Right−click the attribute in the browser.

2.
Select Open Specification from the shortcut menu.

OR

1.
Open the class specification window for the attribute's class.

2.
Select the Attributes tab.

3.
Double−click the appropriate attribute.

Note In the following sections, if you are working with a Java, COM, or CORBA class, the specification
window will be different. To open the standard specifications, right−click and select Open Standard
Specification from the shortcut menu.

Setting the Attribute Data Type

One of the main pieces of information you specify about an attribute is its data type. The data type is the
language−specific type, such as string, integer, long, or Boolean. Before you can generate code, you must
enter a data type for each attribute.

Chapter 7: Attributes and Operations

257

When you are entering the data type, you can either use built−in data types (string, integer, long, etc.) for your
programming language or the names of classes that you have defined in your Rose model. To see the classes
you have defined in the drop−down list box, select the Show Classes check box.

To set the attribute data type:

1.
Right−click the attribute in the browser.

2.
Select Open Specification from the shortcut menu. Rose will open the class attribute specification
window.

3.
Select a data type from the Type drop−down list box or enter a new data type.

OR

1.
Select the attribute on a Class diagram.

2.
Type a colon and the data type after the attribute name. For example, if you have an attribute called
Address that you want to set as a string, type Address : String.

Setting the Attribute Stereotype

Like actors, use cases, and classes, attributes can be stereotyped. An attribute stereotype is a way to classify
the attribute. For example, you may have some attributes that map to fields in your database, and other
attributes that do not. You can define two stereotypes, one for each of these types of attributes.

In Rose, you are not required to assign stereotypes to attributes. You can generate code without using attribute
stereotypes. Stereotypes can, however, improve the readability and comprehensibility of your model.

To set the attribute stereotype:

1.
Right−click the attribute in the browser.

2.
Select Open Specification from the shortcut menu. Rose will open the Class Attribute Specification
window.

3.
Select a stereotype from the drop−down list box or enter a new stereotype.

OR

1.
Select the attribute in the browser.

2.

Chapter 7: Attributes and Operations

258

Single−click the attribute again to edit the name. Before the name, the double angle bracket characters
(<< >>) will appear:

3.
Type the stereotype between the double angle brackets:

Setting the Attribute Initial Value

Many attributes will have some sort of a default value associated with them. For example, you may have a
class called Order, which holds information and behavior about purchase orders for your company. The Order
class may have an attribute called TaxRate for the sales tax rate of the purchase. In your city, for example the
tax rate may be 7.5%, so most of your orders would be at the 7.5% rate. You can assign an initial value of
.075 to the TaxRate attribute.

Like attribute stereotypes, initial values aren't required in order to generate code. However, if an initial value
is present, Rose will generate the code necessary to initialize the attribute.

To set the attribute initial value:

1.
Right−click the attribute in the browser.

2.
Select Open Specification from the shortcut menu. The class attribute specification window will
appear.

3.
In the Initial Value field, enter the attribute's default value.

OR

1.
Select the attribute on a Class diagram.

2.
After the attribute data type, enter an equals sign (=), followed by the default value. For example, if
you have an integer attribute called EmployeeID and you wish to set its default value to 0, your Class

Chapter 7: Attributes and Operations

259

diagram would look like this:

Setting the Attribute Visibility

One of the central concepts of object−oriented programming is that of encapsulation. Each class, by having
attributes and operations, encapsulates a little bit of information and a little bit of behavior. One of the benefits
of this approach is the ability to have small, self−contained pieces of code. The Employee class, for example,
has all of the information and behavior related to an employee.

You can view a class like this:

The private attributes are contained inside the class, hidden away from other classes. Because the attributes
are encapsulated within a class, you will need to define which classes have access to view and change the
attribute. This is known as the attribute visibility.

There are four visibility options for an attribute. Let's look at each in the context of an example: We have an
Employee class with an attribute called Address, and a Company class.

Public Suggests that the attribute is visible to all other classes. Any other class can view or modify the
value of the attribute. In this case, the Company class could view or modify the value of the Address attribute
of the Employee class. The UML notation for a public attribute is a plus sign (+).

Private Means that the attribute is not visible to any other class. The Employee class would know what the
value of the Address attribute is, and would be able to change the value, but the Company class wouldn't be
able to view or edit the Address attribute. If the Company class needed to view or edit Address, it would have
to ask the Employee class to view or edit the attribute. This is typically done through public operations. We'll
talk more about this in the operations part of this chapter. The UML notation for a private attribute is a minus
sign (−).

Protected Suggests that the class and any of its descendants have access to the attribute. In our example,
assume we have two different types of employees, hourly employees and salaried employees. The classes

Chapter 7: Attributes and Operations

260

HourlyEmp and SalariedEmp are inherited from the Employee class. If the Address attribute has protected
visibility, it can be viewed or changed by the Employee class, the HourlyEmp class, or the SalariedEmp class,
but not by the Company class. The UML notation for a protected attribute is a pound sign (#).

Package or implementation Indicates that the attribute is public, but only to classes in the same package.
In our example, assume the Address attribute of the Employee class has package visibility. Address could be
modified by Company only if Company and Employee are in the same package. With implementation
visibility, no icon appears next to the attribute.

In general, private or protected visibility is recommended for attributes. Using these options helps you
maintain better control of your code and the attribute. By using private or protected attributes, you won't have
a situation where an attribute is being modified by all sorts of classes throughout the system. Instead, the logic
for modifying an attribute is encapsulated in a single class, along with the attribute. The visibility options you
select will affect the generated code. For example, Figure 7.3 is the Java code generated for the class in the
previous example.

Chapter 7: Attributes and Operations

261

Figure 7.3: Attribute visibility in generated code

Rose supports two sets of visibility notations. The first is UML notation (+, −, #) for public, private, and
protected attributes, respectively. The second notation includes four Rose icons, as shown in Table 7.1.

Table 7.1: Rose Visibility Icons

Icon Description

Public

Private

Protected

Package or implementation

On a Class diagram, you can use either of these notations. See the upcoming numbered steps for a description
of how to switch between these two notations. Figure 7.4 shows an example of a class using UML visibility
notation. Figure 7.5 shows the same class using Rose visibility notation. Rose and UML visibility notations
are summarized in Table 7.2.

Chapter 7: Attributes and Operations

262

Figure 7.4: UML visibility notation

Figure 7.5: Rose visibility notation

Table 7.2: Rose and UML Visibility Notations

Rose Notation If you want to… Use… UML Notation

Make an attribute visible to all
classes

Public visibility +

Make an attribute visible to only one
class

Private visibility −

Make an attribute visible to a class
and its descendants

Protected visibility #

Make an attribute visible to all
classes in the same pacakage

Package or implementation visibility<no icon>

To set the attribute visibility:

1.
Right−click the attribute in the browser.

2.
Select Open Specification from the shortcut menu. The class attribute specification window will
appear.

3.
In the Export Control field, select the attribute's visibility: Public, Protected, Private, or
Implementation. By default, all attributes have private visibility.

OR

1.
Select the attribute on a Class diagram.

2.
If you are using UML notation for visibility, single−click the icon (+, −, or #) next to the attribute.
Select a visibility option from the list of Rose visibility icons that appears.

3.

Chapter 7: Attributes and Operations

263

If you are using Rose notation for visibility, single−click the Rose visibility icon to the left of the
attribute name. Select a visibility option from the list of icons that appears.

To change the visibility notation:

1.
Select Tools → Options.

2.
Select the Notation tab.

3.
Check the Visibility as Icons check box to use Rose notation, or uncheck it to use UML notation.

Note Changing this option changes only the diagrams. The browser will always use the icon notation.

Setting the Attribute Containment

The attribute's containment describes how the attribute is stored within the class. There are three containment
options:

By value Suggests that the attribute is contained within the class. For example, if you have an attribute of
type "string," the string is contained within the class definition.

By reference Suggests that the attribute is located outside the class, but the class has a pointer to it. For
example, you may have an attribute of type "employee" within a Timecard class. The employee object itself is
located outside of the timecard. The attribute inside the timecard is simply a pointer to this external object.

Unspecified Suggests that the containment has not yet been specified. You should specify either By Value
or By Reference prior to generating code. When generating code, Rose will assume By Value if the
containment is unspecified.

To set the attribute containment:

1.
Right−click the attribute in the browser.

2.
Select Open Specification from the shortcut menu. The class attribute specification window will
appear.

3.

Chapter 7: Attributes and Operations

264

Select the Detail tab.

4.
Select the attribute's containment: By Value, By Reference, or Unspecified. By default, all attributes
are set to an unspecified containment.

Making an Attribute Static

When an attribute is added to a class, each instance of the class will receive its own copy of the attribute. For
example, let's look at our Employee class. At runtime, we may instantiate three employees: John Doe, Bill
Jones, and Jane Smith. Each of these three objects has its own copy of the attribute Salary.

A static attribute is one that is shared by all instances of a class. Returning to the previous example, if Salary
was a static attribute, it would be shared by John, Bill, and Jane. When an attribute is marked as static, it will
be underlined on the Class diagram. In this example, the Salary attribute is static:

To make an attribute static:

1.
Right−click the attribute in the browser.

2.
Select Open Specification from the shortcut menu. The class attribute specification window will
appear.

3.
Select the Detail tab.

4.
Select the Static check box to mark the attribute as static. Rose will underline the attribute name on
the Class diagram.

Specifying a Derived Attribute

A derived attribute is one that is created from one or more other attributes. For example, a Rectangle class

Chapter 7: Attributes and Operations

265

might have attributes called Width and Height. It might also have an attribute called Area, which is calculated
from the width and height. Because Area is derived from the Width and Height, two other attributes, it is
considered a derived attribute.

In UML, derived attributes are marked with a slash (/) before the attribute name. In the above example, the
Area attribute would be written as /Area.

To specify a derived attribute:

1.
Right−click the attribute in the browser.

2.
Select Open Specification from the shortcut menu. The class attribute specification window will
appear.

3.
Select the Detail tab.

4.
Select the Derived check box to mark the attribute as derived. Rose will place a slash (/) before the
attribute name on the Class diagram.

Working with Operations

An operation is a behavior associated with a class. An operation has three parts: the operation name, the
operation parameters, and the operation return type. The parameters are arguments the operation receives as
input. The return type is the output of the operation.

On a Class diagram, you can view either the operation name or the operation name followed by the
parameters and return type. To reduce clutter on Class diagrams, it can be helpful to have some Class
diagrams with operation names only and others with the full operation signature, including parameters and the
return type.

In UML, operations are displayed using the following notation:

Operation Name(argument1 : argument1 data type, argument2 : argument2 data type, …) : return type

Operations define the responsibilities of your classes. As you identify operations and examine your classes,
keep a few things in mind:

•

Chapter 7: Attributes and Operations

266

Be suspicious of any classes with only one or two operations. It may be perfectly legitimate, but it
may also indicate that the class should be combined with another.

•
Be very suspicious of classes with no operations. A class typically encapsulates both behavior and
information. A class with no behavior might be better modeled as an attribute or two.

•
Be wary of classes with too many operations. A class should have a manageable set of
responsibilities. If you have a class with too many operations, it may be difficult to maintain. Dividing
it instead into two smaller classes may ease maintenance.

In this section, we'll talk about finding operations, adding them to your Rose model, and adding the operation
details. We'll also take a look at how operations can be displayed on the Class diagrams.

Finding Operations

Finding operations is fairly straightforward. As you created your Sequence and Collaboration diagrams, you
did most of the work necessary to find operations.

There are four different types of operations to consider: implementer, manager, access, and helper.

Implementor Operations

Implementor operations implement some business functionality. They are found by examining Interaction
diagrams. The Interaction diagrams focus on business functionality, and each message on the diagram will
most likely be mapped to an implementor operation.

Each implementor operation should be able to be traced back to a requirement. This is achieved through the
various pieces of the model. Each operation comes from a message on an Interaction diagram, which comes
from the details in the flow of events, which comes from the use case, which comes from the requirements.
This ability to trace can help you ensure that each requirement is implemented in the code and that each piece
of code can be traced back to a requirement.

Manager Operations

Manager operations manage the creation and destruction of objects. For example, the constructor and
destructor operations of a class fall into this category.

In Rose, you don't need to manually create constructor and destructor operations for each of your classes.
When you generate code, Rose gives you the option of automatically generating constructors and destructors.

Access Operations

Attributes are typically private or protected. However, other classes may need to view or change the attributes
of a particular class. This can be accomplished through access operations.

For example, if we have an attribute called Salary in an Employee class, we wouldn't want all of the other
classes to be able to go in and change the Salary. Instead, we add two access operations to the Employee class:
GetSalary and SetSalary. The GetSalary operation, which is public, can be called by other classes. It will go in
and get the value of the Salary attribute, and return this value to the calling class. The SetSalary operation,

Chapter 7: Attributes and Operations

267

which is also public, will help another class set the value of the Salary attribute. SetSalary can contain any
validation rules for the salary that must be checked before the value in Salary is changed.

This approach keeps the attributes safely encapsulated inside a class and protected from other classes, but still
allows controlled access to the attributes. The industry standard has been to create a Get and Set operation for
each attribute in a class.

As with manager operations, you don't have to manually enter each access operation. When you generate
code, Rose can automatically create Get and Set operations for each of the attributes in the class.

Helper Operations

Helper operations are those operations that one class needs to carry out its responsibilities but that other
classes don't need to know about. These are the private and protected operations of a class.

Like implementor operations, helper operations are found by examining the Sequence and Collaboration
diagrams. Frequently, helper operations appear as reflexive messages on a Sequence or Collaboration
diagram.

To identify operations, you can perform the following series of steps:

1.
Examine Sequence and Collaboration diagrams. Most messages will become implementor operations.
Reflexive messages may become helper operations.

2.
Consider manager operations. You may want to add constructors and destructors. Again, this isn't
required; Rose can generate these for you when code is generated.

3.
Consider access operations. Create a Get and Set operation for any attribute that will need to be
viewed or changed by another class. As with manager operations, these don't need to be manually
added; Rose can generate them for you when code is generated.

Adding Operations

Like attributes, operations can be added to your Rose model through a Class diagram or through the browser.
You can also add operations to a class through the class specification window.

Once you've added an operation, you can add documentation to it. Any documentation you add to an
operation will be included as a comment in the generated code. Documentation for operations typically
includes information like the purpose of the operation, a short description of the operation's parameters, and
the operation return type.

To add an operation to a class:

1.
Right−click the class on a Class diagram.

2.
Select New Operation.

3.

Chapter 7: Attributes and Operations

268

Type the operation name, using the following format:

Name(Argument1 : Argument1 data type): Operation Return Type

For example:

Add(X : Integer, Y: Integer) : Integer
Print(EmployeeID : Long) : Boolean
Delete() : Long

4.
To add more operations, press Enter and type the new operations directly on the Class diagram.

OR

1.
Right−click the class in the browser.

2.
Select New → Operation.

3.
A new operation, called "opname" by default, will appear under the class in the browser. Type the
name of the new operation. Rose does not allow you to enter the operation arguments or return type
value in the browser; as with attributes, you can enter these details on the Class diagram.

OR

1.
Open the class specification window for the operation's class.

2.
Select the Operations tab. If the class already has some operations, they will be listed here.

3.
Right−click anywhere inside the operations area, as shown in Figure 7.6.

Chapter 7: Attributes and Operations

269

Figure 7.6: Adding a new operation in the class specification window

4.
Select Insert from the shortcut menu.

5.
Type the name of the new operation in the Operation column.

6.
Enter the visibility, stereotype, and return type in the appropriate columns.

To add documentation to an operation:

1.
Select the operation in the browser.

2.
Type the operation documentation in the documentation window.

OR

1.
Select the operation on a Class diagram.

2.
Type the operation documentation in the documentation window.

OR

1.

Chapter 7: Attributes and Operations

270

Right−click the operation in the browser.

2.
Select Open Specification from the shortcut menu.

3.
Enter the operation documentation in the DocComment area of the operation specification window.

OR

1.
Open the class specification window for the operation's class.

2.
Select the Operations tab.

3.
Select the operation.

4.
Type the operation documentation in the documentation window.

Deleting Operations

If you need to delete an operation, you can do so through a Class diagram or the browser. When an operation
is deleted from one diagram, it is automatically removed from the entire model, including any other diagrams
on which it appeared.

When deleting an operation, be sure to keep the model consistent. You may have used the operation in a
Sequence or Collaboration diagram. If you delete the operation, it will be automatically converted into a
message on all Sequence and Collaboration diagrams. Be sure to update the Sequence or Collaboration
diagram appropriately.

To determine which diagrams reference an operation:

1.
Open the class specification window (or standard specification window in 98i) for the operation's
class.

2.
Select Browse → Show Usage at the bottom of the dialog box.

To delete an operation from a class:

1.
Right−click the operation in the browser.

2.
Select Delete from the shortcut menu.

OR

1.

Chapter 7: Attributes and Operations

271

Select the operation on a Class diagram.

2.
Use the Backspace key to erase the operation name and signature from the diagram.

3.
Single−click anywhere on the diagram.

4.
Rose will confirm the deletion before the operation is removed.

OR

1.
Open the class specification window for the operation's class.

2.
Select the Operations tab.

3.
Right−click the operation you want to delete.

4.
Select Delete from the shortcut menu.

5.
Rose will confirm the deletion before the operation is removed.

Setting Operation Specifications

In the operation specifications, you can set details such as the operation parameters, return type, and visibility.
In the next several sections, we'll take a look at each specification.

All of the specifications are viewed or changed on the operation specification window, as shown in Figure 7.7.

Chapter 7: Attributes and Operations

272

Figure 7.7: Operation specification window

To open the operation specifications:

1.
Right−click the operation in the browser.

2.
Select Open Specification from the shortcut menu.

OR

1.
Open the class specification window for the operation's class.

2.
Select the Operations tab.

3.
Double−click the appropriate operation.

Note In the following sections, if you are working with a Java, COM, or CORBA class, the specification
window will be different. To open the standard specifications, right−click and then select Open
Standard Specification from the shortcut menu.

Chapter 7: Attributes and Operations

273

Setting the Operation Return Class

The return class of an operation is the data type of the operation's result. For example, say we have an
operation called Add, which takes as parameters two strings, X and Y. The operation will convert X and Y to
integers, add them, and return the result as an integer. The return class of Add will be "integer."

When specifying the return class, you can either use built−in data types of your programming language—such
as string, char, or integer—or use classes that you have defined in your Rose model.

To set the operation return class:

1.
Right−click the operation in the browser.

2.
Select Open Specification from the shortcut menu.

3.
Select a return class from the drop−down list box, or enter a new return type.

OR

1.
Select the operation on a Class diagram.

2.
After the operation name, enter a colon, followed by the return type. For example, if you have an
operation called Print that should return an integer, your Class diagram will look like this:

Setting the Operation Stereotype

As with other model elements, operations can be stereotyped to classify them. As discussed above, there are
four commonly used operation stereotypes:

Implementor Operations that implement some business logic.

Manager Constructors, destructors, and memory management operations.

Access Operations that allow other classes to view or edit attributes. Typically, these are named
Get<attribute name> and Set<attribute name>.

Helper Private or protected operations used by the class but not seen by other classes.

Chapter 7: Attributes and Operations

274

Setting stereotypes for operations isn't required to generate code. However, stereotypes can help improve the
understandability of the model. Also, they can help you to be sure that you haven't missed any operations.

To set the operation stereotype:

1.
Right−click the operation in the browser.

2.
Select Open Specification from the shortcut menu. Rose will open the operation specification
window.

3.
Select a stereotype from the drop−down list box or enter a new stereotype.

OR

1.
Select the operation in the browser.

2.
Single−click the operation again to edit the name. Before the name, the double angle bracket
characters (<<>>) will appear:

3.
Type the stereotype between the brackets.

Chapter 7: Attributes and Operations

275

Setting the Operation Visibility

As we discussed before, visibility has to do with how information and behavior is encapsulated in a class.
There are four visibility options for operations. (To familiarize yourself with the way these are represented
visually, see Table 7.2.)

Public Suggests that the operation is visible to all other classes. Any other class can request that the
operation be executed.

Private Means that the operation is not visible to any other class.

Protected Suggests that the class and any of its descendants have access to the operation.

Package or implementation Indicates that the operation is public, but only to classes in the same package.

While attributes are typically private or protected, operations may be public, private, protected, or package.
When making this decision, think about what other classes, if any, will need to know that the operation exists.
When you generate code, Rose will generate the appropriate visibility. For example, the code generated for
the class above is shown in Figure 7.8.

Chapter 7: Attributes and Operations

276

Figure 7.8: Operation visibility in generated code

As mentioned earlier in this chapter, you can use either UML or Rose notation on a Class diagram. See the
upcoming numbered steps for a description of how to switch between these two notations. Refer to Figure 7.4
to see a class using UML visibility notation and to Figure 7.5 to see the same class using Rose visibility
notation. To revisit a summary of the possible visibility options, including their Rose and UML notations, see
Table 7.2.

To set the operation visibility:

1.
Right−click the operation in the browser.

2.
Select Open Specification from the shortcut menu. The Operation Specification window will appear.

3.
In the Export Control field, select the operation's visibility: Public, Protected, Private, or
Implementation. By default, all operations have public visibility.

OR

1.
Select the operation on a Class diagram.

2.
If you are using UML notation for visibility, single−click the icon (+, −, or #) next to the operation.
Select a visibility option from the list of Rose visibility icons that appears.

3.

Chapter 7: Attributes and Operations

277

If you are using Rose notation for visibility, single−click the Rose visibility icon to the left of the
operation name. Select a visibility option from the list of icons that appears.

Adding Arguments to an Operation

Operation arguments, or parameters, are the input data the operation receives. An Add operation, for example,
may take two arguments, X and Y, and add them together.

There are two pieces of information to supply for each argument. The first is the argument name. The second
is its data type. On a Class diagram, the arguments and data types appear in parentheses after the operation
name:

If you'd like, you can also specify a default value for each argument. If you include a default value, the UML
notation is:

Operation name(argument1 : argument1 data type = argument1 default value) : operation return type

When you generate code, Rose will generate the operation name, arguments, argument data types, argument
default values, and return type. Rose will also create comments if any documentation was added to the
operation.

To add an argument to an operation:

1.
Open the operation specification window.

2.
Select the Detail tab.

3.
Right−click in the Arguments box, then select Insert from the menu.

4.

Chapter 7: Attributes and Operations

278

Enter the name of the argument, as shown in Figure 7.9.

Figure 7.9: Operation arguments

5.
Click on the Type column and enter the data type of the argument.

6.
Click on the Default column and enter the default for the argument, if desired.

To delete an argument from an operation:

1.
Open the operation specification window.

2.
Select the Detail tab.

3.
Right−click the argument to be deleted in the Arguments box, and then select Delete from the menu.

4.
Confirm the deletion.

Specifying the Operation Protocol

The operation protocol describes what operations a client may perform on the object, and in which order the
operations must be executed. For example, if operation A should not be executed until operation B has been

Chapter 7: Attributes and Operations

279

executed, you can note this in the Protocol field of operation A. The information you enter here will not have
an impact on what code is generated for the operation. The operation protocol screen is shown in Figure 7.10.

Figure 7.10: Operation protocol

To specify the operation protocol:

1.
Open the operation specification window.

2.
Select the Detail tab.

3.
Enter the protocol in the Protocol field.

Specifying the Operation Qualifications

This field lets you identify any language−specific qualifications for the operation. It will not affect the code
generated for the operation.

To specify the operation qualifications:

1.
Open the operation specification window.

2.
Select the Detail tab.

3.

Chapter 7: Attributes and Operations

280

Enter the qualifications in the Qualification field.

Specifying the Operation Exceptions

The operation Exceptions field gives you a place to list the exceptions that the operation may throw. In some
languages, the exception information will affect the code generated for the operation. For example, Figure
7.11 is some Java code generated with exception information.

Figure 7.11: Operation exceptions in generated code

To specify the operation exceptions:

1.
Open the operation specification window.

2.
Select the Detail tab.

3.
Enter the exceptions in the Exceptions field.

Specifying the Operation Size

The Size field is a place to note how much memory you expect the operation to require at runtime. To specify
the operation size:

1.
Open the operation specification window.

2.
Select the Detail tab.

3.
Enter the size in the Size field.

Specifying the Operation Time

The operation time is the approximate amount of time you expect this operation to require as it executes. To
specify the operation time:

1.
Open the operation specification window.

2.
Select the Detail tab.

3.
Enter the time in the Time field.

Chapter 7: Attributes and Operations

281

Specifying the Operation Concurrency

The Concurrency field specifies how the operation will behave in the presence of multiple threads of control.
There are three concurrency options:

Sequential Suggests that the operation will run properly only if there is a single thread of control. The
operation must run to completion before another operation may be run.

Guarded Suggests that the operation will run properly with multiple threads of control, but only if the
classes collaborate to ensure that mutual exclusion of running operations is achieved.

Synchronous Suggests that the operation will run properly with multiple threads of control. When called,
the operation will run to completion in one thread. However, other operations can run in other threads at the
same time. The class will take care of mutual exclusion issues, so collaboration with other classes is not
required.

To specify the operation concurrency:

1.
Open the operation specification window.

2.
Select the Detail tab.

3.
Select the desired concurrency from the Concurrency box.

Specifying the Operation Preconditions

A precondition is some condition that must be true before the operation can run. You can enter any
preconditions for the operation on the Preconditions tab of the operation specification window, as shown in
Figure 7.12.

Chapter 7: Attributes and Operations

282

Figure 7.12: Operation preconditions

Preconditions will not affect the code that is generated for the operation. If you have an Interaction diagram
that illustrates the operation preconditions, you can enter the Interaction diagram name at the bottom of the
Preconditions tab.

To specify the operation preconditions:

1.
Open the operation specification window.

2.
Select the Preconditions tab.

3.
Enter the preconditions in the Preconditions field.

Specifying the Operation Postconditions

Postconditions are conditions that must always be true after the operation has finished executing.
Postconditions are entered on the Postconditions tab of the operation specification window, as shown in
Figure 7.13.

Chapter 7: Attributes and Operations

283

Figure 7.13: Operation postconditions

Like preconditions, the postconditions will not affect the code generated for an operation, but will appear as a
comment in the generated code. If you have an Interaction diagram that includes information about the
postconditions, you can enter its name at the bottom of the Postconditions tab.

To specify the operation postconditions:

1.
Open the operation specification window.

2.
Select the Postconditions tab.

3.
Enter the postconditions in the Postconditions field.

Specifying the Operation Semantics

The Semantics field of the operation specification window gives you a place to describe what the operation
will do, as shown in Figure 7.14. You can use pseudocode here, or just a description, to spell out the operation
logic. If you have an Interaction diagram related to the operation's semantics, you can enter it at the bottom of
this tab page.

Chapter 7: Attributes and Operations

284

Figure 7.14: Operation semantics

To specify the operation semantics:

1.
Open the operation specification window.

2.
Select the Semantics tab.

3.
Enter the semantics in the Semantics field.

Displaying Attributes and Operations on Class Diagrams

UML is very flexible; it allows for either all details to be shown on a Class diagram or only those details you'd
like to see. In Rose, you can customize your Class diagrams to do the following:

•
Show all attributes and operations

•
Hide the attributes

•

Chapter 7: Attributes and Operations

285

Hide the operations

•
Show selected attributes and operations

•
Show operation signatures or operation names only

•
Show or hide attribute and operation visibility

•
Show or hide operation and attribute stereotypes

In the following sections, we'll take a look at each of these options. In a typical project, you'll have many
Class diagrams. Some will focus on the relationships, and will show little attribute and operation detail.
Others may focus on the classes, and may not show attributes and operations at all. Still others may focus on
the attributes and operations, showing all of the detailed information. In Rose, you can place a class on as
many Class diagrams as you'd like. You can then use the following options to show or hide the attribute and
operation details.

You can set the defaults for each of these options using the Tools → Options window. The specific
instructions for setting the defaults are listed in the following sections.

Showing Attributes

For a given class on a Class diagram, you can:

•
Show all attributes

•
Hide all attributes

•
Show selected attributes

•
Suppress attributes

Suppressing the attributes will not only hide the attributes on the diagram, but will remove the line indicating
where the attributes would be located in the class. To illustrate the difference between hiding and suppressing
attributes, let's look at an example. Here we have Employee class with hidden attributes:

Chapter 7: Attributes and Operations

286

Here, we have the same class, but the attributes have been suppressed:

There are two ways to change the attribute display options. You can visit each class individually and set the
appropriate options. Or, you can change the default attribute display options before you create the Class
diagram. When you change the defaults, only new diagrams will be affected.

To show all attributes for a class:

1.
Select the desired class on a diagram.

2.
Right−click on the class to display the shortcut menu.

3.
Select Options → Show All Attributes.

To show selected attributes for a class:

1.
Select the desired class on a diagram.

2.
Right−click on the class to display the shortcut menu.

3.
Select Options → Select Compartment Item.

4.
Select the desired attributes in the Edit Compartment window.

OR

1.
Select the desired class on a diagram.

2.
Select Edit → Compartment.

3.
Select the desired attributes in the Edit Compartment window, as shown in Figure 7.15.

Chapter 7: Attributes and Operations

287

Figure 7.15: Selecting attributes in the Edit Compartment window

To suppress all attributes for a class on a diagram:

1.
Select the desired class.

2.
Right−click on the class to display the shortcut menu.

3.
Select Options → Suppress Attributes.

To change the default option for showing attributes:

1.
Select Tools → Options.

2.
Select the Diagram tab.

3.
Use the Suppress Attributes and Show All Attributes check boxes to set the default options.

Note When the default is changed, only new diagrams will be affected. Existing Class diagrams will not be
changed.

Showing Operations

As with attributes, you have several choices for displaying operations:

•
Show all operations

•
Show selected operations

•
Hide all operations

•
Suppress operations

In addition, you have the following options:

•

Chapter 7: Attributes and Operations

288

Display operation name only, which will display the operation name on the Class diagram, but hide
the operation's arguments and return type.

•
Display full operation signature, which will show not only the operation's name, but all of the
parameters, parameter data types, and the operation return type.

To show all operations for a class:

1.
Select the desired class on a diagram.

2.
Right−click on the class to display the shortcut menu.

3.
Select Options → Show All Operations.

To show selected operations for a class:

1.
Select the desired class on a diagram.

2.
Right−click on the class to display the shortcut menu.

3.
Select Options → Select Compartment Items.

4.
Select the desired operations in the Edit Compartment window.

OR

1.
Select the desired class on a diagram.

2.
Select Edit → Compartment.

3.
Select the desired operations in the Edit Compartment window.

To suppress all operations for a class:

1.
Select the desired class on a diagram.

2.
Right−click on the class to display the shortcut.

3.

Chapter 7: Attributes and Operations

289

Select Options → Suppress Operations.

OR

1.
Select the desired class on a diagram.

2.
Select Edit → Diagram Object Properties → Suppress Operations.

To show operation signatures on a Class diagram:

1.
Select the desired class on a diagram.

2.
Right−click on the class to display the shortcut menu.

3.
Select Options → Show Operation Signature.

To change the default option for showing operations:

1.
Select Tools → Options.

2.
Select the Diagram tab.

3.
Use the Suppress Operations, Show All Operations, and Show Operation Signatures check boxes to
set the default options.

Note When the default is changed, only new diagrams will be affected. Existing Class diagrams will not be
changed.

Showing Visibility

There are four visibility options for attributes and operations: public, private, protected, and package. In UML,
these are represented by icons (+, −, and #) for public, private, and protected, and no icon for implementation.

Rather than using UML notation, you can use Rose notation for attribute and operation visibility. The Rose
and UML notations for attribute and operation visibility are listed in Table 7.3.

Table 7.3: Rose and UML Visibility Notations

Rose Notation Visibility UML Notation

Public +

Private −

Protected #

Chapter 7: Attributes and Operations

290

Package or implementation <no icon>

You can use either UML or Rose notation for visibility, or you can hide the visibility icons altogether.

To show attribute and operation visibility for a class:

1.
Select the desired class on a diagram.

2.
Right−click on the class to display the shortcut menu.

3.
Select Options → Show Visibility.

To change the default visibility display option:

1.
Select the Tools → Options.

2.
Select Diagram tab.

3.
Use the Show Visibility check box to set the default option.

To switch between Rose and UML visibility notations:

1.
Select Tools → Options.

2.
Select the Notation tab.

3.
Use the Visibility as Icons check box to switch between notations. If the check box is selected, Rose
notation will be used. If the check box is not selected, UML notation will be used.

Showing Stereotypes

In Rose, you can show or hide the stereotypes of your operations and attributes. If you show the stereotypes,
they will be displayed before the attribute and operation names, enclosed in double angle brackets (<<>>):

Chapter 7: Attributes and Operations

291

To show attribute and operation stereotypes for a class:

1.
Select the desired class on a diagram.

2.
Right−click on the class to display the shortcut menu.

3.
Select Options → Show Compartment Stereotypes.

To change the default stereotype display option:

1.
Select Tools → Options.

2.
Select the Diagram tab.

3.
Use the Show Stereotypes check box to set the default option.

Note When you change the default, only new diagrams will be affected. Existing diagrams will not be
changed.

Mapping Operations to Messages

As we discussed above, each message on a Sequence or Collaboration diagram will be mapped to an
operation. If your Sequence diagram looks like this:

Chapter 7: Attributes and Operations

292

the operation Operation1 will be placed inside Class B. When you first create your Sequence and
Collaboration diagrams, you may use message names that are English phrases rather than operation names, as
shown in Figure 7.16.

Figure 7.16: Sequence diagram without operation mapping

However, as you are identifying operations, you'll want to map each message to the appropriate operation.
The Sequence diagram above will be changed to look like Figure 7.17.

Figure 7.17: Sequence diagram with operation mapping

Chapter 7: Attributes and Operations

293

Mapping an Operation to a Message on an Interaction Diagram

As you identify operations, go through each message on your Sequence and Collaboration diagrams. Before
you generate code, be sure that each message has been mapped to the appropriate operation. Figures 7.16 and
7.17 show a Sequence diagram without and with operation mapping, respectively.

Note Operations can be mapped to messages only if the Interaction Diagram object has been mapped to a
class.

To map a message to an existing operation:

1.
Be sure the receiving object (the supplier) has been mapped to a class.

2.
Right−click the message in the Sequence or Collaboration diagram.

3.
A list of the supplier's operations will appear, as shown in Figure 7.18.

Figure 7.18: Mapping a message to an existing operation

4.
Select the operation from the list.

To remove a message's operation mapping:

1.
Double−click the message in the Sequence or Collaboration diagram.

2.
In the Name field, delete the operation name and enter the new message name.

To create a new operation for the message:

1.
Be sure the receiving object (the supplier) has been mapped to a class.

2.

Chapter 7: Attributes and Operations

294

Right−click the message in the Sequence or Collaboration diagram.

3.
Select <new operation>.

4.
Enter the new operation's name and details. (The options available on the operation specification
window are discussed in earlier in this chapter.)

5.
Click OK to close the operation specification window and add the new operation.

To ensure each message has been mapped to an operation:

1.
Select Report → Show Unresolved Messages.

2.
Rose will display a list of all messages that have not yet been mapped to operations, as shown in
Figure 7.19.

Figure 7.19: Show Unresolved Messages window

Exercise

In the exercise for Chapter 5, "Object Interaction," we created Sequence and Collaboration diagrams for the
"Add Item to Shopping Cart" use case. These diagrams include messages that translate to some of the
operations for the classes in our problem. In the Chapter 6 ("Classes and Packages") exercise, we diagrammed
the classes on a Class diagram and packaged the classes. In this exercise, we'll add details to the classes, such
as the operations for the class, including parameters and return types. We'll also add attributes to the classes.

Problem Statement

Once Karen had a Class diagram with the classes for the "Add Item to Shopping Cart" use case, she began to
fill in the details. She chose C++ as a programming language, then proceeded to add operations. She went
back and looked at the Sequence and Collaboration diagrams to help define operations. She copied the
Sequence and Collaboration diagrams and added more details to them. First, she mapped each object to a
class. Then, she mapped each message to an operation. This is the method she used to define her operations.

She also went back to the flow of events to identify attributes. She added the attributes Order Number and
Customer Name to the Order class on the Class diagram. She also took a look at the order items. Because

Chapter 7: Attributes and Operations

295

there are many order items on a particular order and each has some information and behavior, she decided to
model them as a class rather than an attribute of Order. To keep the model consistent, she updated the
Sequence diagram, as shown in Figure 7.20.

Figure 7.20: Updated Sequence diagram

Just then, Bob came in with a requirement change.

"We need to start keeping track of the order date and order fill date. Also, we've got some new suppliers, and
the procedure for restocking the inventory has changed quite a bit."

Karen first documented the new date requirements, and took a high−level look at the changes to the
restocking procedures. Because she was currently working on the "Enter New Order" use case, she was
primarily concerned with how the procedural changes would affect this use case. She was planning to work on
the "Restock Inventory" use case next month, and would worry about the details of the restocking procedures
then. It turned out that the new procedures, while they drastically affected the "Restock Inventory" use case,
didn't affect the "Enter New Order" use case.

The new date requirements necessitated the addition of a couple of new attributes to the Order class. With
these added, the model again reflected the most current requirements.

Add Attributes and Operations

Add attributes and operations to the classes using the Add Item to Shopping Cart Class diagram. Add
language−specific details to the attributes and operations. Set the options to display all attributes, all
operations, and the operation signatures. Set the options to display the visibility using UML notation.

Exercise Steps:

Setup

1.
Select Tools → Options.

2.
Select the Diagram tab.

3.
Be sure the Show Visibility check box is checked.

4.

Chapter 7: Attributes and Operations

296

Be sure the Show Stereotypes check box is checked.

5.
Be sure the Show Operation Signatures check box is checked.

6.
Be sure the Show All Attributes and Show All Operations check boxes are checked.

7.
Be sure the Suppress Attributes and Suppress Operations check boxes are not checked.

8.
Select the Notation tab.

9.
Be sure the Visibility as Icons check box is not checked.

Create a Detailed Sequence Diagram

1.
Locate the Main Flow Sequence diagram for the "Add Item to Shopping Cart" use case in the
browser.

2.
Double−click to open the diagram.

3.
Press Ctrl+A to select all elements of the diagram

4.
Press Ctrl+C to copy all elements of the diagram.

5.
Right−click the "Add Item to Shopping Cart" use case in the browser.

6.
Select New → Sequence Diagram from the shortcut menu.

7.
Name the new sequence diagram Main Flow: Detailed.

8.
Double−click to open the diagram.

9.
Press Ctrl+V to paste all items of the previous diagram into the new diagram.

10.
Double−click the CartInterface object to open its specification.

11.

Chapter 7: Attributes and Operations

297

Select CartInterface as the class for the object.

12.
Click OK to close the specification.

13.
Repeat steps 10–12 to set the classes for the following objects:

♦
CartMgr : CartMgr

♦
ProductMgr : ProductMgr

♦
ProductItems : ProductCollection

♦
White Crew Socks : Product

♦
CartItems : CartCollection

Add Operations

1.
Locate the Add Item to Shopping Cart Class diagram in the browser.

2.
Double−click to open the diagram.

3.
Right−click the CartInterface class.

4.
Select New Operation from the shortcut menu.

5.
Enter the new operation as follows:

AddItem(ItemNo: Long): Boolean

6.
Click outside of the class to stop adding operations.

7.
Repeat steps 3–6 to add the following operations to the following classes:

♦
To CartMgr, add AddItem(ItemNo: Long): Boolean

♦

Chapter 7: Attributes and Operations

298

To ProductMgr, add GetProduct(ItemNo: Long) : Product

♦
To CartCollection, add AddItem(NewItem: Product) : Boolean

♦
To ProductCollection(FindProduct), add FindProduct(ItemNo: Long) : Product

Add Attributes

1.
Right−click the Product class.

2.
Select New Attribute from the shortcut menu.

3.
Enter the new attribute as follows:

ProductID: Long

4.
Press Enter.

5.
Enter the other new attributes as follows:

ProductDescription: String

ProductUnitPrice: Double

6.
Click outside of the class.

The Class diagram for the Add Item to Shopping Cart Class diagram, after the operations and attributes have
been added, should appear as in Figure 7.21.

Chapter 7: Attributes and Operations

299

Figure 7.21: Add Item to Shopping Cart Class diagram with attributes and operations

Summary

In this chapter, we looked at the details of classes, including their attributes and operations. We discussed
adding attributes, their names, data types, and default values. We also examined operations, including adding
them to the model. We looked at operation details such as the arguments, data types, and return types.

So far, we have looked at classes individually. In the next chapter, we will focus on the relationships between
the classes. It is this coordination between classes that lets the application do what it needs to do.

Chapter 7: Attributes and Operations

300

Chapter 8: Relationships
At this point, we've looked at classes, their attributes, and their operations. In the Interaction diagrams, we
began to look at how classes communicate with one another. Now, we'll focus on the relationships between
the classes.

A relationship is a semantic connection between classes. It allows one class to know about the attributes,
operations, and relationships of another class. In order for one class to send a message to another on a
Sequence or Collaboration diagram, there must be a relationship between the two classes.

In this chapter, we'll take a look at the different types of relationships that can be established between classes
and between packages. We'll discuss the implications of each type of relationship and explore how to add the
relationship to your Rose model.

•
Adding association, dependency, aggregation, and generalization relationships to a Rose model
through a Class diagram

•
Adding relationship names, stereotypes, role names, static relationships, friend relationships,
qualifiers, link elements, and constraints

•
Setting multiplicity, export control, and containment

Relationships

This section includes a description of the five types of relationships you can use in a Rose model. We'll also
take a look at how to find relationships. Much of the work in finding relationships has already been done by
this point in the process. Here, we formally look at relationships and add them to the model. Relationships are
shown on Class diagrams.

Types of Relationships

There are five types of relationships you can set up between classes: associations, dependencies, aggregations,
realizes relationships, and generalizations. We'll take a close look at each of these types of relationships later
in this chapter, but let's talk about them briefly here.

Associations are semantic connections between classes. They are drawn on a Class diagram with a single line,
as shown in Figure 8.1.

Figure 8.1: Association relationship

When an association connects two classes, as in the above example, each class can send messages to the other
in a Sequence or a Collaboration diagram. Associations can be bidirectional, as shown above, or
unidirectional. In UML, bidirectional associations are drawn either with arrowheads on both ends or without
arrowheads altogether. Unidirectional associations contain one arrowhead showing the direction of the

301

navigation.

With an association, Rose will place attributes in the classes. For example, if there is an association
relationship between a Flight class and a Customer class, Rose would place a Customer attribute inside Flight
to let the flight know who the passengers are, and a Flight attribute inside Customer to let the customer know
which flight they are on.

Associations can also be labeled to further clarify them. For example, the relationship between a server page
and client page is labeled with the stereotype <<build>>, indicating that the server page builds the client page.
There are other stereotypes available for associations that we will discuss later in this chapter.

Dependencies also connect two classes, but in a slightly different way than associations. Dependencies are
always unidirectional and show that, although one class does not instantiate the other, it does need to send
messages to the other class. In other words, although object A does not instantiate and "own" object B, it does
need to send messages to object B. Rose will not generate attributes for the classes in a dependency
relationship.

Dependency relationships are also needed when a class is needed as a parameter or return type in an operation
of a class. Going back to the airline example, if there is a dependency from Flight class to Customer class, a
Customer attribute will not be created in the Flight class. Dependencies are shown with dashed arrows, as
shown in Figure 8.2.

Figure 8.2: Dependency relationship

Aggregations are a stronger form of association. An aggregation is a relationship between a whole and its
parts. For example, you may have a Car class, as well as an Engine class, a Tire class, and classes for the other
parts of a car. In this case, a Car object will be made up of an Engine object, four Tire objects, and so on.
Aggregations are shown as a line with a diamond next to the class representing the whole, as shown in Figure
8.3.

Figure 8.3: Aggregation relationship

Realizes relationships are used to show the relationship between a class and its interface, between a package
and its interface, between a component and its interface, or between a use case and a use case realization. The
relationship connects a publicly visible interface (interface class or use case) to the detailed implementation of
the interface (class, package, or use case realization). In other words, this relationship helps separate an
interface from its implementation.

A realization relationship looks slightly different when using the icon stereotype display for the interface
rather than the label stereotype display. Figure 8.4 includes both options.

Chapter 8: Relationships

302

Figure 8.4: Realizes relationship

Generalizations are used to show an inheritance relationship between two modeling elements (actors, use
cases, classes, or packages). Most object−oriented languages directly support the concept of inheritance.
Inheritance allows one class to inherit all of the attributes, operations, relationships, and semantics of another
modeling element. In UML, an inheritance relationship is known as a generalization, and is shown as an arrow
from the child class to the parent class, as shown in Figure 8.5.

Figure 8.5: Generalization relationship

Finding Relationships

To find relationships, you can examine the model elements you've created so far. Much of the relationship
information has already been outlined in the Sequence and Collaboration diagrams. Now, you can revisit
those diagrams to get association and dependency information. You can then examine your classes to look for
aggregations and generalizations.

To find relationships, you can do the following:

1.
Begin by examining your Sequence and Collaboration diagrams. If Class A sends a message to Class
B on a Sequence or Collaboration diagram, there must be a relationship between them. Typically, the
relationships you find with this method are associations or dependencies.

2.
Examine your classes and look for any whole−part relationships. Any class that is made up of other
classes may participate in an aggregation.

3.
Examine your classes to look for generalization relationships. Try to find any class that may have
different types. For example, you may have an Employee class. In your company, there are two

Chapter 8: Relationships

303

different types of employees, hourly and salaried. This may indicate that you should have an
HourlyEmp class and a SalariedEmp class, each of which inherit from an Employee class. Attributes,
operations, and relationships that are common to all employees are placed in the Employee class.
Attributes, operations, or relationships that are unique to hourly or salaried employees are placed in
the HourlyEmp or SalariedEmp classes.

4.
Examine your classes to look for additional generalization relationships. Try to find classes that have
a great deal in common. For example, you may have two classes called CheckingAccount and
SavingsAccount. Both have similar information and behavior. You can create a third class, called
Account, to hold the information and behavior common to a checking and a savings account.

Be cautious of classes with too many relationships. One goal of a well−designed application is to reduce
unnecessary relationships in the system. A class with many relationships may need to know about a great
many other classes. It can therefore be harder to reuse, and your maintenance effort may also be greater. If any
of the other classes change, the original class may be affected.

Associations

An association is a semantic connection between classes. An association allows one class to know about the
public attributes and operations of another class. For example, in Figure 8.6, we have a bidirectional
association between Flight and Customer.

Figure 8.6: Association relationship between the Flight class and the Customer class

The Flight class knows about the public attributes and operations of Customer, and the Customer class knows
about the public attributes and operations of Flight. On a Sequence diagram, therefore, Flight can send
messages to Customer, and Customer can send messages to Flight.

Chapter 8: Relationships

304

In the example above, the relationship is bidirectional. However, you will want to refine most of your
associations to be unidirectional. Unidirectional relationships are easier to build and to maintain, and can help
you find classes that can be reused. Let's look at the above example again, but this time the association is
unidirectional. Figure 8.7 shows the unidirectional relationship.

Figure 8.7: Unidirectional association relationship

In this case, the Flight class knows about the public attributes and operations of Customer, but Customer does
not know about the public attributes and operations of Flight. Messages on a Sequence or Collaboration
diagram can be sent by Flight and received by Customer, but cannot be sent by Customer.

You can determine the direction of an association by looking at the Sequence and Collaboration diagrams. If
every message on the Interaction diagrams is sent by Flight and received by Customer, there is a
unidirectional relationship from Flight to Customer. If there is even one message from Customer to Flight,
you will need a bidirectional relationship.

Unidirectional relationships can help you identify classes that are good candidates for reuse. If the association
between Flight and Customer is bidirectional, each class needs to know about the other; neither class can,
therefore, be reused without the other. But assume instead that there is a unidirectional relationship from
Flight to Customer. Flight needs to know about Customer, so it can't be reused without Customer. However,
Customer doesn't need to know about Flight, so Customer can be easily reused. Any class that has many
unidirectional relationships coming out of it is hard to reuse; any class that has only unidirectional
relationships coming into it is easy to reuse, as shown in Figure 8.8.

Figure 8.8: Reuse with unidirectional associations

When you generate code for a bidirectional association, Rose will generate attributes in each class. In our
Flight and Customer example, Rose will place a Flight attribute inside Customer, and a Customer attribute
inside Flight. Figure 8.9 is an example of the code generated for these two classes.

Chapter 8: Relationships

305

Figure 8.9: Code generated for a bidirectional association

If, instead, we have a unidirectional association, Rose will place a Customer attribute inside Flight, but not a
Flight attribute inside Customer. Figure 8.10 is an example of the code generated for a unidirectional
association.

Figure 8.10: Code generated for a unidirectional association

Associations can also be reflexive. A reflexive association suggests that one instance of a class is related to
other instances of the same class. For example, we may have a Person class. One person can be the parent of
one or more other people. Because there are separate instances of Person with a relationship to each other, we
have a reflexive association, as shown in Figure 8.11.

Figure 8.11: Reflexive association

Using Web Association Stereotypes

With the inclusion of web modeling, Rose now supports four stereotypes for associations. These are the link,
submit, build, and redirect stereotypes.

The link stereotype is used to show a hypertext link between two client pages or from a client page to a server
page. It is represented on a Class diagram as a unidirectional association with a stereotype of <<link>>:

Chapter 8: Relationships

306

The submit stereotype is used when a form sends the information in its fields to a server page for processing.
This submittal of information is shown on a Class diagram as a unidirectional association relationship with a
stereotype of <<submit>>.

The build stereotype is used when a server page builds a client page. Once the client page has been built, it
can be displayed on the client browser. The relationship shows which server page builds which client page. It
is shown on a class diagram as a unidirectional relationship with a stereotype of <<build>>:

Finally, the redirect stereotype is used to show one page passing processing control to another page. A redirect
relationship is shown as a unidirectional association with a stereotype of <<redirect>>:

Creating Associations

In Rose, you create associations directly on a Class diagram. The Diagram toolbar includes buttons for
creating both unidirectional and bidirectional associations.

If you create a bidirectional association, you can later change it to a unidirectional association by changing its
navigability. Later in this chapter, in the "Working with Relationships" section, we will discuss the detailed
specifications of an association, including navigability.

To create a bidirectional association on a Class diagram:

1.

Chapter 8: Relationships

307

Select the Association icon from the toolbox.

2.
Drag the association line from one class to the other class.

OR

1.
Select Tools → Create → Association.

2.
Drag the association line from one class to the other class.

To create a unidirectional association on a Class diagram:

1.
Select the Unidirectional Association icon from the toolbox.

2.
Drag the association line from one class to the other class.

OR

1.
Select Tools → Create → Unidirectional Association.

2.
Drag the association line from one class to the other class.

To set the navigability of a relationship:

1.
Right−click the desired relationship at the end to be navigated.

2.
Select Navigable from the menu.

OR

1.
Open the desired relationship's specification window.

2.
Select the Role Detail tab for the end to be navigated.

3.
Change the navigability using the Navigable check box.

To create a reflexive association on a Class diagram:

1.

Chapter 8: Relationships

308

Select the Association icon from the toolbox.

2.
Drag the association line from the class to somewhere outside of the class.

3.
Release the association line.

4.
Drag the association line back into the class.

OR

1.
Select Tools → Create → Association.

2.
Drag the association line from the class to somewhere outside of the class.

3.
Release the association line.

4.
Drag the association line back into the class.

To add documentation to an association:

1.
Double−click the desired association.

2.
Select the General tab.

3.
Enter documentation in the Documentation field.

OR

1.
Select the desired association.

2.
Select Browse → Specification.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

To change a relationship to an association:

1.

Chapter 8: Relationships

309

Select the desired relationship.

2.
Select Edit → Change Into → Association.

Deleting Associations

There are two ways to delete an association. The first is to delete it from a single diagram. In this case, Rose
still knows the association exists, and keeps track of it behind the scenes. Although the association may be
deleted from one diagram, it may still exist on other Class diagrams.

The second way to delete an association is to remove it from the entire Rose model. In this case, the
relationship is removed from all Class diagrams, and Rose no longer keeps track of it.

To delete an association from the diagram only:

1.
Select the desired association.

2.
Press the Delete key.

OR

1.
Select the desired association.

2.
Select Edit → Delete.

Note Deleting an association from the diagram does not delete it from the model.
To delete an association from the model:

1.
Select the desired association.

2.
Press Ctrl+D.

OR

1.
Select the desired association.

2.
Select Edit → Delete from Model.

OR

1.
Open the specification window for either class participating in the relationship.

2.

Chapter 8: Relationships

310

Select the Relations tab.

3.
Right−click the relationship.

4.
Select Delete from the shortcut menu.

Dependencies

A dependency relationship shows that a class references another class. Therefore, a change in the referenced
class specification may impact the using class. When there is a dependency between two classes, Rose does
not add any attributes to the classes for the relationship, which is one of the differences between an
association and a dependency.

Returning to our example above, assume there is a dependency relationship between Flight and Customer. A
dependency relationship is shown as a dashed arrow, as shown in Figure 8.12.

Figure 8.12: Dependency relationship

When we generate code for these two classes, attributes will not be added to either class for the relationship,
as shown in Figure 8.13. However, any language−specific statements needed to support the relationship will
be generated. For example, in C++, the necessary #include statements will be included in the generated code.

Chapter 8: Relationships

311

Figure 8.13: Code generated for a dependency relationship

The implication here is that Flight will need some other way to know that Customer exists. The direction of
the arrow indicates that Flight depends on Customer. In other words, there is a Sequence or Collaboration
diagram in which Flight sends a message to Customer. Had there been a regular association between these
two, Flight would have a Customer attribute. To send a message to Customer, Flight would just look at its
own Customer attribute.

With a dependency, however, Flight won't have a Customer attribute. It therefore has to find out about
Customer some other way. There are three ways it can know about Customer. Customer could be global, in
which case Flight would know it exists. Or, Customer could be instantiated as a local variable inside an
operation of Flight. Finally, Customer could be passed in as a parameter to some operation inside Flight.
When there is a dependency, one of these three approaches must be taken.

Although we are now at the detailed coding level, this decision may affect the model. We may need to add an
argument to an operation of Flight.

Chapter 8: Relationships

312

The second difference between an association and a dependency lies in the direction. Associations can be
bidirectional, but dependencies are unidirectional. Dependencies are also used for relationships between
packages and between components. This will be discussed later in this chapter.

Creating Dependencies

After you've added associations, you may want to revisit them to see if any should be dependencies instead. If
so, you can change the relationship from an association to a dependency using the method outlined below.
(This is preferred if you have an association displayed in several diagrams, because Rose will change the
association globally.)

To create a new dependency, you can use the Dependency icon on the Class Diagram toolbar.

To create a dependency on a Class diagram:

1.
Select the Dependency icon from the toolbox.

2.
Click the class to be dependent.

3.
Drag the dependency line to the other class.

OR

1.
Select Tools → Create → Dependency.

2.
Click the class to be dependent.

3.
Drag the dependency line to the other class.

To add documentation to a dependency:

1.
Double−click the desired dependency.

2.
Select the General tab.

3.
Enter documentation in the Documentation field.

OR

1.

Chapter 8: Relationships

313

Select the desired dependency.

2.
Select Browse → Specification.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

To change a relationship to a dependency on a Class diagram:

1.
Select the desired relationship.

2.
Select Edit → Change Into → Uses Dependency.

Deleting Dependencies

As with associations, there are two ways to delete a dependency. You can remove it from a single Class
diagram or from the entire model. The following are the procedures for deleting a dependency.

To delete a dependency from the diagram:

1.
Select the desired dependency.

2.
Press the Delete key.

OR

1.
Select the desired dependency.

2.
Select Edit → Delete.

Note Deleting a dependency from the diagram does not delete it from the model.
To delete a dependency from the model:

1.
Select the desired dependency.

2.
Press Ctrl+D.

OR

1.

Chapter 8: Relationships

314

Select the desired dependency.

2.
Select Edit → Delete from Model.

OR

1.
Open the specification window for either class participating in the relationship.

2.
Select the Relations tab.

3.
Right−click the relationship.

4.
Select Delete from the shortcut menu.

Package Dependencies

Dependencies can be drawn between packages as well as classes. A package dependency, like a class
dependency, is drawn as a dashed arrow. Figure 8.14 is an example of a package dependency.

Figure 8.14: Package dependency

A package dependency from package A to package B suggests that some class in package A has a
unidirectional relationship to some class in package B. In other words, some class in A needs to know about
some class in B.

This has reuse implications. If our dependencies look like this, package A depends on package B. Therefore,
we can't just pick up package A and reuse it in another application. We would also have to pick up B and
reuse it. Package B, on the other hand, is easy to reuse because it doesn't depend on anything else.

You can find package dependencies by examining the relationships on your Class diagram. If two classes
from different packages have a relationship, their packages must have a relationship as well.

As you are creating package dependencies, try to avoid circular dependencies whenever possible. A circular
dependency looks like Figure 8.15.

Chapter 8: Relationships

315

Figure 8.15: Circular dependency

This suggests that some class in A needs to know about some class in B, while some class in B needs to know
about some class in A. In this case, neither package can be easily reused, and a change to one package may
affect the other. We've lost some of the benefits of packaging classes with this approach—the packages are
too interdependent. To break circular dependencies, you can split apart one package into two. In our example,
we can take the classes in B that A depends on, and move them to another package we'll call C. Now our
package dependencies look like this:

Creating Package Dependencies

As you identify package dependencies, you can add them to your Rose model through a Class diagram.
Typically, you will have one Class diagram which displays all of the packages and the relationships between
them. As with class dependencies, you use the Dependency toolbar button to draw the relationships.

To create a package dependency on a Class diagram:

1.
Select the Dependency icon from the toolbox.

2.
Drag the dependency line from the dependent package to the other package.

OR

1.
Select Tools → Create → Dependency.

2.
Drag the dependency line from the dependent package to the other package.

Chapter 8: Relationships

316

Deleting Package Dependencies

As with a class dependency, there are two ways to delete a package dependency—from a single Class diagram
or from the entire model.

If you delete a package dependency, but classes from the two packages still have relationships to each other,
you will have difficulty generating code. You can use the Report → Show Access Violations option to see if
this has happened.

To delete a package dependency from a Class diagram:

1.
Select the desired package dependency.

2.
Press the Delete key.

OR

1.
Select the desired package dependency.

2.
Select Edit → Delete.

Aggregations

An aggregation is a stronger form of association. An aggregation is a relationship between a whole and its
parts. For example, a FlightList might be made up of Flights. In UML, an aggregation is shown as a line
connecting the two classes, with a diamond next to the class representing the whole, as shown in Figure 8.16.

Figure 8.16: Aggregation relationship

One class may have several aggregation relationships with other classes. For example, a Car class might have
relationships to its many parts.

Chapter 8: Relationships

317

Like associations, aggregations can be reflexive, as shown in Figure 8.17. A reflexive aggregation suggests
that one instance of a class is made up of one or more other instances of the same class. For example, when
cooking, you may combine some ingredients, which form ingredients for other things. In other words, each
ingredient can be made up of other ingredients.

Figure 8.17: Reflexive aggregation relationship

When you generate code for an aggregation, Rose will generate attributes to support the aggregation. In the
Car example, the Car class will have attributes for the door, engine, tire, and all of the other parts in the
aggregation relationship.

Creating Aggregations

Aggregations are created on the Class diagrams. To create an aggregation, you can use the Aggregation button
on the Class Diagram toolbar.

To create an aggregation on a Class diagram:

1.
Select the Unidirectional Aggregation icon from the toolbox.

2.
Drag the aggregation line from the whole class to the part class.

OR

1.
Select Tools → Create → Aggregation.

2.
Drag the aggregation line from the whole class to the part class.

To create a reflexive aggregation on a Class diagram:

1.
Select the Unidirectional Aggregation icon from the toolbox.

2.
Drag the aggregation line from the class to somewhere outside of the class.

3.
Release the aggregation line.

4.

Chapter 8: Relationships

318

Drag the aggregation line back into the class.

OR

1.
Select Tools → Create → Aggregation.

2.
Drag the aggregation line from the class to somewhere outside of the class.

3.
Release the aggregation line.

4.
Drag the aggregation line back into the class.

To add documentation to the aggregation:

1.
Double−click the desired aggregation.

2.
Select the General tab.

3.
Enter documentation in the Documentation field.

OR

1.
Select the desired aggregation.

2.
Select Browse → Specification.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

To change a relationship to an aggregation on a Class diagram:

1.
Select the desired relationship.

2.
Select Edit → Change Into → Aggregation.

OR

1.

Chapter 8: Relationships

319

Open the relationship specification window for the desired relationship.

2.
Select the Role Detail tab.

3.
Select the Aggregate check box.

Deleting Aggregations

You can delete an aggregation either from a single Class diagram or from the entire model. Here we list the
procedures for both.

To delete an aggregation from the diagram:

1.
Select the desired aggregation.

2.
Press the Delete key.

OR

1.
Select the desired aggregation.

2.
Select Edit → Delete.

Note Deleting an aggregation from the diagram does not delete it from the model.
To delete an aggregation from the model:

1.
Select the desired aggregation.

2.
Press Ctrl+D.

OR

1.
Select the desired aggregation.

2.
Select Edit → Delete from Model.

OR

1.
Open the specification window for either class participating in the relationship.

2.

Chapter 8: Relationships

320

Select the Relations tab.

3.
Right−click the relationship.

4.
Select Delete from the shortcut menu.

Generalizations

A generalization is an inheritance relationship between two model elements such as classes, actors, use cases,
and packages. It allows one class to inherit the public and protected attributes and operations of another class.
For example, we may have the relationship shown in Figure 8.18.

Figure 8.18: Generalization relationship

In this example, we have two types of employees: hourly and salaried, both of which inherit from the
Employee class. The Employee class is known as the superclass, and the HourlyEmp and SalariedEmp classes
are known as the subclasses. The arrow points from the subclass to the superclass.

The elements that are common to both types are placed in the Employee class. Both HourlyEmp and
SalariedEmp inherit the Name, Address, and SSN attributes of the Employee class and the Hire() and Fire()
operations of the Employee class.

Each subclass can have its own unique attributes, operations, and relationships in addition to those it inherits.
For example, only hourly employees have an hourly rate, and only salaried employees have a salary.

Chapter 8: Relationships

321

Generalization relationships can save a great deal of time and effort in both development and maintenance. In
the above example, you don't need to program and maintain two separate copies of the Hire() operation (one
in HourlyEmp and one in SalariedEmp). Instead, you can create and maintain one copy of the operation. Any
changes you make to the operation will be automatically inherited by HourlyEmp and SalariedEmp, and any
other subclasses of Employee.

When you are defining your generalizations, you can build your inheritance structure either from the top down
or the bottom up. To build the structure from the top down, look for classes that might have different types.
For example, you would start with the Employee class and soon realize that there are different types of
employees. To build the structure from the bottom up, look for classes with commonality. Here, you would
start with the HourlyEmp and SalariedEmp classes and then realize that they are similar. You would then
create an Employee class to hold the common elements.

Be careful not to create an inheritance structure that isn't maintainable. A hierarchy with too many layers can
become very difficult to maintain. Every change toward the top of the structure will ripple down through the
hierarchy to the classes below. While this can be an advantage, it can also make change analysis and control
even more essential. In some languages, too many layers can also slow down the application.

Creating Generalizations

As you discover generalization relationships, you can add them to your Rose model using a Class diagram.
Frequently, an organization will create a single Class diagram or two that are dedicated to the inheritance
structure. These Class diagrams will typically show only limited attribute or operation information.

As you add generalizations, you may need to move some of the attributes and operations. For example, you
may start with the HourlyEmp and SalariedEmp classes, each of which has an attribute called Address, and
now, you want to move the Address attribute up the structure to the Employee class. In the browser, you can
drag the Address attribute from either the HourlyEmp or the Salaried−Emp class to the Employee class. Be
sure to remember to remove the other copy of Address from HourlyEmp or SalariedEmp.

To create a generalization on a Class diagram:

1.
Select the Generalization icon from the toolbox.

2.
Drag the generalization line from the subclass to the superclass.

OR

1.
Select Tools → Create → Generalization.

2.
Drag the generalization line from the subclass to the superclass.

To add documentation to a generalization:

1.
Double−click the desired generalization.

2.

Chapter 8: Relationships

322

Select the General tab.

3.
Enter documentation in the Documentation field.

OR

1.
Select the desired generalization.

2.
Select Browse → Specification.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

To change a relationship to a generalization:

1.
Select the desired relationship.

2.
Select Edit → Change Into → Generalization.

Deleting Generalizations

As with the other relationships, you can delete a generalization from a single diagram or from the model. If
you delete a generalization from the entire model, keep in mind that the attributes, operations, and
relationships of the superclass will no longer be inherited by the subclass. Therefore, if the subclass needs
those attributes, operations, or relationships, they will have to be added to the subclass.

To delete a generalization from the diagram:

1.
Select the desired generalization.

2.
Press the Delete key.

OR

1.
Select the desired generalization.

2.
Select Edit → Delete.

Note Deleting a generalization from the diagram does not delete it from the model.

Chapter 8: Relationships

323

To delete a generalization from the model:

1.
Select the desired generalization.

2.
Press Ctrl+D.

OR

1.
Select the desired generalization.

2.
Select Edit → Delete from Model.

OR

1.
Open the specification window for either class participating in the relationship.

2.
Select the Relations tab.

3.
Right−click the relationship.

4.
Select Delete from the shortcut menu.

Working with Relationships

In this section, we'll take a look at the detailed specifications of the relationships in Rose. In your model, you
can add things like association names, role names, and qualifiers to specify why the relationship exists.

Before you generate code, you should specify the relationship multiplicity; otherwise Rose will provide a
default. Most of the other specifications we present in this section, however, are optional. Rose will notify you
if a required specification has not been set when you attempt to generate code.

Setting Multiplicity

Multiplicity indicates how many instances of one class are related to a single instance of another class at a
given point in time. For example, if we're looking at a course registration system for a university, we may
have classes called Course and Student. There is a relationship between them; courses have students and
students have courses. The questions answered by the multiplicity are "How many courses can a student take
at one time?" and "How many students can be enrolled in a single course at one time?"

Chapter 8: Relationships

324

Because the multiplicity answers both questions, the multiplicity indicators are included at both ends of the
relationship. In the course registration example, we decide that each student can be enrolled in 0 to 4 classes,
and each course can have 10 to 20 students. On a Class diagram, this would be shown as in Figure 8.19.

Figure 8.19: Relationship multiplicity

In this figure, the 0..4 means that each student can be enrolled in 0 through 4 classes, and the 10..20 means
that each class can have 10 to 20 students.

Keep in mind that the multiplicity settings will let you know whether the relationship is optional. In our
example above, a student can take from 0 to 4 courses at any one time. Therefore, someone is still considered
a student if they have taken a semester off. Had the multiplicity been 1..4 instead, every student would be
required to take at least 1 course per semester. The multiplicity, therefore, implements business rules such as
"every student must take at least one course per semester."

Typically, multiplicity between forms, screens, or windows will be 0..1 on each side of the relationship.
Although this doesn't always hold true, this multiplicity would indicate that each form can exist independently
of the other.

UML notations for multiplicity are as follows:

Multiplicity Meaning

* Many

0 Zero

1 One

0..* Zero or more

1..* One or more

0..1 Zero or one

1..1 Exactly one
Or, you can enter your own multiplicity, using one of the following formats:

Format Meaning

<number> Exactly <number>

<number 1>..<number 2> Between <number 1> and <number 2>

<number>..n <number> or more

<number 1>,<number 2> <number 1> or <number 2>

<number 1>, <number 2>..<number 3> Exactly <number 1> or between <number 2> and
<number 3>

<number 1>..<number 2>,<number 3>..<number 4>Between <number 1> and <number 2> or between
<number 3> and <number 4>

To set relationship multiplicity:

1.
Right−click the desired relationship on one end.

2.

Chapter 8: Relationships

325

Select Multiplicity from the shortcut menu.

3.
Select the desired multiplicity.

4.
Repeat steps 1–3 for the other end of the relationship.

OR

1.
Open the desired relationship's specification window.

2.
Select the Role Detail tab for one end.

3.
Change the multiplicity using the cardinality field.

4.
Repeat steps 1–3 for the other end of the relationship.

Using Relationship Names

Relationships can be refined using relationship names or role names. A relationship name is usually a verb or
verb phrase that describes why the relationship exists. For example, we may have an association between a
Person class and a Company class. From this, though, we might ask these questions: Why does this
relationship exist? Is the person a customer of the company, an employee, or an owner? We can name the
relationship employs to specify why the relationship exists. Figure 8.20 is an example of a relationship name.

Figure 8.20: Relationship name

Relationship names are optional, and are typically used only when the reason for the relationship is not
obvious. Relationship names are shown along the relationship line.

In Rose, you can also set the relationship direction. In the example above, we can say that the company
employs the person, but can't say that the person employs the company. You can set the name direction in the
relationship specification window.

To set the relationship name:

1.
Select the desired relationship.

2.
Type in the desired name.

OR

1.

Chapter 8: Relationships

326

Open the desired relationship's specification window.

2.
Select the General tab.

3.
Enter the name in the Name field.

To set the name direction:

1.
Open the desired relationship's specification window.

2.
Select the Detail tab.

3.
Set the name direction using the Name Direction field.

Using Stereotypes

Like other model elements, you can assign a stereotype to a relationship. Stereotypes are used to classify
relationships. In particular, when modeling web applications, you may want to set the stereotypes of the
association relationships. As we discussed earlier in this chapter, there are four stereotypes in the Rose Web
Modeler add−in: a link relationship, a submit relationship, a build relationship, and a redirect relationship. A
link relationship is used to show one page that contains a hyperlink to another. A submit relationship shows a
form submitting information to a server page. A build relationship is used to show a server page building a
client page. Finally, a redirect relationship shows how processing control is passed from one page to another.

Stereotypes are shown along the association line and are enclosed in double angle brackets (<<>>). To set the
relationship stereotype, you can use the General tab of the relationship specification window, as shown in
Figure 8.21.

Chapter 8: Relationships

327

Figure 8.21: Relationship specification window

To set a relationship stereotype:

1.
Open the desired relationship's specification window.

2.
Select the General tab.

3.
Enter the stereotype in the Stereotype field.

Using Roles

Role names can be used instead of relationship names in associations or aggregations to describe the reason
the relationship exists. Returning to our Person and Company example, we can say that a Person playing the
role of an employee is related to a Company. Role names are typically nouns or noun phrases, and are shown
next to the class playing the role. Typically, you would use either a relationship name or a role name, but not
both. Like relationship names, role names are optional, and are only used when the purpose of the relationship
is not obvious. Figure 8.22 shows an example of roles.

Chapter 8: Relationships

328

Figure 8.22: Roles in a relationship

You can add documentation to a role using the relationship specification window. Any documentation you
add to a role will be generated as a comment when you generate code. To view the role on the diagram,
right−click the relationship and select the Role Name option, as shown in Figure 8.23.

Figure 8.23: Setting role documentation

To set a role name:

1.
Right−click the desired association on the end to be named.

2.
Select Role Name from the shortcut menu.

3.
Type in the role name.

OR

1.
Open the desired association's specification window.

2.
Select the Role General tab for the role to be named.

3.
Enter the role name in the Role field.

Chapter 8: Relationships

329

To add role documentation:

1.
Open the desired association's specification window.

2.
Select the Role General tab for the desired role.

3.
Enter the documentation in the Documentation field.

Setting Export Control

In an association relationship, Rose will create attributes when you generate code. The visibility of the
generated attributes is set through the Export Control field. As with other attributes, there are four visibility
options:

Public Indicates that the attribute will be visible to all other classes

Private Indicates that the attribute is not visible to any other class

Protected Suggests that the attribute is visible only to the class and its subclasses

Package or implementation Means that the attribute is visible to all other classes in the same package

In a bidirectional relationship, you can set the export control of two attributes, one created at each end of the
relationship. In a unidirectional relationship, only one will need to be set. The export control can be set using
the Role A General and Role B General tabs of the relationship specification window.

Chapter 8: Relationships

330

To set export control for a role:

1.
Right−click the desired role's name.

2.
Select Export Control from the shortcut menu.

OR

1.
Open the desired relationship's specification window.

2.
Select the Role General tab for the desired role.

3.
Set the export control to Public, Protected, Private, or Implementation.

Using Static Relationships

As we mentioned earlier, Rose will generate attributes for association and aggregation relationships. A static
attribute is one that is shared by all instances of a class. You use the Static field to determine whether or not
the generated attributes will be static.

If you set one of the roles to be static, the associated attribute that is generated will be static. On the Class
diagram, the static role will appear with a dollar sign ($) in front of it, as shown in Figure 8.24.

Chapter 8: Relationships

331

Figure 8.24: Static role

To classify an association as static:

1.
Right−click the desired end of the association to be static.

2.
Select Static from the pop−up menu.

OR

1.
Open the desired association's specification window.

2.
Select the Detail tab for the role to be static.

3.
Select the Static check box.

Using Friend Relationships

A friend relationship indicates that the Client class has access to the non−public attributes and operations of
the Supplier class. You can set the friend property for an association, aggregation, dependency, or
generalization. The source code for the Supplier class will include logic to allow the Client class to have
friend visibility.

For example, say we have a unidirectional association from a Person class to a Company class, and we've set
the Friend check box for the relationship. When we generate C++ code, the Company .h file will include the
line "friend class Person." This suggests that the Person class has access to the non−public parts of the
Company class.

To classify a relationship as a friend:

1.
Right−click the appropriate end of the desired relationship.

2.
Select Friend from the pop−up menu.

OR

1.
Open the desired relationship's specification window.

2.
Select the Role Detail tab for the appropriate end.

3.

Chapter 8: Relationships

332

Select the Friend check box.

Setting Containment

The Containment field determines whether the generated attributes of an aggregation will be contained by
value or by reference. In an aggregation, the whole class will have attributes added for each of the part classes.
Whether these attributes are by value or by reference is set here.

A by−value attribute suggests that the whole and the part are created and destroyed at the same time. For
example, if there is a by−value aggregation between a Window class and a Button class, the Window and the
Button are created and destroyed at the same time. In UML, a by−value aggregation is shown with a filled
diamond, as shown in Figure 8.25.

Figure 8.25: By−value aggregation

A by−reference aggregation suggests that the whole and the part are created and destroyed at different times.
If we have an EmployeeList class that is made up of Employees, a by−reference aggregation would suggest
that the Employee may or may not be around in memory, and the EmployeeList may or may not be around in
memory. If they are both there, they are related via an aggregation. The Employee and EmployeeList are
created and destroyed at different times. A by−reference aggregation is shown with a clear diamond, as in
Figure 8.26.

Figure 8.26: By−reference aggregation

To set containment:

1.
Right−click the desired end of the association to set containment.

2.
Select Containment from the pop−up menu.

3.
Select the containment as By Reference, By Value, or Unspecified.

OR

1.
Open the desired relationship's specification window.

2.
Select the Role Detail tab for the desired role.

3.
Select the containment as By Reference, By Value, or Unspecified, as shown in Figure 8.27.

Chapter 8: Relationships

333

Figure 8.27: Setting containment

Using Qualifiers

A qualifier is used to reduce the scope of an association. For example, we may have an association between a
Person class and a Company class. Suppose we want to say that for a given value of Person ID, there are
exactly two related companies. We can add a qualifier called Person ID to the Person class. The diagram
would look like Figure 8.28.

Figure 8.28: Using a qualifier

To add a qualifier:

1.
Right−click the desired association at the end to add a qualifier.

2.
Select New Key/Qualifier from the pop−up menu.

3.
Enter the new qualifier's name and type.

Chapter 8: Relationships

334

OR

1.
Open the desired association's specification window.

2.
Select the Role Detail tab for the desired role.

3.
Right−click the Keys/Qualifiers box.

4.
Select Insert from the pop−up menu.

5.
Enter the new qualifier's name and type.

To delete a qualifier:

1.
Open the desired association's specification window.

2.
Select the Role Detail tab for the desired role.

3.
Right−click the qualifier to be deleted.

4.
Select Delete from the pop−up menu.

Using Link Elements

A link element, also known as an association class, is a place to store attributes related to an association. For
example, we may have two classes, Student and Course. Where should the attribute Grade be placed? If it is
inside the Student class, we will need to add an attribute to Student for every course the student is enrolled in.
This can clutter the Student class. If we put the attribute in Course, we will need an additional attribute for
every student enrolled in the course.

To get around this problem, we can create an association class. The attribute Grade, because it's more related
to the link between a student and a course than to each individually, can be placed in this new class. UML
notation for an association class is shown in Figure 8.29.

Chapter 8: Relationships

335

Figure 8.29: Link element (association class)

To set a link element for the relationship:

1.
Open the desired relationship's specification window.

2.
Select the Detail tab.

3.
Set the link element using the Link Element field.

Using Constraints

A constraint is some condition that must be true. In Rose, you can set constraints for the relationship or for a
single role. Any constraints you enter will be generated as comments in the generated code.

To set a relationship constraint:

1.
Open the desired relationship's specification window, as shown in Figure 8.30.

Chapter 8: Relationships

336

Figure 8.30: Relationship constraints

2.
Select the Detail tab.

3.
Enter constraints in the Constraints field.

To add constraints to a role:

1.
Open the desired relationship's specification window.

2.
Select the Role Detail tab for the desired role.

3.
Enter the constraints in the Constraints field, as shown in Figure 8.31.

Chapter 8: Relationships

337

Figure 8.31: Role constraints

Exercise

In this exercise, we will add the relationships between the classes that participate in the "Add Item to
Shopping Cart" use case.

Problem Statement

Once Karen had added the attributes and operations to the classes, she was nearly ready to generate code.
First, though, she had to take a look at the relationships between the classes.

She examined the Sequence diagrams for any existing messages between two objects, which indicated the
need for a relationship between the classes. Any classes that communicated in the Sequence diagram needed a
relationship on the Class diagram. Once she identified the relationships, she added them to the model.

Adding Relationships

Add relationships to the classes that participate in the "Add Item to Shopping Cart" use case.

Exercise Steps:

Setup

1.

Chapter 8: Relationships

338

Locate the Add Item to Shopping Cart Class diagram in the browser.

2.
Double−click to open the diagram.

3.
Look for a Unidirectional Association button on the Diagram toolbar. If one does not exist, continue
through step 5. Otherwise, skip to the next section of the exercise.

4.
Right−click the Diagram toolbar and select Customize from the shortcut menu.

5.
Add the button labeled Creates a Unidirectional Association to the toolbar.

Add Associations

1.
Select the Unidirectional Association toolbar button.

2.
Draw an association from the CartInterface class to the CartMgr class.

3.
Repeat steps 1 and 2 to draw the following associations:

♦
From CartMgr to ProductMgr

♦
From ProductMgr to ProductCollection

♦
From ProductCollection to Product

♦
From CartMgr to CartCollection

♦
From CartCollection to CartItem

4.
Right−click the unidirectional association between the CartInterface class and the CartMgr class, near
the CartInterface class.

5.
Select Multiplicity → Zero or One from the shortcut menu.

6.
Right−click the other end of the unidirectional association.

7.

Chapter 8: Relationships

339

Select Multiplicity → Zero or One from the shortcut menu.

8.
Repeat steps 4–7 to add the remaining multiplicity to the diagram, as shown in Figure 8.32.

Figure 8.32: Associations for the "Add Item to Shopping Cart" use case

9.
Right−click the unidirectional association between the CartCollection class and CartItem class, near
the CartCollection class.

10.
Select Aggregate from the shortcut menu.

11.
Repeat steps 9 and 10 to add an aggregation between the ProductCollection class and Product class.

Summary

In this chapter, we discussed the different types of relationships in UML: associations, dependencies,
aggregations, and generalizations. Each of these types of relationships can be added to a Rose model through
a Class diagram.

Once the relationships have been added, you can add various details, such as relationship names, role names,
qualifiers, and multiplicity. In the next chapter, we'll take a look at object behavior. We'll focus on a single
class and examine the various states in which the class can exist and the ways the class transitions from one
state to another.

Chapter 8: Relationships

340

Chapter 9: Object Behavior
We've looked at classes and their relationships; we'll now examine the life of a single object. A given object
can exist in one or more states. For example, an employee can be employed, fired, on probation, on leave, or
retired. An Employee object may behave differently in each of these states.

In this chapter, we discuss Statechart diagrams, which include information about the various states in which
an object can exist, how the object transitions from one state to another, and how the object behaves
differently in each of the states.

•
Creating a Statechart diagram

•
Adding activities, entry actions, exit actions, events, and state histories to states

•
Adding events, arguments, guard conditions, actions, and send events to transitions

•
Adding start, stop, and nested states

Statechart Diagrams

A Statechart diagram shows the life cycle of a single object, from the time that it is created until it is
destroyed. These diagrams are a good way to model the dynamic behavior of a class. In a typical project, you
do not create a Statechart diagram for every class. In fact, many projects do not use them at all. Figure 9.1 is
an example of a Statechart diagram for our Flight class.

Figure 9.1: Statechart diagram for a Flight class

In this chapter, we discuss the different pieces of notation in this diagram. Briefly, however, we can read the
diagram as follows:

A flight begins in a Tentative state. Someone reviews the schedule to determine whether or not to include the

341

flight. If the schedule is rejected, the flight is deleted and no further action can be taken. If the schedule is
approved, the flight moves into a Scheduled status. The flight schedule is posted to the Internet, and as soon
as it is 60 days or less before the flight, the flight becomes open. We can add and remove passengers from the
flight, but as soon as the last seat is sold, the flight is full. If someone then cancels their reservation, the flight
can become open again. Ten minutes before takeoff, the flight is closed for reservations. If the plane has not
yet arrived, the flight is delayed until either the plane arrives or it has been four hours. After four hours, the
flight is canceled. If the plane has arrived, but there are fewer than 50 people, the flight is canceled. If the
flight is canceled, the airline will find an alternate flight for the passengers. If the plane does arrive, it takes
off and lands, which is the conclusion of this particular flight.

If you have a class that has some significant dynamic behavior, it can be helpful to create a Statechart diagram
for it. A class with significant dynamic behavior is one that can exist in many states. In our airline example, a
flight may be scheduled, open, full, or canceled.

To decide whether a class has significant dynamic behavior, begin by looking at its attributes. Consider how
an instance of the class might behave differently with different values in an attribute. If you have an attribute
called Status, this can be a good indicator of various states. How does the object behave differently as
different values are placed in this attribute?

You can also examine the relationships of a class. Look for any relationships with a zero in the multiplicity.
Zeroes indicate that the relationship is optional. Does an instance of the class behave differently when the
relationship does or does not exist? If it does, you may have multiple states. For example, let's look at a
relationship between a person and a company. If there is a relationship, the person is in an employed state. If
there is no relationship, the person may be fired or retired.

In Rose, no source code is generated from a Statechart diagram. These diagrams serve to document the
dynamic behavior of a class so that developers and analysts will have a clear understanding of the behavior.
The developers are ultimately responsible for implementing the logic outlined in the diagram. As with the
other UML diagrams, Statechart diagrams give the team a chance to discuss and document the logic before it
is coded.

Creating a Statechart Diagram

In Rose, you can create one or more Statechart diagrams per class. In the browser, the Statechart diagrams
appear underneath the class. The Rose icon for a Statechart diagram in the browser is shown below:

To create a Statechart diagram:

1.
Right−click the desired class in the browser.

2.
Select New → Statechart Diagram from the pop−up menu.

Rose will create an entry under the class in the browser called State/Activity Model. Underneath this entry
will be a new Statechart diagram called NewDiagram. You can create additional Statechart or activity
diagrams for the class by right−clicking State/Activity Model in the browser and selecting New → Statechart
Diagram or New → Activity Diagram.

Chapter 9: Object Behavior

342

Adding States

A state is one of the possible conditions in which an object may exist. You can examine two areas to
determine the state of an object: the values of the attributes and the relationships to other objects. Consider the
different values that can be placed in the attributes and the state of the object if a relationship does or does not
exist. Our Flight class, for example, might have an attribute called NumPassengers. Consider how the flight
behaves depending upon the value of NumPassengers. If there are 0 passengers, should the flight be able to
leave at all? What if there are 500 scheduled passengers on a flight that holds 150? What if there are only 50?
10? 5? At what point does the flight go ahead, and at what point is it canceled?

We can also look at the attribute DepartureDate. If the departure date is three years in the future, do we let
passengers reserve the flight? We might want to put the flight in a Scheduled status until it's a little closer to
the departure date. On the other hand, we may want to open the flight immediately, even if it doesn't depart
for three years. The business requirements will dictate the system behavior.

Examining attributes like these can help us determine what some of the states of the object might be. So far,
we have states called Full, Open, and Scheduled. We may even want to include an Overbooked state if we can
put 500 reservations on a 150−person flight.

We can also look at the relationships between the flight and other objects to look for states. If there is a
relationship to a Schedule object, the flight has been scheduled. If there is no relationship to a Pilot object, we
will put the flight into the Canceled state.

As with other Rose elements, you can add documentation to a state. However, because code is not generated
from these diagrams, comments will not be inserted into generated code for state documentation.

In UML, a state is shown as a rounded rectangle:

To add a state:

1.
Select State from the toolbox toolbar.

2.
Click on the Statechart diagram where the state should appear.

OR

1.
Select Tools → Create → State.

2.
Click on the Statechart diagram where the state should appear.

To add documentation to a state:

1.

Chapter 9: Object Behavior

343

Double−click the desired state to open the state specification window.

2.
Select the General tab.

3.
Enter documentation in the Documentation field.

OR

1.
Select the desired state.

2.
Select Browse → Specification.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

Adding State Details

While an object is in a particular state, there may be some activity that it performs. A report may be generated,
some calculation may occur, or an event may be sent to another object. For example, while a flight is in the
Scheduled state, it may check the current date periodically to see when it is 60 days before the flight date. As
soon as it is 60 days before, the flight will be moved to the Open state. In Rose, you can include this type of
information in the model through the state specification window.

There are five types of information you can include for a state: an activity, an entry action, an exit action, an
event, or a state history. Let's look at each of these in the context of our example. Figure 9.2 is the Statechart
diagram for the Flight class.

Figure 9.2: Statechart diagram for Flight class

Chapter 9: Object Behavior

344

Activity

An activity is some behavior that an object carries out while it is in a particular state. For example, when an
account is in the Closed state, the account holder's signature card is pulled. When a flight is in a Canceled
state, the airline tries to find alternate flights for its customers. An activity is an interruptible behavior. It may
run to completion while the object is in that state, or it may be interrupted by the object moving to another
state.

An activity is shown inside the state itself, preceded by the word "do" and a slash.

Entry Action

An entry action is a behavior that occurs while the object is transitioning into the state. Using our flight
example, as soon as a flight becomes scheduled, the system posts the schedule to the Internet. This happens
while the flight is transitioning into the Scheduled state. Unlike an activity, an entry action is considered to be
noninterruptible. While the posting of a schedule record for use on the Internet is technically interruptible, it
happens very fast and the user does not have the ability to easily cancel the transaction while it is occurring.
Therefore, it can be modeled as an action. There is a fine line between an action and an activity, but the
distinguishing characteristic is whether or not it is interruptible.

An entry action is shown inside the state, preceded by the word "entry" and a slash.

Exit Action

An exit action is similar to an entry action. However, an exit action occurs as part of the transition out of a
state. For example, when the plane lands and transitions out of the In Flight state, the system records the
landing time. Like an entry action, an exit action is considered to be noninterruptible.

An exit action is shown inside the state, preceded by the word "exit" and a slash.

The behavior in an activity, entry action, or exit action can include sending an event to some other object. For
example, if the flight is delayed for more than four hours, the flight object may need to send an event to a
flight scheduler object, which will automatically reschedule the flight for another day. In this case, the
activity, entry action, or exit action is preceded by a caret (^). The diagram would then read:

Chapter 9: Object Behavior

345

Do/ ^Target.Event(Arguments)

where Target is the object receiving the event, Event is the message being sent, and Arguments are parameters
of the message being sent. In Rose, you can add all of these details to a send event.

An activity may also happen as a result of some event being received. For example, an account may be in the
Open state. When some event occurs, the activity will be run.

All of these items can be added to your Rose model through the action specification window, as shown in
Figure 9.3.

Figure 9.3: Action specification window

To add an activity:

1.
Open the specification window for the desired state.

2.
Select the Action tab.

3.
Right−click the Actions box.

4.
Select Insert from the pop−up menu.

5.
Double−click the new action.

6.

Chapter 9: Object Behavior

346

Enter the action in the Actions field.

7.
In the When box, select Do to make the new action an activity.

To add an entry action:

1.
Open the specification window for the desired state.

2.
Select the Action tab.

3.
Right−click the Actions box.

4.
Select Insert from the pop−up menu.

5.
Double−click the new action.

6.
Enter the action in the Actions field.

7.
In the When box, select On Entry.

To add an exit action:

1.
Open the specification window for the desired state.

2.
Select the Action tab.

3.
Right−click on the Actions box.

4.
Select Insert from the pop−up menu.

5.
Double−click the new action.

6.
Enter the action in the Actions field.

7.
In the When box, select On Exit.

Chapter 9: Object Behavior

347

To add an action that occurs on a specific event:

1.
Open the specification window for the desired state.

2.
Select the Action tab.

3.
Right−click the Actions box.

4.
Select Insert from the pop−up menu.

5.
Double−click the new action.

6.
Enter the action in the Actions field.

7.
In the When box, select On Event.

8.
Enter the event that triggers the action, along with any arguments of the event and any guard
conditions that control whether or not the action should occur. If the guard condition is true, the action
will occur on the event. If not, the action will not occur, even if the event happens.

To send an event:

1.
Open the specification window for the desired state.

2.
Select the Detail tab.

3.
Right−click the Actions box.

4.
Select Insert from the pop−up menu.

5.
Double−click the new action.

6.
Select Send Event as the type.

7.
Enter the event, arguments, and target in their respective fields.

Chapter 9: Object Behavior

348

Adding Transitions

A transition is a movement from one state to another. The set of transitions on a diagram shows how the
object moves from one state to another. On the diagram, each transition is drawn as an arrow from the
originating state to the succeeding state.

Transitions can also be reflexive. Something may happen that causes an object to transition back to the state it
is currently in. For example, when we add a passenger to an open flight or remove a passenger, the flight is
still open. Reflexive transitions are shown as an arrow starting and ending on the same state.

To add a transition:

1.
Select Transition from the toolbox toolbar.

2.
Click on the state where the transition begins.

3.
Drag the transition line to the state where the transition ends.

To add a reflexive transition:

1.
Select Transition to Self from the toolbox toolbar.

2.
Click on the state where the reflexive transition occurs.

OR

1.
Select Tools → Create → Transition to Self.

2.
Click on the state where the reflexive transition occurs.

To add documentation to a transition:

1.

Chapter 9: Object Behavior

349

Double−click the desired transition to open the specification window.

2.
Select the General tab.

3.
Enter documentation in the Documentation field.

Adding Transition Details

There are various specifications you can include for each transition. These include events, arguments, guard
conditions, actions, and send events. Let's look at each of these, again in the context of our airline example.
Figure 9.2 from earlier in this chapter shows the Statechart diagram for a Flight class.

Event

An event is something that causes a transition from one state to another to occur. In the airline example, the
event Land transitions the flight from an In Flight status to a Landed status. If the flight was Delayed, it
becomes Closed once the Plane Arrived event happens. An event is shown on the diagram along the transition
arrow.

On the diagram, an event can be drawn using an operation name or simply using an English phrase. In the
airline example, all events are given English names. If you use operations instead, the Add Passenger event
might be written as AddPassenger().

Events can have arguments. For example, when removing a passenger, we will need the name of the
passenger to be removed. The Remove Passenger event may therefore have an argument called
PassengerName. In your Rose model, you can add arguments to your events.

Most transitions will have events—the events are what cause the transition to occur in the first place.
However, you can also have an automatic transition, which has no event. With an automatic transition, an
object automatically moves from one state to another as soon as all the entry actions, activities, and exit
actions have occurred.

Guard Condition

A guard condition controls when a transition can or cannot occur. In the airline example, adding a passenger
will move the flight from the Open to the Full state, but only if the last seat was sold. The guard condition in
this example is "Last seat was sold."

A guard condition is drawn along the transition line, after the event name, and enclosed in square brackets.

Chapter 9: Object Behavior

350

Guard conditions are optional. If there is more than one automatic transition out of a state, however, there
must be mutually exclusive guard conditions on each automatic transition. This will help the reader of the
diagram understand which path is automatically taken.

Action

An action, as we mentioned above, is a noninterruptible behavior that occurs as part of a transition. Entry and
exit actions are shown inside states, because they define what happens every time an object enters or leaves a
state. Most actions, however, will be drawn along the transition line, because they won't apply every time an
object enters or leaves a state.

For example, when transitioning from the Scheduled state to the Open state, we may want to initialize the
number of passengers at 0. This initialization can happen while the transition is occurring, and can therefore
be modeled as an action.

An action is shown along the transition line, after the event name, and preceded by a slash.

An event or action may be a behavior that occurs inside the object or a message that is sent to another object.
If an event or action is sent to another object, it is preceded by a caret (^) on the diagram.

To add an event:

1.
Double−click the desired transition to open the specification window.

2.
Select the General tab.

3.
Enter the event in the Event field.

To add arguments to an event:

1.
Double−click the desired transition to open the specification window.

2.

Chapter 9: Object Behavior

351

Select the General tab.

3.
Enter the arguments in the Arguments field.

To add a guard condition:

1.
Double−click the desired transition to open the specification window.

2.
Select the Detail tab.

3.
Enter the guard condition in the Condition field.

To add an action:

1.
Double−click the desired transition to open the specification window.

2.
Select the Detail tab.

3.
Enter the action in the Action field.

To send an event:

1.
Double−click the desired transition to open the specification window.

2.
Select the Detail tab.

3.
Enter the event in the Send Event field.

4.
Enter any arguments in the Send Arguments field.

5.
Enter the target in the Send Target field.

Adding Special States

There are two special states that can be added to the diagram: the start state and the stop state.

Chapter 9: Object Behavior

352

Start State

The start state is the state the object is in when it is first created. In the airline example, a flight begins in the
Tentative state. A start state is shown on the diagram as a filled circle.

A transition is drawn from the circle to the initial state.

A start state is mandatory: the reader of the diagram will need to know what state a new object is in. There
can be only one start state on the diagram.

To add a start state:

1.
Select Start State from the toolbox toolbar.

2.
Click on the Statechart diagram where the start state should appear.

Stop State

The stop state is the state an object is in when it is destroyed. A stop state is shown on the diagram as a
bull's−eye.

Stop states are optional, and you can add as many stop states as you need.

To add a stop state:

1.
Select End State from the toolbox toolbar.

2.
Click on the Statechart diagram where the stop state should appear.

Using Nested States and State History

To reduce clutter on your diagram, or as a design decision, you can nest one or more states inside another. The
nested states are referred to as substates, while the larger state is referred to as a superstate.

If two or more states have an identical transition, they can be grouped together into a superstate. Then, rather
than maintaining two identical transitions (one for each state), the transition can be moved to the superstate.
Figure 9.4 is a portion of our Statechart diagram for the Flight class. As you can see, the flight moves into the
Closed state 10 minutes before takeoff, regardless of whether it was in the Open or Full state before.

Chapter 9: Object Behavior

353

Figure 9.4: Statechart diagram without nested states

To reduce the number of arrows on the diagram, we can create a superstate around Open and Full, and then
just model a single transition to the Closed state. Figure 9.5 is the same portion of the diagram with nested
states. (As you can see, superstates can help to reduce the clutter on a Statechart diagram.)

Figure 9.5: Statechart diagram with nested states

At times, you may need the system to remember which state it was last in. If you have three states in a
superstate and then leave the superstate, you may want the system to remember where you left off inside the
superstate. In our example, if we want to temporarily suspend reservations while the system is undergoing
routine maintenance, we may transition to a SuspendReservations state while the maintenance is occurring.
Once the maintenance is done, we want to return to whatever state the flight was in before the maintenance
started.

There are two things you can do to resolve this issue. The first is to add a start state inside the superstate. The
start state will indicate where the default starting point is in the superstate. The first time the object enters that
superstate, this is where the object will be.

Chapter 9: Object Behavior

354

The second is to use state history to remember where the object was. If the History option is set, an object can
leave a superstate and then return and pick up right where it left off. The History option is shown with a small
"H" in a circle at the corner of the diagram, as shown in Figure 9.6.

Figure 9.6: Superstate history

To nest a state:

1.
Select State from the toolbox.

2.
Click on the state in which to nest the new state.

To use state history:

1.
Open the specification window for the desired state.

2.
Select the General tab.

3.
Select the State/Activity History check box.

4.
If you have states within states within states, you can apply the history feature to all nested states
within the superstate. To do so, select the Substate/Activity History check box.

Exercise

In this exercise, we will create a Statechart diagram for the Product class.

Problem Statement

In designing the Product class, Karen realized that it was a class that may require special attention. Many of
the requirements varied significantly as the state of a product changed. For example, products that were
backordered could not be purchased.

Chapter 9: Object Behavior

355

To be sure the design was sound, she sat down with the other developers in the group and worked out a
Statechart diagram for the class. With this information, the developers had a very good sense of what it was
going to take to code the class.

Create a Statechart Diagram

Create the Statechart diagram shown in Figure 9.7 for the Order class.

Figure 9.7: Statechart diagram for the Product class

Exercise Steps:

Create the Diagram

1.
Locate the Product class in the browser.

2.
Right−click the class and select New Statechart Diagram.

Add the Start and Stop States

1.
Select Start State from the toolbox.

2.
Place the state on the diagram.

3.
Select End State from the toolbox.

4.
Place the state on the diagram.

Chapter 9: Object Behavior

356

Add the States

1.
Select State from the toolbox.

2.
Place the state on the diagram.

3.
Name the state Ordered.

4.
Select State from the toolbox.

5.
Place the state on the diagram.

6.
Name the state Inventoried.

7.
Select State from the toolbox.

8.
Name the state Out of Stock.

9.
Select State from the toolbox.

10.
Name the state Selected for Purchase.

11.
Select State from the toolbox.

12.
Place the state on the diagram.

13.
Name the state Purchased.

Add Transitions

1.
Select Transition from the toolbox.

2.
Click the Start State.

3.
Drag the transition line to the Ordered state.

4.

Chapter 9: Object Behavior

357

Repeat steps 1–3 to add the following transitions:

♦
Ordered to Out of Stock

♦
Ordered to Inventoried

♦
Inventoried to Selected for Purchase

♦
Selected for Purchase to Inventoried

♦
Selected for Purchase to Purchased

♦
Purchased to End State

♦
Out of Stock to End State

♦
Inventoried to End State

Add Transition Details

1.
Double−click the Ordered to Out of Stock transition to open the specification.

2.
Select the Detail tab.

3.
In the Guard Condition field, enter backordered.

4.
Click OK to close the specification.

5.
Repeat steps 1–4 to add the guard conditions to the following transitions:

♦
[received] between Ordered and Inventoried

♦
[in shopping cart] between Inventoried and Selected for Purchase

♦
[paid] between Selected for Purchase and Purchased

Chapter 9: Object Behavior

358

Summary

In this chapter, we took a look at the Statechart diagram, another of the UML diagrams supported by Rose.
Although source code is not generated from these diagrams, they can prove invaluable when examining,
designing, and documenting the dynamic behavior of a class.

A Statechart diagram shows the various states in which an object can exist, how the object moves from one
state to another, what happens in each state, and what happens during the transitions from one state to another.
All of this information is part of the detailed design of the class. The developers can use this information when
programming the class.

In Rose, you can create a Statechart diagram for a class, an operation, a package, or a use case. You can create
as many Statechart diagrams per class as you'd like to show the states and transitions for the class. Not every
class will need a Statechart diagram, only those with significant dynamic behavior. To determine whether a
class has significant dynamic behavior, you can examine the values its attributes can have and the
relationships the class can have.

In the next chapter, we'll prepare for source code generation by examining the Component view of Rose. In
the Component view, we'll move from the logical design to the physical design and look at the code libraries,
executable files, and other components of a system.

Chapter 9: Object Behavior

359

Chapter 10: Component View
We move now to the Component view of Rose. In the Component view, we'll focus on the physical
organization of the system. First, we'll decide how the classes will be organized into code libraries. Then, we'll
take a look at the different executable files, dynamic link library (DLL) files, and other runtime files in the
system. We won't concern ourselves yet with where the different files will be placed on the network. We'll
consider these issues in the Deployment view.

•
Exploring types of components

•
Creating components and mapping classes to components

•
Using Component diagrams

What Is a Component?

A component is a physical module of code. Components can include both source code libraries and runtime
files. For example, if you are using C++, each of your .cpp and .h files is a separate component. The .exe file
that you create after the code is compiled is also a component.

Before you generate code, you map each of your files to the appropriate component(s). In C++, for example,
each class is mapped to two components—one representing the .cpp file for that class and one representing the
.h file. In Java, you map each class to a single component, representing the .java file for that class. When you
generate code, Rose will use the component information to create the appropriate code library files.

Once the components are created, they are added to a Component diagram and relationships are drawn
between them. The only type of relationship between components is a dependency. A dependency suggests
that one component must be compiled before another. We'll look at this in more detail in the "Adding
Component Dependencies" section later in this chapter.

Types of Components

In Rose, you can use several different icons to represent the different types of components. As we mentioned
earlier, there are two primary types of components: source code libraries and runtime components. Within
each of these two groups are a number of different component icons you can use. Let's start by looking at the
source code library icons:

Component The Component icon represents a software module with a well−defined interface. In the
component specification, you specify the type of component in the Stereotype field (e.g., ActiveX, Applet,
Application, DLL, and Executables). See Table 10.1 in the stereotypes section for a discussion of the different
stereotypes you can use with this icon.

360

Subprogram Specification and Body These icons represent a subprogram's visible specification and the
implementation body. A subprogram is typically a collection of subroutines. Subprograms do not contain
class definitions.

Main Program The Main Program icon represents the main program. A main program is the file that
contains the root of a program. In PowerBuilder, for example, this is the file that contains the application
object.

Package Specification and Body A package is the implementation of a class. A package specification is a
header file, which contains function prototype information for the class. In C++, package specifications are
the .h files. In Java, you use the Package Specification icon to represent the .java files.

A package body contains the code for the operations of the class. In C++, package bodies are the .cpp files.

Chapter 10: Component View

361

There are additional Component icons that are used for runtime components. Runtime components include
executable files, DLL files, and tasks.

Task Specification and Body These icons represent packages that have independent threads of control. An
executable file is commonly represented as a task specification with a .exe extension.

Database This icon represents a database, which may contain one or more schemas. On a Component
diagram, a database is shown with the following icon:

In addition to modeling the component itself, you can model the relationship between a component and its
interface. On a Component diagram, a component with its interface would look like this:

Component Diagrams

A Component diagram is a UML diagram that displays the components in the system and the dependencies
between them. Figure 10.1 is an example of a Component diagram.

Chapter 10: Component View

362

Figure 10.1: Component diagram

With this diagram, the staff responsible for compiling and deploying the system will know which code
libraries exist and which executable files will be created when the code is compiled. Developers will know
which code libraries exist and what the relationships are between them. The component dependencies will let
those who are responsible for compiling know in which order the components need to be compiled.

In the example in Figure 10.1, there are four components. The FlightServer component realizes the classes
Customer, Flight, and FlightList, all of which are on the server. The Flight component realizes the server
pages and client pages that are responsible for searching for flights and displaying flight information. The
Credit component realizes the CreditForm class, and the Reservation component realizes the ReserveSeat and
ConfirmationForm server and client pages.

Creating Component Diagrams

In Rose, you can create Component diagrams in the Component view. Once the diagrams are created, you can
either create components directly on the diagram or drag existing components from the browser to the
diagram.

In the browser, Component diagrams are displayed with the following icon:

To create a Component diagram in the Component view:

1.
In the browser, right−click the package that will contain the Component diagram.

2.
Select New → Component Diagram from the pop−up menu.

3.
Enter the name of the new Component diagram.

OR

1.
Select Browse → Component Diagram. This displays the Select Component Diagram window.

2.

Chapter 10: Component View

363

Select the desired package.

3.
Select <New> from the Component Diagram box and click OK.

4.
Enter the name of the new Component Diagram and click OK.

To delete a Component diagram:

1.
In the browser, right−click the Component diagram.

2.
Select Delete from the pop−up menu.

OR

1.
Select Browse → Component Diagram. This displays the Select Component Diagram window.

2.
Select the desired package.

3.
Select the component to delete.

4.
Click the Delete button.

Adding Components

Once you've created the Component diagram, the next step is to add components. You begin by creating a
generic component and then assigning the appropriate stereotype to it. In the Component Diagram toolbar,
buttons are available for all the different types of icons listed in the earlier section titled "Types of
Components."

You can add documentation to the components as well. Documentation may include a description of the
purpose of the component or a description of the class(es) in the component.

Like classes, components can be packaged together to organize them. Typically, you create one Component
view package for each Logical view package. For example, if a Logical view package called Orders contains
classes called Order, OrderItem, and OrderForm, the corresponding Component view package would contain
the components that hold the Order, OrderItem, and OrderForm classes.

To add a component:

1.
Select Component from the toolbox toolbar.

2.

Chapter 10: Component View

364

Click on the diagram where the new component will be placed.

3.
Enter a name for the new component.

OR

1.
Select Tools → Create → Component.

2.
Click on the diagram where the new component will be placed.

3.
Enter a name for the new component.

OR

1.
In the browser, right−click the package to contain the component.

2.
Select New → Component from the pop−up menu.

3.
Enter a name for the new component.

To add documentation to a component:

1.
Right−click the desired component.

2.
Select Open Specification from the pop−up menu. This opens the component's specification window.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

OR

1.
Double−click the desired component. This opens the component's specification window.

2.
Select the General tab.

3.
Enter documentation in the Documentation field.

Chapter 10: Component View

365

OR

1.
Select the desired component.

2.
Select Browse → Specification. This opens the component's specification window.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

OR

1.
Select the desired component.

2.
Enter documentation in the documentation window.

To delete a component from the diagram only:

1.
Select the component in the diagram.

2.
Press Delete.

Note The component has been removed from the diagram, but still exists in the browser and on other
Component diagrams.

To delete a component from the model:

1.
Select the component on a Component diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

OR

1.
Right−click the component in the browser.

2.
Select Delete from the shortcut menu.

Note Rose will remove the component from all Component diagrams, as well as from the browser.

Chapter 10: Component View

366

Adding Component Details

As with other Rose model elements, there are a number of detailed specifications you can add to each
component. These include stereotypes, languages, declarations, and classes.

Stereotypes

The first detail is a component stereotype. The stereotype controls which icon will be used to represent the
component.

As listed earlier, the stereotypes are <none> (which uses the Component icon), subprogram specification,
subprogram body, main program, package specification, package body, executable, DLL, task specification,
and task body.

In addition, Rose includes a number of other stereotypes for the different languages it supports. The
language−specific stereotypes available in Rose are included in Table 10.1.

Table 10.1: Language−Specific Component Stereotypes

Language Stereotypes

Java EJBDeploymentDescriptor, EJB JAR, ServletDeploymentDescriptor,
and WAR

Oracle8 Database, Schema

Visual Basic ActiveX Control
You can create additional stereotypes if you'd like to represent new types of components in your particular
programming language and application.

To assign a stereotype:

1.
Open the desired component's standard specification window.

2.
Select the General tab, as shown in Figure 10.2.

Chapter 10: Component View

367

Figure 10.2: Assigning a stereotype to a component

3.
Enter the stereotype in the Stereotype field.

OR

1.
Select the desired component.

2.
Type the stereotype within the double angle brackets: << Name >>.

If the component is a Java, XML, or CORBA component, an additional component specification window is
provided, as shown below:

Chapter 10: Component View

368

Languages

In Rose, you can assign languages on a component−by−component basis. Therefore, you can generate part of
your model in C++, part in Java, part in Visual Basic, and so on, provided you have the Enterprise version of
Rose installed.

Rose Enterprise contains add−ins for ANSI C++, Ada 83, Ada 95, CORBA, C++, Java, Visual Basic, Visual
C++, Web Modeler, XML/DTD, and Oracle 8. Many more add−ins are available from various vendors to
extend the capabilities of Rose. Add−ins for other languages (PowerBuilder, Forte, Visual Age for Java, etc.)
may be purchased as well. For a complete list of Rose Link Partners, visit the Rational Rose website at
http://www.rational.com/.

To assign a language:

1.
Open the desired component's standard specification window.

2.
Select the General tab.

3.
Enter the language in the Language field.

Declarations

In Rose, there is a place to include supplementary declarations that will be added during code generation for
each component. Declarations include language−specific statements that are used to declare variables, classes,
and so on. A C++ #include statement is also considered a declaration.

To add declarations:

1.
Open the desired component's standard specification window.

2.

Chapter 10: Component View

369

Select the Detail tab, as shown in Figure 10.3.

Figure 10.3: Adding declarations to a component

3.
Enter the declarations in the Declarations field.

Classes

Before code can be generated for a class, it must be mapped to a component. This mapping helps Rose know
in which physical file the code for the class should be stored.

You can map one or more classes to each component. After you have mapped a class to a component, the
component name will appear in parentheses after the class name in the Logical view.

Chapter 10: Component View

370

To map classes to a component:

1.
Open the desired component's standard specification window.

2.
Select the Realizes tab, as shown in Figure 10.4.

Chapter 10: Component View

371

Figure 10.4: Mapping classes to a component

3.
Right−click the class to map.

4.
Select Assign from the pop−up menu.

OR

1.
In the browser, select the class to map.

2.
Drag the class to the desired component, either in the browser or on a diagram.

Adding Component Dependencies

The only type of relationship that exists between components is a component dependency. A component
dependency suggests that one component depends on another. A component dependency is drawn as a dashed
arrow between the components:

In this example, Component A depends upon Component B. In other words, there is some class in A that
depends on some class in B.

These dependencies have compilation implications. In this example, because A depends on B, A cannot be
compiled until B has been compiled. Someone reading this diagram will know that B should be compiled first,
followed by A.

As with package dependencies, you want to avoid circular dependencies with components. If A depends on B,
and B depends on A, you cannot compile either until the other has been compiled. Thus, you have to treat the
two as one large component. All circular dependencies should be removed before you attempt to generate
code.

The dependencies also have maintenance implications. If A depends on B, any change to B may have an
impact on A. Maintenance staff can use this diagram to assess the impact of a change. The more components
that a single component depends on, the more likely it is to be affected by a change.

Finally, the dependencies will let you know what may or may not be easily reused. In this example, A is
difficult to reuse. Because A depends on B, you cannot reuse A without also reusing B. B, on the other hand,
is easy to reuse, since it does not depend on any other components. The fewer components that a single
component depends on, the easier it is to reuse.

To add a component dependency:

1.
Select the Dependency icon from the toolbox.

2.

Chapter 10: Component View

372

Drag the dependency line from the Client component to the Supplier component.

OR

1.
Select Tools → Create → Dependency.

2.
Drag the dependency line from the Client component to the Supplier component.

To delete a component dependency:

1.
Select the desired component dependency.

2.
Press the Delete key.

OR

1.
Select the desired component dependency.

2.
Select Edit → Delete.

Exercise

In this exercise, we will create the Component diagram for the shopping cart application. At this point, we've
identified the classes that are needed for the "Add Item to Shopping Cart" use case. As other use cases are
built, new components will be added to the diagram.

Problem Statement

With the analysis and design completed, Dan, one of the members of the deployment team, created the
Component diagrams. By now, the team had decided to use Java, so he set about creating the appropriate
components for each class.

Figure 10.5 shows the main Component diagram for the entire system. This main diagram focuses on the
packages of components you will create.

Chapter 10: Component View

373

Figure 10.5: Main Component diagram

Figure 10.6 includes all of the components in the Entities package. These are the components that will contain
the classes in the Entities package in the Logical view.

Figure 10.6: Entities package Component diagram

Figure 10.7 includes the components in the Control package. These components will contain the classes in the
Control package in the Logical view.

Chapter 10: Component View

374

Figure 10.7: Control package Component diagram

Figure 10.8 includes the components in the Boundaries package. These components will contain the classes in
the Boundaries package in the Logical view.

Figure 10.8: Boundaries package Component diagram

Figure 10.9 shows all of the components in the system. We've named this diagram the System Component
diagram. With this one diagram, you can see all of the dependencies between all of the components in the
system.

Chapter 10: Component View

375

Figure 10.9: System Component diagram

Exercise Steps:

Create the Component Packages

1.
Right−click the Component view in the browser.

2.
Select New → Package.

3.
Name the new package Entities.

4.
Repeat steps 1–3 for packages Boundaries and Control.

Add the Packages to the Main Component Diagram

1.
Open the main Component diagram by double−clicking it.

2.
Drag the Entities, Boundary, and Control packages from the browser to the main Component diagram.

Draw Package Dependencies

1.

Chapter 10: Component View

376

Select Dependency from the toolbox.

2.
On the main Component diagram, click the Entities package.

3.
Drag the dependency to the Control package.

4.
Repeat steps 1–3 to add a dependency from the Control package to the Boundaries package.

Add the Components for the Packages and Draw Dependencies

1.
Double−click the Entities package in the main Component diagram to open the main Component
diagram for the Entities package.

2.
Select Package Specification from the toolbox.

3.
Place the package specification on the diagram.

4.
Enter the name of the package specification as CartCollection.

5.
Repeat steps 2–4 to add the CartItem, ProductCollection, and ProductItem package specifications.

6.
Select Dependency from the toolbox.

7.
Click on the CartItem package specification.

8.
Drag the dependency line to the CartCollection package specification.

9.
Repeat steps 6−8 to add dependencies from the ProductItem package specification to the
Product−Collection package specification and from the ProductItem package specification to the
CartItem package specification.

10.
Use this method to create the following components and dependencies:

♦
CartInterface package specification for the Boundaries package

♦
CartMgr package specification for the Control package

♦

Chapter 10: Component View

377

ProductMgr package specification for the Control package

♦
ProductMgr package specification to CartMgr package specification for a dependency in the
Control package

Create the System Component Diagram

1.
Right−click the Component view in the browser.

2.
Select New → Component Diagram from the pop−up menu.

3.
Name the new diagram System.

4.
Double−click the System Component diagram.

Place Components on the System Component Diagram

1.
If needed, expand the Entities component package in the browser to open the package.

2.
Click the CartItem package specification within the Entities component package.

3.
Drag the CartItem package specification onto the diagram.

4.
Repeat steps 2 and 3 to place the CartCollection, ProductItem, and ProductCollection package
specifications on the diagram.

5.
Use this method to place the following components on the diagram:

♦
CartInterface package specification in the Boundaries component package

♦
CartMgr package specification in the Control component package

♦
ProductMgr package specification in the Control component package

6.
Select Main Program from the toolbox.

7.

Chapter 10: Component View

378

Place a main program on the diagram and name it MainProgram.

Add Remaining Dependencies to the System Component Diagram

The dependencies that already exist are automatically displayed on the System Component diagram after you
add the components. Next, we add the remaining dependencies.

1.
Select Dependency from the toolbox.

2.
Click the ProductCollection package specification.

3.
Drag the dependency line to the ProductMgr package specification.

4.
Repeat steps 1–3 to add the following dependencies:

♦
CartCollection package specification to CartMgr package specification

♦
CartMgr package specification to CartInterface package specification

♦
CartInterface package specification to MainProgram task specification

Map Classes to Components

1.
In the Logical view of the browser, locate the ProductItem class in the Entities package.

2.
Drag the ProductItem class to the ProductItem component package specification in the Component
view. This maps the ProductItem class to the ProductItem component package specification.

3.
Repeat steps 1–2 to map the following classes to components:

♦
CartItem class to CartItem package specification

♦
CartCollection class to CartCollection package specification

♦
ProductCollection class to ProductCollection package specification

♦
CartMgr class to CartMgr package specification

♦

Chapter 10: Component View

379

ProductMgr class to ProductMgr package specification

♦
CartInterface class to CartInterface package specification

Summary

In this chapter, we examined the Component view of Rose. The Component view is concerned with the
physical structure of the system. A component is simply a file associated with the system. It may be a source
code file, an executable file, or a DLL file. In Rose, there are various icons you can use to distinguish the
different types of components.

Classes are mapped to specific languages by first mapping them to components. Each component is assigned a
specific language. In the Enterprise version of Rose, you can generate part of your code in one language and
part in another.

Component dependencies give you information about the compilation dependencies. These relationships will
let you know in what order the various components must be compiled.

In the next chapter, we'll discuss how the components are deployed on the network.

Chapter 10: Component View

380

Chapter 11: Deployment View
In this chapter, we'll examine the final view of Rose, the Deployment view. The Deployment view is
concerned with the physical deployment of the application. This includes issues such as the network layout
and the location of the components on the network. We'll also consider deployment issues such as how much
network bandwidth we have, how many concurrent users we can expect, what we do if a server goes down,
and so on.

The Deployment view contains processors, devices, processes, and connections between processors and
devices. All of this information is diagrammed on a Deployment diagram. There is only one Deployment
diagram per system, and therefore one Deployment diagram per Rose model.

•
Creating and using a Deployment diagram

•
Adding processors

•
Adding devices

•
Adding connections

•
Adding processes

Deployment Diagrams

A Deployment diagram shows all of the nodes on the network, the connections between them, and the
processes that will run on each one. Figure 11.1 is an example of a Deployment diagram.

Figure 11.1: Deployment diagram for the airline system

Opening the Deployment Diagram

In Rose, the Deployment diagram is created in the Deployment view. Because there is only one diagram, it
isn't shown in the browser as a package. To access the Deployment diagram, you need to use the browser.

To open the Deployment diagram:

1.
381

Double−click Deployment View entry in the browser.

2.
Rose will open the Deployment diagram for the model.

In the following sections, we'll examine each piece of this diagram.

Adding Processors

A processor is any machine that has processing power. The servers, workstations, and other machines with
processors are included in this category.

In UML, processors are displayed with this symbol:

To add a processor:

1.
Select Processor from the toolbox.

2.
Click the Deployment diagram to place the processor.

3.
Enter the name of the processor.

OR

1.
Select Tools → Create → Processor.

2.
Click the Deployment diagram to place the processor.

3.
Enter the name of the processor.

OR

1.
Right−click the Deployment view in the browser.

2.
Select New → Processor from the pop−up menu.

3.

Chapter 11: Deployment View

382

Enter the name of the processor.

To add documentation to a processor:

1.
Right−click the desired processor.

2.
Select Open Specification from the pop−up menu. This opens the processor's specification window.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

OR

1.
Double−click the desired processor. This opens the processor's specification window.

2.
Select the General tab.

3.
Enter documentation in the Documentation field.

OR

1.
Select the desired processor.

2.
Select Browse → Specification. This opens the processor's specification window.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

OR

1.
Select the desired processor.

2.
Enter documentation in the documentation window.

To delete a processor from the diagram only:

1.

Chapter 11: Deployment View

383

Select the processor in the diagram.

2.
Press Delete.

OR

1.
Select the processor in the diagram.

2.
Select Edit → Delete.

Note Note that the processor has been removed from the diagram, but still exists in the browser.
To delete a processor from the model:

1.
Select the processor on the Deployment diagram.

2.
Select Edit → Delete from Model, or press Ctrl−D.

OR

1.
Right−click the processor in the browser.

2.
Select Delete from the shortcut menu.

Note Rose will remove the processor from the Deployment diagram, as well as from the browser.

Adding Processor Details

In the processor specification window, you can add information about the processor's stereotype,
characteristics, and scheduling.

The stereotype, as with other model elements, is used to classify the processor. For example, you may have
some Unix machines and some PC machines. You may want to define stereotypes to differentiate between the
two.

A processor's characteristics are physical descriptions of the processor. For example, these could include the
processor's speed or amount of memory.

The Scheduling field documents the type of process scheduling used by the processor. The options are as
follows:

Preemptive Indicates that high−priority processes can preempt lower−priority processes.

Non−preemptive Indicates that the processes have no priority. The current process executes until it is
finished, at which time the next process begins.

Chapter 11: Deployment View

384

Cyclic Indicates the control cycles between the processes; each process is given a set amount of time to
execute, and then control passes to the next process.

Executive Indicates that there is some sort of computational algorithm that controls the scheduling.

Manual Indicates that the processes are scheduled by the user.

To assign a stereotype:

1.
Open the desired processor's specification window.

2.
Select the General tab, as shown in Figure 11.2.

Figure 11.2: Entering a processor stereotype

3.
Enter the stereotype in the Stereotype field.

OR

1.
Select the desired processor.

2.
Type the stereotype within double−angle brackets: << Name >>.

To add characteristics to a processor:

1.

Chapter 11: Deployment View

385

Open the desired processor's specification window.

2.
Select the Detail tab, as shown in Figure 11.3.

Figure 11.3: Entering processor characteristics

3.
Enter the characteristics in the Characteristics field.

To set scheduling for a processor:

1.
Open the desired processor's specification window.

2.
Select the Detail tab.

3.
Select one of the following for scheduling: Preemptive, Non−preemptive, Cyclic, Executive, or
Manual.

To show scheduling on the diagram:

1.
Right−click the desired processor.

2.
Select Show Scheduling from the pop−up menu.

Chapter 11: Deployment View

386

To show processes on the diagram:

1.
Right−click the desired processor.

2.
Select Show Processes from the pop−up menu.

Adding Devices

A device is hardware with a single purpose or a limited purpose. Devices include items such as dumb
terminals, printers, and scanners. Both processors and devices can also be referred to as nodes on a network.

In UML, devices are displayed with this symbol:

To add a device:

1.
Select Device from the toolbox.

2.
Click the Deployment diagram to place the device.

3.
Enter the name of the device.

OR

1.
Select Tools → Create → Device.

2.
Click on the Deployment diagram to place the device.

3.
Enter the name of the device.

OR

1.
Right−click the Deployment view in the browser.

2.

Chapter 11: Deployment View

387

Select New → Device from the pop−up menu.

3.
Enter the name of the device.

To add documentation to a device:

1.
Right−click the desired device.

2.
Select Open Specification from the pop−up menu. This opens the device's specification window.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

OR

1.
Double−click the desired device. This opens the device's specification window.

2.
Select the General tab.

3.
Enter documentation in the Documentation field.

OR

1.
Select the desired device.

2.
Select Browse → Specification. This opens the device's specification window.

3.
Select the General tab.

4.
Enter documentation in the Documentation field.

OR

1.
Select the desired device.

2.
Enter documentation in the documentation window.

Chapter 11: Deployment View

388

To delete a device from the diagram only:

1.
Select the device in the diagram.

2.
Press Delete.

OR

1.
Select the device in the diagram.

2.
Select Edit → Delete.

Note Note that the device has been removed from the diagram, but still exists in the browser.
To delete a device from the model:

1.
Select the device on the Deployment diagram.

2.
Select Edit → Delete from Model, or press Ctrl+D.

OR

1.
Right−click the device in the browser.

2.
Select Delete from the shortcut menu.

Note Rose will remove the device from the Deployment diagram, as well as from the browser.

Adding Device Details

Like processors, there are various details that can be added to a device. The first is the stereotype, which is
used to classify the device. The second are the characteristics, which, as with processors, are the physical
descriptions of the device.

To assign a stereotype:

1.
Open the desired device's specification window.

2.
Select the General tab, as shown in Figure 11.4.

Chapter 11: Deployment View

389

Figure 11.4: Entering a device stereotype

3.
Enter the stereotype in the Stereotype field.

OR

1.
Select the desired device.

2.
Type the stereotype within double−angle brackets: << Name >>.

To add characteristics to a device:

1.
Open the desired device's specification window.

2.
Select the Detail tab, as shown in Figure 11.5.

Chapter 11: Deployment View

390

Figure 11.5: Entering device characteristics

3.
Enter the characteristics in the Characteristics field.

Adding Connections

A connection is a physical link between two processors, two devices, or a processor and a device. Most
commonly, connections represent the physical network connections between the nodes on your network. A
connection can also be an Internet link between two nodes.

To add a connection:

1.
Select Connection from the toolbox.

2.
Click on the node to connect.

3.
Drag the connection line to another node.

OR

1.
Select Tools → Create → Connection.

2.
Click on the node to connect.

3.

Chapter 11: Deployment View

391

Drag the connection line to another node.

To delete a connection:

1.
Select the connection in the diagram.

2.
Press Delete.

OR

1.
Select the connection in the diagram.

2.
Select Edit → Delete.

Adding Connection Details

Connections may be assigned stereotypes. Connections can also be given characteristics, which are used to
provide details about the physical connection. For example, a connection might be a T1 line. This type of note
would be added in the Characteristics field.

To assign a stereotype:

1.
Open the desired connection's specification window.

2.
Select the General tab, as shown in Figure 11.6.

Chapter 11: Deployment View

392

Figure 11.6: Entering a connection stereotype

3.
Enter the stereotype in the Stereotype field.

OR

1.
Select the desired connection.

2.
Type the stereotype within double−angle brackets: << Name >>.

To add characteristics to a connection:

1.
Open the desired connection's specification window.

2.
Select the Detail tab, as shown in Figure 11.7.

Chapter 11: Deployment View

393

Figure 11.7: Entering connection characteristics

3.
Enter the characteristics in the Characteristics field.

Adding Processes

A process is a single thread of execution that runs on a processor. An executable file, for example, is
considered a process. When adding processes to the diagram, focus on only the processes related to the system
being built.

Processes can be displayed on a Deployment diagram or hidden from view. If they are displayed, they are
listed directly below the processor(s) on which they are run.

Processes may be assigned a priority. If the processor on which they are run uses preemptive scheduling, the
priority of the process will determine when it can run.

To add a process:

1.
Right−click the desired processor in the browser.

2.
Select New → Process from the pop−up menu.

3.
Enter the name of the new process.

OR

1.

Chapter 11: Deployment View

394

Open the desired processor's specification window.

2.
Click the Detail tab.

3.
Right−click in the Processes box.

4.
Select Insert from the pop−up menu.

5.
Enter the name of the new process.

To add documentation to a process:

1.
Open the desired processor's specification window.

2.
Select the Detail tab.

3.
Enter documentation in the Documentation field.

OR

1.
Double−click the desired process in the browser.

2.
Select the Detail tab.

3.
Enter documentation in the Documentation field.

OR

1.
Right−click the desired process in the browser.

2.
Select Open Specification from the pop−up menu.

3.
Select the Detail tab.

4.
Enter documentation in the Documentation field.

To add a priority to a process:

1.

Chapter 11: Deployment View

395

Open the desired processor's specification window.

2.
Select the General tab, as shown in Figure 11.8.

Figure 11.8: Entering process information

3.
Enter the priority in the Priority field.

To delete a process:

1.
Right−click the desired process in the browser.

2.
Select Delete from the pop−up menu.

OR

1.
Open the desired processor's specification.

2.
Click the Detail tab.

3.
Right−click the desired process.

4.

Chapter 11: Deployment View

396

Select Delete from the pop−up menu.

Exercise

In this exercise, we'll create a Deployment Diagram.

Problem Statement

The project team had done quite a bit of analysis and design up to this point. The use cases, object interaction,
and components were all nicely defined. However, the network management unit needed to know which
components would reside on which machines. So, the team put together a Deployment diagram for the
system.

Create Deployment Diagram

Create the Deployment diagram for the Order Processing system. Your completed diagram should look like
Figure 11.9.

Figure 11.9: Deployment diagram for the Order Processing system

Exercise Steps:

Add the Nodes to the Deployment Diagram

1.
Double−click the Deployment view in the browser to open the Deployment diagram.

2.
Select Processor from the toolbox.

3.

Chapter 11: Deployment View

397

Click the diagram to place the processor.

4.
Enter the processor name as Database Server.

5.
Repeat steps 2–4 to add the following processors:

♦
Application Server

♦
Client Workstation #1

♦
Client Workstation #2

♦
Web Server

6.
Select Device from the toolbox.

7.
Click the diagram to place the device.

8.
Enter the device name as Printer.

Add Connections

1.
Select Connection from the toolbox.

2.
Click on the Database Server processor.

3.
Drag the connection line to the Application Server processor.

4.
Repeat steps 1–3 to add the following connections:

♦
Application Server processor to Web Server processor

♦
Web Server processor to Client Workstation #1 processor

♦
Web Server processor to Client Workstation #2 processor

♦

Chapter 11: Deployment View

398

Application Server processor to Printer device

Add Processes

1.
Right−click the Application Server processor in the browser.

2.
Select New → Process from the menu.

3.
Enter the process name as MainProgram.

4.
Repeat steps 1–3 to add the following processes:

♦
For the Client Workstation #1 processor: Web Browser

♦
For the Client Workstation #2 processor: Web Browser

♦
For the Database Server processor: Oracle Server

♦
For the Web Server: Internet Information Server

Show the Processes

1.
Right−click the Application Server process.

2.
Select Show Processes from the menu.

3.
Repeat steps 1 and 2 to show the processes for the following processors:

♦
Client Workstation #1 processor

♦
Client Workstation #2 processor

♦
Web Server

♦
Database Server

Chapter 11: Deployment View

399

Summary

In this chapter, we covered the Deployment view of Rose. In the Deployment diagram, the team describes the
network structure and where the various processes are run.

You now have the information you need to do the following:

•
Define the system scope with use cases and actors, and diagram the use cases and actors on a Use
Case diagram.

•
Analyze a problem with use cases and Use Case documentation.

•
Describe the objects in the system and the system flow in a Sequence or Collaboration diagram.

•
Create the classes needed to implement the functionality in the flow of events, and diagram the
classes.

•
Define and diagram the attributes, operations, and relationships of the classes.

•
Examine the dynamic behavior of a class by creating a Statechart diagram.

•
Perform an architectural assessment by grouping the classes into packages and examining the
relationships between the classes and the packages.

•
Define and view the physical structure of the system in a Component diagram.

•
View the network structure and deployment information on a Deployment diagram.

In the next chapter, we'll take a close look at the code−generation features of Rose. The next few chapters will
discuss how to generate C++, Java, Visual Basic, and CORBA/IDL code from a Rose model. We'll also look
at how to design a database using Rose, how to work with XML and Rose, and how to model a web
application in Rose.

Chapter 11: Deployment View

400

Chapter 12: Introduction to Code Generation and
Reverse Engineering Using Rational Rose
One of the most powerful features of Rational Rose is its ability to generate code that represents a model. In
this chapter, we'll take a look at the fundamental steps you must take before you can generate code from your
Rose model. Then, we'll examine the reverse−engineering process, and see what is reverse engineered into a
Rose model.

The code−generation options you have available will vary by the version of Rose you have installed. There
are three different versions of Rose currently available:

•
Rose Modeler allows you to create a model for your system, but will not support code generation or
reverse engineering.

•
Rose Professional allows you to generate code in one language.

•
Rose Enterprise allows you to generate code in Ada 83, Ada 95, ANSI C++, CORBA, Java, COM,
Visual Basic, Visual C++, C++, and XML. It also supports the generation and reverse engineering of
databases.

A number of Rose partner companies have developed add−ins to support code generation and reverse
engineering in other languages. Check Rational's website, http://www.rational.com/, for information about
add−in products available for Rose.

•
Checking your Rose model

•
Setting code−generation properties

•
Generating code using Rational Rose

•
Preparing for reverse engineering

•
Reverse engineering code into a Rose model

Preparing for Code Generation

There are six basic steps to generating code:

1.
Check the model.

2. 401

Create the components.

3.
Map the classes to the components.

4.
Set the code−generation properties.

5.
Select a class, component, or package.

6.
Generate the code.

Not all of these steps are necessary in each language. For example, you can generate C++ code without first
creating components. You can create code in any language without running the Check Model step, although
you may have some errors during the code generation. In the following chapters, we'll discuss the details of
generating and reverse engineering code in the various languages.

Although not all of these steps are required, we recommend completing the first five steps before generating
code. The model check will help to find inconsistencies and problems in your model that you certainly
wouldn't want to affect the code. The component steps serve as a way to map your logical system design to its
physical implementation, and they provide you with a great deal of useful information. If you skip these steps,
Rose will use the package structure in the Logical view to create components.

Step One: Check the Model

Rose includes a language−independent model check feature that you can run to ensure that your model is
consistent before you generate code. It's always a good idea to run this check before you attempt to generate
code, because it can find inconsistencies and errors in your model that might prevent code from being
generated correctly.

To check your Rose model:

1.
Select Tools → Check Model from the menu.

2.
Any errors that are found will be written to the log window.

Common errors include things like messages on a Sequence or Collaboration diagram that are not mapped to
an operation, or objects on a Sequence or Collaboration diagram that are not mapped to a class. The rest of
this section explores some of the common errors and their solutions.

The message below indicates that you have an object in a Sequence or a Collaboration diagram that has not
been mapped to a class.

Unresolved reference from use case "<Use case name>" to ClassItem with name
(Unspecified) by object <Object name>>

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

402

First, look at the objects on your Sequence or Collaboration diagram. Each box should contain the object
name, followed by a colon, followed by the class name:

Next, find the object without the class name. Right−click the object and select Open Specification from the
shortcut menu. In the object specification window, select the object's class using the Class drop−down list
box.

The following message lets you know that you have a message on a Sequence or a Collaboration diagram that
has not been mapped to an operation.

Unresolved reference to Operation with name <Message name> in message <Message
name> between <Class name> and <Class name> in Sequence diagram <Use case
name>/<Sequence diagram name>

Right−click the appropriate message on the diagram (the error in the log window will let you know the name
of the offending message and its Sequence or Collaboration diagram), and map the message to an operation. If
necessary, create a new operation for the message.

Finding Access Violations

The Check Model menu item will find most of the inconsistencies and problems in a model. The Access
Violations menu item will find violations that occur when there is a relationship between two classes in
different packages but no relationship between the packages themselves. For example, if we have an Order
class in an Entities package that has a relationship to an OrderManager class in a Control package, there must
be a relationship between the Entities package and the Control package. If there is not, Rose will find an
access violation.

To find access violations:

1.

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

403

Select Report → Show Access Violations from the menu.

2.
Rose will display any access violations in the Access Violations window, as shown in Figure 12.1.

Figure 12.1: Access Violations window

Running a Language−Independent Check

To run a language−independent check, choose Tools → Check Model. If you are using Java, you can run a
Java−specific syntax check by selecting Tools → Java → Syntax Check. This check will find errors such as
multiple public classes in a single compilation unit. If you are using CORBA, run Tools → CORBA →
Syntax Check to perform a similar analysis. Select Tools → XMLDTD → Syntax Check for XML.

If any of these checks find errors, they will appear in the Rose log. Once all errors have been corrected, move
on to step two.

Step Two: Create Components

The second step in the code−generation process is to create components to hold the classes. There are many
types of components: source code files, executable files, runtime libraries, ActiveX components, and applets,
to name a few. Before you generate code, you can map each of your classes to the appropriate source code
component.

Once the components are created, you can add dependencies between them on a Component diagram.
Dependencies between the components are the compilation dependencies in the system. (See Chapter 10,
"Component View," for more information about components and component dependencies.)

If you are generating C++, Java, or Visual Basic, you aren't required to complete this step in order to generate
code. In Java or Visual Basic, Rose will automatically create the appropriate component for each of your
classes.

To create a component:

1.
Open a Component diagram.

2.

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

404

Use the Component icon on the Diagram toolbar to add a new component to the diagram. See Chapter
10 for more information about adding components.

Step Three: Map Classes to Components

Each source code component represents the source code file for one or more classes. In C++, for example,
each class is mapped to two source code components, one representing the header file and one representing
the body file. In PowerBuilder, many classes are mapped to a single component. A PowerBuilder source code
component is a PowerBuilder library (.pbl) file. In Java, each source code component represents a single .java
file. Components are also created for ActiveX controls, applets, DLL files, executable files, and other source
and compiled files.

The third step in the code−generation process is to map each of your classes to the appropriate components.
For PowerBuilder, you must map each class to a component before you can generate code. However, this is an
optional step with C++, Java, or Visual Basic. If you are generating Java or Visual Basic code, Rose will also
generate the appropriate components and map the classes for you. However, components will not be
automatically created for C++. It's a good idea to go ahead and complete this step regardless of the language
you are using.

To map a class to a component:

1.
Right−click the component on a Component diagram or in the browser.

2.
Select Open Specification from the shortcut menu.

3.
Select the Realizes tab.

4.
On the Realizes tab, right−click the appropriate class or classes and select Assign from the shortcut
menu.

5.
The browser will show the component name in parentheses after the class name in the Logical view.

OR

1.
Locate the class in the Logical view of the browser.

2.
Drag the class to the appropriate component in the Component view.

3.
The component name will appear in parentheses after the class name in the Logical view.

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

405

Step Four: Set the Code−Generation Properties

There are a number of code−generation options you can set for classes, attributes, components, and other
model elements. These properties control how the code will be generated. Common default settings are
provided in Rose.

For example, one of the code−generation properties for a C++ attribute is GenerateGetOperation, which
controls whether or not a Get() operation will be created for the attribute. One of the properties for a Java
class is GenerateDefaultConstructor, which controls whether or not a constructor should automatically be
created for the class. One of the properties for a relationship in Visual Basic is GenerateDataMember, which
controls whether or not an attribute will automatically be created to support the relationship.

Each language in Rose has a number of code−generation properties. In the following chapters, we'll discuss
the code−generation properties for specific languages. Before you generate code, it's a good idea to examine
the code−generation properties and make any needed changes.

To view the code−generation properties, select Tools → Options, then select the appropriate language tab. For
example, here is the tab for the Visual Basic properties:

From the drop−down list box, you can select Class, Attribute, Operation, or the other types of model
elements. Each language will have different model elements available in the drop−down list box. As you
select different values, different property sets will appear. We just saw the Class properties in Visual Basic.
Here are the Attribute properties.

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

406

Any changes you make to a property set in the Tools → Options window will affect all model elements using
that set. For example, if you change the GenerateDefaultConstructor Class property on the Java tab, this
change will affect all classes in your model that will be implemented in Java.

At times, you may want to change the code−generation properties for a single class, attribute, operation, or
other model element. To do so, open the standard specification window for the model element, and then select
the appropriate language tab. Any changes you make in the specification window for a model element will
affect only that model element.

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

407

Cloning Property Sets

Rather than making changes directly to the default property sets, you can clone them and then make changes
to the copy. To clone a property set, press the Clone button on the Clone the Property Set window. Rose will
prompt you to enter a name for the new property set.

Once you've cloned a property set, it will be available by opening the Set drop−down list box on the Clone
Property Set window.

You can make as many changes as you'd like to this cloned set, without affecting the original default set. We
recommend leaving the default set alone and only changing cloned sets.

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

408

Deleting Property Sets

If you no longer need a cloned property set, you can remove it from the model through the Tools → Options
window. Select the tab for the appropriate language and then select the cloned property set in the Set
drop−down list box.

Once you've selected the appropriate set, select the Remove button. Rose will remove that property set from
the model. Note that you cannot remove the default property set. Once you remove a property set, you can no
longer generate code for an item using that property set. When viewing the item's specification, you will see
the cloned property set in parentheses, which indicates that the property set has been deleted or is not loaded.
To generate code for the item, assign a different property set to it.

Step Five: Select a Class, Component, or Package

When generating code, you can generate a class at a time, a component at a time, or an entire package at a
time. Code can be generated from a diagram or from the browser. If you generate code from a package, you
can select either a Logical View package on a Class diagram or a Component View package on a Component
diagram. If you select a Logical View package, all of the classes in that package will be generated. If you
select a Component View package, all of the components in that package will be generated.

You can also generate code for a number of classes, components, or packages at once. On a diagram, use the
Ctrl key to select the classes, components, or packages you want to generate code for, then select the
appropriate code−generation command from the menu.

Step Six: Generate Code

If you have Rose Professional or Enterprise installed, you will have some language−specific menu options
available on the Tools menu, as shown in Figure 12.2.

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

409

Figure 12.2: Code−generation menu items

To show or hide these menu options, select the Add−Ins → Add−In Manager menu option. In the Add−In
Manager dialog box, as shown in Figure 12.3, use the check boxes to show or hide the options for various
languages.

Figure 12.3: Add−In Manager

Once you have a class or component selected on a diagram, select the appropriate code−generation option
from the menu. If any errors are encountered as the code generation progresses, these errors will be noted in
the log window.

What Gets Generated?

When you generate code, Rose collects information from the Logical view and the Component view of your
model. Although no modeling tool can create a completed application for you, Rose will generate a great deal

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

410

of skeletal code. In the following chapters, we'll discuss specifically what is generated for a given language.

Elements generated by the code include the following:

Classes All classes in the model will be generated in the code.

Attributes The code will include the attributes of each class, including the visibility, data type, and default
value. In some languages, Get and Set operations can also be automatically generated for the attributes.

Operation signatures The operations will be declared in the code, along with any parameters, the data
types of the parameters, and the return type of the operation.

Relationships Some of the relationships in your model will cause attributes to be created when you
generate code.

Components Each component will be implemented by the appropriate source code file.

Documentation When documentation has been added, the code generator will insert the documentation at
the appropriate place.

Once the files have been generated, there are two steps remaining. First, the developers take the files, and they
code each of the operations of the classes. Then, the graphical user interface is designed.

Rose is not intended to be a GUI design tool—you can use your programming language's environment to
design the screens and forms. Instead, this approach helps you ensure that the system you're building has a
solid design. The team can review the Rose model to reach an agreement on the best architecture and the best
design, and then generate code from the model. Rather than having 20 different programmers designing in 20
different directions, everyone is working off of the same blueprint.

When generating code, Rose will use the package structure you've set up in the Component view to create the
appropriate directories. By default, the root directory it uses for code generation is the directory with the Rose
application file in it. You can change the directory through the code−generation properties for your language.

If you don't have components set up, Rose will use the package structure in the Logical view to set up the
directory structure. Again, the default directory is the Rose directory, but you can change it through the
code−generation properties.

Introduction to Reverse Engineering Using Rational Rose

Reverse engineering is the ability to take information from source code and create or update a Rose model.
Through its integration with C++, Java, Visual Basic, and many other languages, Rose supports the reverse
engineering of code into a UML model. One of the challenges with information technology projects is
keeping the object model consistent with the code. As requirements change, it can be tempting to change the
code directly, rather than changing the model and then generating the changed code from the model. If this
happens in Rose, the team can reverse engineer the changes from the code back into the model. Reverse
engineering helps us keep the model synchronized with the code.

In the reverse−engineering process, Rose will read components, packages, classes, relationships, attributes,

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

411

and operations from the code. Once this information is in a Rose model, you can make any needed changes to
the model and then regenerate the code through the forward−engineering features of Rose.

The options you will have available will depend on the version of Rose you are using:

•
Rose Modeler will not include any reverse−engineering functionality.

•
Rose Professional includes reverse−engineering capabilities for one language.

•
Rose Enterprise includes ANSI C++, Visual C++, C++, CORBA, XML, Visual Basic, Ada, and Java
reverse engineering, as well as database generation and reverse engineering.

•
A new feature of Rose is the ability to reverse engineer a web application.

•
Rose add−ins will give you reverse−engineering capabilities in other languages, such as PowerBuilder
or Forte.

Model Elements Created During Reverse Engineering

During the reverse−engineering process, Rose will collect information about:

•
Classes

•
Attributes

•
Operations

•
Relationships

•
Packages

•
Components

Using this information, Rose will create or update an object model. Depending upon the language you are
reverse engineering, you can create a new Rose model or update the current Rose model.

Let's begin by examining classes, attributes, and operations. If you have a source code file that contains a

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

412

class, the reverse−engineering process will create a corresponding class in your Rose model. Each of the
attributes and operations of the class will appear as attributes and operations of the new class in the Rose
model. Along with the attribute and operation names, Rose pulls in information about their visibility, data
types, and default values.

For example, when reverse engineering the following Java class, Rose will produce the model shown in
Figure 12.4.

Figure 12.4: Reverse engineering a Java class

//Source file: C:\\Flight.java

public class Flight
{
 private int FlightNumber;
 private long DepartureDate;
 private int GateNumber;

 public Flight()
 {
 }

 /**
 @roseuid 3942C4F50253
 */
 public boolean AddPassenger(int PassengerID)
 {
 }

 /**
 @roseuid 3942C4FE02B0
 */
 public boolean RemovePassenger(int PassengerID)
 {
 }

 /**
 @roseuid 3942C5060211

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

413

 */
 public boolean SwitchGate(int NewGate)
 {
 }
}

If you originally created the classes using Rose, and then made some changes to the classes in the code, these
changes will be reflected in the model during the reverse−engineering process. For example, if you deleted an
operation in the code, the operation will be deleted from the model during reverse engineering. If you added
an attribute or operation directly into the code, this new attribute or operation will be added to the model
during reverse engineering.

In addition to classes, Rose will collect information about the relationships in the code. If one class contains
an attribute whose data type is another class, Rose will create a relationship between the two classes. For
example, given the following two Java classes, Rose will create an association relationship between them, as
shown in Figure 12.5.

Figure 12.5: Reverse engineering an association relationship

//Source file: C:\\Class_A.java

public class ClassA_
{
 public Class_B theClass_B;

 public Class_A()
 {
 }
}

//Source file: C:\\Class_B.java

public class Class_B
{

 public Class_B()
 {
 }
}

Inheritance relationships are also generated in the Rose model. Rose will create generalization relationships to
support any inheritance in the code. If you have packages of foundation classes in your model, such as the
JDK or PowerBuilder system types, Rose will add generalization relationships between the
reverse−engineered classes and the base classes.

The components in the code will also be represented in Rose after the reverse−engineering process. Each
language deals with components differently. We'll discuss the reverse engineering of components in the
following chapters.

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

414

Round−Trip Engineering

When you generate code using Rose, there are identification numbers placed in the generated code. For
example, you may see a line like this in the code:

@roseuid 36730C530302

These strings of numbers and letters are used to help identify the classes, operations, and other model
elements in the code and to synchronize the code with your Rose model.

In addition to the ID numbers, Rose generates protected regions in the code during the code−generation
process. Any code you write in these protected regions will be safe during round−trip engineering.

For example, let's look at a portion of C++ code that was generated by Rose:

void SampleClass::DoSomething ()
{
 //## begin SampleClass::DoSomething%36EAB3DB03AC.body preserve=yes
 // — Code for the operation goes here —
 //## end SampleClass::DoSomething%36EAB3DB03AC.body
}

When the developers write code for this class, they code the DoSomething operation in the space between the
//begin and //end statements, in a protected region. If this class is reverse engineered, changes are made, and it
is then regenerated, the code of the DoSomething operation will remain safe.

Note When reverse engineering, Rose only examines files. It does not keep any of the source code, such as
operation code, stored within Rose.

Summary

In this chapter, we presented an overview of the code−generation and reverse−engineering capabilities of
Rose.

To review, the steps for generating code are as follows:

1.
Check the model.

2.
Create the components.

3.
Map the classes to the components.

4.
Set the code−generation properties.

5.
Select a class, component, or package.

6.

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

415

Generate the code.

When reverse engineering code, Rose gathers information about the classes, attributes, operations, and
relationships between the classes to generate the appropriate model elements. Using round−trip engineering,
you can modify the model and then change the corresponding code, or change the code directly and then
update the model. Either way, round−trip engineering helps keep your code and object model synchronized.
In the next chapters, we'll take a look at code generation and reverse engineering in more detail for specific
languages.

Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose

416

Chapter 13: ANSI C++ and Visual C++ Code
Generation and Reverse Engineering
C++ is one of the most widely used object−oriented languages in the industry. Rational Rose supports
integration with C++ through its code−generation and reverse−engineering capabilities. In this chapter, we'll
discuss how to generate C++ code from your Rational Rose model and how to reverse engineer C++ code into
a Rose model.

There are three versions of C++ integration with Rational Rose. First is the C++ add−in that has been
available in Rose since October 1994. It contains a great deal of functionality, but can prove difficult to use.
The second is an add−in for Microsoft's Visual C++. This add−in is simpler to use, but will integrate only
with Microsoft's Visual C++. Rational, therefore, has introduced the third add−in, ANSI C++, which is an
easy−to−use C++ code−generation and reverse−engineering tool that will work with C++ tools other than
Microsoft's Visual C++.

In this chapter, we will discuss the ANSI C++ and Visual C++ add−ins. The original C++ add−in is still
supported, but will not be covered here. We'll discuss the code−generation properties that can be set, and take
a close look at how each Rose model element is implemented in the code.

•
Setting C++ code−generation properties

•
Mapping Rose elements to C++ constructs

•
Generating C++ code from your Rose model

•
Reverse engineering C++ code into your Rose model

Generating Code in ANSI C++ and Visual C++

You will need to follow these steps to generate code in ANSI C++:

1.
Create components (see Chapter 10, "Component View").

2.
Assign classes to components (see Chapter 10).

3.
Set the code−generation properties.

4.
Select a class or component to generate on a Class or Component diagram.

5.
Select Tools → ANSI C++ → Generate Code.

6. 417

Select Tools → ANSI C++ → Browse Header or Browse Body to view the generated code.

The first step in code generation is to create components for the classes. In ANSI C++, the file is located in
the class file. The component has only the Root directory. Once components have been created and the classes
mapped, the next step is to set the code−generation properties for your classes, components, operations, and
other model elements. The code−generation properties control certain aspects of the code that is generated.

If you are generating code in Visual C++, you will use a wizard. To start the wizard, select Tools → Visual
C++ → Update Code. The Visual C++ Code Update tool will start, and a welcome screen will be displayed.
Click Next to continue. Rose will display the Select Components and Classes window. Before you can
generate a class in Visual C++, the class must be assigned to a component. If you have not assigned the class
to a component, select the Create a VC++ Component and Assign New Classes to It (Ctrl+R) option in the
wizard window. Using this option, you can create as many components as you need before you generate the
code. Then select the components and/or classes in your model for which you wish to generate code.

To change the code−generation properties for your Visual C++ components and classes, right−click the VC++
folder on this screen. You can then edit any of the code−generation properties, such as the container class, to
support relationship multiplicity, to automatically generate a constructor and destructor, and to automatically
generate Get and Set operations or other member functions. The code−generation properties are discussed in
greater detail in the upcoming section, "Visual C++ Code−Generation Properties."

Once all classes have been assigned to components, you have selected the classes and/or components you
wish to generate, and all code−generation properties have been set, click Next to continue. A summary page
will be displayed to let you know which classes or components were generated and which errors were
encountered during the code−generation process.

Rose will use a lot of information from the model to generate code. For example, it will look at the
multiplicity, role names, containment, and other details of each relationship. It will look at the attributes,
operations, visibility, and other details of each class. From all of the information you entered using the
specification windows for the various model elements, Rose will gather what it needs to generate code.

Converting a C++ Model to an ANSI C++ Model

Previous versions of Rose contained a C++ add−in, but not an ANSI C++ add−in. As we discussed earlier, the
ANSI C++ add−in is a more user−friendly version of the C++ code−generation and reverse−engineering tool.
Although you can continue to use the C++ add−in, Rose provides a means of converting an older C++ model
to an ANSI C++ model.

First, select Add Ins → Add In Manager, and be sure the ANSI Converter add−in is selected. Select Tools →
ANSI C++ → Convert from Classic C++.

You can choose the following options:

•
Convert selected classes, which will convert any classes that you selected on a Class diagram before
starting the conversion wizard

•

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

418

Convert all classes in selected packages, which will convert all classes within any package(s) that you
selected on a Class diagram before starting the conversion wizard

•
Convert all classes in selected package and its subpackages, which will convert all classes within the
package that you selected on a Class diagram, as well as all classes in subpackages of the selected
package

•
Convert Entire Model, which will convert all classes in all packages

Warning This operation will make significant changes to your model, so it's a good idea to make a backup of
the model before performing the conversion.

ANSI C++ Code−Generation Properties

C++ code generation using Rational Rose is extremely flexible. You have full control over what gets
generated and many of the details of how the generated code will look. For example, for each class, you can
decide if a constructor, copy constructor, and destructor will automatically be created. For each attribute, you
control the visibility, name, and whether Get and Set operations should automatically be created. For each
operation, you control the name, parameters, visibility, and return type.

In ANSI C++, you can manage these types of settings using the code−generation properties and the C++ class
and component specification windows. The ANSI C++ add−in includes code−generation properties for
classes, attributes, operations, operation parameters, packages, components, associations, and generalizations.
You can see all of these properties by selecting Tools → Options, and then selecting the ANSI C++ tab.

Code−generation properties can be set for the entire model or for a specific model element. You can change
the default code−generation properties for the entire model by selecting Tools → Options, then selecting the
ANSI C++ tab. Code−generation properties can be set for a single class, attribute, operation, or other model
element, which will override the default setting. To do so, open the specification window for the model

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

419

element, select the ANSI C++ tab, modify the property value, and press the Override button. In the following
sections, we'll examine the code−generation properties for classes, attributes, operations, operation
parameters, packages, components, associations, and generalizations.

Class Properties

Class properties are the ANSI C++ code−generation properties that apply specifically to classes. These
properties will let you change the class name, decide whether or not the class should be generated or reverse
engineered, set the header filename, and set other class−specific properties.

There are two places to set these properties. To set them for all classes, select Tools → Options, then click the
ANSI C++ tab and select Class from the drop−down list box. To set them for only one class, select the ANSI
C++ tab on the class specification window and edit the properties there.

Using stereotypes, you can control the generation of keywords such as "static" or "virtual." Rose generates the
text of the class stereotype in front of the "class" keyword.

Table 13.1 lists the ANSI C++ class properties, their purposes, and their default values.

Table 13.1: Class Code−Generation Properties

Property Purpose Default

Synchronize Controls whether the class will participate in code
generation and reverse engineering.

True

CodeName The name of the class in the generated code. By default, Rose will use
the class name in the
model.

ImplementationType Controls whether a class is generated using a class
definition or elemental data type.

<blank> (generates class
definition)

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

420

HeaderSourceFile Filename for the .h file for this class. <blank>

BodySourceFile Filename for the .cpp file for this class. <blank>
In addition to these properties, you can control the code generation through the ANSI C++ class specification
window. To open this window, select one or more classes on a Class diagram, then right−click it, and select
ANSI C++ → Class Customization. The customization window is shown in Figure 13.1.

Figure 13.1: ANSI C++ Class Customization window

On the Standard Operations tab, select the method(s) you would like Rose to generate for the selected classes.
When you close this window, Rose will add the selected methods to the classes, and they will be included in
the code−generation process.

On the Get and Set Operations tab, select the attribute(s) for which you would like to generate Get and Set
operations. For each selected operation, check the Generate Get Operation and/or Generate Set Operation to
control which operations are generated.

Attribute Properties

Attribute properties are the ANSI C++ properties that relate specifically to attributes. Using these properties,
you can control whether the attribute will be included in code generation and reverse engineering and you can
set the name of the attribute in the generated code.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

421

There are two places to set these properties. To set them for all attributes, select Tools → Options, then click
the ANSI C++ tab and select Attribute from the drop−down list box. To set them for only one attribute, select
the ANSI C++ tab on the attribute specification window and edit the properties there.

In addition, stereotypes can be set on attributes to control whether a keyword, such as "static," is included for
each attribute. Export control determines if an attribute is created as public or private. The default is to make
all attributes private, which is good programming practice.

Table 13.2 lists the attribute properties, their purposes, and their default values.

Table 13.2: Attribute Code−Generation Properties

Property Purpose Default

Synchronize Controls whether the attribute will
be included in code generation and
reverse engineering.

True

CodeName Sets the attribute's name in the
generated code.

<blank> (uses attribute name from
the model)

Operation Properties

The operation properties are the ANSI C++ code−generation properties that are specific to operations. These
properties will let you set the name of the operation, control whether the operation is inline, and set other
code−generation specifications for each operation.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

422

There are two places to set these properties. To set them for all operations, select Tools → Options, then click
the ANSI C++ tab and select Operation from the drop−down list box. To set them for only one operation,
select the ANSI C++ tab on the operation specification window and edit the properties there.

Table 13.3 lists the operation code−generation properties, their purposes, and their default values.

Table 13.3: Operation Code−Generation Properties

Property Purpose Default

Synchronize Controls whether the operation will be included in
code generation and reverse engineering.

True

CodeName Sets the name of the generated operation. <blank> (uses the
operation name from the
model)

Generate FunctionBody
(Rose 2002)

Determine if function body is to be generated. If true,
function body will be generated. If false, function
body will not be generated. If default, then a body will
be generated unless it is a non−inline friend or a
non−inline abstract operation other than a destructor.

Default

InitialCodeBody Code to include within the operation itself. This code
will be generated within the operation the first time
the code−generation process is run. Subsequent
code−generation processes will not replace the
operation code with the value of the InitialCodeBody
property. You must include opening and closing
braces in this property.

<blank>

Inline Controls whether or not to inline the operation. False
In addition to these, each parameter in the operation also has a property called CodeName. (The CodeName
property in Table 13.3 applies to the overall operation, but there is also a CodeName property for each

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

423

parameter in the operation.) If you supply a value to this property, Rose will use that value as the parameter's
name when generating code. If you do not supply a value, Rose will use the parameter name as it appears in
the model.

Package (Class Category) Properties

The class category properties are those ANSI C++ properties that apply to packages of classes. To set these
properties for all packages, select Tools → Options, then click the ANSI C++ tab and select Class Category
from the drop−down list box. To set them for a single package, open the package specification window, select
the ANSI C++ tab, and set the properties there.

Table 13.4 lists the package properties, their descriptions, and their default values.

Table 13.4: Package Code−Generation Properties

Property Purpose Default

CodeName Namespace <blank>

IsNameSpace Indicates whether or not this package represents a
namespace

False

Component (Module Specification) Properties

The component properties are related to the .cpp and .h files generated and reverse engineered by Rose. These
properties allow you to control items such as copyright statements and #include statements in the code.

To set these properties for all components, select Tools → Options, then click the ANSI C++ tab and select
Module Specification from the drop−down list box. To set them for a single component, open the component
specification window and select the ANSI C++ tab. Table 13.5 lists the component properties.

Table 13.5: Component Code−Generation Properties

Property Purpose Default

Synchronize Controls whether this component will be
included in code generation and reverse
engineering.

True

Copyright Copyright statement to include in the
generated code.

<blank>

RootPackage Logical view package under which
reverse−engineered classes and packages
will be placed.

C++ Reverse
Engineered

InitialHeaderIncludes #Include statements to include in the
generated .h file.

<blank>

InitialBodyIncludes #Include statements to include in the
generated .cpp file.

<blank>

RevEngRootDirectory (Rose 2002) Sets the default directory to search for files
when reverse engineering

<blank>

False

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

424

RevEngDirectoriesAsPackages (Rose
2002)

Creates a Logical view package to
correspond to each directory used in reverse
engineering

HeaderFileExtension (Rose 2002) Sets the file extension to use when
generating header files

.h

ImplementationFileExtension (Rose
2002)

Sets the file extension to use when
generating implementation files

.cpp

NewHeaderFileDirectory (Rose 2002)Subdirectory of root directory for generated
header files

<blank>

NewImplementationFileDirectory (Rose
2002)

Subdirectory of root directory for generated
implementation files

<blank>

FileCapitalization (Rose 2002) Sets case to use in generated file names
(upper case, lower case, lower case with
underscores, same as model)

Same as model

CodeGenExtraDirectories (Rose 2002)Controls what directories will be created on
code generation

<blank>

StripClassPrefix (Rose 2002) Character(s) to strip from the class name
when a file is generated

<blank>

UseTabs (Rose 2002) Indents the generated code with tabs rather
than spaces

False

TabWidth (Rose 2002) Number of characters to indent for each tab8

IndentWidth (Rose 2002) Column width in spaces between indent
locations

4

AccessIndentation (Rose 2002) Number of spaces that the public, private,
and protected keywords will be indented

−2

ModelIdCommentRules (Rose 2002) Controls when model IDs are generated (on
code generation, on code generation and
reverse engineering, or never)

Code generation only

PageWidth (Rose 2002) Number of characters in a line in the
generated file

80

ClassMemberOrder (Rose 2002) Sets the order of the generated attributes
(public first, private first, order by kind,
unordered)

Public First

OneParameterPerLine (Rose 2002) Controls whether or not each parameter in
an operation is written on a separate line

False

NamespaceBraceStyle (Rose 2002) Sets the style for namespace braces. Use the
ANSI C++ component specification
window for examples of the five available
styles.

B2

ClassBraceStyle (Rose 2002) Sets the style for class braces. Use the
ANSI C++ component specification
window for examples of the five available
styles.

B2

FunctionBraceStyle (Rose 2002) Sets the style for function braces. Use the
ANSI C++ component specification
window for examples of the five available
styles.

B2

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

425

These properties and others can also be controlled through the C++ component specification window, shown
in Figure 13.2. To open this window, right−click the component and select ANSI C++ → Open ANSI C++
Specification.

Figure 13.2: ANSI C++ component customization window's Files tab

In the first field on the Files tab, you enter the root directory of all the source files. In the Code Generation
Root Directory field, enter the directory into which Rose should generate code. The Reverse Engineering Root
Package field corresponds to the RootPackage property discussed above, and sets the package into which files
will be reverse engineered. The Project Files section includes the .cpp, .h, and other source code files relevant
to this component. Finally, the Documentation and Copyright fields are the places to enter comments and
copyright information for the component.

In Rose 2002, there are additional fields available on the Files tab. The Reverse Engineer Directories As
Packages check box controls whether or not directories are reverse engineered as Logical view packages. The
Header and Implementation File Extension fields allow you to set the file extension that will be used for these
types of files when generating code. In Rose 2002, you can generate source and body files into different
directories. Use the Subdirectory of Root for Header Files field to set the directory for header files, and use
the Subdirectory of Root for Implementation Files field to set the directory for implementation files. Filename
Capitalization controls whether filenames are generated in upper or lower case. The Additional Directories
field controls whether subdirectories will be created for namespaces or packages. Finally, the Prefix to Strip
from Class Name When Constructing Filename field will strip specific characters from the class name to
generate the header and implementation files.

The Style tab is shown in Figure 13.3. This tab controls formatting options for the component.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

426

Figure 13.3: ANSI C++ component customization window's Style tab

Under the Indentation area, you choose whether to use spaces or tabs for indentation and the number of spaces
or tabs to use. Under Round−Trip Engineering Options, select Code Generation Only for Model IDs if you
would like model IDs generated in the source code. Select Code Generation and Reverse Engineering if you
would also like to insert model IDs into code that has been reverse engineered. Select Never Generate Model
IDs if you don't want to use the IDs at all. Although the IDs are optional, they are recommended if you plan to
do round−trip engineering. The ID will help Rose map the appropriate source code to the appropriate class or
other model element, even if the class name has been changed.

Under the Brace Styles area, select one of the five indentation styles for namespaces, classes, and functions.

Use the Internal Map tab to set the #include statements that will be created for references to classes within the
component. Use the External Map tab to set the #include statements that will be created for references to
classes within the component by classes outside of the component. Finally, enter any #include statements for
the header or body in the Includes tab.

Role Properties

Role properties are the C++ code−generation properties that affect the code generated for relationships. As
with most of the other property sets, there are two places to set these properties. To set them for all
relationships, select Tools → Options, then click the ANSI C++ tab and select Role from the drop−down list
box. To set them for a single relationship, open the relationship specification window. On the ANSI C++ tab
of the relationship specification window, you can change the properties for that relationship.

Table 13.6 lists the role properties, their meanings, and their default values.

Table 13.6: Role Code−Generation Properties

Property Purpose Default

Synchronize Controls whether the relationship will be included in
code generation and reverse engineering.

True

CodeName Sets the name of the relationship in the generated
code.

<blank>

Const (Rose 2000A) False False

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

427

InitialValue Sets the initial value of the attribute created to support
the relationship.

<blank>

Generalization Properties

As with other relationships, you can set code−generation properties for generalization (inheritance)
relationships in C++. There is, however, only one property you can set for a generalization relationship. The
Synchronize property controls whether the relationship will be included in code generation and reverse
engineering. The default value is True.

Visual C++ Code−Generation Properties

The Visual C++ add−in includes a Model Assistant, which you use to set the code−generation properties for
your classes, attributes, operations, and other model elements. Once the properties have been set, the Visual
C++ add−in includes a wizard that will walk you through all the steps needed to generate your code.

Class Model Assistant

To start the Model Assistant, right−click a class or component and select Model Assistant. The Model
Assistant for a class is shown here:

As you can see, the Model Assistant lets you set code−generation properties for the class, as well as its
attributes, operations, and associations. In Rose, you can automatically generate certain operations, such as a
constructor and a destructor, by selecting them in the Class Operations section of the treeview.

To begin, select the class name (in this example "NewClass" at the top level of the treeview). Select the
Generate Code check box if you would like Rose to generate Visual C++ code for this class. In the Class Type
list box, select the class stereotype: class, structure, union, typedef, or enum. In the Code Template list box,
you can optionally select a template to use. A template contains attributes, operations, and code that can be

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

428

used to create a class. In the Documentation field, you can enter text that will be generated as comments in the
code.

In the Attributes section of the treeview, you can select an attribute to modify. Once you select an attribute,
you can then set its data type using the Type field. Standard Visual C++ data types will appear in the list. If
the attribute should have a default value, fill in the Initial Value field. Set the attribute's visibility (public,
private, or protected). By default, Rose sets all attributes to Private. The Static check box will add the "static"
keyword to the generated code. As with classes, text entered in the Documentation field will appear as a
comment in the generated code.

Select an operation in the Operations section of the treeview. In the Return Type field, set the data type of the
operation's return value. Standard Visual C++ data types are listed in this field. Set the visibility (public,
protected, or private) using the Access Level field. By default, an operation has public visibility. You can
create a virtual or abstract operation by setting the Operation Kind field. Select the Inline check box to include
the "inline" keyword with the operation. An inline operation's definition is generated in the header file for the
class. Select the Const check box to add the "const" keyword to the operation and to signify that the operation
will return a constant. To make an operation static or to give it friend visibility, select Static or Friend from
the list in the Linkage field.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

429

By default, Rose will not add code to the body of a generated method. To add some default code, select the
Replace Existing Code Body check box and add the text in the Default Code Body field. Add comments to the
Documentation field.

An operation's parameters are listed in the treeview under the operation name. To edit a parameter, select it in
the treeview. You can then change its data type, default value, and documentation.

As with ANSI C++, associations in Visual C++ are generated as attributes. In the Model Assistant, the
attributes generated for associations are listed in the Associations portion of the treeview. In the
Implementation field, you can set the type of reference to generate. By default, Rose will generate a pointer to
the referenced class. You can also use an array, reference, or user−defined type. Select the appropriate value
from the Implementation list box.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

430

As with attributes, you set the default value in the Initial Value field, set the visibility to Public, Private, or
Protected, and check the Const or Static boxes if these keywords are needed. In the Multiplicity field, enter
the multiplicity of the relationship.

Component Properties

The Model Assistant is also used to set the code−generation properties for components. Specifically, each
component must be assigned to a Visual C++ project before code generation can be completed. You can also
assign each component to a project during the code−generation process—the wizard will give you the option
to assign components to projects. The Component Model Assistant window is shown here:

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

431

To open the Model Assistant for a component, right−click the component and select Properties. On the
General tab, map the component to an existing Visual C++ project file. Optionally, you can set a Visual C++
workspace file as well. If the file is an IDL file, set the IDL filename and path.

The Internal Map tab is used to set up the mapping of classes within the component to include statements. For
each mapping, set the class (an asterisk [*] refers to all classes), include the filename, and include the file
location. You can add as many mappings as needed.

The External Map tab is very similar, but is used to set up the include statements needed by classes in other
components to reference classes in this component.

On the Includes tab, you can set up includes statements to be generated in the header and body files for each
class in the component. Add as many includes statements as you need, adding each on a separate line.

Use the COM tab to control how ATL objects will be generated for this component. The Update ATL
Artifacts check box controls whether code is generated for ATL objects at all. If you do update the code,
complete the rest of the settings on this screen to control how the code is updated:

•
The Use Smart Pointers for Interface Associations check box will use the Visual C++ smart pointer
functionality during code generation and reverse engineering.

•
The Generate #Import Statements check box controls whether #import statements are created and
where they are created.

•
If there is a value in the Put #Import Statements In field, Rose will put all #import statements in that
file.

•

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

432

If Include Full Path on Imports is checked, Rose will use the full path in the #import statement.

•
If Use Default Attributes is checked and there is a value in that field, Rose will use the field value
when attributes are unspecified in the model.

Finally, you can use the Copyright tab to set copyright information for the component. Text you enter here
will be entered into the header and implementation files for the classes in that component.

Project Properties

Using the menu command Tools → Visual C++ → Properties, you can set properties that apply to the whole
Rose model.

Table 13.7 lists each Visual C++ project property, its purpose, and the tab on the Visual C++ Properties
window you use to set the property.

Table 13.7: Visual C++ Project Properties

Property Purpose Tab

Generate Model IDs Controls whether Rose model IDs are inserted into the
source code.

Code Update

Generate DocumentationControls whether comments you entered into the
Documentation field of a class or other model element
are generated as comments in the source code.

Code Update

Generate #Include
Statements

Controls whether #include statements are added to the
header file.

Code Update

Apply Pattern on Code Controls whether to apply the selections you made onCode Update

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

433

Generation the Operations and Accessors tabs to the generated
code.

Generate Debug
Operations for MFC
Classes

Controls whether AssertValid and Dump operations
are created for MFC classes.

Code Update

Create Backup Files Controls whether backup files are created for source
code before Rose modifies them.

Code Update

Support CodeName Gives the user the option of naming an element
differently in the model and the source code.

Code Update

Reverse Engineer
Documentation

Pulls comments from the source code into the
Documentation field of the model element.

Model Update

Create Overview
Diagrams

Creates an overview diagram for reverse−engineered
code.

Model Update

Update Model IDs in
Code

Adds model IDs to the code during the
reverse−engineering process.

Model Update

Default Package Sets the package in which reverse−engineered
elements are placed.

Model Update

Attribute Types Controls which types will be modeled as attributes
rather than roles in reverse engineering.

Model Update

Containers Sets the container classes that can be used in the
Implementation field for a role.

Containers

Class Operations Controls which operations will be generated for a
class.

Class Operations

Accessors Controls whether Get and Set operations are generated
for an attribute or role.

Accessors

Visual C++ and ATL Objects

The Rose Visual C++ add−in includes support for ATL objects. If you are using ATL in your model, you
should first import the standard ATL classes. This step will help ensure that the round−trip engineering
process works properly. You can import ATL 3.0 classes into your model by selecting Tools → Visual C++
→ Quick Import ATL 3.0. The ATL 3.0 classes will be imported into a package called ATL 3.0 in the Logical
view. Once the import is complete, you can create relationships between your classes and the ATL classes.

Converting an Existing Class to an ATL Object

You can create new ATL objects in Rose or simply convert existing classes in your Rose model to ATL.

To convert an existing class:

1.
Right−click the class and select COM → New ATL Object.

2.
You will see the ATL Object Properties window.

3.
In the C++ section, enter the short name of the C++ class. The Class field will already be completed
for you.

4.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

434

If the appropriate component already exists in the Rose model, select the C++ component and project
for the C++ class. Otherwise, leave these fields blank.

5.
In the COM section, enter the name of the CoClass and interface. When you press OK, Rose will
create the CoClass and interface class and set their relationships.

6.
If the appropriate component already exists in the Rose model, select the COM component and
project for the COM classes. Otherwise, leave these fields blank.

Note In Rose 2002, reverse−engineered MIDL components will be added to the model as components with
the <<MIDL>> stereotype. Any classes with a stereotype of <<coclass>> or <<interface>> will be
automatically mapped to the MIDL components.

Generated Code

In the following sections, we'll take a look at the C++ code generated for a class, an attribute, an operation,
and for the different types of relationships between classes. In each of these sections, we'll include some
sample code to give you an idea of what will be generated from your Rose model.

Rose uses the information in the specifications of the model elements when generating code. For example, it
will look at the different specifications for a class (visibility, attributes, operations, and so on) when
generating code for the class.

Code Generated for Classes

Let's begin by looking at the code generated for a typical class. A class in your object model will become a
C++ class when you generate code. Each class will generate code similar to the following:

Class TheClass
{
public:
TheClass();
~TheClass();
};

However, a great deal of additional information will also be generated in the code. (We'll look at a complete
header and implementation file shortly.) All of the attributes, operations, and relationships of the class will be
reflected in the generated code. The major elements generated for each class include:

•
The class name

•
The class visibility

•
A constructor for the class (optional)

•
A destructor for the class (optional)

•

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

435

Get() and Set() operations for each attribute (optional)

•
Class documentation

•
Attributes

•
Operations

•
Relationships

Each class in the model will generate two C++ files, a header file, and an implementation file. Each file will
be named using the class name. For example, an Employee class will generate an Employee.h file and an
Employee.cpp file.

When generating code with ANSI C++, Rose will use the package structure you established in the Component
view of your model to generate the appropriate directories. A directory will be created for each package in the
model. Within each of the directories Rose creates, there will be the .cpp and .h files for the classes in that
package. If you have not created components and packages in the Component view, Rose will use the package
structure in the Logical view to create the directory structure.

Much of the information in your Rose model will be used directly when generating code. For example, the
attributes, operations, relationships, and class name of each class will directly affect the code generated. Other
model fields, such as the documentation entered for the class, will not directly affect the code. These field
values are created as comments in the generated code.

Table 13.8 lists the fields available in the class specification window and notes which of these fields will
directly affect the code generated.

Table 13.8: Effect of Class Specifications on Generated Code

Fields Effect on Code

Name Name in model will become class name

Type Directly affects the type of class created

Stereotype No effect

Export Control Directly affects the class visibility

Documentation Becomes a comment

Cardinality No effect

Space No effect

Persistence No effect

Concurrency No effect

Abstract Creates an abstract class

Formal Arguments Formal arguments are included in the code for a parameterized class

Operations Generated in code

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

436

Attributes Generated in code

Relationships Generated in code
Let's look at the code generated for the following class:

Generated Header File

The following code is the header file that was generated for this class.

#ifndef FLIGHT_H_INCLUDED_C6AD4E5A
#define FLIGHT_H_INCLUDED_C6AD4E5A

//##ModelId=39528510031C
//##Documentation
//## This class holds information about airline flights.
class Flight
{
 public:
 //##ModelId=3952853300EC
 boolean AddPassenger(int PassengerID);

 //##ModelId=3952853B013D
 boolean RemovePassenger(int PassengerID);

 //##ModelId=3952854302B1
 int CancelFlight();

 private:
 //##ModelId=395285160108
 int FlightNumber;

 //##ModelId=395285190365
 date DepartureDate;

 //##ModelId=3952851E0037
 string DepartureCity;

 //##ModelId=3952852B009A
 string ArrivalCity;

};

#endif /* FLIGHT_H_INCLUDED_C6AD4E5A */

Let's begin by discussing the annotations that Rose inserts into the source code. Rose adds these model IDs so
that code can be modified and regenerated (round−trip engineering) without overwriting any changes. Use of

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

437

the model IDs is optional. To turn model IDs on or off, open the ANSI C++ component specification for the
component. On the Style tab, set model IDs to the Never Generate Model IDs option.

The generated file will include header information for the attributes and operations of the class. It can also
include headers for a constructor, a destructor, a copy constructor, and other standard methods. To include any
of these, open the ANSI C++ Class Customization window and select the method(s) to generate. Or, if you are
using Visual C++, use the Model Assistant.

As you can see, Rose includes the visibility, parameters, parameter data types, and return type for each
operation. Although Rose cannot code the operation itself, it does provide a "skeleton" framework for the
programmers to use. You can generate code for the operation by adding default code in the operation's
InitialCodeBody property.

Generated Implementation File

The other file generated by Rose is an implementation file, with the default extension .cpp. The following is
the implementation file generated along with the header file we just examined.

#include "c:/Flight.h"

//##ModelId=3954129803B3
boolean Flight::AddPassenger(int PassengerID)
{
}

//##ModelId=395412A00093
boolean Flight::RemovePassenger(int PassengerID)
{
}

//##ModelId=395412A80121
int Flight::CancelFlight()
{
}

Again, notice that Rose includes the operation visibility, parameters, parameter data types, and operation
return type in the generated code. Had we selected the option to generate the constructor, destructor, or other
standard methods (by right−clicking the class and selecting ANSI C++ Code Customization), these would be

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

438

included in the code as well. With Visual C++, use the Model Assistant to determine whether or not to
generate these methods.

Code Generated for Attributes

Aside from the class itself, Rose will generate the attributes for the class. For each attribute, Rose will include:

•
Visibility

•
Data type

•
Default value

•
Get operation (optional)

•
Set operation (optional)

For a given attribute, Rose will generate code similar to the following:

Class TheClass
{
public:
int PublicAttribute;
int GetPublicAttribute();
int GetProtectedAttribute();
int GetPrivateAttribute();
void set_PublicAttribute (int value);
void set_ProtectedAttribute (int value);
void set_PrivateAttribute (int value);

protected:
 int ProtectedAttribute;

private:
 int PrivateAttribute;

};

A great deal more, including comments and Rose identifiers, will be generated in a full header and
implementation file. Let's look in detail at the code generated for the following class:

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

439

In this example, we opened the ANSI C++ Class Customization window and selected the option to generate
Get and Set methods for the FlightNumber attribute. Using Visual C++, you can use the Model Assistant to
control whether Get and Set methods are created. The header file now reads as follows:

#ifndef FLIGHTHINCLUDEDC6ABFE6A
#define FLIGHTHINCLUDEDC6ABFE6A

//##ModelId=39541274036B
class Flight
{
 public:
 //##ModelId=3954129803B3
 boolean AddPassenger(int PassengerID);

 //##ModelId=395412A00093
 boolean RemovePassenger(int PassengerID);

 //##ModelId=395412A80121
 int CancelFlight();

 //##ModelId=395413D80055
 int get_FlightNumber() const;

 //##ModelId=395413D800BA
 void set_FlightNumber(int left);

 private:
 //##ModelId=3954127801F4
 int FlightNumber;

 //##ModelId=3954128202DF
 date DepartureDate;

 //##ModelId=395412860122
 string DepartureCity;

 //##ModelId=3954128E0097
 string ArrivalCity;

};

#endif /* FLIGHT_H_INCLUDED_C6ABFE6A */

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

440

The implementation file also includes the Get and Set methods. Note that Rose will include more than just the
method signature; it will actually code these methods for you. The implementation file for the Flight class is
shown here:

#include "c:/Flight.h"

//##ModelId=3954129803B3
boolean Flight::AddPassenger(int PassengerID)
{
}

//##ModelId=395412A00093
boolean Flight::RemovePassenger(int PassengerID)
{
}

//##ModelId=395412A80121
int Flight::CancelFlight()
{
}

//##ModelId=395413D80055
int Flight::get_FlightNumber() const
{
 return FlightNumber;
}

//##ModelId=395413D800BA
void Flight::set_FlightNumber(int left)
{
 FlightNumber = left;
}

Code Generated for Operations

Rose generates code for each of the operations in the class. For each operation, the generated code includes
the operation name, the parameters, the parameter data types, and the return type. Each operation will generate
code similar to the following:

Class TheClass
{
public:
void PublicOperation();

protected:
void ProtectedOperation();

private:
void PrivateOperation();
};

We'll examine the code generated for the following class:

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

441

In the header file, Rose will generate the signatures for the operations:

#ifndef FLIGHT_H_INCLUDED_C6ABEA96
#define FLIGHT_H_INCLUDED_C6ABEA96

//##ModelId=39541274036B
class Flight
{
 public:
 //##ModelId=3954129803B3
 boolean AddPassenger(int PassengerID);

 //##ModelId=395412A00093
 boolean RemovePassenger(int PassengerID);

 //##ModelId=395412A80121
 //##Documentation
 //## The CancelFlight operation will cancel all reservations for the
 //## flight, notify all passengers with reservations, and disable future
 //## reservations for the flight.
 int CancelFlight();

 private:
 //##ModelId=3954127801F4
 int FlightNumber;

 //##ModelId=3954128202DF
 date DepartureDate;

 //##ModelId=395412860122
 string DepartureCity;

 //##ModelId=3954128E0097
 string ArrivalCity;

};

#endif /* FLIGHT_H_INCLUDED_C6ABEA96 */

As you can see, the full operation signature is generated in the code. Any documentation you entered for the
operation is also generated, as a comment in the code. If you enter information for the operation protocol,
qualifications, exceptions, time, space, preconditions, semantics, or post−conditions, this information will not
appear in the generated code.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

442

Rose will also generate code for the operation in the implementation file. We just examined the header file for
the Flight class, so now let's take a look at the implementation file for this class.

#include "c:/Flight.h"

//##ModelId=3954129803B3
boolean Flight::AddPassenger(int PassengerID)
{
}

//##ModelId=395412A00093
boolean Flight::RemovePassenger(int PassengerID)
{
}

//##ModelId=395412A80121
int Flight::CancelFlight()
{
}

As you can see, Rose includes each operation in the implementation file. Developers now need to go into the
implementation file and code each operation between the opening and closing braces.

Visual C++ Code Generation

For the most part, the code generated in Visual C++ is the same as that generated in ANSI C++, and follows
the rules described in the "Generated Code" section earlier in this chapter. Each class in the model becomes a
class in the Visual C++ project. Attributes become data members in Visual C++, and the data type, default
value, access type, and other code−generation settings from Rose are directly translated into Visual C++.
Operations create member functions in Visual C++. The code−generation add−in examines the operation
visibility, parameters, parameter data types, return type, and other code−generation properties to create the
member function. Attributes are created for relationships, as described in the "Generated Code" section.

The differences between ANSI C++ and Visual C++ code generation lie in the components. Each component
in the Rose model will become either a Visual C++ project or an IDL file within a project. Classes are
assigned to components during the code−generation process. Interfaces are generated in the IDL files, and are
created using the process described earlier in the "Visual C++ and ATL Objects" section.

Reverse Engineering ANSI C++

To reverse engineer in ANSI C++, you must first select a component. All or some of the classes assigned to
that component can then be reverse engineered.

To reverse engineer one or more classes that are not in the Rose model at all:

1.
Create a new component in the Component view.

2.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

443

Open the ANSI C++ specification window for the new component.

3.
In the Project Files area, click Add Files to browse the source file(s) you want to reverse engineer.

4.
Click OK to close the ANSI C++ specification window.

5.
Right−click the component and select ANSI C++ → Reverse Engineer.

6.
Select the class(es) to reverse engineer and press OK.

7.
The classes will be brought into the Rose model and added to the Logical view, under a package
named C++ Reverse Engineered.

Note To reverse engineer classes into a package other than C++ Reverse Engineered, open the C++
specification window for the component and change the package name in the Reverse Engineering Root
Package field.

To reverse engineer a class that already exists in your model, right−click its component and select ANSI C++
→ Reverse Engineer. Select the class(es) to reverse engineer and press OK. Alternately, you can right−click
the class you want to reverse engineer and select ANSI C++ → Reverse Engineer.

When you reverse engineer a class, all of its attributes, operations, and relationships are reverse engineered as
well. The C++−to−Rose mapping we've discussed in the past several sections controls how the C++ code is
represented in the Rose model.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

444

Reverse Engineering Visual C++

You can reverse engineer a Visual C++ project into an existing component or into a new component in Rose.
To begin either process, select Tools → Visual C++ → Update Model from Code. Rose will display a list of
existing components in your Rose model.

To reverse engineer the project into a new component, right−click Visual C++ and select Add Component.
Select the Visual C++ project to reverse engineer into the new component.

To reverse engineer the project into an existing component, right−click the appropriate component, select
Properties, and select the element(s) in the project that you wish to reverse engineer.

Click Next to show a summary, and then Finish to complete the reverse−engineering process. The elements in
the project will be mapped to Rose elements as we've discussed in this chapter.

Summary

In this chapter, we took a look at how various Rose model elements are implemented in C++. Using the
code−generation properties for classes, packages, attributes, operations, roles, and other model elements, you
have a great deal of control over what gets generated.

Again, the steps needed to generate ANSI C++ code are:

1.
Create components.

2.
Assign classes to components.

3.
Set the code−generation properties.

4.
Select a class or component to generate on a Class or Component diagram.

5.
Select Tools → ANSI C++ → Class Customization.

6.
Select Tools → ANSI C++ → Code Generation.

7.
Select Tools → ANSI C++ → Browse Header or Browse Body to view the generated code.

The steps to generate Visual C++ code are:

1.
Create component(s) corresponding to the project(s).

2.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

445

Select Tools → Visual C++ → Model Assistant.

3.
Select Tools → Visual C++ → Update Code.

4.
Select the component(s) to update.

5.
Set code−generation properties.

6.
Select Finish to complete the process.

The steps needed to reverse engineer ANSI C++ code are:

1.
Create a new component.

2.
Use the ANSI C++ specification window to select the file(s) to reverse engineer.

3.
Right−click the component and select ANSI C++ → Reverse Engineer.

4.
Select the class(es) to reverse engineer and press OK.

The steps needed to reverse engineer Visual C++ code are:

1.
Select Tools → Visual C++ → Update Model from Code.

2.
Select an existing component to reverse engineer, or create a new component.

3.
Select the project element(s) to reverse engineer.

In the next chapter, we'll examine the Java add−in for Rose. Using this powerful feature, you can model Java
classes, interfaces, attributes, operations, relationships, JAR files, and WAR files. Through the new support
for J2EE, you can now also model EJBs, servlets, and other constructs. The enhanced functionality in Rose
2001, 2001A, and 2002 provide the ability to create a complete model of your Java application. The forward−
and reverse−engineering features provide you with the ability to keep the code and the object model
consistent.

Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering

446

Chapter 14: Java Code Generation and Reverse
Engineering

Overview

In this chapter, we'll discuss how to generate Java code from your Rational Rose model and reverse engineer a
Rose model from your Java code. We'll discuss the code−generation properties that can be set for Java and
take a close look at how each Rose model element is implemented in the code. Then, we'll look at how to
reverse engineer Java code and how to keep your model and code synchronized.

To generate code, you'll need to follow these steps:

1.
Create the components (see Chapter 10, "Component View").

2.
Assign classes to the components (see Chapter 10).

3.
Set the code−generation properties.

4.
Select a class or component to generate on a Class or Component diagram.

5.
Select Tools → Java → Code Generation.

6.
Select Tools → Java → Browse Java Source to view the generated code.

Rose will take a lot of information from the model to generate code. For example, it will look at the
multiplicity, role names, containment, and other details of each relationship. It will look at the attributes,
operations, visibility, and other details of each class. From all of the information you entered using the
specification windows for the various model elements, Rose will gather what it needs to generate code.

•
Setting Java code−generation properties

•
Generating Java code from your Rose model

•
Mapping Rose elements to Java constructs

•
Importing the Java Development Kit

•
Reverse engineering Java into your Rose model

447

Introduction to Rose J

Rose J is the add−in to Rational Rose that supports the generation and reverse engineering of Java constructs.
This feature includes:

•
Integration with VisualAge Java and Visual J++

•
Support for Java 2 Platform Enterprise Edition (J2EE) constructs

•
Generation of Java code

•
Reverse engineering Java constructs into a Rose model

•
Support for Java frameworks, such as the Java™ Development Kit (JDK™) and Java™ Foundation
Classes (JFC).

Let's begin with code generation. Rose J will examine the classes and components that you have created in
your Rose model and generate the appropriate source code for these components. There are a number of
code−generation properties that will affect the generated source code. Using Rose J, Rose ID numbers will
also be created in the source code. These numbers help to keep the code from being overwritten during
round−trip engineering.

There is an auto−synchronization feature in Rose J, which automatically starts the code−generation process
anytime a Java class has changed in the model. This feature will help ensure that the model and the source
code remain consistent.

Once you create your classes, components, attributes, operations, and other model elements, you can begin the
code−generation process. Before generating code, check the syntax of the model using the Tools → Java →
Syntax Check menu option. If there are any problems, they will appear in the log window.

After you resolve any problems, you can set the code−generation properties and generate code. In this chapter,
we will discuss in detail how to set the properties and how each Rose modeling element maps to a Java
construct. Table 14.1 lists the Java constructs and their corresponding model elements.

Table 14.1: Java−to−Rose Mapping

Java Construct Rose Element

Class Class

Variable Attribute

Method Operation

Interface Interface (class with stereotype of Interface)

.java file Component

Chapter 14: Java Code Generation and Reverse Engineering

448

Java package Component package

Java Bean Attribute

EJB (Enterprise Java Bean) Class

Servlet Class

Inner class Nested class

Implements relationship Realization relationship

Extends relationship Generalization relationship

Import statement Association, dependency, or generalization

Beginning a Java Project

When first creating a Java model, there are four steps you may want to follow. First, when working on a
project that will be primarily implemented in Java, you always want to set the default language to Java. This is
done through the Tools → Options menu. Click the Notation tab and set the default language to Java.

Next, select the framework you would like to use for your project. This is an optional step, but can provide
you with the foundation you need to model your application. We will discuss specific frameworks shortly.

Third, if you are using either Microsoft Visual J++ or IBM VisualAge for Java, you should enable the links
between Rose and these tools. Once you enable the links, you can generate code and reverse engineer
VisualAge or Visual J++ projects directly from Rose.

Finally, be sure that the ClassPath environment variable is set. The ClassPath is used by Rose J to determine
the location of class libraries and other files while generating code and reverse engineering. To view the
ClassPath settings, select Tools → Java → Project Specification. The ClassPath entries will be displayed, and
you can add or remove entries using this dialog box.

Selecting a Java Framework

When you first create a Rational Rose model, you are given the option to base your model on an existing
framework. Create a new Rose model, and you will see the window shown in Figure 14.1.

Figure 14.1: Rose frameworks

Note

Chapter 14: Java Code Generation and Reverse Engineering

449

If you do not see the frameworks window, select Add−Ins → Add−In Manager, and be sure Framework
Wizard is checked.

There are several Java frameworks available: J2EE, J2SE 1.2, J2SE 1.3, jdk−116, jdk−12, and jfc−11. (The
last three are, respectively, Java Development Kit version 1.1.6, Java Development Kit version 1.2, and the
Java Foundation Classes version 1.1.)

Simply select whichever framework you will be using for your project. Rose will automatically load classes,
relationships, attributes, operations, and components from the selected framework into your new model. You
can then use these elements as a foundation to create your own project.

Figure 14.2 is an example of a new Rose model using the J2EE framework. No new information has yet been
added to the model. The figure shows only what is imported with the J2EE framework. Note that, for
readability, many of the packages in Figure 14.2 are not expanded; however, classes and other model elements
are inside each one.

Figure 14.2: Rose model with J2EE framework

You can also use a framework on an existing Rose model. To do so, you need to load the appropriate
controlled units. Each package in the frameworks is stored as controlled units. Select File → Units → Load,
and then navigate to the Rose 2000\framework\frameworks\shared components directory. The .cat files in this
directory are the controlled units for the frameworks. Each .cat file begins with the name of the framework,
such as j2ee or j2se12, so you know which files to import for which framework. Select the .cat files
appropriate for your framework, and Rose will import them into your model.

Linking to IBM VisualAge for Java

Establishing a link between Rational Rose and IBM's VisualAge will allow you to update a VisualAge project
directly from within Rose or to reverse engineer a VisualAge project into Rose.

To set up the link between the two tools, first start VisualAge. Select File and then Quick Start. On the dialog
box, select Basic and then RoseLink Plug−In Toggle. This will establish the link from the VisualAge side.

To complete the process, start Rose. Select Tools → Java → Project Specification. On the Detail tab, set the
Virtual Machine setting to IBM, as shown in Figure 14.3.

Chapter 14: Java Code Generation and Reverse Engineering

450

Figure 14.3: Java Virtual Machine setting

Select Tools → Java → IBM VisualAge for Java Project. Select the appropriate VisualAge project. The link
between the two tools is now set.

Linking to Microsoft Visual J++

Similar to the link with IBM's VisualAge, the link to Microsoft Visual J++ will allow you to generate code
and to reverse engineer using Rose and Visual J++. Once the link has been established, Rose can launch
Visual J++ or Visual J++ can launch Rose in order to generate code or reverse engineer.

To set up the link to Visual J++, select Tools → Java → Project Specification. On the Detail tab, set the
Virtual Machine setting to Microsoft.

You are now ready to work with Rose and Visual J++. From Rose, select Tools → Java → Generate Java to
launch Visual J++ and generate code. From Visual J++, select the elements you wish to reverse engineer and
select Tools → Update Rose Model. Rose will be launched, and the elements will be reverse engineered into
the Rose model.

Java Code−Generation Properties

The Java code−generation properties can be set in two places. The defaults are set by using the Tools →
Options menu item and then selecting the Java tab, as shown in Figure 14.4. You can set properties for the
following items:

•
Attributes

•
Classes

•

Chapter 14: Java Code Generation and Reverse Engineering

451

Module bodies

•
Module specifications

•
Operations

•
Projects

•
Roles

Figure 14.4: Java code−generation properties window

We'll discuss using these various properties throughout this chapter. We'll begin with a brief description of the
available code−generation properties, then cover projects, modules, classes, attributes, operations, and roles.

Project Properties

The project properties affect all aspects of Java code generation in Rose. This section provides a listing of the
properties and their common settings.

The project properties are code−generation properties that apply more to the whole project than to any
specific model element, such as a class or relationship. The options in this section include things like the
default directory to use when generating code, the file extensions to use, and whether or not to stop generation
if an error occurs. The project properties are listed in Table 14.2, along with their purposes and default value.
(In this and subsequent code−generation property tables, we list the most commonly used properties.)

Table 14.2: Java Project Properties

Chapter 14: Java Code Generation and Reverse Engineering

452

Property Purpose Default

RootDir Directory to hold the Java project. <blank>

CreateMissingDirectories If True, creates any directories that are
required if they do not exist.

True

StopOnError If True, Rose will stop code generation at the
first error.

False

UsePrefixes If True, Rose will add user−defined prefixes to
the variable names.

False

AutoSync Automatically begins the code−generation
process when a Java element changes in the
Rose model.

False

ShowCodeGenDlg Shows a progress dialog box while generating
code.

False

JavadocDefaultAuthor Sets the value of the Javadoc @author tag.<blank>

JavadocDefaultVersion Sets the value of the Javadoc @version tag.<blank>

JavadocDefaultSince Sets the value of the Javadoc @since tag. <blank>

JavadocNumAsterisks Number of asterisks to use with the Javadoc
comments.

0

MaxNumChars Maximum number of characters in a line of
generated Java code.

80

Editor Select the editor to use while browsing code.Rose's built−in editor

VM Select the version of the Java Virtual Machine
(Sun, IBM, or Microsoft).

Sun

ClassPath Specifies the directory where code will be
generated.

<blank> (use current
directory)

InstanceVariablePrefix If UsePrefixes is True, then this prefix will be
added to all instance variables.

m_

ClassVariablePrefix If UsePrefixes is True, then this prefix will be
added to all class variables.

s_

DefaultAttributeDataType If no type is selected for an attribute, this type
will be used.

Integer

DefaultOperationReturnType If no return type is selected for an operation,
this type will be used.

Void

NoClassCustomDlg Determines whether the custom specification
window will be suppressed for Java classes
and other elements.

False

GlobalImports Sets import statements to be generated. Each
class or package listed will generate an import
statement.

<blank>

OpenBraceClassStyle Sets whether an opening brace will start on a
new line.

True

OpenBraceMethodStyle Sets whether an opening brace for a method
will start on a new line.

True

UseTabs Determines whether to use tabs (as opposed to
spaces) to indent the generated Java code.

False

Chapter 14: Java Code Generation and Reverse Engineering

453

UseSpaces Determines whether to use spaces (as opposed
to tabs) to indent the generated Java code.

True

SpacingItems Number of tabs or spaces (depending on the
values of UseTabs and UseSpaces) to use to
indent the generated Java code.

3

RoseDefaultCommentStyle Use the default Rose comment style in
generated code.

True

AsteriskCommentStyle Use asterisk comment style in generated code.False

JavaCommentStyle Use Javadoc tags for comments in generated
code.

False

JavadocAuthor Controls whether the Javadoc @author tag is
enabled.

True

JavadocSince Controls whether the Javadoc @since tag is
enabled.

False

JavadocVersion Controls whether the Javadoc @version tag is
enabled.

False

Most of these project properties can also be set in the Project Specification window. To open the Project
Specification window, select Tools → Java → Project Specification. On the Class Path tab, you can set the
ClassPath project property.

Figure 14.5 shows the Style tab of the Java Project Specification window. On this tab, you can set the values
of the following properties:

•
UseTabs

•
UseSpaces

•
SpacingItems (Number to Use)

•
OpenBraceClassStyle (On New Line for Classes)

•
OpenBraceMethodStyle (On New Line for Methods)

•
RoseDefaultCommentStyle (Rose Default)

•
AsteriskCommentStyle (Asterisk Style)

•
JavaCommentStyle (Javadoc Style)

•
MaxNumChars (Maximum Number of Characters in a Line)

•

Chapter 14: Java Code Generation and Reverse Engineering

454

JavadocAuthor, JavadocDefaultAuthor (@Author)

•
JavadocVersion, JavadocDefaultVersion (@Version)

•
JavadocSince, JavadocDefaultSince (@Since)

•
JavadocNumAsterisks (Number of Asterisks)

Refer to Table 14.2 for a description of each of these properties.

Figure 14.5: Style tab of the Java Project Specification window

On the Detail tab of the Project Specification window, you can set additional project properties. Figure 14.6
shows the Detail tab. It includes the following properties:

•
Editor

•
VM (Virtual Machine)

•
RootDir (Root Directory)

•
DefaultAttributeDataType (Attribute)

•
DefaultOperationReturnType (Method Return)

•

Chapter 14: Java Code Generation and Reverse Engineering

455

UsePrefixes

•
InstanceVariablePrefix

•
ClassVariablePrefix

•
StopOnError

•
CreateMissingDirectories

•
NoClassCustomDlg (Always Show Standard Specification Dialog for Classes)

•
AutoSync (Automatic Synchronization Mode)

•
ShowCodeGenDlg (Show Codegen Dialog)

Figure 14.6: Detail tab of the Java Project Specification window

Refer to Table 14.2 for a description of each of these properties.

Class Properties

In this section, we discuss the Java code−generation properties that apply to classes. These properties will let
you change the class name, decide whether or not constructors should be created for the class, and set other
class−specific properties.

Chapter 14: Java Code Generation and Reverse Engineering

456

There are three places to set these properties. To set them for all classes, select Tools → Options, then click
the Java tab and select Class from the drop−down list box. To set them for only one class, either select the
Java tab on the standard class specification window and edit the properties there or open the custom Java class
specification window for the class.

Table 14.3 lists the Java class properties, their purposes, and their default values.

Table 14.3: Java Class Properties

Property Purpose Default

Final Includes the final modifier in the generated code. False

Static Declares that a nested Java class is static and that only
one instance of the class can exist.

False

GenerateDefaultConstructor Controls whether or not a constructor will
automatically be generated for the class.

True

ConstructorIs Sets the visibility (public, private, protected) of the
constructor.

Public

GenerateFinalizer Includes a finalizer in the class. False

GenerateStaticInitializer Includes a static initializer in the class. False

GenerateInstanceInitializer Includes an instance initializer in the class. False

GenerateCode Generate code for the class. True

DisableAutoSync Disables the automatic generation of code when the
class changes. (Automatic generation is always
disabled if the AutoSync project property is set to
False.)

False

These properties can also be set using the custom Java specification window for the class, as shown in Figure
14.7. As you can see on this window, you can set each of the class properties using the fields with
corresponding names. The ConstructorIs property is set through the Constructor Visibility field.

Figure 14.7: Setting class properties through the Java Class Specification window

Chapter 14: Java Code Generation and Reverse Engineering

457

In addition, you can mark the class as abstract using this window. An abstract class will never directly be
instantiated. You can mark the class as an interface, in which case the final modifier, finalizer, static
initializer, and instance initializer will no longer be available. Using the Extends area, you can list any classes
of which this is a subclass. Using the Implements area, you can list any interfaces that this class implements.

Attribute Properties

In this section, we cover the Java code−generation properties that relate to attributes. Using these properties,
you can, for example, decide whether or not the attribute will be generated in the code.

There are three places to set these properties. To set them for all attributes, select Tools → Options, then click
the Java tab and select Attribute from the drop−down list box. To set them for only one attribute, select the
Java tab on the standard attribute specification window (right−click the attribute in the browser and select
Open Standard Specification) or open the Java attribute specification window (right−click the attribute in the
browser and select Open Specification) and edit the properties there. Figure 14.8 shows the Java tab under
Tools → Options, with which you can set properties for all attributes.

Figure 14.8: Setting Java attribute properties

Table 14.4 lists the attribute properties, their purposes, and their default values.

Table 14.4: Java Attribute Properties

Property Purpose Default

Final If True, includes a final modifier in the attribute. False

Transient Includes a transient modifier in the attribute. False

Volatile Includes a volatile modifier in the attribute. False

PropertyType Specifies the property type for a Java Bean. Not a Property

IndividualChangeMgt Specifies whether or not the Java Bean gets its own
registration mechanism.

False

Chapter 14: Java Code Generation and Reverse Engineering

458

Read/Write Sets whether or not Rose will generate a Get and/or a
Set method for the attribute.

Read & Write

GenerateFullyQualifiedTypes Include the complete file path in the generated code
for reference attributes.

False

You can set the values of these properties using the Java attribute specification window, as shown in Figure
14.9.

Figure 14.9: Setting attribute properties through the Java Field Specification window

Using this window, you can also set the static flag, the attribute visibility, the initial value, and the data type
for the attribute. The static flag marks the attribute as a class variable as opposed to an instance variable. The
attribute visibility (public, private, protected, or package) controls what other classes will be able to access the
attribute. The attribute's initial value is set using this window, and will be generated in the code. The data type
can be set by pressing the "…" button next to the Type field and selecting from the list of Java types
presented. The Container Class field is also displayed on this window, but is used only for relationships.

Operation Properties

Next, we discuss the Java code−generation properties that are specific to operations. These properties will let
you, for example, control whether the operation is abstract or not.

There are three places to set these properties. To set them for all operations, select Tools → Options, then
click the Java tab and select Operation from the drop−down list box. To set them for only one operation,
select the Java tab on the standard operation specification window, or open the Java operation specification
window and edit the properties there.

Table 14.5 lists the operation code−generation properties, their purposes, and their default values.

Table 14.5: Java Operation Properties

Property Purpose Default

Abstract Includes an abstract modifier in the operation. False

Static Includes a static modifier in the operation. False

Final Includes a final modifier in the operation. False

Chapter 14: Java Code Generation and Reverse Engineering

459

Native Includes a native modifier in the operation. False

Synchronized Includes a synchronized modifier in the operation.False
As with attributes, you can set the values of these properties using the Java specification window. Figure
14.10 shows the Java specification window for an operation.

Using this window, you can also set the operation visibility (public, private, protected, or package), set the
operation return type, set the operation arguments, or list the exceptions that the operation will throw.

Figure 14.10: Setting operation properties through the Java Method Specification window

Module Properties

The module specification and body properties are those properties that are related to the files you will
generate from Rose. These properties give you the ability to decide whether or not to include a copyright
notice in the file and whether or not to list any configuration management strings to be generated in the code.

There are three places to set these properties. To set them for all files, select Tools → Options, then click the
Java tab and select Module Specification or Module Body from the drop−down list box. To set them for only
one file, select the Java tab on the standard component specification window or open the Java component
specification window and edit the properties there.

Table 14.6 lists the code−generation properties for module specifications, their purposes, and their default
values.

Table 14.6: Java Module Specification Properties

Property Purpose Default

CMIdentification Specifies a user−defined configuration management
identification string.

<blank>

CopyrightNotice Specifies a user−defined copyright string to include in
the code as a comment.

<blank>

Using the Java Component Specification window, as shown in Figure 14.11, you can set these properties. You
can also list any Java import statements you would like to include in the generated code.

Chapter 14: Java Code Generation and Reverse Engineering

460

Figure 14.11: Setting component properties through the Java Component Specification window

You can also set code−generation properties for a module body in Java. The available properties are
CMIdentification and CopyrightNotice, as described in Table 14.6.

Role Properties

Role properties are the Java code−generation properties that affect the code generated for relationships. Using
these properties, you can set the container class to be used for the attribute and change other specifics of the
generated code for a role.

As with most of the other property sets, there are three places to set these properties. To set them for all
relationships, select Tools → Options, then click the Java tab and select Role from the drop−down list box. To
set them for a single relationship, open the relationship specification. On the Java tab of the relationship
specification window, you can change the properties for that relationship.

Table 14.7 lists the role properties, their purposes, and their default values.

Table 14.7: Java Role Properties

Property Purpose Default

ContainerClass Specifies the container class to use if the relationship's
multiplicity is greater than one.

<blank>

InitialValue Specifies the default value for the attribute. <blank>

Final Includes a final modifier in the attribute. False

Transient Includes a transient modifier in the attribute. False

Volatile Includes a volatile modifier in the attribute. False

PropertyType Specifies the property type for a Java Bean. Not a Property

IndividualChangeMgt Specifies whether or not the Java Bean gets its own
registration mechanism.

False

Read/Write (98i) Sets whether or not Rose will generate a Get and/or a
Set method.

Read & Write

GenerateFullyQualifiedTypes False

Chapter 14: Java Code Generation and Reverse Engineering

461

Include the complete file path in the generated code
for reference attributes.

IsNavigable Indicates navigability True

Generating Code

Once you have created the classes, relationships, attributes, operations, EJBs, servlets, and other Java
elements in your Rose model, you can generate code. To generate code, follow these steps:

1.
Create the needed components.

2.
Assign the Java classes to the appropriate components.

3.
Set the code−generation properties.

4.
Select Tools → Check Model to check for language−independent model errors. Check the log
window for any errors found, and resolve the errors.

5.
Select Tools → Java → Syntax Check to check for Java−specific problems. Again, check the log
window for a list of errors found, and resolve the errors.

6.
Select the class(es) or component(s) to generate.

7.
Select Tools → Java → Code Generation.

8.
To view the generated code for a class, right−click the class on a diagram and select Java → Browse
Java Source.

Generated Code

In the following sections, we'll take a look at the Java code generated for a class, attribute, and operation, and
for the different types of relationships between classes. In each of these sections, we'll include some sample
code to give you an idea of what will be generated from your Rose model.

Rose uses the information in the specifications of the model elements when generating code. For example, it
will look at the different specifications for a class (visibility, attributes, operations, and so on) when
generating code for the class.

Let's begin by looking at the code generated for a typical class.

Chapter 14: Java Code Generation and Reverse Engineering

462

Classes

A class in your object model will become a Java class when you generate code. All of the attributes,
operations, and relationships of the class will be reflected in the generated code. The major elements
generated for each class include:

•
The class name

•
The class visibility

•
A constructor for the class

•
Class documentation

•
Attributes

•
Operations

•
Relationships

Without a component mapping, each class in the model will generate one file with the .java extension. Each
file will be named using the class name. For example, an Employee class will generate an Employee.java file.
With a component mapping, the class (or classes) mapped to each component will be generated in a .java file
for the component.

Much of the information in your Rose model will be used directly when generating code. For example, the
attributes, operations, relationships, and class name of each class will directly affect the code generated. Other
model properties, such as the documentation entered for the class, will not directly affect the code. These
properties are created as comments in the generated code.

Table 14.8 lists the properties available in the class specification window and notes which properties will
directly affect the code that is generated.

Table 14.8: Effect of Class Specifications on Generated Code

Property Effect on Code

Name Name in model will become class name.

Type Directly affects the type of class created.

Stereotype Directly affects the type of class created.

Export Control Directly affects the class visibility.

Documentation Appears as a comment.

Chapter 14: Java Code Generation and Reverse Engineering

463

Persistence Affects whether DDL can be generated for the class.

Abstract Creates an abstract class.

Formal Arguments Formal arguments are included in the code for a parameterized class.

Operations Generated in code.

Attributes Generated in code.

Relationships Generated in code.
Let's look at the code generated for the following class:

The following code is the Java file that was generated for this class.

//Source file: C:\\Flight.java

/* Copyright Notice */

/**
Comments for Flight Class
*/
public class Flight
{
 private int FlightNumber;

 public Flight()
 {
 }

 /**
 @roseuid 394461CB01F3
 */
 public boolean AddPassenger(int PassengerID)
 {
 }
}

Copyright Notice Section

The copyright notice section includes the following line of code:

/* Copyright Notice */

By default, there is no copyright notice generated for your code. If, however, you'd like to add a copyright
notice to all files, you can change the code−generation properties. Select Tools → Options from the menu,
then select the Java tab. Select Module Specification from the drop−down list box to display the module
specification code−generation properties. Change the CopyrightNotice field to include any copyright
information. If information is entered, it will be generated.

You can override the default for a specific component by changing the value in the Copyright field in the
component specification window or in the CopyrightNotice property on the Java tab of the component's

Chapter 14: Java Code Generation and Reverse Engineering

464

standard specification window.

Attributes

Aside from the class itself, Rose will generate the attributes for the class. For each attribute, Rose will include
information about the attribute visibility, data type, and default value in the code. Let's look again at the code
generated for the Flight class.

//Source file: C:\\Flight.java

/* Copyright Notice */

/**
Comments for Flight Class
*/
public class Flight
{
 private int FlightNumber;

 public Flight()
 {
 }

 /**
 @roseuid 394461CB01F3
 */
 public boolean AddPassenger(int PassengerID)
 {
 }
}

As you can see, the code includes the attribute visibility and data type. If the default value is set, it will also be
included in the generated code.

To apply one of the modifiers, such as the transient modifier, to an attribute, set the appropriate property to
True. In this case, you set the transient property to True, and the attribute generates with the modifier, as in the
following code:

//Source file: C:\\Flight.java

/* Copyright Notice */

/**
Comments for Flight Class
*/
public class Flight
{
 private transient int FlightNumber;

 public Flight()
 {
 }

 /**
 @roseuid 394461CB01F3
 */

Chapter 14: Java Code Generation and Reverse Engineering

465

 public boolean AddPassenger(int PassengerID)
 {
 }
}

The visibility options affect the generated attribute. In the above example, and as the default, attributes are
given private visibility. If you set an attribute to Protected or Public, the following code is an example of what
you will generate:

//Source file: C:\\Flight.java

/* Copyright Notice */

/**
Comments for Flight Class
*/
public class Flight
{
 private transient int FlightNumber;
 public long DepartureDate;
 protected int GateNumber;

 public Flight()
 {
 }

 /**
 @roseuid 394461CB01F3
 */
 public boolean AddPassenger(int PassengerID)
 {
 }
}

Operations

Rose generates each of the operations in the class. For each operation, the generated code includes the
operation name, the parameters, the parameter data types, and the return type. Again, we'll examine the code
generated for the Flight class:

//Source file: C:\\Flight.java

public class Flight
{
 private int FlightNumber;

 public Flight()
 {

Chapter 14: Java Code Generation and Reverse Engineering

466

 }

 /**
 @roseuid 39446D1B0084
 */
 public boolean AddPassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446D230253
 */
 public boolean RemovePassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446D2B02AE
 */
 public boolean CancelFlight()
 {
 }
}

As you can see, the full operation signature is generated in the code. Any documentation you enter for the
operation is also generated as a comment in the code.

Rose generates skeletal code for operations. That is, the operation signature is generated. Once you have
generated the code, you insert the implementation code for each operation between the { and } delimiters of
the operation. This protects the code during round−trip engineering.

You can enter exception information using the Java operation specification window, as shown here:

In the Throws field, select the appropriate Java exception class. When you generate code, the exception
information will be generated as well:

//Source file: C:\\Flight.java

public class Flight

Chapter 14: Java Code Generation and Reverse Engineering

467

{
 private int FlightNumber;

 public Flight()
 {
 }

 /**
 @roseuid 39446ECD011F
 */
 public boolean AddPassenger(int PassengerID) throws java.lang.Exception
 {
 }

 /**
 @roseuid 39446ED40101
 */
 public boolean RemovePassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446EDB03BE
 */
 public boolean CancelFlight()
 {
 }
}

As with other model elements, you can control the code generated for an operation by modifying its
code−generation properties.

Bidirectional Associations

To support bidirectional associations, Rose will generate attributes in the code. Each of the classes in the
relationship will contain an attribute to support the association. By default, Rose names the roles by
appending "the" to the class name. Let's look at the code generated for the following relationship:

The following is the code for Passenger:

//Source file: C:\\Passenger.java

public class Passenger
{
 private string FirstName;
 private string LastName;
 private string Address;
 private string City;
 private string State;

Chapter 14: Java Code Generation and Reverse Engineering

468

 private long Zip;
 private string Phone;
 public FrequentFlyerAccount theFrequentFlyerAccount;

 public Passenger()
 {
 }
}

The following is the code for FrequentFlyerAccount:

//Source file: C:\\FrequentFlyerAccount.java

public class FrequentFlyerAccount
{
 private int AccountID;
 private int NumberOfMiles;
 private string DateEstablished;
 public Passenger thePassenger;

 public FrequentFlyerAccount()
 {
 }

 /**
 @roseuid 394590F100A2
 */
 public boolean AddMiles(int Miles)
 {
 }

 /**
 @roseuid 394590FE0209
 */
 public boolean UseMiles(int Miles)
 {
 }

 /**
 @roseuid 394591060124
 */
 public int NewAccount()
 {
 }

 /**
 @roseuid 39459113021D
 */
 public boolean DeleteAccount(int AccountID)
 {
 }
}

As you can see, Rose will automatically generate attributes on both sides of the bidirectional association
relationship. With the FrequentFlyerAccount attribute, Passenger can access the public attributes and
operations of FrequentFlyerAccount. With the Passenger attribute, FrequentFlyerAccount can access the
public attributes and operations of Passenger. If you want to use different names for the attributes instead of
thePassenger and theFrequentFlyerAccount, you can set role names for the association. These names will be

Chapter 14: Java Code Generation and Reverse Engineering

469

used instead, as in the following code for Passenger. In this example, we set the role names to MyAccount and
AccountHolder.

//Source file: C:\\Passenger.java

public class Passenger
{
 private string FirstName;
 private string LastName;
 private string Address;
 private string City;
 private string State;
 private long Zip;
 private string Phone;
 public FrequentFlyerAccount myAccount;

 public Passenger()
 {
 }
}

The following is the code for FrequentFlyerAccount:

//Source file: C:\\FrequentFlyerAccount.java

public class FrequentFlyerAccount
{
 private int AccountID;
 private int NumberOfMiles;
 private string DateEstablished;
 public Passenger AccountHolder;

 public FrequentFlyerAccount()
 {
 }

 /**
 @roseuid 394590F100A2
 */
 public boolean AddMiles(int Miles)
 {
 }

 /**
 @roseuid 394590FE0209
 */
 public boolean UseMiles(int Miles)
 {
 }

 /**
 @roseuid 394591060124
 */
 public int NewAccount()
 {
 }

 /**

Chapter 14: Java Code Generation and Reverse Engineering

470

 @roseuid 39459113021D
 */
 public boolean DeleteAccount(int AccountID)
 {
 }
}

Rose will use the role name to generate the attribute name. By default, each generated attribute will have
public visibility. To change the visibility, open the association specification window. Select either the Role A
General or Role B General tab, and change the Export Control property.

Note that this association has a multiplicity of one to one. See the upcoming sections titled "Associations with
a Multiplicity of One to Many" or "Associations with a Multiplicity of Many to Many" for a discussion of
how other multiplicity settings will affect code generation.

You can specify initial values for the generated attributes. Open the desired association's standard
specification, then select the Java A or Java B tab. Modify the InitialValue property to contain the initial value
for the generated attribute.

Unidirectional Associations

As with bidirectional associations, Rose will generate attributes to support unidirectional associations. With a
unidirectional association, however, an attribute is generated at only one end of the relationship. Let's look at
the Passenger and FrequentFlyerAccount classes again, but this time with a unidirectional relationship.

For these classes, code similar to the following code for Passenger would be created:

//Source file: C:\\Passenger.java

public class Passenger
{
 private string FirstName;
 private string LastName;
 private string Address;
 private string City;
 private string State;
 private long Zip;
 private string Phone;
 public FrequentFlyerAccount theFrequentFlyerAccount;

 public Passenger()
 {
 }
}

This is the code for FrequentFlyerAccount:

//Source file: C:\\FrequentFlyerAccount.java

public class FrequentFlyerAccount
{
 private int AccountID;
 private int NumberOfMiles;

Chapter 14: Java Code Generation and Reverse Engineering

471

 private string DateEstablished;

 public FrequentFlyerAccount()
 {
 }

 /**
 @roseuid 394590F100A2
 */
 public boolean AddMiles(int Miles)
 {
 }

 /**
 @roseuid 394590FE0209
 */
 public boolean UseMiles(int Miles)
 {
 }

 /**
 @roseuid 394591060124
 */
 public int NewAccount()
 {
 }

 /**
 @roseuid 39459113021D
 */
 public boolean DeleteAccount(int AccountID)
 {
 }
}

As you can see, Rose will generate an attribute for the relationship at only one end of the association.
Specifically, it will generate an attribute in the client class, but not in the supplier class.

The code generated in the supplier class is the same as discussed in the previous section about bidirectional
associations. With a bidirectional association, each class is given a new attribute, and the code discussed in the
previous section is included in both classes. With a unidirectional association, the code is included only in the
client class.

Again, note that the multiplicity here is one to one. Next let's take a look at how code is affected when the
multiplicity settings are changed.

Associations with a Multiplicity of One to Many

In a one−to−one relationship, Rose can simply create the appropriate attributes to support the association.
With a one−to−many relationship, however, one class must contain a set of the other class. Let's look at an
example.

Chapter 14: Java Code Generation and Reverse Engineering

472

In this case, we have a one−to−many relationship. Each flight has many tickets, but each ticket is for only one
flight. The code generated for this relationship is shown below in the code for Flight:

//Source file: C:\\Flight.java

public class Flight
{
 private int FlightNumber;
 public Ticket theTicket[];

 public Flight()
 {
 }

 /**
 @roseuid 39446ECD011F
 */
 public boolean AddPassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446ED40101
 */
 public boolean RemovePassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446EDB03BE
 */
 public boolean CancelFlight()
 {
 }
}

Following is the code for Ticket:

//Source file: C:\\Ticket.java

public class Ticket
{
 private int SeatNumber;
 private long PurchasePrice;
 public Flight theFlight;

 public Ticket()
 {
 }

 /**
 @roseuid 3945946F0378
 */
 public int RefundTicket()
 {
 }
}

Chapter 14: Java Code Generation and Reverse Engineering

473

In this example, Ticket simply contains an attribute of type Flight because the multiplicity states that there is
one instance of Flight for each instance of Ticket. However, the multiplicity also states that there are many
instances of Ticket for each instance of Flight. Therefore, an array of Ticket objects is created inside Flight.

If you don't want to use an array, you can change the code−generation properties to use a different container
class. In either the Java tab of the standard association specification window or the Field tab of the Java
association specification window, set the ContainerClass code−generation property to the name of the
container class you'd rather use.

In the following example, we created a class called TicketList, which is a collection of Tickets. The following
code is generated for the above association, but with the container class as type TicketList.

Code for Flight:

//Source file: C:\\Flight.java

public class Flight
{
 private int FlightNumber;
 public TicketList theTicket;

 public Flight()
 {
 }

 /**
 @roseuid 39446ECD011F
 */
 public boolean AddPassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446ED40101
 */
 public boolean RemovePassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446EDB03BE
 */
 public boolean CancelFlight()
 {
 }
}

Associations with a Multiplicity of Many to Many

The code generated here is similar to that created for a one−to−many relationship. With a many−to−many
relationship, however, Rose will generate arrays on both ends of the relationship. Let's look at the code
generated for the following relationship.

Chapter 14: Java Code Generation and Reverse Engineering

474

This is the code for Flight:

//Source file: C:\\Flight.java

public class Flight
{
 private int FlightNumber;
 public Passenger thePassenger[];

 public Flight()
 {
 }

 /**
 @roseuid 39446ECD011F
 */
 public boolean AddPassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446ED40101
 */
 public boolean RemovePassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446EDB03BE
 */
 public boolean CancelFlight()
 {
 }
}

This is the code for Passenger:

//Source file: C:\\Passenger.java

public class Passenger
{
 private string FirstName;
 private string LastName;
 private string Address;
 private string City;
 private string State;
 private long Zip;
 private string Phone;
 public Flight theFlight[];

 public Passenger()

Chapter 14: Java Code Generation and Reverse Engineering

475

 {
 }
}

In this situation, arrays are created at both ends of the relationship. An array is used by default, but as we
mentioned earlier, you can change the container class that is used. To do so, use the relationship specification
window for the association. On the Java A or Java B tab, change the ContainerClass property to the name of
the container class you wish to use.

To change the container class for all many−to−many association relationships, choose Tools → Options from
the menu. On the Java tab, select Role from the drop−down list box. Change the value of the ContainerClass
code−generation property to the container class you wish to use.

Reflexive Associations

A reflexive association is treated much the same as an association between two classes. Let's look at the code
generated for the following situation:

//Source file: C:\\EnginePart.java

public class EnginePart
{
 public EnginePart theEnginePart[];

 public EnginePart()
 {
 }
}

As with a regular association, an attribute is created inside the class to support the relationship. If the
multiplicity is one, a simple attribute is created. If the multiplicity is more than one, an array is created as an
attribute, as above.

Aggregations

There are two types of aggregation relationships: by−value and by−reference. With a by−value relationship,
one class contains another. With a by−reference relationship, one class contains a reference to another. Code
generated for either type of aggregation in Java is the same.

Here we have an aggregation relationship between a flight schedule and the flights on the schedule. Each
schedule contains one or more flights, and each flight can be on zero or more schedules.

Chapter 14: Java Code Generation and Reverse Engineering

476

The code that is generated shows a Flight attribute inside Schedule. Because the multiplicity of the
relationship is one or more, there is an array of Flights inside Schedule.

The following is the code for the Schedule class:

//Source file: C:\\Schedule.java

public class Schedule
{
 private date BeginDate;
 private date EndDate;
 public Flight theFlight[];

 public Schedule()
 {
 }
}

The following is the code for the Flight class:

//Source file: C:\\Flight.java
public class Flight
{
 private int FlightNumber;
 private date FlightDate;

 public Flight()
 {
 }

 /**
 @roseuid 39446ECD011F
 */
 public boolean AddPassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446ED40101
 */
 public boolean RemovePassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446EDB03BE
 */
 public boolean CancelFlight()
 {
 }
}

Chapter 14: Java Code Generation and Reverse Engineering

477

Rose uses the value in the ContainerClass property when the multiplicity of the relationship is greater than
one. If the ContainerClass contains no value, then Rose will use an array to contain the multiple objects.

Dependency Relationships

With a dependency relationship, no attributes are created. If there is a dependency between Class A and Class
B, no attributes will be created in either Class A or Class B. Here we have a dependency between Flight and
Passenger:

The code that is generated will look something like the following:

//Source file: C:\\Flight.java

public class Flight
{
 private int FlightNumber;
 private date FlightDate;

 public Flight()
 {
 }

 /**
 @roseuid 39446ECD011F
 */
 public boolean AddPassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446ED40101
 */
 public boolean RemovePassenger(int PassengerID)
 {
 }

 /**
 @roseuid 39446EDB03BE
 */
 public boolean CancelFlight()
 {
 }
}

and

//Source file: C:\\Passenger.java

Chapter 14: Java Code Generation and Reverse Engineering

478

public class Passenger
{
 private string FirstName;
 private string LastName;
 private string Address;
 private string City;
 private string State;
 private long Zip;
 private string Phone;

 public Passenger()
 {
 }
}

Rose will place no references to Flight inside Passenger or Passenger inside Flight. The dependency
relationship does not generate any code for the relationship.

Generalization Relationships

A generalization relationship in UML becomes an inheritance relationship in Java. In your Rose model, an
inheritance relationship is shown as follows:

For this type of relationship, Rose will generate something that looks like this:

//Source file: Parent.java

//Source file: C:\\Parent.java

public class Parent
{

 public Parent()
 {
 }
}

and

//Source file: C:\\Child.java

public class Child extends Parent
{

Chapter 14: Java Code Generation and Reverse Engineering

479

 public Child()
 {
 }
}

In the code for the parent class, there is no mention of the child class. This helps keep the parent generic;
many classes can inherit from it without affecting its code. In the child class, the code is generated to support
its inheritance from the parent class. The class declaration will look like this:

Public class Child extends Parent

Interfaces

In Rose, a Java interface is modeled as a class with a stereotype of Interface. It contains operation signatures,
but does not contain any implementation for the operations. The implementation of the operations is contained
in other classes. The interface is connected with a realization relationship to the class(es) that implement the
interface:

When you generate code, Rose will generate a Java interface. The code for the interface and implementation
classes from the example above is shown here:

This is the code for the interface class:

//Source file: C:\\Interface.java

public interface Interface
{

 /**
 @roseuid 3945AB7201CA
 */
 public void DoSomething();
}

and for the implementation class:

//Source file: C:\\Class.java

public class Class implements Interface
{

 public Class()
 {
 }

Chapter 14: Java Code Generation and Reverse Engineering

480

 /**
 @roseuid 3945AC1B032C
 */
 public void DoSomething()
 {
 }
}

As you can see, Rose places the "implements" keyword in the implementation class to set the interface for that
class. Once the code has been generated, you can program the DoSomething() operation in the
implementation class.

Java Beans

You can model a Java Bean in Rose as an attribute. The attribute will have all of the standard specifications
available in Rose, with three additional fields: the type of bean (Bound, Constrained, Simple, or Not a Bean);
a Read/Write field, which controls the Get and Set operations generated; and a flag for change management.
Figure 14.12 shows the Java attribute specification window, in which you can set these three properties.

Figure 14.12: Setting Java Bean properties

The Read/Write field controls whether a bean Get and/or bean Set operation will be generated. The Read &
Write option will create both a Get and a Set operation. Read will create only a Get operation, and Write will
create only a Set operation.

There are three types of beans available. A simple bean creates just a Get and Set method, depending on the
value of the Read/Write field. In the above example, the code will look like this:

//Source file: C:\\SampleClass.java

public class SampleClass
{
 private int SampleBean;

 public SampleClass()
 {
 }

Chapter 14: Java Code Generation and Reverse Engineering

481

 /**
* Access method for the SampleBean property.
*
* @return the current value of the SampleBean property
 @roseuid
 */
 public int getSampleBean()
 {
 return SampleBean;
 }

 /**
* Sets the value of the SampleBean property.
*
* @param aSampleBean the new value of the SampleBean property
 @roseuid
 */
 public void setSampleBean(int aSampleBean)
 {
 SampleBean = aSampleBean;
 }
}

With a bound bean, Rose will include an import java.beans.* statement in the generated code. In addition, it
will generate a declaration, a Set operation, an optional Get operation (depending on the value of the
Read/Write field), a PropertyChangeSupport attribute, an addPropertyChange−Listener operation, and a
removePropertyChangeListener operation. The code will now look like this:

//Source file: C:\\SampleClass.java

import java.beans.*;
public class SampleClass
{
 private int SampleBean;

 /**
* common PropertyChangeSupport instance
 */
 protected PropertyChangeSupport commonPCS = new PropertyChangeSupport(this);

 public SampleClass()
 {
 }

 /**
* Access method for the SampleBean property.
*
* @return the current value of the SampleBean property
 @roseuid
 */
 public int getSampleBean()
 {
 return SampleBean;
 }

 /**
* Sets the value of the SampleBean property.
*
* @param aSampleBean the new value of the SampleBean property

Chapter 14: Java Code Generation and Reverse Engineering

482

 @roseuid
 */
 public void setSampleBean(int aSampleBean)
 {
 SampleBean = aSampleBean;
 }

 public void addPropertyChangeListener(PropertyChangeListener listener)
 {
 commonPCS.addPropertyChangeListener(listener);
 }

 public void removePropertyChangeListener(PropertyChangeListener listener)
 {
 commonPCS.removePropertyChangeListener(listener);
 }
}

Finally, with a constrained bean, Rose will include an import java.beans.* statement in the code. It will also
create a declaration, a Set operation, an optional Get operation (depending on the value of the Read/Write
field), a VetoableChangeSupport property, an addVetoableChangeListener operation, and a
removeVetoableChangeListener operation. The code in this situation will look like this:

//Source file: C:\\SampleClass.java

import java.beans.*;
public class SampleClass
{
 private int SampleBean;

 /**
* common VetoableChangeSupport instance
 */
 protected VetoableChangeSupport commonVCS = new VetoableChangeSupport(this);

 public SampleClass()
 {
 }

 /**
* Access method for the SampleBean property.
*
* @return the current value of the SampleBean property
 @roseuid
 */
 public int getSampleBean()
 {
 return SampleBean;
 }

 /**
* Sets the value of the SampleBean property.
*
* @param aSampleBean the new value of the SampleBean property
 @roseuid
 */
 public void setSampleBean(int aSampleBean) throws PropertyVetoException
 {
 SampleBean = aSampleBean;

Chapter 14: Java Code Generation and Reverse Engineering

483

 }

 public void addVetoableChangeListener(VetoableChangeListener listener)
 {
 commonVCS.addVetoableChangeListener(listener);
 }

 public void removeVetoableChangeListener(VetoableChangeListener listener)
 {
 commonVCS.removeVetoableChangeListener(listener);
 }
}
/*
SampleClass.removePropertyChangeListener(PropertyChangeListener){
 commonPCS.removePropertyChangeListener(listener);
 }
 */
/*
SampleClass.addPropertyChangeListener(PropertyChangeListener){
 commonPCS.addPropertyChangeListener(listener);
 }
 */

Support for J2EE

The J2EE standard is a method for developing complex distributed applications without needing to focus on
the details of transaction processing, database connectivity, or security. Instead, J2EE allows the developers to
focus on the unique business logic of the application. J2EE elements—including EJBs, servlets, JAR files, and
WAR files—are now supported in Rational Rose. In this section, we'll explore how to create each of these
four types of elements in Rose.

EJBs

An Enterprise Java Bean, or EJB, is modeled in Rose as a class with an EJB stereotype. Depending upon the
bean type (Entity or Session), the class will have a stereotype of EJBEntity or EJBSession. An entity EJB will
have relationships to three other elements: the home interface, the remote interface, and the primary key. Each
of these three is modeled in Rose as a class with stereotypes EJBHome−Interface, EJBRemoteInterface, and
EJBPrimaryKey, respectively. Figure 14.13 shows an example of an entity EJB.

Figure 14.13: Entity EJB

Chapter 14: Java Code Generation and Reverse Engineering

484

With a session EJB, the class will have relationships to two other classes: the home interface and the remote
interface. These classes have stereotypes of EJBHomeInterface and EJBRemoteInterface, respectively.

To create an EJB, select Tools → Java → J2EE → New EJB. Using the window shown in Figure 14.14, enter
the type of EJB (Entity or Session), the name of the home interface, the name of the remote interface, and the
name of the EJB.

Figure 14.14: Setting EJB properties

If this is an entity bean, use the Bean−Managed or Container−Managed radio buttons to control whether the
bean's persistence is managed by the container or within the bean itself.

If the bean is a session bean, use the Stateless or Stateful radio buttons to control whether the client maintains
the bean's state between method calls.

If this is an entity EJB, select the Persistence Properties option in the treeview on the left side of the window
in Figure 14.14. The Persistence Properties window is shown in Figure 14.15. Using this window, you can set
items such as the name of the primary key class and the ejbFinder's method, name, parameter, and parameter
type.

Figure 14.15: Setting Persistence properties

You can enter the name of the primary key in the Primary Key Class Name field, or check the Match Pattern
check box. If Match Pattern is checked, the name of the primary key will be the bean name followed by the
letters "PK."

Chapter 14: Java Code Generation and Reverse Engineering

485

In the Class Methods field, checking the hashcode(), equals(), or toString() check box(es) will cause Rose to
generate the selected method(s) in the code.

In the ejbFind<Method> field, you enter the name of an ejbFinder method to create. In the Parameter Name
field, enter the parameter(s) for the method. If there are multiple parameters, separate them with commas. In
the Parameter Type field, enter the data type for each parameter. Enter the types, separated by commas, in the
order in which the parameters are listed.

Select the Deployment Descriptor option in the treeview on the left side of the window to view the
Deployment Descriptor window, as shown in Figure 14.16. Once these properties are set, Rose can generate
the appropriate XML documents for the descriptor.

Figure 14.16: Setting Deployment Descriptor properties

You have the option to enter a value in the Enterprise Bean's Name field. If you enter a name, this is the name
that will be used in the .jar file. If not, Rose will use the implementation bean's name.

Next, check the Is Re−entrant box if more than one client will be able to access the bean's methods.

In the Deployment Descriptor Structural Information area, select one of the following from the drop−down
list box:

•
Cmp−field for a container−managed persistence entry

•
Env−entry for a environment variable entry

•
Resource−ref for a resource manager reference entry

•
Ejb−ref for a reference to the home or remote interface of another EJB

•
Security−role−ref for a security role reference entry

Then, enter the name, value, and type for the entry. For an ejb−ref entry, specify the home and remote

Chapter 14: Java Code Generation and Reverse Engineering

486

interfaces. Click the Add button to add the entry to the list, and create other entries as needed.

Servlets

Like an EJB, a servlet is modeled in Rose as a class with a special stereotype. In this case, the stereotype is
HttpServlet. Using the servlet properties dialog boxes we will discuss in this section, you can control what
methods and other properties are created for the servlet.

To create a new servlet, select Tools → Java → J2EE → New Servlet. You will see the J2EE Servlet
Specification window, as shown in Figure 14.17.

Figure 14.17: Servlet Specification window

First, enter the name of the servlet. Then, check IsSingleThread if one thread of the servlet instance will
execute at a time. Check HttpServlet or GenericServlet if the servlet extends either of these. In the Dispatcher
Path field, enter the path to another servlet that will be used to receive requests or send requests to the current
servlet. In the Operations area, check the method(s) that you would like Rose to generate for the servlet.

Select the Advanced Properties option on the left side of the window to display the Advanced Properties
window, as shown in Figure 14.18.

Figure 14.18: Servlet Advanced Properties window

Select the Context Object check box to create a servlet context object. In the The Request section of the
screen, select the method(s) the servlet will use to retrieve requests. In the Servlet Content Type field, enter
the type that the servlet will use to respond to a client.

Chapter 14: Java Code Generation and Reverse Engineering

487

Select the Deployment Descriptor option on the left side of the window to display the deployment descriptor
options for the servlet, as shown in Figure 14.19. These parameters will be used to create the WAR file for the
servlet.

Figure 14.19: Servlet Deployment Descriptor window

First, enter a descriptive name for the servlet in the Display Name field. Then, enter the security role(s) and
the name and value of a context parameter, if any. Next, list the welcome files to include, enter the init
parameter name and value, provide a session timeout value, and choose whether or not the servlet is
distributable.

JAR and WAR Files

Java Archive (JAR) and Web Archive (WAR) files are used as containers for EJBs and servlets, respectively.
To create a JAR file, select Tools → Java → J2EE → New ejb−JAR file. To create a WAR file, select Tools
→ Java → J2EE → New WAR file. The JAR or WAR specification window will appear. The JAR
specification window is shown in Figure 14.20.

Figure 14.20: JAR Specification window

In the Java Archive Tool field, select the executable that will be used to create the JAR (if you are creating a
WAR, select the executable that will be used to create the WAR). Enter the JAR or WAR name in the Name
field. In the Java Class File(s) field, select the class(es) to include in the JAR or WAR. Finally, in the XML
Deployment Descriptor(s) field, select the XML deployment descriptors to include.

Chapter 14: Java Code Generation and Reverse Engineering

488

Automated J2EE Deployment

In Rose 2001A, you can generate source code for Java classes. Deployment occurs manually after the
generation. Rose 2002 automates the deployment of Java classes to WebLogic, WebSphere, and Sun
Reference implementations. Follow the steps below to deploy Java classes.

1.
Start the J2EE Deployment Wizard by selecting Tools → J2EE Deploy → Deploy from the menu.

2.
Select the deployment target from the following list:

WebLogic 5.1

WebLogic 6.0

WebLogic 6.1

WebSphere 3.5

Web Server (J2EE 1.2)

3.
Select the working directory where temporary files will be stored.

4.
Select the directory for the Java class files.

5.
Check Edit XML Deployment Descriptors to customize XML deployment descriptor files prior to
deployment.

Rose will display a Properties window for the selected deployment target. Specific information on the
Properties window is dependent on the deployment target.

6.
Specify the property values, and then click Next.

7.
Rose will display a window prompting for the model elements to deploy.

8.
Select the model elements to deploy, and then click Next. Deployments to WebLogic and WebSphere
can deploy EJBs and Java classes. Deployments to WebApplication can deploy web files, servlets,
and Java classes.

Rose will display a summary screen.

9.
Review and make changes as needed prior to deployment.

Chapter 14: Java Code Generation and Reverse Engineering

489

If the Edit XML Deployment Descriptors check box is checked, Rose will display an editor, which
can be used to edit the XML deployment descriptors.

10.
Click Save All to begin the deployment process.

When Rose is finished, a summary screen will be displayed.

Reverse Engineering

When you reverse engineer Java code, Rose will read the classes, relationships, attributes, and operations
from the code and generate the appropriate model elements.

In this section, we'll go through each of the steps needed to reverse engineer Java code. The information in
your code will be imported directly into the Rose model that is currently open.

1.
If you are using J2EE, JFC, or another Java foundation, create a new model and select the appropriate
framework.

2.
Select Tools → Java → Reverse Engineer Java. Rose will display the Java Reverse Engineer window,
as shown in Figure 14.21. Using this window, you can select the files you want to reverse engineer.

If you instead see a message that the ClassPath environment variable is not set, there is another step
that you must take first. Create an environment variable called ClassPath, and set this variable to the
directory or directories where the Java class files are stored.

Figure 14.21: Java Reverse Engineer window

3.
From the directory tree structure, select the directory that contains the files you want to reverse
engineer. As you change directories, the available files will appear in the list box in the upper−right

Chapter 14: Java Code Generation and Reverse Engineering

490

area of the window, as we saw in Figure 14.21.

4.
Select the files you wish to reverse engineer and press Add. The files will now appear in the lower
section of the window.

5.
Once all needed files have been added to the bottom section of the window, click to select the files
you wish to reverse engineer (or press the Select All button to reverse engineer them all) and then
click the Reverse button. If there are any errors, they will be written to the log window.

You can reverse engineer .java files, .class files, .jar files, or .cab files. When Rose reverse engineers Java
code, it places the new classes in the browser, but does not include them on any Class diagrams.

Java constructs are reverse engineered using the mapping discussed throughout this chapter. For example,
interfaces are modeled as classes with a stereotype of Interface. Here, we will briefly review the mapping for
reverse engineering.

Rose will look for classes in the source code, and will reverse engineer the attributes and operations of each
class. For each operation, the operation code itself will not be included in the model, but the operation
signature, including the parameters and return type, will be. Rose will also look for and model any "static,"
"final," "abstract," "native," or "synchronized" keywords for the operation. Finally, Rose will model the
visibility of the operation as public, private, protected, or package.

Rose will also look for interfaces, and will reverse engineer them as classes with an Interface stereotype. It
will establish a realize relationship between the implementation class and the interface.

If an attribute is a primitive data type, such as an integer or string, Rose will simply model it as an attribute of
the reverse−engineered class. If, however, the attribute's type is another class in the Rose model, Rose will
model it as a relationship between the two classes. For example, if the Flight class has an attribute called
PassengerName, which has a type of Passenger, Rose will create an association between Flight and Passenger
with a role called PassengerName.

For each attribute, Rose will examine any initial value, the attribute visibility (public, private, protected, or
package), and any "static," "final," "volatile," or "transient" keywords for the attribute.

Summary

In this chapter, we took a look at how various Rose model elements are implemented in Java. Using the
code−generation properties for classes, packages, attributes, operations, associations, aggregations, and other
model elements, you have a great deal of control over what gets generated.

We examined the steps needed to generate code from a Rose model, and to reverse engineer Java code into a
Rose model. Again, these are the steps you need to follow to generate code:

1.
Create components.

2.

Chapter 14: Java Code Generation and Reverse Engineering

491

Assign Java classes to components.

3.
Set code−generation properties.

4.
Select Tools → Check Model.

5.
Select Tools → Java → Syntax Check.

6.
Select the class(es) or component(s) to generate.

7.
Select Tools → Java → Code Generation.

The steps you'll need to reverse engineer Java code are:

1.
Load the appropriate framework.

2.
Select Tools → Java → Reverse Engineer Java.

3.
Select the file(s) to reverse engineer, and press Reverse.

In the next chapter, we'll take a look at code generation and reverse engineering with Rose and Visual Basic.
The Visual Basic add−in includes standard VB constructs such as class modules, forms, interfaces, and ADO
objects. The wizard−driven user interface provides a quick and easy way to set your code−generation
properties, generate VB code, and reverse engineer VB code. All of these features can help you build robust
applications that stay consistent with the object model.

Chapter 14: Java Code Generation and Reverse Engineering

492

Chapter 15: Visual Basic Code Generation and
Reverse Engineering
In this chapter, we discuss how to generate Visual Basic code from your Rational Rose model and how to
reverse engineer Visual Basic code into a Rose model.

To generate code, you will need to follow these steps:

1.
Create components (see Chapter 10, "Component View").

2.
Assign classes to components (see Chapter 10).

3.
Set the code−generation properties.

4.
Select a class or component to generate on a Class or Component diagram.

5.
Select Tools → Visual Basic → Update Code to begin the Code−Generation Wizard.

6.
Select Tools → Visual Basic → Browse Visual Basic Source to view the generated code.

We'll discuss the code−generation properties that can be set, and take a close look at how each Rose model
element is implemented in the code.

Rose will use a lot of information in the model to generate code. For example, it will look at the multiplicity,
role names, containment, and other details of each relationship. It will look at the attributes, operations,
visibility, and other details of each class. From all of the information you enter using the specification
windows for the various model elements, Rose will gather what it needs to generate code.

To reverse engineer code, you will need to follow these steps:

1.
Create a component and assign a Visual Basic project to the component.

2.
Select Tools → Visual Basic → Update Model from Code.

3.
Select the component(s) and class(es) to update.

4.
Select Finish to complete the process.

♦

493

Setting Visual Basic code−generation properties

♦
Generating Visual Basic code from your Rose model

♦
Mapping Rose elements to Visual Basic constructs

♦
Reverse engineering Visual Basic code into a Rose model

Starting a Visual Basic Project

Rather than start from scratch, you may want to import the standard Visual Basic classes into your Rose
model. By doing so, you will have access to all of the standard classes and interfaces, and you can set up the
appropriate relationships between your classes and the standard Visual Basic classes. This, in turn, will help in
the code−generation and reverse−engineering processes.

Begin by creating a new Rose model. When the Framework Wizard appears, select Visual Basic Standard.
The Visual Basic framework will be loaded, and the classes will show under the stdole Ver 2.0, VB Ver 6.0,
VBA Ver 6.0, and VBRUN Ver 6.0 packages in the Logical view. Your Rose model will look like Figure
15.1.

Figure 15.1: Visual Basic framework

Each of these four packages contains a set of standard classes, interfaces, and relationships. Each package
contains an overview diagram that presents the elements in the package and the relationships between them.
You can familiarize yourself with the model elements in the packages and then set up the needed relationships
between your classes and the standard ones.

Visual Basic Code−Generation Properties

Visual Basic code generation using Rational Rose is extremely flexible. You have full control over what gets
generated and many of the details of how the generated code will look. For example, for each class, you can

Chapter 15: Visual Basic Code Generation and Reverse Engineering

494

decide if initialization and termination routines will automatically be created. For each attribute, you control
the visibility, name, and whether Get and Set operations should automatically be created. For each module,
you control the filename. For each generalization, you control if the implements delegation is used.

All of these things are controlled through the code−generation properties. Rose provides property sets that
deal with classes, attributes, operations, module specifications, associations, and generalizations.

You can see all of these properties by selecting Tools → Options, then selecting the Visual Basic tab.

Anything you change using this window will set the default for all classes, attributes, operations, and so on.

You can also set the code−generation properties for a single class, attribute, operation, or other model
element. To do so, open the specification window for the model element and select the Visual Basic tab. On
this tab, you can change the properties that apply to that particular type of model element.

Finally, you can set the properties using the Visual Basic Model Assistant. The Model Assistant is a visual
tool used to provide detailed information for a class or other model element. These details are then used in the
code−generation and reverse−engineering processes.

In the following sections, we'll examine the code−generation properties for classes, operations, attributes, and
modules. We'll look at how to set the properties using the specification window or the Model Assistant.

Class Properties

Class properties are the Visual Basic code−generation properties that apply to classes. These properties will
let you change the class name and set other class−specific properties.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

495

There are three places to set these properties. To set them for all classes, select Tools → Options, then click
the Visual Basic tab and select Class from the drop−down list box. To set them for only one class, select the
Visual Basic tab on the class specification window and edit the properties there, or use the Model Assistant.

Table 15.1 lists the Visual Basic class properties, their purposes, and their default values.

Table 15.1: Class Code−Generation Properties

Property Purpose Default

Update Code Specifies if code can be updated for the class True

Update Model Specifies if the model can be updated for the class True

OptionBase Sets the base identifier for arrays (usually 0 or 1) <blank>

OptionExplicit Controls whether variable names must be explicitly declaredTrue

OptionCompare Controls the method by which string comparisons are made <blank>

Instancing Determines how classes are exposed to other applications MultiUse
Many of these class properties can be set using the Model Assistant. To open the Model Assistant, right−click
the class and select Model Assistant. The window shown in Figure 15.2 will be displayed.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

496

Figure 15.2: Using the Model Assistant's Class tab to set class properties

The Should Be Generated field corresponds to the Update Code property and determines whether the class
will be reflected in the generated code. The Should Be Updated from Code field corresponds to the Update
Model property, and the Instancing field corresponds to the Instancing property.

In addition to these fields, you can set the following information using this screen:

•
The Abstract Interface field sets the class as abstract. No method bodies will be created for this class.

•
The Stereotype field sets the type of class (class module, interface, form, collection, module, etc.).
Select one of the standard Visual Basic stereotypes from the drop−down list box. The stereotype you
select controls what type of class Rose will generate in Visual Basic.

•
The Collection Class field is used to create a new, user−defined collection class. Rose will create the
collection class and set up a dependency between the collection class and the current class:

Chapter 15: Visual Basic Code Generation and Reverse Engineering

497

The Option Base, Option Explicit, and Option Compare properties can be set using the Options tab of the
Model Assistant, as shown in Figure 15.3.

Figure 15.3: Using the Model Assistant's Options tab to set class properties

Using the Template tab, you can control whether debug code is added to the Initialize and Terminate events of
the class, whether "Your code goes here…" comments are added to the class methods, and whether
error−handling code is added to the class methods. By default, all of these are set to False. Some class
stereotypes have additional fields that can be set using the Template tab. We will discuss those in the
upcoming "Classes" section under "Generated Code."

Attribute Properties

Attribute properties are the Visual Basic properties that relate specifically to attributes. Using these properties,
you can, for example, decide whether the attribute will be generated in the code, what the attribute name
should be in the generated code, and whether Get, Set, or Let operations should be created for the attribute.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

498

There are three places to set these properties. To set them for all attributes, select Tools → Options, then click
the Visual Basic tab and select Attribute from the drop−down list box. To set them for only one attribute,
select the Visual Basic tab on the attribute specification window and edit the properties there, or use the
Model Assistant.

Table 15.2 lists the attribute properties, their purposes, and their default values.

Table 15.2: Attribute Code−Generation Properties

Property Purpose Default

New Controls if the attribute is generated with a new modifier False

WithEvents Controls if the attribute is generated with the With Events
modifier

False

ProcedureID Sets the Visual Basic procedure ID <blank>

PropertyName The name of the property to which the attribute belongs <blank>

Subscript Sets the array subscript to use when generating data members for
the attribute

<blank>

As you can see in Figure 15.4, you can set the attribute visibility and data type using the Model Assistant. You
can also set the New, WithEvents, and Subscript properties using this window.

Figure 15.4: Using the Model Assistant to set attribute properties

Underneath each attribute in the treeview section of the Model Assistant, you can see the Get and Let options.
Selecting these will control whether Get and Let methods will be created for this particular attribute. After you
select the methods you'd like to generate, you can set additional information for the methods using the Model
Assistant. This information is discussed in the following section, "Operation Properties."

Operation Properties

The operation properties are the Visual Basic code−generation properties that are specific to operations. These
properties will let you set the name of the operation, control whether the operation is static, and set other
code−generation specifications for each operation.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

499

There are three places to set these properties. To set them for all operations, select Tools → Options, then
click the Visual Basic tab and select Operation from the drop−down list box. To set them for only one
operation, select the Visual Basic tab on the operation specification window and edit the properties there, or
use the Model Assistant.

Table 15.3 lists the operation code−generation properties, their purposes, and their default values.

Table 15.3: Operation Code−Generation Properties

Property Purpose Default

LibraryName Sets the name of library in which to generate the operation <blank>

AliasName Sets the name of an operation alias <blank>

IsStatic Controls if the operation is static False

ProcedureID Sets the Visual Basic procedure ID <blank>

ReplaceExistingBody Specifies whether to overwrite existing body code with the
default body code

False

DefaultBody If ReplaceExistingBody is True, specifies the default text (code
and comments) to include in the body

<blank>

Figure 15.5 shows the Model Assistant window for an operation.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

500

Figure 15.5: Using the Model Assistant to set operations

As noted earlier in this chapter, this window is used not only for operations you've defined, but for the
generation of Get and Let methods for the attributes as well. Let's look at what can be set on this screen:

•
Access Level field sets the visibility of the operation (public, private, or friend).

•
Type field sets the return type of the operation.

•
Static field corresponds to the IsStatic property.

•
Replace Existing Body field corresponds to the ReplaceExistingBody property.

•
DefaultBody field corresponds to the DefaultBody property. Note that for Get and Let operations,
Rose provides code in this field for you.

Using the Parameters tab, you can add or remove parameters, and set the following for each parameter:

•
Data type (Type field)

•
Initial value (Initial Value field)

•
Whether or not the parameter is optional (Optional field)

•
Whether the parameter is passed by value or by reference (ByRef and ByVal fields)

•

Chapter 15: Visual Basic Code Generation and Reverse Engineering

501

Whether an indefinite number of parameters may be passed for the operation (ParamArray field)

Each of these settings will affect the generated code.

Module Specification Properties

The module specification properties are related to the project files you will generate from Rose. There are
three places to set these properties. To set them for all components, select Tools → Options, then click the
Visual Basic tab and select Module Specification from the drop−down list box. To set them for only one
component, select the Visual Basic tab on the component specification window and edit the properties there,
or use the Visual Basic Component Properties window.

Table 15.4 lists the code−generation properties for components, their purposes, and their default values.

Table 15.4: Module Specification Code−Generation Properties

Property Purpose Default

ProjectFile Sets the name of the project file <Set using the Code
Generation Wizard>

UpdateCode Specifies if code can be generated for this componentTrue

UpdateModel Specifies if the model can be updated for this
component

True

ImportReferences Specifies whether to import ActiveX components True

QuickImport Specifies whether to import only ActiveX interface
classes or all classes including methods and
operations

True

ImportBinary Determines whether Rose should import the type
library for the component on the next reverse engineer

False

Chapter 15: Visual Basic Code Generation and Reverse Engineering

502

To open the Visual Basic Component Properties window, as shown in Figure 15.6, right−click the component
and select Properties.

Figure 15.6: VB Component Properties Window

The Should Be Generated and Should Be Updated from Code fields correspond to the UpdateCode and
UpdateModel properties, respectively. The Project File field corresponds to the ProjectFile property. Using
the References tab, you can set the QuickImport, ImportBinary, and ImportReferences properties.

Role Properties

Role properties are the Visual Basic code−generation properties that affect the code generated for
relationships. The role properties let you set the name of the attribute that is created; control the generation of
Get, Set, and Let operations; and change other specific pieces of the generated code.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

503

There are two places to set these properties. To set them for all associations, select Tools → Options, then
click the Visual Basic tab and select Role from the drop−down list box. To set them for only one operation,
select the Visual Basic tab on the association specification window and edit the properties there. Table 15.5
lists the code−generation property for roles.

Table 15.5: Role Code−Generation Properties

Property Purpose Default

UpdateCode Specifies if code can be generated for this role True

New Controls if the association is generated with a new
modifier

False

WithEvents Controls if the association is generated with the With
Events modifier

False

Fullname Specifies whether to use the full name of the
referenced class in the property declaration

False

PropertyName The name of the property to which the attribute
created to support the relationship belongs

<blank>

Subscript Specifies the array subscript for an attribute <blank>

ProcedureID Sets the Visual Basic procedure ID <blank>

Generalization Properties

Generalization properties are the Visual Basic code−generation properties that affect the code generated for
generalization relationships. As Visual Basic does not support inheritance, there are only two properties for
generalization relationships. The ImplementsDelegation property controls whether the generalization is
realized by an implements delegation. The FullName property controls whether the full name of the class,
including the component name, should be used in the implements statement.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

504

There are two places to set these properties. To set them for all generalizations, select Tools → Options, then
click the Visual Basic tab and select Generalize from the drop−down list box. To set them for only one
generalization, select the Visual Basic tab on the generalization specification window and edit the properties
there.

Using the Code−Generation Wizard

After you create classes and associations in the Rose model, you can use a Code−Generation Wizard to
generate the Visual Basic code. To begin this process, select the objects to generate, then select Tools →
Visual Basic → Update Code from the menu. You will see the screen shown in Figure 15.7.

Figure 15.7: Code−Generation Wizard

Chapter 15: Visual Basic Code Generation and Reverse Engineering

505

If you have not yet assigned the objects to components, you will see a window like the one in Figure 15.8.
You have the option of assigning the classes to an existing component (in this example, there is a single
component called Airline Reservation with a stereotype of Standard EXE). Alternatively, you can create a
new component and assign classes to it.

Figure 15.8: Assigning components and classes

To assign classes to an existing component, right−click the component in the Code−Generation Wizard shown
in Figure 15.8 and select Assign Classes. You will see a list of unassigned classes:

Drag and drop each class from the right side of the screen to the appropriate component on the left side. Once
all classes are assigned, click OK.

To create a new component, select the Create a Visual Basic Component and Assign Classes to It option, as
shown in Figure 15.8, or press Ctrl+R. You will be asked what type of component to create:

Chapter 15: Visual Basic Code Generation and Reverse Engineering

506

Select the appropriate type (in this example, we use a Standard EXE) and press OK. The component will be
added, and all unassigned classes will be assigned to it:

Check the box next to the components or classes you wish to update. Notice that if you click on a class, you
can preview the code that will be generated for the attributes and operations of that class:

Right−click and select Open to view the properties for an object in the treeview. Rose will display the
appropriate Model Assistant screen, and allow you to modify any code−generation properties before the final
code is generated. For example, right−clicking the Flight class will display the screen shown in Figure 15.9.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

507

Figure 15.9: Setting code−generation properties for the Flight class

Once all classes have been assigned and all code−generation properties are set, click Next to complete the
process. You will see a summary screen, as shown in Figure 15.10. Press Finish to generate the code. If Visual
Basic is not already running, Rose will launch it and create the appropriate project, classes, and other
elements.

Figure 15.10: Code−generation summary screen

An example of the code generated for the Flight class follows below. In the remainder of this chapter, we will
discuss the mapping between a Rose model and Visual Basic code.

Option Explicit

'##ModelId=3A818E9F01D0
Private DepartureCity As String

'##ModelId=3A818EAC02C9
Private DepartureDate As String

'##ModelId=3A818EB300CA
Private DestinationCity As String

'##ModelId=3A818EB70134
Private FlightNumber As String

'##ModelId=3A818ECE01A6

Chapter 15: Visual Basic Code Generation and Reverse Engineering

508

Private Function RemovePassenger(PassengerID As int) As boolean

End Function

'##ModelId=3A818EBF03B7
Public Function AddPassenger(PassengerID As int) As boolean

End Function

'##ModelId=3A818EC9007C
Public Function CancelFlight() As Boolean

End Function

'##ModelId=3A818F8303D7
Private Sub Class_Initialize()

End Sub

'##ModelId=3A818F84034C
Private Sub Class_Terminate()

End Sub

Generated Code

In the following sections, we'll take a look at the Visual Basic code generated for a class, an attribute, an
operation, and for the different types of relationships between classes. In each of these sections, we include
some sample code to give you an idea of what will be generated from your Rose model.

Rose uses the information in the specifications of the model elements when generating code. For example, it
will look at the different specifications for a class (visibility, attributes, operations, and so on) when
generating code for the class.

Let's begin by looking at the code generated for a typical class.

Classes

A class in the Rose model will be implemented as a class in Visual Basic. The type of class that is generated
depends on the stereotype you assign the class in Rose. The default Visual Basic stereotype is Class Module.
Classes with this stereotype will be implemented as a class module in Visual Basic. In our example, we have a
Flight class:

Chapter 15: Visual Basic Code Generation and Reverse Engineering

509

The following is the code generated for the Flight class:

Option Explicit

'##ModelId=395EA80B0088
Private FlightNumber As Integer

'##ModelId=395EA87C01A3
Private DepartureDate As Date

'##ModelId=395EA880036C
Private mDepartureCity As String

'##ModelId=395EA884028B
Private DestinationCity As String

'##ModelId=395EA88D0176
Public Function AddPassenger(PassengerID As Integer) As Boolean

End Function

'##ModelId=395EA8970383
Public Function RemovePassenger(PassengerID As Integer) As Boolean

End Function

'##ModelId=395EA8A1008E
Public Function CancelFlight() As Integer

End Function

'##ModelId=395EB1D202F5
Public Property Get DepartureCity() As String
 DepartureCity = mDepartureCity

End Property

'##ModelId=395EB2CA0201
Public Property Let DepartureCity(ByVal vNewValue As String)

 mDepartureCity = vNewValue
End Property

Notice that Rose generated all of the attributes, their data types, and their visibility; the operations with their
parameters, data types, visibility, and return types; and the Get and Let operations for DepartureCity.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

510

The Get and Let methods were created because we set the option to create them using the Model Assistant.
While Rose generates just the method headers for any operations you've added, it will generate the actual code
for Get and Let operations. This saves the programmers from the tedious task of generating and coding Get
and Let operations for all of the attributes.

The Option Explicit line is included because the OptionExplicit class property for this class was set to True.

The ModelId lines were created to help synchronize Rose and Visual Basic during round−trip engineering.
This feature allows you to change a method name, for example, in the Rose model or in the code, and still be
able to synchronize the model with the code.

Warning Be careful not to change the ModelId numbers in the code.
Much of the information in your Rose model will be used directly when generating code. For example, the
attributes, operations, relationships, and class name will directly affect the code generated for each class.
Other model properties, such as the documentation entered for the class, will not directly affect the code.
These properties are created as comments in the generated code.

Table 15.6 lists properties of a class, and notes which of these properties will directly affect the code
generated.

The Flight class has a stereotype of Class Module. Let's look at what is generated for some of the other
stereotypes. Note that while many different types of classes can be generated in Visual Basic, the Visual Basic
add−in will not generate parameterized classes.

Table 15.6: Effect of Class Properties on Generated Code

Property Effect on Code

Name Name in model will become class name

Type Directly affects the type of class created

Stereotype Directly affects the type of module file created (Class Module, MDI Form,
etc.)

Export Control Does not affect generation

Documentation Generated as a comment

Cardinality Does not affect generation

Space Does not affect generation

Persistence Does not affect Visual Basic code generation, but does affect whether DDL
can be generated for the class

Concurrency Does not affect generation

Abstract Does not affect generation

Formal Arguments Formal arguments are included in the code for a parameterized class

Operations Generated in code

Attributes Generated in code

Relationships Generated in code

Chapter 15: Visual Basic Code Generation and Reverse Engineering

511

Form

The Form stereotype will create a Visual Basic form. Attributes become properties of the form. Operations
become methods of the form.

Rose can generate the default Visual Basic methods—such as the Initialize, Load, and Unload methods—for
the form. To decide which methods to generate, open the Model Assistant for the class and select the
appropriate method(s) on the left side of the window.

As you select these methods, you will be given the option to change the method visibility (public, friend, or
private). You can check the Replace Existing Body check box so that when Rose generates the method, the
code you've entered in the Default Body field will be generated:

Using the Template tab of the Model Assistant, you can set the following options:

•

Chapter 15: Visual Basic Code Generation and Reverse Engineering

512

DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

MDI Form

The MDIForm stereotype will create a Visual Basic MDI form. Attributes become properties of the form.
Operations become methods of the form.

As with a Form stereotype, Rose can generate many default methods in an MDI form class. Open the Model
Assistant for the class and select the methods to generate. Then, enter the method visibility and the code to be
generated for that method.

Using the Template tab of the Model Assistant, you can set the following options:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

ADO Class

The ADOClass stereotype will create an ADO class in Visual Basic, which will exhibit some persistent
behavior. Attributes of the class become properties of the ADO class. Operations become methods of the

Chapter 15: Visual Basic Code Generation and Reverse Engineering

513

ADO class.

In addition, Rose can generate the following properties. Use the Model Assistant to select the properties to
generate.

•
BOF

•
ConnectionString

•
EOF

•
Recordset

•
mrs (generated by default)

Rose can generate a number of standard methods for the class, including the MoveFirst, MoveLast,
MoveNext, MovePrevious, GetAll, and DeleteAll methods. Use the Model Assistant to select the operations
to generate.

By default, Rose will generate the Query method, which creates and fills a recordset using a query passed in
as a parameter.

The following code is an example of what is generated for an ADO class:

Option Explicit

'Private constant with database connection string. Default from
'template parameter ConnectionString (which defaults to an empty
'string).
'##ModelId=395EC4060255

Chapter 15: Visual Basic Code Generation and Reverse Engineering

514

Private Const ConnectionString As String = ""

'##ModelId=395EC406033B
Private mrs As Recordset

'Public Property Get to get a reference to the private ADO
'Recordset (mrs).
'##ModelId=395EC40602A5
Public Property Get Recordset() As Recordset
 Set Recordset = mrs
End Property

'Private Function to return ADO Recordset from query sent as SQL
'string input parameter. Creates a Connection and a Recordset.
'Connects Recordset to the Connection, queries the database (with
'the SQL string) which fills the recordset with the result.
'Disconnects the Recordset from the Connection and closes the
'Connection. Returns the created, queried and filled Recordset.
'Uses the module level constant ConnectionString as connection
'string on connection. Uses client side cursors on Connection.
'##ModelId=395EC40602E1
Private Function Query(ByVal SQL As String) As Recordset
 Dim aco As Connection
 Dim ars As Recordset

 ' Create objects
 Set aco = CreateObject("ADODB.Connection")
 Set ars = CreateObject("ADODB.Recordset")

 ' Open Connection
 aco.CursorLocation = adUseClient
 aco.ConnectionString = ConnectionString
 aco.Open

 ' Open Recordset
 ars.CursorType = adOpenKeyset
 ars.LockType = adLockBatchOptimistic
 ars.ActiveConnection = aco
 ars.Open SQL

 ' Return Recordset
 Set Query = ars

 ' Disconnect Recordset from Connection
 Set ars.ActiveConnection = Nothing

 ' Close Connection
 aco.Close
End Function

As with other stereotypes, you can set certain code−generation properties using the Template tab of the Model
assistant. For an ADO class, the following options are available:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•

Chapter 15: Visual Basic Code Generation and Reverse Engineering

515

Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

•
MTSEnabled determines whether or not the class is MTS aware. If this option is set to True, Rose can
generate a CreateInstance method and a Get method for the ObjectContext property.

•
ConnectionString sets the database connection string to be used.

•
TableName sets the name of the table corresponding to the class.

•
PrimaryKeyFieldName sets the name of the primary key of the table corresponding to this class.

MTS Class

The MTS Class stereotype is used to model Microsoft Transaction Server (MTS) classes in Rose. Attributes
you've defined in Rose become attributes of the class in Visual Basic. Operations you've defined in Rose
become methods of the Visual Basic class.

By default, an MTS class is not ADO−enabled. However, you can change this setting by using the Model
Assistant:

The following properties and methods are generated by default:

•
ObjectContext property, which is the current MTS ObjectContext object

•

Chapter 15: Visual Basic Code Generation and Reverse Engineering

516

CreateInstance, which creates a new instance of an object

•
SetAbort, which provides rollback functionality

•
SetComplete, which commits a transaction

The following is an example of the code generated for an MTS class:

Option Explicit

'Private Property Get to return the current ObjectContext object
'(assigned to the object by MTS). If the object is not running in
'MTS, the returned value will be Nothing.
'##ModelId=395EC3EA0395
Private Property Get ObjectContext() As ObjectContext
 ' Return current ObjectContext
 Set ObjectContext = GetObjectContext()
End Property

'Private Function to create a new instance of another object
'specified as an input parameter (which is a ProgID string).
'This method handles the creation of objects both running in
'and outside of MTS. If there is an ObjectContext object for
'the current object − i.e. it is running in MTS −
'the CreateInstance method of the ObjectContext is called.
'If not, the CreateObject API is called. This is the only
'way you should use to make instances of new objects from
'the class.
'##ModelId=395EC3EA03D1
Private Function CreateInstance(ByVal ProgID As String) As Variant
 ' Create object (inside MTS or not)
 If Not ObjectContext Is Nothing Then
 Set CreateInstance = ObjectContext.CreateInstance(ProgID)
 Else
 Set CreateInstance = CreateObject(ProgID)
 End If
End Function

'Calls the ObjectContext SetAbort method (if running in MTS) for
'transactional Rollback behavior.
'##ModelId=395EC3EB002F
Private Sub SetAbort()
 ' Set Abort status on current ObjectContext object
 If Not ObjectContext Is Nothing Then
 ObjectContext.SetAbort
 End If
End Sub

'Calls the ObjectContext SetComplete method (if running in MTS)
'for transactional Commit behavior.
'##ModelId=395EC3EB0057
Private Sub SetComplete()
 ' Set Complete status on current ObjectContext object
 If Not ObjectContext Is Nothing Then
 ObjectContext.SetComplete
 End If
End Sub

Chapter 15: Visual Basic Code Generation and Reverse Engineering

517

Using the Template tab of the Model Assistant, you can set the following code−generation options:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

•
ADOEnabled determines whether or not the class is ADO aware. If this option is set to True, Rose
can generate GetAll, GetNew, GetOne, Query, Save, and Update operations.

•
ConnectionString sets the database connection string to be used.

•
TableName sets the name of the table corresponding to the class.

•
PrimaryKeyFieldName sets the name of the primary key of the table corresponding to this class.

•
MTSTransactionMode sets the MTS support level (Not an MTS Object, No Transactions, Requires
Transaction, Uses Transaction, or Requires New Transaction).

Module

A Module stereotype becomes a Visual Basic module. Attributes become properties of the module. Operations
become methods of the module.

Using the Template tab of the Model Assistant, you can set the following:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

518

Collection

A Collection stereotype becomes a Visual Basic collection. Attributes become properties of the collection.
Operations become methods of the collection. In addition, Rose generates the following methods by default:

•
Get Count, which returns the number of items in the collection. Rose will code this method for you

•
Get Item, which returns an item from the collection. Rose will code this method for you

•
Get Enum, which supports the enumeration of the collection for the For…Each syntax

•
Add, which adds a new item to the collection

•
Remove, which removes an item from the collection

•
Initialize method, which creates an instance of the class in memory

•
Terminate method, which does any "clean−up" work and removes an instance of the class from
memory

You can determine which methods to generate by using the Model Assistant:

Chapter 15: Visual Basic Code Generation and Reverse Engineering

519

The following code is an example of what is created in Visual Basic for a class with a stereotype of
Collection:

Option Explicit

'local variable to hold collection
'##ModelId=395EC3EC0320
Private mCol As New Collection

'used when retrieving the number of elements in the
'collection. Syntax: Debug.Print x.Count
'##ModelId=395EC3EB03BF
Public Property Get Count() As Long
 Count = mCol.Count
End Property

'used when referencing an element in the collection
'vntIndexKey contains either the Index or Key to the collection,
'this is why it is declared as a Variant
'Syntax: Set foo = x.Item(xyz) or Set foo = x.Item(5)
'##ModelId=395EC3EC0009
Public Property Get Item(vntIndexKey As Variant) As Variant
 Set Item = mCol(vntIndexKey)
End Property

'this property allows you to enumerate
'this collection with the For...Each syntax
'##ModelId=395EC3EC006D
Public Property Get NewEnum() As IUnknown
 Set NewEnum = mCol.[NewEnum]
End Property

'used when adding a new item to the collection
'syntax: x.Add ayz
'##ModelId=395EC3EC00A9
Public Sub Add(Item As Variant, Optional Key As Variant, Optional Before As
Variant, Optional After As Variant)
 If Len(Key) = 0 Then

Chapter 15: Visual Basic Code Generation and Reverse Engineering

520

 mCol.Add Item
 Else
 mCol.Add Item, Key
 End If
End Sub

'used when removing an element from the collection
'vntIndexKey contains either the Index or Key, which is why
'it is declared as a Variant
'Syntax: x.Remove(xyz)
'##ModelId=395EC3EC018F
Public Sub Remove(vntIndexKey As Variant)
 mCol.Remove vntIndexKey
End Sub

'##ModelId=395EC3ED003C
Private Sub Class_Initialize()

End Sub

'##ModelId=395EC3ED0078
Private Sub Class_Terminate()

End Sub

Using the Template tab of the Model Assistant, you can set the following options for the collection:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

•
CollectionOf defines the class of which the collection is a grouping.

Note When reverse engineering a collection, Rose will create a class with a stereotype of Class Module, not
Collection.

User Control

The User Control stereotype will create a Visual Basic user control. Attributes become properties of the user
control. Operations become methods of the user control. In addition to the operations you define in Rose, you
can generate many default methods for the user control, including Click, Double−Click, KeyDown, Resize,
and Show.

Using the Model Assistant, select the method(s) to be generated in Visual Basic for the user control.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

521

On the Template tab, you can set the following options:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

Property Page

The PropertyPage stereotype will create a Visual Basic property page. Attributes become properties of the
page. Operations become methods of the page. As with many other stereotypes, Rose can generate default
methods for you through the Model Assistant:

Chapter 15: Visual Basic Code Generation and Reverse Engineering

522

On the Template tab, you can set the following options:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

Data Report

A DataReport−stereotyped class is generated as a Visual Basic data report. Any attributes of the class become
properties of the data report. Any operations become methods in the data report. In addition, Rose can
generate standard methods for you:

The following is an example of a data report generated from Rose:

Chapter 15: Visual Basic Code Generation and Reverse Engineering

523

On the Template tab of the Model Assistant, you can set the following options for the data report:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

Data Environment

A class with a stereotype of Data Environment will create a DataEnvironment class in Visual Basic. As with
other stereotypes, attributes and operations are implemented as properties and methods of the generated class.

When generating a data environment, Rose will add a connection object to the generated class. You can then
set up the connection, including the connection type (ODBC, etc.) and data source using Visual Basic.

Rose can also generate Initialize and Terminate methods for the data environment. Use the Model Assistant to
set which operations to generate:

Chapter 15: Visual Basic Code Generation and Reverse Engineering

524

On the Template tab of the Model Assistant, you can set the following options:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

The following is an example of the data environment created from Rose:

User Connection

The UserConnection stereotype will create a Visual Basic user connection. Attributes become properties of
the connection. Operations become methods of the connection. You can set up Rose to generate default

Chapter 15: Visual Basic Code Generation and Reverse Engineering

525

methods through the Model Assistant:

On the Template tab of the Model Assistant, you can set the following options:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

Once the user connection has been created, you can use Visual Basic to set the connection details, add queries,
and complete the code for the connection.

User Document

A User Document stereotype becomes a Visual Basic user document. Attributes become properties of the user
document. Operations become methods of the user document. The Model Assistant will enable you to set the
default methods to be generated.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

526

Using the Template tab of the Model Assistant, you can set the following:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

Note You cannot generate a user document that is assigned to a component with a Standard EXE stereotype.
Map the user document to another component (ActiveX EXE, for example) before generating code.

Type and Enum

A Type or Enum class must be modeled as a class nested within another class. To do this, open the
specification of the nesting class and select the Nested tab. Right−click in the whitespace to add a new nested
class, and set the stereotype of the nested class to Type or Enum.

Once you have added the nested class, double−click it to open the nested class specification. Click the
Attributes tab to add one or more attributes to the nested class before generating code.

The following is an example of a Type and Enum class generated from Rose:

Option Explicit

'##ModelId=39600F880341
Public Enum VBEnum
 '##ModelId=3960106A01BF
 EnumAttribute = 4
End Enum

'##ModelId=39600FA10206
Public Type VBType
 '##ModelId=3960107A0245

Chapter 15: Visual Basic Code Generation and Reverse Engineering

527

 TypeAttribute As Boolean
End Type

Add−In Designer

The Add−In Designer stereotype will create a Visual Basic add−in designer. Attributes become properties of
the designer, while operations become methods of the designer. You can set up Rose to generate default
methods through the Model Assistant:

On the Template tab of the Model Assistant, you can set the following options:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•
ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

Once the designer has been created, you can use Visual Basic to set the details. The following is an example
of an add−in designer created from Rose:

Chapter 15: Visual Basic Code Generation and Reverse Engineering

528

DHTML Page

A class with a stereotype of DHTMLPage will be implemented as a DHTML page in Visual Basic. As with
other stereotypes, attributes and operations of the class in Rose become properties and methods of the Visual
Basic class.

Using the Model Assistant, you can select the methods to be generated in the code:

On the Template tab of the Model Assistant, you can set the following options:

•
DebugCode adds debug code to the Initialize and Terminate events. The default setting is False.

•
Comments adds "Your code goes here…" comments to the methods of the class. The default setting is
False.

•

Chapter 15: Visual Basic Code Generation and Reverse Engineering

529

ErrorHandling adds error−handling code to the methods of the class. The default setting is False.

Note You cannot generate a DHTML page that is assigned to a component with a Standard EXE stereotype.
Map the DHTML page to another component (ActiveX EXE, for example) before generating code.

Attributes

Aside from the class itself, Rose will generate the attributes for the class. For each attribute, Rose will include:

•
Visibility (public or private only; protected visibility is not allowed)

•
Data type

•
Default value

•
Get operation (optional)

•
Set operation (optional)

•
Let operation (optional)

For a given attribute, Rose will generate code similar to the following:

Option Explicit

'##ModelId=39601FD70178
Private mPrivateAttribute As Integer

'##ModelId=39602033026A
Public Property Get PrivateAttribute() As Integer
 PrivateAttribute = mPrivateAttribute
End Property

'##ModelId=396020340059
Public Property Let PrivateAttribute(ByVal vNewValue As Integer)
 mPrivateAttribute = vNewValue
End Property

You can control whether the Get, Let, and Set operations are generated by using the Model Assistant for the
class. In the Properties portion of the treeview, find the appropriate attribute and check the Get, Let, or Set
method check boxes under the property to generate those methods. You can also change the attribute visibility
and data type using the Model Assistant.

An attribute with a stereotype of Const will be generated as a Visual Basic constant. Use the Initial Value field
in the attribute specifications to set the value of the constant. In this example, we created a constant called
DaysInWeek with an initial value of 7. The following line of code was generated:

Private Const DaysInWeek As Integer = 7

Chapter 15: Visual Basic Code Generation and Reverse Engineering

530

By default, Rose will prefix the attribute name with an "m" when generating code. To change the prefix used,
select Tools → Visual Basic → Properties, and edit the Data Member Prefix field.

Operations

Rose generates code for each of the operations in the class. For each operation, the generated code includes
the operation name, the parameters, the parameter data types, and the return type. Each operation will generate
code similar to the following:

'This is documentation entered through Rose for the PublicOperation method.
'
'##ModelId=3960239403E1
Public Function PublicOperation(Argument1 As Integer) As Boolean

End Function

As you can see, the full operation signature is generated in the code. Any documentation you enter for the
operation is also generated as a comment in the code. If you enter information for the operation protocol,
qualifications, exceptions, time, space, preconditions, semantics, or postconditions, this information will not
be included in the generated code. Once you have generated the code, you insert the implementation code for
each operation.

As with other model elements, you can control the code generated for an operation by modifying its
code−generation properties. For example, you can create static functions by modifying the IsStatic property.
The code−generation properties for operations are listed earlier in this chapter, in Table 15.3, for your
reference.

Bidirectional Associations

To support bidirectional associations, Rose will generate attributes in the code. Each of the classes in the
relationship will contain an attribute to support the association. Unlike Visual C++, Rose Visual Basic does
not require that you assign role names in order to generate attributes to support the relationship. However, if
you do not assign role names, the attributes will be called NewProperty. If you do assign role names, Rose
will use the role names as the names of the generated attributes. For example, let's look at the code generated
for the following:

Here is the Visual Basic code generated for these two classes. First, let's look at the Passenger class:

Option Explicit

'##ModelId=39614F5402F7
Private FirstName As String

'##ModelId=39614F5702B5
Private LastName As String

Chapter 15: Visual Basic Code Generation and Reverse Engineering

531

'##ModelId=39614F5A01F1
Private Address As String

'##ModelId=39614F5D0250
Private City As String

'##ModelId=39614F5F01EE
Private State As String

'##ModelId=39614F610179
Private Zip As Long

'##ModelId=39614F6B00DD
Private Phone As String

'##ModelId=39614F990350
Public Account As FrequentFlyerAccount

Now let's look at the FrequentFlyerAccount class:

Option Explicit

'##ModelId=39614F7300C1
Private AccountID As int

'##ModelId=39614F7503A9
Private NumberOfMiles As int

'##ModelId=39614F7A02C0
Private DateEstablished As Date

'##ModelId=39614F99035A
Public AccountHolder As Passenger

'##ModelId=39614F8902FD
Public Function UseMiles(Miles As int) As int

End Function

'##ModelId=39614F840089
Public Function AddMiles(Miles As int) As int

End Function

'##ModelId=39614F7300C1
Private AccountID As int

'##ModelId=39614F7503A9
Private NumberOfMiles As int

'##ModelId=39614F8902FD
Public Function UseMiles(Miles As int) As int

End Function

'##ModelId=39614F840089
Public Function AddMiles(Miles As int) As int

End Function

Chapter 15: Visual Basic Code Generation and Reverse Engineering

532

As you can see, Rose will automatically generate attributes on both sides of the bidirectional association
relationship. With the AccountHolder attribute, FrequentFlyerAccount can easily access Passenger. Using the
Account attribute, Passenger can easily access FrequentFlyerAccount.

Tip Remember that if you supply no role names, the default (and less useful) attribute name NewProperty
will be used. If you supply a role name, that role name will be used as the attribute name.

In the Model Assistant, you can elect to generate Get and Set methods for the attribute generated to support
the relationship:

Rose will create the methods and then code them for you:

'##ModelId=396152BE0268
Public Property Get Account() As FrequentFlyerAccount
 Set Account = mAccount
End Property

'##ModelId=396152C00333
Public Property Set Account(ByVal vNewValue As FrequentFlyerAccount)
 Set mAccount = vNewValue
End Property

Note that this association has a multiplicity of one to one. See below for a discussion of how other multiplicity
settings will affect code generation.

Unidirectional Associations

As with bidirectional associations, Rose will generate attributes to support unidirectional associations. With a
unidirectional association, however, an attribute is generated only at one end of the relationship.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

533

Again we have the Passenger and FrequentFlyerAccount classes, but this time the relationship is
unidirectional. An attribute will be created inside Passenger, but not inside FrequentFlyerAccount. The
following lines of code are from Passenger:

'##ModelId=39614F990350
Private Account As FrequentFlyerAccount

As you can see, Rose will generate a private attribute for the relationship at only one end of the association.
Specifically, it will generate an attribute in the client class, but not in the supplier class.

The code generated in the supplier class includes all of the code lines discussed in the previous section about
bidirectional associations. With a bidirectional association, each class is given a new attribute, and the code
discussed in the previous section is included in both classes. With a unidirectional association, the code is
included only in the client class.

Again, note that the multiplicity here is one to one. Let's take a look at how code is affected when the
multiplicity settings are changed.

Associations with a Multiplicity of One to Many

In a one−to−one relationship, Rose can simply create the appropriate attributes to support the association.
With a one−to−many relationship, however, one class must contain a set of the other class.

To begin, let's look at an example.

In this case, we have a one−to−many relationship. As we saw in the previous section, Flight can simply
generate an attribute that is a reference to Passenger. However, a simple attribute in the Flight class won't be
enough. Instead, the attribute generated in Flight must use a sort of container class or an array as its data type.
(Rose will use a collection as the default.) The following code is generated in the Flight class:

'##ModelId=396154B0001F
Public Passenger As Collection

Rose provides you with the Collection type as a container class. If you would rather, you can use an array by
specifying the Subscript role property. To do so, open the specification window for the relationship and select
the Visual Basic A or Visual Basic B tab. Then specify a value for the Subscript code−generation property.
Here, we use a subscript of 3:

'##ModelId=396154B0001F
Public Passenger(3) As Passenger

Associations with a Multiplicity of Many to Many

The code generated here is similar to that created for a one−to−many relationship. In this type of relationship,
however, Rose will generate container classes on both ends of the relationship.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

534

Let's look at the code generated for the following relationship:

In this situation, container classes are used at both ends of the relationship. The code that is generated will
look something like the following two classes.

First, the Flight class will contain:

'##ModelId=396154B0001F
Public Passenger As Collection

Next, the Passenger class will contain:

'##ModelId=396154B00021
Public Flight As Collection

Again, Rose uses a collection class as the default container, but you can change this to an array by modifying
the Subscript code−generation property in the relationship specification window.

Reflexive Associations

A reflexive association is treated much the same as an association between two classes. For the following
situation,

this code is generated:

'##ModelId=3961578B0369
Public NewProperty As Collection

As with a regular association, an attribute is created inside the class to support the relationship. If the
multiplicity is one, a simple attribute is created. If the multiplicity is more than one, a container class is used.

As you can see, the code generated here is very similar to the code generated in a typical one−to−many
relationship. In this situation, Class A contains an attribute of type Collection.

Aggregations

There are two types of aggregation relationships: by value and by reference. With a by−value relationship,
one class contains another. With a by−reference relationship, one class contains a reference to another. Both

Chapter 15: Visual Basic Code Generation and Reverse Engineering

535

of these types of relationships are generated identically in Rose Visual Basic.

The code generated for an aggregation relationship is the same as the code generated for an association
relationship. Let's look at an example:

The aggregation relationship tells us that, conceptually, a fleet is made up of many aircraft. When we generate
code, however, Rose doesn't care whether there is an association or an aggregation between the classes. The
Fleet class will contain a collection of Airplanes:

 '##ModelId=396159720233
Public NewProperty As Collection

Dependency Relationships

With a dependency relationship, no attributes are created. If there is a dependency between ClassA and
ClassB, no attributes will be created in either ClassA or ClassB.

Generalization Relationships

A generalization relationship in UML becomes an inheritance relationship in object−oriented languages.
However, Visual Basic does not support inheritance. Instead, a generalization can become an implements
delegation in Visual Basic. In your Rose model, a generalization relationship is shown as follows:

No special code will be inserted into the parent class. This allows it to be reusable and independent of the
child class.

The child class contains three special areas of code. First, an Implements Parent statement is added. Second,
an instance of the parent class is created inside the child class. Finally, copies of the parent's public methods
are inserted into the child class.

Option Explicit

Chapter 15: Visual Basic Code Generation and Reverse Engineering

536

'##ModelId=39615A930379
Implements Parent

'##ModelId=39615AA50180
Private mParentObject As New Parent

'##ModelId=39615AA501C6
Private Sub Parent_PublicOperation()
 Call mParentObject.PublicOperation
End Sub

Reverse Engineering

As with code generation, reverse engineering with Visual Basic is done through a wizard. Rose Visual Basic
includes a Model Update Wizard that will walk you through the steps of selecting the class(es) to reverse
engineer and pulling them into your Rose model.

To begin the process, select Tools → Visual Basic → Update Model from Code. The reverse−engineering
wizard will begin, as shown in Figure 15.11.

Figure 15.11: Visual Basic reverse−engineering wizard

If you have already created some Visual Basic components, Rose will list them and give you the option to
select the components to reverse engineer. If not, Rose will prompt you to create a component, as shown in
Figure 15.12.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

537

Figure 15.12: Creating a Visual Basic component

To create a component, select Add a Visual Basic Component, or press Ctrl+A. Then select the type of
component to create (Standard EXE, ActiveX EXE, ActiveX DLL, or ActiveX Control) and press Add.

When you are returned to the Select Components and Classes window, right−click the new component and
select Properties. In the Project File field, enter the Visual Basic project to reverse engineer:

Once you have added a component (or if you already had components added), Rose will prompt you to select
the components to reverse engineer. Press Next to see a summary screen, and then press Finish to start the
reverse−engineering process.

If you did not start the project by using the Visual Basic framework, Rose will first reverse engineer a COM
package with subpackages containing the standard Visual Basic classes and types:

Chapter 15: Visual Basic Code Generation and Reverse Engineering

538

Rose will then, of course, reverse engineer the classes you selected using the wizard. In the following
example, we reverse engineered some of the classes in our airline example.

Each Visual Basic class is reverse engineered as a Rose class with the appropriate stereotype. Table 15.7 lists
the Visual Basic class types and their corresponding Rose model stereotypes.

Table 15.7: Visual Basic−to−Rose Mapping

Visual Basic Class Rose Stereotype

Class Module Class Module

Interface Class Module with Public visibility

Form Form

MDI Form MDI Form

DHTML Page DHTML Page

Property Page Property Page

Interface Class Module with Public visibility

Module Module

User Connection User Connection

User Control User Control

User Document User Document

Web Class Web Class

Template Web Item Template Web Item

Custom Web Item Custom Web Item

Data Environment Data Environment

Data Report Data Report

Add−In Designer Add−In Designer

Collection Class Module

Summary

In this chapter, we took a look at how various Rose model elements are implemented in Visual Basic. Using
the code−generation properties for classes, packages, attributes, operations, associations, aggregations, and

Chapter 15: Visual Basic Code Generation and Reverse Engineering

539

other model elements, you have a great deal of control over what gets generated. Through the
code−generation and reverse−engineering capabilities of Rose, you can keep your source code and Rose
model synchronized.

Again, the steps needed to generate code are as follows:

1.
Create components.

2.
Assign classes to components.

3.
Set the code−generation properties.

4.
Select a class or component to generate on a Class or Component diagram.

5.
Select Tools → Visual Basic → Update Code to start the Code Generation Wizard.

6.
Select Tools → Visual Basic → Browse Source Code to view the generated code.

To reverse engineer a Visual Basic project, follow these steps:

1.
Create a component and assign a Visual Basic project to the component.

2.
Select Tools → Visual Basic → Update Model from Code.

3.
Select the component(s) and class(es) to update.

4.
Select Finish to complete the process.

In the next chapter, we will explore one of the newest features of Rational Rose: the XML DTD add−in. This
new feature gives you the capability of modeling not only your application, but also the structure of your
XML DTD files. You can use Rose to reverse engineer and visualize existing DTD structures or to model and
generate new ones. As we will see in the next few chapters, Rose now has the ability to model your entire
application: object model, XML DTD structure, database structure, and web components.

Chapter 15: Visual Basic Code Generation and Reverse Engineering

540

Chapter 16: XML DTD Code Generation and Reverse
Engineering

Overview

We know that Rose can be used to model the design of a software system. It can be used to model the
database and the business surrounding the system. But there is one more piece in many software systems that
we haven't addressed so far: the use of Extensible Markup Language (XML). To get a complete picture of the
system, we need to be able to see all of the pieces, including XML.

In this chapter, we'll discuss one of the new add−ins available for Rose: the integration with XML DTD
(document type definition). As XML gains popularity in the industry, this new tool gives a design team the
ability to model a complete software solution, including the code in C++, Visual Basic, or Java and the XML
DTD components.

In this chapter, we'll take a look at how Rose can be used to model DTD elements, how DTD can be generated
from Rose, and how DTD can be reverse engineered into Rose. Sometimes, a DTD can be just as complex as
a system design model. Keeping track of the elements in a DTD and ensuring that the correct syntax is used
can be a challenge. Rose gives you a picture of the DTD structure, making it easier for you to design the DTD
and validate the design. Rose also provides you with a syntax check, so you can be sure the syntax is correct
before you generate code.

Although we use the term "code generation," it is important to note that XML is not source code as we would
typically think of it. XML is not a programming language, but rather a standard that can be used to exchange
data between applications. Like HTML, XML includes tags that provide the interpreter with information
about the data contained within the document. Unlike HTML, however, XML can include custom−defined
tags. You can create a new standard data format using these custom tags and exchange data with anyone else,
as long as they know the format.

This is where a DTD file comes in. The DTD includes metadata, or data about the data. It outlines the
structure used by the XML file. An XML parser then uses the DTD file in conjunction with the XML file
itself to interpret the file.

•
Setting XML DTD code−generation properties

•
Generating DTD files from your Rose model

•
Mapping Rose elements to DTD constructs

•
Reverse engineering DTD files

541

Introduction to XML DTD

XML evolved as the need arose to structure data on the Web. HTML is very useful for displaying information,
but it contains only a limited number of tags that you can use when creating a document. XML is much more
flexible; you can create whatever tags you need to effectively describe the data in the document.

The tags are defined in the DTD file for the XML file. A DTD document is comprised of elements that define
the types of data that can be included in the XML file.

Elements

An element is defined in three key pieces. The first is the ELEMENT keyword, which indicates that the text to
follow defines an element. The second is the name of the element. Each element name must be unique.
Further, XML does not allow an element to begin with the characters "xml" in upper or lower case. Finally,
the content model defines the items that make up the element. For example, here we have an element called
"book" that is made up of a title, table of contents, introduction, and section.

<!ELEMENT book (title, tableofcontents, introduction, section)>

The title, tableofcontents, introduction, and section make up the content model. An element can also contain
text in its content model. We can indicate this by using the notation #PCDATA in the content model. For
example:

<!ELEMENT title (#PCDATA)>

Here we have an element called title, which is simply a string of text. An element may contain other elements,
text (PCDATA), or both in its content model.

This is useful, but it doesn't let us know whether the items in the content model are required or how many
items can be contained within the element. There are three symbols we can use here to get more information:

•
A plus sign (+) indicates that the item is required and that there may be more than one.

•
An asterisk (*) indicates that the item is not required and that there may be more than one.

•
A question mark (?) indicates that the item is not required and that there can be only one.

Using these symbols, we return to our example:

<!ELEMENT book (title+, tableofcontents?, introduction?, section+)>

Our example says that a book must have a title. It may or may not have a table of contents or introduction, and
will never have more than one table of contents or introduction. It must have at least one section, but can have
more than one.

As you can see, we can get a lot of information about the element by including these three symbols in the
content model. They are included in the DTD to spell out the rules that apply to the elements and the items in

Chapter 16: XML DTD Code Generation and Reverse Engineering

542

their content models.

Notice that the items in the content model are separated by commas. Commas indicate that the items must
appear in the order they are listed in the content model. Our book must first have a title, then a table of
contents, then an introduction, and finally its sections.

In some situations, however, you may want to indicate that there is a choice involved. To show a choice, you
can use a choice operator (|). The notation would then be:

<!ELEMENT A (B|C)>

This notation suggests that element A is comprised of B or C.

Attributes

An element may have one or more attributes. An attribute is simply a piece of information about the element.
Like attributes in the object model, an entity's attribute has a name, data type, and optional default value.

An attribute is declared using the following notation:

<!ATTLIST ElementName AttributeName DataType DefaultValue>

For example:

<!ATTLIST Author Name CDATA>
<!ATTLIST Employee EmpID ID>

If an element has more than one attribute, they are listed as follows:

<!ATTLIST Employee Name CDATA Address CDATA Phone CDATA>

There are three additional keywords that can be added to an attribute. The keyword #REQUIRED indicates
that the attribute is mandatory. The #IMPLIED keyword indicates that the attribute is not required. Finally,
the #FIXED keyword indicates that the attribute's value cannot change. If the attribute is fixed, it must be
given a default value.

To assign a default value to an attribute, enter the value at the end of the attribute declaration. For example:

<!ATTLIST book language CDATA "Spanish">

This declaration assigns the default value "Spanish" to a book's language.

Sometimes you want to set a list of valid values for an attribute. In our example, let's assume books must be in
Spanish, English, or Japanese. We would specify this as follows:

<!ATTLIST book language CDATA (Spanish | English | Japanese) "Spanish">

Here, the language must be Spanish, English, or Japanese, and the default is Spanish.

Entities and Notations

An entity is used when you want to use a simple word to represent a more complex string. It is a way to enter

Chapter 16: XML DTD Code Generation and Reverse Engineering

543

a lot of information by simply typing the entity name. Entities help simplify documents and keep you from
repetitive typing.

An entity may be internal or external. An internal entity is defined in the DTD. An external entity is defined
outside the DTD and corresponding XML document (for example, in another XML document). The SYSTEM
keyword indicates that the entity is an external entity. External entities may be parsed or unparsed.

Some examples of entities include text strings, external files, and special characters.

Text Strings

If there is a long text string that is repeated many times, an entity can be used to represent the string. For
example, instead of typing "the quick brown fox jumps over the lazy dog," you can just type "&lazydog." The
format of this type of entity looks like this:

<!ENTITY EntityName "entity text">

For example,

<!ENTITY lazydog "the quick brown fox jumps over the lazy dog">

We define the entity "lazydog" as the string "the quick brown fox jumps over the lazy dog." Now to use the
entity, all we have to do is type an ampersand (&) followed by the entity name. Anywhere we type
"&lazydog," the XML parser will replace "&lazydog" with the full phrase.

External Files

An entity can be used to represent an external XML file. In this situation, we need to add the SYSTEM
keyword. The entity declaration looks like this:

<!ENTITY EntityName SYSTEM "entity location">

For example, if you have the text from the Declaration of Independence in another file, you can define an
entity and use that entity name rather than type all of the text. Our entity declaration would look like this:

<!ENTITY Independence SYSTEM "/independence.xml">

Now all we need to do is use the keyword &Independence wherever we want a reference to the external file.

Special Characters

When you need to use a special character, such as ®, you can define an entity that, when used, will be
replaced by that special character. This saves you the headache of trying to remember the decimal value of the
special character.

Parsed and Unparsed Entities and Notations

An entity may be parsed or unparsed. A parsed entity is one that follows the rules we described earlier in this
section; when the XML parser encounters the entity, it replaces the entity name with the text or file the entity
represents.

Chapter 16: XML DTD Code Generation and Reverse Engineering

544

The XML parser will ignore an unparsed entity. So why use unparsed entities? They provide a way to include
things such as graphics files, video, audio, or other files that are not in XML format. When the XML parser
sees an unparsed entity, it will call an application that can process the entity. For example, it may call an
application to run the video, which will have an entity declaration that looks like this:

<!ENTITY MyVideo SYSTEM "C:\Videos\Vacation.vid">

The XML parser knows which application to call on to process the entity because of a construct called a
notation. A notation identifies the application to be used to process a particular entity, and provides the
application location. A notation is documented as follows:

<!NOTATION NotationName SYSTEM "notation location">

For example:

<!NOTATION Video SYSTEM "C:\MyVideoPlayer.exe">

The picture is almost complete, but we're still missing one piece. How does the XML parser know that the
Video notation applies to the MyVideo entity? We need to add one last piece to the entity declaration, to tie it
to the Video notation. We use the NDATA keyword, followed by the notation name. So now our example
contains the two lines:

<!ENTITY MyVideo SYSTEM "C:\Videos\Vacation.vid" NDATA Video>
<!NOTATION Video SYSTEM "C:\MyVideoPlayer.exe">

DTD−to−UML Mapping

When reverse engineering or generating DTD, Rose will map the different DTD constructs to classes with the
appropriate stereotype. In the remainder of this chapter, we will discuss in detail how the DTD constructs map
to Rose model elements. Table 16.1 lists the XML DTD constructs and their corresponding model elements.

Table 16.1: DTD−to−Rose Mapping

DTD Construct Rose Element

Element Class with stereotype DTDElement

Attribute Attribute of element class

Entity Class with stereotype DTDEntity

Notation Class with stereotype DTDNotation

Empty element type Class with stereotype DTDElementEmpty

Any element type Class with stereotype DTDElementAny

Parsed character element type Class with stereotype DTDElementPCDATA

Content model with items separated by "," Class with stereotype DTDSequenceGroup

Content model with items separated by "&" Class with stereotype DTDSet

Content model with items separated by "|" Class with stereotype DTDChoiceGroup

Chapter 16: XML DTD Code Generation and Reverse Engineering

545

DTD Code−Generation Properties

Rose XML provides DTD specification windows for the classes in the model. You will see a slightly different
window for each DTD stereotype supported by Rose. In this section, we'll look at the different properties you
can set for classes with the various DTD stereotypes.

Regardless of the stereotype, to view the specification window, you right−click the class and select Open
Specification.

You can set code−generation properties for the following items:

•
Project

•
Classes

•
Attributes

•
Roles

•
Components

In this section, we will use the following DTD example to discuss the different code−generation properties.
This is an example of a DTD file that defines a book:

<!—The following DTD defines a book—>
<!ELEMENT book (title,tableofcontents,introduction?,section+)>
<!ELEMENT chapter (title,paragraph+)>
<!ATTLIST chapter
ChapterNum ID #REQUIRED
Description CDATA #REQUIRED
NumPages CDATA #REQUIRED
>
<!ELEMENT introduction (paragraph+)>
<!ELEMENT section (title,chapter+,paragraph+)>
<!ELEMENT paragraph (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT tableofcontents (#PCDATA)>

Project Properties

The project specifications control the editor that will be used, and set the different code−generation options
for the overall project. To view the project properties, select Tools → XML_DTD → Project Specification.
The window shown in Figure 16.1 will appear.

Chapter 16: XML DTD Code Generation and Reverse Engineering

546

Figure 16.1: XML Project Specification window

The XML project properties are listed in Table 16.2. The settings here will affect all classes, relationships, and
other elements in the Rose model.

Table 16.2: XML Project Properties

Property Purpose Default

Editor Controls the editor, which uses, views, and edits a DTD. Select
from Built−In (Rose editor) or Windows Shell, or type in the
name of a third−party editor you would like to use.

Built−In

Stop On Error Stops the code−generation process if an error is encountered.True

Create Missing
Directories

Create directories for the components in the model. True

Class Properties

Rose XML provides different code−generation properties for the different types of classes you can create.
Each type of class has its own stereotype, such as DTDElement or DTDEntity. In this section, we'll look at
each of these stereotypes and examine the code−generation properties that can be set.

In the "Generated Code" section later in this chapter, we will take a closer look at each of these types of
classes, discuss their purposes, and describe the UML notation used for the class.

Before you attempt to generate code, you should review the code−generation properties for your classes to
help ensure that the code you get is the code you expected to get. Let's begin by looking at a class with a
stereotype of DTDElement.

Chapter 16: XML DTD Code Generation and Reverse Engineering

547

DTDElement

A class with a stereotype of DTDElement corresponds to an ELEMENT declaration in a DTD file. To expand
on our earlier example (see the "Elements" section), there are several elements: book, tableofcontents,
introduction, section, chapter, paragraph, and title. Each of these is modeled as a class with a stereotype of
DTDElement.

The code−generation properties for a DTD element include the element name, type, and comments. Figure
16.2 shows the Class Specification window for a DTD element.

Figure 16.2: Class Specification window for a DTD element

You can change the name of the element in the Name field. The Type field sets the stereotype of the element.
The stereotypes include:

•
DTDEmpty, which is an empty element, suggesting that the element cannot contain text or other
elements. However, these elements can still have attributes.

•
DTDPCDATA, which is an element that can contain text.

•
DTDAny, which is an element that can contain text or other elements.

Finally, you can enter a comment for the element in the DocComment field. Any comments you enter here
will appear as comments in the generated DTD.

Chapter 16: XML DTD Code Generation and Reverse Engineering

548

DTDGroup

The DTDGroup stereotype is used to show a collection of elements that make up the content model of another
element. In the book example:

<!ELEMENT book (title,tableofcontents,introduction?,section+)>

a DTD group is used to show the grouping of the title, table of contents, introduction, and section in the
content model for a book. Figure 16.3 shows the notation. We will discuss this notation in detail in the
"Generated Code" section of this chapter.

Figure 16.3: DTD group example

There are two code−generation properties on the specification window for a DTDGroup class. The first is the
Grouping Type, which can be set to one of two settings:

•
The Choice setting will generate code in the format ELEMENT A (B|C), suggesting that element A
consists of either B or C.

•
The Sequence setting will generate code in the format ELEMENT A (B,C), suggesting that element A
consists of B and C, in that order.

The second code−generation property is set in the Occurrence field, which determines the multiplicity of the
elements in the content model.

DTDEntity

A DTD entity is used as a placeholder for a single character or a string of text. It can also be used as a
placeholder for video, audio, or other types of information. You can set the code−generation properties for an
entity by using the specification window shown in Figure 16.4.

Chapter 16: XML DTD Code Generation and Reverse Engineering

549

Figure 16.4: Class Specification window for a DTD entity

Table 16.3 lists the entity code−generation properties and the purpose of each.

Table 16.3: DTD Entity Properties

Property Purpose

Parameter Entity Determines whether this is a parameter entity.

External Entity Determines whether this is an external entity, which refers to a file
that is outside the XML DTD.

Internal Entity Value Sets the character, string, or other entity to use in place of an
internal entity.

External Entity System ID Location (URL) of the external file.

External Entity Public ID Alternate location of the external file.

External Entity Notation Name Format of the external file. If this property is set, a notation must be
created for the external entity (see the "DTDNotation" section on
the next page).

Comments Comments for the entity. Comments will be generated in the DTD.
DTDNotation

An external entity can be further described with a notation. The notation specifies the format (audio, video,
word processor, etc.) for the external entity. The code−generation properties for a notation are set with the
specification window for the class, as shown in Figure 16.5.

Chapter 16: XML DTD Code Generation and Reverse Engineering

550

Figure 16.5: Class Specification window for a DTD notation

There are only two code−generation properties for a DTDNotation class. The System ID property sets the
location of the entity. The Public ID property sets the alternate location.

Attribute Properties

There are several properties that can be set for an attribute in a DTD class. Figure 16.6 shows the different
properties that can be set.

Figure 16.6: XML attribute properties

Table 16.4 lists the attribute properties, their purposes, and their default values.

Table 16.4: XML Attribute Properties

Chapter 16: XML DTD Code Generation and Reverse Engineering

551

Property Purpose

Name Sets the name of the attribute in the generated DTD.

Type Sets the data type of the attribute. Valid values are CDATA (character data),
ENTITIES (), and ENTITY().

Default Value Determines whether the attribute is required or not.

Initial Value Sets the default for the attribute.

DocComment Comments to be generated for the attribute in the DTD.

Role Properties

Role properties are those properties that apply to the associations between the elements, entities, and other
classes. These properties control the multiplicity between the elements, as well as the order of the elements in
a content model. Figure 16.7 shows the Role Specification window.

Figure 16.7: XML role properties

There are four properties that can be set. The Name field is used to set the name of the role. This will not
affect the generated DTD.

The Constraints field is used to model the order in which the element appears in the content model. The
example in Figure 16.7 is the relationship between a book and a section. The DTD reads as follows:

<!ELEMENT book (title,tableofcontents,introduction?,section+)>

In this example, the Constraints field on the relationship between book and section was set to "4" because
section is the fourth item in the content model for a book.

The Occurrence field sets the multiplicity of the relationship. In this example, each book can have one or more
sections. This is noted in the DTD by the plus sign (+) after the section in the content model for the book

Chapter 16: XML DTD Code Generation and Reverse Engineering

552

element. It is noted in the Rose model by setting the Occurrence field to One or Many (+). The possible values
for the Occurrence field include:

•
One

•
Zero or one (?)

•
Zero or Many (*)

•
One or Many (+)

Finally, the DocComment field can be used to enter comments for the relationship. Unlike comments for an
attribute, these comments will not be included in the generated DTD file.

Component Properties

In Rose, the DTD file itself is modeled as a component. The different elements contained in the DTD are
mapped to the component in Rose. As with other model elements, code−generation properties are set through
the specification window. Figure 16.8 shows the specification window for a DTD component.

Figure 16.8: XML Component Specification window

In this window, the Name field sets the name of the DTD file to be generated. The Assignment field controls

Chapter 16: XML DTD Code Generation and Reverse Engineering

553

how classes are mapped to a component. If Assign All is selected, all new and existing classes will
automatically be mapped to the component. If Remove Assignment is selected, all classes will be removed
from that component.

Generating Code

Once you have created the necessary elements, entities, and other Rose model items, you can generate a DTD
file from the model. To do so, follow these steps:

1.
Set the code−generation properties, as discussed throughout this chapter.

2.
Select Tools → XML_DTD → Syntax Check. This will run a DTD−specific syntax check of your
model, and let you know if there are any invalid items or other errors.

3.
Create a component to represent the DTD file. This is an optional step, but if you do not create a
component, Rose will create a separate DTD for each class.

4.
Map the classes to the DTD component. You can do this using the Realizes tab on the standard
component specification window. In the Realizes tab, right−click the classes to map to the component
and select Assign.

5.
Select the class(es) you wish to generate.

6.
Select Tools → XML_DTD → Generate Code.

7.
To view the generated DTD for a class, right−click the class on a diagram and select XML_DTD →
Browse DTD Source.

Generated Code

In the following sections, we'll take a look at the DTD generated for various types of model elements,
including classes, attributes, and association relationships. In each of these sections, we'll include some
sample code to give you an idea of what will be generated from your Rose model.

Let's begin by looking at the code generated for various types of classes.

Chapter 16: XML DTD Code Generation and Reverse Engineering

554

Classes

Classes in the model will be translated into elements, entities, or content models of an element. The
translation occurs based on the stereotype that the class was assigned. Let's start with element classes.

Elements

A DTD element is represented in the Rose model as a class with a stereotype of <<DTDElement>>.

Through association relationships, the element is connected to a group, which is then related to any other
elements that are in the content model. Note that all elements in the content model must be contained in the
Rose model in order for the DTD to be generated.

We'll get into the details of the content model shortly, but first let's look at the element stereotypes. You can
further refine an element by changing its stereotype. The available element stereotypes include:

DTDElementAny: This stereotype suggests that the element's content model can contain text and other
elements. The keyword ANY is included in the generated DTD. For the chapter element, the following is
generated:

<!ELEMENT Chapter ANY>

DTDElementEmpty: This stereotype suggests that the element cannot contain text or other elements in its
content model. The entity may, however, have attributes. In this case, the keyword EMPTY is included in the
generated DTD. Our chapter element would now look like this:

<!ELEMENT Chapter EMPTY>

DTDElementPCDATA: This stereotype suggests that the element may contain text in its content model.
With this stereotype, the chapter element would look like this:

<!ELEMENT Chapter (#PCDATA)>

To set the stereotype of an element, open its specification window. In the Type field, select the appropriate
stereotype (ANY, EMPTY, or PCDATA), as shown in Figure 16.9.

Chapter 16: XML DTD Code Generation and Reverse Engineering

555

Figure 16.9: Setting an element stereotype

Rose 2001A and 2002 include icons for each of the element types. You can use these icons by right−clicking
a class and selecting Options → Stereotype Display → Icon. The following icons are used by Rose:

Element Any

Element Empty

Element PCDATA

Content Model

As mentioned earlier, an element is connected to the elements in its content model through association
relationships. Figure 16.10 is an example from our book model.

Chapter 16: XML DTD Code Generation and Reverse Engineering

556

Figure 16.10: Content Model in Rose

In this example, a book has a title, a table of contents, an introduction, and sections. A class with a stereotype
of DTDGroup is used to collect the elements into the content model for the book. There are two types of
groups, corresponding to the two ways the elements in a content model are separated.

In the DTD, the elements in the content model may be separated by commas, indicating that the elements
must appear in the sequence in which they are listed. Alternately, the elements (or a subset of them) may be
separated by a choice operator (|), which implies the word "or." (For example, ELEMENT A (B|C) suggests
that element A may contain B or C.)

This information is indicated by the type of DTDGroup class you are using. This notation represents one type:

<<DTDSequenceGroup>>

In Rose 2001A and 2002, a class with a stereotype of DTDSequenceGroup is displayed as an ampersand with
a circle around it, as shown in Figure 16.11. This grouping suggests that the elements were separated by
commas (i.e., there is a sequence to the elements).

Figure 16.11: An example of a sequence group

Note In Rose 2001, a sequence group is displayed as a filled square.
This notation represents another type:

<<DTDChoiceGroup>>

In Rose 2001A and 2002, a class with a stereotype of DTDChoiceGroup is displayed as an "or" symbol
(choice operator) with a circle around it, as shown in Figure 16.12. This stereotype suggests that the elements

Chapter 16: XML DTD Code Generation and Reverse Engineering

557

are part of a choice in the content model.

Figure 16.12: An example of a choice group

Note In Rose 2001, a choice group is displayed as a hollow square.
To create a sequence or choice group:

1.
Right−click the element and select Open Standard Specification.

2.
Select the Nested tab.

3.
Right−click anywhere inside the white space and select Insert.

4.
Enter the name of the sequence or choice group.

5.
Press OK.

6.
The new group will appear in the browser under the entity. Right−click the group and select Open
Specification.

7.
Set the stereotype to DTDGroup and press OK. The DTD Class Specification window for a group will
appear.

8.
Set the Grouping Type to Choice or Sequence.

9.
Set the Occurrence field to the appropriate multiplicity.

10.
Press OK.

Details on the association relationships tell us whether or not each element is required and the multiplicity for
each element. Table 16.5 lists the association multiplicity notations and their DTD equivalents.

Chapter 16: XML DTD Code Generation and Reverse Engineering

558

Table 16.5: Content Model Multiplicity

Multiplicity in
Rose

DTD Symbol Meaning

0..1 ? Element is not required, but if it is present, there may be only one.

0..n * Element is not required, and there may be more than one.

1..n + Element is required, and there may be more than one.
Figure 16.13 includes examples of each multiplicity option, in Rose and in DTD.

Figure 16.13: Content model multiplicity in Rose and in DTD

The order of the elements in the content model is translated into the Rose model in the form of constraints.
Each association relationship can have a constraint, which is shown in braces {}. In the example ELEMENT
A (B, C, D), the association relationship between A and B would have a constraint of 1, the relationship
between A and C would have a constraint of 2, and the relationship between A and D would have a constraint
of 3. Figure 16.14 shows a Rose model and the corresponding DTD file. By examining the constraints, you
can see the order the elements are listed in the content model.

Figure 16.14: Content model element order in Rose and in DTD

Elements may also contain attributes. See the "Attributes" section later in this chapter for a discussion of
modeling attributes and the generation of attributes in a DTD file.

Next, let's examine how entities are modeled in Rose and translated into the DTD file.

Chapter 16: XML DTD Code Generation and Reverse Engineering

559

Entities

Like elements, entities are represented as classes in the Rose model. An entity is given the stereotype
<<DTDEntity>>. Using the specification window shown in Figure 16.15, you can set the details of the entity
that will be generated in the DTD.

Figure 16.15: DTD entity specification window

If the entity is an internal entity, enter the entity value in the Value field in the specification window. The
value will appear in the generated DTD, as follows:

<!ENTITY Company "ACME DTD Files, Inc.">

If the entity is an external entity, select the External Entity check box and fill in the System ID, Public ID, and
Notation Name fields:

System ID Enter the location of the entity in this field. For example, documentwithentity.xml.

Public ID Enter an alternate address for the entity in this field.

Notation Name If the external entity has a notation, enter the name of the notation here. Rose will include
the NDATA keyword in the generated DTD, similar to the following:

<!ENTITY MyVideo SYSTEM "C:\Videos\Vacation.vid" NDATA Video>

Whether the entity is internal or external, you can enter a comment into the DocComment field. Anything you
enter in this field will appear as a comment in the generated DTD.

To create an entity:

1.

Chapter 16: XML DTD Code Generation and Reverse Engineering

560

Create a new class.

2.
Assign the stereotype <<DTDEntity>> to the class.

3.
Use the specification window to set the entity details as described above.

4.
Create a notation if needed (see the following "Notations" section).

In Rose 2001A and 2002, you can use a special icon to represent an entity. Create an entity as described
above. If the icon is not showing, right−click the class and select Options → Stereotype Display → Icon. The
Entity icon looks like this:

Notations

A notation is modeled as a class with a stereotype of <<DTDNotation>>. As with entities, the details for the
notation are set using the specification window (see Figure 16.16).

Figure 16.16: DTD notation pecification window

Using this window, you set the location of the application used to process the entity. You may also set an
alternate location using the Public ID field.

The notation is linked to the appropriate entity by a bidirectional association relationship. For example:

Chapter 16: XML DTD Code Generation and Reverse Engineering

561

Here is the DTD generated for the classes shown above.

<!ENTITY MyVideo SYSTEM "C:\Videos\Vacation.vid" NDATA Video>
<!NOTATION Video SYSTEM "C:\MyVideoPlayer.exe">

Note As long as the relationship exists, it does not matter what you enter in the Notation Name field on the
entity specification window. If, for example, entity A is connected to notation N1 with an association
relationship, and the Notation Name field on entity A's specification window refers to notation N2,
notation N1 will still be used to generate the DTD.

To create a notation:

1.
Create a new class.

2.
Assign the stereotype <<DTDNotation>> to the class.

3.
Use the specification window to set the notation details as described above.

Rose 2001A and 2002 provide an icon that can be used for notations. The Notation icon looks like this:

Attributes

An element's attributes are modeled as attributes within the element class. Each attribute has a data type and
optional default value. These can be set using the Field Specification window, as shown in Figure 16.17.

Chapter 16: XML DTD Code Generation and Reverse Engineering

562

Figure 16.17: DTD Field Specification window

The Type property is used to document the data type of the attribute. There are several options for the Type
property, including:

•
CDATA, which means that the attribute is simple character data

•
ENTITIES, which means that the attribute is a group of entities

•
ENTITY, which means that the attribute is another entity

•
ID, which means that the attribute is an element identifier

•
IDREF, which means that the attribute is a reference to the ID of another element

•
IDREFS, which means that the attribute is a group of IDREFs

•
NMTOKEN, which means that the attribute is a name token attribute, which is a single word

•
NMTOKENS, which means that the attribute is a collection of NMTOKENs

Chapter 16: XML DTD Code Generation and Reverse Engineering

563

The Default Value and Initial Value fields determine whether or not the attribute is required and what the
initial value in the attribute will be. Neither the initial value nor the default value is required. The possible
settings include the following:

•
The #REQUIRED default value suggests that the attribute is required to have a value on every
occurrence of the element in the document. The initial value may or may not be entered if
#REQUIRED is set. If an initial value is entered, it will be generated in the code as the initial value
for the attribute.

•
The #IMPLIED default value suggests that the attribute is not required and an initial value is not
present.

•
The #FIXED default value means that the attribute is not required, but if it is present, it must match
the initial value.

•
No default value means that an initial value should be entered. The attribute will not be required in the
document, but if it is not present, the initial value will be assumed.

Reverse Engineering DTD

While generating a DTD can be useful, it may be even more valuable to reverse engineer existing DTD files
into your Rose models. Many projects have a number of large and complex DTD structures, and Rose is an
excellent way of visualizing these structures. This can be particularly useful when trying to analyze the
structure of a complex DTD that you didn't create.

In this section, we'll discuss how to reverse engineer a DTD or group of DTD files into your Rose model.

1.
To begin, create a new model or open an existing model.

2.
Select Tools → XML_DTD → Reverse Engineer XML DTD.

3.
Rose will display the XML/DTD Reverse Engineering dialog box, as shown in Figure 16.18.

4.
Select the files you wish to reverse engineer in the upper−right portion of the screen, and press Add.

5.
Select the files to reverse engineer from the list in the bottom portion of the screen, and press Reverse.

6.
When finished, press Done.

Chapter 16: XML DTD Code Generation and Reverse Engineering

564

Rose will create a folder in the Logical view called NewPackage. All reverse−engineered items will be placed
in this folder.

Figure 16.18: XML/DTD Reverse Engineering dialog box

Summary

In this chapter, we discussed how Rose can be used to model and generate an XML DTD file. We examined
how DTD elements, attributes, entities, and content models can be structured in Rose, and how Rose can
create the DTD file. Finally, we discussed the reverse engineering of a DTD file into a Rose model.

To review, these steps should be followed to generate a DTD:

1.
Set the code−generation properties.

2.
Select Tools → XML_DTD → Syntax Check.

3.
Create a component to represent the DTD file, and map the classes to the DTD component.

4.
Select the class(es) you wish to generate.

5.
Select Tools → XML_DTD → Generate Code.

6.
To view the generated DTD for a class, right−click the class on a diagram and select XML_DTD →
Browse DTD Source.

The following steps should be followed to reverse engineer a DTD:

1.

Chapter 16: XML DTD Code Generation and Reverse Engineering

565

Select Tools → XML_DTD → Reverse Engineer XML DTD.

2.
Select the files you wish to reverse engineer in the upper−right portion of the screen, and press Add.

3.
Select the files to reverse engineer from the list in the bottom portion of the screen, and press Reverse.

4.
When finished, press Done.

In the next chapter, we'll examine the creation and reverse engineering of CORBA elements using Rose.
CORBA is an interface standard that helps components communicate, even if the components are
programmed in different languages. Using Rose, you can design CORBA elements, set up relationships
between the CORBA classes and classes in other languages, and generate the CORBA classes. Or, you can
reverse engineer an application with CORBA elements to analyze the application architecture.

Chapter 16: XML DTD Code Generation and Reverse Engineering

566

Chapter 17: CORBA/IDL Code Generation and
Reverse Engineering
Rounding out the powerful code−generation abilities of Rose is the CORBA/IDL add−in. From your Rose
model, you can forward engineer code through the Component diagrams. In order to create the code, however,
Rose will examine the properties of the classes—including the code−generation properties, attributes,
operations, relationships, and packages—in the Logical view.

•
Setting IDL code−generation properties

•
Generating IDL code from your Rose model

•
Mapping Rose elements to IDL constructs

•
Reverse engineering IDL source code

CORBA/IDL Code−Generation Properties

CORBA (Common Object Request Broker Architecture) is a specification that supports the use of distributed
objects. Through the interface definition language (IDL), a developer can create language−independent
interfaces for components. The developer can then create components in multiple languages, and use IDL to
help the objects communicate. The CORBA/IDL that is generated from your Rose model is controlled by a
series of code−generation property sets. Rose includes a property set for attributes, classes, dependencies,
aggregations, module bodies, module specifications, operations, associations, subsystems, and for the overall
project.

You can view and set all of these properties by selecting Tools → Options, then selecting the CORBA tab.

567

Anything you change using this window will set the default for all classes, attributes, operations, and so on.

You can also set the code−generation properties for a single class, attribute, operation, or other model
element. To do so, open the specification window for the model element and select the CORBA tab. On this
tab, you can change the properties that apply to that particular type of model element. In the following
sections, we'll examine the CORBA code−generation properties.

Project Properties

Project properties are the CORBA code−generation properties that apply to the whole project rather than to
any specific model element, such as a class or relationship.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

568

The options in this section include things like the default directory to use when generating code and the
maximum number of errors that can occur during code generation. Each of the project properties is listed in
Table 17.1 along with its purpose and default value.

Table 17.1: CORBA Code−Generation Project Properties

Property Purpose Default

CreateMissingDirectories Controls whether Rose should create directories to
mirror the packages when generating code.

True

Editor Controls which editor to use to view and edit CORBA
files.

Built−In (Uses a
built−in CORBA
editor)

IncludePath Path used to resolve the location of .IDL files during
code generation and reverse engineering.

Empty

StopOnError Controls whether Rose will stop generating code if it
encounters an error.

True

PathSeparator Sets the character (such as the backslash) to separate
path elements.

<blank> (uses the
default for the
operating system)

You can also set these properties through the Tools → CORBA → Project Specification menu item, as shown
on the following page.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

569

It does not matter whether you set the properties in the Tools → Options area or through the Project
Specification window. Changes you make in one area will be reflected in the other.

Class Properties

Class properties are the CORBA code−generation properties that apply specifically to classes. Most of the
class properties are set through the Class Specification window. There are a few properties, however, that can
also be set through the Tools → Options area, as shown below:

Table 17.2 lists the CORBA class properties on the Tools → Options window, their purposes, and their
default values.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

570

Table 17.2: CORBA/IDL Code−Generation Class Properties

Property Purpose Default

ArrayDimensions Sets the dimensions of the array used in the class
definition if the class is a typedef.

Empty

ImplementationType This value has different uses based on the class’s
stereotype. If CORBAConstant, then the value
indicates the data type of the constant. If
CORBATypeDef, then the value indicates the data
type. If CORBAUnion, then the value is equivalent to
the switch type.

Empty

ConstValue If a CORBA constant is being generated, controls the
value of the constant.

<blank>

The properties listed above apply to all types of CORBA classes. You can, however, set additional properties
for the different CORBA stereotypes supported by Rose.

When you first create a class and try to open its specification window, Rose will prompt you for the type of
class to create:

In the Stereotype field, select from the following: Interface, CORBAConstant, CORBAEnum,
CORBA−Exception, CORBANative, CORBAStruct, CORBATypedef, CORBAUnion, CORBAValue, or
CORBACusomValue. Once you have selected a stereotype, the appropriate specification window will appear.

Interface Specification

On the interface specification window, you can set the following:

•
Inherits From to set the parent class

•
Attribute/Role Ordering to set the order in which attributes and roles will be generated in the code

•
DocComment for comments that will be generated in the code

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

571

CORBAConstant Specification

On the constant specification window, you can set the following:

•
Implementation Type to set the data type of the generated constant

•
Constant Value to set the value of the generated constant

•
DocComment for comments that will be generated in the code

CORBANative Specification

On the CORBANative specification window, you can set only the DocComment field, which is for comments
that will be generated in the code.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

572

CORBATypeDef Specification

On the typedef specification window, you can set the following:

•
Implementation Type to set the data type of the generated typedef

•
Array Dimensions to indicate that the typedef's declarator is an array and sets the dimensions of the
array

•
DocComment for comments that will be generated in the code

CORBAUnion Specification

On the union specification window, you can set the following:

•
Attribute/Role Ordering to set the order in which attributes and roles will be generated in the code

•
Switch Type to set the switch type for case statements for the union

•

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

573

DocComment for comments that will be generated in the code

CORBAValue/CORBACustomValue

On the value specification window, you can set the following:

•
Inherits From to set the parent class

•
Attribute/Role Ordering to set the order in which attributes and roles will be generated in the code

•
DocComment for comments that will be generated in the code

Other CORBA Stereotypes

On the specification window, you can set the following for other CORBA stereotypes (CORBA−Enum,
CORBAException, and CORBAStruct):

•

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

574

Attribute/Role Ordering to set the order in which attributes and roles will be generated in the code

•
DocComment for comments that will be generated in the code

Attribute Properties

Attribute properties are the CORBA properties that relate specifically to attributes. Using these properties, you
can control what is generated for each attribute in the model.

There are three places to set these properties. To set them for all attributes, select Tools → Options, then click
the CORBA tab and select Attribute from the drop−down list box. To set them for only one attribute, select
the CORBA tab on the attribute standard specification window, or open the CORBA specification window
and edit the properties there.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

575

Table 17.3 lists the attribute properties, their purposes, and their default values.

Table 17.3: CORBA Code−Generation Attribute Properties

Property Purpose Default

ArrayDimensions Sets the array dimensions used for an exception,
struct, or union when the BoundedRoleType
association property is set to Array

<blank>

CaseSpecifier Sets the label of the case statement of a union <blank>

IsReadOnly Controls whether the generated attribute is read onlyFalse

Order Sets the order of generated attributes and roles <blank>
As with classes, these attribute properties, as well as some additional properties, can be set using the CORBA
specification windows. The following shows the specification window for a CORBA attribute:

In the Name field, you can set or change the attribute's name. Whatever has been entered here will be used as
the attribute name in the generated code. In the Type field, enter the data type (long, char, etc.) of the attribute.
The Visibility field allows you to set whether the attribute is public or private. The Bounded Role Type field
is used for an exception, struct, or union and determines whether to create an array or a sequence attribute to
support a relationship with bounded multiplicity. The Array Dimensions, Case Specifier, and Is Read Only
fields are identical to the ArrayDimensions, CaseSpecifier, and IsReadOnly properties described in Table
17.3. In the specification window, you can change either these fields or the properties.

Operation Properties

Operation properties are the CORBA code−generation properties that are specific to operations.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

576

There are three places to set these properties. To set them for all operations, select Tools → Options, then
click the CORBA tab and select Operation from the drop−down list box. To set them for only one operation,
select the CORBA tab on the operation's standard specification window, or open the CORBA specification
window for the operation and edit the properties there.

Table 17.4 lists the operation code−generation properties, their purposes, and their default values.

Table 17.4: CORBA Code−Generation Operation Properties

Property Purpose Default

OperationIsOneWay Controls whether the one−way keyword will be
generated for the operation

False

Context Includes a context statement for the operation <blank>
Additional properties can be set through the CORBA Operation Specification window, as shown on the
following page.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

577

The Name, Return, and Arguments fields are used to set the operation's signature, including its parameters.
The Visibility field controls whether the operation is public or private and will be directly used in code
generation. The Raises field is used to set an exception class that will deal with exceptions for the operation.

Module Properties

Module properties are the properties that are related to the components in your Rose model. There are three
places to set these properties. To set them for all components, select Tools → Options, then click the CORBA
tab and select Module Specification from the drop−down list box. To set them for only one component, select
the CORBA tab on the component's standard specification window, or open the CORBA specification
window for the component and edit the properties there.

Table 17.5 lists the code−generation properties for components, their purposes, and their default values.

Table 17.5: CORBA Code−Generation Component Properties

Property Purpose Default

AdditionalIncludes Used to enter any additional #include statements
you want to see in the code

<blank>

CmIdentification Used to enter codes that your configuration
management software can use

%X%%Q%%Z%%W%

CopyrightNotice Used to enter a copyright in the file <blank>

InclusionProtectionSymbol Sets the symbol that will be used to prevent a file
from being included more than once

Auto Generate

You can also set these values using the CORBA specification window for the component. To open the
CORBA specification window, right−click the component and select Open Specification.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

578

Association (Role) Properties

Role properties are the CORBA properties that deal with associations. Using these properties, you can control
the code generated for the associations.

Because roles are implemented as attributes, many of the code−generation properties are identical for an
attribute and a role. Two properties, however, are unique to roles: GenerateForwardReference and
BoundedRoleType.

There are three places to set role properties. To set them for all associations, select Tools → Options, then
click the CORBA tab and select Role from the drop−down list box. To set them for only one association,
select the CORBA tab on the association's standard specification window, or open the CORBA specification

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

579

window for the association and edit the properties there.

Table 17.6 lists the code−generation properties for associations, their purposes, and their default values.

Table 17.6: CORBA Code−Generation Association Properties

Property Purpose Default

ArrayDimensions Sets the array dimensions used for an exception,
struct, or union when the BoundedRoleType
association property is set to Array

<blank>

CaseSpecifier Sets the label of the case statement of a union <blank>

GenerateForwardReference Controls whether a referenced interface is included
with an #include statement or a forward reference

#include (False)

IsReadOnly Controls whether the generated attribute is read onlyFalse

Order Sets the order of attributes and roles generated <blank>

BoundedRoleType If the relationship multiplicity is greater than one,
controls whether an array or sequence is used for the
generated attribute

Sequence

These properties can also be set using the CORBA Attribute Specification window:

Dependency Properties

The dependency properties are the CORBA properties that control how dependency relationships are
generated.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

580

There are two places to set the dependency property. To set the property for all dependencies, select Tools →
Options, then click the CORBA tab and select Dependency from the drop−down list box. To set the property
for only one dependency, select the CORBA tab on the dependency specification window and edit the
properties there. There is only one dependency property, GenerateForwardReference, which controls whether
a referenced interface is included with an #include statement or a forward reference. By default, a #include
statement is used.

Generated Code

In the following sections, we'll examine the CORBA that is generated from the various types of model
elements. Rose will use the information you entered in the specification windows for the various model
elements when generating the CORBA/IDL.

Let's begin by looking at the code generated for a typical class.

Classes

A class in your object model will generate a single IDL file. The file that is generated will look something like
the following:

Interface TheClass
{
};

A great deal of additional information, such as configuration management statements, copyright notices, and
include statements, will also be generated in the code. We'll look at a complete file in the following section,
"Standard Code Generation."

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

581

All of the attributes, operations, and relationships of the class will be reflected in the generated code. The
major elements generated for each class include:

•
Class name

•
Attributes

•
Operations

•
Relationships

•
Documentation

When generating code, Rose will use the package structure you established in the Component view of your
model to generate the appropriate directories. A directory will be created for each package in the model.
Within each of the directories Rose creates will be the files for the classes in that package.

Much of the information in your Rose model will be used directly when generating code. For example, the
attributes, operations, relationships, and class name of each class will directly affect the code generated. Other
model properties, such as the documentation entered for the class, will not directly affect the code. These
properties are created as comments in the generated code.

Table 17.7 lists the properties available in the class specification window and notes which of these properties
will directly affect the IDL that is generated.

Table 17.7: Effect of Class Specifications on IDL

Property Effect on Code

Name Name in model will become class name

Type No effect

Stereotype No effect

Export Control No effect

Documentation Comment

Cardinality No effect

Space No effect

Persistence No effect

Concurrency No effect

Abstract No effect

Formal Arguments No effect

Operations Generated in code

Attributes Generated in code

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

582

Relationships Generated in code
Standard Code Generation

Let's look at the code generated for the following class.

The following IDL file was generated for the SampleClass:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS__DEFINED
#define __SAMPLECLASS__DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

interface SampleClass {
};

#endif

Let's examine each piece of this file, one at a time.

Module Section

The module section contains some basic information about the class being generated. It includes the following
line:

//Source file: C:/corba/SampleClass.idl

This section includes comments that describe what class is being generated and where the IDL file is located.

Configuration Management Section

The configuration management section is provided to support integration with your configuration
management software. It includes the following lines:

/* CmIdentification
 %X% %Q% %Z% %W% */

This section of the file includes information about your configuration management settings. The properties on
the second line (%X% %Q% %Z% %W%) are the default configuration management settings. To change the
configuration management settings, select Tools → Options from the menu. In the CORBA tab, select Module
Specification from the drop−down list box to display the module specification code−generation properties.
You can use the CmIdentification property to change the default values on this second line. Using this
property, you can set the Change Management settings to a string that your configuration management
software will recognize.

Some sample values you can place in this setting include:

•

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

583

$date, which inserts the date the code was generated

•
$time, which inserts the time the code was generated

•
$module, which inserts the component name

•
$file, which inserts the component's file

Preprocessor Directives Section

The preprocessor directives include the following lines:

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

These lines are inserted into the code to prevent the file from being included more than once.

Includes Section

The includes section is the area of the generated code that shows any entries you added in the
AdditionalIncludes code−generation property for the component and any entries you added in the Includes
section of the specification window for the component.

The includes section for the SampleClass is as follows:

#include "IncludedClass.idl"

In this example, only one other class, called IncludedClass, was included.

Class Definition Section

This section contains information about the class itself, including the class name, its attributes, its operations,
and its relationships. For the class example above, the definition section includes the following:

interface SampleClass {
};

If you entered any documentation for the class using the documentation window or the documentation area of
the class specification window, this documentation will be included as a comment in the code.

Code Generated for Different Types of CORBA/IDL

The code that is generated depends directly upon the stereotype (interface, union, const, etc.) of the class.
Let's examine the code generated for the following class, with each of the different CORBA/IDL stereotype
options.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

584

TypeDef Generation

If the class stereotype is set to CORBATypeDef, an interface will not be generated for the class. Instead, a
typedef will be created. In the Implementation Type property on the Class Specification window, enter the
definition that this typedef will be aliasing. The code generated for the SampleClass class looks like this:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

typedef long SampleClass;

#endif

Enumeration Generation

The second CORBA type you can generate is an enumeration. If you select this option, Rose will use the
keyword "enum" in the generated file. The following is the code generated for the class above, but with the
stereotype set to CORBAEnum.

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

enum SampleClass {

Attribute1,
Attribute2
};

#endif

Constant Generation

The third CORBA type that you can generate is a constant. In this case, Rose will include the keyword "const"
in the generated IDL. To generate a constant, set the class stereotype to CORBAConstant. In the Class
Specification window, set the Implementation Type field to the data type you wish to use and the Constant
Value field to the value of the constant.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

585

The following is the file generated for SampleClass.

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

const long SampleClass = 4;

#endif

Exception Generation

The fourth CORBA type you can generate is an exception. If the class stereotype is set to CORBA−Exception,
Rose will include the keyword "exception" in the code. Here is the file generated for SampleClass:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

exception SampleClass {
 string Attribute1;
 string Attribute2;
};

#endif

Structure Generation

Another CORBA type you can generate is a structure. Rose will include the "struct" keyword in the generated
file if the stereotype of the class is set to CORBAStruct. The attributes of the class will appear as data

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

586

members in the generated file. The code generated for SampleClass is:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

struct SampleClass {
 string Attribute1;
 string Attribute2;
};

#endif

ValueType Generation

By setting the stereotype to CORBAValue, you can generate a valuetype. Here is the code generated for the
SampleClass class with a stereotype of CORBAValue:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

valuetype SampleClass {
 ;
 ;
};

#endif

Union Generation

Finally, you can generate a union in CORBA by setting the class stereotype to CORBAUnion. The generated
code looks like this:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

union SampleClass switch(long) {
 case 1: string Attribute1;
 case 2: string Attribute2;

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

587

};

#endif

Before you can generate code, each of the attributes must have a case specifier. Open the specification
window for each of the attributes, and enter a value in the Case Specifier property. The values you enter will
control the case statements generated in the code. In the above example, the case specifier for Attribute1 is 1,
and the specifier for Attribute2 is 2.

Attributes

As you may have noticed in the previous examples, attributes are generated in the code along with the class.
This isn't true for all CORBA types, however. In this section, we'll examine the code generated for attributes
for each of the types: interface, typedef, enumeration, constant, exception, structure, and union. For each of
these types, we'll take a look at what is generated for the following class:

Attributes Generated for an Interface

In an interface, all of the attributes of the class will appear in the generated code. For each attribute, Rose will
include:

•
Data type

•
Documentation

This is the interface that is generated for the SampleClass class:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

interface SampleClass {
 attribute string Attribute1;
 attribute string Attribute2;
};

#endif

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

588

Attributes Generated for a TypeDef

If the class stereotype is set to CORBATypeDef, attributes do not appear in the generated code.

Attributes Generated for an Enumeration

With an enumeration, Rose will place the attributes in the generated code. However, Rose will ignore the data
types, default values, and other specifications of the attribute. Here is the enumeration generated for the
SampleClass class:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

enum SampleClass {

 Attribute1,
 Attribute2
};

#endif

Attributes Generated for a Constant

If the class stereotype is set to CORBAConstant, attributes do not appear in the generated code.

Attributes Generated for an Exception

If the class stereotype is set to CORBAException, all attributes of the class will be included in the code. For
each attribute, the code will include:

•
Data type

•
Documentation

Here is the code generated for SampleClass when the stereotype is set to CORBAException:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

exception SampleClass {

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

589

 string Attribute1;
 string Attribute2;
};

#endif

Attributes Generated for a Structure

If the class stereotype is set to CORBAStruct, all attributes of the class will be included in the code. For each
attribute, the code will include:

•
Data type

•
Documentation

Here is the code generated when the SampleClass stereotype is set to CORBAStruct:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

struct SampleClass {
string Attribute1;
string Attribute2;
};

#endif

Attributes Generated for a Union

If the class stereotype is set to CORBAUnion, the attributes of the class will appear as case statements in the
union. Here is the code generated for SampleClass:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

union SampleClass switch(long) {
case 1: string Attribute1;
case 2: string Attribute2;
};

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

590

#endif

The values used in the case statements are set by the values you enter in the Case Specifier field in each
attribute's specification window.

Operations

The operations you define in your Rose model will appear in the generated IDL. Like attributes, though,
operations are included only for certain CORBA types. In this section, we'll take a look at the code generated
for operations of the following class:

We'll examine how the code is generated as the stereotype of the class changes.

Operations Generated for an Interface

With an interface, all of the operations for the class will appear in the generated code, along with their
parameters, parameter data types, and return type. For the SampleClass class, the following interface was
generated:

//Source file: C:/corba/SampleClass.idl

#ifndef __SAMPLECLASS_DEFINED
#define __SAMPLECLASS_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "IncludedClass.idl"

interface SampleClass {
/*
@roseuid 39B5C1A0006A */
string Operation1 ();

};

#endif

Operations Generated for Other CORBA/IDL Types

Operations are shown in the generated IDL only for interfaces. If the class stereotype is a typedef,
enumeration, const, exception, struct, or union, operations will not be generated in the code.

Bidirectional Associations

To support bidirectional associations, Rose will generate attributes in the code. Each of the classes in the
relationship will contain an attribute to support the association. The names of the generated attributes will be
controlled by the role names on the association relationship. You must enter role names before you can
generate code.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

591

The code generated for the two classes shown above will resemble the following:

interface Class_A {
attribute Class_B Class_B_Role;
};

and

interface Class_B {
attribute Class_A Class_A_Role;
};

As you can see, Rose will automatically generate attributes on both sides of the bidirectional association
relationship. With the Class_B_Role attribute, Class_A can easily access Class_B. Using the Class_A_Role
attribute, Class_B can easily access Class_A.

The full code generated for Class_A is:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

interface Class_A {
 attribute Class_B Class_B_Role;
};

As you can see, Class_A now includes an attribute of type Class_B. Class_B will also include an attribute of
type Class_A. These two attributes support the relationship between Class_A and Class_B.

Bidirectional Associations Generated for a TypeDef

If the stereotype for Class_A is set to CORBATypeDef, a Class_B attribute will not be included in the code
for Class_A. However, an #include statement will be added to the code in Class_A, as follows:

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

592

#include "Class_B.idl"

Bidirectional Associations Generated for an Enumeration

If the stereotype of Class_A is set to CORBAEnum, an include statement for Class_B.IDL will be included in
the code. An attribute will not, however, be generated in Class_A. The code for Class_A looks like this:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

enum Class_A {

};

#endif

Bidirectional Associations Generated for a Constant

If Class_A is a constant, it will have an include statement for Class_B, but will not have an attribute that
supports the relationship. Here is the code generated for Class_A:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

const long Class_A = 4;

#endif

Bidirectional Associations Generated for an Exception

If Class_A is an exception, an attribute of type Class_B will be generated inside it. Here is the code generated
for Class_A:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

exception Class_A {

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

593

Class_B Class_B_Role;
};

#endif

Bidirectional Associations Generated for a Structure

If the stereotype of Class_A is CORBAStruct, an attribute will be created inside Class_A when you generate
the IDL.

The code for Class_A is as follows:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

struct Class_A {
Class_B Class_B_Role;
};

#endif

Bidirectional Associations Generated for a Union

If the stereotype for Class_A is set to CORBAUnion, the generated code will have an include statement for
Class_B, and will include an instance of Class_B within the switch statement. Here is the code generated for
Class_A:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

union Class_A switch() {
case 1: Class_B Class_B_Role;
};

#endif

Note that the attribute generated from the association needs a case specifier, as do the other attributes of
Class_A. The case specifier can be set using the Case Specifier Role code−generation property for the
relationship.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

594

Unidirectional Associations

As with bidirectional associations, Rose will generate attributes to support unidirectional associations. With a
unidirectional association, however, an attribute is generated at only one end of the relationship.

For the Class_A and Class_B classes above, code similar to the following would be created:

interface Class_A {
attribute Class_B Class_B_Role;
};

and

Interface Class_B
{
};

As you can see, Rose will generate a private attribute for the relationship at only one end of the association.
Specifically, it will generate an attribute in the client class, but not in the supplier class.

For each of the other CORBA types (typedef, enumeration, const, exception, struct, or union), Rose will
generate code as shown in the bidirectional associations sections above. The only difference with a
unidirectional association is that the attribute will be created on only one side of the relationship.

Note that the multiplicity here is one to one. Let's take a look at how code is affected when the multiplicity
settings are changed.

Associations with a Multiplicity of One to Many

In a one−to−one relationship, Rose can simply create the appropriate attributes to support the association.
With a one−to−many relationship, however, one class must contain a set of the other class.

To begin, let's look at an example.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

595

In this case, we have a one−to−many relationship. As we saw earlier, Class_B can generate an attribute that is
simply a pointer to Class_A, but a simple pointer attribute in the Class_A class won't be enough. Instead, the
attribute generated in Class_A must use some sort of container class as its data type. In IDL, there are two
container classes you can use: a sequence or an array. By default, Rose will use a sequence.

For this example, Rose will generate code similar to the following:

interface Class_A {
 typedef sequence <Class_B> Class_B_Roledef;

 attribute Class_B_Roledef Class_B_Role;
};

and

interface Class_B {
 attribute Class_A Class_A_Role;
};

As you can see, Class_B includes a simple pointer to Class_A, as we saw earlier. However, a container class
was used in Class_A when generating the Class_B attribute.

The full code generated for Class_A is:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

interface Class_A {
 typedef sequence <Class_B> Class_B_Roledef;

 attribute Class_B_Roledef Class_B_Role;
};

#endif

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

596

Again, Rose will use a sequence as the default container class. To use an array instead, open the relationship
specification and change the BoundedRoleType property to Array. To use an array for all relationships with a
multiplicity greater than one, select Tools → Options from the menu. On the CORBA tab, select Role from
the drop−down list box and change the value in the BoundedRoleType property to Array.

One−to−Many Associations Generated for a TypeDef

If the stereotype of Class_A is CORBATypeDef, an #include statement will be added to the code, but an
attribute will not be generated in Class_A to support the relationship with Class_B. The code generated for
Class_A is as follows:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

typedef sequence <Class_B> Class_A;

#endif

One−to−Many Associations Generated for an Enumeration

As with a typedef, Rose will not generate attributes to support the relationship if Class_A is an enumeration.
There will, however, be an #include statement in the code generated for Class_A. The code for Class_A is as
follows:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

enum Class_A {

};

#endif

One−to−Many Associations Generated for a Constant

If Class_A is a constant, it will have an #include statement for Class_B, but will not have an attribute for the
relationship. The code for Class_A is shown below:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

597

#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

const long Class_A = 4;

#endif

One−to−Many Associations Generated for an Exception

If Class_A is an exception, an attribute will be created inside it to support the relationship to Class_B. In a
one−to−many relationship, Rose will use a container class when generating this attribute. By default, as with
one−to−many relationships between interfaces, Rose will use a sequence as a container. You can change the
container class to use an array by changing the BoundedRoleType role property to Array.

The following code is generated for Class_A when its stereotype is set to CORBAException and Class_A has
a one−to−many relationship with Class_B.

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

exception Class_A {
 sequence <Class_B> Class_B_Role;
};

#endif

One−to−Many Associations Generated for a Structure

When the stereotype of Class_A is set to CORBAStruct, and Class_A has a one−to−many relationship with
Class_B, an attribute will be created in Class_A to support that relationship. As with the other one−to−many
relationships, Rose will use a container class when creating the attribute. By default, a sequence is used. To
use an array instead, change the BoundedRoleType role property.

The following is the code generated for Class_A:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"

struct Class_A {

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

598

sequence <Class_B> Class_B_Role;
};

#endif

One−to−Many Associations Generated for a Union

If Class_A is a union, both an #include statement and an attribute will be generated in Class_A to support the
relationship with Class_B. The code for Class_A is as follows:

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_B.idl"
union Class_A switch() {
 case 1: sequence <Class_B> Class_B_Role;
};

#endif

#endif

Associations with a Multiplicity of Many to Many

The code generated here is similar to that created for a one−to−many relationship. With a many−to−many
relationship, however, Rose will generate container classes on both ends of the relationship.

Let's look at the code generated for the following relationship:

In this situation, container classes are used at both ends of the relationship. The code that is generated will
look something like the following:

interface Class_A {
 typedef sequence <Class_B> Class_B_Role_def;

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

599

attribute Class_B_Role_def Class_B_Role;
};

and

interface Class_B {
 typedef sequence <Class_A> Class_A_Role_def;

 attribute Class_A_Role_def Class_A_Role;
};

The complete code generated for Class_A will look exactly as it did in the previous section. The difference is
that now the code for Class_B will also include an attribute with a container type. The code generated for
Class_B is:

//Source file: C:/corba/Class_B.idl

#ifndef CLASS_B_DEFINED
#define CLASS_B_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Class_A.idl"

interface Class_B {
 typedef sequence <Class_A> Class_A_Roledef;
 attribute Class_A_Roledef Class_A_Role;
};

#endif

Many−to−Many Associations Generated for Other CORBA Types

The code generated for a many−to−many relationship with other CORBA types will look exactly like the code
we examined in the previous section. The only difference is that Class_B will now contain an attribute of type
Class_A.

Associations with Bounded Multiplicity

An association with bounded multiplicity is one that has a range of numbers at one end of the relationship. For
example, the following relationship has bounded multiplicity:

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

600

In this example, each instance of Class_A is related to 2–4 instances of Class_B.

The two types of bounded relationships we will examine are bounded associations and fixed associations.
Bounded associations have a multiplicity range, like 2..4. Fixed associations have a single number in the
multiplicity. For example, a multiplicity of 4 is fixed.

For the example above, Rose will generate something like this:

interface Class_A {
typedef sequence <Class_B, 4> Class_B_Roledef;
attribute Class_B_Roledef Class_B_Role;
};

and

interface Class_B {
attribute Class_A Class_A_Role;
};

As with one−to−many and many−to−many relationships, Rose uses container classes when generating the
attributes. By default, Rose will use a sequence, but you can change the container to an array. You make this
change by selecting the CORBA A or CORBA B tab of the relationship specification and then changing the
BoundedRoleType property to Array. To change the container class for all bounded relationships, select Tools
→ Options from the menu. On the CORBA tab, select Role from the drop−down list box. Change the value in
the BoundedRoleType property to Array.

Bounded Associations Generated for an Exception

If Class_A is an exception, the code generated will include an attribute to support the relationship to Class_B.
In this case, a simplified version of the generated code will look something like this:

Exception Class_A
{
sequence <Class_B, 4> Class_B_Role;
};

As with other relationships where the multiplicity is greater than one, Rose will use a sequence as the default
container class. To use an array, change the BoundedRoleType property to Array.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

601

Bounded Associations Generated for a Structure

The code generated for a structure will include an attribute to support the relationship between Class_A and
Class_B. A simplified version of the code is as follows:

Struct Class_A
{
sequence <Class_B, 4> Class_B_Role;
};

Again, a sequence is the default container. To use an array instead, you can change the Bounded−RoleType
role property to Array.

Bounded Associations Generated for a Union

If Class_A is a union and has a bounded association with Class_B, an attribute will be created in Class_A to
support the relationship. By default, the container used in this attribute is a sequence. Here, we have a
sequence length of 4.

union Class_A switch(int) {
case 3: sequence <Class_B, 4> Class_B_Role;
};

Bounded Associations Generated for Other CORBA/IDL Types

If types other than interface, exception, structure, or union are used, no attributes will be generated to support
the relationship. However, #include statements will be placed in both Class_A and Class_B.

Reflexive Associations

A reflexive association is treated much the same as an association between two classes. For the following
situation:

code similar to this is generated:

interface Class_A {
 typedef sequence <Class_A> RoleAdef;
 attribute Class_A RoleB;
 attribute RoleAdef RoleA;
};

The first two lines support the 0..* end of the relationship. They include a container class that will support this
multiplicity. The third line supports the end of the relationship with a multiplicity of one.

The full code generated for Class_A is as follows:

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

602

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

interface Class_A {
 typedef sequence <Class_A> RoleAdef;

 attribute Class_A RoleB;
 attribute RoleAdef RoleA;
};

#endif

Reflexive Associations Generated for an Exception

If Class_A is stereotyped as an exception, only one attribute will be generated for the relationship. In this
example, an attribute is generated to support the one end of the one−to−many relationship. The code for
Class_A is shown below:

//Source file: C:/corba/Class_A.idl
#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED
/* CmIdentification
 %X% %Q% %Z% %W% */
exception Class_A {
Class_A RoleB;
};
#endif

Reflexive Associations Generated for a Structure

If Class_A is a structure, an attribute will be created inside of it to support the reflexive relationship. If the
relationship looks like the previous reflexive association, then the following code will be generated.

//Source file: C:/corba/Class_A.idl

#ifndef __CLASS_A_DEFINED
#define __CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

struct Class_A {
Class_A RoleB;
};

#endif

Reflexive Associations Generated for a Union

If Class_A is a union, a single attribute will be created inside the class to support the reflexive relationship.
The following code is generated for Class_A:

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

603

//Source file: C:/corba/Class_A.idl

#ifndef CLASS_A_DEFINED
#define CLASS_A_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

union Class_A switch() {
 case 2: Class_A RoleB;
};

#endif

Reflexive Associations Generated for Other CORBA/IDL Types

Because attributes are not generated for a typedef, enumeration, or constant, reflexive associations with these
types will not be reflected in the code.

Aggregations

When generating CORBA/IDL, associations and aggregations are treated the same. All of the considerations
we've discussed so far (the multiplicity, whether the relationship is unidirectional or bidirectional, and
whether or not the relationship is reflexive) apply the same to aggregations as they do to associations. This is
true for any of the CORBA types (interface, typedef, enumeration, constant, exception, structure, or union).

For information about how unidirectional aggregations, aggregations with various multiplicity indicators, and
reflexive aggregations are generated, please see the corresponding sections on associations.

Dependency Relationships

With a dependency relationship, attributes are not created. If there is a dependency between Class_A and
Class_B, attributes will be created in neither Class_A nor Class_B.

The code that is generated will look something like the following:

Interface Class_A
{
};

and

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

604

Interface Class_B
{
};

Rose will place only one reference to Class_B—an include statement for Class_B.IDL—inside of Class_A.
Class_A will not be referenced in Class_B at all.

Because no attributes are generated for a dependency, an attribute will not be created for any of the CORBA
types (interface, typedef, enumeration, constant, exception, structure, or union).

Generalization Relationships

A generalization relationship in UML becomes an inheritance relationship in IDL. In your Rose model, an
inheritance relationship is shown as follows:

For this type of relationship, Rose will generate something that looks like this:

Interface Parent
{
};

and

Interface Child : Parent
{
};

Let's look at the actual code that is generated. In the code for the parent class, there is no mention of the child
class. This helps keep the parent generic; many classes can therefore inherit from it without affecting its code.

In the child class, the code is generated to support its inheritance from the parent class. The code for the child
class is as follows:

//Source file: C:/corba/Child.idl

#ifndef __CHILD_DEFINED
#define __CHILD_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

605

#include "Parent.idl"

interface Child : Parent {
};

#endif

Generalizations Generated for a TypeDef

If the child class is a typedef, an #include statement will appear in the generated code for the child, but an
inheritance relationship will not be shown in the code. The IDL for the child class is as follows:

//Source file: C:/corba/Child.idl

#ifndef __CHILD_DEFINED
#define __CHILD_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Parent.idl"

typedef Child;

#endif

Generalizations Generated for an Enumeration

The same is true for an enumeration. Although an #include statement is generated, the inheritance relationship
itself is not represented in the code. In this case, the generated code looks like this:

//Source file: C:/corba/Child.idl

#ifndef __CHILD_DEFINED
#define __CHILD_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Parent.idl"

enum Child {

};

#endif

Generalizations Generated for a Constant

As with a typedef or enumeration, a generalization relationship will not be directly implemented in code with
a constant. An #include statement will be generated to reference the parent. The code for this example looks
like this:

//Source file: C:/corba/Child.idl

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

606

#ifndef __CHILD_DEFINED
#define __CHILD_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Parent.idl"

const long Child = 4;

#endif

Generalizations Generated for an Exception

Inheritance is not supported with an exception. Therefore, as in the other cases, an #include statement will be
generated, but the generalization itself will not be reflected in the code. The IDL for this situation looks like
this:

//Source file: C:/corba/Child.idl

#ifndef __CHILD_DEFINED
#define __CHILD_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Parent.idl"

exception Child {
};

#endif

Generalizations Generated for a Structure

As with the other CORBA types, inheritance is not supported with a structure. An #include statement will be
included to reference the parent, but the inheritance relationship will not be reflected in the code. The IDL
generated for a generalization with a structure is as follows:

//Source file: C:/corba/Child.idl

#ifndef __CHILD_DEFINED
#define __CHILD_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Parent.idl"

struct Child {
};

#endif

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

607

Generalizations Generated for a Union

A generalization with a union is much the same as a generalization with all other CORBA types, except
interface. Because generalizations are not supported with a union, they will not appear in the generated code.
The only reference to the parent in the generated code is an #include statement. The code looks like this:

//Source file: C:/corba/Child.idl

#ifndef __CHILD_DEFINED
#define __CHILD_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

#include "Parent.idl"

union Child switch() {
};

#endif

Reverse Engineering CORBA Source Code

You can reverse engineer CORBA source code into your Rose model. Each .idl file that you reverse engineer
will be modeled as a component in Rose. The classes, relationships, and other elements in the file will appear
in the Logical view.

To begin the process, first select Tools → CORBA → Project Specification. In the Directories field, select the
directories that contain the source code you wish to reverse engineer.

Once you complete this step, select Tools → CORBA → Reverse Engineer CORBA. In the
reverse−engineering window, select the file(s) you wish to reverse engineer and press Add. Once all files have
been added to the lower window, select the file(s) in the lower window to reverse engineer and press Reverse.
If any errors occur during the reverse−engineering process, a note will be entered in the log window.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

608

Elements in the .idl files will be mapped to Rose elements using the mapping described throughout this
chapter.

Summary

In this chapter, we examined how the different types of elements in your Rose model are generated in
CORBA /IDL. We looked at the different code−generation properties for classes, packages, attributes,
operations, associations, aggregations, and other model elements, and discussed how these properties affect
the generated code.

Again, the steps needed to generate code are:

1.
Set the CORBA/IDL code−generation properties.

2.
Select the class(es) or component(s) to generate on a Class or Component diagram.

3.
Select Tools → CORBA → Generate CORBA.

Once these steps are complete, you will have CORBA/IDL files that were generated from your model. To
reverse engineer CORBA source code, select Tools → CORBA → Reverse Engineer CORBA. Select the files
to reverse engineer, and Rose will load information from the code into the model.

So far, we've examined how Rose can be used to model an application. An important aspect of many
applications, however, is the database. In the next chapter, we'll take a look at how Rose can be used for data
modeling. Through the powerful Data Modeler feature within Rose, you can model your database as well as
your application, and ensure that your data model and object model are consistent with one another.

Chapter 17: CORBA/IDL Code Generation and Reverse Engineering

609

Chapter 18: Rose Data Modeler
So far, we've focused on modeling the application itself—creating the Use Case diagrams, Interaction
diagrams, Class diagrams, and other artifacts needed to really understand how the system works. An essential
element to nearly every system, however, is some form of persistent storage, typically a database.

Using Rose, you can model not only the application, but also the database or databases that support the
application. Rose 2001, 2001A, and 2002 support the data−modeling notation that has been incorporated into
UML.

•
Comparing object models and data models

•
Creating a data model

•
Adding logic to a data model

•
Modeling databases, schemas, tables, fields, stored procedures, triggers, and more

•
Modeling primary keys, foreign keys, and entity relationships

•
Modeling views

•
Generating an object model from a data model

•
Generating a data model from an object model

•
Creating the database from a data model

•
Reverse engineering a database into a data model

Object Models and Data Models

An object model is used for all of the pieces of the application that we have discussed so far—the classes,
attributes, operations, relationships, components, and other constructs—except for the data. The primary
emphasis of an object model is on memory—what objects will be created in memory, how will these objects
communicate, and what is each object responsible for doing? The focus of the data model is, as the name
implies, the database rather than the application.

While object modeling is concerned with memory efficiency, data modeling is more concerned with database
efficiency. Table 18.1 lists some of the differences in perspective between the data model and the object

610

model.

Table 18.1: Concerns in Data Modeling and Object Modeling

Object Model Data Model

How can I design the classes to be memory efficient?How can I design the database to be storage efficient?

What objects need relationships in the object model?What tables need relationships in the data model?

How can I structure the data on the user interface to
make the most sense to the end user?

How can I structure the data to speed access times?

How can I package the data with behavior to create
classes?

How can I normalize the data?

What data will be used throughout the application,
and what data will be used in only one area?

What data will be retrieved frequently?

How can I use generalizations or other design
strategies to reuse code?

How can I incorporate the concept of inheritance into
my data model if my DBMS doesn't directly support
inheritance?

There is a definite disparity between the data model and the object model. The primary reason for this is the
nature of the models themselves; objects are, by definition, focused on behavior and data, while the data
model is focused on data. The object model, in most languages, supports inheritance, while the data model
does not. Data types in programming languages and database management system (DBMS) packages are
different. Join tables do not need to be included in the object model as a general rule (although association
classes are sometimes needed). Two classes need to have a relationship if one needs to access attributes or
operations of the other; two tables need to have a relationship if there is a logical connection between the data
in the two tables. Two entity classes may have a relationship in the object model, but their tables may not be
related in the data model.

To account for these natural differences, Rose supports the creation of both an object model and a separate
data model. You can create both of these models in a single Rose file so that you have a complete
understanding of your application and its database in one place.

So, which comes first: the data model or the object model? In many cases, the two models are developed
concurrently. In the Inception phase, the team can develop both a rough data model and a rough object model,
or a domain model. As Elaboration and Construction progress, the team can fill in the details of both models.
Many of the entity classes from the Class diagrams will become database tables. There is not, however, a
one−to−one correspondence. Because of the differences in perspective between the two models, a single
entity class may become two or more database tables. Conversely, a single database table may be supported
by two or more classes in the application.

Many projects, especially maintenance projects, begin with some sort of existing data model. Using Rose, you
can reverse engineer the existing data model, and you can even automatically generate an object model from
it. If you have an object model but no data model, you can automatically generate a data model from your
object model.

Chapter 18: Rose Data Modeler

611

Creating a Data Model

In Rose, the Data Model includes constructs in both the Logical view and the Component view. In the Logical
view, you can create schemas, which in turn contain stored procedures. You can also create tables, which
contain fields, constraints, triggers, primary keys, indexes, and relationships. Finally, you can create domains
and domain packages.

In the Component view, you can model the databases themselves. Each database is modeled as a component
with a <<database>> stereotype. Rose 2001A and 2002 support DB2, SQL Server, Sybase, Oracle, or ANSI
SQL.

The primary steps in the creation of a data model are:

1.
Create a database.

2.
Add a schema to hold the data model and assign the schema to the database.

3.
Create domain packages and domains.

4.
Add tables to each schema.

5.
Add details to the tables (fields, constraints, triggers, indexes, primary key).

6.
Add relationships between the tables and add foreign keys.

7.
Create views.

8.
Create an object model from your data model.

9.
Generate the database.

10.
Keep the database synchronized with the model through the Update feature.

It isn't necessary to follow all of the steps in this order, but creating the database and schema first sets the
DBMS that will be used. When you create tables, fields, and other data−modeling elements, the appropriate
data types will then be available. In the remainder of this chapter, we will discuss each of these steps. Before
we do, however, let's look at what logic might be incorporated into the data model.

Chapter 18: Rose Data Modeler

612

Logic in a Data Model

Database−management systems are becoming more sophisticated every year. It's becoming easier to add logic
to the database—so much so that it can be easy to become confused about what logic should go in the
database and what logic should go in the application.

There is no simple way to determine what logic should go where, and a complete analysis of database design
principles is outside the scope of this book, but here are some points to consider:

•
General object−oriented practices suggest keeping at least some of the business logic in an application
layer rather than in the database.

•
In general, only logic related to the data itself should be housed in the database. This would include
items such as required fields, valid values for fields, and field lengths.

•
Many business rules can be enforced directly in the database through the use of constraints. Although
the database is an appropriate location for this type of logic, the application must gather information
from the end user, pass it through the business layer, and then across a network connection, which
may be slow, before the data is validated. Keeping this logic in the business layer can sometimes help
reduce unnecessary network traffic.

However, if a number of areas within the application, or even a number of different applications, need
to use the same constraint, placing the logic in the database can help ensure that the rule is applied
consistently.

•
Some of the system logic can be carried out directly in the database through the use of stored
procedures. There are advantages to this approach; functionality that is very data−intensive might be
more appropriate as a stored procedure. If the functionality is strictly data manipulation, programming
it as a stored procedure might be significantly faster than loading all the records into memory, having
the application do the processing, and then storing the results back to the database.

However, there are some disadvantages to this strategy as well. Using stored procedures to implement
any business logic inherently divides the business logic across at least two layers: the business logic
layer and the database layer. When business logic changes, you may need to update both of these
layers. You also run the risk of duplicate logic across the layers or, even worse, contradictory business
logic across the two layers.

Too many stored procedures can also cause difficulties in migrating from one DBMS to another.
Many database management packages have slightly different syntax, and migrating from one to
another may necessitate rewriting of the stored procedures.

Again, there isn't necessarily an easy way to distinguish between the logic that should reside in the database
and the logic that should reside in the application. Once you have decided to place logic in the database, you
can model that logic by modeling stored procedures, constraints, and triggers in Rose. First, however, you
must create a database and schema.

Chapter 18: Rose Data Modeler

613

Adding a Database

A database is modeled in Rose as a stereotyped component. It is given a unique name, and assigned to a
specific DBMS. At the time of this writing, Rose supports the following DBMS products:

•
ANSI SQL 92

•
IBM DB2 5.x

•
IBM DB2 6.x

•
IBM DB2 7.x

•
IBM DB2 OS390 5.x

•
IBM DB2 OS390 6.x

•
Microsoft SQL Server 6.x

•
Microsoft SQL Server 7.x

•
Microsoft SQL Server 2000.x

•
Oracle 7.x

•
Oracle 8.x

•
Sybase Adaptive Server 12.x

You can set the DBMS for a database using the Database Specification window.

To add a database:

1.
Right−click the Component View entry in the browser.

2.
Select Data Modeler → New → Database.

3.

Chapter 18: Rose Data Modeler

614

Type the name of the database.

4.
Right−click the new database in the browser and select Open Specification.

5.
In the Target field, select the appropriate DBMS.

Adding Tablespaces

When using DB2, Oracle, or SQL server, you can add tablespaces to your database. A tablespace is a logical
unit of storage for your tables. Within each tablespace are one or more containers, where a container is a
physical storage device such as a hard drive. Each container is divided into smaller units called extents. Tables
in the tablespace are evenly distributed across the containers within the tablespace.

Note In Microsoft SQL Server, tablespaces are called filegroups, and containers are called files. In Oracle,
containers are known as data files.

Each tablespace has an initial size, in KB. Once that space has been used, the DBMS can automatically
increase the size of the tablespace in preset increments. The size of the increments (in KB) can be set in Rose.
Even when increments are set, the container cannot grow beyond its maximum size, which can also be set in
Rose. Once tablespaces are established, you can assign tables to them.

To add a tablespace (SQL Server):

1.
Right−click the database in the browser.

2.
Select Data Modeler → New → Tablespace.

3.
Type the name of the tablespace.

4.
Right−click the new tablespace in the browser and select Open Specification. The namespace
specification window will appear:

Chapter 18: Rose Data Modeler

615

5.
Check the Default field if you want this to be the default tablespace. Any tables that are not assigned
to another tablespace will be assigned to the default tablespace.

To add a tablespace (Oracle):

1.
Right−click the database in the browser.

2.
Select Data Modeler → New → Tablespace.

3.
Type the name of the tablespace.

4.
Right−click the new tablespace in the browser and select Open Specification. The namespace
specification window will appear:

Chapter 18: Rose Data Modeler

616

5.
Set the tablespace type to Permanent or Temporary. A temporary tablespace will allocate space for
only the duration of the current database session. A permanent tablespace will remain in existence
even after the end of the database session.

To add a tablespace (DB2):

1.
Right−click the database in the browser.

2.
Select Data Modeler → New → Tablespace.

3.
Type the name of the tablespace.

4.
Right−click the new tablespace in the browser and select Open Specification. The namespace
specification window will appear.

5.
Set the tablespace type to Regular or Temporary. A temporary tablespace will allocate space only for
the duration of the current database session. A regular tablespace will remain in existence even after
the end of the database session.

6.

Chapter 18: Rose Data Modeler

617

Set whether the tablespace is managed by the DBMS or by the operating system. If it is managed by
the operating system, you cannot add new containers after creating the tablespace, but the existing
tablespaces can be expanded. If it is managed by the DBMS, the existing tablespaces cannot be
expanded, but you can add new containers.

To set up containers within a tablespace (SQL Server):

1.
Right−click the tablespace in the browser and select Open Specification.

2.
Select the Containers tab on the specification window.

3.
Right−click anywhere in the white space, and select New.

4.
Enter the tablespace filename, initial size, maximum size, and file growth (increment amount).

To set up containers within a tablespace (Oracle):

1.
Right−click the tablespace in the browser and select Open Specification.

2.
Select the Containers tab on the specification window.

3.
Right−click anywhere in the white space, and select New.

4.
Enter the tablespace filename, initial size, maximum size, and extent size (increment amount).

Chapter 18: Rose Data Modeler

618

To set up containers within a tablespace (DB2):

1.
Right−click the tablespace in the browser and select Open Specification.

2.
Select the Containers tab on the specification window.

3.
Right−click anywhere in the white space, and select New.

4.
Enter the tablespace extent size, prefetch size in pages, page size, and buffer pool name.

The extent size is the tablespace increment amount in number of pages. A prefetch can speed up a
query by fetching more pages than are currently being read by the query. The Prefetch Size field
shows the number of pages to be prefetched. The page size is the amount of space (in KB) per page.
Finally, the buffer pool is a memory buffer that can be used to hold the prefetched pages.

Chapter 18: Rose Data Modeler

619

To view the tables that have been assigned to a tablespace:

1.
Right−click the tablespace in the browser and select Open Specification.

2.
Select the Containers tab on the specification window.

3.
Select the Tables tab to view a list of tables in the tablespace.

Chapter 18: Rose Data Modeler

620

See the upcoming "Adding Tables" section for information about assigning a table to a tablespace.

Adding a Schema

A schema is a container for your data model. All of the tables, fields, triggers, constraints, and other
data−modeling elements are contained within a schema. The two exceptions are domains, which are contained
within domain packages, and the database itself, which is modeled in the Component view.

In the Logical view, there is a package called Schemas. All of the schemas you create for a project are located
within this package. Each schema is modeled as a stereotyped package:

Each schema must be mapped to a database in the model. Each database may contain one or more schemas.
The DBMS assigned to a schema will be the same as the DBMS assigned to the schema's database.

To create a schema:

1.
Right−click the Logical View entry in the browser or the Schemas folder within the Logical view.

2.

Chapter 18: Rose Data Modeler

621

Select Data Modeler → New → Schema.

3.
Right−click the new schema in the browser, and select Open Specification.

4.
Select the appropriate database in the Database drop−down list box. The database's DBMS will
automatically be filled into the Target field.

Creating a Data Model Diagram

Once the schema has been created, you can create a Data Model diagram within it. A Data Model diagram is
used to add, edit, or view tables and other elements within the data model; it serves a similar purpose as the
Class diagram in the object model. Although you can add data−modeling elements directly into the browser,
the Data Model diagram is a good way to graphically depict the elements and their relationships. You can
create as many Data Model diagrams as you need for each schema.

To create a Data Model diagram:

1.
Right−click the schema in the browser.

2.
Select Data Modeler → New → Data Model Diagram.

3.

Chapter 18: Rose Data Modeler

622

Type the name of the new diagram.

4.
Double−click the diagram to open it.

As with other diagrams in Rose, the Data Model diagram has a specialized toolbar that you can use to add
tables, relationships, and other data−modeling elements. Table 18.2 lists the buttons available on this toolbar.

Table 18.2: Icons in the Data Model Diagram Toolbar

Icon Button Purpose

Selects or Deselects an Item Returns the cursor to an arrow to select an item.

Text Box Adds a text box to the diagram.

Note Adds a note to the diagram.

Anchor Note to Item Connects a note to an item in the diagram.

Table Adds a new table to the diagram.

Non−identifying Relationship Draws a non−identifying relationship between two tables.

Identifying Relationship Draws an identifying relationship between two tables.

View Adds a new view to the diagram.

Dependency Draws a dependency between two tables.

Creating Domain Packages and Domains

A domain can be used to enforce business rules such as required fields, valid values for the fields, and default
values for the fields. A domain is a pattern that, once established, can be applied to one or more fields in the
database. For example, assume you are working with a system that stores many types of phone numbers. You
can set up a domain called Phone that would include all of the business rules that apply to all types of phone
numbers. In the details of the domain, you can set the data type to Long, set the default value to 0, and
indicate that a value is required. Once the domain is set up, you can apply it to various fields in the database:
HomePhone, WorkPhone, FaxNumber, and so on. Each of these fields will now have a data type of Long, a
default value of 0, and will be required.

Using domains is entirely optional, but two of the benefits of using domains are consistency and maintenance.
Applying domains helps you ensure that the business rules are consistent across many fields—in this case,
across all fields related to phone numbers. Domains also centralize the business rules, which can make them
easier to change. If, for example, the business rules change and phone numbers are no longer required, you
could change the domain and re−create the tables, rather going into each table individually and making the
change.

In Rose, domains are located inside a domain package. Each domain package is assigned to a specific DBMS,
and all of the domains within it must use the data types provided by that DBMS. If you are working with more
than one DBMS in a given project, create separate domain packages for each. A domain is not, however,
specific to a schema; a single domain can be used across multiple schemas.

To create a domain package:

1.

Chapter 18: Rose Data Modeler

623

Right−click the Logical View in the browser.

2.
Select Data Modeler → New → Domain Package.

3.
Right−click the new package and select Open Specification.

4.
Select the DBMS to use for that domain package.

Note Once you have set a DBMS for a domain package, it cannot be changed.

To create a domain:

1.
Right−click the domain package in the browser.

2.
Select Data Modeler → New → Domain.

3.
Right−click the new domain and select Open Specification.

4.
On the General tab, enter the name of the domain.

Chapter 18: Rose Data Modeler

624

5.
Select Generate on Server to generate a server−based or distinct data type.

6.
Select the domain's data type. The choices available in this list box will depend upon the DBMS of
the domain package.

7.
Enter the field length for the domain. Not all data types require a field length.

8.
Enter the precision and scale for the domain. Precision is the number of digits allowed in a numeric
field. Scale is the number of digits to the right of the decimal point in the number. Not all data types
require a precision or scale.

9.
Select Unique Constraint if fields that use the domain must have a unique value. A constraint will be
generated in the database if this field is checked. Note that not all data types will allow a unique
constraint.

10.
Select Not Null if fields that use this domain must contain a value.

11.
Select For Bit Data (DB2 only) if the domain should support ForBitData.

12.

Chapter 18: Rose Data Modeler

625

Enter a default value, or select a value from the list box if fields that use this domain should have a
default.

On the Check Constraints tab of the specification window, you can set constraints for the domain. A
constraint is an expression that must be true before data can be altered in the database. For example, you may
want to enforce a business rule that requires all transactions in an accounting system to have a transaction
number greater than 1000. You can create a domain called Transaction, and add a constraint that checks the
value of the field and returns False if the value is less than 1000.

Constraints can also be added to individual tables; we will discuss this in the next section, "Adding Tables." A
domain constraint appears in the browser below the domain, and has the stereotype <<Check>>.

On the Check Constraints tab, select New to add a new constraint. Rose will automatically create a constraint
name for you and populate the Name field. In the Expression field, enter the SQL statement for the constraint.
To edit an existing constraint, select the constraint from the drop−down list box in the Name field.

You can drag and drop a domain onto a Data Model diagram. Rose will use the following symbols if the
stereotype display is set to Decoration or Icon, respectively.

Adding Tables

Once you have established a schema, you can create tables in it. Each table in a database is modeled as a
persistent class in Rose with a stereotype of Table. The tables within a schema must have unique names. In
Rose, a table is modeled using the following symbols, when the stereotype display option is set to Decoration
or Icon, respectively:

Chapter 18: Rose Data Modeler

626

The DBMS for the table is set by the DBMS of the schema containing it. In other words, all tables within a
schema use the same DBMS.

To add a table:

1.
Open a Data Model diagram.

2.
Select the Table button from the toolbar.

3.
Click anywhere inside the diagram to create the table.

4.
Type the name of the new table.

OR

1.
Right−click the schema in the Logical view.

2.

Chapter 18: Rose Data Modeler

627

Select Data Modeler → New → Table.

3.
Type the name of the new table.

The next step in the process is to add details to the tables: fields, keys, indexes, constraints, and triggers.

Adding Columns

Each field, or column, in the database is modeled as an attribute in the Logical view under the table that
contains it.

There are two types of columns: data columns and computed columns. A computed column uses a SQL
statement to calculate its value from one or more other columns. For example, a company might have a
retirement fund set up, and each employee is able to place a maximum of 4 percent of their annual salary into
this fund. The table Employee would include the two columns: AnnualSalary and
MaxRetirementContribution. The value in MaxRetirementContribution would be equal to 4 percent of the
value in AnnualSalary. MaxRetirementContribution, therefore, is a computed column. A data column is any
column that does not contain a calculated value.

Microsoft SQL Server also supports the concept of an identity column, which is a column with a
system−generated value. For example, an identity column with a data type of Integer would assign the values
1, 2, 3, 4, and so on to the rows in the table.

To add a column:

1.
Right−click the table and select Open Specification.

2.
Select the Columns tab of the specification window.

3.
Right−click anywhere in the white space and select Insert.

4.
Double−click the new column. This will open the Column Specification window.

5.

Chapter 18: Rose Data Modeler

628

Enter the name of the new column.

6.
Select the Type tab:

7.
Select the Data Column or Computed Column radio button (SQL Server only).

8.
If the column is a data column, enter the following:

♦
Domain, if you have created a domain and wish to apply it to this column. If you use a
domain, you will not need to enter any of the following fields other than Unique Constraint or
Primary Key. The domain definition will cause the other fields to be automatically filled in
for you.

♦
Data Type for the column. The choices available in this drop−down list box will depend on
the DBMS for this table.

♦
Length, which is the number of characters allowed in the column. This value cannot be set for
all data types.

♦

Chapter 18: Rose Data Modeler

629

Precision, which is the number of digits allowed in a numeric column. This value cannot be
set for all data types.

♦
Scale, which is the number of digits to the right of the decimal point in a numeric column.
This value cannot be set for all data types.

♦
Unique Constraint, if the values in the column must be unique.

♦
Primary Key, if this is the identifying column for the table. You can create a composite
primary key by selecting this option for more than one column. When a column is a primary
key, it has a red "PK" to the left of it in the browser.

♦
Not Null, if the column will not allow null values. If you set the Primary Key option, the Not
Null option must also be set.

♦
Identity (SQL Server only), if this is an identity column. SQL Server will automatically
generate values for an identity column. Note that the data type must be a numeric type to
allow this option.

♦
For Bit Data (DB2 only), if the column supports ForBitData.

9.
If the column is a computed column (SQL Server only), enter the SQL statement that will be used to
calculate the column value.

10.
Select the Check Constraints tab and add constraints if necessary. See the upcoming section, "Adding
Constraints."

OR

1.
Right−click the table in the Logical view.

2.
Select Data Modeler → New → Column.

3.
Type the name of the new column.

4.
Double−click the new column to open the Column Specification window. Complete the column
specifications as described above.

Chapter 18: Rose Data Modeler

630

Setting a Primary Key

If a column is marked as a primary key, it is the identifying column for the table. In other words, it contains
the unique values that distinguish the rows from each other. For example, the primary key in an Employee
table might be the Social Security number.

To set the primary key for a table:

1.
Right−click the column in the Logical view, and select Open Specification.

2.
Select the Type tab in the Column Specification window.

3.
Select the Primary Key option.

Note that if you set a column as the primary key, the Not Null field is automatically checked and cannot be
deselected. Primary keys cannot contain null values.

Adding Constraints

A constraint is a conditional statement that must be true in order for a table to be updated. You can add a
constraint either to a domain, as described above, or to a table. Constraints are a way to enforce business rules.
An example of using constraints might be checking that the value in a Birthdate field is prior to the current
date. You can check that the value in a State field is a valid state abbreviation or that the value in a Gender
field is M or F.

Key Constraints

There are three types of key constraints: primary key constraints, unique constraints, and indexes. A primary
key constraint ensures that the value entered into a primary key field is not null and is unique. Rose
automatically creates a primary key constraint for you when you create a primary key for a table.

A unique constraint ensures that the value entered into a column is unique. Rose automatically creates a
unique constraint for you when you select the Unique Constraint check box for a field on the Column
Specification window.

An index provides quick access to records by searching only through a list of key columns when searching for
rows in the table.

To add a key constraint:

1.
Open the table or Column Specification window.

2.
Select the Key Constraints tab.

3.

Chapter 18: Rose Data Modeler

631

Click New.

4.
Select the type: Primary Key Constraint, Unique Constraint, or Index.

5.
In the Columns list box, select the column(s) to which the constraint applies. Use the Add button to
move the selected columns to the Key Columns list box.

6.
Select the Deferrable check box (Oracle and SQL 92 only) if you want to make the constraint
deferred. A nondeferred constraint will run at the end of a statement. A deferred, initially immediate
constraint will run at the beginning of a transaction. A deferred, initially deferred constraint will run at
the end of a transaction.

7.
Select the Unique check box (index constraint) if the index is unique.

8.
Select the Clustered check box if you want to make an index clustered.

9.
In the Fill Factor/PCT Threshold/PCTFree field, optionally enter the free percentage (1–100) of the
index. Each DBMS has a different name for this field.

Check Constraints

A check constraint is any constraint other than a primary key, unique, or index constraint. In other words, it is
any constraint other than a key constraint. Check constraints are added on the specification window of either a
field or table. The constraints themselves are linked to the table, but you can enter them in either location.

To add a check constraint:

1.

Chapter 18: Rose Data Modeler

632

Open the table or Column Specification window.

2.
Select the Check Constraints tab.

3.
Click New.

4.
In the Expression field, enter the SQL statement for the constraint.

5.
If you are using Oracle or SQL 92, you can select the Deferrable option. Nondeferrable constraints are
evaluated at the end of the SQL statement. For example, a nondeferrable constraint might be
evaluated at the end of an insert statement. Deferrable constraints can be Initially Immediate, in which
case they are evaluated at the beginning of the statement. Deferrable constraints can also be Initially
Deferred, in which case they are evaluated at the end of the transaction.

Once a check constraint has been added, it appears in the browser underneath the table, and has a stereotype
of <<Check>>.

Adding Triggers

A trigger is a SQL procedure that runs upon a specific event. For example, you can set up a trigger to run
every time a record is inserted into a specific table. Triggers can be set up to run when a row is inserted,
changed, or deleted.

The specifications for a trigger will vary with the DBMS you are using. A trigger will be modeled in the
Logical view, under the table to which it applies, and will have the stereotype <<Trigger>>.

To add a trigger:

1.

Chapter 18: Rose Data Modeler

633

Open the Table Specification window.

2.
Select the Triggers tab.

3.
Click New.

4.
Set the Trigger Event:

♦
Select Insert if the trigger should run when a row is inserted.

♦
Select Delete if the trigger should run when a row is removed.

♦
Select Update if the trigger should run when a row is changed. If you select Update, enter the
column that should be updated for the trigger to run.

5.
Set the Trigger Type:

♦
Before will run the trigger before the trigger event.

♦
After will run the trigger after the trigger event.

♦
Instead Of will run a view trigger instead of a table trigger. The Instead Of option is available
only when creating a trigger for a SQL Server 2000 or Oracle view.

6.
Set the Granularity (Oracle and DB2 only) to Row if the trigger should run after each row is inserted,
updated, or deleted; set it to Statement if the trigger should run after the statement has executed.

7.
Set the Referencing check box if you want to set up references in the trigger. Enter the name of the
Old Row, which is the name of the row before the trigger executes, and the New Row, which is the
name of the row after the trigger executes. In DB2, you can also enter Old Table, which is the name
of the table before the trigger executes, and New Table, which is the name of the table after the trigger
executes.

8.
Enter a value in the When Clause field if you wish to further refine when the trigger executes. The
When Clause is a condition that must be true for the trigger to execute.

9.
Enter the SQL statement for the trigger in the Action Body field.

Chapter 18: Rose Data Modeler

634

Adding Indexes

An index is modeled as a key constraint in a table. An index is a structure that allows for quick searches of a
table. One or more columns are used for an index; when a search is performed, only those columns are
searched.

To add an index:

1.
Open the table or Column Specification window.

2.
Select the Key Constraints tab.

3.
Click New.

4.
Set the Type to Index.

5.
In the Columns list box, select the column(s) that will be used in the index. Use the Add button to
move the selected columns to the Key Columns list box.

6.
Select the Deferrable check box (Oracle and SQL 92 only) if you want to make the constraint
deferred. A nondeferred constraint will run at the end of a statement. A deferred, initially immediate
constraint will run at the beginning of a transaction. A deferred, initially deferred constraint will run at
the end of a transaction.

7.
Select the Unique check box (Index constraint) if the index is unique.

8.

Chapter 18: Rose Data Modeler

635

In the Fill Factor field (or PCT Threshold field for Oracle), optionally enter the free percentage
(1–100) of the index.

Adding Stored Procedures

Like a trigger, a stored procedure is a piece of functionality in the database. It is essentially a small program
that can be invoked directly by the application or by a trigger. It can accept input parameters and return one or
more values, called output parameters.

Some DBMS packages support two types of stored procedures: regular stored procedures and functions. A
function returns a value, while a stored procedure does not. A stored procedure can, however, return an output
parameter.

In Rose, a stored procedure is modeled as an operation with the stereotype <<SP>>. It is created within a
special class with a stereotype of <<SP Container>>. A stored procedure is not specific to a table, and is
therefore created underneath the schema rather than underneath a table.

To add a stored procedure:

1.
Right−click the schema in the browser.

2.
Select Data Modeler → New → Stored Procedure.

3.
Rose will create a stored procedure container and place the new stored procedure in it. To create a
stored procedure inside an existing container, right−click the existing container and select New →
Stored Procedure.

4.

Chapter 18: Rose Data Modeler

636

Right−click the new stored procedure and select Open Specification.

5.
On the General tab, enter the following:

♦
In the Name field, enter the name of the stored procedure.

♦
In the Language field, enter the language for the stored procedure. In most cases, the language
will be SQL. Some DBMS packages also support other languages, such as C, Java, or
COBOL.

♦
In the External Name field, enter the path or library for the procedure. This field is not needed
if the language is set to SQL.

♦
In the Type field, enter the type (procedure or function) of stored procedure. A function
returns a value while a stored procedure does not. Not all DBMS packages support functions.

♦
In the Return Type field, enter the data type of the value returned from a function. This field
is not needed unless the stored procedure is a function.

♦
In the Length field, enter the number of characters in the return value. This field is not needed
for all data types.

♦
In the Precision field, enter the number of digits to the right of the decimal point in the return
value. This field is not needed for all data types.

♦
In the Scale field, enter the number of digits in the return value. This field is not needed for
all data types.

♦
The Null Input Action (DB2) field controls what should happen if the function receives a null
parameter. Return Null will return a null value from the function. Call Procedure will cause
the function to run even with a null parameter.

♦
The Parameter Style (DB2) field sets the way parameters should be sent to and received from
a stored procedure.

Chapter 18: Rose Data Modeler

637

6.
On the Parameters tab, enter any needed parameters. Right−click the white space and select Insert to
add a new parameter. Enter the following:

♦
Parameter data type.

♦
Length, precision, and scale, if necessary.

♦
Direction: In is used for an input parameter. Out is used for an output parameter, which is
similar to a return value. In Out is used for an input parameter that may be changed by the
stored procedure and is then output to the calling application or trigger.

♦
Default value, if needed.

Chapter 18: Rose Data Modeler

638

7.
On the Action Body tab, enter the SQL for the stored procedure.

Adding Relationships

A relationship in the data model is similar to a relationship in the object model. Where a relationship in the
object model joins two classes, a relationship in the data model joins two tables. There are two primary types
of relationships supported by Rose: identifying relationships and non−identifying relationships.

In either case, a foreign key is added to the child table to support the relationship. With an identifying
relationship, the foreign key becomes part of the primary key of the child table. In this situation, a record
cannot exist in the child table without being linked to a record in the parent table. An identifying relationship
is modeled as a composite aggregation:

A non−identifying relationship will still create a foreign key in the child table, but the foreign key field will
not become part of the primary key of the child table. In a non−identifying relationship, the relationship
cardinality (multiplicity) controls whether a record in the child table can exist without a link to a record in the

Chapter 18: Rose Data Modeler

639

parent table. If the cardinality is 1, a parent record must exist. If the cardinality is 0..1, the parent record does
not need to exist. A non−identifying relationship is modeled as an association:

To add an identifying relationship:

1.
Select the Identifying Relationship toolbar button.

2.
Drag and drop from the parent table to the child table.

3.
Rose will automatically add a primary key constraint and a foreign key constraint to the child table.

To add a non−identifying relationship:

1.
Select the Non−identifying Relationship toolbar button.

2.
Drag and drop from the parent table to the child table.

3.
Rose will automatically add a foreign key constraint to the child table.

Cardinality defines the number of rows in one table related to a single row in another table. Cardinality in the
data model has much the same meaning as cardinality in the object model. You set cardinality options on both
ends of the relationship. The cardinality at the end of the relationship nearest the parent can be set to 1 if the
relationship is mandatory, or set to 0..1 if the relationship is optional. The cardinality nearest the child table
controls how many records in the child table can be created for each record in the parent table.

A many−to−many relationship is modeled through the use of a join table:

Chapter 18: Rose Data Modeler

640

To set cardinality and other relationship specifications:

1.
Right−click the relationship and select Open Specification.

2.
Select the General tab.

3.
Enter the name of the relationship if desired.

4.

Chapter 18: Rose Data Modeler

641

Select the type of relationship (Identifying or Non−identifying).

5.
Assign roles to the parent and child tables (optional).

6.
Set the cardinality for both sides of the relationship.

7.
Select the Enforce with Trigger check box to automatically generate a trigger that will enforce the
cardinality rules you just established.

8.
Select the Migrated Keys tab.

9.
The names of the fields in the child and parent table that participate in the relationship are listed. You
can change the field names here if needed.

Adding Referential Integrity Rules

Referential integrity establishes a set of rules that help keep the data consistent. For John Doe, for example,
you may have an employee record in the employee table and two address records (one for his home address
and one for his work address) in the address table. If the John Doe record in the employee table is deleted, the
address records will be "orphaned" (that is, they will no longer have an employee to refer to).

Chapter 18: Rose Data Modeler

642

Referential integrity helps avoid these situations by specifying what should happen when the parent record is
updated or deleted. You have several options. One option is for the child record(s) to be automatically updated
or deleted. Or, you can prevent the parent from being updated or deleted at all. Or, you can run a trigger when
updating or deleting the parent record. Once you choose your option, you enter this information on the
relationship specification in Rose.

There are two primary types of referential integrity: trigger or declarative. Trigger−enforced referential
integrity will run a trigger when the parent is updated or deleted. Declarative referential integrity includes the
constraint as part of the foreign key clause. The following options are available when setting referential
integrity:

•
Cascade determines that when the parent is updated or deleted, all child records are updated or
deleted.

•
Restrict prevents the parent from being updated or deleted.

•
Set Null sets the foreign keys in the child record to Null if the parent record is updated or deleted.

•
No Action does not enforce referential integrity at all.

•
Set Default sets the foreign keys in the child record to a default value if the parent record is updated or
deleted.

To set referential integrity for a relationship:

1.
Right−click the relationship and select Open Specification.

2.
Select the RI (referential integrity) tab.

3.
Select either the Triggers or the Declarative Referential Integrity radio button to control whether a
trigger−enforced or declarative referential integrity rule will be used.

4.
If you selected a trigger−enforced rule, enter the following:

♦
Parent Update sets the option (Cascade, Restrict, Set Null, No Action, Set Default) to use
when the parent is updated. Note that not all options are supported by each DBMS.

♦
Parent Delete sets the option (Cascade, Restrict, Set Null, No Action, Set Default) to use
when the parent is deleted. Note that not all options are supported by each DBMS.

♦

Chapter 18: Rose Data Modeler

643

Child Restrict, if checked, will prevent orphan child records from being created.

5.
If you selected a declarative rule, enter the following:

♦
Parent Update sets the option (Cascade, Restrict, Set Null, No Action, Set Default) to use
when the parent is updated. Note that not all options are supported by each DBMS.

♦
Parent Delete sets the option (Cascade, Restrict, Set Null, No Action, Set Default) to use
when the parent is deleted. Note that not all options are supported by each DBMS.

Working with Views

A view is a way of looking at the data a little differently than it is structured in the database. You can create a
"virtual" table using a view that will contain data from one or more tables in the database. Views help secure
the database; you can give a group of users read−only access to a view in order to prevent accidental
modifications of the underlying data.

In Rose, a view is modeled using the following symbol:

Chapter 18: Rose Data Modeler

644

On the Data Model diagram, a dependency is drawn between the view and the table or tables that are the
source of its data, as shown in Figure 18.1.

Figure 18.1: Modeling a view

To create a view:

1.
Right−click the schema in the browser.

2.
Select Data Modeler → New → View.

3.
Name the new view.

4.
Right−click the new view and select Open Specification.

5.
On the General tab, enter the following:

♦
Name is used to name or rename the view. Each view within a schema must have a unique
name.

♦
Schema displays the name of the schema that contains the view. This field cannot be changed.

♦

Chapter 18: Rose Data Modeler

645

Updateable controls whether a user can modify data using the view. This field can be set only
when using Oracle, DB2, or SQL 92.

♦
Distinct determines that, if this is set, only unique rows will be included in the view.

♦
Materialized (Oracle) means that, if this option is set, the view will be populated when it is
forward engineered from Rose. If this option is not set, the view will still be created, but will
not be populated with data.

♦
Check Option controls what constraints will be applied to the view. The None option will
prevent constraints from being enforced on the view. The Local option will enforce any
constraints you have set up for the view or for any views dependent on this view. The
Cascade option will enforce any constraints you have set up for the view, constraints for
dependent views, and constraints for the tables that contain the source data.

6.
On the From tab, enter the following:

♦
Select the table(s) and/or view(s) from the Available Members list box that you would like to
use in the view. Press Add to move the selected tables or views to the View Members list box.

♦
The Correlation Name field sets the alias that will be used for the table or view in the current
view's SQL statement.

♦
In the Where Clause field, enter a SQL where clause, order by, or group by statement that will
be included in the view. Be sure to include the phrase "WHERE," "ORDER BY," or
"GROUP BY."

Chapter 18: Rose Data Modeler

646

7.
On the Columns tab, enter the following:

♦
View Columns lists the columns that will be included in the view. To add a new column,
select the Import Columns button. A list of all available columns will be displayed. To
remove a column, select it and press the Delete toolbar button.

♦
Alias shows the alias name of the column.

8.
On the SQL tab, you can see the SQL statement that was built as you selected tables and columns on
the other tabs. You can also enter a SQL statement directly into this window, or change the SQL
statement Rose has generated for you. As you change the SQL statement, Rose will update the table

Chapter 18: Rose Data Modeler

647

and column selections on the other tabs.

Generating an Object Model from a Data Model

One of the new features of Rose is the ability to automatically generate an object model from a data model.
This feature is particularly useful when you are working on a project to re−engineer an existing application
and database. You can reverse engineer an existing database, and then generate the object model from it. Of
course, this feature is useful in other types of projects as well. Any time you want to be sure that the object
model and data model are consistent, or you want to reverse engineer information from an existing database or
data model, the object model generation is helpful.

Not all of the constructs in the data model have meaning in an object model. Indexes, stored procedure, and
other database elements are not mapped to the object model. Table 18.3 lists the data model elements and the
corresponding object model elements.

Table 18.3: Data Model and Object Model Elements

Data Model Element Object Model Element

Schema Package

Table Class

Column Attribute

Trigger None

Stored procedure None

Intersection table with only primary/foreign key
columns

Many−to−many association

Intersection table with columns other than
primary/foreign key

Many−to−many association with association class

Identifying relationship Composite aggregation

Non−identifying relationship Association

Cardinality Cardinality

Index None

Database None

Constraint None

Domain None
To create an object model from a data model:

1.
Right−click the schema and select Data Modeler → Transform to Object Model.

2.
Enter the destination package name. The destination package is the name of a package that will be
created in the Logical view to hold the new objects.

3.

Chapter 18: Rose Data Modeler

648

Enter the prefix. The prefix will be added to the name of each table to create the classes in the object
model.

4.
Select the Include Primary Keys check box to create attributes for the primary key columns as well as
for the other columns. If this check box is not selected, Rose will generate attributes for the
non−primary key columns, but not for the primary key columns.

Generating a Data Model from an Object Model

Just as you can generate an object model from a data model, you can generate a data model from an object
model. As the project progresses and you have discovered more entity classes, generating the data model will
give you a good start to your database design.

When generating the data model, Rose will look for classes with the persistent attribute marked as True. You
can set a class to Persistent or Transient in the standard class specification window on the Detail tab. If you
want to generate a table for the class, set it to Persistent.

A package of classes in the Logical view will become a schema in the data model. If there is an existing
schema of the same name, Rose will add any new classes as tables in the schema. It will not, however, change
the tables in the schema if classes in the object model change. Instead, it will note the changes in a log so that
you can apply them to the schema if you wish.

Table 18.4 lists object model elements and their corresponding data model elements.

Chapter 18: Rose Data Modeler

649

Table 18.4: Object Model and Data Model Elements

Object Model Element Data Model Element

Package Schema

Persistent class Table

Attribute Column

Operation None

Many−to−many association Intersection table

Composite aggregation Identifying relationship

Association or non−composite aggregation Non−identifying relationship

Cardinality Cardinality

Association class Intersection table
To create a data model from an object model:

1.
Create a database in the Component view.

2.
Right−click any attribute in the classes that you wish to become a primary key in the generated tables.
Select Data Modeler Part of Object Identity. If you do not select a primary key attribute, Rose will
create a primary key for you by creating a column called "<table name>ID."

3.
Right−click a package in the Logical view and select Data Modeler → Transform to Data Model.

4.
Enter the destination schema name, which is the name of a schema that will be created to hold the
new data elements.

5.
Enter the target database, which is the name of an existing database in the Component view.

6.
Enter a prefix that will be added to each class name to create the table names.

7.
Select the Create Indexes for Foreign Keys check box to automatically create index constraints for
foreign keys.

Chapter 18: Rose Data Modeler

650

Generating a Database from a Data Model

At any point during the project, you can generate the database or DDL script from the data model. Rose gives
you the choice of simply generating the DDL or running the DDL to create the database.

Rose includes a wizard that walks you through the steps of creating the database. To begin, right−click a
schema to generate and select Data Modeler → Forward Engineer. After the welcome screen, select the
elements you wish to generate:

Chapter 18: Rose Data Modeler

651

Next, enter the name of the DDL file to create. If you want to create the DDL, but not run it, click Next. If you
want to run the new DDL against a database, select the Execute check box. Enter the connection information
for your DBMS and press the Test Connection button to be sure that the connection is working properly.

Press Finish to complete the process. Rose will generate the DDL and optionally run it against the database. If
any errors are encountered, Rose will add them to the log.

All of the tables, columns, and relationships in the schema will be generated in the DDL or database. The
following example shows a table in the Rose model.

The following is the corresponding DDL:

CREATE TABLE T_Customer (
 CUSTOMER_ID SMALLINT IDENTITY NOT NULL,
 FIRST_NAME VARCHAR (15) NOT NULL,
 LAST_NAME VARCHAR (15) NOT NULL,
 HOME_PHONE NUMERIC (10) NOT NULL,
 ADDRESS VARCHAR (20) NOT NULL,
 CITY VARCHAR (20) NOT NULL,
 STATE CHAR (2) NOT NULL,
 ZIP_CODE NUMERIC (5) NOT NULL,
 CONSTRAINT PK_T_Customer0 PRIMARY KEY NONCLUSTERED (CUSTOMER_ID),
 CONSTRAINT TC_T_Customer1 CHECK (CUSTOMER_ID > 1000)

Chapter 18: Rose Data Modeler

652

) ON TSP0
GO

CREATE INDEX TC_T_Customer2 ON T_Customer (ZIP_CODE)
GO

Updating an Existing Database

Once a database has been created, you may make changes to either the data model in Rose or the database
itself. Frequently, the two get out of synchronization, which can cause difficulties when trying to further
modify the database design or maintain the application later.

Rose includes a compare−and−synchronize feature to address this problem. The feature includes a graphical,
side−by−side representation of the database and data model. Using this feature, you can select the changes to
be made to the data model or database to synchronize the two again.

To begin the synchronization, right−click a schema and select Data Modeler → Compare and Sync. You will
be given the option to synchronize with either a DDL script or a database. If you select DDL script, you will
be prompted for the name of the script. If you select database, you will be prompted for the database
connection information.

Next, select the options you would like to synchronize. Rose will always synchronize tables and constraints,
but you can also synchronize indexes, triggers, and other elements.

Chapter 18: Rose Data Modeler

653

Rose will then display the differences between the model and the database, as shown in Figure 18.2. Select a
difference in the table, and then select one of the following four options from the toolbar:

•
Import, which will import the change from the database into the data model

•
Export, which will export the change from the data model to the database

•
Delete, which will remove the change from both the data model and the database

•
Ignore, which will ignore the change

Figure 18.2: Model and database compare−and−synchronize feature

Once you finish the changes, select Next. Rose will allow you to preview the changes to be made. When you
are satisfied with the list of changes, press Next to commit the changes.

Chapter 18: Rose Data Modeler

654

Reverse Engineering a Database

You can reverse engineer a database into a data model in Rose. When you reverse engineer the database, Rose
will create the database component in the Component view and the tables and other database elements in a
schema in the Logical view. Once you have reverse engineered the database, you can generate an object
model or perform a synchronization using the methods described earlier in this chapter.

To begin the process, select Tools → Data Modeler → Reverse Engineer. After the welcome screen, you will
be asked whether to reverse engineer from a DDL script or a database. If you select DDL, you will be
prompted for the target DBMS and the name of the file. If you select database, you will be prompted for the
database connection information.

Next, select the item(s) to reverse engineer. Tables and constraints will always be imported, but you can select
other elements to reverse engineer.

When you have finished, click Next. Rose will create a schema in the Logical view. Within this schema will
be the tables, constraints, and other model elements from your database. If Rose encounters any problems
during the reverse−engineering process, these will be noted in the log. Rose will also create a new component
in the Component view. This component represents the database itself.

Chapter 18: Rose Data Modeler

655

Summary

In this chapter, we examined the data−modeling capabilities of Rose. Combining the object model and data
model into a single tool helps the team gain a more complete understanding of the system structure and
organization. The forward− and reverse−engineering capabilities help you ensure that your object model, data
model, and database stay synchronized.

In this chapter, we specifically discussed the following:

•
The differences between an object model and a data model

•
How to create a data model

•
How to add data−modeling elements

•
How to generate an object model from a data model

•
How to generate a data model from an object model

•
How to generate and reverse engineer a database

•
How to keep your object model, data model, and database synchronized

In the next chapter, we'll focus on web development, looking at the different stereotypes and tools Rose
provides to model an Internet or intranet application. With these tools, you can model ASP, JSP, HTML
pages, and other web objects. Using Class diagrams, you can see the relationships between these objects and
analyze your application architecture. The Rose Web Modeler add−in is an excellent way to visualize existing
applications or to design new ones.

Chapter 18: Rose Data Modeler

656

Chapter 19: Web Modeling
In this world of e−business, e−commerce, and e−government, no discussion of UML would be complete
without a discussion of web modeling. Although similar to traditional client/server applications, web
applications have their own unique benefits and challenges, which naturally affect their design.

Rose 2001, 2001A, and 2002 include an add−in that supports the code generation and reverse engineering of
web applications. You can model and generate HTML pages, ASP pages, JSP pages, and other types of web
classes using Rose.

Modeling a Web Application

Whether you are creating a new web application from scratch, or reverse engineering and modifying an
existing application (see "Reverse Engineering a Web Application" later in this chapter), it is necessary to first
gain an understanding of the different web stereotypes and relationships. Before we look at these, however,
let's take a look at web architecture in general.

In many ways, a web application is similar to a traditional distributed application. The logic is divided into
two or more areas, or tiers. At a minimum, the presentation logic is separated into the presentation layer, and
the business logic is separated into a server logic layer. The presentation layer runs on the client, while the
business logic runs on the server. In many cases, the business logic is separated into two or more layers of its
own. For example, the logic dealing with the connection to the database may be separated from the rest of the
business logic.

One of the primary differences between a web application and a traditional distributed system is in the
persistency of the connection between the two (or more) layers. In a distributed system, once objects have
been instantiated on the client and the server, they can communicate with each other only when needed. A
web application, on the other hand, is stateless—once the communication between the client and the server
ends, the server loses all information about the client. It no longer knows who was logged in or what they
were doing. One way to manage this challenge is through the use of cookies. A cookie is a file that resides on
the client and can store state information about the client so that the next time a connection is established with
the server, the contents of the cookie can be used to give the server state information.

Another difference lies in the deployment environment. An advantage of the Web, of course, is the ability to
reach thousands of users without needing to worry about setting up each machine. The disadvantage is the
ability to reach thousands of machines, many of which may have slightly different configurations. Different
browsers, operating systems, connection speed, processor, memory configuration, and other factors can
complicate web deployment. Not all components will run with all browsers, so the designer has extra work to
do if the application must run on several different types of browsers.

There are two primary patterns to a web architecture: thin client and thick client. In a thin client architecture,
very little logic is placed on the client side. Few, if any, ActiveX controls, applets, or other components are
downloaded to the client browser and run on the client machine. Two of the advantages of this approach are
speed and portability. Downloading components to the client can be very slow, so minimizing the number of
downloads helps to increase the speed of the application. A thin client architecture can also be more portable,
because not every component will work on every type of browser. Minimizing the number of different
component technologies needed for your application can help ensure that the application will work in different
browsers. The disadvantage to the thin client approach is that the user interface can't necessarily have a lot of
bells and whistles; client−side components may be needed to provide an enhanced user interface.

657

The second approach to a web application is to use a thick client architecture. In a thick client, more logic is
run on the client. When a component is needed on the client, it will be automatically downloaded from the
server. This approach gives the team the option of including more sophisticated controls on the user interface.
The team can also build applets or other components to run some logic on the client. The advantage of this
approach is the ability to create more robust user interfaces. The disadvantages are speed and portability. The
downloads take time, and there is no guarantee that the different browsers will support the application if too
many different types of components are downloaded.

The process of modeling a web application begins just like the process of modeling a client/server
application—with analysis. The team defines the use cases, gathers and documents the requirements, and
writes the flow of events for the use cases. We won't discuss this in detail here; see Chapter 4, "Use Cases and
Actors," for information about use cases and actors.

Once the flow of events has been written for a use case and its requirements have been documented, the
design process can begin for that use case. This involves the creation of Sequence diagrams, Collaboration
diagrams, Class diagrams, Statechart diagrams, Component diagrams, and Deployment diagrams.

As in a client/server application, Sequence and Collaboration diagrams show the objects that participate in a
use case scenario. As the designers are building and reviewing the Sequence diagrams, however, they must
keep the web architecture in mind. There are a few primary considerations. First, because the application is
stateless, the designers cannot assume that once an object is instantiated, it can be accessed indefinitely by the
other objects. As soon as the connection between the client and server is broken, objects on one layer cannot
access objects on the other, and the server loses all information about the state of the client. The designers can,
however, use cookies and session objects to store state information. A cookie is a small file on the client
machine that can be used to store state information, while a session object is created on the server and holds
information about a particular client through the life of the client's session. After a period of time, say 30
minutes, the server assumes that the client has timed out, and the session object will be released.

If the team uses session objects, they will appear in the Sequence and Collaboration diagrams, just as any
other objects. One very useful tool in Rose 2001A and 2002 is the ability to place destruction marks on the
Sequence diagrams. This notation can make it easier for the team to remember which objects are available in
memory at which point in time.

A second consideration in web modeling is that client pages should not have access to server resources. The
designers should ensure that none of the pages, applets, or other client−side components can directly access
the server. Instead, they should access a server page, which can then access the server−side components. If the
application is a thin client, the designers should minimize the number of components downloaded to the client
machine. As they are building the Sequence and Collaboration diagrams, therefore, the team should not use
many client−side components.

Before you begin modeling, you will need an area in Rose to create your classes. You will work in the Logical
view, but you must first set up a virtual directory. A virtual directory is a stereotyped package in Rose that
represents a physical directory on your network. Any classes in the virtual directory will be generated into the
physical directory.

Chapter 19: Web Modeling

658

To create the virtual directory:

1.
Right−click the Logical view in the browser.

2.
Select Web Modeler → New → Virtual Directory.

3.
Right−click the new virtual directory. The specification window will appear:

4.
Select the platform (ASP or JSP) you will use for this application.

5.
Enter the URL of your web application. Rose requires the URL to generate code or to reverse
engineer web classes into the model.

6.
Enter the virtual directory name. This is the name of the virtual directory package that will appear in
the Logical view in Rose. All of the classes for this web application will be placed in this package.

7.
Enter the physical location. All classes in this web application will be generated into this location and
reverse engineered from this location.

Once you have created the virtual directory, you can create web objects inside it.

Web Class Stereotypes

To model your web application, you will need to create classes to represent your client pages, server pages,
and HTML pages. To complete the picture, you can then add relationships between these model elements.
When Rose generates code, it will examine both the classes and the relationships.

There are three different types of class stereotypes that can be generated or reverse engineered in Rose: client
pages, server pages, and HTML pages.

Chapter 19: Web Modeling

659

Client Pages

Client pages are HTML−formatted pages that run on the client. These contain some functionality, but
typically do not include intensive business logic. Logic on the client pages is usually related to presentation of
the data. Client pages do not directly access business objects on the server; this is the role of a server page. In
Rose, a client page has the following notation:

The functionality in a client page can be programmed in either VBScript or JavaScript. Any scripting here is
strictly client−side. For example, the client page may format some text on the screen.

Client pages do have access to any resources available on the client. These resources could include:

•
ActiveX controls, which are components based on the Microsoft COM model, that are downloaded to
the client machine.

•
JavaScript objects, which could be objects provided by the document object model, such as window,
frame, document, image, etc. These could also be custom objects defined by the programmer. These
custom objects can be assigned their own attributes and operations, but are not reverse engineered into
Rose.

•
Java applets, which are components that, like ActiveX controls, are downloaded to the client machine
and run on the client.

Typically, you use these three types of components to add complex functionality to the client. HTML will
give you some flexibility, but it is frequently not sophisticated enough to program complex client−side
behavior.

ActiveX controls and applets can be modeled in Rose as classes or components with the stereotype of
<<ActiveX>> or <<Applet>>. Because a component may consist of several classes, you can simply model an
ActiveX control or applet in the Component view. If you want to model the classes within a component or
show the relationships between your classes and the component, you can model the control or applet as a class
in the Logical view as well.

To add a client page:

1.
Right−click the virtual directory in the Logical view.

2.
Select Web Modeler → New → Client Page.

3.
Enter the name of the new page.

Chapter 19: Web Modeling

660

OR

Create a server page using the method described in the following section, "Server Pages." A client page will
automatically be created for each server page you create using this method.

In the specification for the client page, you can set detailed attributes for the client page. Table 19.1 lists the
attributes and their meanings:

Table 19.1: Client Page Attributes

Attribute Specification Window
Tab

Meaning

Alink General Link color

Background General URI to background image

BgColor General Background color

BottomMargin General Bottom margin in pixels

Class General Class name for element

Dir General Text direction for element

ID General Element name

Lang General Language of element's content

LeftMargin General Left margin in pixels

Link General Text color of links

MarginHeight General Frame margin height in pixels

MarginWidth General Frame margin width in pixels

RightMargin General Right margin in pixels

Style General Style information for element

Text General Text color

Title General Additional element information

TopMargin General Top margin in pixels

Vlink General Link color for visited links

OnLoad Events Process to run on loading the page

OnUnload Events Process to run when unloading the page

FileName RTE Options Name of physical file for page (ASP, JSP, HTML)

RTESynchronizationRTE Options Whether or not to generate code for this page
Server Pages

Server pages are objects that have access to the resources available on the server. For example, if some
security processing needs to take place, a server page would communicate with various components on the
server to perform that processing. Separating the application into client pages and server pages helps to
separate the presentation logic from the business logic, which aids in both maintenance and reuse. In Rose, a
server page has the following notation:

Chapter 19: Web Modeling

661

Unlike a client page, a server page has full access to the server's resources. It can communicate with the
objects on the server to carry out business functionality, and then build client pages to show the results of the
processing to the end user. One server page can also redirect control to another, allowing the second server
page to take over processing.

To create a server page:

1.
Right−click the virtual directory in the Logical view.

2.
Select Web Modeler → New → Server Page.

3.
Enter the name of the new page.

Rose will create the server page, and will also automatically create a client page for you. The client page
handles the client−side functionality, such as display logic. The server page handles the business processing
and builds the client page. Rose will also automatically add a build relationship between the server page and
the client page. We will discuss relationships shortly.

In the specification window for the server page, you can set the following two values:

•
File Name is the physical name of the page (ASP, JSP, or HTML).

•
RTE Synchronization controls whether the page will be generated or not.

Forms

Forms are simple HTML pages that contain text boxes, list boxes, and other data input controls. The purpose
of a form is simply to receive information from the end user and to display information to the end user.
Business logic is not included on a form.

A client page may contain one or more forms. Each form on a client page is associated with that page using an
aggregation relationship. Fields on the form are modeled as attributes of the form, and are given the stereotype
HTML Input. In Rose, the following symbol is used to represent a form:

To create an HTML form:

1.

Chapter 19: Web Modeling

662

Right−click the client page on which the form is to be located.

2.
Select Web Modeler → New → HTML Form.

3.
Enter the name of the new form.

Like client pages and server pages, forms have detailed specifications that will be used during the
code−generation process. Any values that you set on the General tab will appear in the generated HTML.
Table 19.2 lists the specifications for the HTML Form stereotype, and the purpose of each specification.

Table 19.2: HTML Form Attributes

Attribute Specification Window
Tab

Meaning

Action General Form−processing agent

Class General Class name for element

Enctype General Content type used to encode the form's data

ID General Element name

Lang General Language of element's content

Method General HTTP method to submit form's data

Style General Cascading style sheet for element

Target General Name of frame target

Onblur Events Process to run when element loses focus

Onclick Events Process to run on mouse click

Ondblclick Events Process to run on mouse double−click

Onfocus Events Process to run when element gains focus

Onkeydown Events Process to run when a key is pressed down

Onkeypress Events Process to run when an alphanumeric key is pressed

Onkeyup Events Process to run when a key is released

Onmousedown Events Process to run when the mouse button is pressed

Onmousemove Events Process to run when the mouse moves

Onmouseout Events Process to run when the mouse cursor is moved off of the
element

Onmouseover Events Process to run when the mouse cursor is placed on the element

Onmouseup Events Process to run when the mouse button is released

Onreset Events Process to run when the form is reset

Onsubmit Events Process to run when the form is submitted

RTE SynchronizationRTE Options Whether or not to generate the element

Resolve Relative
Paths Dynamically

RTE Options Automatically resolve paths in referenced files(Note: Setting
this field to Default will set it to True/False, depending upon
what is set in Tools → Web Modeler → User Preferences.)

An HTML form is really just a collection of input fields. Rose supports three types of input fields: an HTML

Chapter 19: Web Modeling

663

Input, an HTML Select, or an HTML TextArea. Once you have added a form, you can add more input fields
using Web Modeler.

An HTML Input is a field on the form. It can have one of these types: text, password, check box, radio,
submit, reset, file, hidden, image, or button. The HTML input will be modeled as an attribute of the form.

To add a new HTML Input field:

1.
Right−click the HTML form.

2.
Select Web Modeler → New → HTML Input.

3.
Select the type of input (text, checkbox, etc.).

4.
Enter the name, ID, and value of the input.

5.
Select OK to create the new input.

6.
Right−click the new input.

7.
Edit the input specifications, event handlers, and round−trip engineering options on the specification
window.

This HTML input will be generated in the code as follows:

<input ID="PWD" Name="PasswordBox" Type="password">

An HTML Select is a select box field. The select box has a list of values, and allows the user to select one or
more of the values in the list.

Chapter 19: Web Modeling

664

To add a new HTML Select field:

1.
Right−click the HTML form.

2.
Select Web Modeler → New → HTML Select.

3.
Enter the name and ID of the field.

4.
Select OK to create the new field.

5.
Right−click the new field.

6.
Edit the field specifications, event handlers, and round−trip engineering options on the specification
window.

The field will be generated in the code as follows:

<select ID="1" Name="HTMLSelect">
 </select>

An HTML TextArea is a multi−line text field on an HTML form. These fields can be used any time the user
needs to enter long strings of text. Using the attributes associated with the field, you can set the number of
lines that will display on the text area, whether the text area is editable, the tab index for the control, and other
properties.

To add a new HTML TextArea field:

1.
Right−click the HTML form.

2.
Select Web Modeler → New → HTML TextArea.

3.

Chapter 19: Web Modeling

665

Enter the name and ID of the field.

4.
Select OK to create the new field.

5.
Right−click the new field.

6.
Edit the field specifications, event handlers, and round−trip engineering options on the specification
window.

The field will be generated in the code as follows:

<textarea ID="TXT1" Name="TextArea1" Rows="4">

All of these types of fields (Input, Select, or TextArea) will appear as attributes of the form on which they are
displayed. When code is generated, Rose will examine both the fields and their properties to determine what
HTML to generate.

Relationships

Now that we have classes in the model, the next step is to add relationships. There are four primary types of
relationships between web elements: link relationships, build relationships, redirect relationships, and submit
relationships.

Chapter 19: Web Modeling

666

A link relationship is used to represent a hypertext link between two client pages or between a client page and
a server page. The link is drawn as an association relationship between two classes, with a stereotype of
<<Link>>.

To set the detailed specifications for the link, right−click the association and select Open Specification. Table
19.3 lists the properties of a link association.

Table 19.3: Link Relationship Attributes

Attribute Specification Window
Tab

Meaning

AccessKey General Key that will set focus to the element

Class General Class name for element

Dir General Directional orientation

HREF General Link location

ID General Element name

Lang General Language of element's content

Name General Link destination

Style General Cascading style sheet for element

TabIndex General Tab order of the element

Target General Where the link displays in the browser

Title General Document referenced by HREF attribute

Onblur Events Process to run when element loses focus

Onclick Events Process to run on mouse click

Ondblclick Events Process to run on mouse double−click

Onfocus Events Process to run when element gains focus

Onkeydown Events Process to run when a key is pressed down

Onkeypress Events Process to run when an alphanumeric key is pressed

Onkeyup Events Process to run when a key is released

Onmousedown Events Process to run when the mouse button is pressed

Onmousemove Events Process to run when the mouse moves

Onmouseout Events Process to run when the mouse cursor is moved off of the
element

Onmouseover Events Process to run when the mouse cursor is placed on the element

Onmouseup Events Process to run when the mouse button is released

RTE SynchronizationRTE Options Whether or not to generate the element

Resolve Relative
Paths Dynamically

RTE Options Automatically resolve paths in referenced files(Note: Setting
this field to Default will set it to True/False, depending upon
what is set in Tools → Web Modeler → User Preferences.)

Chapter 19: Web Modeling

667

A build relationship is used to show that a server page builds a client page. Like a link relationship, a build
relationship is modeled as a stereotyped association.

When you create a server page, Rose will automatically create a client page for you and link the client page to
the server page with a build relationship, and the client page will be modeled as a nested page within the
server page. Each client page can be built by only one server page. However, a single server page may build
several client pages. To create additional client pages for a server page, right−click the server page and select
New → Nested Class. Give the new client page a name, and assign it a stereotype of "Client Class." Finally,
create a build relationship between the server page and the new client page.

A redirect or forward relationship is used when control is passed from one server page to another. A redirect
relationship is used in an ASP application, and a forward relationship is used in a JSP application. In this
example, ServerPage1 is redirecting control to ServerPage2.

Once you have generated code, a line similar to the following will be inserted. The following line appears in
ServerPage1.asp:

<% Response.Redirect("ServerPage2.asp") %>

A redirect or forward relationship has three attributes in its specification window. The Page attribute is used to
set the destination page name. The RTE Synchronization property is used to control whether or not the
relationship will be generated. Finally, the Resolve Relative Paths attribute controls whether paths will be
automatically resolved.

A submit relationship is used when a form submits information to a server page. At that point, the user has
finished entering information onto the form, and the information is ready for processing. The web server can
then begin to process the information. A submit relationship is also shown as a stereotyped association:

Reverse Engineering a Web Application

In many situations, your team will be undertaking an effort to modify an existing application. In these cases,
the best place to start is reverse engineering the existing application. Once that has been done, the team can

Chapter 19: Web Modeling

668

examine the current system architecture, make any needed additions or modifications to the design, and
generate the code.

Rose supports the reverse engineering of ASP, JSP, and HTML pages. It assigns the appropriate stereotypes to
the classes and creates relationships between them.

Begin the reverse−engineering process by selecting Tools → Web Modeler → Reverse Engineer a New Web
Application. After the welcome screen, you will be prompted for the location of your application.

First, select the platform—either ASP or JSP—that is used by your application. In the URL Name field, enter
the URL of the application. In the Virtual Directory Name field, enter the name of a package to create in
Rose. During the reverse−engineering process, Rose will create a package in the Logical view with this name.
All reverse−engineered classes and relationships will be placed inside this package. Finally, in the Physical
Location field, enter the path to the application files.

Next, you will see a treeview with all available ASP, JSP, and HTML pages to reverse engineer. By default,
all pages will be selected. Select the page(s) you wish to reverse engineer and press Next.

Rose will examine each of the files and reverse engineer them into the model. If any errors occur, Rose will
enter them into the log.

An ASP page is reverse engineered as a class with the stereotype <<Server Page>> and an associated class
with the stereotype <<Client Page>>. The server page and the client page are linked with a build relationship.
The VBScript or Java on the ASP or JSP server page is modeled as an operation on that page.

Chapter 19: Web Modeling

669

The form(s) on the client page are modeled as separate classes in Rose, with a stereotype of <<Form>>. Any
controls on the form are reverse engineered as attributes of the form.

Generating Code for a Web Application

After you have reverse engineered and modified a web application or modeled a web application from scratch,
Rose will generate code for you. Rose will create the HTML, ASP, and JSP files from the model.

Rose will generate code for the following:

•
Server pages

•
Client pages

•
Forms

•
Form input fields

•
Form select fields

•
Form text area fields

•
Redirect or forward relationships

•
Link relationships

When you generate code, Rose will first look for an existing file with the same name as the class you are
generating. If a file is found, Rose will update it. Otherwise, a new file is created. The stereotype of the class,
coupled with the platform of the virtual directory, controls what type of file will be created. The files created
for server pages will be either ASP or JSP files. A client page with no relationship to a server page will
generate an HTML file.

To generate code from your model:

1.

Chapter 19: Web Modeling

670

Right−click the virtual directory.

2.
Select Web Modeler → Generate Code.

3.
Rose will generate code, and then log any errors to the log window.

Summary

In this chapter, we examined the modeling of web applications with UML and Rose. To a certain extent,
modeling web applications is similar to modeling other applications. We still create use cases and the flow of
events. We still create Sequence and Collaboration diagrams that show how the objects interact with each
other. And we still create Class diagrams to show what classes are needed and how they relate.

A chief difference is in the kinds of classes and relationships that are used in web modeling. By stereotyping
our classes as client pages, server pages, or forms, we can be sure that Rose will generate the appropriate
source code. Where client/server applications have standard association relationships, web applications have a
few types of associations: build relationships, link relationships, submit relationships, and redirect
relationships.

Once you have modeled your web application, Rose can generate code for you. You can use the round−trip
engineering capabilities of Rose to update your code, update the model, and keep the model and code
consistent.

Like the rest of UML, the web notation will continue to evolve as new web languages and technologies are
introduced. Rose will evolve along with the notation, providing support for these new concepts and helping
organizations design both client/server and web applications more effectively.

Chapter 19: Web Modeling

671

Appendix: Getting Started with UML
UML is made up of a number of different types of diagrams. Each gives the reader a slightly different
perspective of the system's design. Some are high−level and intended to give you an understanding of the
functionality in the system. Others are very detailed and include the specific classes and components that will
be built to implement the system. Still others are midway between these two levels: They provide design
details but from a higher−level perspective.

The set of diagrams gives you a complete picture of the system design. Different members of the team create
different types of diagrams, and each is used by a different set of people. While building the system, the
developers will refer to the diagrams to understand what classes and components need to be built. Later, when
a team is maintaining the system, they can refer to the diagrams to understand the system structure, analyze
the impact of a potential change, and document any design changes that were made.

UML is constantly being refined to incorporate new ideas and technologies. For example, it can now be used
to model an XML DTD. As the object−oriented world changes, UML can change along with it. At the same
time, though, it is a standard, and modifications to it are centrally managed. UML is controlled by the Object
Management Group, which has members from large and small companies around the world.

Rational Software has developed a systems development lifecycle titled the Rational Unified Process (RUP).
RUP complements UML by providing specific process steps, roles, responsibilities, guidelines, workflows,
and templates that can be used to develop software. Although RUP complements UML, you may use UML
without using RUP.

UML includes many different diagram types. Business Use Case diagrams are used to model the organization.
Business workflow (activity) diagrams are used to show the processes within the organization. Use Case
diagrams show the functionality to be provided by the system and the people and entities that interact with the
system. Activity diagrams show the flow of logic through a use case. Sequence and Collaboration diagrams
show the objects that are needed to implement the functionality of a use case, and include the messages
between the objects. Statechart diagrams are used to model dynamic behavior, and are frequently used in
real−time systems. Component diagrams show the components that will be created for the system and the
relationships between them. Finally, Deployment diagrams are used to show the network structure and where
the system will be deployed on the network.

Building a Business Use Case Diagram

A Business Use Case diagram is a mechanism for modeling the work done by the organization itself. The
diagram contains business use cases, which are functions performed by the organization; business actors,
which are entities outside the organization that interact with it; and business workers, which are roles within
the organization.

The Business Use Case diagram gives someone an understanding of what the organization does and who
interacts with it. It is supplemented by activity diagrams, which detail the workflows within the organization.

A business process team or a business analysis team typically creates the diagram. It is nontechnical, and can
be used by any member of the organization to gain a better understanding of the organization.

To create a new Business Use Case diagram, follow these steps:

1.
672

Right−click a package in the Use Case view.

2.
Select New → Use Case Diagram.

3.
Right−click the toolbar and select Customize.

4.
Add buttons for business actor, business use case, business worker, business entity, and organizational
unit.

A Business Use Case diagram shows a subset of the business use cases, business workers, and business actors
of the organization.

Follow these steps to add business actors to your diagram:

1.
Determine the business actors.

2.
Select the Business Actor toolbar button.

3.
Click in the Use Case diagram to add the actor.

4.
Name the actor.

A business actor is an individual, group, company, or other entity outside of the organization that directly
interacts with the organization.

Appendix: Getting Started with UML

673

Use these steps to add business workers to the diagram:

1.
Determine the business workers.

2.
Select the Business Worker toolbar button.

3.
Click in the Use Case diagram to add the worker.

4.
Name the worker.

A business worker is a role within the organization.

Follow these steps to add relationships between the business actors and business use cases:

1.
Select the Unidirectional Association toolbar button.

2.
Drag an arrow from the actor or business worker to the use case.

A communicates relationship between a business actor and a business use case shows how a business actor or
business worker interacts with the organization.

Follow these steps to group the business actors, business workers, and business use cases into organization
units.

1.
Select the Organization Unit toolbar button.

2.
Click inside a Business Use Case diagram to place the organization unit.

3.
In the browser, drag and drop business actors, business workers, business use cases, Business Use

Appendix: Getting Started with UML

674

Case diagrams, and activity diagrams into the new organization unit.

An organization unit is used to group together business modeling elements such as business actors and
business use cases. These units can help to organize the model and show how the company itself is organized.

Building a Workflow (Activity) Diagram

Activity diagrams are commonly used in two situations. In business modeling, they can be used to document
the workflow of a process within the organization. In systems modeling, they can be used to document the
flow of logic through a use case.

An activity diagram that focuses on workflow shows you the people or groups within the workflow, the steps
in the process, decision points in the process, areas where steps in the process can occur in parallel, objects
affected by the workflow, states of the objects, and transitions between steps in the process. UML contains
notation for all of these items.

To create a new activity diagram:

1.
Right−click a use case or package in the Use Case view.

2.
Select New → Activity Diagram.

An activity diagram models a process in the organization. It can be used to analyze either existing or new
processes. These types of diagrams are frequently used in business process re−engineering efforts or in any
situation where the workflow is complex or undocumented.

Appendix: Getting Started with UML

675

To partition your diagram into sections for each actor or worker's responsibilities, follow these steps:

1.
Determine the participants in the workflow.

2.
Select the Swimlane toolbar button.

3.
Click in the diagram to add the swimlane.

4.
Name the swimlane with the name of the role or group in the workflow.

A swimlane is a vertical section of the diagram that will contain all of the workflow steps that a particular
person or group performs. You divide the diagram into many swimlanes, one for each person or group in the
process.

Appendix: Getting Started with UML

676

To add detailed steps to the diagram:

1.
Select the Activity toolbar button.

2.
Click in the diagram to add the activity.

3.
Name the activity.

An activity is a step in the workflow. It can contain actions, which are steps within the activity. The activity is
placed in the swimlane of the individual or group that performs the activity.

Follow these steps to set the sequence of the activities:

1.
Select the Transition toolbar button.

2.
Drag an arrow from one activity to the next.

3.

Appendix: Getting Started with UML

677

Right−click the transition arrow and select Open Specification.

4.
Optionally add an event and event arguments on the General tab.

5.
Optionally add a guard condition, action, send event, send event arguments, and send target on the
Detail tab.

A transition shows how the process moves from one step (activity) to the next. An event triggers the
movement from one activity to another. An event can have arguments. A guard condition controls when the
transition can or cannot occur; the guard condition must be true for the transition to occur. An action occurs
while the process is transitioning from one activity to another. It is typically a quick process that occurs as part
of the transition itself. The send target suggests that, as part of the transition, a message is sent to some object.
The send target is the object receiving the message. The send event is a message sent to another object. It may
have arguments.

Follow these steps to add decision points to the logic:

1.
Select the Decision toolbar button.

2.
Click in the diagram to place the decision.

3.
Draw transitions from the decision to the activities that may occur after the decision.

4.
Place guard conditions on each transition arrow. The guard conditions will control which path is taken
after the decision.

A decision point in the workflow indicates when the workflow can take two or more different paths.
Transition arrows leading from the decision to activities show the different paths that the workflow can
follow. Guard conditions on the transitions indicate under which conditions each path will be followed. Guard
conditions must be mutually exclusive.

To add objects to the workflow:

1.
Select the Object toolbar button.

2.
Click inside the diagram to place the object.

3.

Appendix: Getting Started with UML

678

Select the Object Flow toolbar button.

4.
Drag an arrow from an activity to the object it affects or from the object to the activity that uses the
object as input.

An object is an entity affected by the workflow. It can serve as input into a process step, in which case a
dashed object flow arrow is drawn from the object to the process step. Or, it can be affected by a process step,
in which case an object flow arrow is drawn from the step to the object.

Follow these steps to add synchronizations to the workflow:

1.
Select the Synchronization toolbar button.

2.
Click in the diagram to place the synchronization bar.

3.
Draw a transition arrow from an activity to the synchronization bar, indicating that the parallel
processing begins after that activity.

4.
Draw transition arrows from the synchronization bar to the activities that can occur in parallel.

5.
Create another synchronization bar to indicate the end of the parallel processing.

6.
Draw transition arrows from the synchronous activities to the final synchronization bar to indicate that
the parallel processing stops once all of those activities are complete.

A synchronization indicates that two or more steps in the workflow may be completed in parallel. A
synchronization bar is used to show where two or more activities may occur simultaneously. These can be
very effective in analyzing the efficiency of a workflow; examining the amount of parallel activity can help to
optimize a workflow.

Building a Use Case Diagram

A Use Case diagram is a graphical representation of the high−level system scope. It includes use cases, which
are pieces of functionality the system will provide, and actors, who are the users of the system. Looking at a
Use Case diagram, you should easily be able to tell what the system will do and who will interact with it.

Appendix: Getting Started with UML

679

You can create one or more Use Case diagrams for a single system. If you create more than one, each will
show a subset of the actors and/or use cases in the system. You can also group the use cases and actors into
packages to help organize the model.

The Use Case diagram can be helpful in communicating with the end users of the system. It is designed to be
straightforward and nontechnical so that everyone on the team can come to a common understanding of the
system scope. It is usually created by the technical team, but in conjunction with an end user representative.

To create a new Use Case diagram:

1.
Right−click a package in the Use Case view.

2.
Select New → Use Case Diagram.

A Use Case diagram shows a subset of the use cases and actors in the system. You can create as many Use
Case diagrams as you need to fully document the system scope.

Follow these steps to add actors to the diagram:

1.
Determine the actors for your system.

2.

Appendix: Getting Started with UML

680

Select the Actor toolbar button.

3.
Click in the Use Case diagram to add the actor.

4.
Name the actor.

An actor is a person, system, piece of hardware, or other thing that interacts with your system.

Follow these steps to add use cases to the diagram:

1.
Add the use cases to the diagram.

2.
Select the Use Case toolbar button.

3.
Click in the Use Case diagram to add the use case.

4.
Give the use case a name.

A use case is a piece of functionality the system will provide. It is usually named in the format
<verb><noun>, such as "Deposit Check" or "Withdraw Cash." Use cases are high−level and
implementation−independent.

To add relationships between the actors and use cases:

1.
Select the Unidirectional Association toolbar button.

2.
Drag an arrow from the actor to the use case.

A communicates relationship between an actor and a use case indicates that the actor initiates the use case. An
actor may initiate one or more use cases.

Appendix: Getting Started with UML

681

To add includes relationships between appropriate use cases:

1.
Select the Include Use Case toolbar button.

2.
Drag an arrow from a use case to the use case it includes.

An includes relationship suggests that one use case must include another. In other words, running one use
case means that the other must be run as well. One use case may be included by one or more other use cases.

To add extends relationships between appropriate use cases:

1.
Select the Extend Use Case toolbar button.

2.
Drag an arrow from the extending use case to the use case it extends.

An extends relationship is used when one use case optionally extends the functionality provided by another.
In other words, if one use case runs, an extending use case may or may not run.

Follow these steps to group the use cases, actors, and other elements into packages:

1.
Right−click the Use Case view or another package and select New → Package.

2.
Name the new package.

3.
In the browser, drag and drop use cases, actors, Use Case diagrams, or other modeling elements into
the new package.

A package is a UML mechanism used to group items together. Grouping can help to organize the model, and
can also help in managing any changes in the model elements. You may nest one package inside another to
further organize the model.

Appendix: Getting Started with UML

682

To add generalization relationships between appropriate use cases:

1.
Select the Generalization toolbar button.

2.
Drag an arrow from the child use case to the parent use case.

A generalization relationship between two use cases indicates that one use case (the child) inherits all of the
functionality provided by the other use case (the parent).

To add generalization relationships between appropriate actors:

1.
Select the Generalization toolbar button.

2.
Drag an arrow from the child actor to the parent actor.

A generalization relationship between actors indicates that one actor (the child) inherits the characteristics of
another actor (the parent). The child actor may initiate all of the use cases that the parent can initiate.

Appendix: Getting Started with UML

683

Building an Interaction Diagram

An Interaction diagram is a graphical representation of how the objects and actors in a system interact with
one another to achieve the desired goal of the system. There are two types of Interaction diagrams, Sequence
diagrams and Collaboration diagrams. Sequence diagrams illustrate the interactions of objects along a
timeline. Collaboration diagrams show the interactions, but without the timeline. These two diagrams display
the same information, just in different ways.

You can create multiple Interaction diagrams for each use case in a system. More than one is typically created
to illustrate the interaction given different scenarios.

Sequence diagrams are usually created to show the flow of functionality and control throughout the objects in
the system. Collaboration diagrams are typically used to illustrate which objects communicate with other
objects. Sequence diagrams answer questions about how the system will work. Collaboration diagrams answer
questions about the soundness of the structure of the system.

To create a new Sequence diagram:

1.
Right−click a use case in the Use Case view.

2.
Select New → Sequence Diagram.

Once you have created the Sequence diagram, you next need to determine which actors and objects to place
on it. One method is to drag all actors involved in the use case to the Sequence diagram, then walk through the
functionality, adding objects to facilitate that functionality as needed.

To add actors and objects to the Sequence diagram:

1.
Select any actors involved in the use case and drag them into the new Sequence diagram.

2.
Select the Object toolbar button.

3.

Appendix: Getting Started with UML

684

Click in the Sequence diagram to add an object.

4.
Name the object.

5.
Add additional objects as needed.

At this point, the objects and actors are on the Sequence diagram, but Interaction diagrams would be fairly
useless without showing the interactions. Messages are used to accomplish this. A message is simply some
form of communication between one object or actor and another.

Messages can also be reflexive, meaning that the object communicates some information to itself.

Follow these steps to add messages to the diagram:

1.
Select the Message toolbar button.

2.
Click on the actor or object to initiate the message.

3.
Drag the message to the actor or object to receive the message.

4.

Appendix: Getting Started with UML

685

Name the message.

Tip Pressing F5 on a Sequence diagram will create the corresponding Collaboration diagram. You can also
use F5 to toggle between a Sequence diagram and its Collaboration diagram.

Collaboration diagrams are not time−based, but show the interactions of the objects as a whole. This is useful
for pointing out potential bottlenecks (objects that individually communicate with a large number of objects).
Sequencing of messages is shown on a Collaboration diagram by numbering the messages.

To create a new Collaboration diagram:

1.
Right−click a use case in the Use Case view.

2.
Select New → Collaboration Diagram.

Once you have created the Collaboration diagram, you then need to determine which actors and objects to
place on it. One method is to drag all actors involved in the use case to the Collaboration diagram, then walk
through the functionality, adding objects as needed to facilitate that functionality.

To add actors and objects to a Collaboration diagram:

1.
Select any actors involved in the use case and drag them into the new Collaboration diagram.

2.
Select the Object toolbar button.

3.
Click in the Collaboration diagram to add an object.

4.
Name the object.

5.
Add additional objects as needed.

Appendix: Getting Started with UML

686

Before adding messages, we must link the objects or actors that will communicate. This is done by adding an
object link using the toolbar. Once the object link is established, messages can be added. On Collaboration
diagrams, the messages are either link messages or links to self. A link message is analogous to a message in a
Sequence diagram. A link to self is analogous to a reflexive message in a Sequence diagram.

To add object links to the Collaboration diagram:

1.
Select the Object Link toolbar button.

2.
Click on one actor or object to be linked.

3.
Drag the object link to the actor or object to be linked.

After the object link is established, messages can be created. Link messages are created either using the Link
Message toolbar button or the Reverse Link Message toolbar button, depending on the direction of the
message.

Follow these steps to add messages to the Collaboration diagram:

1.
Select the Link Message or Reverse Link Message toolbar button.

2.
Click the object link on which to place the message.

3.
Name the message.

To add reflexive links to a Collaboration diagram:

1.
Select the Link to Self toolbar button.

2.
Click on the object to be linked.

3.

Appendix: Getting Started with UML

687

Name the reflexive link.

Tip Pressing F5 on a Collaboration diagram will create the corresponding Sequence diagram.

Building a Class Diagram

A Class diagram is used to show a subset of the classes, interfaces, packages of classes, and relationships in
the system. A typical system will have many different Class diagrams.

In Rose, different icons are used to represent different kinds of classes on a Class diagram. For example, Rose
contains icons for interfaces, client pages, session EJBs, COM objects, and many other types of classes. Rose
also contains icons that distinguish analysis classes from design classes. An analysis class is an
implementation−independent view of the system, intended to be an initial sketch of the system design. Design
classes are implementation−specific and correlate to the classes that will eventually be created in the source
code.

Rose can generate code that will include the class name, attribute types, default values, operation signatures,
and class relationships. Developers use the Class diagrams to see the system structure and to know what
operations to create for a given class.

Follow these steps to create a new Class diagram:

1.
Right−click a package in the Logical view.

2.
Select New → Class Diagram.

A Class diagram includes a subset of the classes, attributes, operations, relationships, and packages of classes
in the system. You can create as many Class diagrams as you need to fully document the system design.

Appendix: Getting Started with UML

688

To add analysis classes to the model:

1.
Select the Boundary, Entity, or Control class button from the toolbar.

2.
Click in the diagram to add the class.

3.
Name the class.

An analysis class is an implementation−independent class. The analysis classes are used to document some of
the concepts within the system and to create a conceptual view of the system design.

To add design classes to the model:

1.
Create an additional Class diagram.

2.
Add design classes to the model.

3.
Select the Class button from the toolbar.

4.
Click in the diagram to add the class.

5.
Give the class a name.

A design class is an implementation−specific class within the model. It will correspond to a class in the source
code.

Appendix: Getting Started with UML

689

To add interface classes:

1.
Select the Interface button from the toolbar.

2.
Click in the diagram to add the interface.

3.
Name the interface.

An interface is used to expose the public operations of a class without exposing the implementation. An
interface contains method signatures, but no implementation.

Follow these steps to add attributes to the classes:

1.
Right−click a class on the diagram.

2.
Select New → Attribute.

3.
Type the attribute name, followed by a colon, and then the attribute's data type (i.e., Address:String).

4.
Optionally enter a default value for the attribute, by following the data type with an equals sign and
then the default value (i.e., Address:String = 123 Main St.).

5.
Right−click the attribute in the browser window and select Open Specification.

6.
Set the attribute visibility (public, private, protected).

An attribute is a piece of information associated with a class. All objects in a given class will share the same
attributes, but each object may have its own attribute values.

Follow these steps to add operations to the classes:

1.

Appendix: Getting Started with UML

690

Right−click a class on the diagram.

2.
Select New → Operation.

3.
Enter the operation signature, including parameters and a return type. Use the format
OpName(Parm1:Parm1DataType, Parm2:Parm2DataType):ReturnType (for example,
AddNumbers(X:Int, Y:Int): Long).

4.
Right−click the operation in the browser window and select Open Specification.

5.
Set the operation visibility (public, private, protected).

An operation is a method within the class. In Rose, you can define the operation name, parameters, visibility,
return type, and parameter data types. Certain operations, such as Get() and Set() methods for attributes, can
be automatically generated by Rose.

Web Modeling

Thanks to the recent work of people such as Jim Conallen, UML is now being used more and more frequently
to model web applications. Rose includes a number of class stereotypes for web modeling, such as client
pages, server pages, and HTML forms.

These web classes are placed on a Class diagram and, like traditional classes, can include attributes,
operations, and relationships. Using Class diagrams, you can view the web classes and their interrelationships,
and also see how the web classes interact with the other classes in the system.

Before following any of these procedures, select Tools → Options. On the Diagram tab, set the default
language to Web Modeler.

To add server pages to the model:

1.
Select the Server Page class button from the toolbar.

2.
Click in the diagram to add the class.

3.

Appendix: Getting Started with UML

691

Name the class.

A server page contains logic that runs on the server, and uses server resources such as database connections,
security services, or file services.

To add client pages to the model:

1.
Select the Client Page class button from the toolbar.

2.
Click in the diagram to add the class.

3.
Name the class.

A client page contains logic that runs on the client machine.

Follow these steps to add HTML forms to the model:

1.
Select the HTML Form class button from the toolbar.

2.
Click in the diagram to add the class.

3.
Name the class.

An HTML form represents a simple HTML page and the fields contained within that page.

To add applets to the model:

1.
Select the Applet class button from the toolbar.

2.

Appendix: Getting Started with UML

692

Click in the diagram to add the class.

3.
Name the class.

An applet is a small application that is downloaded to the client machine and runs on the client.

To add a web application object to the model:

1.
Select the Web Application class button from the toolbar.

2.
Click in the diagram to add the class.

3.
Name the class.

An application is an object that is used to maintain state information, and is shared among all users of an
application.

Follow these steps to add session objects to the model:

1.
Select the Web Session class button from the toolbar.

2.
Click in the diagram to add the class.

3.
Name the class.

A session object is an object that is used to maintain state information, and is specific to a single client and the
current session.

Appendix: Getting Started with UML

693

Follow these steps to add COM objects to the model:

1.
Select the COM Object class button from the toolbar.

2.
Click in the diagram to add the class.

3.
Name the class.

A COM object is an object such as an ActiveX control that uses Microsoft's Component Object Model.

Adding Class Relationships

There are many different types of relationships between classes. An association relationship indicates that one
class needs to communicate with another. Associations may be unidirectional or bidirectional. An aggregation
relationship suggests a whole/part relationship between two classes. A generalization relationship indicates a
parent/child inheritance relationship between two classes. Finally, a dependency relationship is a weaker form
of association, suggesting that a change to one class may affect another.

Association names can be added to a relationship to clarify the relationship's purpose. Role names can also be
used that show what role each class plays in the relationship. Multiplicity settings show how many instances
of one object are related to a single instance of the other object.

Relationships are drawn on Class diagrams as arrows between the two related classes. Different types of
arrows are used to indicate different types of relationships.

Follow these steps to add association relationships between the classes:

1.
Select the Unidirectional Association or the Bidirectional Association toolbar button.

2.
Drag an arrow from one class to the other.

3.
Type an association name, if needed.

An association relationship is a semantic connection between classes. It indicates that one class needs to
communicate with another (for example, one class needs to send a message to the other). Unidirectional
associations suggest that the messages can be sent in only one direction, while bidirectional associations
suggest that messages can be sent in both directions (i.e., each class can call a method of the other).

Appendix: Getting Started with UML

694

To add aggregation relationships:

1.
Select the Aggregation toolbar button.

2.
Drag an arrow from the "whole" class to the "part" class.

3.
Type an association name, if needed.

An aggregation relationship is used to denote a whole/part relationship between classes. In this situation, one
class logically contains another. Association and aggregation relationships are created identically during code
generation.

To add generalization relationships:

1.
Select the Generalization toolbar button.

2.
Drag an arrow from the child class to the parent class.

A generalization relationship is used to show an inheritance relationship between two classes. The child class
inherits all attributes, operations, and relationships of the parent.

To add dependency relationships:

1.
Select the Dependency toolbar button.

2.
Drag an arrow from one class to the other.

A dependency relationship is a weaker form of an association relationship. While one class still needs to
communicate with the other, neither class is responsible for instantiating, destroying, or otherwise managing
the other. When generating code for an association relationship, a reference to one class is created inside the
other through a new attribute. With a dependency relationship, no attributes are created to support the
relationship. Dependency relationships must be unidirectional.

Appendix: Getting Started with UML

695

Follow these steps to add multiplicity to the relationships:

1.
Right−click one end of the relationship.

2.
Select Multiplicity and then the appropriate multiplicity setting for that end of the relationship.

3.
Right−click the other end of the relationship and set its multiplicity.

Multiplicity shows how many instances of one class are related to a single instance of another class.
Multiplicity indicators are placed at both ends of a relationship to show the number of instances in both
directions. Multiplicity is not included on a generalization relationship.

To add role names to the relationships:

1.
Right−click one end of the relationship.

2.
Select Role Name.

3.
Type the role name on the diagram.

4.
Select the other end of the relationship and set its role name.

Role names indicate what role a class plays in a relationship. For example, in the relationship between Person
and Company, a Person could play the role of Employee. Role names are used in the code−generation
process; when an attribute is created to support a relationship, the attribute is named with the role name.

Building a Statechart Diagram

A Statechart diagram is used to show the dynamic behavior of an object. It shows the various states in which
an object can exist, what state an object is in when it is created, what state an object is in when it is destroyed,

Appendix: Getting Started with UML

696

how an object moves from one state to another, and what an object does when it is in various states. All of this
information helps a developer get a complete picture of how a particular object should behave.

Using Rose, you can create one or more Statechart diagrams for a class, and include all of the information
listed above. Statechart diagrams do not need to be created for every class in a model. Classes with significant
dynamic behavior, complex behavior, or behavior that is not well understood among the development team
are good candidates for Statechart diagrams.

Follow these steps to create a Statechart diagram:

1.
Right−click a class in the browser.

2.
Select New → Statechart Diagram.

3.
Name the new diagram.

A Statechart diagram includes the various states, transitions, activities, and actions for an object in a
particular class. Each class can have a single state/activity model, with one or more Statechart diagrams within
it.

To add states to the diagram:

1.
Select the Client Page class button from the toolbar.

2.
Click in the diagram to add the class.

3.
Name the class.

Appendix: Getting Started with UML

697

A state is a condition in which an object can exist. For example, an invoice can be New, Paid, Delinquent, or
Canceled. Each of these represents a different state.

To add start and end states:

1.
Select the Start State or End State button from the toolbar.

2.
Click in the diagram to place the start state or end state.

A start state shows the state an object is in when it is first instantiated. A Statechart diagram has one, and only
one, start state. A start state is shown as a black dot on the diagram. An end state shows what state an object is
in right before it is removed from memory. A Statechart diagram may have zero, one, or more end states. An
end state is shown as a bull's−eye on the diagram.

To add activities to the states:

1.
Right−click the state and select Open Specification.

2.
Select the Actions tab.

3.
Right−click in the white space and select Insert.

4.
Double−click the new activity (the word "Entry/" in the list) to open the activity specification.

5.
Enter the activity details.

An activity is some bit of processing that occurs while the object is in a particular state. Activities can occur
upon entry into the state, while exiting the state, while in the state, or upon a particular event.

To add transitions between the states:

1.

Appendix: Getting Started with UML

698

Select the State Transition button from the toolbar.

2.
Drag from one state to another.

3.
Right−click the transition.

4.
Select Open Specification.

5.
Add transition details, such as an event or guard condition.

A transition indicates how an object can move from one state to another. It may include an event, which
triggers the transition, or a guard condition. An event may also be sent to another object during the transition.
A guard condition, which is enclosed in square brackets, controls when the transition may or may not occur.
An action on the transition is a small piece of processing that occurs during the transition itself. The format
for these items on a transition line is:

Event(Arguments) [Guard] /Action ^SendEventTarget.SendEvent(Arguments)

Building a Component Diagram

A Component diagram is used to model the physical components in your system: source code files, executable
files, DLL files, ActiveX objects, and so on. Using a Component diagram, the team can specify what
components exist and what their relationships are to each other.

This exercise is especially helpful in optimizing the design and planning for deployment. By mapping each
component to its appropriate architectural layer (database, business logic, presentation, etc.), the team can see
the interaction between the layers themselves. The team can analyze and optimize the communication
between the layers before coding is complete.

Rose supports a number of different component stereotypes, such as the ones mentioned above.

To create a new Component diagram:

1.
Right−click a package in the Component view of the browser.

2.
Select New → Component Diagram.

3.
Name the new diagram.

Appendix: Getting Started with UML

699

A Component diagram is used to show a subset of the components or packages of components in the system
and their relationships.

Follow these steps to add components to the model:

1.
Select the Component button from the toolbar.

2.
Click in the diagram to add the component.

3.
Name the component.

4.
Right−click the component.

5.
Select Open Specification.

6.
Set the component stereotype and language.

7.
Select the Realizes tab.

8.
Right−click each class that will be contained within the component, and select Assign. You may also
drag the classes in the browser from the Logical view to the appropriate component in the Component
view.

A component is one of the physical files that make up a system. Source code components will realize many of
the various classes contained within the model.

Appendix: Getting Started with UML

700

Building a Deployment Diagram

Deployment diagrams illustrate the physical distribution of a system. A given project has one, and only one,
Deployment diagram. These diagrams show the processors, devices, connections, and processes involved in
the system.

Processors are machines on the network with processing power, including servers and workstations. They do
not include printers and other such devices. Processors run processes (executable code).

Follow these steps to create the Deployment diagram:

1.
Double−click the Deployment view.

2.
Select the Processor toolbar button.

3.
Click the Deployment diagram to place the processor.

4.
Name the processor.

5.
Right−click on the processor and select New → Process from the menu.

6.
Name the process.

Devices are the other machines on the network. They include printers, scanners, dumb terminals, and backup
devices.

Appendix: Getting Started with UML

701

To add devices to the diagram:

1.
Select the Device toolbar button.

2.
Click the Deployment diagram to place the device.

3.
Name the device.

Connections are physical links between processors and other processors, devices and other devices, or
processors and devices. Connections can be physical network connections or virtual connections—across the
Internet, for example.

To add connections to the diagram:

1.
Select the Connection toolbar button.

2.
Click on one processor or device to be connected.

3.
Drag the connection to the other processor or device to be connected.

4.
Name the connection.

Appendix: Getting Started with UML

702

	Table of Contents
	Mastering UML with Rational Rose 2002
	Chapter 1: Introduction to UML
	Introduction to the Object-Oriented Paradigm
	Encapsulation
	Inheritance
	Polymorphism

	What Is Visual Modeling?
	Systems of Graphical Notation
	Booch Notation
	Object Management Technology (OMT)
	Unified Modeling Language (UML)

	Understanding UML Diagrams
	Business Use Case Diagrams
	Use Case Diagrams
	Activity Diagrams
	Sequence Diagrams
	Collaboration Diagrams
	Class Diagrams
	Statechart Diagrams
	Component Diagrams
	Deployment Diagrams

	Visual Modeling and the Software Development Process
	Inception
	Elaboration
	Construction
	Transition

	Summary

	Chapter 2: A Tour of Rose
	What Is Rose?
	Getting Around in Rose
	Parts of the Screen

	Exploring Four Views in a Rose Model
	Use Case View
	Logical View
	Component View
	Deployment View

	Working with Rose
	Creating Models
	Saving Models
	Exporting and Importing Models
	Publishing Models to the Web
	Working with Controlled Units
	Using the Model Integrator
	Working with Notes
	Working with Packages
	Adding Files and URLs to Rose Model Elements
	Adding and Deleting Diagrams

	Setting Global Options
	Working with Fonts
	Working with Colors

	Summary

	Chapter 3: Business Modeling
	Introduction to Business Modeling
	Why Model the Business?
	Do I Need to Do Business Modeling?
	Business Modeling in an Iterative Process

	Business-Modeling Concepts
	Business Actors
	Business Workers
	Business Use Cases
	Business Use Case Diagrams
	Activity Diagrams
	Business Entities
	Organization Unit

	Where Do I Start?
	Identifying the Business Actors
	Identifying the Business Workers
	Identifying the Business Use Cases
	Showing the Interactions
	Documenting the Details

	Creating Business Use Case Diagrams
	Deleting Business Use Case Diagrams
	The Use Case Diagram Toolbar
	Adding Business Use Cases
	Business Use Case Specifications
	Assigning a Priority to a Business Use Case
	Viewing Diagrams for a Business Use Case
	Viewing Relationships for a Business Use Case

	Working with Business Actors
	Adding Business Actors
	Adding Actor Specifications
	Assigning an Actor Stereotype
	Setting Business Actor Multiplicity
	Viewing Relationships for a Business Actor

	Working with Relationships
	Association Relationship
	Generalization Relationship

	Working with Organization Units
	Adding Organization Units
	Deleting Organization Units

	Activity Diagrams
	Adding an Activity Diagram
	Adding Details to an Activity Diagram

	Summary

	Chapter 4: Use Cases and Actors
	Use Case Modeling Concepts
	Actors
	Use Cases
	Traceability
	Flow of Events
	Relationships

	Use Case Diagrams
	Activity Diagrams
	Activity
	Start and End States
	Objects and Object Flows
	Transitions
	Synchronization

	Working with Use Cases in Rational Rose
	The Use Case Diagram Toolbar
	Creating Use Case Diagrams
	Deleting Use Case Diagrams
	Adding Use Cases
	Deleting Use Cases
	Use Case Specifications
	Naming a Use Case
	Viewing Participants of a Use Case
	Assigning a Use Case Stereotype
	Assigning a Priority to a Use Case
	Creating an Abstract Use Case
	Viewing Diagrams for a Use Case
	Viewing Relationships for a Use Case

	Working with Actors
	Adding Actors
	Deleting Actors
	Actor Specifications
	Naming Actors
	Assigning an Actor Stereotype
	Setting Actor Multiplicity
	Creating an Abstract Actor
	Viewing Relationships for an Actor
	Viewing an Actor's Instances

	Working with Relationships
	Association Relationship
	Includes Relationship
	Extends Relationship
	Generalization Relationship

	Working with Activity Diagrams
	The Activity Diagram Toolbar
	Creating Activity Diagrams
	Deleting Activity Diagrams

	Exercise
	Problem Statement
	Create a Use Case Diagram

	Summary

	Chapter 5: Object Interaction
	Interaction Diagrams
	What Is an Object?
	What Is a Class?
	Where Do I Start?
	Finding Objects
	Finding the Actor
	Using Interaction Diagrams

	Sequence Diagrams
	The Sequence Diagram Toolbar

	Collaboration Diagrams
	The Collaboration Diagram Toolbar

	Working with Actors on an Interaction Diagram
	Working with Objects
	Adding Objects to an Interaction Diagram
	Deleting Objects from an Interaction Diagram
	Setting Object Specifications
	Naming an Object
	Mapping an Object to a Class
	Setting Object Persistence
	Using Multiple Instances of an Object

	Working with Messages
	Adding Messages to an Interaction Diagram
	Adding Messages to a Sequence Diagram
	Deleting Messages from a Sequence Diagram
	Reordering Messages in a Sequence Diagram
	Message Numbering in a Sequence Diagram
	Viewing the Focus of Control in a Sequence Diagram
	Adding Messages to a Collaboration Diagram
	Deleting Messages from a Collaboration Diagram
	Message Numbering in a Collaboration Diagram
	Adding Data Flows to a Collaboration Diagram
	Setting Message Specifications
	Naming a Message
	Mapping a Message to an Operation
	Setting Message Synchronization Options
	Setting Message Frequency

	End of a Lifeline
	Working with Scripts
	Switching Between Sequence and Collaboration Diagrams
	Two-Pass Approach to Interaction Diagrams
	Exercise
	Problem Statement
	Create Interaction Diagrams

	Summary

	Chapter 6: Classes and Packages
	Logical View of a Rose Model
	Class Diagrams
	What Is a Class?
	Finding Classes
	Creating Class Diagrams
	Deleting Class Diagrams
	Organizing Items on a Class Diagram
	Using the Class Diagram Toolbar

	Working with Classes
	Adding Classes

	Class Stereotypes
	Analysis Stereotypes
	Class Types
	Interfaces
	Web Modeling Stereotypes
	Other Language Stereotypes

	Class Specifications
	Naming a Class
	Setting Class Visibility
	Setting Class Multiplicity
	Setting Storage Requirements for a Class
	Setting Class Persistence
	Setting Class Concurrency
	Creating an Abstract Class
	Viewing Class Attributes
	Viewing Class Operations
	Viewing Class Relationships
	Using Nested Classes
	Viewing the Interaction Diagrams That Contain a Class
	Setting Java Class Specifications
	Setting CORBA Class Specifications

	Working with Packages
	Adding Packages
	Deleting Packages

	Exercise
	Problem Statement
	Creating a Class Diagram

	Summary

	Chapter 7: Attributes and Operations
	Working with Attributes
	Finding Attributes
	Adding Attributes
	Deleting Attributes
	Setting Attribute Specifications
	Setting the Attribute Containment
	Making an Attribute Static
	Specifying a Derived Attribute

	Working with Operations
	Finding Operations
	Adding Operations
	Deleting Operations
	Setting Operation Specifications
	Adding Arguments to an Operation
	Specifying the Operation Protocol
	Specifying the Operation Qualifications
	Specifying the Operation Exceptions
	Specifying the Operation Size
	Specifying the Operation Time
	Specifying the Operation Concurrency
	Specifying the Operation Preconditions
	Specifying the Operation Postconditions
	Specifying the Operation Semantics

	Displaying Attributes and Operations on Class Diagrams
	Showing Attributes
	Showing Operations
	Showing Visibility
	Showing Stereotypes

	Mapping Operations to Messages
	Mapping an Operation to a Message on an Interaction Diagram

	Exercise
	Problem Statement
	Add Attributes and Operations

	Summary

	Chapter 8: Relationships
	Relationships
	Types of Relationships
	Finding Relationships

	Associations
	Using Web Association Stereotypes
	Creating Associations
	Deleting Associations

	Dependencies
	Creating Dependencies
	Deleting Dependencies

	Package Dependencies
	Creating Package Dependencies
	Deleting Package Dependencies

	Aggregations
	Creating Aggregations
	Deleting Aggregations

	Generalizations
	Creating Generalizations
	Deleting Generalizations

	Working with Relationships
	Setting Multiplicity
	Using Relationship Names
	Using Stereotypes
	Using Roles
	Setting Export Control
	Using Static Relationships
	Using Friend Relationships
	Setting Containment
	Using Qualifiers
	Using Link Elements
	Using Constraints

	Exercise
	Problem Statement
	Adding Relationships

	Summary

	Chapter 9: Object Behavior
	Statechart Diagrams
	Creating a Statechart Diagram
	Adding States
	Adding State Details
	Adding Transitions
	Adding Transition Details
	Adding Special States
	Using Nested States and State History

	Exercise
	Problem Statement
	Create a Statechart Diagram

	Summary

	Chapter 10: Component View
	What Is a Component?
	Types of Components

	Component Diagrams
	Creating Component Diagrams
	Adding Components
	Adding Component Details
	Adding Component Dependencies

	Exercise
	Problem Statement

	Summary

	Chapter 11: Deployment View
	Deployment Diagrams
	Opening the Deployment Diagram
	Adding Processors
	Adding Processor Details
	Adding Devices
	Adding Device Details
	Adding Connections
	Adding Connection Details
	Adding Processes

	Exercise
	Problem Statement
	Create Deployment Diagram

	Summary

	Chapter 12: Introduction to Code Generation and Reverse Engineering Using Rational Rose
	Preparing for Code Generation
	Step One: Check the Model
	Step Two: Create Components
	Step Three: Map Classes to Components
	Step Four: Set the Code-Generation Properties
	Step Five: Select a Class, Component, or Package
	Step Six: Generate Code

	What Gets Generated?
	Introduction to Reverse Engineering Using Rational Rose
	Model Elements Created During Reverse Engineering
	Round-Trip Engineering
	Summary

	Chapter 13: ANSI C++ and Visual C++ Code Generation and Reverse Engineering
	Generating Code in ANSI C++ and Visual C++
	Converting a C++ Model to an ANSI C++ Model
	ANSI C++ Code-Generation Properties
	Class Properties
	Attribute Properties
	Operation Properties
	Package (Class Category) Properties
	Component (Module Specification) Properties
	Role Properties
	Generalization Properties

	Visual C++ Code-Generation Properties
	Class Model Assistant
	Component Properties
	Project Properties
	Visual C++ and ATL Objects

	Generated Code
	Code Generated for Classes
	Code Generated for Attributes
	Code Generated for Operations

	Visual C++ Code Generation
	Reverse Engineering ANSI C++
	Reverse Engineering Visual C++
	Summary

	Chapter 14: Java Code Generation and Reverse Engineering
	Overview
	Introduction to Rose J
	Beginning a Java Project
	Selecting a Java Framework
	Linking to IBM VisualAge for Java
	Linking to Microsoft Visual J++

	Java Code-Generation Properties
	Project Properties
	Class Properties
	Attribute Properties
	Operation Properties
	Module Properties
	Role Properties

	Generating Code
	Generated Code
	Classes
	Attributes
	Operations
	Bidirectional Associations
	Unidirectional Associations
	Associations with a Multiplicity of One to Many
	Associations with a Multiplicity of Many to Many
	Reflexive Associations
	Aggregations
	Dependency Relationships
	Generalization Relationships
	Interfaces
	Java Beans

	Support for J2EE
	EJBs
	Servlets
	JAR and WAR Files
	Automated J2EE Deployment

	Reverse Engineering
	Summary

	Chapter 15: Visual Basic Code Generation and Reverse Engineering
	Starting a Visual Basic Project
	Visual Basic Code-Generation Properties
	Class Properties
	Attribute Properties
	Operation Properties
	Module Specification Properties
	Role Properties
	Generalization Properties

	Using the Code-Generation Wizard
	Generated Code
	Classes
	Attributes
	Operations
	Bidirectional Associations
	Unidirectional Associations
	Associations with a Multiplicity of One to Many
	Associations with a Multiplicity of Many to Many
	Reflexive Associations
	Aggregations
	Dependency Relationships
	Generalization Relationships

	Reverse Engineering
	Summary

	Chapter 16: XML DTD Code Generation and Reverse Engineering
	Overview
	Introduction to XML DTD
	Elements
	Attributes
	Entities and Notations

	DTD-to-UML Mapping
	DTD Code-Generation Properties
	Project Properties
	Class Properties
	Attribute Properties
	Role Properties
	Component Properties

	Generating Code
	Generated Code
	Classes
	Attributes

	Reverse Engineering DTD
	Summary

	Chapter 17: CORBA/IDL Code Generation and Reverse Engineering
	CORBA/IDL Code-Generation Properties
	Project Properties
	Class Properties
	Attribute Properties
	Operation Properties
	Module Properties
	Association (Role) Properties
	Dependency Properties

	Generated Code
	Classes
	Attributes
	Operations
	Bidirectional Associations
	Unidirectional Associations
	Associations with a Multiplicity of One to Many
	Associations with a Multiplicity of Many to Many
	Associations with Bounded Multiplicity
	Reflexive Associations
	Aggregations
	Dependency Relationships
	Generalization Relationships
	Reverse Engineering CORBA Source Code

	Summary

	Chapter 18: Rose Data Modeler
	Object Models and Data Models
	Creating a Data Model
	Logic in a Data Model
	Adding a Database
	Adding Tablespaces

	Adding a Schema
	Creating a Data Model Diagram

	Creating Domain Packages and Domains
	Adding Tables
	Adding Columns
	Setting a Primary Key
	Adding Constraints
	Adding Triggers
	Adding Indexes

	Adding Stored Procedures
	Adding Relationships
	Adding Referential Integrity Rules

	Working with Views
	Generating an Object Model from a Data Model
	Generating a Data Model from an Object Model
	Generating a Database from a Data Model
	Updating an Existing Database
	Reverse Engineering a Database
	Summary

	Chapter 19: Web Modeling
	Modeling a Web Application
	Web Class Stereotypes
	Relationships

	Reverse Engineering a Web Application
	Generating Code for a Web Application
	Summary

	Appendix: Getting Started with UML
	Building a Business Use Case Diagram
	Building a Workflow (Activity) Diagram
	Building a Use Case Diagram
	Building an Interaction Diagram
	Building a Class Diagram
	Web Modeling
	Adding Class Relationships
	Building a Statechart Diagram
	Building a Component Diagram
	Building a Deployment Diagram

