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Not long ago, no books were available on object-oriented analysis and design. Now 
there are so many that it is impossible for any practitioner to keep up with them all. 
Most of these books concentrate on teaching a notation, suggesting a simple process 
for modeling, and illustrating it with a few simple examples. Analysis Patterns: 
Reusable Object Models is a different kind of book. Instead of focusing on the 
process—how to do modeling—it concentrates on the result of the process—the 
models themselves. 

I am a consultant in object modeling for information systems. Clients ask me 
to train staff on modeling and to provide mentoring on projects. Much of my skill 
comes from a knowledge of modeling techniques and how to use them. More 
important, however, is my experience in actually creating many models and 
regularly seeing problems repeat themselves. Frequently I find that many aspects 
of a project revisit problems I have faced before. That experience allows me to 
reuse models I have built before, improve them, and adapt them to new demands. 

Over the last few years, more and more people have also become aware of this 
phenomenon. We have realized that the typical methodology books, though 
valuable, only present the first step in a learning process that must also capture 
the actual things that are built. This realization has flowered into the patterns 
movement. This is a varied group of people, representing many different interests 
and opinions yet sharing the goal of propagating useful patterns of software 
systems. 

As a result of the diversity of this patterns community, we have had difficulty 
in defining the term pattern. We all think we can recognize a pattern when we see 
it, we think most of us would agree in most cases, but we cannot come up with a 
single definition. Here is my definition: A pattern is an idea that has been useful 
in one practical context and will probably be useful in others. 

I like to leave the definition quite loose because I wish to stay as close to the 
underlying motivation of patterns, without adding too many restrictive 
amendments. A pattern can have many forms, and each form adds specializations 
that are useful for that kind of pattern. (Section 1.2 discusses the current state of 
the patterns world and where this book fits in.) 

This book is about patterns in analysis, patterns that reflect conceptual 
structures of business processes rather than actual software implementations. 
Most of the chapters discuss patterns for various business domains. Such 
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patterns are hard to classify into traditional vertical areas (manufacturing, 
finance, health care, and so on) because they are often useful in several areas. 
These patterns are important because they help us to understand how people 
perceive the world. It is valuable to base a computer system's design on this 
perception and, indeed, to change that perception—which is where business 
process reengineering (BPR) comes in. 

Conceptual patterns cannot exist in isolation, however. Conceptual models 
are only useful to software engineers if they can see how to implement them. In 
this book I present patterns that can be used to turn conceptual models into 
software, and I discuss how that software fits into an architecture for a large 
information system. I also discuss specific implementation tips with the patterns. 

I wrote this book because this was the book that I wanted to read when I 
started out. Modelers will find ideas in this book to help them begin working in a 
new domain. The patterns contain useful models, the reasoning behind their 
designs, and when they should and should not be applied. With this information 
a modeler can adapt the models to fit a specific problem. 

The patterns in this book can also be used in reviewing models—to see what 
might have been left out and to suggest some alternatives that may lead to 
improvement. When I review a project, I usually compare what I see with the 
patterns I have learned from previous work. I have found that being aware of 
patterns in my work helps me to apply my past experiences more easily. Patterns 
like this also uncover modeling issues that go beyond what can be covered in a 
simple text book. By discussing why we model things the way we do, we gain a 
greater understanding of how to improve our modeling, even if we don't use the 
patterns directly. 

Structure of this Book  

This book is divided into two sections. The first section covers analysis patterns, 
which are patterns from conceptual business models. They provide key 
abstractions from domains such as trading, measurement, accounting, and 
organizational relationships. The patterns are conceptual because they represent 
the way people think about the business, rather than the way a computer system is 
designed. The chapters in this section stress alternative patterns that can be used, 
and the strengths and weaknesses of those alternatives. Although each pattern will 
clearly be useful to those working in the same domain, the basic pattern is often 
useful in other domains. 

The second section focuses on support patterns, which help you use analysis 
patterns. Support patterns show how analysis patterns fit into an information 
systems architecture, how the constructs of conceptual models 
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turn into software interfaces and implementations, and how certain advanced 
modeling constructs relate to simpler structures. 

To describe these patterns, I need a notation. The appendix provides a brief 
discussion of the notation I use and what the symbols mean. I do not use a single 
method but prefer to mix techniques from different methods. The appendix is not 
designed to be a tutorial on techniques, but it should provide an outline and 
refresh your memory. It also tells you where to find a tutorial on the techniques I 
use. 

Each section is divided into chapters. Each chapter on analysis patterns 
contains patterns that are related by a loose notion of subject area, influenced by 
the projects that spawned them. This organization reflects the fact that any 
pattern must come from a practical context. Each pattern appears in its own 
subsection within a chapter. I do not use any of the formal headings for patterns 
that are used by some patterns authors (see Section 1.2.2). I describe each pattern 
in a form that is as close to the original project form as is reasonable, with a 
minimum of abstraction. I add examples to show the use of the pattern within its 
original domain and also to suggest how the pattern might be used in other 
domains. One of the greatest difficulties of patterns is abstracting them into other 
domains; I follow the principle that this should be left to the reader (see Section 
1.2.3). 

This book is thus a catalog, rather than a book to be read from cover to cover. 
I have tried to write each chapter in such a way that it can be read independently 
from the other chapters. (This is not always possible, however. Whenever a 
chapter requires that another chapter be read first, I say so in the chapter 
introduction.) Each chapter has an introduction that explains the general subject 
area of the chapter, summarizes the patterns in the chapter, and says what projects 
the patterns originated from. 

How to Read this Book  

I suggest reading all of Chapter 1 first and then reading each chapter introduction. 
Then feel free to delve into the chapters in any order you like. If you are not 
familiar with the approach I take to modeling, or the notation and concepts I use, 
read the appendix. The Table of Patterns gives a brief summary of what each 
pattern is about, so you can use that to help you explore or to find a pattern when 
you come back to the book at a later time. It is important to stress that each pattern 
in this book is useful outside the domain that gave it birth. Thus I encourage you to 
look into chapters that you might think are outside your field of interest. For 
example, I found that models of observation and measurement designed for health 
care proved to be very useful for corporate financial analysis. 



 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

xviii    Preface 

Who Should Read this Book  

This book can be useful to a range of readers, although different readers will 
learn different things from it and may need some different preparations. 

I expect my biggest audience to be analysts and designers of object-oriented 
(OO) computer systems, particularly those working at the analysis end. Such 
readers should have made at least some use of an OO analysis and design method. 
This book does not provide any introduction to this subject, so I would suggest 
first reading a book on OO analysis and design if you are new to this field. I must 
stress that the patterns in this book are conceptual in nature, and I use a very 
conceptual approach to modeling. This leads to some stylistic differences from 
those texts that use a more implementation-based approach to modeling. 

A small, but very important, audience consists of those people who act as 
domain experts for a modeling project. Such readers do not require a knowledge 
of computers but do need to know about conceptual modeling. One of the main 
reasons I use conceptual models in this book is to make things easier for this 
group of readers. The modeling project here may be analysis for computer system 
development or BPR. I have taught many professionals (including doctors, 
financial traders, accountants, nurses, and payroll supervisors) this kind of 
modeling and have found that a software background is neither an advantage nor 
a disadvantage to conceptual modeling. The business model patterns are as much 
about business modeling as they are about computer systems analysis (see 
Section 1.4). Any such reader should take a course on OO analysis that stresses the 
conceptual aspect. (Odell's book [ I ]  is particularly valuable in this respect.) 

I hope many programmers will delve between these covers, although some 
programmers may take exception to the lack of code and the conceptual slant. For 
these readers I suggest you take particular note of Chapter 14, which should help 
to explain the relationship between the conceptual models and the resulting 
software. 

This is an object-oriented book, and I do not hesitate in proclaiming my belief 
that the object-oriented approach is the superior way to develop software. These 
models, however, are primarily conceptual models, and many data modelers 
have had a long tradition of using conceptual (or logical) models. Data modelers 
should find many of the patterns useful, particularly if they use more advanced 
semantic techniques. The object-oriented features of the models will reveal many 
of the differences between object-oriented and traditional approaches. I would 
encourage such readers to use this book in conjunction with an OO analysis book 
that stresses the conceptual side of modeling and the links between OO and 
semantic data modeling. 
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Managers will find the book useful as a starting point for development 
activity. Starting from a pattern can help to clarify goals, and project planning can 
take advantage of the broad ground that patterns map out. 

I have not aimed this book at students. I've written it more for the professional 
software engineer. I hope, however, that some students will take a look. When I 
was learning analysis and design, I found it difficult because there were few good 
examples I could learn from, examples that came out of the world outside the 
university. Just as looking at good code can teach you a lot about programming, 
looking at good models can teach you a lot about analysis and design. 

A Living Book  

Every author I know shares a frustration: Once a book is published it is fixed. The 
book spreads its advice around the community, yet the author has little way of 
expressing changes. I know how much I keep learning, and I am sure this 
learning will modify my ideas. I want these changes to be passed on to my 
readers. 

With this book, Addison-Wesley will provide a web site <http:// 
www.aw.com/cp/fowler.html> which will be used to pass on further materials to 
keep this book alive. At this stage I am not sure exactly what it will contain, but I 
expect the following: 

• any new things I learn about the patterns in the book. 

• answers to questions about the book 

• useful commentary from others about the patterns 

• new analysis patterns by myself, and by others 

• when the Unified Modeling Notation appears (or whatever it is called by then) 
I will redraw all the diagrams in the book in the new notation and put them 
on the site. 

This site will be a complement to the book, so keep an eye on it and use it to 
let me know how to improve and develop the ideas between these pages. 
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Introduction  

1.1     Conceptual Models  

Most books on object modeling talk about analysis and design. There is little 
agreement on where the boundary between these two activities lies. An important 
principle in object development is designing software so that its structure reflects 
that of the problem. One result of this principle is that the models produced from 
both analysis and design end up deliberately similar, leading many people to 
think that there is no difference. 

I believe a difference between analysis and design still exists, but it is 
increasingly becoming one of emphasis. When doing analysis you are trying to 
understand the problem. To my mind this is not just listing requirements in 
use-cases [8]. Use-cases are a valuable, if not essential, part of system 
development, but capturing them is not the end of analysis. Analysis also 
involves looking behind the surface requirements to come up with a mental 
model of what is going on in the problem. 

Consider someone who wants to write software to simulate a game of 
snooker. This problem could be evaluated in terms of use-cases that describe the 
surface features: "The player hits the white ball so it travels at a certain speed; it 
hits the red ball at a certain angle, and the red ball travels a certain distance and 
direction." You could film several hundred such incidents and measure ball 
speeds, angles, distances traveled. But these examples alone would probably not 
be enough to write a good simulation. To do the job well, you would need to look 
behind the surface to understand the laws of motion that relate mass, velocity, 
momentum, and the like. Understanding those laws would make it much easier to 
see how the software could be built. 
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2    Conceptual Models 

The snooker ball problem is unusual because the laws are well known and 
have been well known for a long time. In many enterprises the equivalent 
foundations are not so well understood, and we have to make the effort to uncover 
them. To do this we create a conceptual model—a mental model that allows us to 
understand and simplify the problem. Some kind of conceptual model is a 
necessary part of software development, and even the most uncontrolled hacker 
does it. The difference is whether we think about conceptual modeling as a 
process in itself or as one aspect of the entire software design process. 

It is important to remember that a conceptual model is a human artifact. The 
laws of motion that a developer uses to create something like the snooker 
simulation are not part of the real world; they represent a model of the real world, 
a model created by human beings. They are effective, in engineering terms, 
because they allow us to better understand what happens in the real world. Also, a 
developer can use more than one model; for the snooker simulation a Newtonian 
or Einsteinian model could be used. You could argue that the Einsteinian model 
would be more correct because it takes into account changes of mass due to the 
speed the balls are traveling and is thus more precise. The developer would almost 
certainly prefer the Newtonian model, however, because the speeds would be so 
low that they would make a negligible difference to the simulation but would 
involve a lot of extra complexity. This illustrates an important principle: There is 
no right or wrong model, merely one that is more useful for the job at hand. 

Modeling Principle   Models are not right or wrong; they are more or less useful. 

The choice of model affects the flexibility and reusability of the resulting 
system. You might argue that the developer should use an Einsteinian model 
because the resulting software would be flexible enough to handle problems 
involving atomic collisions. But this is a dangerous path to go down. Building too 
much flexibility into a system can make it too complex, and this is bad 
engineering. Engineering demands a trade-off between the cost of building and 
maintaining an artifact and the features it will provide. To build software that is fit 
for a purpose, you have to develop a conceptual model that is appropriate to your 
needs. You need the simplest model you can get away with. Don't add flexibility 
you are unlikely to use. 

The simplest model is not necessarily the first one you think of. Finding a 
simple solution takes a lot of time and effort, which can be frustrating. People 
often react to a simple model by saying "Oh yes, that's obvious" and thinking "So 
why did it take so long to come up with it?" But simple models are always worth 
the effort. Not only do they make things easier to build, but more importantly they 
make them easier to maintain and extend in the 
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future. That's why it is worth replacing software that works with simpler software 
that also works. 

How do you express a conceptual model? For many people the conceptual 
model is built into their software language. The advantage of a language is that 
you can execute a model to verify its correctness and to further explore it. This is 
no small advantage; I often use Smalltalk in my conceptual modeling. Another 
advantage is that you have to turn the model into a programming language 
eventually, so modeling in your target language saves the step of translation. 
(There are tools that can interpret or compile analysis and design models, thus 
reducing the problems associated with translation.) 

The danger of using a language is that it is easy to get lost in the issues of 
using that language and lose sight of the problem you are trying to understand. 
(This is less of a problem with higher-level languages, such as Smalltalk. I know 
several gifted conceptual modelers who do their modeling in that language.) 
Modeling in a programming language also presents the danger of tying the models 
to that language. The model may use features of that language that are not 
available in other languages. This does not mean that the conceptual model cannot 
be moved to another language, but it can make the process more difficult. 

To avoid these problems, many people use analysis and design techniques for 
conceptual modeling. These techniques can help people concentrate on 
conceptual rather than software design issues, and they can be easier to teach to 
domain experts. Analysis and design techniques use graphics to be more 
expressive. They may be rigorous, but they don't have to be. Techniques designed 
to be executable must be rigorous, but when analysis methods are used in 
conjunction with a programming language, they need not be as rigorous. 

One of the main reasons I use analysis and design techniques is to involve 
domain experts. It is essential to have domain experts involved in conceptual 
modeling. I believe that effective models can only be built by those that really 
understand the domain—full-time workers in the domain, not software developers, 
no matter how long they have worked in the domain. If domain experts are to do 
conceptual modeling, they must be taught. I have taught OO analysis and design 
techniques to customer service supervisors, doctors, nurses, financial traders, and 
corporate financial analysts. I have found that an IT background is neither a help 
nor a hindrance to skill in modeling. The best modeler I know is a physician at a 
London hospital. As the professional analyst and modeler, I bring valuable skills 
to the process: I can provide rigor, I know how to use the techniques, and my 
outsider's view can challenge accepted wisdom. All this is not enough. However 
much work I do in health care computing, I will never know? as much about 
health care as a doctor or nurse. Expert knowledge is central to a good analysis 
model. 
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Analysis techniques are intended to be independent of software technology. 
Ideally a conceptual modeling technique is totally independent of software 
technology, as are the laws of motion. This independence would prevent 
technology from hindering an understanding of the problem, and the resulting 
model would be equally useful for all kinds of software technology. In practice 
this purity does not occur. I try to develop very conceptual models that focus 
entirely on the problem, yet my techniques are object-oriented and hence reflect a 
software design approach. You can get a good sense of how software technology 
affects conceptual modeling by comparing the models in this book with those of 
David Hay [7]. We are both trying to build conceptual models, yet our results are 
different because he uses a relational technique and I use an object-oriented one. 
This is an inevitable result of the nature of software. Building software is building 
virtual machines. The languages in which we build software can both control the 
physical machine and express the needs of the problem. One of the reasons our 
languages change is because we find better ways to express the needs of a 
problem. These language changes thus influence the way we build conceptual 
models. Despite a few tricky areas (see Chapter 14), the resulting models are not 
diffi cult to turn into object-oriented software. 

One caution I do need to raise now, however, is that conceptual models relate 
closely to software interfaces rather than software implementations. One of the 
important things about object-oriented software is that it separates interface from 
implementation. Unfortunately this distinction is too easily lost i n practice 
because common languages do not make an explicit distinction between the two. 
The difference between a software component's interface (its type) and its 
implementation (its class) is extremely important. Many important 
delegation-based patterns in the "Gang of Four" book [6] rely on this distinction. 
When implementing these models, don't forget the difference. 

Modeling Principle   Conceptual models are linked to interfaces (types) not imple-
mentations (classes). 

1.2     The World of Patterns  

In the last couple of years, patterns have become one of the hottest topics in the 
object community. They are rapidly becoming the leading-edge fad, generating a 
huge amount of interest and the usual hype. We are also seeing internal battles 
over what fits into the community, including many arguments about exactly what 
a pattern is. Certainly it is difficult to find any common definition of pattern. 
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The roots of the patterns movement come from various sources. In recent 
years an increasing number of people felt that the software world was not very 
good at describing and proliferating good design practice. Methodologies 
abounded, but they defined a language for describing designs rather than 
describing actual designs. There was (and still is) a dearth of technical papers 
describing useful designs based on practice, which could be used to educate and 
inspire. As Ralph Johnson and Ward Cunningham put it: "Projects fail despite the 
latest technology for lack of ordinary solutions" [4], 

Patterns evolved from several initiatives. Kent Beck and Ward 
Cunning-ham, two of the pioneers of Smalltalk, came across the ideas of 
Christopher Alexander, who had developed a theory and collection of patterns 
in architecture. Bruce Anderson led workshops at OOPSLA in the early 1990s 
that investigated building a handbook for software architects. Jim Coplien's C++ 
book [3] described idioms useful in C++. A number of these people formed the 
Hillside Group to explore these ideas further. 

A greater public knowledge of the movement was triggered by the publication 
of the seminal "Gang of Four" book [6] and the PLoP (Pattern Language of 
Programming) conference started by the Hillside group in 1994 [4]. 

I had had very little contact with this growing community. I had long 
wanted to read books that described conceptual models, because I felt such 
books would give me good ideas. I didn't feel I could write about such things 
until I had enough models to form a worthwhile book. I was interested in the 
patterns movement and I found many of their principles appealing, but I was put 
off by the impression of a cliquey group that was obsessed with the architect 
Christopher Alexander and had a very stylized form of pattern writing. In the 
last year I have had more contact and attended the second PLoP. The most 
noticeable aspect of the patterns community is that it is quite a diverse group. 
Yes, there are those who seem to regard Alexander's works as sacred text, with 
alternative interpretations to be argued over. There are also plenty of those who 
dismiss Alexander as irrelevant. There are those who seem to see a mystical 
virtue in patterns, and those who can't stand the "touchy-feely" aspect of 
patterns. There are those who see patterns as overturning analysis and design 
methods, those who see conceptual modeling as a waste of time, and those who 
have encouraged me to produce this book to show what analysis, or conceptual, 
patterns can be like. 

The idea of software patterns is not confined to the object-oriented com-
munity; David Hay has written a valuable book on data model patterns [7]. The 
models follow relational data modeling style, but they are very conceptual 
models. This makes the models valuable even if you are using object technology. 
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1.2.1       Christopher Alexander  

For many people, the word pattern has appeared in software almost entirely due to 
the work of Christopher Alexander, a professor of architecture at the University of 
California at Berkeley. Alexander developed a range of theories about patterns in 
architecture and published these in a series of books. His pattern language book 
[1], a catalog of patterns in architecture, is seen as the prototype to patterns books 
in software. His style of writing patterns is used, to some extent, by many pattern 
writers. His phrase "a quality without a name" is often quoted as an attribute that 
all good patterns should have. 

Many people, however, would deny Alexander his central role as the 
inspiration for software patterns. Peter Goad points out that the notion of patterns 
is used by many writers in other fields, many of whom he thinks are better 
examples than Alexander. Many people question Alexander's standing in the 
architectural profession: His ideas are by no means universally accepted. The 
"Gang of Four" book has had much more influence in software patterns than 
Alexander's work, and three out of those four authors had not read Alexander 
before writing that book. 

1.2.2       The Literary Form  

One of the most distinctive features of pattern writing is the form in which it is 
often done. Frequently patterns are written in a very set format. There is, however, 
no single format, as a quick glance through PLoP papers will confirm. Many 
people follow the inspiration of Alexander's style. Others follow the format used 
by the "Gang of Four." 

It is commonly said that a pattern, however it is written, has four essential 
parts: a statement of the context where the pattern is useful, the problem that the 
pattern addresses, the forces that play in forming a solution, and the solution that 
resolves those forces. This form appears with and without specific headings but 
underlies many published patterns. It is an important form because it supports the 
definition of a pattern as "a solution to a problem in context," a definition that 
fixes the bounds of the pattern to a single problem-solution pair. 

To many people the use of a fixed format, whether that of the "Gang of Four" 
or the context-problem-forces-solution form, is one determiner of a pattern. Use of 
an accepted pattern form clearly marks the pattern as something different from 
the average piece of technical writing. 

A fixed form carries its own disadvantages, however. In this book, for 
instance, I do not find that a problem-solution pair always makes a good unit for 
a pattern. Several patterns in this book show how a single problem can be solved 
in more than one way, depending on various trade-offs. Although this could 
always be expressed as separate patterns for each solution, the notion of 
discussing several solutions together strikes me as no less elegant than 
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pattern practice. Of course, the contents of the pattern forms make a lot of 
sense—any technical writing usually includes context, problem, forces, and 
solution. Whether this makes every piece of technical writing a pattern is another 
matter for discussion. 

One principle of pattern form that I do agree with unreservedly is that they 
should be named. One advantage of patterns work is how it can enrich the 
vocabulary of development. By just saying "use a protection proxy here" or "we 
used observations to record product metrics," we can communicate our design 
ideas very effectively. Again, there is nothing unique about patterns here; it is a 
common technique of technical writing to coin new terms for concepts, but 
looking for patterns encourages this process. 

1.2.3       The Author's Level of Abstraction  

To many patterns people, one of the key elements of patterns is that they are 
discovered by looking at what happens in day-to-day development, rather than by 
academic invention. This is an element that I find particularly important. All the 
patterns in this book are the result of one or more actual projects and describe 
useful highlights in that work. 

I chose patterns to include in this book that I believe are useful to other 
developers. These patterns are not only useful to developers within the same 
domain as the pattern, but frequently a pattern is useful in other domains as well. 
A good example of this is the portfolio pattern (see Section 9.2). This pattern was 
originally created as a way of grouping financial contracts together. This pattern 
can be used to group any kind of object by defining an implicit query and is 
sufficiently abstract to be used in any domain. I've seen evidence of this: After the 
early drafts of this book were written, we used this pattern in several places in 
another project, completely independent of trading. 

The question before me is how much should I make of this wide abstraction. If 
I come across a pattern that I think could be useful in more domains than the one 
I found it in, how abstract should I make that pattern? The problem with 
abstracting it beyond its original domain is that I cannot be as certain of its 
validity. The project that the pattern appeared in tested the pattern through long 
debate, implementation, and (above all) the knowledge of the domain experts. As 
soon as I abstract further, I leave those safe harbors behind and guess how my 
discovery might fare on the open sea. There are many unknowns out there. Thus 
my view (which many patterns people seem to share) is that you must judge 
whether the pattern is useful to your domain, which you know infinitely better 
than I do, or you have access to the appropriate domain experts. In this book I use 
examples to suggest the wider applicability of a pattern. Any example that lies out 
of the original domain of the pattern is tentative, but they are there to spark your 
imagination, to make you ask yourself, "Is this useful for me?" 
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1.3     The Patterns in this Book  

The definition I use for pattern is an idea that has been useful in one practical 
context and will probably be useful in others. I use the term idea to bring out the 
fact that a pattern can be anything. It can be a group of collaborating objects, as in 
the "Gang of Four's" patterns, or Coplien's principles for project organization [5]. 
The phrase practical context reflects the fact that patterns are developed out of 
the practical experience of a real project. It is often said that patterns are 
discovered rather than invented. This is true in the sense that models turn into 
patterns only when it is realized that they may have a common usefulness. A 
particular project comes first, and not all ideas of a particular project are patterns; 
patterns are those things that developers think may be useful in other contexts. 
Ideally this comes from actually using them elsewhere, but it may just reflect the 
opinion of the original developers. The patterns in this book fall into two 
categories: 

• Analysis patterns are groups of concepts that represent a common con-
struction in business modeling. It may be relevant to only one domain, or it 
may span many domains. Analysis patterns form the heart of this book. 

• Supporting patterns are patterns in themselves and are valuable on their own. 
They have a special role in this book, however: They describe how to take 
the analysis patterns and apply them, to make them real. 

1.3.1 Examples for Modeling  

The average book on analysis and design is an introductory book that typically 
explains the author's methodology. Such introductory books do not cover many 
important problems in modeling—problems that can only surface in the context of 
a large project. Such problems are difficult to understand outside that context and 
require the reader to have some modeling experience to fully appreciate them. 

Patterns provide a good way of looking at these problems. Many patterns in 
this book deal with general modeling issues by looking at a particular problem in 
one domain, where it is easier to understand. Examples are the handling of 
methods that can be linked to individual object instances (see Section 6.6), 
subtyping of state diagrams (see Section 10.4), separating models into knowledge 
and operational levels (see Section 2.5) and using portfolios to group objects by a 
query (see Section 9.2). 

1.3.2      Origins of the Patterns  

As mentioned above, the patterns in this book are based on my personal 
experiences applying object modeling to large corporate information systems. 
This explains their somewhat random selection. I can only write about 
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patterns I know about, that is, patterns that come from projects in which I have 
participated. 

Although these models are based on intensive projects that sometimes took 
several months to complete, I have made no attempt to discuss full models. I 
could write a whole book describing one domain. While such a book would be 
interesting to someone working in that field (and I hope such books will appear 
one day), I wanted this book to span fields and cross-pollinate between them. A 
second reason for describing highlights rather than complete models is client 
confidentiality. 

I have not attempted to be entirely faithful to the models. I have made 
changes for several reasons. I have simplified some of the abstractions, pre-
serving the spirit of the original while making it easier to explain and to follow. I 
have also abstracted some models a little above the specific domain. The 
abstractions are limited to those that were considered reasonable in the project 
but fell outside the scope of the project. In some cases I have altered the models 
so that they reflect my ideas rather than those chosen by the project team. As a 
consultant, I can only advise, and sometimes my view does not win. In these 
cases I have presented both points of view in the text but tend to build on my own 
opinions. 

When it comes to the naming of object types, I have followed the principle of 
using the naming of the source project. There are many points where I have been 
tempted to change names, but as any modeler knows, naming can be one of the 
most difficult parts of modeling. Some of the names may seem a little odd, but no 
name is perfect. 

1.3.3       Patterns Across Domains  

Whatever domain you work in, I hope that you will study patterns outside your 
domain. Much of the book includes general modeling issues and lessons 
applicable outside the domain being modeled. Knowledge of other domains is a 
valuable tool for abstraction. Specific cases are usually necessary to trigger 
powerful abstractions. Many professionals do not share my luck in working in 
many different domains. Looking at models in different domains can often spring 
new ideas in an unrelated domain. 

But the biggest reason for looking at other domains is that it is not always 
obvious when domains are the same or different. The best example of that in this 
book comes from the health care field, which is modeled in several chapters. After 
working on a health care model, I was involved in a project supporting financial 
analysis of a large manufacturing company. The problem revolved around 
understanding the causes of high-level financial indicators. The health care model, 
essentially a model about diagnosis and treatment, proved remarkably appropriate 
(see Chapters 3 and 4). 
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I suspect that there are a small number of highly generic processes that cut 
across traditional boundaries of systems development and business engineering. 
The diagnosis and treatment model is one; another is the accounting and inventory 
model (see Chapter 6). Many diverse businesses can use a set of very similar 
abstract process models. This raises some significant questions about the 
promised development of vertical class libraries for industry sectors. I believe that 
true business frameworks will not be organized along traditional business lines 
but instead along abstract conceptual processes. 

1.4     Conceptual Models and Business Process 
Reengineerin g 

Most readers will analyze the conceptual models in this book to help develop 
computer systems, but conceptual models have other purposes. Good systems 
analysts have always known that taking an existing process and simply 
computerizing it is not a good use of resources. Computers allow people to do 
things in a different way. Systems analysts have found it difficult to push these 
ideas far enough, however: Their techniques still seem too dependent on software 
thinking. IT people have a hard time getting business leaders to take their ideas 
seriously. 

Working with Jim Odell [9] has always immersed me in business modeling 
rather than software modeling. John Edwards (an early colleague and inspiration) 
always called his approach process engineering, long before BPR (business 
process reengineering) became a hot acronym. Using OO techniques for 
conceptual modeling can really make systems analysis and BPR the same activity. 
All the domain experts that I have taught have quickly seized on its potential to 
think about their own field in a new way. Only the domain experts can really use 
and apply these ideas. 

The models in this book thus have as much to say about business engineering 
as they do about software engineering. Although much of the attention in business 
engineering is about process, most of these patterns are static type models. The 
basic reason for this is the experience from the domains I have worked with. In 
health care we found that although we could make generic type models, which 
applied to all parts of health care, we could not make many meaningful generic 
dynamic models. 

The type models are important. I like to think of type models as defining the 
language of the business. These models thus provide a way of coming up with 
useful concepts that underlie a great deal of the process modeling. The concept of 
accountability has proven very useful in modeling confidentiality policies in 
health care. In working with payroll I have seen how modeling has changed the 
language and perception of the process. 
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1.5     Patterns and Frameworks  

If the average professional is asked what the principal benefit of object tech-
nology is, the answer is almost always reuse. The vision is that of developers 
being able to assemble systems from tried and tested off-the-shelf components. 
Many of these visions have been very slow to appear. In some cases reuse is 
beginning to show, most notably in GUI development and database interaction. 
Where they are not appearing is at the business level. 

There are no components for health care, banking, manufacturing, or the like 
because there is no standard framework for these areas. The most successful 
example of software components is that for Visual Basic. A vital part of this is 
because all the components are based on a common framework—the Visual Basic 
environment. Component developers can develop their wares knowing what kind 
of world they will live in. 

To accomplish component reuse for information systems, a common 
framework must be established. An effective framework must not be too complex 
or too bulky. It should be widely applicable across a large domain and be based on 
an effective conceptual model of that domain. Developing such frameworks is 
difficult, both technically and politically. 

This book does not attempt to define frameworks for various industries.1 This 
book is about describing alternative ways of modeling a situation; frameworks are 
about choosing a particular model. I hope this book will encourage people to think 
about such frameworks and will influence their development. 

1.6     Using the Patterns  

Patterns are a new development in software. We are still developing ways to help 
people learn about patterns and use them in their work. Faced with a large body 
of patterns in this book, it is easy to be overwhelmed. 

The first thing to do is to get a general orientation. After reading this 
introductory chapter, I suggest reading the introduction to each chapter in the 
book. The chapter introduction gives you an idea of the topics covered in the 
chapter. Obviously you can then go ahead and read every chapter, but I have tried 
to write the book so that you don't have to read every chapter to get something out 
of it. If you are working in a particular area, you can read a couple of chapters that 
you think may be appropriate. Another approach people have suggested is to look 
at the diagrams. If something catches your eye as interesting, then read the 
examples. The examples are often a good 

It should be mentioned that many chapters are based on a conceptual framework designed for health care— the Cosmos 
Clinical Process Model [2]. 
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way of giving you an idea of whether the pattern will be useful to you. The Table 
of Patterns also acts as a summary, so you can start there or use it later to jog your 
memory. 

Once you have identified a potentially useful pattern, then try it out. I've 
found that the only way I really understand how a pattern works is to try it out on 
a problem of my own. You can do this mentally by sketching a particular model 
on paper or by trying out some code. Try to make the pattern fit, but don't try too 
hard. You may find the pattern just wasn't the right one. You have not wasted 
your time—you have learned something about the pattern, and probably 
something about the problem, too. If a pattern does not fit your needs exactly, 
then don't hesitate to modify it. Patterns are suggestions, not prescriptions. I treat 
them as recipes in recipe books: They give me a starting point, a basic plan of 
putting the dish together, and I don't hesitate to adapt them to my particular 
circumstances. However well it fits, make sure you read the full text of the pattern 
so you get a sense of its limitations and important features. Do this both before 
you try to use it and after you have applied it. If you learn something about the 
pattern that isn't in the text, don't just curse me—send me an e-mail to let me know 
(100031.3311@compuserve .com). I am very interested to see how people use 
these patterns. 

When I use patterns on a project, I have to be aware of the client's perspective. 
Some clients don't like to think of themselves as similar to any other client. They 
see themselves as very different and are suspicious of foreign ideas. With these 
clients I don't reveal the patterns. If I see where a pattern may apply, I use it to 
help me frame questions. These questions may well lead the client to something 
that fits the pattern, but I do it indirectly, using questions to prod them. 

Other clients are happy to see me openly using patterns and are reassured to 
see that I am reusing my past work. With these clients I try the pattern out in front 
of them and question them closely to see if they are happy with it. It is important 
to be clear to them that I am not holding them up as gospel, and if they are not 
comfortable, I will try something else. The danger with these clients is that they 
might take the patterns without questioning them enough. 

Patterns are also important for reviews of both your own and others' work. 
For your own work, look to see if there are any patterns that are similar. If you 
find any, then try them out. Even if you believe your solution is better, use the 
patterns and work out why your solution is more appropriate. I find this a useful 
technique to understand problems better. A similar process works for reviewing 
the work of others. If you find a similar pattern, use it as a platform to ask 
questions of the work you are reviewing: What are its strengths compared to the 
pattern? Does the pattern give you anything the reviewed model does not have, 
and if so, is it important? I compare models I review with the patterns I know and 
usually find the process teaches me a 
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great deal about both the problem and the patterns as I ask "Why do it this way?" 
It is amazing how much you learn by simply asking why. 

Writing a book always implies a certain authority. It is easy for a reader to 
treat a book as a statement of certainty. Although some writers may have a sense 
of the certain correctness of what they say, I do not. These patterns are based on 
real experiences, and as such I am sure they will be of value to you. However, I 
am, more than anyone, painfully aware of their limitations. To be truly 
authoritative, patterns such as these must be tested by many applications—more 
than my experience allows. 

This does not mean that these patterns will not be helpful. They represent a 
lot of careful thought. Just as they give me a head start in my modeling work, I 
hope they will help you, too. The important thing is to be conscious that they are 
a starting point, not a destination. Spend time understanding how these patterns 
work, but look for how they were developed and the limitations they have. Don't 
be afraid to press on further and develop new and better ideas. When I work with 
a client, I do not take the patterns as gospel, even those I feel I invented. The 
demands of each project make me adapt, refine, and improve the patterns. 

Modeling Principle   Patterns are a starting point, not a destination. 

Modeling Principle   Models are not right or wrong, they are more or less useful. 
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Analysis 
Patterns  

This portion of the book presents patterns from a number of 
business domains. We start in Chapter 2 by looking at patterns for 
describing relationships that define responsibilities between parties. 
These include formal organizational and contractual relationships, 
as well as more informal relationships. Chapters 3 and 4 consider 
observation and measurement, presenting patterns for recording 
facts about the world. The origins for Chapter 3 are in health care. 
Chapter 4 provides a number of patterns from the realm of corporate 
financial analysis. 

Chapter 5 looks at how we refer to objects, not the addressing and 
memory management of languages, but the indexing we need when 
referring exactly to objects in our working life. Chapters 6 and 7 
examine basic patterns for accounting, describing how a network of 
accounts and posting rules can form an active accounting system. 
Planning is the subject of Chapter 8, where we examine the 
relationship between standard plans and one-off plans, and how to 
plan and record the use of resources. 

Chapter 9 examines trading in situations where prices are fluid and 
we need to understand how these price changes affect the profits of 
our trades. Chapter 10 then looks at the more specialized area of 
derivative trading, but with an eye at the problems of situations 
which lead us to build inheritance hierarchies of business objects. 
Derivatives are one example of more common problems. Finally in 
Chapter 11 we look beyond objects, to packages of objects, and visit 
some of the problems of organizing them in a way that improves 
their maintainability and flexibility. 
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Accountability  

The concept of accountability applies when a person or organization is 
responsible to another. It is an abstract notion that can represent many specific 
issues, including organization structures, contracts, and employment. 

This chapter begins by introducing the important pattern of party (2.1)— the 
supertype of person and organization. The organization structure problem is then 
used to show the development of the accountability model. Simple organization 
structures can be modeled with organization hierarchies (2.2). When many 
hierarchies develop the model becomes too complex, and the organization 
structure (2.3) pattern is required. The combination of the party and organization 
structure patterns produces accountability (2.4). Accountabilities can handle 
many relationships between parties: organization structures, patient consent, 
contracts for services, employment, and registration with professional bodies. 

When accountabilities are used it is valuable to describe what kinds of 
accountabilities can be formed and the rules that constrain these accountabilities. 
These rules can be described by instances of types at the accountability 
knowledge level (2.5). This level includes the party type, which allows parties to 
be classified and subtyped with party type generalizations (2.6) without 
changing the model. Hierarchic accountability (2.7) represents those interparty 
relationships that do require a strict hierarchy. In this way accountabilities can be 
used for both hierarchic and more complex networks of relationships. 

Accountabilities define responsibilities for parties. These responsibilities 
can be defined through operating scopes (2.8). Operating scopes are the clauses 
of the accountability's contract, rather like line items on an ongoing order. As 
these responsibilities accumulate it can be useful to attach them to a post (2.9) 
rather than to the person who occupies it. 

17 
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This chapter is based on many projects: Accountabilities are a common theme. 
Original ideas developed with a customer service project for a utility and an 
accounting project for a telephone company. The accountability model was 
developed in the Cosmos project for the UK National Health Service [2]. 

Key Concepts    Party, Accountability 

2.1     Party  

Take a look through your address book, and what do you see? If it's anything like 
mine, you will see a lot of addresses, telephone numbers, the odd e-mail address... 
all linked to something. Often that something is a person, but once in awhile a 
company shows up. I call Town Taxi frequently, but there's no particular person I 
want to speak to there—I just want to get a cab. A first attempt at modeling the 
address book might be Figure 2.1, but it has a duplication that is painful to my eye. 
Instinctively I look for a generalization of person and company. This type is a 
classic case of an unnamed concept—one that everybody knows and uses but 
nobody has a name for. I have seen it on countless data models on various names: 
person/organization, player, legal entity, and so on. 

 
Figure 2.1    Initial model of an address book. 

This model shows the similar responsibilities of person and organization. 

The term I prefer is party. In Figure 2.2 I define a party as the supertype of a 
person or organization. This allows me to have addresses and phone numbers for 
departments within companies, or even informal teams. 
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Figure 2.2     Figure 2.1 generalized using party. 

Party should be used in many situations where person or organization is used. 

It is surprising how many things relate to party rather than to person or 
organization. You receive and send letters to both people and organizational 
units; I make payments to people and organizations; both organizations and 
people carry out actions, have bank accounts, file taxes. These examples are 
enough, I think, to make the abstraction worthwhile. 

Example In the UK National Health Service, the following would be parties: Dr. Tom Cairns, 
the renal unit team at St. Mary's Hospital, St. Mary's Hospital, Parkside District Health 
Authority, and the Royal College of Physicians. 

2.2     Organization Hierarchies  

Let us consider a generic multinational: Aroma Coffee Makers, Inc. (ACM). It has 
operating units, which are divided into regions, which are divided into divisions 
which are divided into sales offices. We can model this simple structure using 
Figure 2.3. This is not a model that I would feel content with, however. If the 
organization changes, say regions are taken out to provide a flatter structure, then 
we must alter the model. Figure 2.4 provides a simpler model—one that is easier 
to change. The danger with the recursive relationship shown in Figure 2.4 is that it 
allows a division to be part of a sales office. We can deal with this by defining 
subtypes to correspond with the levels and by putting constraints on these 
subtypes. Should the organizational hierarchy change, we would alter these 
subtypes and rules. Usually it is easier to change a rule than to change the model 
structure, so I prefer Figure 2.4 over Figure 2.3. 
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Figure 2.4   Organization supertype with hierarchic relationship.  

The hierarchic association provides the most flexibility. Constraints due to levels have to 
be added as rules on the subtypes.  

The hierarchic structure provides a certain amount of generality but has some 
limitations, including the fact that it only supports a single organizational 
hierarchy. Assume that ACM attaches service teams for its major lines of coffee 
makers to its sales offices. These teams have a dual reporting structure: They 
report to the sales team as well as the service departments for each product family, 
which in turn report to product type support units. Thus the service team for the 
2176 high-volume cappuccino maker in Boston (50 cappuccinos a minute) 
reports to the Boston sales office but also to the 2170 family service center, 
which reports to the high-volume Italian coffee division, which reports to the 
high-volume coffee products service division, which reports to coffee products 
service division. (I'm not making this up entirely!) Faced with this situation we 
can add a second hierarchy, as shown in Figure 2.5. (More rules would be 
required, similar to those in Figure 2.4, but I will leave the addition of those as an 
exercise for the reader.) As it stands this approach works well, but as more 
hierarchies appear the structure will become unwieldy. 
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Figure 2.5   Two organizational hierarchies. 

Subtypes of the organization are not shown. If there are many hierarchies, this will soon 
get out of hand. 

2.3     Organization Structure  

If it looks like the model will have several hierarchies, we can use a typed 
relationship, as shown in Figure 2.6. We turn the hierarchic associations into a 
type and differentiate the hierarchies by using varied instances of the organization 
structure type. This would handle the above scenario with two instances of the 
organization structure type: sales organization and service organization. 
Additional hierarchies could be added merely by adding more organization 
structure types. Again, this abstraction gives us more flexibility for a modest 
increase in complexity. For just two hierarchies it would not be worth the effort, 
but for several it would be. Note also that the organization structure has a time 
period; this allows us to record changes in the organization structure over time. 
Note further that I have not modeled the organization structure type as an 
attribute—a very important factor with type attributes, as we will see later. 

Example The service team for the 2176 high-volume cappuccino maker in Boston reports to 
the Boston sales office. We would model this as an organization structure whose parent is 
the Boston sales office, subsidiary is the Boston 2176 service team, and organization 
structure type is line management. 

Example The service team for the 2176 high-volume cappuccino maker in Boston also 
reports to the 2170 family service center in the product support structure. We would model 
this as a separate organization structure whose parent is the 2170 family service center, 
subsidiary is the Boston 2176 service team, and organization structure type is product 
support. 

Simplifying the object structure puts more emphasis on the rules. The rules 
are of the form, "If we have an organization structure whose type is sales 
organization and whose child is a division, then the parent must be a region." Note 
that the rules are expressed by referring to properties of the organization 
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Figure 2.6    Using a typed relationship. 

Each relationship between organizations is defined by an organization structure type. It is 
better than explicit associations if there are many relationships. 

structure, which implies that the rules should be on the organization structure. 
However, this means that extending the system by adding a new organization 
structure type would require changing the rules in the organization structure. 
Furthermore, the rules would get very unwieldy as the number of organization 
structure types increases. 

The rules can be placed instead on the organization structure type, as shown 
in Figure 2.7. All the rules for a particular organization structure type are held in 
one place, and it is easy to add new organization structure types. 

Figure 2.7 does not work well, however, if we change the organization 
structure types rarely but add new subtypes of organization frequently. In that 
case each addition of a subtype of organization would cause rule changes. It is 
better to place the rules on the subtypes of the organization. The general point 
here is to minimize the model changes that occur. Thus we should place the rules 
in the most volatile area in such a way that need not touch other parts of the 
model. 

Modeling Principle Design a model so that the most frequent modification of the model 
causes changes to the least number of types. 

2.4     Accountability  

Essentially Figure 2.7 shows one organization having a relationship with another 
for a period of time according to a defined rule. Whenever any statement is made 
about organizations, it is always worth considering whether the 
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Figure 2.7   Adding a rule to Figure 2.6. 

The rule enforces constraints such as sales offices reporting to divisions. 

same statement can also apply to people. In this case I ask, "Can people have 
relationships to organizations or other people for a period of time according to a 
defined rule?" This is certainly true, and thus I can, and should, abstract Figure 
2.7 to apply to a party. As I do this I name the new abstraction an accountability, 
as shown in Figure 2.8. 

 
Figure 2.8   Accountability. 

Using a party allows accountability to cover a wide range of interparty responsibilities, 
including management, employment, and contracts. 
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Example John Smith works for ACM. This can be modeled by an accountability whose 
commissioner is ACM, responsible party is John Smith, and accountability type is 
employment. 

Example John Smith is the manager of the Boston 2176 service team. This can be modeled 
as an accountability whose type is manager, with John Smith responsible to the Boston 
2176 service team. 

Example Mark Thursz is a member of the Royal College of Physicians. This can be modeled 
as an accountability whose type is professional registration, with Mark Thursz responsible to 
the Royal College of Physicians. 

Example John Smith gives his consent to Mark Thursz to perform an endoscopy. This can be 
modeled as an accountability whose type is patient consent, with Mark Thursz responsible 
to John Smith. 

Example St. Mary's Hospital has a contract with Parkside District Health Authority to 
perform endoscopies in 1996/97. This can be modeled as an accountability whose type is 
endoscopy services, with St. Mary's Hospital responsible to Parkside. The time period on the 
accountability would be January 1, 1996, to December 31, 1997. A subtype of accountability 
could provide additional information, such as which operations were covered and how 
many should be performed during the contract's duration. 

Modeling Principle Whenever defining features for a type that has a supertype, consider 
whether placing the features on the supertype makes sense. 

As the examples indicate, abstracting from organization structure to 
accountability introduces a wide range of additional situations that can be 
captured by the model. The complexity of the model has not increased, however. 
The basic model has the same structure as Figure 2.7; the only change is that of 
using party instead of organization. 

2.5     Account ability Knowledge Level  

Complexity has been introduced, however, in that there are many more 
accountability types than there would be organization structure types. The rules 
for defining accountability types would thus become more complex. 

This complexity can be managed by introducing a knowledge level. Using a 
knowledge level splits the model into two sections: the operational and 
knowledge levels. The operational level consists of accountability, party, and 
their interrelationships. The knowledge level consists of accountability type, 
party type, and their interrelationships, as shown in Figure 2.9. 

At the operational level the model records the day to day events of the 
domain. At the knowledge level the model records the general rules that govern 
this structure. Instances in the knowledge level govern the configuration of 
instances in the operational level. In this example instances of 
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Figure 2.9    Knowledge and operational levels of accountability. 

The knowledge level objects define the legal configurations of operational level 
objects. Accountabilities can only be created between parties according to corre-
sponding accountability types and party types. 

accountability (links between actual parties) are constrained by the links between 
accountability type and party type. 

Example Regions are subdivided into divisions. This is handled by an accountability type 
of regional structure whose commissioners are regions and responsibles are divisions. 

Example Patient consent is defined as an accountability type whose commissioners are 
patients and responsibles are doctors. 

Note how mapping to the party type replaces subtyping of the party. This is an 
example of what Odell [3] refers to as a power type, which occurs when a 
mapping defines subtypes. The party type is closely linked to the subtypes of 
party in that the subtype region must have its type as the party type region. 
Conceptually you can consider the instance of the party type to be the same object 
as the subtype of party, although this cannot be directly implemented in 
mainstream programming languages. The party type is then a power type of party. 
Often we need only one of either the mapping or the subtyping. 
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However, if the subtypes have specific behavior and the power type has its own 
features, then both subtypes and mapping to the power type are needed. (Odell 
has a special notation for this case [3].) 

This reflection between the knowledge and operational levels is similar but 
not identical, in that the parent and subsidiary mappings are multivalued at the 
knowledge level but single-valued at the operational level. This is because the 
operational level records the actual party for the accountability, while the 
knowledge level records the permissible party types for the accountability type. 
This use of a multivalued knowledge mapping to show permissible types for a 
single-valued operational mapping is a common pattern. 

Knowledge and operational levels are a common feature of models, 
although the difference between the levels is often not made explicitly. I make 
the divisions explicit because I find this helps to clarify my thinking when 
modeling. There are lots of examples of operational and knowledge levels in 
this book, particularly in Chapter 3. 

Modeling Principle   Explicitly divide a model into operational and knowledge levels. 

A lot of data modelers use the term meta-model to describe the knowledge 
level. I am not entirely comfortable with this terminology. Meta-model can also 
define the modeling technique. Thus a meta-model includes concepts such as 
type, association, subtyping, and operation (such as the meta-models of Rational 
Software's Unified Method [ I ] ) .  The knowledge level does not really fall into that 
category because it does not describe the notation for the operational level. I thus 
only use the term meta-model to describe a model that describes the language 
(semantics of notation) for a model.1 

Accountability represents some pretty heady abstraction and as in any climb 
we should stop and take stock before altitude sickness sets in. Although we have 
a very simple structure in the object model, a lot of knowledge is buried in the 
instances of the knowledge level. Thus to make this work it is not enough to 
implement the object model; the knowledge level must also be instantiated. 
Instantiating the knowledge level is effectively configuring the system, which is a 
constrained, and thus simpler, form of programming. It is still programming, 
however, so you should consider how you are going to test it. 

Rich knowledge levels also affect communication between systems. If two 
systems are to communicate, they must not only share the object model but also 
have identical knowledge objects (or at least some equivalence between 
knowledge levels, as discussed in Section 5.4). In the end it comes 

 Of course, if I defined a diagram that showed instances of accountability type and party type, then the knowledge level 
would act as the meta-model for that diagram. This kind of diagram can be useful if there is a com plicated web of 
accountability types. 
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down to the question, If the number of accountability types is large, is it easier to 
use the structure of Figure 2.9 or to extend Figure 2.5 with one association for each 
accountability type? The complexity of the problem cannot be avoided; we can 
only ask ourselves which is the simpler model, taking both type structure and 
knowledge objects into account. 

We need to be careful, as with any typed relationship, that this does not 
become a catch-all for every relationship between two parties. For example, 
biological parent would not fit as an instance of an accountability type because 
neither party is responsible to the other, nor is there an inherent time period; legal 
guardian would fit, however. 

2.6     Party Type Generalizations  

The model as it stands is quite powerful, but some useful variations will add even 
more flexibility. These variations are useful with any model that uses a 
knowledge/operational split. 

Consider a general practitioner (GP), Dr. Edwards. Using the model shown 
in Figure 2.9, we can consider him to be a GP or a doctor but not both. Any 
accountability types that are defined on doctor that would apply also to GP would 
have to be copied over. We can use various techniques to alleviate this problem. 
One approach is to allow party types to have sub- and super-types relationships, 
as shown in Figure 2.10. This essentially introduces 

 
Figure 2.10   Allowing p arty types to have sub - and supertypes.  

Adding generalization to party types makes it easier to define the knowledge level.  
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generalization to party types in a similar way that generalization works on types. 
Generalizations cause a change in the constraint on accountability type, so that 
both the party's type (from the type mapping) and the supertypes (from the all 
types mapping] are taken into account. 

Figure 2.10 provides a single inheritance hierarchy on party type. Multiple 
inheritance can be supported by allowing the supertype mapping to be 
multivalued. In addition, Figure 2.10 only supports single classification. This 
means that if Dr. Edwards is both a GP and a pediatrician, we can record that only 
by creating a special GP/pediatrician party type, with both GP and pediatrician as 
supertypes. Multiple classification allows party to be given multiple party types 
outside of the generalization structure of party type. This can be done by allowing 
the type mapping on party to be multivalued. 

Much of the discussion about the interrelationships between the knowledge 
level and operational level is similar to the relationships between object and type 
in a modeling meta-model. 

2.7     Hierarchic Accountability  

The flexible structure that accountabilities provide requires more effort to enforce 
the constraints of some accountability types. For example, the organization 
structure shown in Figure 2.3 defines a strict series of levels: operating units are 
divided into regions, that are divided into divisions that are divided into sales 
offices. It is possible to define an accountability type of regional structure, but 
how can we enforce the strict rules of Figure 2.3? 

The first issue is that Figure 2.3 describes a hierarchic structure. The 
accountability models do not have a rule to enforce such a hierarchy. This can be 
addressed by providing a subtype of accountability type with an additional 
constraint, as shown in Figure 2.11. This constraint acts with the usual constraint 
on accountability types to enforce the hierarchic nature of the operational level 
structure. A similar accountability type subtype can be used to enforce a directed 
acyclic graph structure. 

Using Figure 2.11, we can support the case shown in Figure 2.3 by a series of 
accountability types. An accountability type regional structure level \ would have 
regions responsible to operating units, regional structure level 2 would have 
divisions responsible to regions, and so on. This approach works but would be 
somewhat clumsy. An alternative is to use a leveled accountability type, as shown 
in Figure 2.12. In this case there would only be a single regional structure 
accountability type. The levels mapping would map to the list of party 
types—operating unit, region, division, and sales office. This model makes it 
easier to add new leveled accountability types and to modify the levels in those 
structures that need it. The hierarchic accountability type captures the 
responsibility of the parties forming a hierarchy, the 
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Figure 2.11    Hierarchic accountability type.  

The added constraint means that the parties linked by accountabilities of this type must 
form a hierarchy.  

leveled accountability type captures the responsibility of a fixed sequence of 
party types. The regional structure accountability type would be both leveled and 
hierarchic. 

 
Figure 2.12    Leveled accountability type.  

Leveled accountabilities supports fixed levels such as sales office, division, region.  

The constraints applied on the subtypes act with the constraint defined on 
accountability type, following the principles of design by contract [4]. In the case 
of the leveled accountability type, the constraint subsumes that of the supertype, 
and indeed makes the commissioners and responsibles mappings 
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superfluous. This thinking leads to a model along the lines of Figure 2.13. It is 
important to note that Figure 2.12 is not incorrect. Leveled accountability type is 
a perfectly good subtype of accountability type because the constraint on 
accountability type will still hold for leveled accountability type. The 
commissioners and responsibles mappings will also continue to hold, although 
they would be derived from the levels mapping. I would be inclined to stick with 
Figure 2.12. The leveled accountability type is not always needed, and can easily 
be added without violating the model. Figure 2.12 also has the advantage of 
making the knowledge/operational relationship more explicit. 

 
Figure 2.13    Rebalancing the subtypes of accountability type. A 

better way of organizing the accountability type hierarchy. 

2.8     Operating Scopes  

Accountability, as it stands, provides a valuable way of describing how parties 
relate to each other. The type of accountability describes what kind of relationship 
they have. There are usually other details, however, that describe more of the 
meaning of accountability. Consider a doctor who might be employed as a liver 
surgeon to carry out 20 liver transplants for southeast London in 1997. A diabetic 
care team at a hospital might be asked to care for insulin-dependent diabetes 
patients in western Massachusetts for the Red Shield HMD (Health Management 
Organization). 

Such details are the operating scopes of accountability, as shown in Figure 
2.14. Each operating scope defines some part of consequences of accountability 
on the responsible party. It is difficult to enumerate the attributes of an operating 
scope in the abstract. Thus we see that accountability has a number of operating 
scopes, each of which is some subtype that describes the actual characteristics. 
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Figure 2.14   Operating scope. 

Operating scopes define the responsibilities that are taken on when an accountability is 
created. They can be used for job descriptions. 

Example A liver surgeon who is responsible for 20 liver transplants a year in southeast 
London has a protocol scope on employment accountability with amount of 20, protocol of 
liver transplant, and location of southeast London. 

Example A diabetic care team has accountability with Red Shield. This accountability would 
have a clinical care scope whose observation concept is insulin-dependent diabetes and 
location is western Massachusetts. 

Example ACM has a contract with Indonesian Coffee Exporters (ICE) for 3000 tons of Java and 
2000 tons of Sumatra over the course of a year. This is described by accountability between ACM 
and ICE with a year's time period and two resource provisions: 3000 tons/ year of Java and 
2000 tons/year of Sumatra. 
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Example John Smith sells the 1100 and 2170 families of high-volume coffee maker for ACM. 
He sells both the 1100 and 2170 in New England and sells the 2170 in New York. He has 
employment accountability to ACM with sales territories for 1100 in New England, 2170 in 
New England, and 2170 in New York. 

When using operating scopes for a particular organization, you need to 
identify the kinds of operating scopes that exist and the properties for them. It is 
very difficult to generalize about operating scopes in the abstract, but location is 
a common factor. The subtypes of operating scope may form an inheritance 
hierarchy of their own if there are many of them. In particularly complex cases 
you might see an operating scope type2 placed on the knowledge level to show 
which accountability types can have which operating scope types. 

2.9     Post  

Often the operating scopes of a person—their responsibilities, including many 
of their accountabilities—are defined in advance as that person's job description. 
When a person leaves a job, the replacement may inherit a full set of 
responsibilities. These responsibilities are tied to the job rather than the person. 

We can deal with this situation by introducing the post as a third subtype of 
party, as shown in Figure 2.15. Any responsibilities that are constant to the job, 
whoever occupies it, are attached to the post. A person fills a post by having an 
accountability to the post. The notion is that a person is responsible for the 
responsibilities of the post for the period of time that they are appointed to the 
post. 

Example Paul Smith is the head of the high-volume product development team. We can 
describe this by having a post for the head of the high-volume product development team. 
This has a management accountability with the high-volume product development team (a 
party). Paul Smith has a separate accountability (of type appointment) to this post. 

Example The transplant surgeon post at a hospital has in its job description the requirement 
to do 50 renal and 20 liver transplants in a year. This post has an accountability with the 
hospital and protocol scopes for 50 renal transplants and 20 liver transplants. 

Posts should not be used all the time. They add significant complexity to the 
operational level with their extra level of indirection. Only use posts 

2 In this case the instances of operating scope type must match the subtypes of operating scope. Operating scope type 
is thus a power type [3] of operating scope. 
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Figure 2.15    Post. 

Posts are used when accountabilities and scopes are defined by the post and do not 
change when the holder of the post changes. Appointments to posts are 
accountabilities. 

when there are significant responsibilities that are static in a post and people 
change between posts reasonably often. Posts are not necessary in models in 
which all responsibilities can be attached to a person. 
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Observations and 
Measurements  

Many computer systems record information about objects in the real world. This 
information finds its way into computer systems as records, attributes, objects, 
and various other representations. The typical route is to record a piece of 
information as an attribute to an object. For example, the fact that I weigh 185 
pounds would be recorded in an attribute of a person type. This chapter 
examines how this approach fails and suggests more sophisticated approaches. 

We begin by discussing quantity (3.1)—a type that combines a number with 
the unit that is associated with it. By combining numbers and units, we are able 
to model the world more exactly. With quantities and their units modeled as 
objects, we can also describe how to convert quantities with a conversion ratio 
(3.2). The quantity pattern can be extended by using compound units (3.3), 
which represent complex units explicitly in terms of their components. 
Quantities are required for almost all computer systems; monetary values should 
always be represented using this pattern. 

Quantities can be used as attributes of objects to record information about 
them. This approach begins to break down, however, when there is a very large 
number of attributes that can bloat the type with attributes and operations. In 
these situations measurement (3.4) can be used to treat measurements as objects 
in their own right. This pattern is also useful when you need to keep information 
about individual measurements. Here we begin to see the use of operational and 
knowledge levels (see Section 2.5) in this chapter. 

Measurements allow us to record quantitative information. Observation (3.5) 
extends this pattern to deal with qualitative information and thus allows 
subtyping observation concepts (3.6) in the knowledge level. It is also often 
essential to record the protocol (3.7) for an observation so that clinicians can 

35 
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better interpret the observation as well as determine the accuracy and sensitivity 
of the observation. 

A number of small patterns extend observation. The difference between the 
time an observation occurred and when it is recorded can be captured with a dual 
time record (3.8). Often it is important to keep a record of observations that have 
been found to be incorrect; this requires a rejected observation (3.9). The biggest 
headache with observation is dealing with certainty, for it is often important to 
record hypotheses about objects. The subtyping of active observation, hypothesis, 
and projection (3.10) is one way of dealing with this problem. 

Many statements about observations are made using a process of diagnosis. 
We infer observations based on other observations. Associated observation (3.11) 
can be used to record the evidence observations, plus the knowledge that was used 
for the diagnosis. 

The preceding patterns are structural and are used to make records of our 
observations. To understand how they work, it is useful to consider the process 
of observation (3.12), which can be modeled with an event-based technique. 

Few professions have such complex demands on measurements and 
observations as medicine. The models in this chapter come from an intense 
effort in modeling health care from a clinical perspective—the Cosmos project 
[3] of the UK National Health Service. In this project a joint team of doctors, 
nurses, and analysts worked together on a notoriously difficult domain. We do 
not include a pure description of the Cosmos model here. Those interested 
should refer to the complete model [1]. The ideas here can be transplanted to 
other areas: Chapter 4 discusses how this was done for corporate finance. 

Key Concepts Quantity, Unit, Measurement, Observation, Observation 
Concept, Phenomenon Type, Associative Function, Rejected Observation, 
Hypothesis. 

3.1     Quantity  

The simplest and most common way of recording measurements in current 
computer systems is to record a number in a field designed for a particular 
measurement, such as the arrangement shown in Figure 3.1. One problem with 
this method is that using a number to represent a person's height is not very 
appropriate. What does it mean to say that my height is 6, or that my weight is 185? 
To make sense of the number, we need units. One way of doing this is to introduce 
a unit into the name of the association (for example, weight in pounds). The unit 
clarifies the meaning of the number, but the 
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representation remains awkward. Another problem with this technique is that the 
recorder must use the correct units for the information. If someone tells me their 
weight is 80 kilograms, what am I to record? Ideally a good record, especially in 
medicine, records exactly what was measured—no more, no less. A conversion, 
however deterministic, does not follow that faithfully. 

 

Figure 3.1     Number attribute. 

This approach does not specify the units. 

In this context a very useful concept is that of quantity. Figure 3.2 shows an 
object type that combines number and units, for example, 6 feet or 180 pounds. 
Quantity includes appropriate arithmetical and comparative operations. For 
example, an addition operation allows quantities to be added together as easily as 
numbers but checks the units so that 34 inches are not added to 68 kilograms. 
Quantity is a "whole value" [2] that the user interface can interpret and display (a 
simple print operation can show the number and the unit). In this way quantity 
soon becomes as useful and as widely used an attribute as integer or date. 

 
Figure 3.2    Measurements as attributes using quantity. 

Quantity should always be used where units are required. 

Example   We can represent a weight of 185 pounds as a quantity with amount of 185 and 
unit of pounds. 

Monetary values should also be represented as quantities (I use the term 
money in this book), using a currency as the unit. With quantities you can easily 
deal with multiple currencies, rather than being tied to a single currency (if  only 
my personal finance program did that!). Money objects can also 
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control the representation of the amount. Often rounding problems occur in 
financial systems if floating point numbers are used to represent monetary values; 
monetary quantities can enforce the use of fixed point numbers for the amount 
attribute. 

Example $80 would be represented as a quantity with amount of 80 and units of US 
dollars. 

The use of quantity is an important feature of object-oriented analysis. Many 
modeling approaches make a distinction between attributes and associations. 
Associations link types in the model, and attributes contain some value according 
to some attribute type. The question is, what makes something an attribute rather 
than an association? Usually attributes are the typical built-in types of most 
software environments (integer, real, string, date, and so on). Types such as 
quantity do not fit into this way of choosing between attribute and association. 
Some modelers say quantity should be modeled with an association (because it is 
not a typical built-in type), while other modelers recommend an attribute (because 
it is a self-contained, widely used type). In conceptual modeling it doesn't really 
matter which way you do it, the important thing is that you look for and use types 
such as quantity. Since I don't distinguish between attributes and mappings, I 
don't get into this argument. (I'm laboring this point because I find types such as 
quantity conspicuously absent from most of the models I see.) 

Modeling Principle When multiple attributes interact with behavior that might be used 
in several types, combine the attributes into a new fundamental type. 

3.2     Conversion Ratio  

We can make good use of units represented explicitly in the model. The first 
service that units can perform is to allow us to convert quantities from one unit to 
another. As shown in Figure 3.3 we can use conversion ratio objects between 
units and then give quantity an operation, convertTo (Uni t ) ,  which can return a 
new quantity in the given unit. This operation looks at the conversion ratios to see 
if a path can be traced from the receiving object's quantity to the desired quantity. 

Example We can convert between inches and feet by defining a conversion ratio from feet 
to inches with the number 12. 

 
Figure 3.3   Adding conversion ratios to units. 
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Example We can convert between inches and millimeters by defining a conversion ratio 
from inches to millimeters with the number 25.4. We can then combine this ratio with the 
conversion ratio from feet to inches to convert from feet to millimeters. 

Conversion ratios can handle most but not all kinds of conversion. A con-
version from Celsius to Fahrenheit requires a little more than simple multi-
plication. In this case an individual instance method (see Section 6.6) is 
required. 

If we have a lot of different units to convert, we can consider holding the 
dimensions of a unit. For example, force has dimensions of [MLT2], and we also 
need a scalar for units that are not S.I. units. With the dimensions and the scalar, 
we can compute conversion ratios automatically, although it is a bit of work to 
set it up. 

Be aware that time does not convert properly between days and months 
because the number of days in a month is not constant. 

If we have several alternative paths in conversion, we can make use of them 
in our test cases. The tests should check that the conversions work in both 
directions. 

For monetary values, whose units are currencies, the conversion ratios are 
not constant over time. We can deal with this problem by giving the conversion 
ratios attributes to indicate their time of applicability. 

When converting between units, we can use either conversion ratios, as 
described here, or scenarios, as described in Section 9.4. I use scenarios if the 
conversions change frequently and I need to know about many sets of consistent 
conversions. Otherwise, the simpler conversion ratio is the better model. 

3.3     Compound Units  

Units can be atomic or compound. A compound unit is a combination of atomic 
units, such as feet2 or meters per second. A sophisticated conversion operation can 
use conversion ratios on atomic units to convert compound units. The compound 
units need to remember which atomic units are used and their powers. Figure 3.4 
is an example of a straightforward model that can convert compound units. 
Remember that the power can be positive or negative. 

Example We can represent an area of 150 square yards by a quantity whose number is 150 
and whose unit is a compound unit with one unit reference to feet with power 2. 

A variation on this model takes advantage of representing mappings with 
bags. Unlike the usual sets, bags allow us to use an object more than once in a 
mapping, as shown in Figure 3.5. Bags are particularly useful when we have a 
relationship that has a single numeric attribute. 
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Figure 3.4   Compound units. 

This model can be used for acceleration and similar phenomena. 

 
Figure 3.5    Compound units using bags. This 

model is more compact than Figure 3.4. 

Example The acceleration due to gravity can be expressed as a quantity with number 9.81 
and a compound unit with direct units of meter and inverse units of seconds and seconds. 

The difference between Figures 3.4 and 3.5 is not great. I have a mild 
preference for Figure 3.5 because it avoids unit reference—a type that does not do 
much. The choice between these models does not matter to most clients of a 
compound unit. Only clients that need to break the compound 
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unit down into atomic units are involved, and most of the type's clients would only 
need some printing representation. Obviously we must use Figure 3.4 if our 
method does not allow bags in mappings. 

3.4    Measurement  

Modeling quantities as attributes may be useful for a single hospital department 
that collects a couple of dozen measurements for each in-patient visit. However, 
when we look across all areas of medicine, we find thousands of potential 
measurements that could be made on one person. Denning an attribute for each 
measurement would mean that one person could have thousands of 
operations—an untenably complex interface. One solution is to consider all the 
various things that can be measured (height, weight, blood glucose level, and so 
on) as objects and to introduce the object type phenomenon type, as shown in 
Figure 3.6. A person would then have many measurements, each assigning a 
quantity to a specific phenomenon type. The person would now have only one 
attribute for all measurements, and the complexity of dealing with the 
measurements would be shifted to querying thousands of instances of 
measurement and phenomenon type. We could now add further attributes to the 
measurement to record such things as who did it, when it was done, where it was 
done, and so on. 

 
Figure 3.6    Introducing measurement and phenomenon type. 

This model is useful if a large number of possible measurements would make person too 
complex. The phenomenon types are things we know we can measure. Such knowledge is 
at the knowledge level of the model. 

Example   John Smith is 6 feet tall, which can be represented by a measurement whose 
person is John Smith, phenomenon type is height, and quantity is 6 feet. 

Example   John Smith has a peak expiratory flow rate (how much air can be blown out of the 
lungs, how fast) of 180 liters per minute. This can be represented as a 
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measurement whose person is John Smith, phenomenon type is peak expiratory flow rate, 
and quantity is 180 liters per minute. 

Example A sample of concrete has a strength indicated by a force of 4000 pounds per 
square inch. Here the person is replaced by a concrete sample with a measurement whose 
phenomenon type is strength and quantity is 4000 pounds per square inch. 

This model has a simple division that was found to be very useful in later 
analysis. Measurements are created as part of the day-to-day operation of a system 
based on this model. Phenomenon types, however, are created on a much more 
infrequent basis because they represent the knowledge of what things to measure. 
The two-level model was thus conceived: the operational level consists of the 
measurement, and the knowledge level consists of the phenomenon type (see also 
Section 2.5). Although it does not seem important in this simple example, we will 
see that thinking about these two levels is useful as we explore modeling more 
deeply. (Although Figure 3.6 shows the dividing line, we have left it out of most of 
the following figures; however, we have a convention of drawing knowledge 
concepts toward the top of the figure.) 

Modeling Principle The operational level has those concepts that change on a day-to-day 
basis. Their configuration is constrained by a knowledge level that changes much less 
frequently. 

Modeling Principle  If a type has many, manysimilar assoc/at/ons, make all of these 
associations objects of a new type. Create a knowledge level type to differentiate between 
them. 

We could choose to add the unit of measurement to the phenomenon type and 
use numbers instead of quantities for the measurement. I prefer to keep quantities 
on the measurement so that I can easily support multiple units for a phenomenon 
type. A set of units on a phenomenon type can be used to check the unit of an 
entered measurement and to provide a list for users to choose from. 

3.5     Observation  

Just as there are many quantitative statements we can make about a patient, there 
are also many important qualitative statements, such as gender, blood group, and 
whether or not they have diabetes. We cannot use attributes for these statements 
because there is such a large range of possibilities, so a construct similar to that for 
measurement is useful. 

Consider the problem of recording a person's gender, which has two possible 
values: male and female. We can think of gender as being what we are measuring, 
and male and female are two values for it, just as any positive 
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number is a meaningful value for the height of a person. We can then devise a new 
type, category observation, which is similar to measurement but has a category 
instead of quantity, as shown in Figure 3.7. We can also devise another new type 
of observation that acts as a supertype to a measurement and a qualitative 
observation. 

 
Figure 3.7     Observations and category observations. 

This model supports qualitative measurements, such as blood group A. 

Using Figure 3.7, we can say that gender is the instance of phenomenon type, 
and male and female are instances of category. To record that a person is male, 
we create an observation with a category of male and a phenomenon type of 
gender. 

We now have to consider how we can record that certain categories can be 
used only for certain phenomenon types. Tall, Average, and Short might be 
categories for the phenomenon type height, while A, B, A/B, and O might be 
categories for the phenomenon type blood group. This could be done by 
providing a relationship between category and phenomenon type. The interesting 
question then is the cardinality of the mapping from category to phenomenon 
type. We might ask, does the object A used in blood group potentially link to 
more than one phenomenon type? One answer is, of course it does: We grade 
liver function on the Childs-Pugh scale, which has values A (reasonable), B 
(moderate), and C (poor). This raises the question of what we mean by A. If we 
mean merely the string consisting of the character 'A,' then the mapping is 
multivalued and the category is independent 
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of the phenomenon type. The category's meaning is only clear when a phe-
nomenon type is brought in through a qualitative observation. The alternative is 
to make the mapping single-valued, where the category is only defined within the 
context of the phenomenon type; that is, it is not A but blood group A. 

What difference is this to us? The single-valued case allows us to record 
useful information about the categories, such as A is better than B with respect to 
liver function, while no such ordering exists for blood groups. 

My initial investigations of the clinical process revealed a common sequence: 
The patient comes to the facility, evidence is collected about the patient's 
condition, and a clinician makes an assessment. For example, a patient might 
come in complaining of excessive thirst, weight loss, and frequent urination 
(polyuria). This would lead a clinician to diagnose diabetes. A couple of things 
are important about recording this diagnosis. First, it is not sufficient simply to 
note that the patient has diabetes; the clinician must also explicitly record the 
evidence used to come up with this diagnosis. Second, the clinician does not 
make this kind of deduction out of thin air. Random evidence is not assembled 
into random deductions. The clinician must rely on clinical knowledge. 

Consider placing this process in the model we have so far. The patient is 
suffering from weight loss. We can capture this by saying that there is a phe-
nomenon type of change in weight, with linked categories of gain, loss, and 
steady. Similarly there is a phenomenon type of diabetes with categories of 
present and absent. Clearly we can record the link between the observations by 
placing a suitable recursive relationship on observation, as shown in Figure 3.8. 
We can thus record the link between the observation of diabetes and its evidence. 
We also need to record the clinical knowledge of the link between weight loss 
and diabetes. Using the model shown in Figure 3.7, we would have difficulty 
recording this link. The phenomenon type of change in weight and the category 
of loss are only linked when an observation is made. We need a way to say that 
weight loss, which can exist without any observations, is at the knowledge level. 
Making the mapping from category to phenomenon type single-valued provides 
the way. (Section 3.11 discusses this further.) 

 
Figure 3.8    Recursive relationship to record evidence and assessment. 
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This was the compelling evidence for making the mapping from category to 
phenomenon type single-valued. It moved category to the knowledge level and 
renamed it phenomenon, as shown in Figure 3.9. Phenomena define the possible 
values for some phenomenon type. 

 
Figure 3.9    Phenomenon (formerly category) in the knowledge level. 

Placing qualitative statements (such as blood group A) in the knowledge level allows them 
to be used in rules. 

Example The fact that a person is blood group A is indicated by a category observation of a 
person whose phenomenon is blood group A. The blood group A phenomenon is linked to 
the phenomenon type of blood group. 

Example We can model a low oil level in a car as a category observation of the car. The 
phenomenon type is oil level with possible phenomena of over-full, OK, and low. The 
observation links the car to the low phenomenon. 

The model in Figure 3.9 works well for category observations with several 
values for a phenomenon type. But many observations involve merely a statement 
of absence or presence rather than a range of values. Diseases are good examples 
of these: Diabetes is either present or absent. We could use Figure 3.9 with the 
phenomena diabetes absent and diabetes present. This ability to explicitly record 
the absence of diabetes is important, but it may also be sensible to record absence 
of weight loss. (If a patient comes in with symptoms of diabetes but has not been 
losing weight, then that would contra-indicate diabetes. This does not imply that 
the weight is increasing or steady, merely that it is not decreasing.) Indeed we can 
record the absence of any phenomenon, particularly to eliminate hypothetical 
diagnoses. Thus the 
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model shown in Figure 3.10 allows any category observation to have presence and 
absence. Observation concept is added as a supertype of phenomenon. This is 
done to allow diabetes to be an observation concept without attaching it to some 
phenomenon type. 

Example We record the fact that John Smith has diabetes by a presence observation of 
John Smith linked to the observation concept diabetes. 

Example We represent spalling (deteriorating) concrete in a tunnel by an observation with 
the tunnel instead of the person, and an observation concept of spalling concrete. We also 
need a feature on the observation to indicate where in the tunnel the spalling occurs. 
(Medical observations may also need an anatomical location for some observation 
concepts.) 

3.6     Subtyping Observation Concepts  

Figure 3.10 introduces a supertype relationship that allows generalization of 
observation concepts. This is quite common in medicine and is valuable because 
observations can be made at any level of generality. If an observation is made of 
the presence of the subtype, then all supertypes are also considered to be present. 
However, if an observation is made of the absence of a subtype, then that implies 
neither presence nor absence of supertypes. Observation of absence does imply all 
subtypes are also absent. Thus presence is propagated up the supertype hierarchy, 
while absence is propagated downward. 

Example Diabetes is an observation concept with two subtypes: type I diabetes and type II 
diabetes. An observation that type I diabetes is present for John Smith implies that 
diabetes is also present for John Smith. 

Example Blood group A is called polymorphic because it can be subtyped to A1 and A2. 
The other blood groups are not polymorphic. 

3.7     Protocol  

An important knowledge concept for recording observations is the protocol— the 
method by which the observations were made. We can measure a person's body 
temperature by placing a thermometer in the mouth, armpit, or rectum. Usually 
the temperature readings these techniques yield can be considered the same; 
nonetheless, it is vital to record which approach we used. A strange observation 
can often be explained by understanding the technique that was used to reach it. 
Thus in health care it is accepted practice to always record what tests are used to 
record observations. 

One of the values of a protocol is that it can be used to determine the accuracy 
and sensitivity of a measurement. This information could be recorded 
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Figure 3.10   Absence and presence of observation concepts. 

The absence of a phenomenon can be as valuable as finding a presence. 

on the measurement itself, but usually it is based on the protocol that is used for 
the observation. Holding it at the protocol makes it easier to capture this 
information. 

3.8     Dual Time Record  

Observations often have a limited time period during which they can be applied. 
The end of the time period indicates when the observation is no longer applicable. 
This time period is different than the time at which the observation is made. Thus 
there are two time records (which may be periods or single time points) for each 
observation: one to record when the observation is applicable and the second when 
it is recorded, as shown in Figure 3.11. 

Example At a consultation on May 1, 1997, John Smith tells his doctor that he had chest 
pain six months ago that lasted for a week. The doctor records this as an observation of the 
presence of the observation concept chest pain. The applicability time record is a time 
period starting at November 1, 1996 and ending at Novembers, 1996. The recording time is 
the timepoint May 1,1997. (Note that some way of recording approximate timepoints would 
be valuable here.) 
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Figure 3.11    Dual time record for observation. 

A time record allows both periods and single points to be recorded. Most events have a 
separate occurring and recording time. 

3.9     Rejected O bservation  

Inevitably we make mistakes when making observations. In the case of medical 
records, however, we cannot just erase them. Treatments may have been based on 
these mistakes, and there are usually legal restrictions. To handle this 
consideration, we can classify observations as rejected observations when it is 
found that they were and are untrue, as shown in Figure 3.12. (Note the difference 
between this and an observation that was true but is no longer true, such as a 
healed broken arm. A healed broken arm is never rejected, but its applicability 
time record is given an end date.) Rejected observations must be linked to the 
observation that rejects them. 

 
Figure 3.12    Rejected observations. 

Observations cannot be deleted if a full audit trail is needed. 

Example John Smith has a blood test that indicates a large mean corpuscular volume. This 
can be due to either pernicious anemia or alcohol abuse. John Smith informs the doctor that 
he drinks very little alcohol. This indicates the presence of pernicious anemia, which leads 
to further tests and treatment. Six months later it is discovered that John Smith drinks 
heavily. This information indicates that the observation of pernicious anemia should be 
rejected by an observation of alcohol abuse. The rejected observation of pernicious anemia 
must be retained to explain the treatment that ensued. 
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3.10    Active Observation, Hypothesis, and Projection  

As observations are recorded, many levels of assurance are given. A clinician 
might be faced with a patient showing all the classic symptoms of diabetes. The 
clinician records that she thinks the patient probably has diabetes, but she cannot 
be certain until a test is done, and in many diseases even a test does not provide 
100 percent certainty. One approach to recording this kind of information is to 
assign probabilities to observations, but this method is unclear and does not seem 
natural. The alternative is to use two classifications: active observation and 
hypothesis, as shown in Figure 3.13. The distinction is subtle: An active 
observation is one that the clinician "runs with," probably using it as a basis for 
treatment. A hypothesis more likely leads to further tests. 

 
Figure 3.13    Active observation, hypothesis, and projection. 

Example A patient with observations of the presence of thirst, weight loss, and poly-uria 
indicates diabetes. With just these symptoms, however, a clinician makes a hypothesis of 
diabetes and orders a measurement of the fasting blood glucose. The result of this test 
indicates whether to confirm the hypothesis or reject it. 

Both subtypes, active observation and hypothesis, represent observations of 
the current state of the patient. Projections are observations that the clinician 
thinks might occur in the future. Often clinicians decide on treatments by 
considering future conditions that may occur. If the prediction is true, it is 
recorded with an additional active observation. 

Example If a patient has rheumatic fever, or consequent rheumatic valve disease, there is a 
risk of endocarditis. This risk is recorded as a projection of endocarditis. Treatments will then 
be based on this projection. 

The certainty of observations was one area of much discussion in the Cosmos 
project. More changes were made in this area and more time was spent by both the 
team and quality assurance panel than any other part of the model. The final 
model reflects the clinicians' views of what was the most natural. The classic 
approach of assigning probabilities might make sense to science fiction 
aficionados, but it clearly did not to clinicians (who could predict asking questions 
such as "What am I to make of the difference between 0.8 and 0.7?"). With active 
observation and hypothesis, the final concept is more clear, although the choice of 
which classification to use is more problematic. In the end only the group of 
experienced clinicians 
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connected with the project could make a useful decision on this area in an almost 
instinctive way. The professional analyst in the team could only point out some 
formal consequences. 

3.11     Associated Observation  

At this point we can look at ways to record the chain of evidence behind a 
diagnosis. The basic idea is to allow observations to be linked to each other (the 
patient's thirst indicated the patient's diabetes) and observation concepts to be so 
linked (thirst indicates diabetes). Thus we see that the knowledge and operational 
levels are reflections of each other, as shown in Figure 3.14. These reflections are 
linked by associations that show how knowledge concepts are applied to the 
operational level. In this case the links occur not only between the observation 
and the observation concept but also between the evidence conclusion links. Thus 
when we say the patient's thirst indicates that the patient has diabetes, we are 
making use of, and should explicitly record that we are making use of, the general 
connection between thirst and diabetes. Figure 3.14 shows how we make types to 
hold not just observations and observation concepts but also types for the links at 
the operational (associated observation) and the knowledge (associative function) 
level. 

  

Figure 3.14    Links between observations. 

Actual evidence chains for a patient are recorded at the operational level. The knowledge 
level describes what chains are possible. 

 

arguments 
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Example A clinician observes weight loss, thirst, and polyuria in a patient and makes an 
associated observation (and hypothesis) of diabetes based on the evidence observations. The 
associated observation is linked to an associative function whose arguments are the 
observation concepts—weight loss, thirst, and polyuria—and whose product is diabetes. 

Example If my car does not start and the lights do not work, then both of these ob-
servations are evidence for the associated observation of a dead battery. Car not starting, 
lights not working, and dead battery are all observation concepts linked by an associative 
function. 

Note that the knowledge and operational levels are not complete mirror 
images of each other. Associated observation is a subtype of observation, but 
associative function is not a subtype of observation concept. It seemed natural to 
make associated observation a subtype of observation since, at the operational 
level, one particular observation is made with supporting evidence. At the 
knowledge level, the rule with arguments and conclusion is recorded. One 
observation concept may have several associative functions for which it is the 
result, but a particular observation has only one set of observations as evidence. 

3.12     Process of Observation  

This chapter has concentrated on the static elements of observation: what an 
observation or measurement is and how we can record it in a generic way to 
support the analysis that clinicians need to perform on it. It is significant that in 
modeling we found that we could conceive of a general static model, but the 
behavioral part was much more dependent on individual departments. Of course, a 
static model implies a great deal of behavior. Behaviors exist to create 
observations and to provide various ways of navigating associations to understand 
how those observations fit with other observations. The behavior we cannot imply, 
however, is the sequence of observations that a typical department makes. Often a 
clinician has some path of observations that can be taken. Departmental policy 
may be to record this path in terms of higher-level protocols (see Chapter 8). It is 
difficult, and almost certainly impossible, to design a general process that all 
clinicians could use. 

It is possible, however, to sketch an outline of the process involved in making 
observations. I begin by looking at how making a new observation can trigger 
further observations, as shown in Figure 3.15. Whenever clinicians make 
observations, they consider the possibility of other associated observations. They 
use the associative functions they know to come up with a list of possible 
observation concepts that might be associated with the triggering observations. 
They can then propose further observations as needed. 
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Figure 3.15    Making an observation triggers further observations. 

Further observations are suggested by the knowledge leve l. 

In Figure 3.15 the concurrent trigger rule is labeled "associated observation 
concepts." In event diagrams, trigger rules have two purposes. First, they show 
cause and effect. When we are considering business processes, this is usually 
enough, but as we delve deeper we see a second purpose. Any operation has input 
and output. The trigger that connects two operations must describe how to get 
from the output of the triggering operation to the input of the triggered operation. 
In many cases this is trivial, as they are the same object (as in the trigger from 
propose observation to make observation shown in Figure 3.15). However they 
can get quite complex, as in finding associated observation concepts. 

When we have a more complex trigger rule, we can represent the trigger rule 
with another event diagram. Figures 3.16 and 3.17 do this for the associated 
observation concepts trigger. We begin by finding all the associative functions 
whose input includes the initial observation's observation concept. We then 
evaluate each of these associative functions. For each one that evaluates to true, we 
find the product and add it to the answer. Since these event diagrams describe a 
trigger rule query, all the operations must be accessors and hence must not change 
the observable state of any object. 

 
Figure 3.16    Event diagram to describe the query for finding associated observations. 

This lies on the concurrent trigger of Figure 3.15 or in the operation of Figure 3. 18.  

When the trigger rule query is complex, you can also represent the query as an 
operation in its own right, as shown in Figure 3.18. Either method is correct. 
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Figure 3.17    An interaction diagram for finding the possible observation concepts implied 
by an observation. 

This interaction diagram supports Figure 3.16. 

 
Figure 3.18    Notating the query explicitly as an operation. 

This is equivalent to Figure 3.15. You can either show queries as operations or consider 
them part of the trigger, trading simplicity for compactness. 

Even after the query, there is a control condition (evaluate proposal) before 
an observation is proposed. The query suggests possible observation concepts to 
look for based on the associative functions. This step could easily be done by 
software in a decision support system. The control condition represents the extra 
step of deciding whether the suggested observation concept is worth testing for. 
We did not feel we could formally model this process, implying that this step is 
beyond software and can only be done in the clinician's head. 

Figure 3.19 includes additional triggers that arise from projections and 
active observations. The triggers to propose intervention work in a similar way 
to the previous case. We suggest interventions that are evaluated by the 
clinician before they are proposed. This reinforces the fact that although any 
observation can lead to further observations being made, only active observations 
or projections (not hypotheses) lead to interventions. (An intervention 
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is an action which either intends or risks a change in state of the patient.) The 
trigger queries work in a similar way with the knowledge level but involve start 
functions, which are discussed briefly in Section 8.7. 

 
Figure 3.19    E vent diagram for the process of working with observations. This 

extends Figure 3.15 with similar triggers for interventions and rejections.  

The final trigger on Figure 3.19 shows how the appearance of an active 
observation can contradict other observations and thus lead to those observations 
being rejected. Again this can involve associative functions, but this time we are 
looking for a contradiction. Once an observation (which may be a hypothesis) is 
rejected, further observations which were supported by this observation must be 
reconsidered. 

One of the interesting things about the work that produced these patterns is 
the way the abstractions were found. Although the final results discussed here are 
usually structural, behavioral modeling played a central role in understanding 
how the concepts worked. The fact that clinicians did the modeling themselves 
was also crucial. The abstraction of observation is central to these patterns; it ties 
together signs, symptoms, and diagnoses, 
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which clinicians have long considered to be very different. It was only by going 
through the modeling process that clinicians could pull out the abstraction. If 
software engineers had come up with such an abstraction, I doubt if they could 
ever convince clinicians that it was valid. And there would be good reason to be 
doubtful, since software engineers can never have that deep knowledge of 
medicine. The best conceptual models are built by domain experts, and they are 
often the best conceptual modelers. 
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Observations for 
Corporate Finance  

To fully understand this chapter, you will need to read Chapter 3 fi rst. 
In large corporations it is easy to identify high-level problems, but finding out 

the root causes of these problems is more tricky. Such corporations generate a 
deluge of information that can quickly drown anyone trying to analyze it. 

For example, one of the principal measures of a company's performance is its 
final revenue. If the revenue shows a notable dip, then some analysis needs to be 
done to find out why. Such an analysis for Aroma Coffee Makers (ACM) showed 
that their equipment sales income was reduced, although their costs were still 
reasonable. This was most noticeable in their Northeast region. Looking further 
showed that their 1100 high-volume coffee maker family was well below its 
planned income, particularly in the government sector. Much of this is analysis of 
numbers, but further analysis may be more qualitative than quantitative. Perhaps 
this poor performance is due to a weak sales compensation plan, or government 
budget cuts, or a very hot summer, or strong competitor presence in the area. 

All of this is much the same diagnostic process that is done by clinicians when 
investigating a patient's symptoms. From the obvious symptom we track back 
through likely causes, guided by our knowledge of the field. We hope to identify 
the root causes and then treat them. From this broad view of similar processes, we 
might hypothesize that we can apply the clinical models to corporate finance. 

Chapter 3 gives a description of how qualitative and quantitative statements 
can be made about patients in a health care context. At the end of that chapter, I 
briefly mentioned that that model can be applied to other contexts, such as 
analyzing corporate finances. This chapter looks at how this can be 
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done. The model works very well, but some modifications are required. 
Fortunately the patterns that describe these modifications are all extensions of the 
existing model rather than changes to it. 

The first pattern replaces the person with some way of describing the 
segment of the enterprise under analysis. This enterprise segment (4.1) 
describes a part of the enterprise defined along a series of dimensions. Each 
dimension represents some way of hierarchically breaking down the enterprise, 
such as location, product range, or market. The enterprise segment is a 
combination of these dimensions, a technique widely used by multidimensional 
databases. 

The measurement protocol (4.2) pattern describes how measurements can be 
calculated from other measurements using formulas that are instances of model 
types. Chapter 3 discusses how each measurement measures a phenomenon type; 
here we discuss how the measurement protocol defines ways of creating 
measurements for a particular phenomenon type. We cover three varieties of 
measurement protocols: Causal measurement protocols (4.2.2) describe how 
different phenomenon types are combined to calculate another (sales revenue is 
the product of units sold and average price). Comparative measurement protocols 
(4.2.2) describe how a single phenomenon type can vary between status types 
(4.2.3) (actual versus plan deviation of sales revenue). Dimension combinations 
(4.2.5) use the dimensions defined in the enterprise segment pattern to calculate 
summary values (calculate northeast sales revenue by totaling the values for 
individual states). Each of these subtypes of measurement protocol uses 
polymorphism to determine its value. 

Often we use qualitative phenomena to describe quantitative phenomenon 
types. In this case we can define the phenomena by linking them to a range of 
values for the phenomenon type. First we need a range (4.3), which allows us to 
describe a range between two quantities and various operations we want to do 
with the range. We can then define a phenomenon with range (4.4) either by 
adding a range to the phenomenon using a phenomenon with range attribute 
(4.4.1) or by using a range function (4.4.2). 

We can combine the patterns examined in this chapter with those of Chapter 3 
to analyze a business' financial data. Section 4.5 shows how we can use these 
patterns to identify the causes of problems in large corporations. 

The models in this chapter are based on work done by a team from a large 
manufacturing company. This team explored using a health care model for 
corporate finance and found it to be a very useful foundation. The models in this 
chapter were prototyped using C++. 

Key Concepts    Enterprise Segment, Dimension, Measurement Protocol, 
Status Type 
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4.1     Enterprise Segment  

The most noticeable difference between the problem we examine in this 
chapter and the one discussed in Chapter 3 is that here not a single patient is 
being observed. In some cases we look at the whole company, but in other 
cases we observe only part of the company, such as 10-11 espresso sales to the 
government in the Northeast region. This could be handled by treating each 
part of the company, and the whole, as separate parties. However, i t is 
important to ensure that the relationships between these corporate parts is 
understood. 

Thus we have to alter the mapping from procedure to patient to point to 
some other type. This is an issue that I skimmed over in the discussion of 
mapping in Chapter 3, so actually it is not such a problem as it may first appear. 
The original Cosmos model [1], on which Chapter 3 is based, does not actually 
link from observation to person. In reality the link is to a type called object of 
care. Object of care is itself a generalization of patient and population. A 
population is a group of people and is used to allow observations to be made of 
groups of people, which is particularly important for public health. 

For corporate finance we need a new subtype of object of care, which we call 
enterprise segment, as shown in Figure 4.1. An enterprise segment is a part of a 
company, a part defined in a very particular way. 

 
Figure 4.1    Object of care and its subtypes.  

The patient of Chapter 3 is one kind of object of care that can be observed.  

When we look at an enterprise, we can see that we can divide it into parts 
according to several criteria. It may be divided due to organizational unit, to 
geographical location, by product, by the industry sector that the product is being 
sold into, and so on. Each of these methods of division can be carried out more or 
less independently. Each can also be expressed as a hierarchy. For example, a 
multinational company can be divided first by market (USA), 
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then by region (Northeast), then by area (New Hampshire). Each of these 
independent hierarchies is a dimension of the enterprise. New Hampshire and 
Northeast are elements at different levels in the geographical dimension. An 
enterprise segment is a combination of dimension elements, one for each 
dimension of the enterprise. Thus the part of ACM that is northeast, 11-10, 
government can be defined as the enterprise segment with dimension elements of 
northeast on the geographical dimension, 11-10 on the product dimension, and 
government on the industry dimension, as shown in Figure 4.2. This approach to 
analysis, often referred to as a star schema [4], is commonly used in 
multidimensional databases [2]. 

With this enterprise segment defined, we can form a model of the rela-
tionships between the various types, as shown in Figure 4.3. We can link 
dimension elements together into hierarchies. Many hierarchies of dimension 
elements can be defined. Note how the hierarchies constraint on the parent 
association is necessary because the cardinalities alone do not enforce a hierarchy 
(although they might allow cycles). The enterprise segment must have one 
element from each of these hierarchies, as indicated by the three associations from 
the enterprise segment. The constraint on the dimension element ensures that the 
hierarchies are all within the same dimension. The model will handle the 
situation quite well, but it has a couple of disadvantages. First, the concepts of 
dimension and dimension level are not properly defined, although they can be 
derived. Second, adding a new dimension will cause a model change. 

The model shown in Figure 4.4 uses an explicit dimension type. Each 
dimension holds a hierarchy of dimension elements. The enterprise segment then 
needs to have one link to a dimension element in each dimension. We can do this 
by using the keyed mapping (see Section 15.2). When combined with cardinality 
this mapping states that for each instance of the key (dimension) there is one and 
only one dimension element. 

Example We can define the 11-10, Northeast government enterprise segment, linking it to 
the dimension elements 11-10, Northeast, and government. 11-10 is in the product 
dimension. Northeast is in the location dimension, and government is in the industry 
dimension. 

Note that each hierarchy needs a top, and this does not necessarily show a 
named thing. A common convention is to label the top "all," showing that any 
segment that references it does not have any breakdowns along that dimension. 
Another convention would be to let the mapping to the dimension element be 
optional; then "nil" would indicate the top of the tree. The former approach is 
more consistent, despite this slightly artificial top element. 
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Figure 4.2    How enterprise segments link to elements in dimensions. 

One enterprise segment is a combination of elements from each dimension. 

Example If we add a channel dimension, then the enterprise segment 11-10 Northeast 
government has a link to the top dimension element of the channel hierarchy. We call this 
dimension element all. 
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Figure 4.3    Defining enterprise segments with dimension elements.  

Using this model requires adding a new subtype whenever a dimension is added.  

 

Figure 4.4   Defining enterprise segments by using dimensions and dimension 
elements.  

This model allows us to add new dimensions without changing the model. It is also 
more compact.  

 
Figure 4.5   Adding dimension levels to Figure 4.4. Dimension levels 

allow us to name each level of a dimension.  
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Adding a type for dimension level is not entirely obvious. Naturally every 
dimension element has a dimension level. However, the level is determined by its 
position in the dimension's hierarchy. The model shown in Figure 4.5 deals with 
this by assigning each dimension a list to define its dimension elements. The 
dimension element uses its level in the hierarchy and the list of dimension levels to 
determine its dimension level. 

Example In the ACM example the location dimension has a list of dimension levels: market, 
region, and area. New Hampshire is defined in the hierarchy with parent Northeast, whose 
parent is USA, whose parent is all. Since it is three levels down. New Hampshire's 
dimension level is the third in the list: area. 

4.1.1       Defining the Dimensions  

How can we define dimensions? The simplest definition is that they are the ways 
in which a large organization can be broken down via some organizational 
structure. However, that is not generally the most satisfactory definition. An 
organization can be broken down in many ways, depending on the situation. In 
addition, some dimensions are not necessarily appropriate to an organization 
system. The model in Figure 4.2 includes a breakdown by industry to which 
ACM sells, but this need not represent an organization structure within ACM. 

We can find a better way to define dimensions by looking at the bottom of the 
hierarchy and asking what is being classified by the dimensions there. In the 
example we can see that ACM is focusing on the sale or rental of a coffee 
machine. We can classify this dimension according to which machine was sold, 
which sales area sold it, and which industry it was sold into. The dimensions 
come from the classification of this focal event, which is the fact table of a star 
schema [4]. 

In determining the dimensions to use in this kind of analysis, first we need to 
understand what the focal event is. We can then look at the ways in which this 
focal event can be classified. From Figure 4.2 we see the focal event involves a 
product that has a product family, which has a product group, which has a 
beverage. On the sales dimension we see area, region, and market. 

These dimensions and levels should be defined by business analysts; Figure 
4.6 shows a good way to do this. As Figure 4.6 indicates this structure can 
become quite complex. The dimensions are not necessarily completely 
independent. For example, note how the price range dimension intersects the 
product dimension. This indicates that any product will have one particular 
parent along the product and price range dimensions. The model of Figure 4.5 
would need to be modified to take this into account properly, although it is 
questionable whether it is worth undertaking this since it does complicate the 
model somewhat. This issue could be handled by the dimension creation process. 
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Figure 4.6    A Tilak chart showing a typical set of dimensions and levels. 

This is a useful diagram providing we do not have more than six branches from any level. 
In practice we rarely do. 

The dimensions need not be measurable to the lowest level. In this case it 
might not be worthwhile, or even possible, to analyze down to an i ndividual 
salesperson's territory or to an individual customer. In this case the dimensions 
are elaborated part of the way down to the underlying event. It is still useful to 
understand what the lower levels are, both for future development and to see the 
foundations of the higher levels. 

A full analysis of the customer's domain would involve producing a business 
model for the customer's area. This would include a structural model, which 
would be used to rigorously define the dimensions. Each dimension should 
represent a hierarchical path along the structural model. The details of this 
process are beyond the scope of this chapter. For the sake of discussion we will 
assume the dimensions have been determined. 

The dimensions can be defined explicitly by the user of the analysis system. 
Otherwise, they can be determined from corporate databases. For the latter, each 
dimension needs a builder operation to tell it how to query corporate databases. 
This allows the system to add nodes to the dimension over time. 

4.1.2       Properties of Dimensions and Enterprise Segments  

An important rule about dimensions is that the measurements for dimensions at 
lower levels can be properly combined into the higher level. Thus if we want to 
look at sales revenue for the Northeast, we can do this by adding together the 
values for sales for all subregions of the Northeast region. 

 

64   Enterprise Segment 
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Any dimensions that are defined must support this property. Usually dimensions 
are combined through addition, but there are some exceptions (see Section 4.2.5). 

Along with dimensions defined through business structures, another common 
dimension is time. Time is treated as a dimension by classifying the underlying 
event into a time period. If these periods are months then we can talk about such 
figures as revenue for (11-10, Northeast, March 1994). This implies a dimension 
element for March 1994 that would be a child of the dimension element for 1994. 
The time dimension satisfies the combinability property discussed above, 
providing the figures are only for that month (and not year-to-date figures). We 
can easily calculate year-to-dates from month-only figures but typically not by 
combining along a dimension. 

Enterprise segments share an interesting property with more fundamental 
types: All enterprise segments conceptually exist. There is no notion of con-
ceptually creating the number 5, the quantity $5, or the date 1/1/2314. These 
things all exist in our minds but may need to be created as objects in the computer. 
Enterprise segments share this property. Once all dimensions have been specified 
with their dimension elements, then all enterprise segments conceptually exist, 
although they may not be created as software objects. 

This shared property raises the question of whether an enterprise segment 
should be treated as a fundamental type (see Section A.1.5). If so, it should not 
have any mappings to nonfundamental objects. A dimension element and an 
observation (inherited from an object of care) are both non-fundamental. 
Although the latter could be excluded, the former is part of the definition of 
enterprise segment and thus cannot be excluded. There is also a lot of sense in 
holding the mapping from an enterprise segment to an observation since a very 
common request is to find all observations for a given enterprise segment. In 
balance it seems that enterprise segments are not fundamental, despite this 
property of universal conceptual existence. 

Treating enterprise segments as nonfundamental does have an effect on the 
interface. The create operation is really a find-or-create. It first looks to see if the 
required instance of the enterprise segment exists; if so it returns it, if not it 
creates it. (Or you can think of it as not having a create operation but only a find 
operation, which creates silently when it needs to.) 

4.2     Measurement Protocol  

The corporate analysis we have been discussing uses a lot of measurements. 
These measurements are not entered by hand; usually they are either loaded from 
one of many databases or calculated from other measurements. We need to 
remember how we can make these measurements, that is, the protocol we 
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use to create the measurement. Figure 4.7 shows a general outline of measurement 
and protocols, much of it similar to that of Chapter 3. 

Two kinds of measurement protocol are shown in Figure 4.7. Source mea-
surement protocols refer to queries against some corporate database. Typically an 
object knows logically which database it is accessing, although the actual 
commands are in another layer. The user should decide which database is 
accessed. A calculated measurement protocol represents a calculation done on 
measurements already present in this domain. 

 
Figure 4.7    Measurement and measurement protocols.  

Source measurements are from a database, and calculated measurements use 
formulas.  
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An important point about this model—a reflection of its clinical back-
ground—is that any phenomenon type can have several measurement protocols to 
determine its value. This point may strike some readers as odd. What is the point 
of a measurement that we can calculate in more than one way? If there is more 
than one formula, surely it is a different phenomenon type. The first and most 
obvious point is that the phenomenon type can have both calculations and source 
protocols. We can use different protocols at different times. There can also be 
multiple source protocols; which one we use depends on system availability. 
Some databases are more reliable than others, but availability can never be 
perfect. 

Similarly the user could consider using different calculations to produce the 
same phenomenon type. Which calculation the user chooses can depend on which 
sources are available or on the user's opinion about subtle points within the 
calculation. A good example of this is the value of inventory. Usually inventory is 
physically counted only at the end of the year, but its value needs to be estimated 
at other times. In either case the value is used in the same way for further financial 
information. 

Some users of this model may choose to specify which measurement protocol 
to use to come up with a value. Others, however, may just want a phenomenon 
type and leave it to the system to come up with how it gets it. In the latter case 
some way is needed to prioritize the measurement protocols for a phenomenon 
type. This can be done by making the mapping from phenomenon type to 
measurement protocol a list. The front of the list defines the preferred protocol 
and so on. 

Note the presence of calculated measurement, with its link back to its source 
measurements. This follows the general rule that the result of a computation, 
when treated as an object, should know what computation caused it (the protocol) 
and what the inputs to this protocol were (the sources). 

4.2.1       Holding the Calculations  

The calculated measurement protocols include the formulas by which they are 
calculated, as shown in Figure 4.8. This is an example of an individual instance 
method (see Section 6.6). The formulas for calculated measurement protocols are 
often very simple, so we can use a simple interpreter [3] and hold the formulas as 
spreadsheet-style formulas. 

An important feature of the model is the way the arguments are presented. 
Each calculated measurement protocol has a list of arguments. This list represents 
those phenomenon types that are combined in the formula. Note that the mapping 
is a list. For the formula to make sense, the elements in the mapping must be 
identifiable. A list is a good way to do this. Alternatively they can be keyed by a 
string. 
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Figure 4.8    Methods for calculated measurement protocols. 

Example Sales revenue is a phenomenon type with a causal calculation as its measurement 
protocol. The arguments to the causal calculation are a list of two phenomenon 
types—number of sales and average price. The method is the formula arg[1]*arg[2]. 

Example Body mass index is a phenomenon type in medicine. It has a causal calculation with 
arguments of weight and height. The method is the formula weight/height2. 

4.2.2       Comparative and Causal Measurements Protocols  

In a corporate finance application the measurements are not absolute values. The 
users are usually not too interested in a figure that says revenues are $x, rather 
they are interested in the difference between the actual and a planned figure or 
this year's revenues compared to last year's. 

To consider these comparative measurements, we need to describe the 
various kinds of measurements that can appear. Typical comparisons are between 
an actual value and either a prior or a planned value. Prior values can be 
considered by either looking at the applicability time reference (see Section 3.8) 
or by looking for a measurement for the enterprise segment that has a prior time 
dimension. Planned measurements require us to make a distinction between 
actual or planned values, which correspond to the active and projected 
observations discussed in Section 3.10. In addition, the projected observation 
must record what plan was the source for the projection, so that we can 
distinguish between annual plans, quarterly forecasts, and the like, as shown in 
Figure 4.9. 

At this point a fundamental distinction between two types of calculation 
should be apparent. One kind is determining a value for a phenomenon type 
based on values of other phenomenon types. For example, we can calculate sales 
revenue by multiplying the number of sales by the average price. This type of 
calculation is called a causal calculation because it follows the cause 
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Figure 4.9    Kinds of observations to support planned and actual val ues. 

and effect analysis. Causal calculations can have any number and any rela-
tionship of input phenomenon types, and the formulas by which they are 
computed can be any expression. 

Comparative calculations, on the other hand, are more structured. They 
always have two input measurements, which must be of the same phenomenon 
type. The output measurement's phenomenon type is always derived from the 
form of the calculation and the input phenomenon type. Thus if we are looking at 
the deviation of number of sales, then the inputs will be the phenomenon type 
number of sales and the output phenomenon type will be deviation for number of 
sales. The formulas for these calculations will generally be of a fairly limited set: 
such things as absolute deviation (x-y) or percentage deviation ((x-y)/y). 

The differences between these two types of calculations can be formalized 
by subtyping the calculated measurement protocol, as shown in Figure 4.10. The 
calculated measurement protocol carries the key elements of the structure. Each 
calculated measurement protocol has a single result type and a number of input 
types. For comparative calculations they are limited to two arguments, which 
must be the same phenomenon type. All calculated measurement protocols have 
a method that contains the formula by which a new value is calculated from the 
inputs. Two protocols can share a single method, for example the method 
argl-arg2 is shared between all the protocols that determine absolute deviation 
for all the phenomenon types. Indeed, this case is so common it is worth making a 
special subtype for it that fixes the method to the type. 

4.2.3       Status Type: Defining Planned and  Actual Status  

Measurements determined by source or calculated measurement protocols are 
always calculated through their measurement protocol. The measurement 
protocol provides a factory method for the measurement [3].1 A client asks the 

Note that the reason for this is that the method of creation varies, rather than the type of the final result. This is another 
reason to use the factory method in addition to those indicated by Gamma e ta /  [3J. 
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Figure 4.10   Types of calculation as shown by calculated measurement protocols. 

Causal calculations link different phenomenon types, and comparative calculations show 
the difference in one phenomenon type between status types. 

measurement protocol to create a measurement. The client needs to tell the 
measurement protocol what object of care it needs to reference. The client also 
needs to tell the protocol whether it is an actual or planned value: which plan for 
the planned value or which date for the actual value. 

At this point the model shown in Figure 4.9 shows a weakness. There is no 
simple way we can provide the information needed for the protocol. Figure 4.9 
does provide a good way to determine this information from an existing 
measurement, but it does not provide a convenient single way to ask for the 
information. This can be overcome by the model shown in Figure 4.11, which 
puts these properties together into a single status type. Two subtypes exist of the 
abstract status type. Actual status types may have a time offset. For current values 
there will be no offset (or it can be zero). Six months or one year ago will have the 
appropriate offset. Planned status types have the appropriate plan, just like 
projections. 

Example A corporation assesses four kinds of financials: actual value, prior year, the 
annual plan, and the latest quarterly forecast. The actual would be an actual status type 
with time offset of zero. The prior year is an actual with time offset of one year. The annual 
plan is a planned status type linked to the annual plan. The quarterly forecast is also a 
planned status type linked to the latest quarterly forecast. All the quarterly forecasts are 
instances of the plan. 

Effectively we have moved the knowledge of what kind of observation we 
have from the observation itself to a separate type. This type can enumerate 
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Figure 4.11    Status types as an alternative to Figure 4.9. 

This alternative makes it easier to specify the kind of comparative measurement 
required (see Figure 4.12). 

all possible variations independently of existing observations. The type resides at 
the knowledge level so we can calculate new measurements, but it need not be at 
the knowledge level. We should note that this is not inconsistent with the model in 
Figure 4.9. Both expressions say the same thing, in slightly different ways, and 
both could be supported at the same time. 

Now the client needs only to specify the status type for the measurement 
protocol to have enough information to create the measurement, assuming the 
protocol is a causal protocol. Comparative calculations need two status types, one 
for each input. One way of dealing with this is to vary the create measurement 
operation so that it requires one status type for causals and two for comparative 
measurements. Another method is to allow comparative status types, as shown in 
Figure 4.12. I prefer the latter method because the comparison is now an object in 
its own right, and the interface for creating all measurements is the same. 

Example ACM management wants to see the actual vs. planned deviation for sales 
revenue. To satisfy this request, the model must include a phenomenon type for sales 
revenue and a phenomenon type for sales revenue deviation. The sales revenue deviation 
is a comparative calculation with a method of arg[l] -arg[2].The request creates an 
observation of sales revenue deviation with a comparative status type. The status type will 
have datum of planned and comparator of actual. 

4.2.4      Creating a Measurement  

Now that we know how to ask for a new measurement, we can look at the process 
for creating a measurement, which is illustrated in Figures 4.13 and 4.14. The 
process has three steps: finding the arguments, executing a formula, and creating a 
new measurement object with the resulting value. 

The argument-finding operation is polymorphic depending on whether we 
have a causal or comparative measurement protocol. The causal protocol, shown 
in Figure 4.15, needs to find all measurements of the same status type 
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Figure 4.12    Using comparative status types to ease the specification of comparative 
measurements.  

 
Figure 4.13    Interaction diagram for creating a measurement.  

and object of care whose phenomenon types match the input types of the protocol. 
The comparative formula, shown in Figure 4.16, looks for two measurements 
whose phenomenon type is that of the input type, who have the same object of 
care, and whose status types are the datum and comparator for the protocol. 
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Figure 4.14    Event diagram that describes the process for creating a measurement.  

  

Figure 4.15   The find arguments operation for a causal calculation.  

This operation finds a measurement for each argument type with all other factors the  
same. 

When we have found the arguments, we can pass them on to the formula and then 
create a measurement with the resulting value. 

4.2.5       Dimension Combinations  

A third kind of calculation is the combination of values along a dimension. The 
example mentioned above was that of calculating sales revenue for the Northeast 
by adding together the values for sales for all child regions of the Northeast region. 
More precisely, the measurement of a phenomenon type for an enterprise segment 
that refers to Northeast is calculated by finding all measurements of that 
phenomenon type attached to enterprise segments that refer to child regions of the 
Northeast dimension element but have the same dimension elements along the 
other dimensions. These values are added together for the new value. 

 

 

d 
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Figure 4.16   The find arguments operation for comparative calculations. This 

operation finds one argument for each leg of the comparative status type.  

We can thus add a dimension combination protocol as shown in Figure 4.17. 
We must specify the dimension that is being combined. The calculation does not 
need any input types (since it is always the same phenomenon type as the output 
type). We could consider reducing the input type mapping's cardinality to zero, 
but I think we can preserve the sense better by keeping the mapping mandatory 
and adding a constraint. Creating the measurement follows the usual steps shown 
in Figure 4.14, with the find arguments operation again being altered as in Figure 
4.18. 

The role of the calculation method is very simple: It takes all the arguments 
and adds them together. Usually addition is used for combining, but not always. 
For example, the phenomenon type average price is not added in dimension 
combination; instead a mean is found. These variations depend on the 
phenomenon type, so each phenomenon type needs to have a combination 
method. The calculation method applies the combination method to the 
arguments to determine the result. 

Note that the comparative and dimension combination protocols can be 
automatically generated. For dimension combination, one protocol can be 
defined for each combination of phenomenon type and dimension. For 
comparative calculations, one protocol can be defined for each combination of 
phenomenon type and kind of comparative calculation. 
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Figure 4.17   Adding dimension combination to the calculated measurement protocols. 

 
Figure 4.18   The find arguments operation for dimension combination calculations. 

This operation finds a measurement for each child enterprise segment along the indicated 
dimension. 

Calculated measurements are just as useful in health care. We discuss cal 
culated measurements in this chapter, rather than in Chapter 3, primarily 
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because they were used extensively in our work on corporate finance. Thus they 
are an illustration of how taking a model to a different domain causes more thought 
that may well feed back into the original domain. 

  

So far we have looked at how we can use measurements, both calculated and 
sourced, to investigate a company's financial performance. The measurement 
protocol pattern gives us a way of looking at this information quantitatively. To 
make sense of a forest of numbers, however, it is often useful to group 
measurements into categories. We might want to divide the absolute revenues into 
a number of bands, or we could highlight as problems all comparative 
measurements that are 10 percent below the datum. 

Our first step is to describe ranges of measurements, which is the subject of 
this pattern. The second step is to link these ranges into the broader system of 
observations, as we will discuss in Section 4.4. 

We often come across the need to hold a range of some values. The range can 
consist of numbers (such as 1..10), dates (such as 1/1/95..5/5/95), quantities (such 
as 10..20kg) or even strings (such as AAA..AGZ). Usually a range is placed on the 
type that is using it by giving that type separate mapping for an upper and lower 
value, as shown in Figure 4.19. 

 
Figure 4.19   Representing a range with upper and lower bounds on the type that uses it. 

/ do not recommend this approach to ranges; use a range type instead. 

The problem with this approach is that there is rather more to ranges than just 
an upper and lower value. We might want to know whether a particular value is 
within a range, whether two ranges overlap, whether two ranges abut, or whether 
a set of ranges form a continuous range. Such behavior would have to be copied 
for every type that has upper and lower values. The solution is to make the range 
an object in its own right, as shown in Figure 4.20. In this situation all 
responsibilities which are essentially about ranges are contained within the range, 
and do not need to be duplicated in those types that use ranges. 

In general a range can be formed between any two magnitudes. A magnitude, 
in essence, is a type that defines the comparative operators (>, <, =, >, <). 
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Figure 4.20    Using an explicit range object. 

This should always be done when an upper and lower value are needed. Upper and lower 
mappings are optional, thus allowing open-ended ranges, such as less than 6 months. The 
Booleans are needed to differentiate less than 6 months from less than or equal to 6 
months. 

The range needs only these operations to define its own key operations: includes, 
overlaps, and abuts. When a range is used, the using type usually indicates what 
kind of magnitudes it wants in its range. There are several ways of modeling 
which kind of magnitude is required. One way is to declare a subtype, such as I do 
with time period (a range whose magnitudes are time-points). Another way is to 
use a constraint, as in Figure 4.20. A third way is to use something along the lines 
of parameterized classes, where a range of integers is defined by a type called 
range<Integer>. Conceptually all of these modeling techniques are equivalent, so 
we can use whatever we find the easiest. In implementation we need to choose 
more carefully, and the trade-offs vary depending on the implementation 
environment. The choice of conceptual model does not imply anything about the 
implementation. 

4.4     Phenomenon with Range  

Ranges give us a way to define categories of measurements. We now need to link 
them into the broader model of observation and measurement. To do this, we can 
form phenomena of certain phenomenon types. If our phenomenon type is 
revenue percentage deviation, we can form a phenomenon of revenue problem, 
which exists when our revenue percentage deviation is less than -10 percent. This 
implies that a measurement of-12 percent of revenue percentage deviation also 
implies a category observation (see Section 3.5) of revenue problem. 
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The first question we need to answer is whether there are one or two 
observations. According to the model shown in Figure 3.9, observations are 
either measurements or category observations, they cannot be both. We can allow 
a single observation to be both by using the model shown in Figure 4.21. The 
choice between the models depends on whether we consider the conceptual 
process as being first a measurement and then a separate step of observing the 
revenue problem (which implies using Figure 3.9), or whether we see the 
measurement and observation as one process. For simple cases such as these, the 
domain experts I have worked with preferred the latter. 

 
Figure 4.21    Allowing an observation to be both a measurement and a category 
observation. 

The [abstract] statement implies that an observation must be at least one of its subtypes. 

Since we have a well-defined range, it seems natural to let the computer 
automatically link any such measurement to the relevant phenomenon. To do this 
we need a way of defining the range within the knowledge level. 

4.4.1       Phenomenon with Range Attrib ute  

The simplest approach is to add a range to a phenomenon, as shown in Figures 4.22 
and 4.23. Then when we create a measurement we can look to see if it falls in the 
range for any phenomenon of that measurement's phenomenon 
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types. We do have to consider whether we want the range for a phenomenon type 
not to overlap or to be complete. Either of these conditions indicate the need for a 
constraint. 

 
Figure 4.22   Adding a range to a phenom enon.  
The measurement 
protocol creates a 
measurement. 

It asks its phenomenon 
type for its phenomena. 

It asks each 
phenomenon if it includes 
the new measurement. 

If so, it classifies the 
measurement as a 
category observation of 
the BP. 

Figure 4.23    
Interaction 
diagram for 
creating a 
measurement and 
checking the 
phenomena.  

The responsibility  
for checking the phenomena could be done equally well by the measurement object. I 
prefer the protocol, as I think that is a more likely place for overriding.  

Example Revenue percentage deviation is divided into four categories: greater than 5% is 
good, 5% to -5% is OK, -5% to -10% is warning, and less than -10% is a problem. This can 
be represented as four phenomena for the phenomenon type revenue percentage 
deviation (RPD). The phenomenon good RPD has a range with no upper 
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bound and 5 lower bound, the phenomenon OK RPD has a range with upper bound 5 and 
lower bound -5, the phenomenon warning RPD has a range with upper bound -5 and lower 
bound -10, the phenomenon problem RPD has a range with upper bound -10 and no lower 
bound. It is important to check exactly what the boundaries are and include this information 
in the ranges; so we ask if exactly 5% is good RPD or OK RPD? 

Example Body mass index is used to define four groups: normal 20-25 kg/m2, overweight 
25-30 kg/m2, obese 30-40 kg/m2, morbid obese >40 kg/m2. This would be represented as four 
phenomena for the phenomenon type body mass index. The overweight phenomenon 
would have a range with lower bound 25 kg/m2 and upper bound 30 kg/m2. Each of the 
other phenomena would have similar ranges. 

4.4.2       Range Function  

An alternative approach is to create a separate range function as a subtype of 
associative function, as shown in Figures 4.24 and 4.25. This is useful when 
different ranges apply, depending on the context described by an observation 
concept. This model allows several series of ranges to be present, depending on 
which observation concepts apply. The range function evaluates some expression of 
the arguments, as in an associative function, but also checks whether the 
measurement falls in the range over a phenomenon type. If both are true, 

 

Figure 4.24    Range function. 
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The measurement protocol 
creates a measurement. 

It asks its phenomenon type for 
its range functions. 

It evaluates each range 
function with the new 
measurement. 

If the evaluation returns true, it 
finds the range function's 
product and classifies the 
measurement as a category 
observation of that product. 

Figure 4.25    
Creating a 
measurement 
and checking 
range functions.  

then the product 
observation 
concept applies. Developing constraints to ensure that only one range function will 
be true for any given measurement is considerably more difficult than when ranges 
are applied directly to phenomena. 

Example Certain enterprise segments are defined as key. For these segments the problem 
revenue percentage deviation (RPD) is defined at -5% instead of -10%.To handle this we 
would define an observation concept of key segment. Those segments that were key 
segments would have an appropriate observation applied to them. (This would also give us 
the ability to change key status over time.) We would define a range function with 
arguments of {key segment}, product of problem RPD, a range of <5% and a phenomenon 
type of RPD. 

Example The normal range of a person's beta HCG increases with pregnancy. To represent 
this, we would have two range functions with the product normal beta HCG. One would 
have arguments of pregnancy and the other arguments of nonpregnancy. The 
phenomenon type on the range functions would be beta HCG. 

Both of these approaches have their merits, and it can be plausible to use 
them both together. Linking directly to the phenomenon is certainly the easiest 
way of doing it, and that is the one to use if it correctly describes the situation. 
Range functions are more complex but can represent more complicated situations. 
So you should use the direct link to phenomenon when you can and range 
functions when you must. If the situation gets more complex than the models 
described here can handle, you should add features to range function, either 
directly or by way of a subtype. 
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4.5     Using the Resulting Framework  

So far this chapter has described patterns that represented expansions of those 
introduced in Chapter 3. Now we can look at how we can use these models. 

We begin by looking for the total revenue for ACM. This would be a mea-
surement whose enterprise segment is the whole company; that is, the enterprise 
segment's dimension elements are all at the top of the dimension hierarchies. The 
measurement normally would not be an absolute value; rather it would be a 
comparative value with some plan or prior time period. Furthermore, the fact that 
it is a problem might be indicated by highlighting it according to a ranged 
phenomenon. The analyst would then begin by looking for problem observations 
defined by phenomena. 

To identify that the problem is with equipment sales income, we need to roll 
back the causal calculation of total revenue as sales income minus sales cost. 
Note that the causal calculation indicates a possible path of analysis, whether or 
not the measurement was determined that way. It may be that this final figure was 
actually sourced from a database. (Due to dirty data, it may be that it doesn't 
exactly fit the result of the formula.) 

The next step is to use dimension combination protocols. Looking along the 
location dimension shows that the Northeast segment had a noticeably higher 
deviation. We can now focus on the enterprise segment that points to the 
Northeast dimension element on the location dimension, and at the top for all 
other dimensions. Repeating this process two more times would lead us to the 
enterprise segment with location of Northeast, product of 1100 family, and 
industry sector of government. 

There is a certain amount of indirection here. When comparative calculations 
are involved, the route may not be direct. It may not be that the deviation in total 
revenue is calculated by subtracting the deviation in sales cost from the deviation 
in sales income. A more likely scenario is that the separate actual and planned 
sales revenues are calculated, and then these are used in the causal. With absolute 
deviation, either route will work, but this is not true for percentage deviation. The 
presence or absence of protocols will indicate what will and will not be 
appropriate calculations. 

We can use alternative routes. Instead of first doing the causal, and then 
dimension combinations, we could break down on the location dimension, then 
use a causal, and then other dimension breakdowns. There are many possible 
paths for analysis, and these need not be the same as those used for calculating the 
figures. 

We can describe qualitative statements, such as "a strong competitor may 
cause a decrease in sales," using the associative functions described in Section 
3.11. Qualitative and quantitative observations are linked by assigning ranged 
phenomena. 
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Applications can use several techniques to explore this structure. Current 
multidimensional databases lean toward ad-hoc exploration by the user, which 
provides the maximum flexibility. Another alternative is to fix a decomposition 
path, defined by a hierarchy of protocols. This technique has been found to be 
effective in getting to the root of problems quickly. These hierarchical analyzers 
can easily be built on top of this framework. Other approaches would use agents 
to burrow in the structure to highlight interesting measurements. 

This chapter reflects an actual attempt to take a model from health care and 
apply it to corporate finance. The extensions made to the health care model can be 
fed back into that model. Measurement protocols are certainly applicable; the 
enterprise segment pattern may be useful in epidemiology, although that is yet to 
be analyzed. By allowing patterns to migrate like this, I hope that more and more 
useful patterns will emerge, patterns that would never have appeared had we been 
more inclined to keep patterns shut up inside their home. 
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Referring to Objects  

Much of object orientation focuses on the idea of object identity. Within an OO 
computer system, each object has a unique ID, which is used as a guarantee that 
any object can be directly accessed. This notion affects our conceptual thinking, 
too. Few object methods use primary and secondary keys, which play a major role 
in traditional data modeling. We still need some way to refer to a particular object: 
For example, I might need to find a particular person to whom I need to send a bill, 
and a doctor may need to mark a patient as suffering from diabetes. Object 
systems provide us with powerful browsing capabilities that exploit the natural 
relationships between conceptual objects, but sometimes a more explicit identifier 
is required. 

The simplest identifier for an object is a name (5.1), a sequence of characters 
that usually identifies an object. The problem is that names are not guaranteed to 
refer to a specific object in all circumstances. A more artificial creation may be 
required: an identifier within the context of an identification scheme (5.2). 

Matters are further complicated when we realize that objects are not always as 
well defined and static as we think they are. In the world outside computers, it is 
easy to find situations where what we thought was two objects is actually one. For 
such situations we need to do an object merge (5.3). We may also need to split 
them again later, since we can merge in error, too. We can do the merge by copy 
and replace, superseding, or essence/ appearance. Sometimes we have separate 
objects that perhaps ought to be the same, but we cannot be entirely sure, or we 
cannot reach an agreement with other people involved. At this point we can only 
say that there is an object equivalence (5.4). 

85 
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Remember that this chapter is about conceptual references to objects— 
references that humans use. These references appear in a model in addition to any 
object identity schemes used by software. I don't discuss any software identity 
techniques in this chapter, but I would assume they exist in any OO 
implementation. I would also assume they would be hidden from the users. 

Key Concepts    Identifier, Identification Scheme, Superseded Object, Object 
Essence, Equivalence. 

5.1     Name  

An exercise I use in an OO design class I teach involves recording details of a 
person's birth. Part of this problem requires us to record the hospital and city of 
someone's birth. As guidance I point out that if the we know the hospital 
someone is born in, we should automatically know the city, since every hospital 
lies in only one city. Inevitably someone points out that this is not the case 
because many cities of the world have a St. Mary's Hospital. 

The error here is one of the oldest in logic and philosophy—the confusion 
between the name of a thing and the thing itself. A hospital is much more than a 
sequence of letters: It is buildings, an organization, people, a legal entity, many 
things that make St. Mary's Hospital on the Isle of Wight different from St. 
Mary's Hospital in London. Clearly nobody would actually mistake one for the 
other if they actually ran into the object. The point is that there may be many 
hospital objects that share the same name, but the name is merely a sequence of 
letters associated with the hospital, not the hospital itself. We model objects, not 
names, thus it is perfectly reasonable to say that every hospital lies in only one 
city. 

What is a name? It is an informal way of identifying an object. I stress the 
word informal, for names rely more on convenience of use than any other feature. 
The string "Martin" is a useful identifier that in many contexts is enough to 
identify me. But I once shared a house with someone else named Martin. Both 
occupants shared that character string, so its value as an identifier was reduced. 
Among our circle of friends, "Martin" was still the most commonly used 
identifier for both of us, but occasional confusions did occur. In many 
applications we consider it reasonable to give a person a single name, as shown 
in Figure 5.1, although that name might be structured. More sophisticated 
examples might give a person many names to allow for aliases, as shown in 
Figure 5.2. For example, I could be referred to by the string "Martin F" to 
distinguish me from the other Martin. 

Names are often a valuable way to identify objects, but no one serious about 
building a system that records people would ever use a name as a 
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Figure 5.1    Object with one name. 

The model implies that not all objects have to have a name. You could argue that not 
having a name implies a link to an empty string, hence the mapping is mandatory. In either 
case this model indicates that a string can be used as a name for many objects. 
Conceptually all equal strings are the same string; that is, you don't have identical copies. 

 
Figure 5.2    Object with many names. 

This models an object with aliases. A variation may be to have one (usual) name and 
several aliases. 

person's sole identifier. People have many names, the same name is used by 
different people, and people change names. All of these factors make names 
unreliable identifiers, although still by far the most common one. 

There is another aspect to names and identifiers that is important to remember: 
A name is a compact way of telling someone about an object. It can describe some 
of the properties of an object. Naming a car model 16GL tells someone about the 
engine size and the level of comfort. Although this name is a compact report on 
the model, it is not an identifier because many models could be called 16GL. 

A true identifier has several properties: It must reliably lead the user to one and 
only one object and it must always lead to the same object whenever it is used. 
Figure 5.3 shows a common model of an identifier. Unlike the usual case with 
fundamental objects, the mapping back to the object is single-valued. 

 
Figure 5.3   An identifier for an object. 

This model implies that not all objects have an identifier, which can be true conceptually 
even if it is not true in software systems. Since the id is a string, not all strings identify an 
object, but to be a true identifier, it should identify only one. If an identifier type were 
used, and that would usually be preferable, then that would have a mandatory mapping 
to an object. 
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5.2     Identification Scheme  

In simple systems a single identifier for each object is typical, but more complex 
systems have many identifiers for one object. The health care industry has many 
schemes for identifying patients: Each hospital assigns a case number, and 
departments have individual numbers. Banking uses several schemes to identify 
banks: SWIFT, sort codes, CHAPS, and so on. This more general approach can be 
supported by a model along the lines of Figure 5.4. 

 
Figure 5.4   Identification schemes. 

Example The World Health Organization's International Classification of Diseases uses the 
code E10 for type I diabetes. This can be represented as an identifier with string 'E10,' 
identification scheme ICD-10, and object the disease diabetes mellitus type I. 

Example Suppose I have a passport number of 123456. This is represented as an identifier 
with string '123456,' identification scheme UK passport, and object myself. Depending on 
the situation, however, the object could be my passport. 

Identification schemes represent the context used to identify an object. A 
single account will have separate SWIFT and CHAPS numbers. The same 
character sequence can indicate two different banks in SWIFT and CHAPS, but 
this is not a problem if these strings are in different schemes. 

The model in Figure 5.4, although a start, is not the whole story. Its crude form 
includes nothing to stop one string from being used to represent more than one 
object within the same scheme. A useful concept here is the uniqueness constraint 
[1], which is used to indicate that a particular combination of mappings must have 
unique values for an object type. 

Consider a uniqueness constraint on the mappings identification scheme and 
string. Such a constraint would say that no two identifiers can have the same 
identification scheme and the same string. Since the mapping from identifier to 
object is single-valued, the combination of identification scheme and string 
identifies a single object—exactly what we need. The other possibilities 
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are also worth considering. How about a uniqueness constraint on object and 
string? This constraint would say that a particular object and a particular string 
uniquely reference an identification scheme; in other words, an object cannot 
have the same string in two different identification schemes. This type of 
uniqueness constraint is not only unenforceable but also inconvenient. People 
often like to use the same string for different schemes so they don't have to 
remember too many identifiers. Bank card PINs and social security numbers are 
two examples. 

A uniqueness constraint on identification scheme and object would mean that 
within one scheme only one string can identify an object. This would disallow 
aliases within an identification scheme. Aliases can be useful but are not essential; 
they can be inconvenient, especially if people confuse the identifier with the 
object, but are not necessarily disastrous. A constraint for all three mappings 
would stop useless duplication of identifiers but would not materially alter the 
picture. 

The second part of a uniqueness constraint states that an objects's identifier 
cannot be changed. This implies that, within a scheme, the same string cannot be 
switched from one object to another. This can be enforced by ensuring that 
identifiers cannot be deleted and that the mappings from the identifier are 
immutable—that is, they are assigned at creation and cannot change. Once an 
identifier is assigned, it is assigned for good. In reality some schemes do recycle 
identifiers, but only identifiers that have never been used can be recycled. 

How are uniqueness constraints implemented in a typical object-oriented 
language? The immutability of the identifiers is a considerable help. 
Immutability allows no update of the mapping within software, so there is no 
public modifier operation. The mappings must be set in the creation operation by 
passing the values as arguments. During the creation operation a check needs to 
be made that no other identifier exists with the same combination of mappings 
that make up the uniqueness constraint. 

Usually the identification scheme would be responsible for checking the 
format of the strings used by its identifiers. This check would be made when the 
identifiers are created. If the string embeds any meaningful information about the 
referenced object, then this information should also be checked. I might have an 
identifier U123, where the U indicates I live in United States. This identifier 
would cause a problem should I return to England. In general it is bad practice to 
embed information about features of an object into an identification string, 
because such practice implies that the string should change when the features 
change. It is better to generate a separate string that provides this kind of compact 
information. 
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5.3     Object Merge  

We like to think of objects as somehow complete: Once identified, an object is 
so identified forever. Alas, the vagaries of real life are not so simple. Imagine a 
patient arriving and being treated at a hospital. After several days they realize 
that this patient is also an out-patient at another department. However, they have 
created a separate record for the patient on the hospital computer system. This 
situation is not uncommon, and it may be weeks or months before the duplication 
is spotted. 

This duplication affects not only the computer system but also the per-
ception of the people who work in the hospital. Realizing that a patient you are 
currently treating for left ventricular failure is the same patient who was in for 
thyrotoxicosis (overactive thyroid) a year ago is important for the whole clinical 
process, not just the computer system. We need a conceptual mechanism to tie 
the two objects together. 

I will outline three strategies for this: copy and replace, superseding, and 
essence/appearance. 

5.3.1       Copy and Replace  

Usually the first strategy we think of is to copy all the properties of one object over 
to the other and delete the copied object (copy and replace). The identifier to the 
old deleted object would be altered so that it mapped to the object that remained, 
thus breaking the immutability rule. This strategy works when alias identifiers are 
allowed, but a problem remains in dealing with any references within the software 
to the deleted object. Unless you can catch all such references, there is the risk of 
a dangling reference, which often has painful consequences. 

Example John Smith enters the emergency room for some treatment and is given the 
hospital number JS777. Later the hospital discovers that he was previously registered in the 
hospital under the number JS123. The information from the JS777 object must be added to 
the record of the JS123 object, all references to the JS777 object switched to the JS123 object, 
and the JS777 object deleted. 

5.3.2       Superseding  

The second strategy is to supersede the object, as shown in Figure 5.5. One object is 
classified as superseded and linked to the other active object. In the future all work 
will be done to the active object, and the superseded object is held for historical 
reasons. There is no need to replace the references to the superseded object. Either 
the data currently in the superseded object is copied to the active object, or any 
messages to the active object must check data on all objects that the receiver 
supersedes. All messages to the superseded object are 
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Figure 5.5    Object superseded by another. 

delegated to the active object. If all data is copied, then the active object can safely 
ignore the presence of superseded objects. 

Example With the superseding strategy the JS777 object is marked as superseded and the 
JS123 as the active object. Any messages sent to JS777 are delegated to JS123. 

Example Researchers discovered two varieties of hepatitis: post-transfusion hepatitis and 
non-A non-B hepatitis. In time these were considered the same and called hepatitis C. This 
can be represented by superseding both the post-transfusion and non-A non-B hepatitis, 
linking them to the active hepatitis C object. 

Conceptually the copy and replace strategy and the superseding strategies are 
much the same. The only difference is that you can look to see what was 
originally attached to the superseded object. This can be important: If a hospital 
performed treatment on Mr. Smith without realizing the two patients were the 
same, only the superseding strategy would give an accurate reflection of what 
happened. 

5.3.3       Essence/Appearance  

The final strategy to consider is the essence/appearance model, shown in Figure 
5.6. The object remains much the same, but sitting behind it is another object—the 
object essence. The object essence exists only to link together objects; it has no 
other properties. In this strategy merging is done by connecting the objects to a 
single object essence. This implies some message passing modification, in that 
objects must know about their other appearances and take them into account when 
responding. 

 
Figure 5.6   Object essence and appearance. 
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Example With the essence/appearance strategy, a new object essence is created with JS123 
and JS777 as its appearances. 

Example This model does not apply well to the preceding hepatitis example because the 
concepts of post-transfusion and non-A non-B hepatitis fell out of use, and hepatitis C 
became the one that was generally accepted. 

The discussion above has focused on merging objects; however, merging may 
need to be undone later. Having merged two patients, the hospital may find out a 
few months later that there really were two different patients after all. Splitting the 
objects again is easiest if the essence/appearance strategy was used, because it 
preserves the original objects. Thus the essence/appearance strategy is the best one 
to use should the merging not be certain in the long term. 

Example Should the two John Smiths be found to be different after all, the object essence 
linking them together must be removed. 

5.4     Object Equivalence  

The previous sections have focused on how one object can be identified by 
different people in different ways. A related, though subtly different, point is that 
different objects can be considered similar. For example, medical terminology 
includes various more-or-less standard words to define various clinical 
conditions. The emphasis, however, is on "more-or-less." The definitions are 
fairly precise, certainly in comparison to most software terms, but are not 
completely so. To handle this imprecision, various coding schemes for medical 
terms have been set up, which means we have several such coding schemes we 
must choose from. 

We could use a coding scheme as an identification scheme for our own terms. 
Thus if a particular clinician uses a particular set of biological phenomena, that 
clinician can map the various coding schemes to the biological phenomena by 
treating the coding scheme as an identification scheme. Other clinicians can do 
the same. This allows information to be transferred, at least to the level of 
granularity of the coding scheme. An important issue that can get lost here is 
when the equivalence is not universally agreed on. Some parties may think that 
two objects are the same while other parties do not. The model in Figure 5.7 deals 
with this by defining an equivalence that is held by certain parties. A party can 
make use of the equivalence only if it approves of it. 

Example Many doctors consider the diseases hepatitis G and hepatitis GBC to be the same 
disease, but this is not universal. This can be represented by an equivalence be- 
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Figure 5.7    Equivalences between objects. 

tween these two diseases. If a doctor wants a list of patients suffering from hepatitis G and 
that doctor is a party on the equivalence, then those patients suffering from hepatitis GBC 
are also returned. 

Referen ces  
1.    Martin, J. and J. Odell. Object-Oriented Methods: A Foundation. Englewood Cliffs, NJ: 

Prentice-Hall, 1995. 
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Inventory and Accounting  

A large proportion of commercial computing systems are designed to track the 
money moving through an enterprise, recording how it is earned and spent. The 
fundamental idea behind accounting and inventory tracking is that there are 
various pots of money and goods, and we must record how money and goods 
move among these pots. 

The inventory and accounting patterns in this chapter are born from this 
fundamental idea. They present a core set of concepts that we can use as the basis 
for financial accounting, inventory, or resource management. The patterns do not 
describe these processes directly, rather they describe the underlying ideas from 
which processes can be built. Chapter 7 describes a simple example that uses 
these ideas for billing telephone calls. 

In this chapter I use a simple personal financial example to explain the basic 
ideas of accounting and inventory. Although similar, the terms I use are not the 
terms traditionally used in financial accounting. In my search for a more abstract 
model, I found that I needed new terms and concepts. A particular feature of the 
patterns in this chapter is how the rules for processing are embedded into the 
accounts system. This approach allows the accounts to update and manage 
themselves. This turns a traditionally passive recording system into an active 
system that can be configured by wiring up the accounts in the appropriate 
manner. 

The first pattern is that of an account (6.1). An account holds things of 
value—goods or money—which can only be added or removed by entries. The 
entries provide a history of all changes to the account. When we use an account to 
record the history of changes to a value, it is important to check that items do not 
get lost. Transactions (6.2) add a further degree of auditabil-ity by linking entries 
together. In a transaction, the items withdrawn from one account must be 
deposited in another; items cannot be created or destroyed. 

95 
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There are two kinds of transactions: A two-legged transaction moves an 
amount from one account to another. A multilegged transaction can have entries 
in several accounts as long as the transaction as a whole balances. 

Accounts can be grouped together using a summary account (6.3), which 
applies most of account's reporting behavior to groups of accounts. Sometimes 
we need to make account entries that are not designed to be kept in balance; a 
memo account (6.4) deals with this task. 

An account can include fixed rules that govern how amounts are transferred 
between accounts. Posting rules (6.5) allow us to build active networks of 
accounts that update each other and reflect business rules. To achieve this, 
instances of a posting rule require their own executable methods, a requirement 
that introduces the important modeling concept of an individual instance method 
(6.6). Individual instance methods can be implemented with some combination 
of a single subtype, the strategy pattern, an internal case statement, an interpreter, 
and a parameterized method. 

The posting rule execution (6.7) pattern describes ways in which posting 
rules can be triggered: while a transaction is created; by asking an account to 
process its rules; by asking a posting rule to fire; or by asking an account to bring 
itself up to date, thus firing its predecessors in a backward chaining manner. 

To use posting rules with many accounts, we need a way of defining posting 
rules for many accounts (6.8). One way is to use a knowledge level, in which case 
posting rules are defined on account types. Another way is to link posting rules to 
summary accounts. 

In an accounting system, various objects will want subsets of the account's 
entries and their balances, both of which require a pattern for choosing entries 
(6.9). This pattern is useful whenever we want a selection of objects from a 
multivalued mapping. Our alternatives are to return the whole set and let the 
client do the selection, adding extra operations to the account, or using an account 
filter. 

We can divide large networks of posting rules into groups by using the 
accounting practice (6.10) pattern. In long calculations we often need to go back 
to see why various transactions gave the result they did; then we need to use the 
sources of an entry (6.11) pattern. 

Balance sheets and income statements (6.12) distinguish between accounts 
that record items being held and accounts that record where items come or go. 
Different people can have similar views of accounts; for example, my view of my 
bank account is probably similar to my bank's view. One is a corresponding 
account (6.13) of the other. 

The resulting patterns are quite abstract; particular cases need a specialized 
account model (6.14) to apply them to everyday practice. Such accounts are 
developed by subtyping the general accounting patterns. 
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The final pattern in this chapter describes booking entries to multiple accounts 
(6.15). This pattern is useful when there is more than one way of reporting the trail 
of entries. The two alternative techniques are using memo entries or using derived 
accounts. We can use derived accounts instead of accounting patterns when we 
want the reporting behavior of accounts but not the balancing and audit 
capabilities. 

These models are the results of ideas generated during several projects. They 
originated from working on a customer service system for a US utility company, 
and were further developed while examining accounting structures for an 
international telecommunications company. The models also draw deeply from 
the recent development of a payroll system for a major US manufacturing 
company. 

Key Concepts    Account, Transaction, Entry, Posting Rule 

6.1     Account  

In many fields it is important to keep a record of not only the current value of 
something but also details of each change that effects that value. A bank account 
needs to record every withdrawal and deposit; an inventory record needs to 
record each time items are added or removed. 

An account is similar to a quantity attribute, with an added entry for every 
change to its value, as shown in Figure 6.1. The balance, which represents the 
current value of the account, is the net effect of all entries linked to the account. 
This does not mean that the balance needs to be recalculated each time it is asked 
for. Derived values can be cached, although the cache would be invisible to the 
account user. By using the entries, a client can also determine the changes over a 
period of time and the total amount of deposits or withdrawals (see Section 6.9). 
The sign on the amount indicates whether the entry is a deposit or a withdrawal. 
A statement is a list of all the entries that have been carried out against an account 
over a period of time. 

 
Figure 6.1    Account and entry.  
The entries record each change to the account.  



DLKING¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊ ÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

98   Transactions 

Example I withdraw $100 from my checking account. This is represented as an entry with 
amount -$100 attached to my checking account. 

Example I buy 4 reams of standard letter paper from a shop. The shop represents this as an 
entry on their standard letter paper account with amount -4 reams. 

Example In January I use 350 KWH of electricity. This is represented as an entry with 
amount 350 KWH to my domestic electricity usage account. 

Modeling Principle To record a history of changes to a value use an account for that value. 

One way an implementation can compute a balance is to take a collection of 
entries and form a collection of quantities. Smalltalk has a specific operation, 
collect, to do this. The danger is that the collect operation collects the objects into 
the same kind of collection as the original. Thus running collect on a set of entries 
yields a set of quantities. Sets allow no duplicates, so if we have two entries with 
the same amount, only the first entry's quantity is counted, and the balance value is 
incorrect. To form collections of fundamental values, it is often better to use a bag, 
which does allow duplicates. In C++ this problem is less common because collect 
operations are less common and more difficult to use; instead C++ users use an 
external iterator [ I ]  which does not have this problem. As a check, however, test 
cases should always include entries with equal amounts (as well as entries with 
every attribute equal). 

Figure 6.1 indicates two timepoints for the entry: one indicates when the 
charge is made and the other when the entry is booked to the account. This is 
particularly important when retroactive charges occur. A price for a charge may 
have changed between the charge date and the booked date, so both dates are 
required. We need to know both the history of events and our knowledge of that 
history (see Section 15.3.1). Timepoints also include both the time of day as well 
as the date; many applications are happy with just the date. 

Example I have a meal at Jae's Cafe on April 1. The credit card company receives notice of 
payment on April 4. The entry has a charged date of April 1 and a booked date of April 4. 

6.2     Transactions  

Using entries help keep a record of changes to an account. These changes usually 
involve moving an item from one account to another. When I withdraw money 
from my bank account, I am adding money to my wallet, or cash account. With 
many items it is not enough to just record the comings and goings; we must also 
record where they come from and go to. 

The  transaction  helps  by  explicitly  linking  a  withdrawal   from  one account 
to a deposit in another, as shown in Figure 6.2. The double entry 
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approach reflects a very basic accounting principle that money (or anything else 
we must account for) is never created or destroyed, it merely moves from one 
account to another. 

 
Figure 6.2   A transaction with two entries. 

Example I use my credit card to pay Boston Airlines $500 for an airline ticket. This is a 
transaction from the credit card account to the Boston Airlines account with an amount of 
$500. Later I will make a transaction from my checking account to the credit card account to 
bring the credit card account's balance to zero. 

Example Aroma Coffee Makers (ACM) moves 5 tons of Arabian Mocha from New York to 
Boston. This is transaction from the New York account to the Boston account with an 
amount of 5 tons. 

In complex accounting structures we aim to get the accounts to balance— that 
is, to reach zero—at various points in the business cycle. By building the principle 
of conservation into the model, we make it easier to find any "leaks" in the system. 
Although it's not essential to use transactions when you are using accounts, I 
prefer to. 

Modeling Principle When working with accounts, follow the principle of conservation: The 
item being accounted for cannot be created or destroyed, only moved from place to place. 
This makes it easier to find and avoid leaks. 

6.2.1       Multilegged Transactions  

Figure 6.2 implies that each transaction consists of a single withdrawal and a 
single corresponding deposit. In fact we can have many withdrawals and deposits 
in a transaction. Say I receive $3000 from Megabank and $2000 from Total 
Telecommunications. I decide to deposit both checks into my checking account. 
My bank statement will show a $5000 credit. Note that although two checks have 
hit my bank account, a single entry is shown. This transaction is represented by 
the multilegged transaction model shown in Figure 6.3. The upper bound on the 
mapping is lifted from transaction to entry. The overriding rule is that the entries 
must balance with respect to the whole transaction, but no match is required 
among individual entries. Thus I can model my bank account situation with a 
transaction that consists of three entries: [account: 
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checking account, amount: $5000], [account: Megabank, amount: ($3000)], 
[account: Total Telecommunications, amount: ($2000)]. The transaction is 
responsible for ensuring that money is not created or destroyed. 

 
Figure 6.3    Multilegged transactions. 

These allow more flexibility in forming transactions than the two-legged model. 

Example Aroma Coffee Makers removes 5 tons of Java from New York and sends 2 tons to 
Boston and 3 tons to Washington. This is a single transaction with three entries: [account: 
New York, -5 tons], [account: Boston, 2 tons], [account: Washington, 3 tons]. 

The two-legged model is a particular case of the multilegged model where the 
transaction has only two entries. In some applications the two-legged model 
predominates, and we have a model similar to Figure 6.4. Other applications 
might have a large number of multilegged transactions. I would recommend the 
multilegged approach because it provides more flexibility. Two-legged 
transactions can easily be created by a special creation operation on a multilegged 
transaction, which is a useful convenience. The rest of this discussion assumes the 
multilegged model. 

 
Figure 6.4   A model of a two-legged transaction that does not use entries. 

This model may be found where all the transactions are two-legged. It has much the same 
capabilities as Figure 6.2. However, I would prefer using Figure 6.2 since it is easier to 
migrate to a multilegged transaction. 
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The mutual mandatory relationship between transaction and entry introduces 
a chicken and egg problem. I cannot create an entry without creating a transaction 
because of a constraint. Similarly I can't create a transaction without an entry 
because transaction is similarly constrained. 

One solution is to provide a creation operation on transaction that takes a list 
of partially defined entries, or even a list of arrays with appropriate arguments. 
Entry would have its creation operation made private but accessible to the 
transaction's creation. The transaction's creation would then be the only place that 
could create entries. Obviously, during the execution of this creation operation, 
objects would be in violation of their constraints. The rule with constraints, 
however, is that public operations should end with all constraints satisfied [5]. 
Providing only the transaction's creation routine is made public, this rule can be 
enforced. 

6.3     Summary Account  

In a system of accounts it is often useful to group accounts together. For example, 
I might want to group my Total Telecommunications and Megabank accounts into 
a business income account. Similarly I want to put rent and food into personal 
expenses and my business travel and office expenses into business expenses. This 
kind of structure can be supported with a simple hierarchy of detail and summary 
accounts, as shown in Figure 6.5. 

components 

[hierarchy] 

Figure 6.5    Summary and detail accounts. 

A summary account can be composed of both summary and detail accounts. This forms 
a hierarchy, with the detail accounts as leaves (an example of composite [1]). The 
entries of a summary account are derived from the components' entries in a recursive 
manner. 
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In this hierarchy structure we can bring together accounts into summary 
accounts. We restrict the system to posting entries only to detail accounts and not 
to summary accounts. Summary accounts can still be treated as accounts because 
their entries are derived according to their components' entries. A summary 
account that contains summary accounts will look for entries in its components, its 
components' components, and so on, recursively. This derivation of the entries 
mapping allows us to describe the balance attribute, and any other operations and 
attributes that depend on entries, at the supertype level. 

Example    I have a summary account for air travel with detail accounts for Mega-bank air 
travel and Total Telecommunications air travel. 

Example   Aroma Coffee Makers has a summary account for Java with detail accounts for 
each warehouse. It can thus find out the total amount of Java that it owns. 

Note that the relationship among components needs to be marked to show it 
is a hierarchy. The cardinalities are not enough to enforce this constraint. We 
must not have cycles in this structure. 

The separation between summary and detail accounts is quite common in 
accounting, but it is not absolutely necessary. The model in Figure 6.6 shows the 
distinction removed. In this case an entry can be made to any account, and all 
accounts can be placed in a hierarchical structure. This can be done by providing 
two mappings from account to entry: one to show which entries are posted at that 
level, and another to add together the entries on sub-accounts. The first would be 
updatable, the latter is derived, not updatable, and used for balance, statements, 
and other features that were on the super-type in the Figure 6.5 model. 

 
Figure 6.6   Account hierarchies without separating summary and detail accounts. We 

can use this model to post entries to summary accounts. 
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So far we have followed conventions that say that accounts must be arranged 
in a hierarchy and that entries are booked to only one account. We will continue 
with these assumptions for a while, but we will consider some alternative 
possibilities later on in Section 6.15. 

6.4     Memo Account  

Benjamin Franklin once said, "In this world nothing can be said to be certain, 
except death and taxes." We can't eliminate the pain of paying taxes, but I find the 
pain is lessened somewhat by avoiding surprises on my tax return. Each time I 
earn some money, I allocate a portion to a tax liability account. I then know how 
much of my money is really mine, and how much I owe in taxes. 

Notice that with this plan, no real money has moved. There is no payment 
from my checking account until I have to pay the tax. Furthermore, my tax 
category lumps together state and federal taxes. When I actually pay (and when I 
pay estimates], I will make transactions from my checking account to the 
accounts federal tax and state tax. When I do this I need to reduce my tax liability 
account by the same amounts, but again no money moves between the real 
accounts (checking account, federal tax, state tax) and this tax liability account. 
This account acts as a memo to me on how much money I owe in taxes, thus it is 
referred to as a memo account. 

A memo account contains amounts of money but not real money. It is 
important that no real money leaks from or to a memo account. So in my tax 
example, as I take the money from my income account to my checking account I 
make an entry at the same time into my tax liability memo account. Memo 
account becomes another subtype of account, and I have to ensure that 
transactions do not shift money between that and the other accounts. This can be 
done by ensuring that the balance constraint on transaction excludes memo 
accounts. 

If we are using transactions, we need to ensure that we always move money 
between accounts and that we do not create or destroy money. This implies that 
when an entry is made to the tax liability account, a balancing entry is made 
somewhere. Since it can be difficult to see what account would be a sensible host 
to this entry, accountants frequently create a contra account. Thus the tax liability 
account would have a contra tax liability account, which acts as the other end of all 
entries in the tax liability account, either withdrawals or deposits. This approach 
can be used with the usual model, but it is not strictly necessary. If the balance 
checking constraint ignores memo accounts, then single-sided entries against 
them are allowed. A contra account can always be generated automatically. This 
approach would imply that the lower bound on the mapping from transaction to 
entry can be reduced to 1. 
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Example Each time I receive a payment from a client, I record it as a transaction from a 
client income account to my checking account. I also enter a portion of that amount into the 
tax liability memo account. When the time comes to pay estimated taxes, I make a 
transaction from my checking account to my federal tax account. I add a third entry to this 
transaction to reduce the amount on my tax liability memo account by the same amount. 

Of course, if we don't use transactions, we don't run into any balance 
problems and can post the entries without worry, but the danger is that real 
money can leak into memo accounts (or into thin air) more easily. 

6.5     Posting Rules  

Using a memo account I can make a posting to a tax liability account, but I still 
have to remember to do it. Since I always enter 45 percent of each fee income 
entry into a memo tax liability account, a computer system should be able to do it 
for me automatically. 

What is needed is a rule that looks at a particular account and, when it sees an 
entry, creates another entry. A simple example of this kind of rule is shown in 
Figure 6.7. A posting rule is described by specifying an account as a trigger. Any 
entry in the trigger account causes a new entry to be made, which is the value of 
the original entry multiplied by the multiplier. 

 
Figure 6.7   A simple structure for posting rules that multiply by a factor. 

For each entry in the trigger account, we post an entry to the output account of the value 
of the triggering entry multiplied by the multiplier. 

Example    My tax liability can be handled by a posting rule with the fee income account as 
the trigger, the tax liability account as the output and the multiplier as 0.45. 

Multiplication by a scalar handles a number of useful situations for a posting 
rule, but the process can easily get complex. Consider a graduated income tax: 
The first £300 carries no tax, the next £2500 carries a 20 percent tax, the rest is at 
40 percent. A simple scalar multiplier is no longer enough. We want posting rules 
to carry any arbitrary algorithm, which would give us the maximum flexibility. 

104    Posting Rules 
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To give posting rules this flexibility, we have to link a calculation to each 
instance of a posting rule, since every rule will have a different way of calculating 
the amount of the new entry. Conceptually this means that each instance of a 
posting rule needs to have its own method for doing the calculation, as shown in 
Figure 6.8. The glib notation masks a significant problem. Mainstream object 
systems allow behavior to vary by polymorphism and inheritance, but this is class 
based: The behavior varies with the object's class. We want the behavior to vary 
with each individual instance, which requires the individual instance methods 
pattern, as discussed in Section 6.6. (I discuss a similar problem in Section 9.2.) 

 
Figure 6.8    Posting rules with methods to calculate values for entries. 

This notation says that each instance of a posting rule has its own calculation method. 

6.5.1       Reversibility  

An important property of posting rules is that they must be reversible. Usually we 
cannot delete an incorrect entry because either it has led to an entry that is part of a 
payment or it appears on a bill. The only way we can remove its effects is by 
entering a reversal, which is an identical but opposite entry. Thus any posting rule 
must ensure that two entries that are identical but of opposite signs are both placed 
in the trigger account and completely cancel each other out in further processing. 
We can test the reversal by inserting such opposite pairs in routines for a posting 
rule and ensuring their output amounts are also equal and opposite. 

6.5.2       Abandoning Transactions  

In some accounts almost all transactions are generated from posting rules. Input 
accounts are used to record initial entries from the outside world. All further 
account entries are generated by posting rules. The risk of not using transactions is 
reduced because all entries are predictable from the initial entries and the posting 
rules. The responsibility to check that nothing leaks out is transferred from the 
operational use of the system to the design of the posting rules. If we remove 
transactions, then it is still valuable to keep a note of the cause and effect trail 
between entries. On the whole I prefer keeping transactions because they make 
auditing easier for a small price in overhead. If you don't use transactions, you 
will still need some audit mechanism. 
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6.6     Individual Instance Method  

A conceptual model should represent a situation as naturally as possible for the 
convenience of the domain expert. We should minimize dependencies on a 
particular implementation environment as much as possible. Computer design 
should reflect human thinking, not the other way round. This philosophy is 
reflected in the diagram shown in Figure 6.8. After defining this conceptual 
modeling construct, we need to invent a general way of implementing it. Hence 
the question is not "How do we put calculations on individual posting rules?" but 
"How do we attach methods to instances?" This follows the transformational 
approach discussed in Chapter 14. We want several ways of implementing the 
model in Figure 6.9 behind a single interface. This follows the overriding 
principle of template-based design: The model should define the interface of the 
classes. We should be able to exchange the implementations without altering the 
interface. 

 
Figure 6.9    Using singleton classes to implement individual instance methods.  

6.6.1       Implementation with a Singleton Class  

The natural way to vary behavior is to use a polymorphic operation based on 
subclassing. The simplest way to do this is to subclass the posting rule for each 
instance of the posting rule, thus creating a number of singleton classes. Here all 
the standard methods and properties for posting rules are held by the posting rule, 
and the subtypes merely implement the different calculateFor methods. 

The main problem with this approach is that the subtypes are rather artificial. 
They only exist because of the fact we cannot vary calculateValue by instance. 
This artificiality makes the approach less than perfect. Another problem is that 
this approach leads to many classes, which makes some people feel rather 
uncomfortable. Classes do not present a particularly large 
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problem because the classes are both small and very constrained. Calculation 
methods can be shared by manipulating the class hierarchy. However, the process 
operation on the posting rule can also be the victim of polymorphism, and the two 
polymorphisms may not match. 

6.6.2       Implementation with the Strategy Pattern  

On first sight the strategy pattern [1] implementation shown in Figure 6.10 
looks very similar to the pattern using singletons. The main difference is that 
Figure 6.10 performs subtyping on a separate method, or strategy, object. The 
posting rule is simpler because the whole issue of method choice is eliminated. 
The posting rule just knows it can ask a method object to do the calculation. 

 
Figure 6.10     Using the strategy pattern [1] implementation for individual instance 
methods. 

Figure 6.11 shows the interactions that occur in an example case. An account 
asks a process rule to process it. The process rule gets all the entries that have not 
been processed by this rule (see Section 6.7.2). For each of these entries, it calls 
its method to calculate the value of the new entry. The method may need to ask 
questions; for example, tax rates often vary depending on whether a person is 
married or not. It passes the result back to the posting rule, which then creates the 
new entry. 



DLKING¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊ ÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

 
Figure 6.11    Interaction diagram for using the strategy pattern. 

The method gets any information it needs by asking the supplied entry. 

It should be stressed that this method object is not a "free subroutine," in the 
manner of functional designs (or some OO approaches). The method is 
encapsulated within the posting rule, since only the posting rule can reference and 
use it. 

Posting rule methods can be shared between objects. An example of such a 
method is the flat tax method, which applies a flat rate of tax with some standard 
deductions. If the method is the same for several kinds of taxes, with only the rate 
of tax varying, then a method can be designed that asks the posting rule for its flat 
rate but otherwise allows the processing to be reused. This method can be seen as 
a cross between the method object and the parameterized method (see Section 
6.6.4) implementations. 

A variation on this approach in Smalltalk is to use a block as the method. By 
doing this we eliminate the need for a new method class and eliminate the method 
class' subclasses. Blocks are elegant to use but can be very tricky to debug: If an 
error occurs in the block's code, it can be difficult to follow what is going on. If the 
block is simple, however, this approach can work very well. 

6.6.3       Implementation with an Internal Case Statement  

Faced with creating subclasses just to handle one polymorphic method, we might 
wonder why we should bother. Instead we can have a series of private operations 
for the posting rule: computeFederalTax, computeMassTax, 
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computeSalesCommision, and so on. Then a single computeFor on the posting rule 
has a simple case statement that chooses which private method to use depending 
on which instance is the receiver, as shown in Figure 6.12. 

 
Figure 6.12    Using an internal case statement for an individual instance method. 

This is not a violation of object-oriented principles as long as the case statement is 
encapsulated within the posting rule. 

Object designers tend to recoil at the idea of using case statements like this, 
but in this situation there is a lot to be said for it. Modifying this implementation 
means adding a new private operation and adding a clause to a case statement. 
This is not much different from the new subclasses required with the strategy or 
singleton implementation. If the number of methods is large, then we have a large 
(but simple) case statement, or a large number of subclasses. Thus it is a trade-off 
between managing a lot of singleton classes and having to change the case 
statement with each new posting rule. 

6.6.4       Implementation with a Parameterized Method  

The parameterized method strategy uses a single method in the posting rule and 
handles the different behavior by using conditions based on properties of the 
posting rule, or of related classes. For example, if all the entries are a flat 
percentage, then the posting rule can hold the percentage, and a single method that 
deducts that percentage is sufficient, as shown in Figure 6.13. If some posting 
rules have different percentages for married and single people, 

 
Figure 6.13    Using a parameterized posting rule. 
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then a married and single rate can be held in the posting rule, and the method asks 
the employee for marital status and then uses the appropriate rate. 

This strategy works if all the variations in the calculation can be captured by 
varying a few parameters. In such cases, however, we must model it that way. 
Individual instance methods are only present if the situation is more complicated 
than that. This is a potential implementation because in some cases we can 
combine parameterization with another technique. 

6.6.5       Implementation with an Interpreter  

If the method is simple, then we can hold the method as a string in a simple 
language and build an interpreter for it. Each instance of the method holds its 
particular string and the method class can interpret the string (perhaps using the 
interpreter pattern [l]). 

Good candidates for this implementation are methods that use simple formulas 
that use the arithmetic operators, parentheses, and a couple of simple functions. If 
the language is simple, it is not too difficult to build the interpreter. The only 
limitation is what can be expressed in the language. 

6.6.6      Choosing an Implementation  

All of the implementations work well and can be hidden behind a single 
operation. I use a parameterized method if I can. My next choice is to use the 
parameterized method implementation in conjunction with one of the other 
patterns to see if I can find a blend that uses only a few variant methods to handle 
the larger variations and many parameters to handle the smaller variations. If only 
a few variant methods are needed, then either singletons or an internal case 
statement works well. If there are many variants, then the strategy pattern is the 
best. On the whole the strategy pattern is never much worse than singletons or 
internal case statements, but it may be a little bit more difficult to understand at 
first sight. If the method can be expressed with a simple language, such as an 
arithmetic formula, then the interpreter is a good idea. As the "Gang of Four" 
patterns become more widespread, a combination of the strategy pattern and a 
parameterized method will become the dominant choice. 

All four of the above strategies show ways in which the problem of individual 
instance methods can be handled. We can say that the model shown in Figure 6.8 
is the analysis statement of specification, and the designers can choose 
whichever strategy is the best for the implementation conditions. This works as 
long as a common interface exists for each strategy. The principle of one analysis 
model defining a single interface that can be implemented in many ways is the 
foundation of the approach of using design templates for development. 
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Many modelers would prefer another way of modeling the problem than that 
shown in Figure 6.8. They might prefer an expression closer to one of the other 
strategies. They can still make the separation of analysis from implementation if 
they substitute another implementation behind the same interface. Other 
modelers would prefer to model in the same form as the implementation. In this 
situation they are trading off implementation independence for a greater 
seamlessness between analysis model and implementation. 

This illustrates clearly the difficulty in drawing a line between analysis and 
design. Just as various combinations of classes may satisfy a particular interface 
in software, we may use different combinations of types to model the same 
situation in conceptual models. The choice of types can influence the choice of 
classes. The overriding influence is that the choice of types defines the interface 
of classes, but what lies behind that interface need not match the conceptual 
picture. 

6.7     Posting Rule Execution  

So far we have looked at how a posting rule is structured and how it responds to 
being fired, that is, told to execute. This is a good point to step back and look at 
some of the strategies we can use to fire posting rules. The first point I want to 
stress is that posting rules should be designed in such a way that they can be fired 
by different approaches. It is important to separate the strategy of firing the 
posting rules from the rules themselves as much as possible to reduce the coupling 
between these mechanisms. 

6.7.1       Eager Firing  

In this approach posting rules are fired as soon as a suitable entry is made in a 
trigger account. There are two ways we can do this. One is to put the 
responsibility in the transaction or entry creation methods, as shown in Figure 
6.14. Creating a transaction leads to several entries being posted to accounts. 
Each posting of an entry prompts a search for posting rules that are using that 
account as a trigger. Each of these posting rules is then fired. 
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Figure 6.14   Event diagram showing how transaction creation can trigger posting rules.  
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The finding and firing of posting rules can be done either during transaction 
creation or in the individual entry creation methods, as shown in Figure 6.15. The 
latter is a better factoring of the process. 

 
Figure 6.15    Interaction diagram for firing posting rules within entry creation.  

A second approach is to make posting rules observers of their trigger account 
[l]. When a posting rule is set up, it registers itself to the trigger account. When an 
entry is attached to an account, the account broadcasts to all observers that a 
noteworthy event has occurred. The posting rule then interrogates the account to 
find out what has happened and discovers the new entry. It then generates the 
appropriate new entry to the memo account. The advantage of this scheme is that 
the transaction no longer needs to activate the posting rule. The observer is a very 
useful mechanism, but I tend to use it only when there is a need to ensure that 
visibilities run solely from the observer to the observed, particularly when they lie 
in different packages. I don't like to use observers when I don't need to, because 
too many of them make debugging difficult. I don't think I would put the posting 
rules in a separate package so there is no need to use the observer. 

6.7.2       Account -based Firing  

Account-based firing moves the responsibility of firing from transactions to the 
account. Entries can be added to an account without any posting rules being fired. 
At some point the account is told to process itself and then fires its outbound 
posting rules for all entries that have arrived since the last time it processed itself, 
as shown in Figure 6.16. 
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Figure 6.16    Cyclic firing of accounts. 

The X notation indicates that the fire posting rule operation is executed for each 
combination of posting rule and unprocessed entry. 

Account-based firing requires the account to keep track of which entries have 
not been processed yet. It can do this by maintaining a separate collection for 
unprocessed entries (keeping its entries in a list and keeping track of the last entry 
to be processed), or by recording the timepoint of the last process and returning 
entries that were booked after that time (using the when booked property). 

Account-based firing can be used in a cyclic accounting system, where 
accounts are processed once a day. In this case you must be careful that the 
accounts are processed in the right order. Accounts must be processed before any 
accounts that may be affected by their outbound process rules. These 
dependencies can be determined automatically by looking at the process rules. 

6.7.3       Post ing -rule -based Firing  

In posting-rule-based firing the posting rule is explicitly told to execute by some 
external agent. It looks at its inputs to find what new entries have appeared. As 
such, posting-rule-based firing is similar to account-based firing, 
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with many of the same advantages and disadvantages. The main difference is that 
since an account can have many posting rules, the responsibility for deciding 
which entries have not been processed passes from the account to the posting rule. 
This usually makes the situation more complicated, so I prefer account-based 
firing. 

6.7.4       Backward -chained Firing  

Backward-chained firing is a variant on account-based firing: The accounts do 
not just process themselves, and they cause all accounts that they are dependent 
on to process themselves. With this approach we can discover the up-to-date 
status of any account. 

We can start this process by asking an account for its entries, as shown in 
Figure 6.17. The account first brings itself up to date. The account uses the 
posting rules to determine which accounts are triggers for a posting rule that has 
itself as an output. These accounts are asked to bring themselves up to date, 
which is a recursive process, as shown in Figures 6.18 and 6.19. The whole 
account graph is brought up to date by simply asking an account at the end to be 
processed. 

 
Figure 6.17    Requesting a detail account for its entries with backward-chained firing. 

 

Figure 6.18    Method for bringing an account up to date. 

The bring account up to date operation is called recursively on each account that is an input 
for the processing account. 

6.7.5       Comparing the Firing Approaches  

The primary considerations in choosing a firing approach is the time taken in 
executing the posting rule (an implementation decision) and the point at which we 
want to catch errors. Eager firing allows us to get errors as soon as they are found. 
This gives us more time to find the cause of the errors. It does force us to do all the 
calculations when we are making entries. Account-based and backward-chained 
firing give us more flexibility in the timing of calculations. If we process accounts 
in a batch method, we can read all the 
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entries from a file and then fire the posting rules at our leisure, perhaps overnight. 
The sooner we fire, the sooner we will find any mistakes. 

Choosing between account-based and backward-chained firing is really 
about whether we want to handle the extra complexity of building 
backward-chained firing. Backward chaining is more awkward to build than 
account-based, but once built it is easier to use. Thus I would use account-based 
for simple account structures and backward-chained for complex account struc-
tures. On the whole I don't like eager firing because it is not as flexible. I can get 
all the benefits of eager firing by ensuring that posting rules are fired as soon as I 
add entries (but not as part of entry creation). Although this is an extra step, it 
does allow me to choose not to do so if I wish. Eager firing does not give me that 
choice. If I have so much processing power that the posting rules do not cost 
anything, then it makes no difference. 

There is no reason why you cannot mix the firing approaches. Income 
accounts might use eager firing into a couple of layers of asset accounts and then 
use backward chaining for the rest of the way. Using more than one firing scheme 
will  make the system more complex and confusing, however, so I don't mix them 
unless I have a good reason. 

This kind of approach is still new, and we are still learning about the 
trade-offs inherent in the various firing schemes. Since this is such a fluid area, it 
is important to retain flexibility so that you can change the firing scheme as you 
watch the system in action. 
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6.8     Posting Rules for Many Accounts  

So far I have considered the parochial example of myself and my own chart of 
accounts. We need to extend this to handle many people. We want the posting 
rules to be consistent, so that a single federal tax posting rule can be used to 
determine federal tax liability for all the people involved. 

With this extension there is no longer a posting rule operating over a single 
account. Each employee needs a unique account, yet the federal tax liability 
posting rule should be programmed to work for all employees. We do not want to 
have to make a separate posting rule for each employee. 

There are two ways we can do this. The first is to use the notion of knowledge 
and operational levels (see Section 2.5). We set up the posting rules at the 
knowledge level and link them to account types, as shown in Figure 6.20. Thus we 
would have account types for fee income, pretax earnings, net earnings, and so on. 
Entries that appear in accounts check the posting rules on their account type, 
effectively adding a level of indirection to the kinds of expression discussed 
above. 

 
Figure 6.20    Using account types. 

This introduces a knowledge level on which the posting rules can be defined. 

Example All employees accrue 1 day of holiday for every 18 days worked. This could be 
represented as a posting rule with a trigger of the account type days worked and an output 
of the account type accrued holiday. This method ensures that the accrued holidays account 
balance was 1/18 of the days worked balance. Each time the employee account is triggered, it 
looks for posting rules defined on its account type according to the type of triggering being 
used. 

However a knowledge/operational split, although appealing, is not the only 
way of handling this situation. A second approach is to use summary 
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accounts. A posting rule defined on a summary account is activated when any 
entry is placed into any subsidiary of the summary account (or the account itself, 
if summary account posting is allowed). The output account can similarly be 
defined on a summary account with the interpretation that this will cause an entry 
on the appropriate subsidiary account. 

Example In this case there are summary accounts for days worked and accrued holiday. 
The posting rule is the same as the example above. Instead of checking the account type for 
posting rules, the summary accounts are checked. 

The choice between the two methods depends on the degree of difference 
between account and account type. If all posting rules are defined on account type 
and entries are made on accounts, then the knowledge/operational split is 
reasonable. However, sometimes this situation does not occur. Entries can be 
made at the more general level, perhaps to indicate a general fee to the company 
(which would require the model shown in Figure 6.6). Similarly, posting rules 
might vary with each individual payment: This would be required to support 
deductions for a car loan, for example. When such situations occur, it is better not 
to make the split. 

There is no generally correct approach to take. In any given situation it is 
necessary to see which model provides the best fit. The key factor is the degree of 
difference in the behavior of the candidate accounts and account types. 

In either case the posting rule needs to determine how to make the correct 
output entry. In many of the examples above, the posting rule simply looks for the 
account for the same employee as the triggering entry. More complex situations 
are possible, however. Consider a situation where a fee entry to a junior consultant 
causes a percentage of the fee to be posted in a memo account for that consultant's 
manager. In this case the posting rule needs to be told how to find the lucky 
manager. 

 
Figure 6.21    Using an account finding method. 

Separate methods are used for finding output accounts and calculating the value of the 
transaction. 

One way of handling this is to provide a second method to find the appropriate 
output account, as shown in Figure 6.21. This second method asks the originating 
entry for its employee and then that employee for its manager. 
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This provides the greatest degree of flexibility, at the cost of a second method 
object, which must be implemented as suggested in Section 6.6. 

This hints at another problem. With general posting rules not all employees 
may be eligible for the posting rule to fire. For example, posting rules can be set 
up to handle each state tax. A posting rule for Illinois state tax should only fire, 
however, if the employee is a resident of Illinois. Thus suggests a third method, 
which is used to express the eligibility condition, as shown in Figures 6.22 and 
6.23. 

 

Figure 6.22    Event diagram showing the use of account finder and eligibility 
condition methods added to Figure 6.14. 

 
Figure 6.23   Adding an eligibility condition to the above rules. 

6.9     Choosing Entries  

In many situations a posting rule needs to select some subset of entries from its 
trigger account. It may want to look at all entries since a certain date booked, the 
balance of all entries charged in July, or entries of dangerous goods (which would 
use some subtype of entry). There are three ways of performing selections: getting 
all entries back and then doing a selection, providing a selection-specific method, 
and using a filter. 

The first technique is the simplest: The account returns all the entries, and the 
client processes this collection to select the entries it needs. This requires no 
additional behavior on the account but passes all responsibility to the client. If 
many clients need to carry out similar selections, a lot of duplication can occur. If 
there are many entries, there may well be an overhead in 

118    Choosing Entries 

 



DLKING¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊ ÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

Inventory and Accounting    119 

passing the set out, especially if the set needs to be copied. Remember that an 
account should never pass out an unprotected reference to its own way of storing 
entries (see Section 14.1). Using this approach with entries also means that the 
client is responsible for summing the entries to get a balance. 

If many clients are asking for a similar kind of selection, such as entries in a 
time period, then an additional behavior can be added to the account to satisfy 
this (such as entriesChargedDuring (TimePeriod)). This has the advantage of 
saving all the clients from repeatedly going through the same selection process. We 
can save the clients even more effort by providing a method that gives a balance 
over a time period (such as balanceChargedDuring (TimePeriod)). The 
problem with this solution is that if there are many such selections, the account 
interface grows very large. 

A filter (see Section 9.2) is an object that encapsulates a query. Using that 
pattern here would result in an account filter. An account filter includes various 
operations to set the terms of the query. Once the filter is set up, it is applied to 
the account to get the answer, as shown in Figure 6.24. The account uses the 
filter to select the subset of entries by conceptually taking each of its entries and 
testing it with the filter's isI ncluded method. It may apply its private knowledge 
of how the entries are stored to optimize this process. With this approach the 
account can support most selections of entries with entr iesUsing 
(AccountFilter) and give corresponding balances with balanceUsing 
(anAccountFilter). Note that if subtypes of entries have additional features that are 
used as a basis for selection, then subtypes of account filter may be needed for 
each type of entry. 

With a multivalued association I start by returning all the objects and leave it 
up to the client to select them. If there are a few frequently used selections, I 
might consider using an additional behavior, but only for a few behaviors. If a 
selection results in too much duplication to return all the objects, but there are 
too many behaviors to add, I set up a filter. Setting up and maintaining a filter 
does require extra work, so I use it only when I really need it. This need often 
appears with accounts and their entries. 

6.10     Accounting Practice  

When we run into a large network of accounts with many posting rules, the 
network becomes too big to deal with. In this situation we need some way to 
break down the network into pieces. Consider a utility's billing procedures. They 
bill the various types of customers they have with different billing processes. This 
can be represented as a network of accounts. Each type of customer has different 
rules and can be handled with a slightly different network of accounts. 
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Figure 6.24   Interaction diagram for using an account filter. 

A particular network of accounts is an accounting practice. Conceptually an 
accounting practice is simply a collection of posting rules, as shown in Figure 
6.25. The notion is that each type of customer is assigned an accounting practice 
to handle billing. 

 
Figure 6.25   Accounting practice. 

These are used to group posting rules into logical groups. 

Example A power utility divides its residential customers into regular and lifeline categories. 
The lifeline category is for those who the state deems need to be charged minimum rates. 
The regular customers are divided into three different rate schedules depending on the 
area in which they live. This is handled by four accounting practices: one for lifeline and one 
for each of the three areas. 

Example ACM has many union workers and each union negotiates a different deal. ACM 
has a pay practice for each union. 

The same posting rule can exist in more than one practice. This is often the 
case when similar behavior is needed across practices. We need to be aware of the 
difference between copying a rule from one practice (leading to two identical rules) 
and having the same rule in more than one practice. Having a rule in more than one 
accounting practice implies that when the 

120   Accounting Practice 
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rule is changed it changes for all practices that use it. Copies allow one copy to 
change without the others changing. 

Accounting practices are assigned to some user object so that each user has a 
single accounting practice. Thus each customer of a power utility or employee of a 
company uses a particular accounting practice. This assignment can be done 
manually or a rule can determine it. 

Example    In ACM the pay practice is assigned to a worker based on his union. 

Instead of using an accounting practice, you can use a posting rule that 
divides up entries depending on an attribute of the employee. Instead of using one 
practice for each union, you can use only one practice. The first posting rule looks 
at the union of the employee that the entry is made for and makes an entry for the 
appropriate union account (see Section 7.6 for an example of this kind of split 
posting rule). 

I prefer to use separate practices if the problem is at all complex, providing 
that we can assign a practice to a user for a period of time. Any splits that always 
change on an entry-by-entry basis (such as the evening/day split discussed in 
Section 7.6) must have a posting rule to handle them. If a user changes its 
accounting practice, we can use a historic mapping (see Section 15.3) to keep a 
record of these changes. 

When different stages of processing have logically separate clumps of 
posting rules, we can split the rules up into different practice types and give a user 
a practice from each type. In Figure 6.26 an accounting practice can have users 
that can, in general, be any object. In a particular model, of course, users would be 
customers, employees, or the like. Each user has one accounting practice of each 
type, a constraint that is enforced by the keyed mapping (see Section 15.2). 

 
Figure 6.26   Accounting practice type. 

In larger account networks we define a configuration of accounting practices that vary 
for each object that uses them. 
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Example A utility has several practices for billing its residential customers, but all residential 
customers are taxed the same way. We can handle this by having separate charging and 
taxing practices. All residential customers have the same taxing practice, although they 
have separate charging practices. 

A logical conclusion to this discussion is to treat accounting practices and 
posting rules as parts of the same composite [1]. This allows composition of 
practices for many levels. So far I haven't seen a great need for this, so I have not 
explored it further. 

6.11     Sources of an Entry  

It is often important to know why a particular entry is in the form it is. For example, 
if a customer calls to ask about a particular entry, the current model can give us 
quite a lot of information about how the entry was created. We can determine the 
state of the account at that time by looking at the dates of other entries. We can 
also determine which posting rule calculated the entry. The model shown in 
Figure 6.27 can handle such customer requests by getting each transaction to 
remember which posting rule created it and which entries were used as input for 
the transaction. (If you are not using transactions, the association runs from entry 
to entry.) 

Example I received $2000 for some work for ACM, which I recorded as a transaction from 
fee income to checking account. My posting rule created a separate transaction into my tax 
liability account. The creator of this transaction was the 45 percent posting rule, and the 
sources for this transaction contained the withdrawal from the fees income account. 

 
Figure 6.27   Sources for a transaction. 

This records a full trail of calculations for each entry in both directions. 
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Using this pattern, we can form a chain of entries and transactions across the 
accounting structure. Each entry can determine all the causes and effects by 
recursive use of the sources and consequences mappings. 

Modeling Principle  To know why a calculation came out the way it did, represent the 
result of the calculation as an object that remembers the calculation that created it and the 
input values used. 

6.12     Balance Sheet and Income Statement  

When using accounts to describe a system, it can be worth distinguishing between 
the balance sheet and income statement accounts, as shown in Figure 6.28. My 
checking account is an asset account, and my credit card account is a liability 
account. They reflect the money I have (or in the credit card's case, don't have) at 
any period of time. These appear on my balance sheet. Income and expense 
accounts reflect where money comes from or goes to. I have an income account for 
my employer, another income account for interest from my savings, an expense 
account for traveling, another for food, and so on. The balances of my income and 
expense accounts do not reflect any money I currently have, merely my 
classification of where it comes from and goes to. 

 
Figure 6.28   Asset, income, and expense accounts. 

These are the kinds of accounts usually found in financial accounting. The concepts are 
useful elsewhere to distinguish between things held and the classification of where they 
come from and go to. 
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Accounts are generally used in a pattern where items enter the world via an 
income account, pass through several asset accounts, and are disposed of via an 
expense account. Any assets that are saved by the system are kept in particular asset 
accounts, but many asset accounts are merely staging places intended to be balance 
regularly. Liability accounts are almost always intended to balanced at some point 
(which may be far in the future for a long-term debt such as a mortgage). 

Example I buy a ticket from Boston Airlines with my credit card. My credit account is a 
liability account, and the Boston Airlines account is an expense account. Both accounts are 
classified by me, and I am the owner of the credit card account (it is my liability). 

Example ACM buys 3 tons of Java from Indonesian Coffee Importers. ACM has an income 
account for Indonesian Coffee Importers to record the transfer of the 3 tons of Java from 
Indonesian Coffee Importers to ACM's New York account. The New York account is an asset 
account, owned by ACM. 

At this point I can quickly explain why I have avoided the terms debit and 
credit. These are well-known terms that apply to accounts, yet I have ignored 
them in favor of from, to, deposit, and withdrawal. The reason is that debit and 
credit are not used consistently in the sense of deposit and withdrawal. For income 
statement accounts, credits increase an account and debits decrease it, which 
makes sense for the layperson. For balance sheet accounts, however, debits 
increase assets (that is, they are deposits), and credits decrease assets. This may 
seem strange to nonaccountants, but it is the usual accounting convention. I have 
thus avoided debit and credit, partly because they might confuse any 
nonaccountant readers, and partly because we are working with a more abstract 
model than regular financial accounting. 

6.13     Corresponding Account  

Although income and expense accounts are external—the money is not 
mine—they are my accounts in that I choose the classification. The bank's view 
of accounts illustrates this. I have a checking account that is an asset within my 
personal system of accounts. The bank has an account within its system of 
accounts that looks remarkably similar. The bank is the classifier of the bank's 
account, but I own the assets within it. We could consider this the same account 
as the one in my system of accounts, but this would not work. I might post an 
entry for an ATM withdrawal on March 1, which is the day I made the 
withdrawal. The bank posts the same withdrawal on March 2 because that is the 
next working day at the bank. The two accounts both refer to the same asset, but 
they are not the same because their entries differ. It is better practice to consider 
the two accounts as corresponding. 
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Corresponding accounts are expected to match in some way and are usually 
reconciled at some point. This is what happens when I match my checkbook (my 
account) against the bank statement (the bank's account). The reconciliation 
process may be precise, or it may allow some imprecision, such as slight 
differences in dates. 

Figure 6.29 illustrates this situation. Only balance accounts have owners; 
income statement accounts do not have assets so there is no question of ownership. 
All accounts have a classifier to indicate who creates and manipulates the 
accounts; I have used party (see Section 2.1). The correspondents relationship 
shows a couple of special properties: symmetry and transitivity [3]. First it is 
symmetric: If account x is a correspondent of account y then account y must be a 
correspondent of account x. The usual default for associations is that they are 
asymmetric. Transitivity indicates that if account y is a correspondent of account 
x and account z is a correspondent of account y, then account z is a correspondent 
of account x. 

 
Figure 6.29    Corresponding accounts.  

6.14     Specialized Account Model  

I have provided several examples to show that this model can be used as a basis 
for both financial accounting and inventory tracking. With the accounting models 
it is usual to subtype to provide the information for the particular domain. For 
example, consider inventory management—a problem suited to the use of 
accounts. We can form an account for each combination of kind of goods and 
location (and give it a less accounting name, such as holding). 
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Thus if we are tracking bottles of Macallans, Talisker, and Laphroig whiskey 
between London, Paris, and Amsterdam we would have nine holdings (asset 
accounts, such as London-Macallans, London-Talisker, Paris-Talisker, and so on). 
Whenever we move goods from one location to another, we create a transfer 
(transaction) to handle the movement. As with money, transfers have to balance. 
In addition, the kind of object must be the same throughout the movement. Figure 
6.30 shows this kind of extension to the account model. 

 
Figure 6.30   Specializing the account model to support inventories. 

This kind of specialization should be done to use the accounting model in a particular 
domain. 

This approach could also work to track orders, both incoming and outgoing. 
Each supplier would have an income account, perhaps more than one if supplier 
location was important. Similarly each customer would get an expense account. 
We can track orders in two ways: We could allow subtypes of transfer, either 
ordered or actual, or we could provide another set of holdings for orders, so we 
would have, for example, London-Talisker-Ordered and London-Talisker-Actual. 
When an order is placed, we would make a transfer 
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from a supplier ordered holding to the ordered holding at the location we want it 
delivered. When the order is delivered, we would make the transfer between the 
ordered holding and the actual holding at our location. This is exactly the same 
as using a receivables account in financial books. 

We can use summary holdings to get an overall picture. A summary holding 
of all ordered holdings can give the total ordered position, and a summary 
holding of Talisker gives the total amount of Talisker in all locations. 

6.15     Booking Entries to Multiple Accounts  

A common problem in dealing with accounts is when there is more than one place 
to book an entry. For example, suppose I paid $500 for my airline ticket to attend 
the OOPSLA conference. Do I book this to an OOPSLA account (so that I can 
work out how much it cost me to attend OOPSLA) or to an air travel account (so 
that I can work out how much I spent on air travel)? There are several ways to 
handle this, which illustrate some useful points about using accounts and also 
illustrate more complex account structures than the simple account hierarchies 
mentioned earlier. 

A typical consultant's bill illustrates the problem. Let's say that I do three 
days' consultancy for ACM. I charge them $6000 for the work. In addition, I run 
up some expenses: $500 for the air fare, $250 for the hotel, $150 for car rental, 
and $100 for meals. How do I account for this, or more precisely, how do I 
account for this if I have a decent accounting system? Clearly I need an account 
for ACM so that I can send them a bill. However, one account is not enough. I am 
interested in seeing how much I earn from various clients. When I do this analysis, 
I do not want to see the expenses because they are not earned money. Similarly 
my tax liability estimates also need to ignore expenses. This indicates that I could 
use separate accounts for ACM fees and ACM expenses. My ACM bill is then 
formed by a summary account over these two accounts, as shown in Figure 6.31. 
The problem with this is that I need a separate account for all earned fees. This 
fee account would include accounts for ACM fees, Megabank fees, and other cli-
ents' fees. This also works as a summary account, but it breaks the hierarchical 
restriction of Figures 6.5 and 6.6. Thus I need to alter the model to allow a detail 
account to have multiple summary accounts as parents, as shown in Figure 6.32. 

The model in Figure 6.32 allows the accounts to form a directed acyclic 
graph. Thus an account can have many parents, but we avoid cycles (an account 
cannot be its own grandparent). This structure allows multiple summary 
accounts. 
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Figure 6.31    A typical fee/expense account structure. 

The heavy bordered icons are detail accounts, summarized as shown by the arrows. 

 
Figure 6.32   Allowing multiple summary accounts.  

This diagram replaces the hierarchy of Figure 6.5 with a directed acyclic graph.  

However, there is a small wrinkle that we must consider. What would occur if 
I had the account structure of Figure 6.33? The account X sums over ACM and 
fees, so the ACM fees account gets counted twice. 

According to the model in Figure 6.32, we would still get a correct balance for 
X. The balance is defined on a derived set of entries. Sets do not 



DLKING¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊ ÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

 
Figure 6.33    Account structure that highlights a problem. 

If multiple summary accounts are used, someone could define a summary account that has 
overlapping detail accounts. 

allow duplicates, so all the entries in ACM fees will only appear once in X, thus 
giving us a correct balance for X. However this balance will not be equal to the 
sums of the balances for fees and ACM, which might prove confusing. If this 
confusion is a problem, we need a constraint on the components relationship that 
would not allow us to select components that had any overlap. This is a reasonable 
constraint since it is difficult to come up with an example where such an account 
as X would be useful. Defining this kind of account is more likely to be the product 
of accident than design. 

6.15.1     Using Memo Entries  

The model works well at this level, but consider some further details. There may be 
a need to break down expenses in more detail. Tax regulations may require us to 
separate expenses for travel, lodging, and meals (for example, ACM-airfare, 
ACM-lodging, Megabank-airfare, and so on). This could be done by breaking each 
expense account into detail accounts, but this could become difficult to manage 
due to all the complex combination accounts. It is worth exploring some other 
options. 

One option is to use entries into memo accounts. Thus $500 for a ticket to visit 
ACM headquarters would result in depositing into both the ACM expenses 
account and an airfare account. This method removes the need for 
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an ACM-airfare account but requires additional entries. A posting rule might deal 
with this to some extent, but we still need some statement about which expense 
account is needed. This might be done by a special expense transaction creation 
that takes parameters of from account, to account, and expense type memo 
account. 

Choosing whether the ACM expense account or the airfare account should be 
a memo account depends on subsequent use of the account. If the ACM expense 
account is being used to track the payment of invoices, while the airfare account is 
only being used for tax reporting, then the airfare account would make the better 
memo account. There's a certain amount of arbitrariness in choosing which 
accounts hold the main stream of money, compared to those working with memo 
accounts. 

6.15.2     Derived Accounts  

A different approach is to use a derived account, as in Figure 6.34. In this case the 
entries are specified by providing the derived account with a filter (see Section 
6.9), which selects matching entries. To work, the derived account needs 
something on which to base its derivation. A subtype of entry that supports an 
expense category would do nicely, and then an account where the membership test 
is expense category = airfare would create the desired information. 

 
Figure 6.34    Introducing derived accounts.  
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We might consider taking this approach further. Why not abandon using 
accounts altogether and just have something like Figure 6.35? We can then work 
out what is going on just by queries on expense. 

 
Figure 6.35    Expenses defined to abandon the accounting model. 

A derived account can still allow us to use all the reporting behavior, but we lose the 
tracking behavior. 

This question helps define why accounts are useful and why derived accounts 
are valuable. Accounts work best within relatively static structures where 
complex movements of assets need to be tracked. If the movements are simple, 
such as just assigning an expense to airfare, then accounts are not really needed. 
However, consider the situation where I visit both Megabank and ACM in one 
trip and charge two-thirds of the airfare to one and one-third to the other. This is 
the kind of multilegged transaction that accounts handle well. However, the 
model in Figure 6.35 has a real problem with this. How do I split a simple 
payment up in this way? Note that the model in Figure 6.35 has another problem: 
It does not say where the money comes from. I could add a credit card association 
to it, but then expense looks very similar to a two-legged transaction. 

Using attributes for derived accounts is effective when the account structure 
is not very static. If there are many possible cuts of information, then the derived 
account allows these to be computed easily using the same reporting facilities 
that accounts have. However, they only have the reporting facilities. Derived 
accounts cannot be posted to and thus cannot be used to track the ebb and flow of 
assets. 

So whenever we are trying to represent an aspect of an entry, we have a 
choice between an attribute of the entry or a new account level. The decision is 
based on what part of the account behavior you need. If it is simply the reporting 
side, we can use an attribute and derive an account when it's needed. Otherwise, a 
new level of accounts is required. 
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Further Reading  

I can recommend a couple of other sources for information on accounts that will 
give a different perspective to that presented in this chapter. Hay [2] has a chapter 
dedicated to accounting. His basic concepts of accounts and transactions is very 
much the same as mine, although he does not present anything on posting rules. 
He goes into much more depth on the account types that are present in 
corporations. He also discusses the common transactions that are used in 
corporations and how they fit into this accounting model. He also presents a 
knowledge level for these account and transaction types. 

There has been a lot of work at the University of Illinois at 
Urbana-Cham-paign on developing an accounting framework [4].1 This takes a 
very different approach to Hay and myself. It starts with treating the information 
on an invoice (for example) as a high-level "transaction" against a high-level 
account. This "transaction" can then be broken down to lower-level "transactions" 
against lower-level accounts. They use the word transaction very differently than 
I do: They do not follow the principle of conservation. A high-level "transaction" 
might be an invoice with all its line items. The framework concentrates on 
breaking this down into lower-level "transactions," such as the line items 
themselves. Thus the framework is designed to break down a cluster of entries 
into its component entries, rather than my approach of a network of accounts and 
transfers between them. 
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Using the Accounting Models  

To fully understand this chapter, you will need to read Chapter 6 first. This is an 
unusual chapter in this book. Instead of describing a group of patterns, this 
chapter shows how we can use the patterns presented in Chapter 6. This is a 
difficult task because the accounting patterns in Chapter 6 are quite abstract. To 
understand how the patterns really work, we need to look at a fully worked 
example. 

This chapter looks at accounts and posting rules used in a model for a 
telephone utility, Total Telecommunications (TT). In the best textbook tradition, 
the examples presented here are somewhat simplistic. They should be sufficient 
to at least give you a feel for how the models work. The aim is to illustrate the 
use of the account model, not to model a telephone company. 

Since this is an example chapter, I have used some code to illustrate the 
examples. I chose Digitalk Smalltalk over C++ because Smalltalk makes it 
easier for me to convey the basic ideas. The concepts should be readily trans-
ferable to C++. I have used the patterns from Chapter 14 in transforming the 
models. I have also used Kent Beck's coding patterns [1], with some variations. I 
must stress that I have made no attempt to optimize the code. I also have not 
provided complete code, only highlights. 

TT's basic billing plan is very simple. All calls are divided into day and 
evening calls. Daytime runs from 7:00 a.m. to 7:00 p.m. The classification is 
based on the time the call begins.1 Day calls cost 98(2 for the first minute and 
30$ for subsequent minutes. Evening calls cost 70<2 for the first minute, 20<s for 
the next 20 minutes, and 12# thereafter. The government charges a 6 percent tax 
on the first $50 of calls in a calendar month and 4 percent on calls thereafter. 

For the sake of simplicity, I have skipped the case of calls crossing the boundary. 
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The chapter begins with a discussion of the structural models (7.1), which 
is naturally based on the patterns presented in Chapter 6. We then look at some 
interesting features of implementing the structure (7.2). To set up the objects, 
we begin by setting up new phone services (7.3), followed by setting up calls 
(7.4). We then take a first look at the posting rules, examining the code for 
implementing account-based firing (7.5). Three example posting rules are given: 
separating calls into day and evening (7.6), charging for time (7.7), and 
calculating the tax (7.8). Each rule illustrates a particular aspect of behavior. 
The first two rules operate on an entry-by-entry basis, and a common 
supertype—each entry posting rule—handles the common behavior. Splitting 
charges into day and evening is handled by a simple singleton subtype of each 
entry posting rule. A different scale is required for day and evening calls, but 
since the basic process is the same, we can use a strategy object parameterized 
by a rate table. This allows us to handle any posting rule that charged according 
to some scale based on the length of the call. The rate table class used as the 
strategy object can be used for any calculation based on lengths in this way. 
Indeed it is used for the next posting rule that calculates tax. Unlike the prior 
rules, this rule has to work on a month-by-month basis, but we cannot assume 
it is run once per month. 

The three posting rule classes should give a good idea of how we can use 
the account/inventory patterns to show both monetary and nonmonetary 
transactions. 

In developing code I like to begin with building the skeleton of the structural 
model. I then prototype, being careful to update the structural model as I go 
(otherwise, I can forget where I am). As tricky behaviors come up, I may use 
event diagrams or interaction diagrams at the start or during the programming. If 
I think it is important to document what I have done with these behaviors (as I 
do for this book), I produce diagrams once I have the code sorted out. The 
diagrams are not replacements for the code; they help to illustrate what the code 
is doing. (With a suitable tool, however, event diagrams could be used as the 
code.) 

7.1     Structural  Models  

The best place to start is with the structural models because they give an 
overview of the various pieces of the final model. Figure 7.1 shows the packages 
within the model. I've split the model into two packages: phone service and 
account. One virtue of an accounting framework is that it can be used for 
different industries, so we need to ensure that the accounting model is kept 
separate from (that is, has no visibility to) any industry-specific concepts. 
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Figure 7.1    The packages for the TT example. 

The account package holds the abstract accounting types, which are extended by the 
phone service package for this specific domain. 

Figure 7.2 shows the accounting model for TT, based on the patterns from 
Chapter 6. This model has three associations from posting rule to account. 
Trigger and output are familiar, but the keyed output is new. This allows multiple 
output accounts for those posting rules that need them. The need will become 
clear with examples later in the chapter. 
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Figure 7.3 shows the model of the phone service. Customers are allowed 
multiple phone lines. A phone service is really a phone line assigned to a 
customer. Each phone service is tied to an accounting practice that describes 
how it will be billed. This diagram illustrates why the subject mapping was 
added to detail account shown in Figure 7.2. We need a way to find out what 
detail account is accounting for, but we do not want visibility from the account 
package into the phone service package because it would compromise reuse. 
Thus we form a subtype of detail account. With subtyping, visibility only runs 
from the subtype to the supertype. It is perfectly permissible for the service 
account to know the phone service because they are both in the phone service 
package. However, we could have reference to a detail account and not know it 
is a service account. The abstract mapping on detail account tells us that a detail 
account could be linked to an object (type unspecified) as a subject. This will all 
be implemented by subtypes of detail account—a classic case of polymorphism. 

 
Figure 7.3    The structural model of phone service.  
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7.2     Implementing  the Structure  

We can use design templates based on the patterns described in Chapter 14 to 
implement the models. All associations are represented by access and modify 
operations. Single-valued mappings follow the usual Smalltalk convention. 
Thus the mapping named trigger on the posting rule is implemented by the 
accessor t r igger and modifier t r igger: anAccount. Multivalued 
mappings—for example, posting rules on accounting practice— have accessor 
postingRules and modifiers addPostingRule: aPostingRule and 
removePostingRule: aPostingRule. 

The entries operation on account is polymorphic—detail account returns an 
instance variable while summary account sums over its children, (as shown in 
Listing 7.1). 

Account»entries 
^self  subclassResponsibility 

SummaryAccount >>entries I answer| 
answer  := SortedCollection sortBlock:[:a  :b|  a whenBooked > b whenBooked]. self  

detailAccounts inject:  answer into: 
[:total   :each  | total  addAll:  

each entries; yourself] . Aanswer 
DetailAccount >>entries 

^entries copy 

Listing 7.1    Getting the entries of an account. 

This model has no account types. The posting rules are defined by summary 
accounts. For the examples in this chapter, we could use either account types or 
summary accounts to define posting rules. Using summary accounts is slightly 
more complicated, making it a better illustration. The high-level summary 
accounts that are defined are held in a class variable in the account class and are 
accessible with the class method f indWithName: aString, following the 
style of Section 14.5.1. 

Various bits of code need to find a service account for a particular phone 
service under a particular summary account. It's not difficult to think up various 
ways of doing it: asking a phone service to find the account under a given 
summary account or asking a summary account to find its descendent 
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attached to a phone service. Both of those ways are reasonable, but it is difficult 
to choose which one is the best. Furthermore, each implies a certain navigation 
path, and one may be better than the other. In such cases we can use an entirely 
different technique, building a class method following Section 14.5.1. Then we 
can implement the method with either path and change the method without 
changing the declarative interface. It also makes it easier to remember where 
these find methods are, as shown in Listing 7.2. 

ServiceAccount class»findWithPhoneService: aPhoneService topParent: aTopSummaryAccount 
^aPhoneService serviceAccounts detect: [:i| i parentTop = aTopSummaryAccount] 

PhoneService»accountNamed: aString 
AServiceAccount  

findWithPhoneService: self  
topParent: (Account findWithName: aString)  

Listing 7.2      Finding  a particular account.  

In practice a method on phone service, such as accountNamed: aString, is 
often more convenient to use. That method calls f indWithPhoneService: 
topParent and provides the advantages of both approaches. 

All the examples here use two-legged transactions, although the model 
supports multilegged transactions. We can create a two-legged transaction with 
the special creation methods for transaction shown in Listing 7.3. One method 
carries all the information, including the source entries and the creation posting 
rule. The other method is used for the initial attributes read in at the beginning. 

The listing shows a number of coding techniques. A constructor parameter 
method [l] (prefixed with set) initializes the new object with parameters. 
Within the creation parameter method, precondition checking is done with the 
requi re: message. To improve performance, the checking can be removed by 
redefining the requi re: method. Another element from design by contract [3] is 
the use of an invariant check. 

7.3     Setting  Up New Phone Se rvices  

Creating a new phone service is not simply a question of instantiating a phone 
service object. Service accounts must also be created to get the accounting 
system going. Although this example does not contain more than one accounting 
practice, it should be flexible enough to set up the accounts for whichever 
accounting practice is being used, as shown in Figures 7.4 and 7.5, and Listing 
7.4. 
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Transaction class»newWithAmount: aQuantity from: fromAccount to: toAccount 
whenCharged: aTimepointOrDate 

^ self  
newWithAmount:  aQuantity 

from:  fromAccount to:  

toAccount 
whenCharged:  aTimepointOrDate 

creator:  nil sources:  Set new 
newWithAmount: aQuantity from:   fromAccount  to:   toAccount  whenCharged: 

aTimepointOrDate creator:  aPostingRule sources: aSetOfEntries ^ self  new 
setAmount:  aQuantity 

from:  fromAccount to:  

toAccount 
whenCharged:  aTimepointOrDate 

creator:  aPostingRule sources:  

aSetOfEntries 
Transact ion »setAmount:  aMoney  from:   aDebitAccount    to:  aCredi tAccount    whenCharged:  

aTimepointOrDate creator: aPostingRule sources: aSetOfEntries "private" self require: 
[aMoney isKindOf:  Money. aDebitAccount 

isKindOf:  ServiceAccount. aCreditAccount 

isKindOf:  ServiceAccount. 
(aTimepointOrDate isKindOf:  Date) or:   [aTimepointOrDate isKindOf:  Timepoint]. (creator == 

nil) or:   [creator isKindOf:  PostingRule]] . self initialize, self addEntry:   (Entry new  
setAccount:  aCreditAccount 

amount:  aMoney charged: 

aTimepointOrDate). self  addEntry:   

(Entry new setAccount:  

aDebitAccount amount:  aMoney 

negated charged:  

aTimepointOrDate). creator:= 

aPostingRule. 
aSetOfEntries do:   [:i|  self sourcesAdd:  i]. self 

checklnvariant. Object »require:  aBooleanBlock  
aBooleanBlock value ifFalse:   [self error:    'Precondition Violati on'] 

Transaction »checklnvariant |balance| balance  := entries 
inject:  Quantity zero  
into:   [:total   :each  |  total   := total  + each 

amount], self require:   [balance = Quantity zero].  

Listing 7.3      Creating  a two -legged transaction.  
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Figure 7.4    Event diagram for creating a new phone service. 

This diagram uses a cross-product control condition (an extension to the regular 
event diagrams). The control condition is evaluated for each combination of its 
incoming triggers, in this case for each combination of new phone service and 
posting account. It invokes the create service account operation for each phone 
service and summary posting account in the accounting practice. 

 
Figure 7.5    Interaction diagram for creating a new phone service. 

To determine which accounts are required, the accounting practice is asked 
for its posting accounts, as shown in Figure 7.6 and Listing 7.5. An accounting 
practice can contain posting rules that reference detail accounts (although that it 
is not done here). Thus the posting accounts have to be filtered to keep only the 
summary accounts. 

140   Setting Up New Phone Services 
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PhoneService class »newWithAccountingPractice:  anAccountingPractice  customer: 
aCustomer phoneLine: aPhoneLine  

Asel f  new 
setAccounti ngPracti ce: anAccounti ngPracti ce  customer: 
aCustomer phoneLine: aPhoneLine  

PhoneService»setAccountingPractice: anAccountingPractice customer: aCustomer phoneLine: 
aString 

InewObj summaryAccounts|  self 
require:  

[(anAccountingPractic e isKindOf: AccountingPractice) & 
(aCustomer isKindOf: Customer)].  

name := (aCustomer name), '#', (aCustomer phoneServices size + 1) printString. 
accountingPractice := anAccountingPractice. self setCustomer: aCustomer.  line := aString.  
self createServiceAc counts. Aself  

PhoneService»createServiceAccounts "private -  
initializing" (self accountingPractice 
summaryAccounts) do:  

[:each | ServiceAccount newWithPhoneService: self parent: each].  

Listing 7.4    Setting up a new phone line. 

 
Figure 7.6    Finding posting accounts. 

We want the trigger account for each posting rule and all the output accounts for 
each posting rule. 

Accounti ngPractice»summaryAccounts 
^self postingAccounts select: [:each | each .isSummary]  Accounti 

ngPractice»postingAccounts 
| answer|  
answer := Set new.  
postingRules do:  

[:each |  
answer add: each trigger.  
answer addAll: each outputs]. 

Aanswer  

Listing 7.5    An accounting practice can provide its summary accounts. 
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7.4     Setting  Up Calls  

Phone calls are modeled as transactions from a network account to a basic time 
account. The units for phone call entries are minutes. 

The following method shows the setting up of a phone service and the 
placement of some sample calls. Note that it is denned on a class called Scenariol, 
as shown in Listing 7.6. Test methods can get quite complex; thus it is good 
practice to put them on a scenario object (using scenario in the 

Scenariol»setupCa11s 
| adams network |  self 
init.  
adams := Customer new name: 'Adams'; persist. 
theService := Ph oneService  

newWithAccounti ngPracti ce: (Account i ngPractice basicBi11ingPlan) customer: 
adams 
phoneLine: (PhoneLine new name: '617 123 1234'). network := theService accountNamed:  

'Network'. basicAccount := ServiceAccount findWithPhoneService: theService 
to pParent:  

(Account findWithName: 'Basic Time'). 
Transaction  

newWithAmount: (Quantity n:'10 min')  from: 
network to: basicAccount whenCharged: 
(Timepoint date: 'jan 1 1995' time: 
'13:15'). Transaction  
newWithAmount: (Quantity n:'8 min')  from: 
network to: basi cAccount whenCharged: 
(Timepoint date: 'jan 1 1995' time: 
'14:25'). Transaction  
newWithAmount: (Quantity n:'6 min 1) from: 
network to: basicAccount whenCharged: 
(Timepoint date: 'jan 1 1995' time: 
'19:05'). Transaction  
newWithAmount: (Quantity n:'33 min') f rom: 
network to: basicAccount whenCharged: 
(Timepoint date: 'jan 1 1995'  time: '20:20').  
^basicAccount  

Listing 7.6    Setting  up test phone calls.  
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sense of a use-case, not as defined in Section 9.4) to keep them under control if 
no proper testing framework is available. The variables basicAccount and 
theService are class variables of this test class. 

Using user-defined fundamental classes, such as quantity, can make creating 
new objects difficult. Hence quantity has a method n: aStr ing, which creates 
a new quantity from the string. This is a personal convention that I use since 
fromString: aString can get rather unwieldy. 

7.5     Implementing  Account -based Firing  

We use the account-based triggering scheme here (see Section 6.7.3). Each 
account has a method to process itself by firing all posting rules that use it as a 
trigger, as shown in Listing 7.7. 

DetailAccount >>process  
self allOutboundRules do:   [:j|  j processAccount:  self]. 
lastProcessed  := entries last allOutboun dRules "private" 
|answer| 

answer  := self triggerFor.  
self  allParents do:   [:i|  answer addAll:  i  triggerFor]. 
^answer 

Listing 7.7   An account fires outbound posting rules. 

Entries are held in orderedCollection, with new ones added on the end. The 
TastProcessed instance variable keeps track of the state of processing. 

7.6     Separating  Calls into Day and Evening  

To separate the calls into day and evening calls, we look at each entry, consider 
the time on the entry, and then make a transaction from the basic time account 
into either the day time account or the evening time account. 

A posting rule that operates on an entry-by-entry basis is quite common. We 
can create an abstract subtype of posting rule called an each-entry posting rule 
(the class EachEntryPR). This subtype calls the operation process Entry: 
anEntry on each unprocessed entry in the triggering account, as shown in Figure 
7.7 and Listing 7.8. 

The message currentI nput : loads an instance variable to hold the service 
account that is being processed by the posting rule, as shown in Listing 7.9. It is 
accessed by private methods and is only defined within the execution of 
processAccount. A temporary, private instance variable is often 
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Figure 7.7    Each-entry posting rule's method for processing an account. 

We use the process entry operation on each unprocessed entry. 

EachEntryPR >>processAccount:  anAccount  
self currentlnput:  anAccount. 
anAccount unprocessedEntries do:   [:each   I   self processEntr y:  each], 
self clean. EachEntryPR »processEntry:  

anEntry  
self subclassResponsibility 

DetailAccount >>unprocessedEntries  
self isUnprocessed ifTrue:   [A entries copy]. 
^entries 

copyFrom:  self firstUnprocessedlndex to:  
entries size. Detai "I Account»i 
sllnprocessed 

"private" 
^ lastProcessed isNil 
Detai lAccount >>firstUnprocessedlndex 
"private" 

^ (entries indexOf:  lastProcessed) + 1 

Listing 7.8    How an EachEntryPR processes a triggering account. 

PostingRule >>currentInput:  anAccount  
"private" 

self require:  [currentlnput isNil]. 
currentlnput := anAccount. self 
setCurrentOutputs 
PostingRule»setCurrentOutputs "private"  

currentOutputs := Dictionary new. 
outputs associationsDo: [: each | 
currentOutputs at: each key  put:(Servi 
ceAccount  

findWithPhoneService: (cur rentlnput phoneService)  topParent: each value)]  
PostingRule»clean "private"  

currentlnput := nil. 
currentOutputs := nil.  

Listing 7.9   Setting up the current input and outputs. 

144   Separating Calls into Day and Evening 
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used in such cases because posting rules in general (although not in this case) are 
defined as instances. Thus we cannot instantiate them for invocation of the rule. 
An alternative is to treat the defined posting rule instance as a prototype [2] and 
clone it for execution. 

The currentI nput: message also sets up current output service accounts 
for the same phone service as the one provided as input. 

This method does not do the actual calculation and posting. Instead it is 
done by processEntry:, which is abstract and should be defined by subclasses. 
Thus we see three layers of subclassing here. Post ingRule defines the basic 
interface and services of posting rules. The process account method on 
EachEntryPR is a template method,2 which outlines the steps of processing an 
account entry by entry but leaves a subclass to actually work out how to process 
each entry. 

For this posting rule we can define new subclass of EachEntryPR called 
EveningDaySplitPR. This is an example of the singleton class implementation 
(see Section 6.6.1). Hard-coded into this class are the appropriate accounts, which 
are set up at initialization, as shown in Listing 7.10. 

EveningDaySplitPR»initialize 
super initialize.  
outputs := Dictionary new .  
outputs  

at:  # evening  
put: (Account findWithName: 'Evening Time'),  outputs  
at: #day  
put:   (Account findWithName:   'Day Time')  

Listing 7.10     Initializing  the evening/day split process rule.  

The splitting is done by the overriding processEntry: method, as shown in 
Figure 7.8 and Listing 7.11. 

7.7     Charging  for Time  

Charging for both the evening and day calls follows the same pattern, as shown in 
Figure 7.9. Again the charges are calculated on an entry-by-entry basis, so a 
subclass of EachEntryPR is used. Two posting rules are used—one for day, one for 
evening. The same class, TransformPR, is used for both of them. 

A template method is a skeleton of an algorithm that defers some steps to subclasses [2]. 
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Figure 7.8     Evening/day  split process rule's method for the process entry operation.  

EveningDaySplitPR>>processEntry:  anEntry 
Transaction 

newWithAmount:   (anEntry amount) 

from:   (anEntry account) to:   

(self outputFor:  anEntry) 

whenCharged:   (anEntry timepoint) 

creator:  self  
sources:   (Set with:  anEntry) EveningDaySpl i tPR>>outputFor:  

anEntry A(anEntry timepoint time > (Time fromString:   '19:00'))   

| (anEntry timepoint time < (Time fromString:   '07:00')) ifTrue:   

[self currentOutputs at:  #evening ] ifFalse:   [self 

currentOutputs at:  #day].  

Listing 7.11     How the evening/day split process rule proce sses an entry.  

 
Figure 7.9    Interaction diagram for processing an account with a transform 
posting rule. 

146   Charging for Time 
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A special feature of this posting rule is that it is triggered by an entry in 
minutes but produces entries in dollars, hence the term transform. Its actual 
reaction is to generate two transactions. One transfers the minutes back to the 
network account, thus completing the cycle for minutes. The second generates a 
new transaction in the money world: from a network i ncome account to an 
activity account, as shown in Figure 7.10 and Listing 7.12. 

 
Figure 7.10     Event  diagram for transform posting rule's method for the process 
entr y operation.  

TransformPR »processEntry: anEntry  
Transaction 

newWithAmount:   (anEntry amount) 
creator:  self  
from:   (anEntry account) 
timepoint:   (anEntry timepoint)  
to:   (self currentOutputs at:   #out)  
sources:   (Set with:  anEntry). Transaction newWithAmount:   

(self transformedAmount:  anEntry) 
creator:  self  

timepoint: (anEntry timepoi nt) to: (self currentOutputs  
at: #transformedTo) sources: (Set with: anEntry). 
TransformPR»transformedAmount: anEntry 

"private"  
^s elf calculationMethod calculateFor: anEntry amount  

Listing 7.12     How a transform posting rule processes an entry.  

The transformedAmount is calculated by a method object (see Section 6.6.2), 
specifically a rate table, such as that shown in Tables 7.1 and 7.2. The method 
class defines the abstract calculateFor: method. The rate table is a subclass 
that stores a two-column table of quantities to produce the kind of graded 
charging that the problem demands. It is implemented using a dictionary. The 
keys of the dictionary indicate the various threshold points, and 
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LENGTH OF CALL      COSTl                                               

LENGTH OF CALL      COST 

Up to 1 min                    98 cents                                            

Up to 1 min                    70 cents > 1 min                           30 cents                                    

1-20 mins                        20 cents Table 7.1    Rates for day calls.                                      

the corresponding value indicates the rate that applies up to that threshold. 
Listing 7.13 shows how the evening rate is set up. The top rate indicates which 
rate applies once you get over the top threshold. 

RateTable >>eveningRateTab le 
I  answer  | 
answer := RateTable new.  
answer  

rateAt: (Quantity n: ' 1 min') put: 
(Quantity n: '.7 USD').  

answer  
rateAt: (Quantity n: '21 min')  put: 
(Quantity n: '.2 USD').  

answer topRate: (Quantity n: '.12 USD').  ^ answer  

Listing 7.13    Setting up the evening rates in the rate table object. 

 
Listing 7.14 shows how the rate table then calculates the amount. It does this 

in two parts: taking each step in the rate table and adding any amount over the 
top threshold. There is not much point showing a diagram for this; the tables 
indicate what is needed from a conceptual perspective clearly enough. One 
particular thing to watch for with these systems is that they can handle both 
positive and negative numbers the same by using absolute values. 

7.8     Calculating  the Tax  

The final posting rule shows the calculation of the tax. This rule differs from 
the previous rules in that it does not operate on an entry-by-entry basis. This 
posting rule has to look at all charges over a one-month period to assess the tax. 

Another complication is that we cannot (or rather do not wish to) guaran-tee 
that the posting rule is only run once at the end of the month. Thus the posting 
should take into account any tax already charged for the month due to an 
earlier firing. This follows the principle that the posting rules should be 
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RateTable >>calculateFor:  aQuanti  ty  
|  answer input| 
self require:   [aQuantity unit = self thresholdUnits]. 
input  := aQuantity abs. 

answer  := (self tableAmount:  input) + (self topRateAmount:  input). ^ 
aQuantity positive ifTrue:   [answer] ifFalse:   [answer negated] RateTabl 
e»tabl eAmount:   aQuanti  ty "private" 

(input sortedKeys lastKey thisRowKeyAmount answer! 
sortedKeys  := table keys asSortedCollection. lastKey  := 
Quantity zero, answer  := Quantity zero. sortedKeys do: [: 
this Key   | 
thisRowKeyAmount  := ((aQuantity min:  thisKey)  - lastKey) max:  Quantity zero, 
answer  := answer + ((table at:  thisKey)  * thisRowKeyAmount amount). lastKey  := 
thisKey] . ^answer 

RateTabl e » topRateAmount:   aQuanti  ty I  
amountOverTopRateThreshold  I 
amountOverTopRateThreshold  := aQuantity - self topRateThreshold. 
amountOve rTopRateTh reshold posi ti ve 

ifTrue:   [Aself  topRate * amountOverTopRateThreshold amount] ifFalse:   
[AQuantity zero]. RateTabl e » topRateThreshol d  

stable keys asSortedCollection last 

 
Listing 7.14    How a rate table calculates a value for an input quantity. 

defined independently of how they are fired. This increases flexibility and 
reduces coupling in the model. 

The MonthlyChargePR class is a subtype of posting rule and thus implements 
processAccount, as shown in Figure 7.11 and Listing 7.15. 

 
Figure 7.11    Monthly charge posting rule's method for processing an account. 

This process is based on a balance over a time period, rather than each entry. 

Each month is processed with processForMonth:, as shown in Figure 7.12 
and Listing 7.16. 

The final transaction is from the output account to the input account, 
because the activity account will be increased due to the tax liability. 
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Month! yChargePR»processAccount: anAccount 
self currentlnput: anAccount.  
(self monthsToProcess: anAccount) do: [:each | self processforMonth: each],  self 
clean  

Month! yChargePR»monthsToProcess: anAccount 
A(anAccount unprocessedEntries collect:  

[:each | each whenCharged date firstDayOfMonth]) asSet.  

Listing 7.15    How a monthly charge posting rule processes an account. 

 
Figure 7.12    Event diagram for processing a month. 

Month! yChargePR»processforMonth: aDate 
I inputToProcess totalToCharge |  
inputToProcess := (self inputBalance: aDate) -  (self outputAlreadyCharged: aDate).  
totalToCharge := (self calculationMethod calculateFor: inputToProcess) -  

(self outputAlreadyCharged: aDate). 
Transaction  

newWithAmount: totalToCharge 
creator: self from: self 
currentOutput timepoint: aDate 
1astDayOfMonth to: self 
currentlnput  
sources: (self currentlnput entriesChargedlnMonth: aDate).  Month! 

yChargePR»i nputBal ance: aDate 
Aself currentlnput balanc eChargedlnMonth: aDate.  Monthl 

yChargePR»outputAl ready Charged: aDate 
A(self currentOutput balanceChargedlnMonth: aDate) negated  

Listing 7.16    How a monthly charge posting rule processes a month. 

7.9     Concluding  Thoughts  

This is a very simple example, so it is difficult to draw too many conclusions 
from it. The reader can convincingly argue that this problem can be tackled in a 
much simpler form without all this framework stuff. The framework, however, is 
valuable for scalability. A real business may have dozens of practices, 
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each with dozens of process rules. With this structure we represent a new 
billing plan by an accounting practice. When we build a new practice, we create 
a network of new instances of the posting rule. We can do this without any 
recompilation or rebuilding of the system, while it is still up and running. There 
will be unavoidable occasions when we need a new subtype of posting rule, but 
these will be rare. 

7.9.1       The Structure of the Postin g Rules  

Figure 7.13 shows the generalization structure of the posting rules discussed in 
this chapter. The abstract posting rule class has an abstract processAccount 
method. The subtypes each implement processAccount. The each entry posting 
rule implements this method by calling another abstract method, processEntry, 
on each entry. The further subtypes implement processEntry as needed. The 
day/evening split posting rule's method is hard coded, while the transform 
posting rule delegates to a rate table. The example shows how a 

 
Figure 7.13    Generalization structure of posting rules 



 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

152    Concluding Thoughts 

combination of abstract methods, polymorphism, and delegation can provide 
the kind of structure that supports a variety of posting rules in an organized 
structure. 

This is not the only structure of posting rules we could use. Another 
alternative would be to combine the two steps of working out the charge into a 
single step. Such a posting rule would have two rate tables, one for day 
charges and one for evening charges, and would be responsible for both the 
splitting and the rate table charging. 

There are no rules for deciding how to divide up posting rules. Our fun-
damental aim is to be able to build new practices without needing a new 
subtype of posting rule. We want to have as small a set of subtypes of posting 
rule as we can, for that will make it easier to understand and maintain the 
posting rule types. Yet we need these subtypes to have all the function that is 
required so we can put them together for new practices. We want to minimize 
the times when we need to build new posting rule subtypes. 

Simpler posting rules result in larger practices and are usually more 
widely available. I tend to keep posting rules to small behaviors initially. If I 
see a frequently used combination of posting rules, then I might build a more 
functional posting rule to represent that combination. 

7.9.2       When Not to Use the Framework  

An alternative to using this framework is to have only one class per billing plan 
to handle all the behavior (day/evening split, charging, and taxing), as shown in 
Figure 7.14. The class would take all the entries in a month and produce a bill. 
There would be one such object for each billing plan. 

 
Figure 7.14   Using a billing plan. 

A billing plan is simple but not as flexible. 



 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

Using the Accounting Models    153 

This approach is quite plausible. Although there may be many billing plans, 
there are usually a few basic methods for billing that can be parameterized, much 
as the transform posting rule can be parameterized for many different rate 
schedules. Such a type, for this problem, would be parameterized by an evening 
rate table, a day rate table, and a taxing rate table. 

The key question is how many subtypes of billing plan there are. If we 
can represent all the billing structures with a dozen or so subtypes of billing 

plan (although there might be hundreds of instances), then using a billing 
plan type is plausible. The accounting model's strength is that it allows you 

to build the equivalent of new subtypes of billing plan by wiring together 
posting rule and account objects. This is a powerful advantage if there is a 

large or frequently changing set of subtypes of billing plan. 
Another way to think about it is to consider the billing plan as a posting rule 

that posts from the basic time account to the activity account in one step. Using 
accounts would still be valuable to give the history of phone calls and charges at 
the input and result of billing plan. We would lose the intermediate totals. 

7.9.3       Accounting  Practice Diagrams  

A diagram often helps to visualize a complex problem. Figures 7.15 and 7.16 are 
suggestions (and most certainly tentative ones) in that direction. Complex 
practices will be helped by these kinds of diagrams. We might imagine that we 
could build a system by drawing a diagram and decreasing the amount of pro-
gramming required and thus increase the productivity of such applications. 

Practice should result in a diagram form that is simple yet conveys the key 
information. Figure 7.15 has the advantage of being simple, displaying the key 
triggering and output relationships. It does not, however, show the full flow of 
accounted items in the way that Figure 7.16 does. If you use these 

 
Figure 7.15     A simple way of diagramming the layout of process rules and accoun ts. 

It shows the trigger and main output account for each posting rule but hides the full 
flow of transactions.  
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Figure 7.16   A more expressive diagram of the accounts and posting rules. 

This diagram makes the flow of transactions explicit. Each posting rule is triggered by a 
single account and causes a number of flows. The direction of the flow shows where 
items are withdrawn and deposited. The diagram shows more information and is thus 
more complicated. 

patterns, I strongly recommend using diagrams. Start with the ones suggested 
here and let the diagram standard evolve to one that is the most useful (and let 
me know what it is). 

154   Concluding Thoughts 
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Planning is a vital part of any large endeavor. Many managers spend most of 
their time developing and tracking plans. This chapter provides some basic 
patterns for planning. The patterns describe individual plans as well as pro-
tocols—standard procedures that can be used repeatedly. 

Any action carried out within a domain can be recorded. The proposed and 
implemented action (8.1) pattern divides the possible states of an action into 
two key subtypes, which represent the intention and what actually happens. The 
end of an action is similarly divided into completed and abandoned actions (8.2). 
An abandoned action represents a final cancellation of the action, and temporary 
holds on an action are represented by suspension (8.3). 

A plan (8.4) is used to hold a group of proposed actions. We discuss 
structures of plans that record the dependency and sequencing of a group of 
actions while allowing a single action to appear in several plans. The latter 
property is essential to choreographing multiple plans, which are one-off 
arrangements. A protocol (8.5) is used for standard plans that are repeated many 
times. 

Carrying out an action requires resources. The resource allocation (8.6) 
pattern describes protocols for proposed and implemented actions. We consider 
two different kinds of resources: consumables, which are used by actions, and 
assets, which are used over time. 

So far our discussion of plans has focused on planning and monitoring 
actions and has ignored the effects of the actions. The final pattern we discuss 
handles outcome and start functions (8.7), which tie the patterns in this chapter 
with the observation and measurement patterns developed in Chapter 3. These 
functions allow us to say what we think an action has achieved (outcome), what 
a protocol should achieve (outcome function), and what conditions make us 
want to begin a protocol (start function). 

157 
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Planning is a complex area, and the patterns in this chapter, even more than 
other chapters, are not intended to be complete. The patterns came out of the 
Cosmos Clinical Process Model [1], and its constructions are thus decidedly 
bent in directions that support health care planning. The resource side comes 
from unpublished discussions with the developers and users of Cosmos, and the 
influence of the NHS Common Basic Specification [2]. 

Key Concepts    Proposed Action, Implemented Action, Plan, Suspension, 
Resource Allocation, Asset, Consumable, Temporal Resource, Start Function, 
Outcome Function 

8.1     Proposed  and Implemented Action  

The basis of any plan consists of the fundamental actions that people take. It is 
difficult to give any more than an outline description of what makes up an 
action. A plan can be coarse, consisting of large actions, or it can be finegrained, 
consisting of small actions. Actions can have a range of properties, based on 
who, when, and where. With such coarse-grained properties it is diffi cult to 
provide more than the most generic terms of party, time reference, and location, 
as shown in Figure 8.1. 

 
Figure 8.1     Properties  of actions.  

When making and monitoring plans, we must consider the many states 
that an action can go through. It can be scheduled, resourced, peopled, started, 
and completed. A state-transition diagram can record these states and how the 
transitions can occur. It is difficult to make any rules about these transitions. 
Scheduling an action and resourcing it can clearly happen in any order. A 
surface analysis may conclude that an action cannot be started before 
resourcing and scheduling. How do we deal with actions that are started before 
any formal decision is made to state a time for them? We could argue that such 
actions are scheduled a moment before they are started, but this sounds more 
like a management theory rationalization than a reflection 
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of the real business process. Another problem arises with partial resourcing. 
Any project manager will tell you that in the real world, tasks are often begun 
before all the required resources are allocated. How can we reflect this situation 
in descriptions of action states? 

The two important states of action are proposed and implemented actions, 
as shown in Figure 8.2. A proposed action is purely a proposal that exists in 
some plan. As such it can be scheduled by adding a time reference, resourced 
by adding parties, and located with the appropriate location. These changes can 
be made at any time, in any order. Once an action is begun, it is implemented. 
Not only is this a change in state, but also a separate implemented action object 
is created. This allows us to record differences between plan and 
implementation. By retaining the original proposed action, we can see the 
differences between the plan and reality. A common difference, for example, is 
the time reference; however, any attribute can change as planning documents 
finally turn into actions. 

 
Figure 8.2    Basic structure of plans and actions. 

Separate objects record the proposal and the implementation so that differences can be 
tracked. 

Example I decide to prepare a presentation for OOPSLA on July 1, 1997, but I don't get 

around to doing it until the 3rd. These actions can be represented as a proposed action 

with a date of July 1 and an implemented action with a date of July 3. All other attributes 

of the proposal are the same. 

We can provide a derived action state property to make it easier to tell what 
state an action is in without navigating the various structures that record its state. 
This is not really necessary at this stage but becomes valuable as we consider 
additional structures later. 

To retain the best degree of flexibility in recording daily actions, the links 
between proposed action and implemented action, as shown in Figure 8.2, 
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are optional. Often the best laid plans gather dust without implementation, and 
many actions occur without any prior planning. We should resist the 
temptation to rationalize last-minute plans. 

Example Doctor Thursz orders a full blood count for John Smith, but the patient does not 
turn up for the test. This represents a proposed action without an implemented action. If 
the patient is rebooked for a later date, this constitutes a new proposed action. 

Example Doctor Cairns is called to attend a woman who is taken suddenly ill on a train. 
Here there is an implemented action but no proposed action. 

8.2     Completed  and Abandoned Actions  

So far we have considered how actions are proposed and begin but not how 
they might end. Clearly actions either succeed or fail. The problem is that often 
we cannot determine success or failure with any certainty, especially in health 
care. Thus in this section we consider only two ending actions: completion and 
abandonment. Completion occurs when the action is carried out according to 
plan. Any consideration of the success or failure is left to further analysis (see 
Section 8.7). This definition can be too strict for domains other than health care, 
where success is more easily judged. The distinction between carrying out an 
action as expected and the action achieving its goal is still valuable. 

 
Figure 8.3    Completed and abandoned actions. 

Abandonment is a complete and final cessation of the action. It can occur 
either before or after beginning to implement the action. Abandoning a proposed 
action is deciding not to begin it at all. 

Example   A renal transplant provides renal function by replacing a damaged kidney 
with a donated working kidney. The renal transplant action is judged a success if the 
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kidney is safely transplanted into the recipient. If the kidney is rejected later, this does not 
invalidate the success of the transplant procedure. The transplant procedure is still 
completed; it would be abandoned only if a problem occurs during the operation. 

Example I chose to fly from London to Boston, expecting to arrive in Boston at 2:00 p.m. 
The flight is delayed, so I did not arrive until 7:00 p.m. This action was still completed, 
because I arrived in Boston that day. The delay I suffered meant that it was not a success. 
The proposed action to go to dinner that evening, however, was abandoned. 

Example My car would not start, and I determined the problem was a faulty starter 
motor. I thus proposed and began to replace the starter motor. Just after beginning I 
found that the fault was actually a bad connection, and the starter motor was fine. I thus 
abandoned the action of replacing the starter motor, although I was not unhappy with the 
result! 

Suspension  

We can also put off actions, with the intention of continuing them later. 
When this occurs a suspension is linked to the action, as shown in Figure 8.4. 
The suspension is valid within its time period (which might be open ended). If 
an action continues after the end point of the suspension, the suspension still 
exists but is no longer suspending, and the action continues. 

 
Figure 8.4   Suspension of actions. 

A suspension is a temporary hold on an action. 
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Thus an action is suspended if it has currently open suspension. Both proposed 
and implemented actions can be suspended; suspending a proposed action is 
equivalent to postponing the start of an action. 

Example A patient is on the waiting list for a renal transplant. This is represented by a 
proposed action of renal transplant. The patient has to wait for a kidney to become 
available. If the patient develops a cold while on the waiting list, the doctor must place a 
suspension on the patient. The transplant is not abandoned because the patient goes back 
on the waiting list when the cold abates. The record of the suspension is essential to 
explain why the doctor did not give a suitable kidney to the patient during that time. 

Example I have a proposed action to wash the dishes. It is frequently suspended for long 
periods, but I never quite abandon it! 

8.4     Plan  

In its simplest sense a plan is a collection of proposed actions linked in some 
sequence. A sequence can be expressed in a number of ways, but most com-
monly it is expressed as a dependency—an indication that one action cannot 
begin until another completes. Plans are often described by using a dependency 
diagram, as in critical path analysis. 

Figure 8.5 is a diagram of a dependency relationship between proposed 
actions. This structure is useful when the actions are always proposed as part of 
a single plan. In many situations, however, plans interact. When a doctor sets up 
a treatment plan for a patient, actions within that treatment plan are used by the 
nurses in setting up their nursing plans. It is not unusual for many caregivers to 
have plans for a patient, and it is important that these plans be properly 
choreographed. The structure shown in Figure 8.6 supports interaction by 
allowing an action to be referenced within multiple plans and for the 
dependencies to be drawn up between the references rather than between the 
actions. 

 
Figure 8.5    Dependencies between proposed actions. 

This will only allow actions to be proposed within one plan, making it difficult to 
coordinate plans. 

Example A doctor needs a full blood count for a patient. She checks the list of proposed 
actions and finds that another doctor has already proposed a full blood count as part of 
his plan. This is represented as the other doctor's plan having an action reference to the 
full blood count proposed action. A new plan can be created with a new action reference 
to the same proposed action. 



 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

 

Figure 8.6   A plan consisting of references to proposed actions. This 

structure allows actions to be referenced by several plans. 

Example I need to visit the liquor store to get some St. Emillion for a dinner on Saturday 
and Old Peculiar for a party on Sunday. The action of visiting the liquor store is referenced 
in both the plan for preparing for the dinner and the plan for the party. The dinner 
preparation's reference has a dependency where attending the dinner is the consequent 
and visiting the liquor store is the dependent. The party plan's reference has a 
dependency where beginning the party is the consequent and the visit to the liquor store is 
the dependent. 

This notion of an action and a reference to an action within behavioral 
description is a common pattern in behavioral modeling. It is analogous to the 
definition of a subroutine and its call within another subroutine. The definition 
of the subroutine contains no information on how it is used within a calling 
program. The calling program has no knowledge of the contents of the 
subroutine. 

The model in Figure 8.6 is a simple behavioral meta-model. A plan is a 
description of intended behavior, thus a behavioral modeling technique is 
appropriate. We can use any behavioral modeling technique. First we represent 
the technique by its meta-model. Then we tie the actions of the meta-model to 
the plan object and to the proposed actions. We should choose a behavioral 
model that is sophisticated without being overly complex. 

Plans are always subject to change and can be replaced by other plans, as 
shown in Figure 8.7. The association is multivalued in both directions—as 
plans change, a single plan can be split up and replaced by separate plans, or 
several plans can be consolidated into one. 

Planning    163  
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Figure 8.7   Replacement plans. 

Example    I have a plan to buy bread at the Garden of Eden and cheese at Bread and 
Circus. I replace this by a plan to get a take-away from Jae's instead. 

We can consider a plan to be a subtype of an action, as shown in Figure 8.8. 
Thus we can propose a plan (that is, we can plan for a plan) and monitor a plan 
to see if it is finished. Since planning is often quite complex, it is valuable to be 
able to schedule and track a plan's progress. 

 
Figure 8.8    Plans as actions and compound actions. 

We can plan to plan, and we can have complex actions without an explicit plan. 

We can think of a plan as a way of aggregating actions. For example, a full 
blood count can be represented as a plan, with each component measurement as 
a proposed action within it. This is a very heavy-handed representation, 
however. The structure shown in Figure 8.8 also allows an action to be 
decomposed into component actions, but it allows two ways to represent actions 
being part of a larger action: Using the parent-component association works 
well for simple cases, and using a plan works well for more complex cases. We 
can restrict the parent-component association to a hierarchy so only the 
parent-component association is used for simple cases. 

164   Plan  
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8.5     Protocol  

An organization's standard operating procedures are common actions carried out 
many times in much the same way each time. We can describe these common 
actions, referred to here as protocols, using constructs similar to those we used 
for plans, as shown in Figure 8.9. Planning patterns, like other patterns in this 
book, can be divided into knowledge and operational levels. The operational 
levels describe the day-to-day plans and actions. At the knowledge level are 
protocols, which describe the standard procedures that guide the operational 
level. 

 

Figure 8.9    Structure for protocols. 

It is a similar structure as the one for plans — a simple behavioral meta-model. 

There are some interesting differences between the knowledge and opera-
tional levels in the structure. Using a hierarchic structure is much less useful at 
the knowledge level. Protocol can be referenced by many other protocols; it is 
hard to think of a case where restricting it would be useful. We can often 
effectively represent an action as part of another action in cases where we want 
to aggregate actions in a regular manner, such as the measurement as part of a 
full blood count. 

There is no difference at the knowledge level between proposed and 
implemented actions, nor is there a valuable distinction between a plan and 
another group of actions. The components of a protocol are always a bag (since 
a protocol can be performed more than once within another), but the proposed 
actions of a plan always form a set (since you cannot do the same action twice, 
but you can have two actions with the same protocol). 
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A protocol need not be detailed with components. A protocol can be merely 
a name. It can be descriptions, textbook pages, Web pages, even a video of 
someone performing a particularly tricky surgical procedure. Protocol references 
can just describe components without any dependencies. Some protocols can be 
entirely coded into a computer, in which case they become a piece of software. 
(A software protocol is a protocol that is coded in software, not a protocol in the 
sense of a communications protocol.] 

We can form actions from a complex protocol in two ways. The simplest 
way is to use the parent-component association. This technique works well 
when the component actions all take place in a well-bounded time period, and 
no one wants to share the component actions. We first create a proposed action 
for the whole protocol and only indicate the component actions if we have to 
specify particular properties, such as timing or resources. (If there are a lot of 
these particular properties, then we should use a plan.) If all actions are done by 
the same party at about the same time, the parent action is enough. A 
component action is created for each component protocol's reference; that is, a 
protocol carried out three times within a parent protocol would yield three 
component actions; any dependencies would exist exactly as in the protocol. 

A plan offers greater flexibility and precision of tracking and thus is pre-
ferred when we want to monitor when and how individual protocol steps are 
carried out. These relationships are shown in Figure 8.10. In addition, a plan 
allows the component proposed actions to be picked up and shared with other 
plans. An important feature of plans is that, while they can copy the 
dependencies of the protocol, plans can also define new dependencies that 
might ignore that of the protocol. This ability is important in skilled professions 
such as health care, where we often have to override protocols to take into 
account the needs of individual patients. Frequently we need one-off plans, 
which are based on protocols but are not faithful copies. 

Forming actions from a protocol will typically use plans at higher levels of 
the protocol, and use the parent-component association at lower levels. 

8.5.1       Plans  and Protocols as Graphs  

We can also represent a plan as a directed acyclic graph (DAG) of proposed 
actions. The arcs on the graph correspond to the dependency relationships on the 
action references. Each plan has its own separate graph structure. We can 
represent this compactly as shown in Figure 8.11. This is, in essence, another 
association pattern in the style described in Chapter 15. 

To apply this notion to a protocol, however, we do not form a DAG of the 
subsidiary protocols. Instead we form a DAG of the protocol references, as 
shown in Figure 8.12, because one protocol can appear as more than one step 
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Figure 8.11    Plan as a directed acyclic graph of proposed actions. 

in another parent protocol. This is specifically not the case for a plan due to the 
uniqueness constraint shown in Figure 8.6. The base form for a DAG association 
pattern thus includes the dependency types (with the constraint) together with the 
fact that the element in the DAG can only appear as one node in a DAG. 
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Figure 8.10    Relationships among action, plan, and protocol. 

 
Figure 8.12    Protocol using a DAG. 
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If we use a graph for the plan structure we lose the ability to build the 
association between the plan reference and the protocol reference that is shown in 
Figure 8.10. Naturally we could still have the DAG version as a derived mapping; 
the derivation would include how to derive the graph's arcs. 

8.6     Resource  Allocation  

The second major part of planning is allocating resources. A primary difference 
between proposed and implemented actions lies in how they use resources. An 
implemented action will actually use resources allocated to it. A proposed action 
will book some resources. Figure 8.13 shows resource allocation as a quantity of 
some resource type. Resources can only be booked by one action and used by 
one action. 

 
Figure 8.13   Action's use of resources. 

Proposed actions book resources, and implemented actions use resources. 

There are various kinds of resources. The first and most obvious is a con-
sumable. Consumables are such things as drugs, needles, and raw materials. 
Consumables can be used only once and are used up by the action that uses them. 
Typically consumables are asked for by quantity. 

Example A resource allocation of 10 gallons of orange juice has a quantity of 10 gallons 
and resource type of orange juice. 

Example For a particular hip replacement operation, four units of packed red cells (blood) 
are booked, but only two are used. This can be represented by two resource allocations of 
the resource type packed red cells. One is linked to the proposed hip replacement with 
quantity four units; the other is linked to the implemented hip replacement with quantity 
two units. 
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Some resources are not consumed, such as equipment, rooms, and people. 
In no sense is a person consumed by an action (although after writing this book 
I wonder). However, we can say that a person's time is used up. In this case the 
resource type is the person, and the quantity is time. Thus my spending five 
hours on an action is a resource allocation of five hours of me. 

This is somewhat too individual a view of resource types. Resource types, 
which lie at the knowledge level, more typically indicate a kind of thing rather 
than the thing itself. Projects that I w ork on demand five hours of an 
experienced OO modeler rather than me in particular. Although some people are 
sufficiently singular to be resource types in their own right, most of us mortals 
are merely one of many. 

In planning, therefore, the requirement is stated as "We need five hours of an 
OO modeler." At some stage in the planning process, this is resolved by 
booking five hours of me, a specific instance of the resource type. This implies 
two levels of resource allocation: a general one where only the type is specified 
and a specific allocation where the individual is specified. 

In Figure 8.14 the individual is referred to as an asset. Assets are classified 
by asset type, which is just a kind of resource type. The difference 

 
Figure 8.14    Resource allocations for assets. 

Specific allocations name the individual asset used or booked. General allocations only 
specify the type of asset. 
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between a specific resource type and a general resource type is that the former 
links to the asset and the latter to a resource type, which for an asset would be an 
asset type. A temporal resource is a specific resource allocation of an asset. It can 
have not just an amount of time but also a specific time period. This period can 
be derived from the action that books or uses the temporal resource, or it can be 
separate. 

Example A modeling meeting is scheduled to be held in a small conference room for a 
couple of hours. Initially this is represented as a proposed action that books a general 
resource allocation. The resource type of the general resource allocation is the asset type 
small conference room. The quantity of the general resource allocation is two hours. At 
some later point the actual conference room is booked as Q9. This reclassif ies (or replaces) 
the general resource allocation to a temporal resource of two hours of the asset Q9. If the 
proposed action of the meeting is booked between 2:00 and 5:00 p.m. on Tuesday, then 
that time period is the derived time period of the allocation of Q9. If the last hour of the 
meeting is to be held in the pub, then a time period of 2:00 to 4:00 p.m. on Tuesday is 
linked to the temporal resource. 

The asset is allowed to have several asset types. This multiple classification 
of assets is important to represent those assets that can do several things, 
although not necessarily at once. 

Example If the conference room Q9 has projection facilities, it can be classified as both a 
small conference room and a presentation room. It cannot be booked as both at the same 
time by separate actions. 

Specific resource allocation is less important for consumables. For example, 
it is usually enough to say that 10 gallons of orange juice were booked and used 
by an action without being more specific about which 10 gallons. With assets we 
usually need to be specific because there is a greater likelihood for contention 
between parties about use of assets. 

At this point it is worth considering whether the relationships from subtypes 
of the action shown in Figure 8.13 should be specialized. For example, it may be 
reasonable to say that implemented actions can only use specific resource 
allocations of assets. Assuming that this is something that is required (and I'm 
not sure that it is in general), there are several ways of doing it. This brings up a 
good example of how a business rule can be modeled in different ways. 

The first, and most obvious, way is to introduce a structural constraint. In 
this case we can use a rule such as "Implemented actions cannot use general 
resource allocations whose resource type is an asset type." This eager checking 
is an aggressive way to enforce the business rule. It says that you are not 
allowed to record a situation that violates the policy. 

This can be too strong a way to do things, however. Sometimes it makes 
sense to allow a situation that violates the policy to be recorded, and to have a 
separate checking phase later. This lazy checking can be done by having 
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some operation on implemented action (such as isConsistentQ) and having 
that operation return true if the business rule is followed. This provides greater 
flexibility in handling situations where a full constraint might not be available 
from the beginning. The incomplete information is recorded, and a means for 
checking it is provided. 

The great advantage of lazy checking is that it separates the resolution of the 
problem from the recording of the information. People recording the information 
can make their best attempt at the time, and then either they or a more qualified 
person can clear things up later. If matters can be resolved easily at the point of 
information capture, then eager checking is better. 

Whether to allow general resource allocation of assets to implemented 
actions depends on the specific problem. If the needs of the domain are satisfied 
by knowing that it took two hours of an OO modeler without knowing which 
one, then general allocation of asset types should be allowed. This question may 
be dependent on the asset type. For example, hospital policy may dictate that all 
implemented allocations of consultants must be specific, although orderlies may 
be allocated generally. 

We can use specific resource allocation with consumables if we are con-
cerned with removing the consumable from some finite store that we have to 
track. In such cases we want to say that the consumable is taken from a par-
ticular holding of that consumable, as shown in Figure 8.15. Holdings can be 

 
Figure 8.15   Allowing specific allocations of consumables. 



 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

172   Outcome and Start Functions 

organized in various ways, depending on the resource tracking process, which I 
am not considering here. However, it is worth saying that a holding can be seen 
as an account and a resource allocation as an entry, following the approach 
described in Section 6.14. 

Resource allocations can also be used by protocols to describe the resources 
needed for a protocol to be carried out. In this case we use general resource 
allocations. 

Example To make chapati (Indian bread) you need V4 cup of flour, V8 cup of water, V4 
tablespoon of oil, and a pinch of salt. This can be represented as four general resource 
allocations. 

8.7     Outcome  and Start Functions  

In this section we use concepts developed in Chapter 3 to consider reasons why 
we form a plan and how we can gauge its success. 

Plans are initiated by observations, which, of course, can be hypotheses or 
projections. Similarly their outcomes are observations linked to the actions 
within the plan, as shown in Figure 8.16. Like many aspects of observation, the 
outcome link is dependent on the eyes of the performer. Thus some parties may 
not see an observation as the outcome of an action while others would. We 
would record this situation by having more than one observation by different 
performers. 

 
Figure 8.16    Links between observation, plan, and action. 

Example John Smith came to his doctor with the classic symptoms of diabetes: weight 
loss, thirst, and polyuria. The doctor creates a plan triggered by these observations. The 
plan includes a proposed action to carry out a blood glucose measurement. 

Example After experiencing poor sales, a company decides to improve the sales force's 
commission and to cut prices. Some analysts might say that the improved sales 
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were the outcome of the increase in commission, others might say the improvement was 
the outcome of the cut in prices. Separate observations would be made by each group, 
with links to different actions. 

Note that observations are a subtype of actions. They can be scheduled, 
timed, have performers, and be parts of plans. Their additional behavior is that 
they identify an observation concept or measure a phenomenon type. 

A similar set of linkages appears at the knowledge level using start functions 
and outcome functions, as shown in Figure 8.17. A  start function contains 
information on conditions that are likely to trigger the use of a protocol. 
Following the example of associative functions, the model records the obser-
vation concepts and protocols used as arguments to the start function but does 
not specify how they are combined. The intention is for different kinds of start 
functions to have different methods for combining them. 

 

Figure 8.17   The use of start and outcome functions at the knowledge level. 

Start functions indicate the conditions for beginning an action, and outcome 
functions indicate the targets and side effects. 

Example The protocol add oil is indicated by a start function with an argument of low oil 
level. 

Example Beta-blockers are a treatment for hypertension and angina but should not be 
used if the patient has asthma. This leads to three start functions, all of which indicate 
beta-blocker treatment. (Beta-blocker treatment is a protocol with a resource allocation 
of the resource type beta-blocker.) Two start functions, one with the argument 
hypertension and one with the argument angina, have a simple body with no 
processing, which is a straightforward indication. The third has the argument asthma 
and is a body of logical negation. (We could have a centra-indication subtype of start 
function, but it all really depends on the way the arguments are processed.) 
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Outcome functions operate similarly. Again the input is a combination of 
protocols and observation concepts. The result is two sets of observation 
concepts. Some observation concepts represent the target use of the protocol, 
that is, the effects that represent the purpose of the protocol. The other obser-
vation concepts are the side effects. A protocol can have many results. This may 
reflect other protocols or observation concepts that the patient might have at 
that time. These are introduced as arguments inherited from the knowledge 
function. 

Example Decreasing prices have an outcome function with a target of increased market 
share and a side effect of reduced revenue per unit sold. 

Example The protocol liver transplant has an outcome function with a target of good liver 
function and side effects of organ rejection and biliary stricture (narrowing of the bowel 
duct). The start function can also include information on the likelihoods of these 
conditions arising. Separate outcome functions might exist with the same target and side 
effects but with arguments representing diseases that affect the procedure. These 
separate outcome functions indicate different likelihoods for the target and side effects 
due to presence of the disease arguments. 
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This chapter looks at the buying and selling of goods and at the value of these 
goods with respect to changing market conditions. Using the experience of 
building a trading system for a bank, the chapter looks at buying and selling 
from both angles, where the bank buys and sells the same goods. The bank has 
to understand the value of the net effect of these trades in different 
circumstances. 

Each trade is described by a contract (9.1). The contract can either buy or 
sell goods and is useful for businesses that need to track both directions of deals. 
We can look at the net effect of a number of contracts by using a portfolio (9.2). 
We design portfolios so we can assemble them easily to select contracts in 
different ways. We give the portfolio a separate object, the portfolio filter, to 
define the selection criteria. The portfolio filter defines an interface that can be 
implemented by various subtypes. This construction provides flexibility for 
simple and complex selection criteria. It is a useful technique for defining 
collections in a flexible manner. 

To understand the value of a contract, we need to understand the price of 
the goods being traded. Goods are often priced differently depending on 
whether they are bought or sold. This two-way pricing behavior can be captured 
by a quote (9.3). 

In volatile markets, prices can change rapidly. Traders need to value goods 
against a range of possible changes. The scenario (9.4) puts together a combi-
nation of conditions that can act as a single state of the market for valuation. 
Scenarios can be complex, and we need a way to define their construction so we 
can use the same scenario construction at different times in a consistent manner. 
Scenarios are useful for any domain with complex price changes. 

175 
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This chapter is based on a project to develop a foreign exchange derivatives 
trading system for a major bank. 

Key Concepts     Contract, Portfolio, Quote, Scenario 

9.1     Contract  

The simplest kind of financial deal is that of buying some instrument from 
another party. The instrument can be stock, a commodity, foreign exchange, or 
any other commonly traded item. A basic starting point is the model shown in 
Figure 9.1. This model has a contract that is a deal with another party, referred to 
as the counterparty, involving some amount of an instrument. Only a single 
instrument is shown, although strictly speaking all trading involves two 
instruments—one instrument being traded for another. For most markets one 
instrument is always the currency prevailing in the market. The price is thus 
represented as a money object. Money is a subtype of quantity (see Section 3.1) 
whose unit is a currency. 

In foreign exchange markets the instrument is the exchange rate. This might 
seem odd, but really all instruments are exchange rates. A contract to sell stock 
on the Dow is really a contract to exchange stock for dollars. In most cases it is 
easier to represent this by saying that the instrument is exchanged for the 
currency of the price, but for exchange rates it is better to have both currencies 
on the instrument and let the price be a simple number. 

 
Figure 9.1    Simple model for a contract. 

The amount of the instrument is traded with the counterparty. Long and short are terms 
for buy and sell, respectively. The single counterparty limits the contracts that can be 
represented. 
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The terms long and short are the terms traders use for buy and sell, respec-
tively. (Computer people are not the only ones with strange jargon!) Figure 9.1 
shows the difference between long and short with subtyping notation. An 
alternative is to have a Boolean attribute isLong. Either method is acceptable, 
but I prefer the explicitness of Figure 9.1 in conceptual modeling. Subtyping and 
a Boolean attribute are equivalent in conceptual modeling; subtyping does not 
imply subclassing. In an implementation modeling technique (when sub-typing 
does imply subclassing), Figure 9.1 is not appropriate unless the behavior of the 
long and short differ (and possibly not even then). An interface model can go 
either way. Section 14.2 describes how this transformation can be made to 
preserve the same interface whether subclasses or flags are used. 

Example Megabank sells 1000 shares of Aroma Coffee Makers stock to Martin Fowler at 
$30. This is a short contract whose counterparty is Martin Fowler, the instrument is 
Aroma Coffee Makers stock, the amount is 1000, and the price is $30. 

Example Megabank sells 2 million US dollars (USD) for 1 million British pounds (GBP) 
from British Railways. This is a long contract in which the counterparty is British Railways, 
the amount is 1 million, the price is 2, and the instrument is GBP/USD. Alternatively it 
could be a short contract in which the amount is 2 million, the price is 0.5, and the 
instrument is USD/GBP. 

Example Northeast Steel sells 10,000 tons of steel to Chrysler. For Chrysler this is a long 
contract with a counterparty of Northeast Steel. The instrument is steel, in which case the 
amount changes to a quantity to allow 10,000 tons to be represented. (An alternative is to 
allow the instrument to be tons of steel, but that is less flexible for other quantities.) 

This style of model is good for capturing deals done between the host 
organization and other parties. Often, however, deals are done internally within 
the host organization, such as between the options desk and the commodities 
desk. These internal deals are used in the management of risk. A common 
example is a deal to offset the risk of an option (called a hedge). Such internal 
deals raise the question of who is the internal party. The model shown in Figure 
9.2 presents a more flexible way of answering this question. Two parties are 
shown on a contract: the long (buyer) and the short (seller). In 

 
Figure 9.2    Indicating buyers and sellers by separate relationships. 

Having two parties supports internal deals, completely external deals, and dealing 
with different parties within the host organization. 
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this kind of representation, the options desk and the commodities desk are 
represented as separate parties. If the options desk does an option with an 
external party and hedges it with a deal with the commodities desk, then the 
options desk would be a party to each contract. If the options desk were the long 
party in the option, it would be short in the hedge contract. 

Figure 9.3 represents a similar situation in a slightly different way. Again the 
use of two relationships allows internal deals to be represented. However, here 
there is a notion of primary party and counterparty rather than long and short. 
The host bank party is always the primary party when doing a deal with an 
outside organization. In internal deals the choice between primary party and 
counterparty is arbitrary, although by convention the primary party is usually the 
one that initiates the deal. The subtype of long and short is the nature of the deal 
as seen by the primary party. 

 
Figure 9.3    Counterparty and primary party. 

This is less concise than Figure 9.2 but can better support the traders' view. 

On initial analysis the model shown in Figure 9.3 looks less valuable than 
the model shown in Figure 9.2 because it adds an extra pair of subtypes without 
any great advantage. Certainly a data modeling view would reject this on the 
basis of a more complex data structure. The important issue, in terms of OO 
modeling, is interface. Is it more useful to provide operations that ask for 
primary and counterparty and the contract as long or short, or is it more useful to 
have a long and short party? It may be that the model shown in Figure 9.4, which 
essentially provides both interfaces, is the best. The deciding factor is what is 
most useful to the users of the concepts. For our 
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example system, the Figure 9.3 model was more meaningful to the traders than 
that of Figure 9.2 and proved more useful in constructing software, although the 
Figure 9.4 interface was ultimately provided. 

 
Figure 9.4    Using four party mappings. 

This covers all points of view by deriving the duplicate elements. 

Modeling Principle When more than one equivalent set of features can be provided, pick 
the one that the domain expert is most comfortable with. If the domain expert feels that 
both are very valuable, show both and mark one derived. 

The choice of what to make derived in Figure 9.4 is quite arbitrary. We 
could equally well make the long or short mapping derived. The model should 
not constrain the implementor who can use either kind of implementation. It 
could be argued that you could make nothing derived but simply use rules (such 
as, if the contract is short, then the short party is the same object as the primary 
party). I prefer to show some derivations to make the interrelationships explicit, 
but ultimately it is more a matter of modeling taste. 

Modeling Principle  Marking a feature as derived is a constraint on the interface and 
does not affect the underlying data structures. 

A consequence of the models shown in Figures 9.2-9.4 is that contracts can 
be recorded that do not involve the host bank. We can avoid this by forcing at 
least the primary party to be a party of the host bank. Alternatively we can ask 
the domain expert if holding these deals would be useful. Salespeople often like 
to record deals that their customers have made with other banks because it gives 
them information on their customers' possible risk profiles and allows them to 
sell a contract to improve matters. Here the flexibility of the model supports new 
business capabilities. 
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An open issue is the relationship between a contract in this trading model 
and a transaction in one of the accounting models from Chapter 6. A trade can 
be seen as a transaction that, for example, withdraws 1000 shares of Aroma 
Coffee Makers stock from a Megabank account and deposits them in a Martin 
Fowler account, while transferring the appropriate amount of money in the 
opposite direction. Both trades and transactions are useful, but for different 
purposes. More modeling needs to be done to explore their interrelationships. 

9.Z     Portfolio  

We rarely consider contracts alone, especially when we are managing risk. 
Typically a bank will look at a group of related contracts and assess their joint 
risk. This might be the contracts dealt by a single trader, the contracts in a 
particular instrument, the contracts with a particular counterparty, or some 
other combination. 

In essence a portfolio is a collection of contracts, as shown in Figure 9.5. 
Portfolios and contracts can be valued by pricing them according to some 
scenario. A scenario is a representation of the state of the market, either real or 
hypothetical (we will discuss scenarios in more detail in Section 9.4). The 
value of a portfolio is essentially the sum of the values of the underlying 
contracts. 

 
Figure 9.5    Introducing portfolios. 

A portfolio is a collection of contracts that can be valued as a whole. 

A key question lies in the cardinality of the mapping from contract to 
portfolio. Whether a contract can sensibly lie in more than one portfolio depends 
on how we create and use the portfolios. If a portfolio is a trader's book, then a 
contract lies in the portfolio of the trader who is managing the deal. This, 
however, does not allow all trades with a particular counterparty to be 
considered together. Thus there seems to be an advantage in allowing a contract 
to lie in many portfolios. Portfolios can thus be built to manage risk according to 
different perspectives. 

Using portfolios in this way raises another question, however. Suppose we 
need to form a portfolio that contains all contracts done with a particular 
counterparty. We could build an application that would search all contracts and 
assign them to portfolios. A better way, however, is to get the portfolio to assign 
contracts. We can give a portfolio a Boolean method, which takes a 
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contract as an argument as shown in Figure 9.6. The portfolio then consists of all 
contracts for which the Boolean method evaluates to true. This allows us to 
construct portfolios that can select any combination of properties of a contract 
and then carry out the management functions of a portfolio on this derived set. 

 
Figure 9.6    Dynamic portfolios with filters. 

This allows portfolios to be described implicitly by properties of the contract. 

Modeling Principle    If a set of objects can be formed with various criteria, a portfolio 
should be used. 

Allowing portfolios to have methods so that they can form themselves with 
contracts is a powerful notion. It means that there is no need to choose a single 
structure to consider groups of contracts. Various structures can be used, in an 
ad hoc manner. Once such a structure is defined, it can be remembered as used 
in the future and its contents regularly updated. The structure can be defined at 
any time, long after the original contract was put together. In effect we are 
making a query, and the resulting collection of objects becomes an object in its 
own right. 

How is the Boolean method implemented? In general the method can be 
any block of code that returns true or false when given a contract as an argument. 
Smalltalk programmers can see that assigning a single argument block as an 
instance variable of portfolio would provide the desired capability. C++ 
programmers can use roughly the same principle, although it is more tricky 
since C++ needs a compiled function. This is the same problem as the indi-
vidual instance methods discussed in Section 6.6. 

In the abstract the Boolean method might be the best approach, but in 
practice a simpler method does as well. Portfolios are commonly formed from a 
number of properties of contracts, including counterparty, dealer (the primary 
party), instrument, and dates of the deal. We can combine these attributes into a 
particular contract selector object, as shown in Figure 9.7. A 
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contract selector is not as general as a Boolean method and can only handle a 
limited range of filtering. However, it is easy to set up; the user can configure it 
easily with a suitable user interface. If we use a contract selector to handle most 
of the portfolios needed by the user, we can considerably reduce the amount of 
programming required. 

 
Figure 9.7    Contract selectors. 

Note that this is an example of a parameterized method (see Section 6,6.4). It cannot 
select all possible portfolios, but it can cover most portfolios used in practice more easily 
than the completely general case. 

Example A portfolio consists of all deals involving Aroma Coffee Makers stock sold to 
John Smith. This portfolio has a filter with Aroma Coffee Makers stock as an instrument 
and John Smith as a counterparty. 

We are not forced to choose between contract selectors and Boolean methods 
for our filters. We can have the best of both worlds by using the model shown in 
Figure 9.8. This model abstracts the interfaces of both the Boolean method and 
the contract selector into a single, abstract type—the portfolio filter. This allows 
us to use the contract selector for simple cases and use a range of hard-coded 
fi iters for more complex situations. We can easily add other portfolio filters. This 
is an example of the strategy pattern [ 1] .  

Modeling Prin ciple When making a process a feature of a type, the process should be 
given an abstract interface so that the implementation can easily vary by subclassing. A 
purely hard-coded implementation is one subclass, various parameter driven approaches 
are others. 
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Figure 9.8    Provision of several portfolio filters. 

This model provides both flexibility to handle the complicated cases and simple 
parameterization for the simple cases. It is a combination of strategy and parameterized 
implementations (see Section 6.6). 

The select operation on the portfolio filter takes a collection of contracts 
and returns another collection of contracts. For each contract in the input 
collection, the select operation evaluates isI ncluded and, if true, adds it to the 
result. Subclasses of the portfolio filter override isI nc luded to provide their 
specific behaviors. A portfolio may use isI ncluded to check individual 
contracts. 

I should add a word about the naming of portfolio filter and contract 
selector. People I've worked with found the distinction between the terms 
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quite valuable in practice. A selector selects objects of the type it is named after; 
thus a contract selector is used to select contracts, and it returns a collection of 
contracts. A filter selects some other type on behalf of its named type and is 
designed to be used with its named type. Hence a portfolio filter selects 
contracts for a portfolio. By sticking to a consistent naming, it is easier to 
remember the responsibilities of these two kinds of objects: The filter is only a 
selection mechanism, but the portfolio adds additional behavior, such as 
producing an overall value. In addition, the portfolio is referred to by other parts 
of the system, while the filter is only used for selection purposes. 

Portfolios can be transient or persistent. Transient portfolios are filled on 
demand. The filter is specified, and all instances of the contract are checked to 
see if they match the filter. Once a client has finished with the portfolio, it is 
discarded. Persistent portfolios are created in the same way but are not discarded. 
When new contracts are created, they are checked against existing persistent 
portfolios. If they match the filter, they are added to the portfolio. Any 
processing based on the portfolio must then be updated, ideally incrementally. 
Persistent portfolios provide much faster query performance but slow down 
creation of contracts and use up storage. An essential modeling principle is that 
users should be unaware of whether portfolios are transient or persistent. 
Portfolios should switch from one to the other without requiring any action by 
the user. This requires that a new portfolio filter be checked against any existing 
persistent portfolio filters. If a matching one exists, then the existing portfolio 
should be referenced rather than a new portfolio created. 

Portfolios are useful in many domains. The essential characteristic of a 
portfolio is that of an object that encapsulates a selection mechanism for 
choosing a group of objects of some type. The portfolio acts as a basis for some 
further summary processing. This processing can be a client object, as in this 
chapter, or it can be built into the portfolio itself. 

Example A car manufacturer can develop portfolios of produced cars for summarizing 
production and fault data. Filters can select cars according to their plant, model, shift of 
production, or some date range. 

Example Public health is a significant branch of health care that deals with the health of 
populations of patients. We can select populations according to a range of characteristics: 
age, where they live, observation concepts that apply, and so on. These populations can 
be defined by filters, and then observations can then be made about them, such as the 
average peak flow rate for people who smoke more than 20 cigarettes a day. (The 
population is a portfolio of people where the filter is smokes more than 20 cigarettes a 
day.1) 

1 The filter on the cigarette is a different matter. 
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9.3     Quote 

Anything traded on a financial market has a price. That price, however, is not 
usually a single number. Two numbers are quoted: the price to buy (the bid) and 
the price to sell (the offer). We can model this using a pair of numbers to 
represent the prices, as shown in Figure 9.9. 

 

Figure 9.9    Representing the price through two numeric properties. 

An instrument can be valued using numbers or money objects. Typically 
stocks are valued using money but exchange rates have numbers. A quote 
behaves the same in either case. (We can think of a quote as a parameterized 
type.) 

Although two numbers are common, they are not always used. Sometimes 
the quote is a single price, which represents the mid-value of the price. A single 
price is quoted with a spread—the difference between the bid and the offer. 
On other occasions we may see only a bid, or only an offer. This affects the 
way the quote is displayed. In foreign exchange markets an exchange rate such 
as USD/GBP might be quoted as 0.6712/5, which indicates a bid of 0.6712 and 
an offer of 0.6715. If only a bid is present, the quote is shown as 0.6712/; an 
offer-only quote appears as /0.6715. 

Any object that may have two-way pricing—such as exchange rates, com-
modities, and so on—requires a number of behaviors as shown in Figure 9.10. 
Pulling these behaviors out into a separate quote object, as shown in Figure 
9.11, provides all behaviors needed for two-way pricing. Anything that has a 
quote as a price requires a quote property. 

 
Figure 9.10    Behaviors required to support two-way prices. 

A quote becomes a fundamental type and as such can best be represented as 
an attribute in those modeling methods that distinguish between attributes and 
object types. It is important to remember that an attribute does not represent the 
data structure, merely the presence of suitable operations. 
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Figure 9.11    Using a separate quote object. 

This is a good approach since it brings the particular responsibilities together into a simple 
reusable concept. 

Example The USD/GBP rate is 0.6712/6. The instrument is USD/GBP. This instrument has a 
quote with a bid of 0.6712, an offer of 0.6716, a mid of 0.6714, and a spread of 0.0004. 

Example A CD exchange sells used full-price CDs for $12 and buys them for $8. The bid is 
$12, the offer is $8, the mid is $10, and the spread is $4. The instrument is a full-price 
classical CD (even for a Chopin nocturne). 

Modeling Principle  When multiple attributes interact with a behavior that might be 
used in several types, the attributes should be combined into a new fundamental type. 

Two-way prices are common, but sometimes one-way prices are used. 
Modeling one-way prices is somewhat tricky. One alternative is to allow the 
price either to be a quote or a number. This is nearly impossible in strongly 
typed languages such as C++. Even in Smalltalk the client of stock is forced to 
determine what kind of object the price returns before doing anything with it. 

An alternative is to make the quote a subtype of the number. This can work 
because quotes can respond to arithmetic operations, but it still forces the client 
to be conscious of the differences whenever manipulating stock prices, other 
than for printing. In C++, where number is not a built-in type but real and 
integer are, this method should not be used unless a number class is provided. 

Another alternative is to make number a subtype of quote. Conceptually this 
has a definite appeal. Numbers are just simple quotes, and it is not too difficult 
to consider that every instance of a number is an instance of a quote, with 
identical bid and offer. (A similar argument can be used to say that number is a 
subtype of complex number.) Although the argument has conceptual merit, it 
falls down with an interface model. For a number to be a subtype of a quote, i t 
must inherit the complete interface of the quote. A quote is only useful for a few 
domains, while a number is useful in almost every domain. Subtyping from a 
quote means that the quote is used in all domains, including many where the 
quote's behavior is not useful. A quote must be designed so it has visibility to 
number, and not the other way round. 

Modeling Principle  A generalization should not be used where the supertype is in a 
narrow domain and the subtype is widely used. 

186   Quote 
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At this point we should consider what commonalities exist between quotes in 
their two-way and one-way forms. Two alternatives exist: Either a one-way quote 
is treated as a quote, with the bid equal to the offer, or it is an error to ask for a 
bid or offer on a one-way quote. The former points to the presence of an abstract 
quote, as shown in Figure 9.12, while the latter avoids any such generalization. In 
the first alternative the client can treat the one-way and two-way quotes with the 
same behavior and not be concerned with differences. However, this can lead to 
inaccuracies because the client cannot be sure of dealing with the bid of a 
two-way quote. A type test operation (i sTwoWay or hasType ('TwoWayQuote')) 
is needed so that the client can make the test. With no abstract quote, these 
inaccuracies cannot occur, but the client must use the type test every time an 
operation is invoked to know whether the operation is safe to use. 

 
Figure 9.12   Abstract quote with subtypes. 

One-way prices are treated as a special case of two-way prices. 

The decision hinges on how often it is acceptable to ignore the difference 
between two- and one-way quotes. If it is almost never acceptable, then it is 
best not to have an abstract quote type. However, if it is frequently acceptable 
(which practice suggests it is), then I would strongly encourage the use of an 
abstract quote type. It is important to note that using the abstract quote never 
requires more effort by the client than not using one. It saves effort when the 
distinction is not required. 

Modeling Principle  If the difference between two similar types is often ignored, then 
an abstract supertype can be used. If the distinction between them is usually important, 
then an abstract supertype should not be used. 

Modeling Principle  If an abstract type never needs more effort for a client to use it, 
then it should be provided. 
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Figure 9.11    Using a separate quote object. 

This is a good approach since it brings the particular responsibilities together into a simple 
reusable concept. 

Example The USD/GBP rate is 0.6712/6. The instrument is USD/GBP. This instrument has a 
quote with a bid of 0.6712, an offer of 0.6716, a mid of 0.6714, and a spread of 0.0004. 

Example A CD exchange sells used full-price CDs for $12 and buys them for $8. The bid is 
$12, the offer is $8, the mid is $10, and the spread is $4. The instrument is a full -price 
classical CD (even for a Chopin nocturne). 

Modeling Principle  When multiple attributes interact with a behavior that might be 
used in several types, the attributes should be combined into a new fundamental type. 

Two-way prices are common, but sometimes one-way prices are used. 
Modeling one-way prices is somewhat tricky. One alternative is to allow the 
price either to be a quote or a number. This is nearly impossible in strongly 
typed languages such as C++. Even in Smalltalk the client of stock is forced to 
determine what kind of object the price returns before doing anything with it. 

An alternative is to make the quote a subtype of the number. This can work 
because quotes can respond to arithmetic operations, but it still forces the client 
to be conscious of the differences whenever manipulating stock prices, other 
than for printing. In C++, where number is not a built-in type but real and 
integer are, this method should not be used unless a number class is provided. 

Another alternative is to make number a subtype of quote. Conceptually this 
has a definite appeal. Numbers are just simple quotes, and it is not too difficult 
to consider that every instance of a number is an instance of a quote, with 
identical bid and offer. (A similar argument can be used to say that number is a 
subtype of complex number.) Although the argument has conceptual merit, it 
falls down with an interface model. For a number to be a subtype of a quote, it 
must inherit the complete interface of the quote. A quote is only useful for a 
few domains, while a number is useful in almost every domain. Subtyping from 
a quote means that the quote is used in all domains, including many where the 
quote's behavior is not useful. A quote must be designed so it has visibility to 
number, and not the other way round. 

Modeling Principle  A generalization should not be used where the supertype is in a 
narrow domain and the subtype is widely used. 

186   Quote 
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At this point we should consider what commonalities exist between quotes in 
their two-way and one-way forms. Two alternatives exist: Either a one-way quote 
is treated as a quote, with the bid equal to the offer, or it is an error to ask for a 
bid or offer on a one-way quote. The former points to the presence of an abstract 
quote, as shown in Figure 9.12, while the latter avoids any such generalization. In 
the first alternative the client can treat the one-way and two-way quotes with the 
same behavior and not be concerned with differ-ences. However, this can lead to 
inaccuracies because the client cannot be sure of dealing with the bid of a 
two-way quote. A type test operation (i sTwoWay or hasType ('TwoWayQuote')) 
is needed so that the client can make the test. With no abstract quote, these 
inaccuracies cannot occur, but the client must use the type test every time an 
operation is invoked to know whether the operation is safe to use. 

 
Figure 9.12    Abstract  quote with subtypes.  

One-way price s are treated as a special case of two -way prices.  

The decision hinges on how often it is acceptable to ignore the difference 
between two- and one-way quotes. If it is almost never acceptable, then it is 
best not to have an abstract quote type. However, if it is frequently acceptable 
(which practice suggests it is), then I would strongly encourage the use of an 
abstract quote type. It is important to note that using the abstract quote never 
requires more effort by the client than not using one. It saves effort when the 
distinction is not required. 

Modeling Principle  If the difference between two similar types is often ignored, then 
an abstract supertype can be used. If the distinction between them is usually im-portant, 
then an abstract supertype should not be used. 

Modeling Principle    If an abstract type never needs more effort for a client to use it, 
then it should be provided. 
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The abstract quote subsumes all the behavior of the subtypes because there 
is no additional operation or association on the subtypes. Typically we do not 
use subclasses to implement the subtyping of an abstract quote, especially since 
such a fundamental object usually uses containment in C++. An internal flag in 
a quote class is a more likely implementation, especially since we often need to 
par a two-way quote (that is, turn it into a one-way quote) and vice versa, which 
requires dynamic classification. 

An implicit quote can be either a buy or a sell, in which case two-way 
prices are not needed. Only when both buying and selling are required are 
two-way quotes needed. 

Sometimes we want to represent the price of a contract as a quote. Often 
when counterparties ask the price for a contract, they do not specify the 
direction; in that case the trader replies with a quote. By holding on to the quote, 
the trader remembers what the spread was when the contract was quoted. The 
actual amount charged can easily be derived from the direction of the contract 
and the quote. 

9.4     Scenario  

The price of an instrument is never constant; otherwise, the stock markets of the 
world would be much less interesting places. We need to be able to show how 
prices can change over time and to keep a history of those changes. We can do 
this by placing a timepoint on the quote, as shown in Figure 9.13, or by placing a 
timepoint on the relationship between the instrument and the quote, as shown in 
Figure 9.14. The difference between the two methods is small but significant. In 
the former, the quote is responsible for both its two-way nature and its 
time-dependent behavior. In the latter method those responsibilities are separated. 
Since I see a quote as a fundamental type that should kept as simple as possible, I 
prefer to use the approach shown in Figure 9.14. 

 
Figure 9.13    Adding a timepoint to a quote. 

The timepoint indicates at what time the quote is correct for the instrument. 

In these models, finding the closing prices for a market involves taking all 
the stocks within that market and looking for the latest quotes for each stock. 
Another alternative is to treat this collection of quotes as an object in its own 
right—a scenario, as shown in Figure 9.15. The scenario represents the state 
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Figure 9.14   A price made for a stock at a particular time. 

This separates the two-way behavior (quote) from the notion of a value for an instrument 
at a timepoint (price). 

 
Figure 9.15    Scenario 

This allows a group of prices at a single time to be treated as a single object. 

of the market at a certain point in time, and the elements within the scenario 
represent the prices at that point. 

If we only want to capture the published prices of a stock exchange, then a 
scenario seems to add little to the picture. It is easily generated by looking at 
the timepoints in the nonscenario model. The important question here is where 
the trader gets prices. One source is the exchange's public quotes. For those 
that manage funds of stocks, another consideration is possible future prices. 
Much of the effort of fund managers and traders goes into managing the risks 
of their portfolios as market conditions change. This risk management involves 
looking at alternative situations and considering their effects on prices of assets. 

Example A fund manager is managing a portfolio of stocks. She is concerned with the 
possibility of a fall in oil prices, which would boost the prices of many stocks but decrease 
the price of others, such as oil companies. This manager wants to look at several falls of 
differing magnitudes and consider how they affect a portfolio. Each of these falls leads to 
a different scenario. 
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Example A production manager is assessing likely production costs for cars. The costs of 
raw materials and labor are instruments concerned with pricing. Several scenarios can be 
constructed with different likely values for these instruments. 

The above examples are hypothetical cases that show the strength of the 
scenario approach. The scenario object provides a base to pull together all the 
factors in a hypothetical case so that different cases can be compared easily. 

We also need to consider markets that do not have a single publisher for a 
price, such as the foreign exchange market. In such cases we need to add the 
party that is publishing the price to the model. Figures 9.16 and 9.17 show 
earlier models with publishing parties added. Both the scenario and non-scenario 
approaches are effective, and again the need for hypothetical scenarios for risk 
management is the deciding factor. 

 
Figure 9.17    Model in Figure 9.15 with a publishing party. 

Using a publisher is one more reason to use a scenario. 

 
Figure 9.16    Model in Figure 9.14 with a publishing party 
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Example An import/export merchant considers the prices of goods in a number of 
European countries. We can describe these prices by forming a scenario where the in-
struments are the goods he is interested in trading. By looking at the differences be-
tween these markets, using two-way prices, he can look for opportunities where the 
price difference is greater than the cost of transporting the goods (a process referred to as 
arbitrage). 

Modeling Principle  Scenarios should be used when a combination of prices or rates 
should be considered as a group. 

9.4.1       Defining  How to Build a Scenario  

Where do prices come from? In some cases this can be a simple question, for 
instance, when prices are published by an exchange. In other cases, partic-
ularly when there are hypothetical scenarios, more complex schemes might be 
used. 

In broad terms we can see three origins of a price: publication by some 
body that is widely quoted in the market, calculation from other prices or 
market characteristics, or the opinion of an individual trader or team of analysts. 
The first case, shown in Figure 9.18, is the most straightforward. Instructions 
are required to source the relevant information. Typically these instructions 
come from a source, such as Reuters, that tells where to look for information 
(for example, "Page 3, second column of the row starting IBM"). 

 
Figure 9.18   Sourcing a scenario element. 

This model describes where a particular element comes from. 
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In effect, using a published price makes the quote for a sourced scenario 
element derived. Rather than asserting the quote for a sourced scenario element, 
we derive it using the sourcing index. There is thus an argument for making the 
link to a quote a derived link. This can be done safely if the link can never be 
asserted, as when a trader records a hunch. Asserting the quote can cause 
problems because sometimes the quote can be asserted and sometimes derived. 
One way out of this is to use a notation for hybrid or optionally derived 
relationships (see Odell [2], page 56). This seems to take the derived issue too 
far. I tend to notate according to the most common case and describe what 
happens precisely in the supporting documentation. 

Example An analyst looking at prices for mail order goods can treat each company as an 
information source. The sourcing index can be a page number in a catalog. There can then 
be a separate scenario for each retailer, or an overall scenario can be built that combines 
all retailers. Rather than asking for the price of an instrument, questions such as lowest 
price and average price of some instrument are supported. 

Figure 9.18 introduces market indicator as a supertype of instrument. This 
reflects the fact that scenarios can contain things other than instruments. For 
derivatives, an important part of the pricing approach is the volatility of an 
instrument—a number that indicates how much the value of the instrument is 
changing. This volatility is not an instrument that can be traded, but it is 
recorded in a scenario in the same way as an instrument. Hence a market 
indicator includes volatilities, as well as all instruments. 

Example Foreign currency markets have many market indicators that are not instruments, 
including interest rates on the various currencies and the volatility of an exchange 
rate—an indication of how much the exchange rate is changing. 

Example An analyst looking at prices for mail order goods is interested in the increase in 
jeans prices. Jeans price increase becomes a market indicator but not an instrument. Jeans 
are both a market indicator and an instrument. 

Calculating scenario elements is also straightforward. The key is to accept 
that the algorithm for calculating the price can be an object in its own right. A 
simple example of this is cross-rates used in foreign exchange. If we know the 
exchange rates for USD/DEM and for USD/GBP, then we can calculate the 
exchange rate for GBP/DEM as (USD/DEM) / (USD/GBP). We can represent 
this by having a cross-rate scenario element, which we model by having a 
subtype of scenario element that references other scenario elements for the 
numerator and denominator of the cross-rate, as shown in Figure 9.19. The 
quote for the cross-rate scenario element is then derived from the quotes for the 
denominator and numerator scenario elements. 

Note that the denominator and numerator are expressed as scenario ele-
ments rather than market indicators. If we are just expressing cross-rates as 
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numerator 

Figure 9.19    Calculating scenario elements by cross-rates. This can be used to 

determine a third element from the ratio of two known elements. 

described above, then referencing the market indicators seems the most sensible 
(USD/GBP is a market indicator). However, the whole point of providing 
scenarios is to allow us to post several different prices, under different 
assumptions, for the same market indicator. Referencing the scenario element 
allows us to focus on which of these prices we are to use. There might be two 
USD/DEM figures: one from Reuters and one from LIBOR. By referencing the 
scenario elements, we are able to indicate which one we want. 

Example A trader is a specialist on the French franc. She determines the exchange rate 
between Dutch guilders (NLG) and French francs (FFR) by cross-rates using the German mark 
(DEM). She does this by creating a cross-rate scenario element. The market indicator for this 
scenario element is NLG/FFR. For the numerator she uses the NLG/ DEM rate quoted by 
Reuters; that is the scenario element for the instrument NLG/DEM in the Reuters scenario. 
However she does not get the DEM/FFR rate for the denominator from Reuters; instead she 
uses her own scenario (built on the basis of her own specialized knowledge). Thus she 
forms the cross-rate from scenario elements in different scenarios. 

The kind of approach used for cross-rates can be used for a number of 
common calculations, where new kinds of calculations are supported by new 
subtypes of the scenario element. Figure 9.20 shows a generalization of this 
structure. In this case the calculated scenario element has a list of scenario 
elements as arguments and a formula. The formula represents the algorithm for 
the calculation, which uses arguments provided to it by the arguments on the 
calculated scenario element. For the cross-rate the formula is arg[l] / arg[2]. 
The actual arguments are provided by the calculated scenario element. This 
allows a single formula to be reused by several calculated scenario 

Trading    193 



 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

 
Figure 9.20   A more general approach to calculated scenario elements. 

The formula can be a spreadsheet-style formula based on the arguments. It supports a 
range of arithmetic combinations of scenario element. 

elements. The cross-rate for GBP/DEM uses the formula with arguments 
<USD/DEM, USD/GBP>, and the GBP/JPY cross-rate uses the arguments 
<USD/JPY, USD/GBP>. Note the importance of providing the arguments as a 
list rather than the usual set for multivalued mappings. The position is essential 
for the formulas to be correctly written. 

Example The price change for jeans is calculated by a calculated scenario element that 
takes the difference between prices of jeans in this year's scenario and last year's scenario. 

We can implement the formulas in several ways. One way is to hard-code 
formulas in the implementation language. Since common formulas (such as 
cross-rates) are widely reused, hard-coding is not a disadvantage in this case. If 
the number of formulas is small and does not change too often, this is the best 
approach. Even if a new formula is added every month, this would be fairly 
easy to control even for a complex system. We can use a more sophisticated 
approach if we want to give the user the ability to add formulas. We can build 
an interpreter [1] that recognizes a simple range of formulaic expressions. This 
technique is familiar to any user who has used spreadsheets. We could provide 
an interactive formula builder, but any user who can build a formula can 
probably type a spreadsheet-like formula. The interpreter [ 1 ]  thus does not 
have to recognize all possible formulas. It is perfectly all right to have some 
formulas built by the parser and some hard-coded. The software for scenario 
elements does not care how a formula is built but is concerned with providing 
arguments to the formula that generate the calculated quote. Following the best 
principles of object-orientation, 
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interface is separated from implementation. (For further discussion on this see 
Section 6.6.) 

Modeling Principle  To make a process a feature of a type, the process must have an 
abstract interface so that the implementation can easily vary by subclassing. A purely 
hard-coded implementation is one subclass; various parameter driven approaches are 
others. 

The interaction diagram shown in Figure 9.21 reveals some useful points 
about how this behavior might work. First note how the formula is given a list of 
quotes as input, rather than a list of scenario elements. This is mildly arbitrary, 
but providing the same thing as input as is returned as output is a useful policy 
to follow. Without this, coders can quickly get confused about the type of things 
they are dealing with. This, of course, assumes that the arithmetic operations are 
all defined with a quote, which would be a natural place to deal with two-way 
price arithmetic. In this case we can set up the formulas so that they work on 
anything that supported arithmetic, not only quotes. 

 
Figure 9.21    Interaction diagram for calculated scenario elements. 

The behavior is naturally recursive in that the getQuote operation calls 
getQuote on all the arguments, potentially resulting in a long chain of calcu-
lations. This, like many recursive structures, is very elegant (but difficult to 
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show on an interaction diagram). In practice, however, it can lead to quite a 
number of redundant calculations. A caching policy for calculated quote values 
is needed to prevent unnecessary recalculation caused by repeated calls of 
getQuote to the same object. As with any cache, of course, we have to ensure 
that the cache is properly updated when a source value changes. We can use the 
arguments mapping in the reverse direction to reset all dependent scenario 
elements. 

Modeling Principle  When information can be retrieved from an information source or 
calculated from other available figures, an abstract interface with sourcing and calculation 
as subclasses should be provided. 
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Derivati ve Contracts  

To fully understand this chapter, you will need to read Sections 9.1 and 9.2 first. 
Derivative financial trades [3] are gaming an increasingly prominent role in 
trading. A derivative trade is one whose value depends on another security's 
value. The simpler forms of derivatives have been around for quite a while; for 
example, stock options were first traded on an organized exchange in 1973. 
Since then, more and more exotic variants of derivatives have appeared. They 
are valuable to investors because they reduce the risk that comes from changing 
prices. However, when they are not properly controlled, derivatives can be 
dangerous: Recently, in several famous cases, organizations have lost spectacular 
amounts of money on ill-managed derivatives. 

Modeling derivatives brings out many useful aspects of modeling because 
derivatives form a natural generalization hierarchy—one that is more inter-
esting than the usual examples of plants and animals. The purpose of this 
chapter, therefore, is to explore some of the problems of this kind of generali-
zation hierarchy using derivatives as examples. 

We begin by introducing the simple derivatives: forward contracts (10.1) 
and options (10.2). Forward contracts introduce the notion of tenor, which leads 
to a discussion of why date calculations are more complicated than adding up 
days. Options present a couple of awkward modeling areas: handling the 
trader's definitions of calls and puts, and the relationship between an option and 
the underlying contract. 

A more complex type of derivative, the combination option, can be seen as 
an aggregation of simpler options. Subtyping from options with the composite 
pattern is not always effective; this leads to the product (10.3) pattern. This 
pattern is based on the difference between the seller's and trader's views 
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of the deal and can be applied to regular trading as well. It also serves as an 
example of how generalization is often the first method we think of using but is 
not necessarily the best. 

With subtyping we must ensure that the subtype's behavior is consistent 
with that of the supertype. Using barrier options as an example, we will explore 
how subtyping and state charts interact with subtype state machines (10.4). 

If we have a portfolio of options, we can choose to have a browser that 
highlights pertinent details, depending on the kind of option. This leads to a 
situation where there are parallel application and domain hierarchies (10.5). The 
two hierarchies are awkwardly coupled. This pattern poses a problem with 
several solutions, none of which is all-powerful. 

Key Concepts    Forward Contract, Tenor, Option, Product 

10.1     Forward  Contracts  

The contracts discussed in Section 9.1 are simple and involved in immediate 
deals. Most markets involve a range of more complex deals. The simplest of 
these is the forward contract. With a normal contract, often referred to as a spot 
contract, delivery occurs as close as possible to the date on which the contract is 
traded. Delivery usually occurs in a couple of days. Forward contracts are 
agreements to do a deal some time in the future. For example, a company is due 
to receive a tanker full of oil in two months. The company will have to pay 
several million dollars for this oil. However, if the company is German, its 
normal financing is done in marks. If the dollar/mark exchange rate changes 
significantly in the next two months, the company could find itself having to pay 
more marks than it expected, which could be a significant problem. Of course, 
the company would also gain from a favorable change in exchange rates; but the 
uncertainty is not good for the company. To allay this uncertainty, the company 
could choose to buy several million dollars in a forward contract exchange rate 
deal, paying an agreed amount of marks now for delivery of dollars in two 
months. The price is offered by the bank who is carrying out the deal based on 
the market's perception of where the dollar/ mark rate is likely to go in the next 
couple of months. Such a deal is said to have a tenor of two months (as opposed 
to a tenor of spot). 

A forward contract is quite easily captured by holding separate trade and 
delivery dates for the contract, as shown in Figure 10.1. A spot deal will have 
suitably close trade and delivery dates, while a forward contract deal will have 
these dates separated by two months. A subtype is not needed to show this, 
although we can add one for clarity. 
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Figure 10.1    A contract that can support forward contracts. 

The tenor is based on the difference between trade and delivery dates. 

Example Aroma Coffee Makers agrees on January 1, 1997 to buy 5000 tons of Bra zilian 
coffee from Brazil Coffee Exports. Delivery is set for October 20, 1997, and the price is set 
at today's price. 

Example I buy an airline ticket for travel in three months, paying the price currently 
quoted for the journey. 

An important consideration when discussing forward contracts is the tenor 
of the contract. The tenor is the period between the trade date and the delivery 
date, in our example two months. Prices are generally quoted on the market 
with a particular tenor in mind, and the tenor is an important part of the 
contract's consideration. However, the tenor is not simply the duration between 
trade and delivery dates. If our two-month contract is traded on May 4, the 
delivery date will not be on July 4, simply because the 4th of July is a holiday in 
the United States. Holidays have a big impact on how these dates are calculated. 
Assuming July 4 does not fall on a weekend, a two-month contract dealt on 
May 4 will take delivery on July 5. Note that if for some reason Germany had a 
holiday on July 5, the delivery date would be shifted forward another day. The 
contract still has a tenor of two months, even though its delivery date is the 
same as a contract with a delivery date of two months and one day. Note that 
this behavior is required for spot contracts as well: a deal done on a Thursday 
will be delivered on a Monday (unless it is a holiday) even though spot is taken 
as two days. Hence Figure 10.1 includes trade date, delivery date, and tenor. 

In this kind of structure, the calculation of the delivery date is not something 
that can be done by the trade date and tenor alone. Without considering holidays, 
we can determine the delivery date by a simple calculation between date and 
tenor. However, the market holidays have to be taken into account. This means 
that the market has a date calculation routine that allows it to adjust for holidays, 
as shown in Figure 10.2. This consideration of holidays is an important feature 
in many areas, where the concept of working days becomes important. It is 
usually not possible to determine working days globally because holidays vary 
from country to country, or 
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Figure 10.2    Getting the market to calculate dates. 

Date calculations often need to be delegated to another object when working days need 
to be calculated. 

Example A company needs to make a payment to an employee within five working days 
from June 30,1997. If it is a US company, this is by July 8 (skipping over weekends and 
July 4); for a UK company it is July 7. 

Modeling Principle Date calculations are often affected by holidays, which need to be 
skipped over. Holidays vary from country to country and often by the organizations 
involved. 

10.2     Options  

For our German oil company, a forward contract is a valuable tool for reducing 
the risk of an exchange rate change that would cause them to pay more for their 
oil. But the company does run the risk of losing out should the exchange rate 
change in their favor. Financial directors essentially have to bet on the exchange 
rate movement. If they think the mark will go up, they should buy on the spot 
market; if they think it will go down, they should buy forward contracts. 
Options reduce this risk. An option gives the buyer the right to buy dollars at a 
prearranged exchange rate if the holder wishes. Thus, if the mark goes down, 
the oil company can exercise its option and buy the dollars at the prearranged 
price; if the dollar goes up they can ignore their option (let it expire) and buy on 
the spot market. The bank charges a premium to the oil company to sell them 
the option, so the bank now manages the risk. Since the bank handles many 
such deals, they can offset the risks of various deals against each other. Figures 
10.3 and 10.4 describe the behavior of an option. 
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possibly with even greater granularity. Individual sites may also have local 
holiday conventions that will affect working day calculations. 
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option in the 
money 

Figure 10.3    Event diagram for the process of using an option. 

An option can only be exercised after the start of the expiration date and will only be 
exercised if it is "in the money," that is, if exercising the option is a better deal than a 
spot trade at the current price. 

 
Figure 10.4    Harel state chart to illustrate how an option behaves. 

The option can only be exercised on its expiration date (a "European" option). 

Many features of the option are similar to that of a normal contract. Like a 
normal contract, options have counterparties and trade dates. Other features of 
the option include the expiration date, the amount of premium, and date the 
premium is delivered. 

Thus we can consider an option to be a subtype of a contract, as shown in 
Figure 10.5. A key feature of the option structure is the polymorphic operation 
value (Scenario). The value of a spot contract is easy to understand because it 
is simply the result of applying the spot exchange rate in the provided scenario 
to the amount of the contract. Options are rather more complex to value, to put 
it mildly. The most common technique is Black-Scholes analysis [3]. An 
explanation of this is beyond the scope of this book, except to point out that as 
far as the caller of this operation is concerned, it is 
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a single operation. The complexities of the mathematics can safely be hidden 
within the operation. 

 
Figure 10.5   Structure of an option. 

Call and put are terms derived from the longs and shorts. 

10.2.1     Longs,  Shorts, Calls, and Puts:  
Representing a Tricky Vocabulary  

The question of longs and shorts does need discussion. In Section 9.1 we 
explained that a contract can be long (buy) or short (sell). For options, however, 
we find that there are four possible choices. We can sell an option to sell money, 
sell an option to buy money, buy an option to sell money, or buy an option to 
buy money. The long/short choice still exists on the contract, but it is 
supplemented by a further long/short choice on the option. The trader's 
vocabulary includes the terms call and put. A call is an option to buy (that is, a 
long contract), while a put is an option to sell (a short contract). Naturally we 
can buy or sell a call, or buy or sell a put. Representing this language is 
somewhat tricky, as well as confusing. 
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If I sell an option to buy yen, then the counterparty can buy yen from me at 
the expiration date. The difference between this and a forward is that the 
counterparty can choose not to. If I buy an option to sell yen, then the position 
is the same, but the control over exercising the option is now mine. Either way, 
I am (potentially) short on yen, hence the contract is short. In the former the 
option is also short, while in the latter the option is long. In the first case traders 
would say they are selling (short) a call, and in the second they would say they 
are buying (long) a put. 

One way of looking at this would be to say that we could replace the long/ 
short description of a contract by call/put. But this does not really work because 
we do not use the terms call and put on contracts that are not options. 

Another possibility is to use the terms long and short for options only to 
indicate the state of the option rather than the contract. Thus the first example 
above would be a short call and the second a long put. This might make sense to 
a trader but would be apt to confuse any software. When evaluating risk, the 
position of the amount of the contract is important, and in the above examples 
both are short. Hence we need to be able to ask the direction of the contract 
(which defines the position), the direction of the option, and the call/put. So the 
two examples are (short contract, short option, call) and (short contract, long 
option, put). Clearly one of these can be derived from the other two. The 
diagram indicates that call/put is derived. The derivation is a reminder that one 
is derived rather than any direction to an implementor of what is actually stored 
or calculated in the implementation. 

Representing language like this is always a bit of a battle, particularly when 
it seems unnecessarily illogical. The important thing is to represent the 
fundamentals in a logical manner. These fundamentals may be part of the 
domain expert's terminology or invented during the modeling process (but if 
they are invented, the domain expert must be comfortable with them). The rest 
of the terminology can then be derived from these fundamentals. 

Modeling Principle  Derived markers should be used to define terminology that is 
derived from other constructs on the model. 

Modeling Principle  Marking a feature as derived is a constraint on the interface. It 
does not affect the underlying data structures. 

Example On June 1, 1997, I am given an option to buy 200 shares of Aroma Coffee 
Makers on January 1,1999 at a price of $5 per share. This is an option with a trade date of 
June 1, 1997, an instrument of Aroma Coffee Makers stock, an amount of 200, delivery 
and expiration dates of January 1,1999, a premium of $0, and a price of $5.1 will gain 
shares, so the contract is long (with respect to me), and the option is also long (since I hold 
it); it is thus a call. 

Example When I make a reservation for a flight, I am being given a call option on the 
ticket. The expiration date of the option is the date the reservation must be ticketed. 



 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

204    Options 

Another concern is the interaction between delivery date and expiration date. 
For an option, the delivery date can be computed if the expiration date is known 
(delivery date = expiration date + spot). The reverse is not true, however (due to 
the interference of holidays). This means that, for options, delivery date is a 
computed mapping. The important point here is that the interface does not 
change: There is still an accessor for delivery date; however, the information is 
stored. There are two alternatives to describe this situation: We can note (typically 
in the glossary) that for options the delivery date attribute is overridden and 
calculated from the expiration date according to the formula. Another option is 
to describe the formula as a constraint on the option type. Both are perfectly 
reasonable and the choice is a matter of taste. It is entirely up to the implementor 
what code and data structure to use. 

10.2.2    To Subtype or Not to Subtype  

The structure shown in Figure 10.5 is not the only way to handle options; 
another choice is shown in Figure 10.6. The difference between the two structures 
is how the optionality is added to the contract. I n Figure 10.5 we add it by 
subtyping. In this scheme an option is a kind of contract with additional 
properties and some variant behavior. In Figure 10.6 we may say that an option 
has a base contract often referred to by traders as the underlying of the option. 
There is at least some notion of containment here, especially in the fact that we 
would not be likely to ask the contract to value itself if it was an underlying to 
an option. Similarly the delivery date would be dependent on the option's 
expiration date. 

The choice between the two structures is not easy. Both have elegant 
qualities. The Figure 10.6 model separates the notion of option and contract 
with a definite notion of underlying. One disadvantage of this scheme is that a 
single contract is represented by two objects. It is easier to alter Figure 10.6 to 
handle compound options (options where the underlying is an option). With so 
little choice between them, we can easily end up getting bogged down. 
Prototyping can sometimes clarify the situation but not always. When 
alternatives like this present themselves, it's a good idea to use the simpler 
approach and then change to the more complicated one later if necessary. With 
this case, however, it is arguable which is the simpler. When it is this close, I 
trust the domain experts' instincts by asking them which feels best. We will 
continue to use Figure 10.5 as the basis for further discussion. 

Modeling Principle When faced with alternative approaches, choose the simplest first 
and change to a more complex one as needed. 

Modeling Principle  When there is little to choose between modeling alternatives, 
follow the instincts of the domain expert. 
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Figure 10.6   The separate object approach to options and contracts. 

Both this and Figure 10.5 are reasonable alternatives, although this chapter builds on 
Figure 10.5. 

10.3     Product  

Derivative trades have long been considered somewhat risky, mainly because of 
the complex mathematics required to evaluate risk. The Black-Scholes equation 
[3], which serves as the building block for much of the evaluation process, is a 
second-order partial differential equation. Even with an engineering background, 
these animals still give me the willies. 

The most spectacular example of the pitfalls of derivatives trading is the 
collapse of Britain's venerable Barings Bank. According to current reports, the 
primary cause of the collapse was dealing in a particular kind of derivative 
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called a straddle—an example of a combination option. Combination options 
can be seen as a composite of other options. It seems appropriate to discuss this 
section with straddles as an example. 

The concept of a straddle is in fact very simple. You have a holding worth 
some $70 million, depending on prices, and you are concerned about any large 
change in its value over the next three months. Either going up or down will 
cause a problem. To avoid the problem, you can buy a call and a put, both with 
a price of $70 million and an expiration in three months. Let's assume the 
premium on each of these is $2.5 million. If the price goes up you exercise the 
call and you gain the value of the holding at the new price, less $70 million and 
the $5 million total premium. Thus if the value of the holding rises above $75 
million you are happy. Similarly if the value falls below $65 million you are 
happy. The worst thing that can happen is that the price stays steady, in which 
case you lose the $5 million premium. The attractiveness of a straddle comes 
from a fixed risk that covers an otherwise very wide range of movement. 
Naturally a very volatile instrument can result in a higher premium for the 
straddle, but if you are trying to reduce your risk in a volatile environment, this 
can be a very useful product. 

If you are the seller, of course, you are faced with a more tricky prospect: 
You can lose an unlimited amount of money if the price moves a large amount. 
This is indeed what caused a certain bank to lose its barings. Again, the bank 
should have used other trades to hedge this risk. 

In modeling this straddle we should immediately note that it is composed of 
two options that are constrained by their prices, dates, direction, and 
instruments. Figure 10.7 shows a straddle modeled as a subtype of an option. As 
a combination option it can have components, with the constraint on the 
straddle defining the precise characteristics. Other subtypes of combinations 
would be used for other common cases: spreads, strangles, and the like. 

 
Figure 10.7     Modeling  straddles as subtypes of options. 

A straddle is a combination of a call and a put.  
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Use of the subtype confirms that a straddle is a kind of option and has the 

same behavior as its supertype. This raises a question, however. Some behavior 
can be safely inherited, such as the ability to value itself and the trade date. We 
can think of the premium as the sum of premiums of the component options. 
But what about the price? For a straddle, the components are all priced the 
same, so we could consider it to be the price of the straddle. Another common 
combination, however, is the spread. As previously mentioned, a spread is two 
options, but both options are the same direction (that is, two calls or two puts) 
at different prices. What is the price in this case? Going back to the straddle, is 
it a call or a put? 

Figure 10.8 shows one way of dealing with this problem. Those attributes 
that can make sense at both levels can be put on an option, while the awkward 
attributes are placed on a conventional option. This helps to some extent but 
begins to fail as we recall that price was defined on the contract not the option, 
and that there are combinations (such as covered calls and protected puts) that 
combine options with regular contracts. Again, the generalization could be 
manipulated, but one wonders what could safely be put on the supertype. 

 
Figure 10.8    Separating  the subtypes into combination and conventional.  

These concerns are enough to raise a serious question about using com-
position and subtyping together. The main problem is that, when managing risk, 
traders do not actually concern themselves with combinations. A combination is 
nothing more than the component contracts. We consider its risk the same as if 
the contracts were sold to separate counterparties in the same portfolio. It is the 
customer and the salesperson who form the combination 
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and think of the contracts as a combination. Once the combination is dealt it 
behaves no differently than any other contract. 

This leads us to the model shown in Figure 10.9. Here the salesperson's view 
is explicitly separated from that of the risk manager. The risk manager sees 
contracts, which are assembled into a product by a salesperson. The straddle is 
now a particular kind of product. This allows us to reconsider the behavior of the 
contract and move the sales-related behavior to the product while leaving the 
risk side of things to the contract. This includes the parties to the product who 
are generally irrelevant to risk management (unless exposure to a particular party 
is being considered). Since contracts must have a product (due to the mandatory 
relationship), a contract can still find its parties by collaborating with its product 
(but see the discussion in Section 10.3.1). 

 
Figure 10.9    Introducing the product. 

The product reflects the perspective of sales. In risk analysis the way in which contracts 
are combined as products is ignored. 

In considering whether to subtype, we need to ask two questions. The first is 
whether all the features of the supertype are really inherited by the subtype. An 
immediate subtyping, such as is shown in Figure 10.7, should be reviewed 
against all the features of the supertype, including features of supertypes of the 
supertype. It is easy to forget this and be led down a dangerous path. This 
analysis will lead to refactoring the generalization hierarchy, and this refactor-ing 
may not be trivial. The second question we need to ask is, does the domain expert 
really consider the subtyping to hold? In our example the domain expert resisted 
subtyping, preferring the Figure 10.9 model. Later on, the Figure 10.8 style did 
reappear but has not, so far, seemed compelling enough to change the model (and 
the framework that implements it). 

Modeling Principle  Subtyping should be used only when all the features of the 
supertype are appropriate to the supertype and it makes sense conceptually to say that 
every instance of the subtype is an instance of the supertype. 
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This leaves an interesting question as to whether it is worth putting some 

explicit generalization structure on the product to represent the various kinds of 
combinations, as shown in Figure 10.10. Clearly it is not for risk calculation 
purposes. It is useful, however, for creating new products of this form. Indeed the 
deepest examples of this kind of generalization are likely to lie at the application 
and presentation layers (see Section 12.3) where specific presentations are 
required for pricing and deal capture of combinations. In such situations a shared 
definition in the domain model is very valuable, even if the definition is currently 
used only in sales work. More sophisticated analysis of trades may require an 
understanding of how these combinations are defined. 

  

Figure 10.10    The common combination products.  

This is a good example of a hierarchy based on constraints. The contracts linked to a 
product are called the legs of the product.  

 

Constraint: 
strike prices of legs 
are the same 
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Example A client has a large holding in Aroma Coffee Makers stock and is concerned 
about the movement in stock price over the next 6 months before he can sell it. He might 
buy a straddle around the current price of $5. To the trader this product is broken down 
into two separate options. 

Examp le I wish to buy 7000 shares of Aroma Coffee Makers. The trader is not able to find 
a single other party who wishes to sell the exact amount. He can find one party to sell 
2000 shares and another to sell 5000 shares. I have one product with the trader to buy 7000 
shares. The product consists of two contracts for each trade. 

Modeling Principle  The product/contract split should be used whenever the customer 
sees a single deal that is broken into several deals by the trader. 

The key difference between a product and a contract is that the product 
represents the customer's intention while the contract refers to what actually gets 
traded between the counter and primary parties. 

10.3.1     Should  a Product Always Be There?  

One of the consequences of the model in Figure 10.9 is that noncombinations 
are represented by a single contract and a single product. The product is adding 
little to the picture (other than the separation of responsibilities between sales 
and risk management). 

Another possibility is not to make the link to product mandatory. In such a 
scheme only a combination has a product. Simpler contracts have no product 
link. A contract has links to a party, but they are derived when a product is 
present. The disadvantage of this scheme is that it handles responsibilities 
inconsistently. A contract is responsible for handling the relationships with a 
party, except when it delegates the responsibilities to a product. This 
inconsistency can lead to a great deal of confusion. For that reason I prefer to 
use the model in Figure 10.9. 

Traditional data modelers would come to the same conclusion from a dif-
ferent route. Normalization leads them not to wish to duplicate the links to party 
and thus choose a model like Figure 10.9 (although it might get altered for 
performance reasons in a physical model). The object-oriented argument is 
different because it focuses on having clear responsibilities, yet both arguments 
share an underlying theme: Conceptual simplicity leads us to having the 
minimum of base1 associations. In OO development this principle leads us to 
clearly separated responsibilities, and in relational data modeling it leads us to 
14th normal form (or whatever the number is these days). 

Modeling Principle  Do not duplicate base associations that have the same meanings. 
Following this principle leads to types with well-separated responsibilities. 

We can have as many derived associations as we like. 
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Modeling Principle Be consistent in the allocation of responsibilities. Be wary of a type 
that sometimes is responsible for something and sometimes delegates that responsibility. 
(This behavior may be correct but it should always be questioned.) 

10.4     Subtype  State Machines  

Although many common derivatives can be represented as combinations of 
options, this is not uniformly the case. A barrier option can either appear or 
disappear when the price of the instrument, as quoted on some agreed market 
pricing (such as a Reuters page), reaches a particular limit. Thus an option could 
be bought to buy (call) 10 million yen at a price of 90 JPY/USD, which would 
knock-in at 85 JPY/USD. This option behaves differently than a standard one. 
Effectively the option cannot be exercised unless the exchange rate falls below 
85 JPY/USD before the expiration date. If it does fall below this barrier, then the 
option is knocked in and will remain exercisable whatever happens to the price 
between that date and the expiration. If the price never falls below the barrier 
level, then the purchaser can never exercise. (Barriers can also be knock-outs, in 
which case they can only be exercised if the exchange rate does not pass the 
barrier.) 

This different behavior can be expressed by a modification of the state chart 
for a barrier, effectively replacing it with the one shown in Figure 10.11. The 
event diagram for using it is shown in Figure 10.12. 

The only structural change is the addition of the barrier level to the option, 
which does work well as a subtype of option since it provides a change in 
behavior and adds a new feature (the barrier level). 

10.4.1     Ensuring  Conformance of State Charts  

The state chart presents an interesting issue in its own right. We can replace the 
state chart shown in Figure 10.4 with that of Figure 10.11, providing the 
different behavior of the barrier subtype. However, this raises a question: Are we 
allowed to do that? Most methods stress the importance of being able to 
substitute a subtype for a supertype; this is reflected in object diagrams by only 
allowing us to add associations, not remove them. Many textbooks do not 
mention what rules govern state diagrams with subtypes. Shlaer and Mellor [6] 
indicate that state diagrams can only be placed at either a super-type or a subtype. 
However, if all subtypes share a common portion, that may be placed at the 
supertype to ease maintainability (splicing). Rum-baugh [5] indicates that 
subtypes can (usually) only add orthogonal state diagrams. 

The best discussion of how subtyping and states work is given by Cook and 
Daniels [1], who devote a whole chapter to subtypes and state diagrams. They 
stress the principles of design by contract [4], which can be summarized 
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Figure 10.1 1     Harel state chart for a knock -in call.  

If the instrument's price never passes th e barrier, the option cannot be exercised. After 
the price has passed the barrier once, it does not matter what other changes  
occur.  

 
Figure 10.12     Event  diagram of the process of using a knock -in option.  
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by saying that a supertype's state chart can be extended in two ways: either by 
adding an orthogonal state chart or by taking a supertype's state and splitting 
into substates. Supertype transitions can be modified only by redirecting them 
to substates of their supertype's state. 

Applying these guidelines to the option state models, we see a number of 
problems. The first lies in the treatment of the start of expiration date event. In 
Figure 10.4 (the option diagram), this causes a transition from purchased to 
exercisable, but in Figure 10.11 (the barrier diagram), the transition comes from 
the new knocked-in state. The end of expiration date event has a similar 
problem: Figure 10.4 shows it transitioning from the exercisable state only, 
while Figure 10.11 has it transitioning from any state. 

The first question comes from considering what an object should do if it 
receives an event that is not in a state in which we can do anything with it. The 
object can either silently ignore the event or raise an error. Some general policy 
should be stated to interpret how to deal with this; for example, Cook and 
Daniels advise [l] explicitly listing events in which an object is interested. Any 
events that normally would be silently ignored if there were no defined 
transition are listed as allowable events. This resolves what would happen 
should the Figure 10.11 (barrier) diagram receive a start of expiration date event 
while in the purchased start. If start of expiration date is an allowed event, it will 
just ignore it. 

However, this is still not entirely consistent with the supertype. Figure 
10.11 shows that when the start of expiration date event is received, a purchased 
option changes to exercisable. Looking at this in contract terms, the change to 
purchased is part of the postcondition of start of expiration date. We cannot 
weaken this postcondition in the subtype, only strengthen it. To have a knock-in 
call as a subtype of an option, we must replace both state charts with those 
shown in Figures 10.13 and 10.14. 

 
Figure 10.13    Modified state chart for option to allow Cook and Daniels 
conformance with knock-in calls. 
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Figure 10.14     Modified  state chart for knock -in calls to support conformance 
with Figure 10.13.  

To provide conformance, these diagrams reflect two changes. The first is to 
generalize purchased and exercisable into an active state. We can then redirect 
the end of expiration date event from here. The second modification is to add 
canBeExercisable as a guard on the start of expiration date event. This 
operation is a way of saying that the start of expiration date does not always 
lead to the exercisable state. For regular options canBeExercisable is always 
true. Subtypes of an option can override it for other behavior. 

Figure 10.14 shows how this override occurs for knock-in barriers. We 
introduce substates of purchased to indicate whether the barrier has been 
knocked-in or not. We then split the source of the start of expiration date 
transition and weaken the guard to show the unguarded transition. Since we 
have allowed start of expiration date on the supertype, the barrier can ignore 
start of expiration date when unknocked. 

214   Subtype State Machines 
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10.4.2    The Problems with Using Conformance  

Having gone through this exercise of gaining conformance, we should stop and 
ask ourselves a few questions about the process. In my judgment Figures 10.4 
and 10.11 represent simpler and clearer expressions of behavior than Figures 
10.13 and 10.14. Thus, although we have gained conformance (at least 
according to the Cook and Daniels definition), we have lost comprehen-sibility. 
In addition, modeling the knock-in call caused us to change the supertype 
diagram. It was perfectly good as it was—we only changed it because we needed 
a different state chart that forced us to construct a conforming subtype state chart. 
This implies that a new subtype can force us to change supertype state charts, 
unless we are clever enough to produce a remarkably flexible supertype state 
chart. Unfortunately I don't think I'm that clever, so subtyping is going to be 
fraught with difficulties. 

One solution to these difficulties is to recast the generalization hierarchy to 
avoid needing to worry about conformance. We assumed that a knocked-in call 
would be a subtype of an option, each with their own state chart, as shown in 
Figure 10.15. Another approach is to treat an option as an abstract type without 
its own state chart and create a conventional option subtype to hold the Figure 
10.4 state chart, as shown in Figure 10.16. This avoids having to worry about the 
conforming state charts, allows the more natural state charts, but does introduce 
a separate type. It is also more consistent with the guidelines of Rumbaugh and 
Shlaer and Mellor, who do not discuss conformance between state models. 

 
Figure 10.15     Knocked -in call as a subtype of an option.  

This is the natural approach, but how are the state models related?  

Design by contract says that subtypes must satisfy their supertypes' post-
conditions. However, that does not necessarily imply that the postcondition on 
start of expiration date should include the transition to the exercisable state. If 
we choose not to include it as part of the postcondition, then the 
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Figure 10.16   Creating a conventional option type. 

This can make it easier to cope with the state models, but it is not as natural. 

original diagram is acceptable. The important thing is that start of expiration 
date should be allowed in all cases; whether it causes a transition or not is 
undefined. 

This is, in fact, an example of a wider issue in using design by contract. 
Often people say that the postconditions of an operation should define all 
changes to the observable state of an object. This principle is often advocated by 
the formal methods community but is not true for design by contract. The 
postcondition merely specifies the state that must hold at the end of the operation. 
We can always indicate that nothing must change other than what is specified, 
but that is not assumed in the approach. 

Indeed subtyping makes such a restrictive postcondition dangerous. The 
whole point of subtyping is that the supertype cannot predict all the extensions 
that subtypes might make. Using an overly restrictive postcondition cripples 
the flexibility offered by subtyping. Postconditions define aspects of the 
object's observable state that must be true. Thus any other changes can occur 
providing they don't violate the explicit clauses of the postcondition. 

Modeling Principle The effect of generalization on state charts is not well understood. 
It is important to ensure that all events on a supertype can be handled by the subtype. 
Any state chart that can be subtyped must allow unknown events. 

Modeling Principle  A postcondition defines a condition that must be true of the 
object after the operation. Other changes that are not mentioned by the postcondition 
can take place. 

10.5     Parallel  Application and Domain Hierarchies  

Faced with a portfolio of various contracts, a trader might like to look at a list of 
the contracts together with important information about them. Such a list would 
show each contract on one line. The information shown on the line would vary 
depending on the kind of contract. The columns might be long/ short, trade date, 
strike price, call/put (options only), expiration date (option only), barrier level 
(barrier only), knock-in or knock-out (barrier only). 

216    Parallel Application and Domain Hierarchies  
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In this scheme some columns in the table are only relevant for certain 

subtypes of the option. This adds a certain amount of complexity to the problem. 
What we cannot do is assume that some browser line class asks each contract for 
each relevant attribute. Such an approach would not work because the browser 
line class cannot ask a nonoption for its expiration date, since by definition a 
nonoption does not have one. 

A first stage in laying out a design is to use the layered structure discussed in 
Chapter 12. In using this the portfolio, browser and browser line types are 
application facades operating as shown in Figure 10.17. The portfolio browser's 
subject is a portfolio, the browser line's subject is a contract. Neither portfolio 
nor contract have any visibility to the portfolio browser or browser line, since 
the latter types lie within the application tier and domain types have no visibility 
to application types (see Figure 12.6). 

 
Figure 10.17     A portfolio browser and its relationship to the domain model. A 

portfolio browser and browser line are application facades.  

This structure allows a browser line to have attributes for all the columns 
required by the interface. As far as a presentation programmer is concerned, 
each line has these attributes, which may be nil. If an attribute is nil, then that 
implies a blank space in the browser's table. The problem lies in the link 
between the browser line and the domain model. 

The browser line knows it is dealing with a collection of contracts. Unfor-
tunately it needs to ask for information that is only defined on certain subtypes 
of the contract. If a browser line asks a nonoption for its expiration date, it will 
get an error. Several strategies can be used to deal with this interaction: type 
checking in the application facade, giving the supertype an encompassing 
interface, using a run-time attribute, making the application facade visible to the 
domain model, and using exception handling. 
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10.5.1     Type Checking in the Application Facade  

In this strategy the browser line is responsible for dealing with the problem. 
Before each request to the contract, a type check is made on the contract to 
ensure that the request can be issued safely, as shown in Figure 10.18. In C++ 
this takes the form of a type check, followed by a downcast, followed by the 
request. 

 
Figure 10.18    Interactions for type checking in the browser line. 

The type is checked before an operation is called that is only defined on the subtype. 

This strategy has a number of disadvantages. The browser class, in the face of 
many subtypes of the contract, becomes quite complex. Furthermore any changes 
in the contract hierarchy causes changes in the browser. Of course, if the change 
is a new subtype that introduces a new column to the browser, then such a change 
would be required in any case, driven by a presentation change. 

The degree of type checking that this scheme implies can be reduced by a 
couple of approaches. We can use a subclass of browser line for each subtype of 
contract. We can use a type check to instantiate the correct subclass of browser 
line to do the job. Another approach is to use the visitor pattern [2]. Although 
these approaches are preferable if the degree of type checking is excessive, they 
still require the browser line (and its subclasses) to know about the contract 
hierarchy. 

10.5.2    Giving  the Supertype an Encompassing Interface  

The essential problem is that it is an error to ask a contract for its expiration 
date. One solution is to add all of the subtype operations to contract. Contract 
would naturally reply with a nil for all of these, but the relevant subtypes could 
override that operation to provide their value. 
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This approach has many problems. It becomes impossible to tell what is a 
truly legal operation on a contract and what is really an error. Compile-time 
type checking is defeated because it cannot tell which is which. Each time a 
subtype is introduced, contract's interface must be altered. Thus I'm not a fan of 
this approach. 

10.5.3    Using  a Run-Time Attribute  

Run-time attributes provide a very flexible system of adding attributes to types 
without changing the conceptual model. When implemented they allow attribute 
changes without recompilation during the execution of the system. 

The basic model for contracts is shown in Figure 10.19, or preferably 
Figure 10.20, which uses a keyed mapping (see Section 15.2). All contracts 
have a number of terms, and each receives a term type. In this example each 
attribute of the contract and its subtypes (strike price, is call, barrier level, and 
so on) would be term types. If a contract is asked for a term, it replies with the 
value object if there is a term. In this way it is not an error to ask for a 
nonoption's expiration date. 

 
Figure 10.19   A run time attribute for contract. 

This way asking a nonoption for a property only defined on option would not cause 
an error. 

 
Figure 10.20    Figure 10.19 using a keyed mapping. 
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Of course, this model allows a nonoption to be given an expiration date by 
accident. This can be prevented in a couple of ways. The first is to use a 
knowledge level (see Section 2.5), as shown in Figure 10.21. The other is to 
treat the term type as a derived interface. Both the model attributes (those on 
contract and its subtypes) and the term type interface are provided. Updates are 
only provided through the model attributes. 

 
Figure 10.21     Using  a knowledge level to control the placing of terms on contracts.  

This would stop terms from being placed incorrectly on contr acts but can only be 
checked at run -time.  

Using run-time attributes does provide flexibility but it comes with significant 
disadvantages. First, using term types makes the interface of a contract and its 
subtypes harder to understand. As well as looking at the operations defined on 
the type, the user of a contract must also look at the instances of the term type, 
and indeed which instances are valid. Second, attribute types cannot be type 
checked at compile time, removing a very important advantage of compile-time 
checking. This does not matter for the browser line, since the whole point is to 
relax any compile-time checking, but it does matter a great deal for other parts of 
the system. A third disadvantage is that the basic language mechanisms are 
being subverted. The compiler is not aware of what is going on, and language 
features, such as polymorphism, must 
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be hand-coded by the programmer. Also, run-time attributes do not perform as 
well as model attributes. 

Many of these disadvantages can be mitigated by providing both interfaces. 
Those parts of the software that know about attributes at compile time can use 
the model attributes, and the browser can use the run-time attributes. 

10.5.4    Making  the Application Facade Visibl e to 
the Domain Model  

In this approach the responsibility for loading a browser line is given to the 
contract that browser line is summarizing, as shown in Figure 10.22. Since 
control is now in the contract, or its subtype, it can load the browser line with 
the correct values for that subtype. The browser line supports all necessary 
information for the application, and the contract or subtype knows what is 
applicable for that subtype. 

 
Figure 10.22     Interactions  for contracts loading browser lines.  

The browser line must be visible to the contract, which violates the usual visibility rules 
between domain and application tiers.  

The advantages of this approach include the fact that the interaction is much 
simpler because no type checking is required, and a more complex interface is 
not needed for the contract. In addition, adding a new contract does not require 
the browser line to change, unless there is a corresponding change in the 
presentation. All that is needed is a new overriding operation to load the browser 
line. 
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The biggest disadvantage lies in the breaking of the visibility rules between 
application and domain tiers that are discussed in Chapter 12. This can be 
avoided by placing the browser line in its own package, as shown in Figure 10.23. 
In this way the dependency from the domain model is limited to only the browser 
line type. Visibilities may be further reduced by splitting the browser line type 
into two. The presentation for the browser and the contracts use very different 
interfaces to the browser line. The browser line can be given its own browser line 
facade in the browser facade package. This facade has a simple interaction with 
the browser line. In this case the visibility from the browser presentation to the 
browser line package can be removed. 

 
Figure 10.23    Visibilities  for a browser line package (based on Figure 12.6).  

The browser line package is a special case between the application and domain tiers.  

Another disadvantage arises from the possibility of several browser appli-
cations that may have slightly different needs. Each application would need its 
own browser line, which would all need to be known by contract. The splitting 
of browser line can help here. One browser line facade would be created for 
each application, all of which would use the single browser line package. 
Adding new kinds of browsers thus would not alter the contract's responsibilities 
unless a new feature were added to the browser line. 

The fact remains that any new feature required of the browser line requires 
modification of the entire contract and all its subtypes. This is the fundamental 
trade-off between putting control in the browser line as opposed to putting 
control in the contract. If new contracts are added more frequently than features 
are added to the browser line, then we should put control in the contract. 
However, the change to the normal pattern of visibility is not to be taken lightly. 
Unless new contract subtypes occur significantly more often than changes in the 
browser line, I would not put control in the contract because many new subtypes 
in the contract would themselves imply new features to the browser line. 
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10.5.5    Using  Exception Handling  

Of course all of the above ideas are based on the idea that it is a bad thing to ask 
a nonbarrier for its barrier level. With the right environment, however, this is not 
such a problem. If making a request of an object results in a run-time error and 
that error is made manifest through an exception, then the browser line can 
simply catch the exception and treat it as a nil. The browser line should check 
that the exception is actually a result of the receiver not understanding the request 
and not some other, more worrying error. I t also assumes that it is possible to 
send a message to an object for which the receiver does not have an interface. 
This is where a lack of type safety becomes an advantage, coupled with the 
exception handling features now present in the newer implementations. Smalltalk 
can always be used in this way, since it is untyped. Type safety can be bypassed 
in C++ by using a downcast. 
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To fully understand this chapter, you will need to read Chapters 9 and 12 first. 
Developing large information systems presents particular challenges. The 
fundamental way to deal with a large-scale system is to decompose it into smaller 
systems. This requires some form of architectural modeling, as discussed in 
Section A.5. 

The first organizing tool of any information system is the layered architecture 
discussed in Chapter 12. This architecture identifies many of the package 
divisions of the system. In a larger system, however, the domain model becomes 
too large for a single package. This chapter looks at how we can split a large 
domain model. The concepts of package and visibility (see Section A.5) are again 
deployed as the basic tool for the division. The trading concepts of Chapter 9 
provide the examples. 

The first pattern looks at how to organize the models of scenarios and 
portfolios. The main problem is that of multiple access levels to a package (11.1). 
A risk management application uses scenarios to get the information needed to 
value portfolios. Another application needs to set up and manage scenarios. Both 
applications need access to the scenario types, but they need very different levels 
of access. Different clients needing different interfaces is a common problem. 
Solutions include allowing a package to have multiple protocols and using 
different packages. 

The relationships between contracts and parties raise the problem of mutual 
visibility (11.2). Three solutions suggest themselves: a one-way visibility 
between contract and party, putting them both in the same package, or putting 
them in separate mutually visible packages. All three solutions have significant 
disadvantages. 
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The final pattern explores subtyping packages (11.3) by considering how to 
position the derivatives discussed in Chapter 10 onto the package structure. This 
pattern illustrates that subtypes can be placed in a package separate from their 
supertypes with visibility from the subtype to the supertype. 

11.1     Multiple Access Levels to a Package  

Portfolios are constructed from contracts using market indicators as descriptions. 
Scenarios are used independently to develop prices for market indicators. 
Portfolios and contracts need to use scenarios to value themselves, but scenarios 
do not need any knowledge of portfolios and contracts, as shown in Figure 11.1. 

 
Figure 11.1    An initial picture of package visibilities. 

To carry out valuations, a portfolio only requires the price of a market 
indicator. The portfolio package does not need to know how the scenario is set up. 
Thus, although the scenario element type needs to be visible to the portfolio so 
the getQuote message can be sent, there is no need to see the subtypes with the 
definition of how the quote is formed. Indeed we can go further and say that even 
the scenario element is not useful to the portfolio. A better approach would be to 
present the interface to the portfolio as shown in Figure 11.2. This interface has a 
keyed mapping (see Section 15.2) on the scenario, which takes a market indicator 
as an argument. Since no other properties of the scenario element are important, 
the interface for the portfolio package is simple. 
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Figure 11.2   An interface for the scenario package that hides scenario elements. 

This is the best interface for the portfolio package, which does not need to know about 
scenario elements. 

This approach requires two different types of scenario package: one for the 
interface to portfolio and another for setting up scenarios. Thus something more 
than a simple assignment of types to packages is needed. The immediate and 
obvious approach is to divide the types in the scenario package into public and 
private types in the package. Public types are those visible to other packages that 
have a visibility into the scenario package (such as portfolio). Private types are only 
visible to types within the scenario package. In this case the scenario is a public type 
and the scenario element is a private type. This logic can be extended to operations. 
Public operations can be public within a package and public to other packages. 
Although this represents a fine degree of control, it can be too difficult to maintain. 
The art of good visibility design is to choose a degree of visibility that is fine 
enough to be useful but not so fine as to make the portfolio a nightmare to manage. 
(Things that are difficult to manage tend not to be managed, which leads to 
out-of-date, useless models.) 

One problem with this approach is that users need software to set up and 
manipulate scenarios. This requires components at the application logic and 
presentation layers, as discussed in Chapter 12. Thus the model must include a 
scenario management application package that is separate from the scenario 
package. Figure 11.3 shows the addition of a scenario management application 
package and a risk management application package. This approach would not 
work with the public/private approach described above, however, because the 
scenario management application requires the private types of the scenario 
package. Although both portfolio and scenario management require visibility of 
the scenario package, they need different types of visibility. 

One solution to this problem, proposed by Wirfs-Brock [1], allows a package 
to have more than one protocol.1 In our original pattern, we set up a protocol as a 
set of operations; however, it is quite reasonable to make it merely a set of types to 
allow simpler control of visibility. Using separate protocols results in a diagram 
such as Figure 11.4, in which the scenario has two protocols: The one used by the 
portfolio permits only the small protocol, while the scenario management 
application uses the deeper protocol. The protocols are shown by semicircular 
ports on the package box. (I'm only showing ports on packages with more than 
one protocol.) 

Wirfs-Brock uses the term contract which is confusing in this example, so I use protocol. 
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Figure 11.3    Adding application packages to Figure 11.1.  

The problem with this is that the scenario management application needs a much larger 
interface to the scenario package than the portfolio package needs.  

 
Figure 11.4   The packages of Fi gure 11.3 with protocols. 

Each protocol implies a separate interface.  

Using separate protocols is one way to deal with the multiple visibility issue. 
Another is to introduce an extra package, as shown in Figure 11.5. The scenario 
element and its subtypes are moved from the scenario package into the scenario 
structure package. The scenario package contains only the scenario type and its 
simple associations. The portfolio package has visibility 
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Figure 11.5    Using an extra package for the scenario structure.  

only into the scenario package, while the scenario management application sees 
both the scenario and the scenario structure package. We can define new 
scenarios with the extra visibility. 

A question that might occur to the attentive reader is whether the scenario 
needs to have visibility to the scenario structure. Responding to a request for a 
quote requires use of the internal structure. An intriguing aspect of inheritance 
and polymorphism manifests itself in these visibilities. The scenario package 
can contain a scenario class that defines the interface required by all packages 
with visibility to the scenario. However, this scenario class need not implement 
all of the interface (and thus is abstract). We can place a second scenario class in 
the scenario structure package that implements the interface. This second 
scenario class has full visibility to the contents of the scenario structure. Any 
scenario object used by another package is an instance of the scenario structure's 
scenario class, but those clients of the class do not realize it. All they see is an 
object that conforms to the interface of the scenario package's scenario class. It 
may be worth providing a notation to show where this kind of subclassing occurs 
across package boundaries, although I don't use one. 

So when an object in the portfolio package sends a message to a scenario, it is 
actually sending a message to an instance of the concrete scenario class that lies 
in the scenario management package. However, the caller thinks it is calling an 
instance of the abstract scenario class that lies in the scenario 
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package. An object can send a message to an object in a package it cannot see, 
providing the called object is a subclass of a class in a package the calling object 
can see. 

A consequence of this is that visibilities do not reflect compilation or load 
dependencies. Although the scenario structure is not visible to the scenario, the 
scenario needs the scenario structure to function (strictly speaking, it is dependent 
on some package that implements the interface). The scenario structure contains 
the concrete subclasses of the scenario without which the scenario package cannot 
work. 

Although two different scenario classes are needed in this scheme, they may 
conform to a single scenario type. In this case a new subtype is provided to allow 
access to the internal structure of a scenario for applications such as scenario 
management. It is possible to have a single type, however, when other types do 
not need to call special features only present on the subtype. 

11.2     Mutual Visibility 

Adding packages for contracts and parties raises more complex issues. With 
scenarios and portfolios, separate packages were used for two reasons. First, 
scenarios and portfolios seem to be separate lumps of the model. They are 
themselves complex sections that seem to make a unit of labor. Second, we do not 
need any knowledge of portfolios to construct a model of scenarios. The second 
reason is the strongest because it leads to the visibility relation-ships shown in 
Figure 11.1. 

It is reasonable to conclude that contracts can be put together and modeled 
without a knowledge of portfolios. Contracts can be recorded independently of 
the dynamic structure of the portfolio used to group them together for risk 
assessment purposes, as shown in Figure 11.6. 

 
Figure 11.6    Packages for portfolio and contract. 

The risk management application needs both packages, but the pricing application only 
needs to know about contracts. 
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The relationships between parties and contracts are a greater problem. We 
can make an argument for placing a party in its own package. A number of 
applications might look for information about parties without wanting to know 
anything about the deals being carried out with them. A common party package 
might hold common information about parties used by many dealing systems, 
rather like a contact database. Thus we can conclude that a party package is 
valuable. 

What would be the relationship between the party and contract packages? It 
would be valuable for a party to tell which contracts were dealt with it, and for a 
contract to tell who the parties for the contract were. This implies mutual 
visibility between a party and a contract, as shown in Figure 11.7. But mutual 
visibility may cause problems in a package model. On the whole we try to design 
package models with a layered architecture and simple lines of visibility. Many 
people believe such an architecture should never have cycles in visibility 
relationships, because a cycle breaks the rule of clear layers. Mutual visibility is 
the simplest case of a cycle. 

 

Figure 11.7    Separate party and contract packages. 

Some applications need only one of either the party package or the contract package, but 
both of these packages need each other. This can imply mutual visibility. If mutual 
visibilities are unacceptable, we can choose a single direction or combine the packages. 

To remove mutual visibility we must either alter the features of party or 
contract so that only one knows about the other, or combine them into a single 
package. Each alternative has trade-offs. 
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The benefit of restricting the visibility between the party and contract types to 
one direction is that it decreases the coupling between the two types (and their 
respective packages). If we remove the mappings from party to its contracts 
(making the association one-way) we can work on the party package without 
needing to know anything about contracts. This reduces the coupling (the party is 
no longer coupled to the contract), which is an advantage. However, a user who 
wants to know which contracts a particular party is the counterparty for must look 
at every contract and use the mappings to the party to form the set. Thus we have 
reduced the complexity for the developer of the party package but increased the 
complexity for the developer of any application that needs to use both types. 
There is no absolute right answer here; we have to look at the trade-offs in each 
direction and decide which choice is the lesser burden. 

Modeling Principle  The decision between a one-way and two-way association is a 
trade-off between less work for the developers of the types involved (by reducing their 
coupling) and convenience for the users of the types. 

Assuming we decide in favor of the two-way association, our only route to 
eliminating the mutual visibility is to combine the party and contract packages. 
This is not free of disadvantages, however. In Figure 11.7 we can see the contact 
management package only needs to know about parties, not contracts. Combining 
these two packages would remove this information. Contact management would 
be forced to have greater visibility than it needs to have. 

This situation leads me not to ban mutual visibilities or other cycles. Certainly 
cycles should be reduced to the minimum. Eliminating them completely, 
however, leads to either forcing the trade-off between one-way and two-way 
associations or large packages whose clients do not need all the visibility that is 
implied. 

Modeling Principle  If a package only needs visibility to part of another package, 
consider splitting the latter package into two mutually visible packages. 

Figure 11.8 shows another example of this situation. The product (see 
Section 10.3) is added in its own package. The preceding arguments lead to the 
mutual visibilities among product, party, and contract. This leads to fairly 
coupled domain model packages. The application packages, however, need to 
see only parts of the picture, and each application package has slightly different 
needs. The three mutually visible packages allow us to be clear on these needs. 

Another way of doing this puts protocols on packages. Then the party, 
product, and contract packages are combined and three separate protocols are 
provided to correspond to the old packages. Applications then select the protocols 
in the same way that they select the packages shown in Figure 11.8. 
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Figure 11.8   Adding a product to the package. 

Again different application needs may be served by mutually visible packages. 

To summarize, when types are naturally closely coupled, we have three 
options. We can decouple the types by making the associations one-way (but this 
makes it harder for the user of the types). We can put them into a single large 
package (but this means that any user of the package has visibility to the whole 
package, even if only part of it is needed). We can have two mutually visible 
packages (but this introduces cycles into the package structure). If you have 
protocols on packages, you can have one big package with separate protocols. 

11.3     Subtyping Packages  

Visibility is easiest to consider with subtyping. The subtype always needs to see a 
supertype, but we should avoid the reverse. Hence we add combinations, options, 
and barriers (described in Chapter 10), as shown in Figure 11.9. 

We should also avoid mutual visibility between a subtype and its super-type. 
The whole point of subtyping is to allow a type to be extended without 
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Figure 11.9   Adding various kinds of options.  

Subtypes need visibility to their supertypes, but not vice versa.  

the supertype being aware of it. If we design types with supertypes knowing about 
their subtypes, then future specialization is likely to be more difficult because we 
have built assumptions about subtyping into the supertype. Any effort to remove 
such dependencies is repaid in later enhancements. Designing supertypes 
correctly usually requires experience in designing a few subtypes first, so it is 
better not to fix the supertype until a few subtypes have been put together. 

11.4     Concluding Thoughts  

Visibility always implies trade-offs. To restrict visibility reduces the ease with 
which the model can be navigated. With lots of one-way visibilities, getting 
around the model can be rather like getting around a city with lots of one-way 
streets. Two-way visibilities make navigation much easier, which means less code 
to write and maintain. Such visibilities come at a price, 
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however. The more bits of the system see each other, the more difficult it is to 
control the effects of change in the model. Restricting visibility cuts down this 
interdependence. 

Different OO modelers make this trade-off differently. Some restrict visibility 
to a great extent, using techniques such as one-way associations and visibility 
graphs on types. I find this too restrictive. I consider visibility at the package 
rather than the type level. The architecture presented in Chapter 12 separates a 
system into basic layers. Within the domain tier, further visibility restrictions 
can be used, but this is seldom simple. I prefer this approach, however, because 
of my experience with information systems. Other kinds of developments merit 
different trade-offs. 

Most projects do not consider package architecture in any great detail. 
Often only the basic layers of the architecture are in place, if anything. This 
results in disadvantages to the project concerned and makes it difficult to assess 
the value of a properly enforced architectural model. Only more practice will 
allow us to further understand the trade-offs discussed here. 

If developing a package architecture is complex for one project, the com-
plexity increases tenfold when we try to integrate information systems for a 
large organization. Large organizations are plagued by multiple systems that 
cannot communicate. Even if the hardware and software are beaten into shape, 
such integration is defeated by the difference between the concepts that underlie 
the systems. One generally recognized solution is to do enterprise-wide 
modeling. The problem with this approach, however, is that it takes too long. By 
the time it is done, if it ever is, the effort is usually discredited and out of date. I 
believe that there is an upper limit to the size of chunk of modeling that can be 
tackled in one go, and this is linked to delivering useful systems that justify the 
expense of modeling within a reasonable period of time. A more opportunistic 
approach needs to be taken to integrating them. For this task I believe that 
packages and visibilities are necessary tools. They are not sufficient for the task, 
and I will not pretend to know what else is needed. Such enterprise-wide 
integration is still little understood and, like many people, I have only learned 
what not to do! 
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Support 
Patter ns  

Analysis Patterns discuss problems in analysis, and some models that 
can deal with them. Support patterns address problems in building 
computer systems around the analysis patterns. In Chap-ters 12 and 
13 we consider the architecture for a client/server in-formation system 
and how such a system can be layered to improve its maintainability. 
Chapter 14 looks at how conceptual models can be implemented, 
suggesting common patterns to turn analysis patterns into software. 

Finally Chapter 15 is more abstract, examining modeling techniques 
themselves and how advanced modeling constructs can be viewed as 
patterns. This gives us a better basis for extending modeling 
methods to support particular needs. 
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Layered Architecture for 
Information Systems  

The analysis patterns in this book will be of great value to developers of 
cor-porate information systems. Information system (IS) development involves 
more than an understanding of a domain, however. A world of many users, 
databases, and legacy systems must be accommodated. This chapter discusses 
architectural patterns for information systems. An architectural pattern describes 
the high-level division of a system into major subsystems and the dependencies 
among the subsystems. An information system architectural pattern divides the 
system into layers (or tiers). Architectural patterns are useful on their own, but 
they also show how the analysis patterns fit into a wider context. Chapter 13 
describes a technique for using the patterns in this chapter. 

The early days of object technology did not focus much on IS develop-ment. 
The main problem is that large volumes of often complex information must be 
shared by many people. Although this information is shared, differ-ent users have 
different needs. Providing common information that can also be locally tailored is 
a primary goal of large information systems. Further-more, a great deal of 
flexibility is required to meet constantly changing infor-mation needs. Most 
information systems are dominated by maintenance, which primarily involves 
coping with changing information demands. The main advantage of object 
technology in these environments is not in the speed of building new systems but 
in reducing the maintenance burden [3], 

The most fundamental issue in developing a modern information system is 
understanding the underlying software architecture. A broad picture of the 
software architecture that is suitable for information systems must precede any 
discussion of which techniques to use or what process to consider. 
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Most IS developments tacitly assume a two-tier architecture (12.1), which 
follows from mainframe interactive systems and is common in client/server 
developments today. Despite its wide use, the two-tier architecture has many 
shortcomings due to the tight coupling of the user interface to the physical data 
layout. The three-tier architecture (12.2), also called the three-schema 
architecture, addresses this by putting an intermediate layer between the user 
interface and the physical data. This domain tier closely models the concep-tual 
structure of the problem domain. Object technology is particularly well suited to 
three-tier approaches, and the domain tier can be placed on either client or server 
machines. 

Next we turn our attention to applications, which manipulate the objects of 
the domain tier and display information on the user interface. These two 
responsibilities can be used to split the application into presentation and 
application logic (12.3). The application logic can be organized as a set of 
facades on the domain tier, one facade for each presentation. This division has 
many advantages, and the application facades can be used to simplify 
client/server interactions. 

Database interaction (12.4) can be handled in two ways. The domain tier can 
be responsible for accessing the database, which handles its own persis-tence. 
This works well for object-oriented or simple relational systems. When there are 
complex data formats or multiple data sources, an additional data interface layer 
may be required. 

This chapter is based on various experiences, in particular the Cosmos 
project of the UK National Health Service and a derivatives trading system for a 
London bank. 

12.1     Two-Tier Architecture  

Most interactive IS development is organized, at least roughly, along the two-tier 
principle, as shown in Figure 12.1. A two-tier architecture divides the system into 
a shared database and several applications. The shared database sits on a server 
that has the disk space and processing needed to cope with heavy demands. The 
database contains the data required by a significant portion of the enterprise, 
structured to support all the needs of that portion. (For large companies a single 
corporatewide database is infeasible, so a data-base will take only a portion.) The 
database is designed and maintained by a database group. Although the term 
database is used here, it should be remembered that data is often stored in flat 
files (most commercial data still is on flat files such as VSAM). As such database 
can refer to any data source. Applications are developed for specific local uses. 
Traditionally CICS/ COBOL was used, but more recent efforts have used 4GLs 
and the popular application development tools Powerbuilder and Visual Basic. 
These tools 
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Figure 12.1    Two -tier architecture. 

Applications directly access databases.  

provide sophisticated features for developing GUI systems, and a good Windows 
interface is generally demanded by PC users who are used to such capabilities on 
their spreadsheets and word processors. Applications are usually built on a 
case-by-case basis. Any new data capabilities required are requested of the 
database group. 

The two-tier architecture has some advantages. Most organizations have data 
that needs central control and consistent maintenance. Applications that interpret 
this data need much less centralized control. Much IS work involves presenting 
some existing data in a new and meaningful manner. 

There are also many disadvantages of the two-tier architecture, most of which 
are inherent in current technologies. The idea that all data is shared and all 
processing is local is broadly true but a gross simplification. Many processing 
aspects of an enterprise are shared. Databases, whether SQL or older, are unable 
to provide a computationally complete language. The data is also unencapsulated, 
leaving a lot of integrity control in the hands of the application programmer. This 
makes it difficult to change a database struc-ture that already has many 
applications running against it. These problems are reduced by stored procedures 
that can provide support for processing and encapsulate data. 

Databases are often unable to give a true representation of the enterprise. This 
is due to the lack of modeling constructs, which are common in concep-tual 
modeling techniques but are still a long way from support in everyday databases. 
Flat files and hierarchic databases have well-known limits on data 
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structure. The current standard for new development, relational databases, also 
suffer from the high cost of joins. Data models that are true to underlying business 
semantics are usually highly normalized and need reorganization for 
performance to be reasonable. 

The data for an application is also unlikely to be on one database. Data-bases, 
even if organized sensibly at the time of creation, are usually not so coherent 
after a few years of business changes and corporate reorganizations. The two-tier 
architecture requires the applications to know which databases hold which data, 
as well as the structure of the data in each database, which may be quite a 
distance from the semantics of this data. 

12.2     Three-Tier Architecture  

A better architecture has in fact been around for a very long time. The 
three-schema architecture was proposed back in the 1970s [4]. This provides a 
three-tier approach, as shown in Figure 12.2: external schema, conceptual 
schema, and storage (internal) schema. The storage schema is the database design, 
and the external schema is the applications; the new layer is the con-ceptual 
schema, which I refer to as the domain tier. This represents the true semantics of 
the enterprise. It should ignore the limitations of data storage structures and data 
location. 

 

External Schema Conceptual Schema              Internal (storage) 
Schema 

Figure 12.2   Three -tier architecture.  



 
 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

Layered Architecture for Information Systems   243 

The main advantage of the three-tier approach is that it allows applica-tions 
to be described purely on the semantics of the domain. They do not have to be 
concerned with the physical location and structure of the data but can look 
instead at a logical picture that removes these dependencies. This also frees the 
data administrators to change the physical structure and loca-tion without 
breaking existing applications. 

The three-tier architecture is widely approved but rarely implemented. The 
principal reason for this is the difficulty of using it with existing technol-ogy. 
There are tools for data storage and for application development but not for 
implementing a domain tier. The most useful development is the logical data 
model, which is generally seen as a necessary first step in database design. This 
allows designers to consider enterprise semantics before com-mitting to a 
physical design. As such the modifications for physical design could be made in 
an informed manner. 

The stress on data is significant. Most practitioners consider the domain tier 
to be a logical data model. They might do process modeling, but it is usually 
considered separately by application developers. However, this view is not 
shared by all data modelers. A strong school of semantic data modelers view data 
modeling as very comparable with object-oriented modeling because it embraces 
subtyping and derived data, ties processes to objects, treats processes as data, and 
embeds processes within the semantic model. 

With the development of object-oriented techniques, the domain tier can 
begin to come to the fore. Objects represent a very good way to implement 
domain tiers. They support encapsulation, complex structural relationships, rules, 
processes, and all the things considered by advanced semantic model-ers. 
Reusable class libraries (or, better still, frameworks) are also at the heart of the 
domain tier. The key reusable objects of an enterprise are those that describe the 
domain—the framework that implements the domain tier (hence the term domain 
framework). Thus object modeling and domain tier develop-ment coincide very 
effectively. 

Implementation issues are somewhat more complex, but the basic princi-ple 
still works very well: If the domain tier is expressed as an object-oriented model 
and implemented as a domain framework, then applications can be written 
against this domain framework. This provides the separation between 
applications and databases that is so sorely needed. 

12.2.1     The Location of the Domain Tier  

In a client/server world an important question is where this domain tier should sit. 
A two-tier approach places application software on the client (desktop machines) 
and the data on various data servers. With the domain tier we have two basic 
choices: We can place the domain tier on the clients, 
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or we can introduce a new layer of processors, which is the domain server and 
consists of one or many networked machines. 

Client-based domain frameworks allow us to concentrate development on 
client machines, simplifying our systems support. Introducing a new layer of 
machines may well be a new headache for many shops and provides another set 
of machines and systems to maintain. The domain tier is provided as a set of 
libraries to application developers of client systems who can then write 
application code as necessary. 

One problem with a client-based domain tier is that we may need to do a lot 
of data selection and processing on the client. This forces us to use power-ful client 
machines. As desktop machines become ever more powerful, this becomes less 
of a problem, but we cannot assume such power. Technology pushes us to ever 
smaller machinery; some users want to use palmtops and PDAs, which can limit 
processing. Often it is easier to upgrade servers when more processing power is 
required. 

Available software fits quite well with a client-based approach. Smalltalk, 
generally the most useful language for IS applications, requires a user inter-face 
tied into the domain tier, although "headless" Smalltalks that run on a server 
without a user interface are beginning to appear. 

The domain tier is easier to control and update in a server-based domain tier. 
If the domain tier is on the clients, then any revision needs to be sent out to each 
client. Software updates on a server can be handled in a much more 
straightforward pattern. This control also extends to support of standing data, 
particularly those items that involve how data is accessed. 

We need to consider concurrency issues. It is interesting that IS applica-tions 
probably use more concurrency than any other style of software yet worry about 
it least. This is due to the powerful transaction model that is usually handled very 
well by a database, freeing the application programmer from most concurrency 
headaches. As the domain tier is introduced, we have to ask ourselves where the 
transaction boundary is to be. We can place it either in the data servers or in the 
domain tier itself. The logical place is the domain tier, but this requires us to build 
in transaction control features—a tricky business. Such placement also 
encourages the server-based domain tier, since a commit across many clients is 
pragmatically beyond current technology. I never encourage clients to build their 
own transaction control systems; that task is outside the scope of most IS 
developments. 

OO databases provide a solution to this problem. The major concern in IS 
communities with OO databases is trusting the corporate data to a new 
tech-nology. OO databases have responded to this by providing gateways to 
tradi-tional database products. In this approach an OO database can act as the 
transaction control mechanism without necessarily storing any data itself. Over 
time some data, particularly the complex and connected data that an 
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OO database can manage so well, can be moved to the OO database. How-ever, 
key corporate data can stay in more traditional places as long as the developers 
like. The important warning here is that there is little information on multiuser 
performance for OO databases. Many of the dramatic perfor-mance 
improvements quoted for OO databases are based on small, single-user databases. 
Anyone using an OO database, even if only for transaction control, should 
benchmark before committing to the database. 

If only a single OO database is used, then the data storage layer is effec-tively 
collapsed into the domain tier. This is permissible provided that this is an effective 
architecture and that extensions to the system to support other databases can be 
done in such a way that these other databases are provided behind the domain tier 
so that they are not visible from applications. 

12.3     Presentation and Application Logic  

The three-tier architecture provides some very important benefits. Much attention 
has been lavished on how the domain tier can be constructed, and a good portion 
of OO modeling is directly applied to this key layer. Little, how-ever, has been said 
about applications. Applications are built by assembling the reusable components 
in the domain tier, and there are guidelines for this task as well, although they are 
often not described in any detail. 

Typically in today's environment a programmer develops an application 
within a GUI environment, which is built on the domain tier. This requires 
knowledge of the GUI environment and of the domain tier, and a complex domain 
tier can make the learning curve quite steep. Programming in many graphics 
environments (such as Visual C++) can also be pretty daunting. 

Consider a relatively simple example of a financial institution that has a 
portfolio of derivative contracts between US dollars (USD) and Japanese yen 
(JPY). Such an organization is concerned with managing the risk associated with 
such a portfolio. Several factors can affect this risk, including the spot exchange 
rate, the volatility of the exchange rate, and the interest rates of the two currencies 
involved. To consider this risk, the analyst wishes to look at the price of the 
portfolio under various combinations of these different fac-tors. One way of doing 
this is by using the grid shown in Figure 12.3. The analyst picks two variables to 
analyze, sets various values for these, and sees a matrix that shows the value of the 
portfolio under the combinations of values. 

What are the processing tasks and how should we divide them between the 
application and domain tiers? One fundamental task is that of determining the 
value of a derivative contract, a complex process typically handled by 
Black-Scholes analysis [2]. This process would be widely used by any system in a 
derivatives trading environment, so it would be placed in the domain tier. Another 
common task is the valuing of many contracts together in a portfolio, 
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Figure 12.3   An example application to manage derivative risk.  

which is usually placed in the domain tier. The next task is to build a grid of 
values from the parameters (upper, lower, step size, number of steps) in the grid. 
This task is unique to this risk report screen so logically should be part of the 
application tier, together with the code that builds and controls the GUI. 

The task of building the matrix is quite involved and requires a closer look. It 
involves setting the various parameters, keeping them consistent, and then using 
the parameters to build the grid of values. This process can and should be 
separated from the display on a GUI screen. Thus I recommend splitting of the 
application tier into two: a presentation tier and an applica-tion logic tier, as 
shown in Figure 12.4. 

The responsibilities of the two tiers are quite easy to separate. The 
pre-sentation tier is responsible for user interface only. It handles windows, 
menus, fonts, colors, and all positioning on screen or paper. Typically it uses a 
user interface framework such as MFC or MacApp. It does not do any calcu-lations, 
queries, or updates to the domain tier. Indeed it does not need to have any 
visibility to the domain tier. The application logic tier does no user interface 
processing whatsoever. It is responsible for all accesses to the domain tier and 
any processing other than user interface processing. It selects information from 
the underlying domain tier and simplifies it into the exact form that the 
presentation requires. The complex interrelationships of the domain tier are thus 
hidden from the presentation. Furthermore, the applica-tion logic tier performs 
type conversion. The presentation will typically deal only with a small set of 
common types (integer, real, string, and date, plus the collection classes used in 
the software). The application logic provides only 
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Figure 12.4   Splitting up the application tier into presentations and application logic  

these types and is responsible for converting the underlying domain types into 
these types and interpreting any updates requested by the presentation. 

A useful way of organizing the application logic tier is to develop a series of 
facades. A facade [1] is a type that provides a simplified interface to a com-plicated 
model. We can prepare a facade for each presentation. The facade has a feature for 
each element on the corresponding user interface. Each pre-sentation thus has a 
simple interface to the domain model that minimizes any processing for the 
presentation other than the user interface. (Chapter 13 discusses a technique for 
designing these facades). 

Figure 12.5 shows how this organization works for the risk report screen 
mentioned above. We need two classes: a risk report presentation and a risk report 
facade. The presentation creates the layout of the screen and manages the user's 
interactions with it. The facade provides an underlying structure that mimics the 
presentation. It has operations to get and set the parameter, upper, lower, number 
of steps, and step size for the x and y coordinates of the grid. The facade contains 
the rules necessary to ensure proper consistency among these values (such as the 
invariant xUpper - xLower == xNumberOfSteps * xStepSize). It also provides a 
method to return the answer grid. Ideally this returns a single matrix using a 
general matrix class. (If for some reason this is neither available nor desired, then 
the facade provides operations to get particular cells, but a reusable matrix class, 
essentially a new kind of collection, is usually the best solution.) 
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Figure 12.5    Interaction diagram summarizing collaborations between presentation, facade, 
and domain tiers. 

The getResultMatrix method on the facade looks to see if enough 
infor-mation has been provided by the presentation (if  not, it can add defaults) 
and then asks the domain tier to value the portfolio with the various 
combina-tions of parameters. The domain tier puts the results into the matrix and 
returns it to the presentation. 

Setting of parameters is an example of using type conversion. Various 
objects can be placed as parameters in this list, including USD/JPY spot, 
USD/JPY volatility, USD interest rate, and JPY interest rate. (The list depends on 
the currencies of the contracts in the portfolio.) The facade provides appropriate 
strings to the presentation, translating from the types in the domain tier (see 
Section 13.5). The facade typically provides a list of such strings for the 
presentation to place in its pop-up menu. The presentation can then select a string. 
The facade correlates the selected string to the underly-ing domain objects (a 
dictionary handles this nicely). In this way the user interface is completely 
insulated from the domain model. 

In this situation the visibilities between the domains are defined as shown in 
Figure 12.6. Visibilities flow only from presentation to application logic to 
domain tier. This line of visibility is valuable because it insulates the 
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Figure 12.6   Visibilities between presentation, facade, and domain categories. 

domain tier completely from the applications that rely on it. A problem can occur, 
however, if the presentation needs to be automatically updated when a change 
occurs in the domain model. One option is for the presentation to poll at regular 
intervals, but this can get quite messy. A better option is to use the observer 
pattern [1]. This allows the facade and presentation to be auto-matically updated 
without breaking the visibility rules. 

12.3.1     Advantages of the Presentation/Application 
Logic Sp lit  

Layering is a good idea in principle, but it does have some disadvantages: the 
extra work is required to build the layer, and a performance penalty can be 
incurred in using it. The important question is, are the advantages worth the costs? 

One advantage comes from the different styles of programming involved in 
the two layers. GUI programming can be very complex, requiring a knowl-edge of 
GUI frameworks and how to use them well. If new GUI controls are required, 
programming becomes even more complex. On the other hand, GUI development 
can be quite straightforward if we have a good GUI screen builder, allowing us to 
draw controls on the screen and make event handlers that would typically be 
relayed as calls to the application facade. In either case development 
organizations can use GUI specialists who need to know little about the domain 
model. Similarly the facade programmers need know nothing about how the GUI 
system works, they concern themselves with getting the right interactions with the 
domain types. Thus we see that there can be GUI developers who understand the 
user interface environment but need to know nothing about the domain model, and 
facade developers who understand the domain model but do not need to know 
about GUI develop-ment. The presentation/application logic split separates 
different required skills, allowing developers to learn less in order to make a 
contribution. 
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The split allows multiple presentations to be developed from a single facade; 
this is particularly useful when customized screen or paper layouts containing 
the same information are required. When tools are used for screen and report 
building, this allows a quick turnaround for new presenta-tion styles. 

The facades provide a good platform for testing. When facade and 
presen-tation are combined, the base computation can only be tested via the GUI, 
requiring manual testing (or GUI testing software for regression testing). When 
these are separated a test harness can be written for the facade's inter-face. This 
leaves only the presentation code that needs to be tested by using more awkward 
tools. The separation of testing reinforces the point that the two layers can be 
built separately, although the presentation must be defined before the facade can 
be built. 

12.3.2    Stretching Facades in Client/Server Environments  

The facade is valuable as a focal point for client/server interactions if the domain 
tier is based on the server. A useful technique in these cases is to "stretch" the 
facade across the client and the server, placing a facade class on both the client 
and the server. When the user opens a presentation, the corre-sponding facade is 
opened on the client side. The client facade passes the request onto the server 
facade. The server facade goes through the creation process, pulling information 
out of the domain classes. When all the informa-tion for the facade is complete, the 
server facade sends all information for the facade over to the client. Since the 
server and client facades can be in differ-ent object spaces, a series of private 
communications between the two facade classes can occur. The user can then 
interact with the presentation, which will update the client facade with each 
modification. These modifications are not passed onto the server facade until the 
user commits the modifications. At that point the modified facade object is passed 
back to the server, and the server facade then updates the domain tier, as shown in 
Figure 12.7. 

The point of stretching a facade is that it allows a single point of refer-ence for 
client/server interaction. If a client facade (or a presentation) accesses the server 
domain classes directly, we will see many calls required across the network to 
populate the client. These network calls can be a signif-icant overhead on 
performance. The facades can have methods to build a single transfer packet and 
interpret such a packet into the facade's data. We can then pass all information in a 
single network call. 

The various responsibilities of the facade can be split between the client and 
server classes. Only the server facade needs the responsibilities for inter-acting 
with the domain model. Both classes need to be able to send and receive 
information to the other. Ideally only the client facade needs the oper-ations to 
support the presentation. In practice, however, I find it worthwhile to 
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Figure 12.7   The interaction diagram of Figure 12.3 using stretched facades.  

give the two classes the same interface to make testing easier (that is, they are the 
same type). Both sides require load and save operations. The client facade 
implements these operations by communicating with the server facade, and the 
server implements them by communicating with the domain model. 

12.4     Database Interaction  

We need to think carefully about how to integrate databases and legacy appli-
cations into this structure. The simplest case is when an object database is used. In 
this case the straightforward approach is to simply integrate the database into the 
domain tier. The object database then provides facilities for persistence, 
transaction management, and other features that no enterprise programmer should 
have to worry about. 

Few applications, however, are that simple in an IS shop. Many IS organi-
zations are distrustful of object databases and are reluctant to place critical data in 
them. This is partly because of their newness but also because of their complexity. 
Relational tables are relatively easy to dissect if something goes wrong. Object 
databases, with rampant disk pointers, are much more difficult. 
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Even if object databases were a confident choice for new development, there is 
still the issue of existing data. Even relational databases, despite their current 
position as the proven technology for database development, have not yet reached 
the position of managing the majority of corporate data. The vast majority of 
corporate data lies on hierarchical databases, flat files, and the like. Object systems 
must interact with these systems, taking feeds as necessary, dealing with the fact 
that many systems have to be accessed to get an integrated picture. There are two 
broad approaches we can use: letting the domain model interact with the data 
sources or using a database interface layer. 

12.4.1     Linking the Domain Tier to Data Sources  

Let's consider the simple case of a stand-alone system that needs to use a 
relational database for data storage. We can design the relational database 
specifically to support the domain model. We should design the domain tier first 
and base the database schema on that. For all but the simplest systems, it is not 
possible to simply take each object type in the domain model and turn it into a 
relational table. Despite their name, relational databases have a problem relating 
data because computing joins is time-consuming. A good relational design thus 
should denormalize significantly to get good performance. The domain model 
provides a starting point for the database design, but the database design needs 
time to be done well. The resulting database schema can look quite different from 
the original object diagrams. 

The obvious way to link the domain tier to the database is to have the domain 
classes know how to build themselves from the database. Classes can have load 
routines that pull data out of the database and use this to create and knit together 
the framework. It is important that applications not get involved in this behavior. 
When an application requests an object, the domain tier should look to see if it is 
in memory. If not, it should get the object to create itself off the database. The 
application should not need to know how this interaction is occurring. 

An exception to this procedure occurs when applications need a particular 
data configuration to work on, and that data can be pulled from the database in one 
step at the beginning, thus improving performance. In this case it can be useful for 
the domain tier to offer application-specific load requests that give the application 
a chance to let the domain tier know what it is about to be asked for. To some 
extent this compromises the principle that the domain tier should not know what 
applications use it, but the performance gains can be compelling in some 
circumstances. 

12.4.2     Database Interface Tier  

The direct link between the domain tier and the database does have some sig-
nificant problems. It can complicate the domain classes excessively by giving 
them two independent responsibilities: providing an executing model of the 
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business and pulling data from a database. The code required to interact with the 
database can be quite substantial, bloating the classes excessively. If data has to 
be pulled from multiple databases and feeds, then this problem becomes critical. 

An answer, of course, is to add another layer—a database interface tier, 
which is responsible for loading the domain tier with data from the database and 
for updating the database when the domain changes. This tier is also in charge of 
handling feeds and other legacy interactions. 

In many ways the database interface tier is very similar to the application 
logic tier. In both cases a facade is provided to a complex domain tier to cope with 
a less powerful representation. This facade selects and simplifies the object 
structure and performs type conversion to the simpler external type system. 
Again, the domain tier should be unaware of the various views that can be taken 
of it. Typically the database interface classes are based on the data source with 
which they are working. A database interface class can be constructed for each 
table in a relational database, or each record type in a feed. Class libraries to 
support database interaction often support this kind of correspondence. 

The biggest difference between this tier and the application logic tier lies in 
the initiation of activity. With the user interface, the user's action causes the 
presentation to initiate the activity. Since the presentation has visibility to the 
application logic, then it is straightforward for it to call the application logic. The 
initiation of activity follows the line of visibility. However, this is not the case 
with the database interface. The domain tier begins the process by wanting to 
save itself, but we do not want the domain model to see the database. Thus the 
initiation of activity is opposite to the desired visibilities. One solution is to use 
the observer [1] again, but that could well lead to a very high degree of message 
traffic. 

An alternative is to extend the architecture with an interface broker, which is 
visible to the domain tier. This broker provides a very small interface, which 
allows only messages that initiate the database interface. These might typically 
be calls as general as loadMe(anObject) and saveMe(anObject), which pass on 
all responsibility to dealing with the request to the database interface tier. The 
broker's responsibility is to then pass this request onto a class in the database 
interface that can best handle the request. Thus if we have spot contracts held in 
one database table and conventional options held in another, the interface broker 
first interrogates the object to find which it is and then passes the request onto the 
appropriate database interface class, as shown in Figures 12.8 and 12.9. 

The advantages of this layering are similar to the advantages of layering 
elsewhere. Again, responsibilities are split in a useful manner, separating the data 
interface from the enterprise model. Table formats or feeds change can be 
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Figure 12.8     Interaction diagram to illustrate a typical domain tier interaction with a data 
source. 

 
Figure 12.9    Categories for database interface tier. 
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done without altering the domain model. This is particularly important when table 
formats are outside the control of the project team or when it is likely that the data 
structure can change to help with performance. The greater the volatility of these 
sources, the more important it is to use an intermediate layer. 

Access to different databases can require different tools and skills. Spe-
cialized class libraries exist to interface to database products. A knowledge of 
SQL and of the specific database format may be required. Other databases 
(multidimensional, hierarchical) have their own interfaces and structures to learn. 
Separating this interaction out, particularly if there are many different data 
sources, allows team members to concentrate on areas where their skills are 
strongest. 

12.5     Concluding Thoughts  

Building large IS systems in a client/server environment is still a difficult activity 
with many pitfalls. Many of these lie in using a two-tier architecture, which works 
well for small systems but does not scale well. A three-tier architecture improves 
matters considerably and is well supported by object technology. Table 12.1 
provides brief descriptions of the three tiers. 

TIER 
 

DESCRIPTION 
 

Domain 
 

A direct model of business objects applicable to the whole domain. 
Independent of individual applications and data sources. 
 

Application logic 
 

A selection and simplification of the domain model for an 
application. Contains no user interface code but provides a set of 
facades of the domain tiers for the user interface. Converts from 
rich domain tier types to the types required by a presentation. 
 

Presentation 
 

Performs the formatting of information from the application 
facade into a GUI or paper report. Is only concerned with user 
interface, and has no knowledge of underlying domain tier. 
 

Data interface 
 

Responsible for moving information between data sources and the 
domain tier. Will provide a simple interface broker for the domain 
tier to issue requests. Has visibility of both the domain tier and the 
data sources. Will be divided into subsystems based on the type of 
data sources used. 
 

Table 12.1    Summary of layers and their purposes. 
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Splitting the application tier to separate application logic from the user 
interface is a valuable technique. Its advantages include the reuse of application 
logic for different GUIs, ease of testing, performance management for 
client/server systems, and support for more specialized development staff. An 
intermediate layer is also useful for data access, particularly when there are many 
complex data sources. 

Some classes must be used by all tiers. This includes common fundamental 
types (integer, date, quantity), collections, and also some domain specific 
fundamental types. 
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To fully understand this chapter, you will need to read Chapter 12 through 
Section 12.3 first. In Section 12.3 I explained how applications can be split into 
presentation and application logic. Presentations contain all user interface logic, 
and the application logic provides a set of custom facades for the presentation. 
These application facades are responsible for selecting and arranging all 
information for a presentation. 

We can define and build application facades by using a fairly standard 
technique described in this chapter. (Uncharacteristically, this chapter does not 
contain patterns.) This technique can be considered an addition to object-oriented 
methods. 

An application facade looks much like any other type: It has attributes and 
operations. All of the attributes, however, are derived from the domain model. 
Models are given based on a health care example (13.1). The contents of a facade 
(13.2) are defined by a number of methods that are attached to each attribute. 
These methods describe how the attribute is retrieved, how it is updated, how a 
set of legal values can be found, how it can be validated, and how a default value 
can be obtained. 

Some common methods (13.3) can be used in many application facades, so 
they can be moved into domain models. Application facades also contain 
operations (13.4), which can be local to the facade or delegated to the domain 
model. User interface frameworks will not usually be aware of the many 
interrelated types in the domain model, so the application can perform type 
conversions (13.5), creating more primitive types that the user interface can 
understand. An application will often contain multiple facades (13.6), which can 
be described using a structural model. 

257 
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I have used this technique on several projects, including the UK National 
Health Service and a trading system for a London bank. It was designed spe-
cifically for facades in the application logic tier. It can also be used for facades in 
other circumstances, including database interaction. 

13.1     A Health Care Example  

Application facades are best understood from a fairly complex and abstract 
domain model. Figure 13.1 shows such a model whose basic structure is based on 
the Cosmos model designed for health care [ 1 ] .  Further explanation of many of 
the ideas can be found in Chapter 3, and it may be worth reading that chapter 
before continuing with this chapter. 

 
Figure 13.1    An example domain model from health care. This is the model on which the 
domain tier is built. 

Consider an example from a hospital information system, which needs to 
record information on each patient gathered from all parts of the hospital so that it 
can keep a complete medical record for each patient. The range of 
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information that can be recorded about a patient is vast. To reduce the bulk of the 
model, an abstract approach is used, as shown in Figure 13.1. 

The model describes all the information that can be recorded about a patient 
in terms of biological phenomenon and biological phenomenon types. For 
example, there is a biological phenomenon type of gender with biological 
phenomena of male and female, and there is a biological phenomenon type of 
blood group with biological phenomena of A, B, A/B, and O. To say that a 
patient has a blood group of O, we use an observation that links the patient to the 
appropriate biological phenomenon. We can also indicate other appropriate 
information about the observation, such as who did it (the performer), when it 
was done (the date), and how it was done (the protocol). If it is later found to be 
wrong and the correct blood group is A, then we reject the original observation 
and replace it with a new one. This is necessary so that a full record of a patient 
can be held. 

Such a model can handle a wide range of cases. The blood transfusion 
department, however, has simpler and more focused needs. It merely wishes to 
record a set of attributes for a patient. For example, consider the registration of a 
blood donor. Attributes of a blood donor include name, blood group, and date of 
last donation. The name is straightforward since this is directly linked to the 
patient type. The blood group and last donation date, however, require more 
complex processing, as we shall see below. 

13.2     Contents of a Facade  

Each application facade consists of a reference to the domain model (referred to 
as the subject of the facade) and a number of attributes that represent the 
information for the user of the facade, as shown in Figure 13.2. 

An application facade is opened with a particular object in the domain model 
as the subject. This subject acts as the starting point for all the manipulations that 
are done by the facade. When we define the facade, we define the type of the 
subject. For the blood transfusion registration example, the subject would be 
patient. The user of the facade never accesses the subject directly but treats the 
facade as a logical window on the subject. 

Each attribute in the facade then acts as a logical attribute of the subject. Each 
attribute should have its type defined, and this type should correspond to a type 
on the domain model. Similarly we can define operations on the facade. In the 
case of blood donor registration, we have a donor facade as follows: 

Application facade: donor 
Subject: patient 
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Figure 13.2   The parts of an application facade.  

Attributes: 
name: string 
blood group: biological phenomenon 
date of last transfusion: date 

Operations: 
book blood test 

We then define a series of methods for each attribute on the facade. These 
methods describe how information is translated from the domain model into the 
facade and how the facade updates the shared information. There are various 
ways of denning these methods. One is to use an English sentence, which would 
be easy to understand but could result in ambiguity. At the opposite end of the 
spectrum is a formal approach such as predicate calculus, which is appropriate if 
everyone understands it. In between lie various forms of structured English. 

13.2.1     Types of Methods  

The retrieval method defines how data is obtained from the model to fill the 
attribute. We can consider this method to be a query over the model, starting at the 
subject. A retrieval method can be very simple; for example, the registration name 
can correspond to the name of the patient. But retrieval can become rather 
complex. The blood group of the patient requires finding all nonrejected 
observations of the patient whose biological phenomenon's biological phe-
nomenon type is blood group. Similarly the last donation date is found by 

260   Contents of a Facade 
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taking all procedures whose protocol is blood donation and returning the date of 
the latest one. Read-only attributes will not have any other methods. 

The legal values method provides a set of legal values that can be used for 
validation checking. Often (as for name) there is no finite set of legal values; the 
type is enough for validation. For blood group, however, something more 
sophisticated is called for: the type of the attribute is the biological phenomenon, 
but only biological phenomena whose biological phenomenon type is blood group 
are allowed. Thus the legal values are supplied by a query that returns the set of 
biological phenomena A, B, A/B, and O. As well as being useful for validation 
checking, these values can be used to fill a menu or list on a user interface. 

The update method is the one that requires the most powerful techniques. 
Even if the retrieval method is simple, the meaning of an update can vary widely. 
Again the name object provides a simple case where the attribute of a patient is 
updated. Changing the blood group is more complex, so we need to create a new 
observation that is linked to the biological phenomenon supplied by the attribute. 
The old observation is rejected and linked to the new object to show which 
object rejected it. In addition we can supply some implied information. For 
example, a change in the blood group will always be supplied by the transfusion 
unit, and the unit always uses the same protocol, so we can add this information 
to the record automatically by making the logged-in physician the performer of 
the procedure and by using the standard protocol. Obviously we have to be 
careful about how much information can be implied in this way, and that 
information should be echoed back to the user. 

A validation method may be required if either the legal values or the 
attribute type are not enough to check validity. A validation rule that is context 
specific to the facade needs to be supplied. For example, the last donation date 
may need to be earlier than today and later than the currently held value. 

The default method is used when a new record is being created, as opposed 
to an existing one updated. To reduce complexity, we usually assume that 
creating a new record is the same as updating a blank record. The user can then 
fill in the attributes, and exactly the same validation methods are applied as are 
used for updating. The default method indicates what information should be 
supplied if the user is starting with a blank record. It is formed in much the same 
way as a retrieval method. 

Some attributes will not have a single value but a list of values. In this case 
there are two update methods: one for adding an item and one for deleting an item. 
The retrieval method returns a collection, which can be a set or a list. If the 
collection is a set, then ordering criteria is specified to indicate the order in 
which the values are displayed. Usually this is the standard ordering 
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criteria based on numbers or strings.  Table 13.1  summarizes the various methods 
discussed here. 

METHOD NAME 
 

DESCRIPTION 
 

Retrieval 
 

Value according to domain model 
 

Legal Values 
 

Allowable values if less than the type 
 

Update 
 

How to update the model for a change in value. For multivalued 
attributes both add and delete updates have to be specified. 
 

Validation 
 

Used to test new values, only necessary if more complex then 
legal values 
 

Default 
 

Initial value to be used on creating a new object from a facade 
 

Table 13.1    Summary of methods. 

13.2.2    Sample Methods  

Table 13.2 shows an example of how these methods might be worded, taken from 
the blood donor example given above. The rules have not been expressed in a 
formal notation (and are thus ambiguous) but are written in a pseudo-SQL manner, 
which has proven to be a reasonable compromise between rigor and ease of 
understanding. 

13.3     Common Methods  

In applications that use facades, we see many methods that have a similar 
structure. The blood group attribute is an example of a very common case in the 
medical record model. The blood group methods retrieve a particular biological 
phenomenon of a particular biological phenomenon type for a patient, where it is 
assumed that a patient only has one biological phenomenon of that type. In asking 
for the blood group we ask "Which biological phenomena of type blood group 
does this patient have observations for?" There are many cases (such as a patient's 
gender) where this kind of method exists. Therefore it makes sense to have a 
general service that can hold not only the common access and updating cases but 
also all the processing for special cases (such as when a patient has inconsistent 
observations). 

We can incorporate such services into the domain model as operations or 
computed mappings on the patient. In our blood donor example, this would lead 
to an operation 

valueOf (aBiologicalPhenomenonType): aBiologicalPhenomenon. 
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ATTRIBUTE 
 

METHOD 
NAME 
 

METHOD BODY   
 

Name 
 

Retrieval  
 

subject.name  
  

 
Update  
 

Change subject.name  
 Blood Group  

 
Retrieval  
 

subject.observations .  biological phenomenon where 
biological phenomenon . biological phenomenon type 
= 'Blood Group'.  
  

 
Update  
 

old Obs:= All subject .  observations where  subject .  
observations .  biological phenomenon .  biological 
phenomenon type = 'blood group'.  
Create new observation (newObs) where newObs. 
patient = subject, newObs.  biological phenomenon =  
new Blood  Group, and newObs. re jected observations  
= oldObs.  
 

 
 

Legal Values  
 

All biological phenomena with biological phenomenon  
type = 'blood group'  
 

Date of Last 
Transfusion  
 

Retrieval  
 

the latest subject .  observations .  date from those 
subject .  observations with protocol = 'blood 
t ransfusion'.  
 

 
 

Update  
 

Create new observation with patient = subject, 
protocol = 'blood transfusion',  and date = Date of  
last transfusion  
  

 
Validation  
 

new Date of last transfusion later than old Date of  
last transfusion  
 

Table 13.2    Sample methods for a facade. 

Note there might be a corresponding update operation on patient that would also 
subsume the application facade's update method. 

Moving application facade methods into the domain model is useful in two 
ways. First, they provide a higher-level interface to the facade, easing 
development of application facades. In particular this means that common code to 
handle these kinds of attributes can be held once in the domain model and not 
duplicated in many application facades. The second virtue of this approach is that 
it provides a good route for optimization. The fact that the code is common 
enough to be held in a shared method implies that it will be executed frequently. It 
thus makes a good target for optimization. This can be particularly important 
when the OO system provides navigational as opposed to declarative queries. 
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Clearly not every application facade method should be moved to the domain 
model. The value of application facades is that they separate what is local to one 
context from what is necessarily shared. Each facade method that moves into the 
domain model increases the complexity of the domain model. Thus the designer 
must be suspicious of moving facade methods to the domain model and only do so 
if the benefits outweigh the increased complexity that will occur. 

13.4     Operations  

Just as any other object type, application facades contain both data and process. 
The methods discussed in Section 13.2.1 are private methods on the facade that 
manage the mapping between the application facade and the domain model. 
Public methods also exist to allow access and update of the facade's attributes. 

Additional operations within the application facade are not simply 
manipulations of attributes. These operations should be declared separately and 
typically involve some complex processing. It is useful to consider whether these 
operations are local or shared, as shown in Figure 13.3. A shared operation is 
used across the organization, while a local operation is only used by that 
application. If the operation is shared, then it should be implemented within the 
domain model attached to the most appropriate shared class. The shared 
operation should ignore any facades and operate solely on shared objects. The 
operation on the facade should then simply pass the call onto the shared operation, 
providing the necessary arguments and interpreting the returned values for use 
within the facade. 

A local operation, however, should not be placed in the domain model but 
implemented within the local model. It would not use structures and operations of 
the domain model, relying instead on the attributes and operations of the 
application facade. In this way a clear separation is maintained between local and 
shared code. 

Note that the distinction between local and shared operations is purely an 
issue of conceptual sharing of the code. It does not affect the implementation 
concerns of, say, a client/server environment. Depending on that environment, 
local operations can be run on a server or shared operations run on a client. The 
distinction is based solely on whether the operations are conceptually shared or 
not. Shared operations are heavily reused and must be maintained more carefully, 
in the same way as the rest of the domain model. Local operations can be dealt 
with purely within the facades. They are reused only if the facade they are part of 
is reused. 
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Figure 13.3    Operations in application facades. 

A shared operation is implemented within the domain model and accesses the structures 
and services of the domain model. The facade provides a reference to that operation, while 
a local operation is implemented within the facade and only accesses the attributes and 
operations of that facade. 

13.5     Type Conversions  

One difficulty with using OO systems is the complexity of moving objects around 
a network, particularly when moving from one object space to another. This 
problem occurs when information needs to move either from one OO system to 
another with different object IDs, or from an OO to a non-OO system. In these 
cases we can move only information about the object, not the actual object. One 
solution is to use a proxy designed to translate calls made on the proxy to calls on 
the original object. This system works well where both client and server are part 
of a distributed database, but many systems have PC clients connected to database 
servers, where any calls on an object become expensive network calls. 

This is particularly important when the non-OO systems involved do not have 
an understanding of objects and messages. Information must be 
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transferred by using a lower-level representation, such as ASCII strings. In this 
case it is necessary to transform object information into a string, send it over the 
network, and decode it back into objects. 

We can use facades to help simplify network access, controlling the translation 
to strings and allowing the application to take a large slice of information in one 
go. We do this by holding the attribute values as strings, as shown in Figure 13.4. 
The links to the objects can be maintained by holding a lookup table in the class 
portion of the facade. The lookup table maps from the strings to the database 
objects, making validation and updating easier. The table can be implemented 
with a dictionary, where the keys are the strings and the values are the database 
objects. The set of keys can be used for 

 
Figure 13.4    Example objects for type conversion. 

The application facade has a reference to its subject in the domain model. For its 
attributes it stores strings and sends strings to the presentation. It also has a link (static or 
via its class) to a dictionary that associates the strings with the underlying domain objects. 
(For clarity only two blood groups are shown here.) It has a dictionary for each attribute that 
needs this kind of type conversion. 
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loading menus or validation purposes. When an attribute is changed the table can 
convert it to an object for replacement in the database. Since the table is held in 
the class portion of the class, it is only held once. It also only needs to be 
refreshed if a change is made to the available options: This change is usually 
infrequent. 

Thus the blood group attribute has a corresponding dictionary, 
BloodGroupValues, in the class portion. This dictionary has keys of the strings 'A', 
'B', and so on, with the objects in the database as values. On retrieval the blood 
group is translated to a string (using a name function or by the dictionary) and 
stored in the attribute. When updated the new string is used as a lookup to the 
dictionary, and the corresponding value is used for the update in the database. 

When we use this approach we should describe facade attributes as having 
internal and external types. The internal type is the type within the domain 
model, while the external type is that provided to the presentation. In the blood 
group example, the internal type is Biological Phenomenon, while the external 
type is String. 

13.6     Multiple Facades  

Application facades do not usually appear alone but rather in groups. An 
application consists of a number of presentations and their corresponding facades. 
These components can be linked in two ways. The first method is to have the 
facade contain components, as in a table. For example, a history of transfusions, 
each with its place and date, can be displayed as a table within an overall blood 
donor presentation. The second way is to allow the user to navigate from one 
presentation to another. For example, a user looking at a screen of blood test 
information can open a separate screen to look at details of the blood sample used 
for the test. 

The structural model shown in Figure 13.5 illustrates how these facades are 
related. I use aggregation to show information displayed in the same presentation 
(such as a table) and regular associations for information displayed by opening a 
different presentation. Similarly I use unidirectional associations to reflect the 
paths that the user can take in opening one presentation from another. 

Using a structural model is very helpful, but it is important to remember that 
the style of modeling is different. In the domain model we should avoid 
duplicating responsibilities, particularly when it comes to holding information. 
For this reason we could use a different notation to stress the different heuristics. 
On the whole, however, I think the extra notation adds too much complexity. 
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Figure 13.5   An example diagram of application facades. 

The types shown are external types (see Section 13.5). The model indicates we have a 
blood donor presentation that shows all the information on the patient presentation with 
additions. It also shows a table of transfusions. The user can navigate to a separate 
presentation that shows a list of blood tests. From the blood test presentation, the user 
can navigate to the appropriate blood sample presentation, from which the user can 
navigate to the blood donor presentation. 

The other kind of relationship between facades, which can be very important, 
is a subtyping relationship. A patient facade might already cover a lot of general 
information required for patients. The information required for donors would 
include this information and add to it. Thus the donor facade is truly a subtype of 
the patient facade: All attributes of the patient facade are present in the donor 
facade, and the donor facade can respond to all patient facade messages. 
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In many ways the structure of the facades is driven by the structure of the 
presentations that the facades support. In cases where one set of facades supports 
more than one presentation, this may not quite hold. A new presentation might 
combine information from associated facades in the same presentation. This is 
perfectly reasonable. Although it is useful to base facade structure on 
presentation structure, it is also wise to let one set of facades support multiple 
similar presentations. In this case, breaking the tie between presentation and 
facade structure is a justified sacrifice. 
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Patterns for Type Model 
Design Templates  

This book uses very conceptual models, thus it is important for me to explain how 
these models turn into software. This chapter provides transformation patterns 
that can be used to construct design templates for type models. Transformation 
patterns describe principles for transforming an artifact from one form into 
another. Design templates describe how to turn an implicit specification model 
into an explicit specification model and an implementation. Since implicit 
interface models and conceptual models are almost identical, they are valuable 
tools for understanding how conceptual models relate to implementations. 

The chapter does not attempt to give a full set of design templates for any 
particular implementation environment. Implementation environments are too 
different, each requiring different trade-offs. It is not simply a matter of Smalltalk 
or C++. Many factors—hardware, databases, networks, class libraries— affect 
the templates that are actually used on a project. Thus I concentrate on the 
patterns that are found in design templates—the general principles and issues 
that should be considered when carrying out the transformations. 

Design templates vary based on the modeling method used, the exact 
implementation environment, corporate standards, and the performance 
requirements of the final system. They can be used in a prescriptive manner or in 
an advisory manner. They can (at least in theory) be automated by a code 
generator, or they can be used by hand (as coding standards, for instance). 

Not all methods need design templates. If all modeling is done using a 
method that is deeply rooted in the implementation environment, then little if 
any transformation is needed. This is the principal advantage of using an 
implementation-based technique. The problem with such an approach is 

This chapter was written in conjunction with James Odell. 
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that there is a greater distance between how people think about the world and  an  
implementation-based  model.   Also  there  often  are  problems   in moving that 
model to another implementation environment. Design templates have the 
following goals: 

• To ensure that the software is structured in the same way as the conceptual 
models, as far as practically possible 

• To provide consistency within the software 

• To provide guidelines on constructing software so that knowledge is 
effectively propagated around the organization 

These goals lead us to an important principle: Design templates should define 
the interface of software components and suggest the implementation of those 
components. A goal in the process should be that a programmer, new to the 
domain but familiar with the templates, should know what the interface of all the 
components is simply by looking at the analysis model. In practice it may not be 
possible to achieve this goal completely, but we should aim to get as close as we 
can. 

Modeling Principle   Design templates define the interface of software components and 
suggest the implementation of those components. 

Design templates should thus provide a statement of the required interface 
and can provide a number of suggested implementations. Programmers must 
accept the mandatory interface, but they can make any implementation, either 
taking from the suggested list or coming up with their own alternatives. The user 
of the class should not need to know, or care, what implementation is chosen. In 
particular the class implementor should be able to change implementation 
without altering the interface. 

It can be difficult to keep a purely conceptual model. To ensure that the 
interface can be fully defined, the model needs to be a specification model. It 
does not need to be a very explicit specification model, since the templates 
transform the model to a truly explicit specification model. There are a number 
of cases where interface issues alter the model from a purely conceptual point of 
view. These alterations are not serious, and it is usually better to put up with these 
than to build separate models and try to keep them in sync. These issues will be 
discussed as the chapter proceeds. 

Each section in this chapter discusses a number of patterns for transforming 
conceptual models. We begin by discussing a pattern for implementing 
associations (14.1). There are three implementations: pointers in both directions, 
pointers in one direction, and association objects. Following the basic principle, 
all have the same interface. Fundamental types have some special considerations. 
Associations are common to almost all techniques, so this pattern is widely 
applicable. 
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The second pattern discusses implementing generalization (14.2). Many 
methods treat generalization the same as implementation inheritance. This book 
uses multiple and dynamic classification (see Section A .1.3), which make the 
transformation less direct. We consider five implementations: inheritance, 
multiple inheritance combination classes, flags, delegation to a hidden class, and 
creating a replacement. Again we define a common interface, which includes an 
operation to test the type of an object—a test that should be used with caution. 

The remaining patterns are shorter and include patterns for object creation 
(14.3), object destruction (14.4), finding objects with an entry point (14.5), and 
implementing constraints (14.6). We will briefly mention design templates for 
other techniques (14.7), but there is no detailed discussion. 

If you don't use design templates, then you might treat this chapter as an 
indication of how programmers should interpret conceptual models. The 
techniques in the chapter are valuable in transforming the models from this book 
to more implementation-based methods, as well as transforming to OO languages. 
Anyone wishing to use the analysis patterns in this book with Booch's method 
(for example) will need to use these patterns, particularly when dealing with 
generalization. 

Different languages have different names for various elements. I use the term 
field to represent a data value of the class (a Smalltalk instance variable or a C++ 
data member). I use the term operation to refer to a message that a class will 
recognize (a Smalltalk method, or selector, or a C++ member function). I 
distinguish between operation (the declaration) and method (the body); thus a 
polymorphic operation has many methods. I use the term feature to represent 
either a field or an operation. 

This chapter assumes that you have access to a class library of collection 
classes. Collections, also known as containers, are classes that hold a group of 
objects. In conventional programming languages the most common, and usually 
only, provided collection is the array. Object environments can provide many 
collections. Lewis [5] gives an excellent overview of the most common Smalltalk 
collections. Many C++ versions use similar approaches, although these will be 
superseded by the Standard Template Library (STL) [7]. Such collections include 
sets (not ordered, no duplicates), lists (orderedCollections in Smalltalk, vectors 
and deques in STL), bags (like sets but with duplicates, multisets in STL), and 
dictionaries (maps in STL). A dictionary is a lookup table or associative array 
that allows you to look up an object using another object as a key. So we could 
have a dictionary of people indexed by name. You would find me by sending a 
message of the form PeopleDictionary at ("Martin Fowler"). 

These collections greatly simplify programming, and having these available 
is one of the great boons of an object-oriented environment. Many environments, 
including all Smalltalks, come with such a class library. Most C++ 
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environments do not come with collection classes, although they can easily be 
bought from a number of vendors. I strongly encourage you to familiarize yourself 
with and use collection classes. To work in an object-oriented environment and 
not use collection classes is like programming with one hand behind your back. 

14.1     Implementing Associations  

The chapter begins with associations because they provide a simple yet important 
example of how templates work. For the purposes of this section, we will assume 
that all object types are implemented as classes; this assumption will be modified 
later on. 

A number of object-oriented practitioners are uncomfortable with using 
associations in OO analysis. They see associations as violating the OO pro-
gramming principle of encapsulation. With encapsulation the data structure of a 
class is hidden behind an interface of operations. Some practitioners believe that 
associations make the data structure public. The way out of this dilemma is to 
understand how associations are interpreted in the context of OO languages. 
Associations are present because they are useful in conceptual modeling. They do 
not clash with encapsulation if they are seen as a way of describing that one object 
type has a responsibility to keep track of and alter its relationship with another. 
Thus the example in Figure 14.1 shows that the employee has responsibility to 
know its employer and to be able to change his employer. Conversely the 
organization has a responsibility to know its employees and to be able to change 
them. In most OO languages this responsibility is implemented by accessor and 
modifier (get and set) operations. A data structure may be present of course, and in 
most cases it will be, but a data structure is not specified by the conceptual model. 

 
Figure 14.1    An example association . 

Attributes can be represented as single-valued mappings, usually to fun-
damental types. Thus the discussion of single-valued mapping also applies to 
attributes for those methods that use them. 

14.1.1     Bidirectional and Unidirectional Associations  

One of the first questions we need to consider is whether to use a bidirectional or a 
unidirectional association. There is a lot of controversy on this subject. 
Unidirectional associations are easier to implement and cause less 
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coupling in the software. But they do make it harder to find our way around. The 
patterns in this book use bidirectional associations. We can choose to implement 
all associations as bidirectional, all as unidirectional, or to use a mixture. Using a 
mixture is less consistent but does have advantages. If we use all bidirectional 
associations, we can get into coupling problems. If we use all unidirectional 
associations, we may find some associations that really do need to be 
bidirectional and may be worth making an exception for. 

If we want to use a unidirectional association, we need to decide which 
direction to support and which to drop. This will be suggested by the application. 
A good rule of thumb is to see what the clients of the association want to do and 
follow the direction that they need. I don't believe in detailed analysis of access 
paths, in the style of many methodologies. We should do the simplest thing first 
but be prepared to change it should our needs change later. If we keep a model, 
we should update it to show which direction we are using. 

If we use bidirectional associations, we must be very wary of those that cross 
packages. If we maintain bidirectionality, we will cause a mutual visibility 
between the categories, as discussed in Section 11.2. When I use bidirectional 
associations, I use them freely within a category but try to avoid them between 
categories because it is more important to reduce visibilities between categories. 

14.1.2     Interface for Associations  

The interface for associations in an OO language is a series of operations to access 
and update the association. The exact terms and structure of these operations 
depend on the cardinalities of the mappings involved. 

In general a single-valued mapping requires two operations: an accessor and a 
modifier. The accessor takes no arguments and returns the object to which the 
receiver is mapped to. The modifier takes one argument and changes the mapping 
of the receiver to that argument. Various naming conventions are possible. In 
Smalltalk it is conventional to name both operations mappingName, and the 
modifier is distinguished from the accessor by the presence of an argument. Thus for 
Figure 14.1 the employee class would have two operations: employer and 
employer: anOrganization. In C++ no standard convention exists, but frequently 
names such as getEmployer() and setEmployer (Organization org) are common. 
Using getEmployer() and setEmployer() is the most natural, but some prefer to 
use employerSet and employerGet() (or employerOf() and employerIs()) so that 
both operations appear together in an alphabetically sorted browser. 

A multivalued mapping requires three operations. Again there is an accessor, 
but this one returns a set of objects. All multivalued mappings are assumed to be 
sets unless otherwise indicated. The interface for nonsets is different and 
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is beyond the scope of this section. Two modifiers are required, one to add an 
object and one to remove an object. The accessor is usually named in the same way 
as for single-valued mappings, except I prefer a plural form to further reinforce 
its multivalued nature (for example, employees or getEmployees()). Modifiers 
take the form of addEmployee (Employee emp), removeEmployee (Employee emp) 
or employeesAdd: anEmployee, employeesRemove: anEmployee. 

It is not necessary to provide modifiers on both sides of a bidirectional 
association. Frequently it seems that modifiers are only likely to be used in one 
direction, usually the one that i s most constrained (such as 
Employee::employer). Accessors should always be provided in both directions 
of a bidirectional association; that is what makes it bidirectional. 

In a bidirectional association the modifiers must always ensure that both 
mappings are updated. Thus changing the employer of an employee changes not 
only the link from the employee to the organization but also the reverse links. 
We discuss the implementations in Sections 14.1.5 to 14.1.8. 

The modifiers should also ensure that constraints are checked. In practice the 
upper bound is covered by the nature of the interface if it is one or many and only 
needs to be checked for other numbers. The lower bound is the one that usually 
needs explicit checking if it is nonzero. In single-valued mappings the lower 
bound indicates whether a null can be provided as an argument. For multivalued 
mappings a lower bound implies a check in the remove operation. The 
cardinality of one mapping can affect operations implementing the other. For 
instance, in Figure 14.1 there should not be a remove employee operation on 
organization since that could not be done without breaking the constraint on 
employee. For the same reason no modifier should be provided for an immutable 
association. 

Type checking can be performed in the modifiers if it is not built into the 
language. This is a moot point in Smalltalk, which is by nature untyped. To do 
type checking you need some type test capability, such as that discussed in 
Section 14.2.6. I like to put type checks into a special precondition block. All 
objects have an operation called require: aBlock. The operation evaluates the 
block and raises an exception if it results in false. I then test the type within this 
clause with a statement such as sel f requi re: [aCustomer hasType: #Customer]. 
This allows me to easily take out the type checking for performance reasons, 
rather like precondition checks in Eiffel. (Indeed I use this structure for 
precondition checking in general.) 

The set returned by the accessor of a multivalued operation can be used for 
further manipulation using the facilities of whatever set class is present in the 
environment. However, you must ensure that modifying the membership of the 
set by adding or removing objects does not change the mapping from which the 
set was formed. Modification of the mapping can only come from modifier 
operations that are part of the explicit interface (see Section 6.9). 
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In some cases the return of a set by a multivalued accessor may be a per-
formance hit. In these cases the interface can be extended to include common set 
operations (such as select, do, and collect) and an iterator [4], Such extensions 
should follow the naming conventions of whichever set class you are using. 
These interface extensions can cause the interface to become bloated, however. 

In C++ there is often an issue about what should be returned by accessors: the 
object or a pointer to the object. Whatever is returned should be made explicit by 
the design templates. A common convention is to return the value for all built-in 
data types, the object for all fundamental classes, and a pointer for all other 
classes. In Smalltalk this does not apply since you always work with objects, or at 
least it seems that way! In the discussion below I always refer to returning 
references; the actual templates should make clear exactly what is being returned 
for C++ and similarly pointer-explicit languages. 

14.1.3    Fundamental Types  

Some object types are fairly simple and prevalent throughout all parts of a model. 
As such they require slightly different treatment than most object types, 
particularly with respect to associations. Examples of such object types are the 
classic built-in data types of programming environments: integer, real, string, and 
date. Good OO analysis, however, typically uncovers other examples: Quantity, 
money, time period, and currency are typical examples. It is hard to give rules 
for what makes a type fundamental—primarily it comes from its presence all 
over the model and a certain internal simplicity. This means that if the 
fundamental type's associations are implemented in the standard way, it will be 
burdened with a large number of operations linking the fundamental types to 
other types all over the model. Thus with fundamental types, mappings to 
nonfundamental types should not be implemented; that is, there should be no 
operations. In addition, associations to other fundamental types should be 
handled on a case-by-case basis. 

It is useful to indicate fundamental types in some way on a model. One way 
is to mark the object type as fundamental in the glossary. Another is to use 
one-way associations. The problem with one-way associations is that they are 
essentially an implementation feature and may confuse non-IT analysts. 

A common feature of fundamental types is that their key features are 
immutable: You cannot change any property of the type. Consider the object $5. 
You cannot change either the number (5) or the currency ($) without describing 
a separate object. Not all properties are immutable, however. Currency can be 
considered a fundamental type yet may have mutable properties such as its 
holiday list (for trading purposes]. It is particularly important with fundamental 
types to ensure that the immutable properties are properly enforced. 
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14.1.4    Implementing a Unidirectional Association  

Implementing a unidirectional association is pretty straightforward. You have a 
field in the class that is the source of the single mapping, and this ���� ���U���P��4u  of the s��L�Û*41 1 rg
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affect the actual mapping. However, this may incur a significant time overhead 
for large sets. Alternatives are to return a protection proxy or an external iterator 
[3]. A protection proxy is a simple class that has a single field containing the set. 
All permitted operations are defined on the protection proxy, which it 
implements by passing the call onto the contained set. This way updates can be 
blocked. An external iterator is rather like a cursor into the collection. The 
iterator can return the object that it is pointing to and can be advanced through the 
collection. 

Since there are two pointers implementing each link between two objects, it is 
important that modifiers keep them in sync. Thus a modifier called to change 
Peter's organization to IBM must not only replace the pointer from Peter with one 
that points to IBM but also delete the pointer to Peter in NASA's employees set 
and create one in IBM's employees set. But doing this gets us into an OO 
conundrum. Employee needs to use some operation that will manipulate the set 
pointer alone without returning a call to Peter (otherwise, we get in an endless 
loop). However, this operation must not be part of organization's interface. In 
C++ this is a classic use of the friend construct. In Smalltalk we have to create 
such an operation but mark it as private (which of course does not stop employee 
from using it). In these cases a useful move is to have only one modifier do actual 
work that manipulates the data and/or the private operations. The other modifier 
should then just call that one modifier. This ensures that there is only one copy of 
the update code. 

This implementation works well. It is fast in navigation in both directions. 
Although ensuring all pointers get updated together is a little tricky, once it has 
been sorted out, the solution is easy to replicate. Its principal disadvantages are 
the size of the sets required for multivalued mappings and a slower speed for 
updates. 

14.1.6    Bidirectional Implementation by 
Pointers in One Direction  

This implementation uses pointers in one direction only. To navigate in the other 
direction, we need to look at all instances of the class and select ones that point 
back to the source object. In Figure 14.3 the employees mapping would require 
getting all instances of employee and selecting those whose employer is NASA. 

Modifiers are straightforward. The modifier on the class with the pointer 
merely changes the pointer, and that public routine can be called directly by a 
modifier on the other class. There is no danger of multiple pointers getting out of 
step. 

This scheme is space efficient because it stores only one pointer per link, but 
it will be slow when navigating against the direction of the pointers. Its update 
speed is fast. 
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Figure 14.3    Implementation with pointers in one direction. 

14.1.7    Bidirectional Implementation by Association Objects  

Association objects are simple objects with two pointers that can be used to link 
two other objects, as shown in Figure 14.4. Typically a table of such objects is 
provided for each association. Accessors work by getting all objects within that 
table, selecting those that point to the source, and then following each pointer to 
the mapped objects. Modifiers are simple, merely creating or deleting the 
association object. Special association classes can be built; or dictionary classes 
with their hash table lookups can be used to implement them. 

 

Figure 14.4    Implementation with association objects. 

Association objects are not very fast in either direction but can usually be 
indexed (by using a dictionary), which can improve speed. They are space 
efficient if most objects are not related in the mapping, in which case space is only 
used if needed. They are also useful if it is not possible to alter the data structure 
of either participating class. 
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14.1.8    Comparison of Bid irectional Implementations  

In most cases the choice will be between pointers in both directions and pointers 
in one direction. The former provides speed of access in both directions, while the 
latter is much more space efficient and faster on update. The cardinalities and the 
actual number of links affect the trade-off. 

Association objects are useful in special cases, but on the whole they are not 
the first place to look. 

14.1.9    Derived Mappings  

On the whole, derived mappings look no different than any other kind of mapping. 
Accessors are provided just the same as base mappings; they should be 
indistinguishable. Often, however, it is not possible to provide a modifier. The 
important thing about derived mappings is the constraint they imply between the 
derived mapping and the combination of other mappings that make up the 
derivation. 

14.1.10  Nonset Mappings  

Although the majority of multivalued mappings are sets, there are exceptions. In 
this book they are indicated by short semantic statements such as [l ist], 
[hierarchy], and [key: mappingName]. These kinds of statements imply a 
different interface. Mappings marked with [list] will return a list rather than a set 
and will have modifiers such as addFi rst, addLast, addBefore (Object), and i 
ndexOf (anObject). I have not attempted to provide all the interfaces for these 
cases in this book. If we use such constructs, however, we should ensure we work 
out the design templates for them. Usually we should base the interface on that of 
the underlying collection. We can also think of these constructs as association 
patterns (see Chapter 15). 

14.2     Implementing Generalization  

One of the most noticeable differences between OO type modeling and most 
conventional data modeling practices is the great use of generalization. Although 
generalization has long been part of many data modeling approaches, it is often 
seen as an advanced or specialized technique. The close relationship between 
generalization and OO's inheritance ensures a central place for it in OO analysis. 

Many OO methods use generalization as an analysis equivalent to inheritance. 
Methods that use dynamic and multiple classification, however, require more 
thought because mainstream OO languages only support single static 
classification. The approaches to implementing multiple dynamic 
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classification can also be used to reorganize inheritance structures and 
implement generalization in environments that do not support inheritance. 

For generalization, I describe the implementations first and then the 
interface, since this makes it easier to understand the variations the interface 
needs to support. 

14.2.1     Implementation by Inheritance  

In most methods subtyping and subclasses are synonymous, thus providing the 
best possible form of implementation. The interfaces for each type are placed on 
corresponding classes, and method selection is properly supported by the 
language. Thus this approach is always preferred if possible. Its disadvantages are 
that it does not support multiple or dynamic classification. 

14.2.2     Implementation by Multiple Inheritance 
Combination Classes  

Figure 14.5 shows an example of multiple classification, which we can deal with 
by multiple inheritance combination classes. In this example we would create 
classes for priority corporation and priority personal customer in addition to 
classes for each of the four object types on the diagram. By using multiple 
inheritance the classes can neatly capture all the required interfaces and let the 
programming system deal with method selection in the usual way. 

 
Figure 14.5   An example of multiple classification.  

There are two disadvantages to this approach. The first is that an object type 
with many partitions can cause an unwieldy set of combination classes. Four 
complete partitions, each with two types, require 24 combination classes. The other 
disadvantage is that this approach only supports static classification. 
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14.2.3     Implementation by Flags  

If a programmer who had never heard of inheritance was asked how to implement 
the need for customers to record whether they are a priority or not, the answer 
would probably be "with a status flag." This old-fashioned scheme is still 
effective. It provides a quick way to support multiple and dynamic classification. 
Flags are easily changed at will, and one flag field can be defined for each 
partition. Indeed this is the scheme used for state changes in OO programs not 
based on dynamic classification. 

The main difficulty with this approach is that we cannot use the inheritance 
and method selection within the language. Thus all operations in the interface of 
the subtype have to be put on the supertype's class. In addition, all fields required 
to support subtypes need to be included in the supertype class. Thus the customer 
class implements both the customer and the priority customer object types. 

If the receiving object is not an instance of the subtype, it is clearly not 
appropriate to use operations defined on the subtype, such as asking for the rep of 
a nonpriority customer, as shown in Figure 14.6. This would cause an error (a 
run-time error in Smalltalk and probably a compile-time error in C++) if we are 
using inheritance. All operations defined on a subtype must be guarded by a check 
to ensure that the receiver is of that subtype. If that check fails, the routine exits, 
yielding some sign of the problem, usually an exception. This exposes a further 
disadvantage of this scheme in C++—it is not possible to catch these errors until 
compile time. 

 
Figure 14.6    Priority customer example.  

Since inheritance is lost, its partner polymorphism is also only a memory. 
Thus if a shipping price operation is polymorphic, then the method selection 
needs to be implemented by the programmer. This is done using a case statement 
inside the customer class. A single shipping price operation is provided as part of 
customer's interface. In the method for that operation, there is a logical test based 
on the subtypes of customer, with possible calls to 
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internal private methods. If the case statement is kept within the class and a 
single operation is published to the outside world, all the advantages of poly-
morphism remain. Thus the soul remains even if the body is absent. 

The final disadvantage of this implementation is that space is defined for all 
data structures used by the subtype. All objects that are not instances of the 
supertype waste this space. If there are a lot of associations on the subtype, this 
can cause problems. 

14.2.4    Implementation by Delegation to a Hidden Class  

This approach is a useful variant on using flags to implement subtyping. In this case 
a class is prepared for the subtype, but this class is hidden from all but the 
supertype class. We must provide a field in the supertype class for a reference to 
the subtype (which can double as a flag). Again we must move all the operations of 
the subtype to the supertype's interface. However, the data structure remains on 
the supertype. All the operations on the supertype class, which come from the 
subtype class, delegate the call to the subtype class, which holds the actual 
method. 

Thus for the conceptual model shown in Figure 14.7, an instance of executive 
would have one instance each of employee and executive, as shown in Figure 
14.8. The executive object and its class are not seen by any component other than 
the employee class. (In C++ all its members would be private and employee its 
friend.] The giveStock operation, defined on the executive type, would be placed 
on employee. When pay is sent to an employee object with an associated 
executive, the method on employee for pay merely calls the pay method on 
executive and returns any result. In this way no other part of the system knows 
how subtyping is implemented. Method selection for polymorphic operations are 
implemented in the same way as for flags (an internal case statement) with a call 
to the executive's method if appropriate. Another approach would be to place all 
methods on employee and make executive nothing but a data structure. This, 
however, would make executive less of a self-contained module. 

 
Figure 14.7    Conceptual model of employee and executive.  



 
 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

 
Figure 14.8    Implementatio n model of Figure 14.7 using delegation to a hidden 
class.  

The logical conclusion of this approach is the state pattern [3] shown in 
Figure 14.9. In this case there is always a hidden class present. The different 
hidden classes all have a common abstract superclass, which is itself hidden. 
Employee simply delegates pay to its hidden class. Whichever subclass is present 
responds appropriately. This allows new subtypes to be added without changing 
the employee class, providing they do not add to the interface of employee (a 
similar approach is the envelope/letter idiom [3]). 

The main advantages of using a hidden class over using flags alone is that it 
provides greater modularity for complex subtypes. It also eliminates wasted 
space. 
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Figure 14.9    Implementation of employee and executive with the state pattern. 

An instance of the abstract EmployeeGrade class is always present. Any state-dependent 
behavior is declared on EmployeeGrade as an abstract method and implemented by the 
subclasses. I have used an arrow to show subclassing (from Rational's Unified Modeling 
Language (UML) [1] to reinforce the difference between subclassing and subtyping. 

14.2.5    Implementation by Creating a Replacement  

One way to handle changes in type is to implement the subtype with a subclass 
and on reclassification to remove the old object and replace it with a new one of 
the appropriate class. This allows the programmer to retain the advantages of 
inheritance and method selection while still providing dynamic classification. 

The procedure for carrying this out is to create the object in the new class, 
copy all common information from the old object to the new, change all the 
references pointing to the old object to point to the new one, and finally to delete 
the old object. 

In many environments the biggest problem is finding all the references to the 
old object and moving them to the new one. Without memory management this 
can be nearly impossible. Any references that are not caught become dangling 
pointers and lead to a crash that is difficult to debug. Thus this approach is not 
recommended for C++ unless some memory management scheme is used that can 
reliably find all references. Languages with memory management may find this 
easier; Smalltalk provides a method (become) to do the swapping of references. 

If all references can be found and changed this approach is plausible. Its 
remaining disadvantage is the time taken in copying common information and in 
finding and changing the references. This amount of time varies considerably 
among environments and determines the approach's suitability. 
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14.2.6    Interface for Generalization  

All five implementations work well, and all are regularly used in object-oriented 
programming. For each implementation to be an alternative for conceptual 
generalization, we need to have a single interface for all of them. 

A controversial question in OO programming is whether there should be an 
operation that returns an object's classification. Such an operation is often 
important—how else can we take a set of people and filter it to leave only the 
women? Such an operation, however, also presents the danger that programmers 
will use it within a case statement subvert polymorphism and the advantages that 
it brings. There seems little that can be done within the structure of OO 
programming to eliminate this dilemma. An operation to return an object's 
classification is often necessary and thus should be provided. However, for the 
sake of good programming style we should not use such an operation instead of 
polymorphism. As a general guideline, classification information should only be 
requested as a part of pure information gathering within a query or for interface 
display. 

Some conventions currently exist for finding out the classification of an 
object. Both Smalltalk and C++ programmers use operations named i 
sState-Name to determine whether an object is in a certain state. Smalltalk has a 
message isKindOf :  aClass to determine class membership. C++ does not hold 
class information at run time (although that will change with the forthcoming 
standard). However, sometimes operations that effectively give this information 
are provided when a need is there. 

Two broad naming schemes can be used. The first is to use the naming form 
isTypeName. The second is to provide a parametric operation such as hasType 
(TypeName). The first scheme is the normal convention used with flags and 
hidden classes. It works well in this guise but has a problem covering subclassing. 
If we want to add a new subclass to an existing class, we need to add the 
isTypeName operation to the superclass as well as the subclass. Otherwise, 
calling i sTypeName on the superclass causes an error. The hasType convention 
is more extensible since subclasses can be added without a change to the 
superclass. Remember that in all cases we want type information, not class 
information. 

No typical naming standard exists for type changes. Names such as 
make-TypeName or classifyAsTypeName are reasonable (I prefer the former). 
Such operations should be responsible for declassifying from any disjoint types. 
Thus a complete partition need only have as many modifiers as there are types in 
the partition. Incomplete partitions need some way to get to the incomplete state. 
This can either be done by providing declassifyAsTypeName methods 
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for each object type in the partition, or by providing a single 
declassifyIn-PartitionName operation. Note that partitions that are not 
expected to be dynamic will not have these modifiers. 

When these modifiers are used, associations will imply similar issues to 
those discussed under creation and deletion. Thus mandatory mappings require 
arguments in a classification routine, and a declassification can lead to choices 
akin to single and multiple deletion. 

Not all subtypes are dynamic, but the decision about whether to make a 
partition dynamic or not depends on whether the model is a conceptual or 
interface model. In conceptual modeling, marking a partition as immutable is a 
strong constraint and is often quite rare. Although it might be argued that for 
most applications we would not want to change people from male to female, 
that type change is not a conceptual impossibility. Even before recent medical 
advances occurred, such a change might be required. A company might think 
that a person was female and only later discover that he is male. Such a 
discovery is conceptually handled by a type change. 

The fact that most languages handle type changes poorly prompts us to 
reduce the amount of type changing that is going on. Thus when a partition is 
only dynamic in very rare cases, it is reasonable, in a specification model, to 
declare it as static. The rare cases, often due to error in identification or a 
mistake by the user, can be handled by the user creating a replacement object 
explicitly. This is another source of difference between a purely conceptual 
model and a conceptually based specification model. 

14.2.7     Implementing  the hasType Operation  

At this point it is useful to say a few words about implementing the type accessor. 
Each class in the system will need a hasType operation. The method will check 
the argument against all the types implemented by the class. If flags have been 
used, then they are checked to test for the type. Even if no flags are present, the 
class will almost certainly implement a particular type, and that type must be 
checked. If any of these tests are true, then true is returned. If, however, none of 
the class types match, then the method on the superclass must be called and the 
result of that returned. If there is no super-type, then false is returned. Thus in 
practice a message sent to the bottom of a hierarchy will bubble up the hierarchy 
until it hits a match or it runs out at the top and comes back false. This mechanism 
makes it easy to extend the type hierarchy because only the class that implements 
the type needs to check for that type. 
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14.3     Object Creation  

Mechanisms are required to create new objects, both those that are implemented 
directly by a class and those that are indirectly implemented. 

14.3.1     Interface for Creation  

Each class must have a way of creating instances of the types it implements. 
Creation implies not only forming a new instance object but also satisfying the 
various constraints that exist for the object so that it is a legal object. 

All mandatory associations must be filled during the creation operation (a 
complete creation method [1]). This implies that the creation operation must 
have arguments for each mandatory operation. Similarly any subtypes in 
complete partitions implemented by the class must be chosen through arguments. 
Mandatory cases and immutable association or partitions that are not mandatory 
should also be chosen through arguments. 

Sometimes it is difficult to use the default object creation mechanisms to do 
this, due to other assumptions in the implementation environment. Factory 
methods [3] should be used in these circumstances. 

It is also permissible to include optional, mutable features in the creation 
arguments. However, it is usually better first to create the object and then to send 
it the necessary messages to set up these features. 

14.3.2     Imple mentation for Creation  

All object-oriented languages have their own conventions for creating new 
objects. Typically these provide for allocating storage and the initialization of 
fields. However, the initialization routine is not always an appropriate place for 
setting up the mandatory features passed through arguments. 

In Smalltalk the usual idiom is to have each class support a creation message 
(often called new) that can take arguments. During creation it is often arranged for 
the new object to be sent an initialize message that takes no arguments. This 
initialize is useful for setting the instance variables of multivalued mappings to a 
new set but cannot support initializing associations since it takes no arguments. 
The best thing is to use Kent Beck's Creation Parameter Method pattern [1] by 
having a special method to set these initial parameters. 

C++ provides a constructor for initialization. Much can be done, here but 
sometimes there can be problems with constructor semantics. Often it is better to 
use the constructor only within another create operation; the "Gang of Four" 
creation patterns [4] are particularly helpful for such cases. 
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14.4     Object Destruction  

As objects live, so may they die. Not all objects can be destroyed, some objects 
have to live forever (medical records, for example). Even then they may be 
destroyed by one system having been archived elsewhere. 

The biggest problem with destroying objects is living with the consequences. 
For example, deleting an instance of order from Figure 14.10 causes a problem if 
there are any order lines connected to it. Such order lines must have an order 
(mandatory association), so if we simply delete the order, the order lines are in 
violation of their constraints. 

 
Figure 14 .10    Example with customers and orders.  

There are two solutions to this problem. The first is the single delete—the 
kinder, gentler approach. If the delete results in any object being left in violation of 
its constraints, then the destruction fails. On the other side is the multiple (or 
cascading) delete—the hard and nasty approach. If this delete leaves an order line 
in violation of its constraints that object is also deleted. If anything has a 
mandatory mapping to this object, then those dependent objects are deleted as 
well—causing a ripple effect throughout the information base. 

In practice, deletes can have varying degrees of cascade. A destruction 
operation can be multiple with respect to some mappings but single with respect 
to others. This is perfectly permissible, but it must be ensured that the destruction 
is all or nothing. 

These issues are added to concerns about references in environments, like 
C++, that do not have memory management. Single and multiple deletes are 
about ensuring that objects do not break their cardinality constraints, and 
memory management avoids dangling pointers. 

14.4.1     Interface for Destruction  

Different object-oriented environments have their own approaches to destruction. 
All destroyable objects should have a fully single destroy operation. This is all a 
programmer needs, but it does put the onus on the user of the 
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class to destroy things in the right order. Together with a fully single destroy, 
some harder deletes can also be provided. It must be made clear, however, for 
which mappings the destruction is multiple. 

14.4.2     Implementation for Destruction  

It is during destruction that the presence of memory management makes itself 
most felt. It makes little difference to the destruction method itself but does affect 
the consequences of error. 

In both cases it is important that the object to be destroyed have all its links 
with associated objects broken (in both directions). The necessary checks must be 
made to see if the related object will be in violation of its constraints. If the delete 
is multiple, then the object too is destroyed. If the delete is single, then the whole 
destruction is abandoned and no changes are made to the information base. Any 
changes that were made so far must be rolled back. With a nonmemory-managed 
system the final step is to deallocate the storage. With a memory-managed system 
no explicit deallocation is made—with all its links removed the object dies of 
loneliness and gets garbage collected. 

14.5     Entry Point  

There is now a well-designed structure of connected objects. From any object it is 
easy to use the type model to decide how to navigate to another object. There is 
still one important question, however: How do we get into the object structure in 
the first place? This question may seem odd to those who use traditional, and in 
particular relational, databases because the entry points to these databases are the 
record types. Getting hold of the data involves starting at the record type and 
selecting individual records. Starting from a list of all instances of a type is not 
always the most appropriate method, however. Object-oriented systems, in 
particular, can provide different forms of access that can be more efficient and 
provide other useful abilities. 

We don't need a list of all instances for all types. Consider the example in 
Figure 14.11. Since all instances of order line are connected to an instance of 
order, we need not hold a reference from the type order line to all its instances. If 
we think it will be rare for anyone to ask for all order lines, regardless of order or 
product, then we can neglect the reference. In the unlikely occurrence that 
someone does want a list of all order lines, then we could provide this by getting a 
list of all instances of order and navigating across the mapping to order line. Thus 
we can save the storage required to hold all the references to all instances of order 
line at the cost of one level of indirection should we ever require all instances of 
order line. This is purely an implementation trade-off. In a relational database the 
trade-off is irrelevant since the database uses fixed tables. 
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Figure 14.11    Customer, order, product example. 

The same argument can be extended to order. We might consider that all 
instances of order are required if a person wishes to select an order by typing in 
an order number. Since the order number typically is a string, references from 
string to order are not usually held, and all instances of order are required. 
However, we could argue that orders are, in reality, always accessed once the 
customer is found. Again it is an implementation question as to whether to hold 
the pointers or not. 

This argument cannot be extended to customer because customer lacks any 
mandatory relationships. Thus it is possible for a customer not to be related to any 
other object. A list of all instances of customer is thus necessary to ensure that 
such a customer is found. This necessity to hold a list is what makes customer an 
entry point. 

Note that the decision of which object types should be entry points is purely a 
conceptual issue. Object types with no mandatory relationships must be entry 
points. Those with mandatory relationships can hold a list of instances, but that in 
itself does not make them conceptual entry points. 

14.5.1     Interface for Finding Objects  

It is useful for all types to have an operation that returns all instances of the type. 
Such an operation is essential for pointers in one direction to work when 
navigating against the grain. 

It can often be useful to provide some operation to find an instance according 
to some criteria. An example might be findCustomer (customer-Number) . 
Although it is difficult to provide general rules for using such an operation, in 
general the most natural way is to use navigation. Thus rather than asking to find 
all orders whose customer is ABC, it is conceptually easier to ask customer ABC 
for all its orders. This can cause optimization problems due to the navigational 
expression of the query, but these can often be resolved within customer's 
accessor. 
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When the finding is being done with respect to fundamental types, this option 
does not apply, so a general find routine is more useful. However, even then it 
should be done in as general a way as possible. The easiest approach is to ask for 
all instances of a class and then use the built-in select operation on the returned set. 
This does not work well for classes with many instances. The next move is to 
provide a select operation that will take any Boolean operation as an argument. 
This allows maximum flexibility with only one operation on the class's interface. 
However, it is much harder to do in some languages than in others. Only when 
these approaches are exhausted and it is too expensive to do it in a more generic 
way should we use a find with specific arguments. We must always take care not 
to bloat a class's interface. 

Note that these instance-finding operations are as valid for non-entry points as 
they are for entry points. Indeed the instance accessors should fit the same pattern. 

Entry points need an additional operation to make an object fit within the 
structure. Merely creating an object may not place it within the structure, 
particularly if it is not related to any other object within the structure. Thus entry 
point objects need an operation to insert them within the structure. 

The above interface comments are true for in-memory systems. Slightly 
different characteristics occur when using databases. Different database man-
agement systems (either OODBMSs or relational interfaces) have their own 
conventions. The pragmatic thing to do is to use those conventions with the 
proviso that, as much as possible, interfaces should be free of database man-
agement system specifics. 

14.5.2     Implementation of Find Operations  

The usual way of implementing an entry point is through some collection class. 
This collection can be a special singleton class (such as customer list) or a static 
field in the class. Asking a type for its instances means that the objects of the 
collection are returned. As with multivalued associations, it is important that the 
collection be unchangeable except through the entry point's interface. A non-entry 
point also typically has an operation to return all instances. This can be done by 
navigating from an entry point. Selects and finds work in a similar way. 

14.5.3    Using Classes or Registrar Objects  

Both the interface and the implementation of entry points can be done either by 
classes or by registrar objects. A class-based implementation of entry points 
results in each entry point class holding a collection of its instances as a class or 
static variable. The alternative is to have a separate registrar object that holds a 
collection for each entry point class. The main advantage of the 
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registrar approach is that it allows separate registrars to exist, perhaps for different 
contexts. Thus if two clinical departments wish to maintain different instances of 
disease, this can be done by having a separate registrar object for each clinical 
department. 

In the interface the difference lies in whether programmers send find messages 
to the class or to a registrar object. Using a registrar removes this responsibility from 
each class, but the registrar needs at least one find operation for each entry point 
class. If find operations are also used for non-entry points, then the registrar needs 
at least one find operation for each class. Using a registrar is useful when 
programmers need to understand and swap between different contexts. If only a 
single context is used, it can be set up as a global and the class-based operations 
can delegate to the appropriate registrar. 

14.6     Implementin g Constraints  

Type models help define the constraints that a type must satisfy. Cardinalities and 
partitions both indicate constraints. More complex situations require more 
complex types. The short and long semantic statements used in this book most 
often indicate the more complex constraints. 

Constraints do not generally affect the explicit interface of classes in pro-
gramming languages. An exception is Eiffel, where constraints define the class 
invariant. For languages without Eiffel's features, the constraints must be taken 
into account by all modifiers. The programmers writing modifier operations must 
ensure that using the modifier leaves the object in a state that violates none of its 
constraints. 

It is often useful to implement an explicit accessor to determine if an object 
fits within its constraints. An operation named something like checkI nvar iant 
should be provided for all classes to generate an exception if something is wrong 
and do nothing if all is well. This can be used as a health check at various points, 
included as part of a postcondition check during debugging and as part of system 
sanity checks during operation— which are particularly valuable for database 
systems. 

Smalltalk and C++ do not have explicit capabilities for constraints and 
assertions in the way that Eiffel does. They can be set up with a weak, but 
reasonably effective, alternative. In Smalltalk you can set up an operation (called 
something like requi re: aBlock) that takes a block as an argument. The method 
can be written in class object to execute the block and throw an exception if it 
comes back false. The require method can then be used for precondition checks, 
invariant checks, and some postcondition checks. C++ has a macro called assert 
that can be used for the same purposes. 



 
 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

Patterns for Type Model Design Templates   295 

14.7     Design Templates for Other Techniques  

This book is dominated by type models. Hence the design templates in this 
chapter are transformations from type models. Similar principles can apply with 
other techniques. Although such a direct mapping is not as plausible, design 
template patterns can be provided for event diagrams [6]. There has been quite a 
lot of discussion over the last few years about design templates for various kinds 
of state models, although we are still waiting for a solid statement on the subject. 
Interaction diagrams are sufficiently close to implementation to be fairly obvious 
in their relationship to code. 

Over the last few years there has been a small but significant group of 
developers stressing this kind of transformation approach. Shlaer and Mellor 
have been at the forefront of this group [8]. I hope that as time passes more 
attention will be paid to this topic and that we will see more patterns and some 
complete design templates. I suspect that a full set of templates is more likely to 
be produced as either a commercial tool (probably linked to CASE tools) or as an 
in-house effort. I hope that patterns for such templates will become a regular part 
of the literature. 
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Association Patterns  

Associations are a common construct in analysis and design methods. Often a 
particular situation will recur with an association. A special notation may be 
introduced, but it is possible to model the situation without this notation. A useful 
way of thinking about this is to consider the situation to be a pattern. This 
association pattern can be represented in a base form, or a new notation can be 
introduced as a shorthand. Both are equivalent in meaning. 

This chapter focuses on three such situations. An associative type (15.1) 
occurs when you want to treat an association as a type, typically by giving it some 
features. A keyed mapping (15.2) is used to give a lookup table, or dictionary, 
behavior to a mapping. Each of these patterns uses many methods with additional 
notations. Understanding the patterns behind the notations is valuable. A method 
may not support an additional notation, so it is essential to know how to work 
without it. This is particularly true if you are used to a method that supports a 
notation and are moving to one that does not, or if you are translating between 
methods and one method does not support a notation. 

Even if your method uses a notation for an association pattern, it is important 
to understand how notation relates to simpler ideas. If the situation is rare, it is 
often better not to introduce an extra piece of notation to remember, but to use the 
base form. 

The third association pattern is the historic mapping (15.3). We can use 
historic mappings to keep a history of the value changes of a mapping (such as a 
history of salaries for an employee). This is not supported by a specific notation 
in any method that I am aware of. However, this is a vital pattern for many 
information systems. When a historic mapping is needed, it can be valuable to 
introduce a notation as a shorthand for the association pattern. 

297 
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Particular complications arise when not only is the world changing but also our 
knowledge of it is changing at different places; this leads to two-dimensional 
history (15.3.1). 

Several factors affect the choice between using the notation or the base form. 
Conceptually the principal trade-off is between the conciseness offered by the 
notation and the extra notation we need to remember. In a specification model, a 
notation implies a different interface in the software. This interface is probably 
more convenient to use than that obtained by transforming from the base form. 
However, operations can always be added to the specification model to provide 
the more convenient interface. This adds extra explicit operations to the 
specification model but avoids the extra notation. 

Whether to use the notation or the base form is a matter of choice. In this 
chapter I indicate my preferences, which, I should stress always take second 
place to the desires of a client. It is my job as a consultant to make the client's life 
easier. 

Association patterns operate at the meta-level: They are patterns that are used 
in describing modeling languages rather than the models themselves. I  use the 
term meta-model patterns to describe this general class of patterns. Other 
meta-model patterns could be used to describe meta-level concepts in 
generalization, state models, or any other modeling technique. 

15.1     Associative Type  

A common modeling situation occurs when we wish to add an attribute to a 
relationship. For example, an early model indicates that a person is employed by a 
company, as shown in Figure 15.1. Later work reveals that we should record the 
day that the employee started, and it must lie on the relationship. We can add the 
start date attribute to the relationship using a notation such as Rumbaugh's [2], 
shown in Figure 15.2. 

 
Figure 15.1    Simple relationship between person and company. 

If a modeling method does not support adding an attribute to a relationship in 
this way, there are a number of alternatives. In our example one alternative is to 
add the start date to the person. Since a person has, by definition, only one 
company, there is no danger of ambiguity. We might think that the start date 
attribute is really a part of the relationship, but it is difficult to 
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Figure 15.2   Adding a start date attribute to Figure 15.1 This 

diagram uses Rumbaugh's collar notation. 

justify as anything other than semantic nit-picking. A more reasonable objection is 
that the start date should not have a value unless there is an employer. This could 
be resolved by a rule, although this is always a less than ideal solution, in 
particular since most methods do not support these kinds of rules well. 

This approach cannot be used on relationships where both mappings are 
multivalued as in Figure 15.3. Since a person has a different competency for 
each skill it is impossible to put the number on person. 

In methods that do not support association types, we can introduce an 
additional type, as shown in Figure 15.4 (note how the cardinalities have been 
transferred from Figure 15.1). This handles the situation quite well. The new type 
may be somewhat artificial, but all models contain a certain amount of artificiality 
since they represent a real situation with a greater degree of formality than exists in 
natural language. One of the most significant differences between the two models 
lies in the interface implications. In Figure 15.2, person has a getEmployer 
operation that returns the associated company. The Figure 15.4 model has a 
different interface that returns the employment 

 
Figure 15.3   A relationship where both mappings are multivalued. 

 
Figure 15.4   Adding an employment type as a holder for the start date. 
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object. The employment object then needs an additional message to get the 
company, so we need to make the original association a derived association, as 
shown in Figure 15.5. 

employer 

 

Figure 15.5    Restoring the employer mapping with a derived mapping. 

We can consider a more subtle point by considering the many-many asso-
ciations shown in Figure 15.3. Figure 15.6 uses the same introduction of a new 
type. Just adding the competency type works well on first inspection, because it 
allows a person to have many competencies, and thus multiple skills, each with a 
competency value. The problem is that that model is more permissive because it 
also allows multiple competencies for the same skill. To eliminate this we need the 
additional uniqueness rule for competency, indicating that each competency must 
have a unique combination of person and skill. 

 
Figure 15.6    Using a new type to handle Figure 15.3. 

This issue is often not noted by modelers who do use the associative type 
notation. Figure 15.7 is another typical use of this notation in which the rela-
tionship holds an understanding that a person can be an employee of many 
companies, and some of these employments may have completed, so we have 

 
Figure 15.7    Employment associative type. 
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a history of employment. It is quite possible for a person to have two periods 
working for the same company. Hence we would not add a constraint of the style 
shown in Figure 15.6. The problem is that, in general, we do not know whether 
to interpret an associative type as having the constraint or not. 

In practice, modelers use the associative type notation with both interpre-
tations. That is not in itself a fault, but they should make clear which they mean. 
It is reasonable to use Figure 15.7, but in that case a rule must be used for the 
Figure 15.3 case along the lines of the rule in Figure 15.6. If modelers wish to use 
the Figure 15.3 case as the usual interpretation, then they cannot use a model of 
the form of Figure 15.7; they must use a new type instead. 

On the whole I don't tend to use associative type notations. Unless they 
include a definite rule, such as that of uniqueness, then I don't think they add 
very much value for the extra notation. The uniqueness can be useful but is so 
rarely used properly that I would rather use an extra type and add the uniqueness 
rule to make it explicit. 

15.2     Keyed Mapping  

Keyed mappings represent a technique that mirrors in analysis the technique of 
using dictionaries (indexed lookup tables, also called maps [1] or associative 
arrays) to implement relationships. Examples of its use are shown in Figures 15.8 
and 15.9. Our main concern is to record how many of a particular product are on a 
particular order. The classic data model for this is shown in Figure 15.8. The 
model shown in Figure 15.9 uses keyed mapping notation, which concentrates on 
asking an order how many of a product it has and changing this. Figure 15.8 
balances this with the product being able to answer which orders it is ordered in 
and how much on each order. 

 
Figure 15.9    Using a dictionary to model Figure 15.8. 

An important part of the interpretation of these models is how they affect the 
interface of the types. The Figure 15.8 model implies an interface of 
getLineI tems on order and product. The Figure 15.9 model implies an interface 
of getAmount-(product) on order. No interface is implied for product. 

 
Figure 15.8   A classic order, line item model. 
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To find the use of a product in different orders would require asking all instances 
of order whether they have an amount for the product, which is somewhat more 
circuitous. Another difference lies in asking an order what products are present 
on it. For Figure 15.8 this merely requires asking an order for its line items and 
then each line item for its product. For Figure 15.9 this would require asking the 
order for the dictionary of amounts and then asking for its keys; order would have 
to provide a getAmounts operation to allow access to its dictionary (or more 
strictly a copy). Otherwise, we would need to test every instance of product 
against the order. 

Keyed mapping notation can be used to handle uniqueness constraints. The 
Figure 15.8 model would usually come with a rule to say that only one line item 
can exist for a product within an order. We would not want a line item for 30 
widgets and a separate line item for 20 widgets on the same order. A better 
proposal is to have a single line item for 50 widgets. This needs a rule for Figure 
15.8 but is quite explicit in Figure 15.9, since an order can only have one quantity 
for a product. 

We need to consider what response the order should make if it is asked for the 
amount of a product that is not on the order. In this example it seems reasonable to 
return 0, making the keyed mapping mandatory. In other cases we might wish to 
make a null return, which would make the mapping optional. 

If both representations are valuable, then there is no reason why we can't use 
both of them together. We can note the redundancy by using a rule or a derivation 
marker, as shown in Figure 15.10. Using both representations supports the fact 
that the Figure 15.8 approach is more flexible in general cases while the Figure 
15.9 approach adds a very useful shorthand behavior, as well as making the 
uniqueness explicit. 

 
Figure 15.10    Using both representations, marking one as derived.  

I find the keyed mapping notation a very useful construct. Whether I use it or 
an extra type depends on the situation and what I want to emphasize. Although I 
can certainly live without it, I often find it a handy construct. Beware not to 
overuse it, though. Often the extra type is important for 
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additional information and behavior. In Figure 15.8 we could easily add a cost for 
the line item, which would be awkward using Figure 15.9. Naturally the "eat your 
cake and have it too" answer of Figure 15.10 is a frequent choice. 

15.3     Historic Mapping  

Objects do not just represent objects that exist in the real world; they often 
represent the memories of objects that once existed but have since disappeared. 
Using objects to represent memories is perfectly acceptable—memory of 
existence is often as real to people as the existence itself—but it is important to be 
able to tell the difference. Consider the issue of recording a person's salary. At 
any single moment a person has a single salary, as shown in Figure 15.11. 
However, as time passes that salary may change. This in itself does not invalidate 
Figure 15.11 as a model, unless we need to remember the history of the salary. If 
all we want is to remember past salaries then Figure 15.12 will do the trick, 
provided that we add to the modifier of salary the ability to append the old salary 
to an old salaries list. By using a list we cannot only record previous salaries but 
also preserve the order in which they were applicable. 

 
Figure 15.12   A model that remembers past salaries. 

Figure 15.12 may be adequate in many situations, but it doesn't help us 
answer the question "What was John Smith's salary on January 2, 1997?" To 
answer this question we need the rather more sophisticated approach suggested 
by Figure 15.13. This model gives us the ability to record both salaries and their 
full histories. We do need an additional rule, however: Salaries for a person must 
not have overlapping time periods. This rule is often implicitly assumed, but is 
usually not shown explicitly—and is thus forgotten. 

The model shown in Figure 15.13 provides the power we need, but it is rather 
clumsy. The important point that an employee can have only one salary at a time 
is lost without looking at the underlying rules. One association 

 

Figure 15.11    At any point in time a person has one salary. 
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Figure 15.13    A full record of salary history. 

between two types is now four types and three associations. This can add sig-
nificantly to the complexity of a diagram, particularly if there are many such 
historical relationships. The interface suggested for this is also rather clumsy. The 
answer to the question in the previous paragraph involves asking John Smith 
for all his salaries and then selecting the one whose time period includes 
January 2, 1997. 

I often use the model shown in Figure 15.14, which combines the flexibility of 
the Figure 15.13 approach with the diagrammatic economy of the Figure 15.11 
snapshot. All the details are hidden behind the small but significant [history] 
keyword. I have introduced a new notation, which is perfectly permissible so 
long as I define it properly. I'll forego a mathematical definition and instead 
indicate the interface defined by the keyword. Figure 15.11 implies an accessor 
getSalary() to return the value of the salary and a modifier setSalary(Money) to 
change it. Figure 15.14 implies a different interface: The accessor getSalary() 
still exists but this time returns the current value of the salary mapping. This is 
supported by getSalary(Date), which returns the value of the mapping at the 
supplied date. getSalary() is equivalent to getSalary (Date::now). 

Updating is a little bit more complex. We can use a setSalary (Money, 
Date) operation to append a new salary, starting at a particular date, to the history. 
This is a good interface for additive changes but is not sufficient if the old 
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Figure 15.14    Representing the power of Figure 15.13 with a simpler notation. 
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record needs alteration. A setSalaryHistory (Dictionary (key: TimePeriod, 
value:Money)) operation would be our best bet, together with a getSalary-H1 
storyQ operation. Then the client can get the current salary history as a dictionary, 
use the standard dictionary operations, and then amend the whole record in one go. 
This is better than updating one record at a time because of the rule that an 
employee must have one salary at any one date. If alterations are made one record 
at a time, it is awkward to keep the rule true after every change. Taking the 
complete record out, changing it (without the rule checking), and replacing it all at 
once is much easier to manage. 

Clearly a dictionary implementation with time period keys is suggested here. 
Such an implementation easily supports all the behavior required by the interface 
and is a simple use of the approach. We can even go further and introduce a 
special class to handle historic collections. 

The history notation is not currently suggested by any methodologist to my 
knowledge. It is very valuable because it simplifies a situation that is both 
common and sticky. The ideal solution is to have an object system with full "time 
travel" capability. Such a system is not completely farfetched, and its arrival will 
remove the need for any special handling of history. 

This section is also a particular case of a general point. In modeling you may 
come across a repetitive situation that is both common and awkward to model. 
Don't be afraid to introduce a new notation to simplify this, but you must define it 
properly. The key trade-off to consider is the simplification of a new construct 
versus having to remember the extra notation. A good notation is a compromise, 
allowing elegance but without a vast notation. The trade-off is not the same for all 
projects, so don't be afraid to make your own decisions in these matters. 

Modelin g Principle  If you come across a repetitive situation that is difficult to model, 
then define a notation. However, define a notation only if the resulting simplification 
outweighs the difficulty of remembering the extra notation. 

15.3.1     TVvo-Dimension al History  

The above discussion focuses on the problem of being able to retrieve the values 
of some attribute of an object at some point in the past. Many systems have a 
further complication that results from the fact that they do not receive knowledge 
of changes in a timely manner. 

Imagine we have a payroll system that knows that an employee has a rate of 
$100/day starting on January 1. On February 25 we run the payroll with this rate. 
On March 15 we learn that, effective on February 15, the employee's rate changed 
to $110/day. What should the employee object answer when asked what its rate 
was for February 25? There are two answers to this question: what the employee 
thought the rate was at that time and what the employee thinks the rate is now. 
Both of these rates are important. If we need 
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to look back at the February 25 payroll run to see how the numbers are calculated, 
we need to see the old figure. If we need to process a new entitlement, perhaps for 
a couple of hours overtime that were not reported previously, we need the rate as 
we understand it now. 

Life being what it is, things can get worse. Assume we made corresponding 
adjustments and made the late overtime payment, all of which gets processed in a 
payroll run on March 26. On April 4 we are told that the employee's rate was 
changed again to $112 effective February 21. Now the employee object can give 
three answers to what its rate was on February 25! 

To deal with this kind of problem in general, we need a two-dimensional 
history. We are asking the employee what its rate was at some point in the past, 
according to our knowledge at some other point in the past. Thus two dates are 
needed: the date at which the rate is applicable and the date on which we base our 
knowledge, as shown in Table 15.1. 

APPLICABLE  
DATE 
 

KNOWLEDGE  
DATE 
 

RESULT 
 

February 25 
 

February 25 
 

$100/day 
 

February 25 
 

March 26 
 

$110/day 
 February 25 

 
April 26 
 

$112/day 
 

Table 15.1    Two-dimensional rates for the example. 

The single dimensional example effectively has to choose between treating 
the applicable and knowledge dates as the same, or always considering the 
knowledge date to be "now." 

Adding full two-dimensional capabilities to history certainly adds a lot of 
complication, and it is not always worthwhile. It is important to look at why these 
different rates might be needed. In this example the only reason we need to know 
anything other than our current knowledge of the past might be to explain and post 
adjustments to previous payroll runs. Another way of dealing with this would be to 
embed all the information about how a payroll calculation is made into the result 
of the payroll calculation. If this information will only be inspected by a human 
and not processed, this can be done in a textual attribute. Calculating adjustments 
can be done by reference to the results of the calculation—the rate that was used is 
not necessarily needed. Even if the rate is needed, making a copy may be 
considered safer. With all this in place, only a one-dimensional history is required 
so that retroactive entitlements (such as that late-reported two hours overtime) can 
be processed. 

Two-dimensional history also affects timepoints that are placed on events. 
Unless we are confident that we always know as soon as an event 
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occurs, we need two timepoints on any event: the timepoint when the event 
occurred and the timepoint when our system became aware of the event. 
(Examples of this include the two timepoints on entry discussed in Section 6.1, and 
the dual time records discussed in Section 3.8.) 
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Afterword  

What do you think about this book? Have you found the patterns useful and 
interesting? While I hope that you have, I also hope you feel unsatisfied—that 
there is more to say and more to understand. This section is about where to go 
to next. 

One thing you can do is try out some of these patterns. Reading a book of 
patterns really only gives you enough to get a sense of what patterns exist. 
When I read the "Gang of Four" [1] book, it gave me a taste of their ideas. To 
learn how the patterns worked, however, I needed to try them out. After reading, 
there are still many aspects of the "Gang of Four" patterns that I don't really 
appreciate and understand, but I know that practice and further readings will 
increase my understanding. 

When you try them out, please let me know about your work. Are there 
parts of the patterns that are poorly explained? Are there other variations that I 
should consider? Please send me e-mail and let me know so that I can further 
spread this information. (My e-mail address is 100031.3311® 
compuserve.com.) Addison-Wesley is providing a Web site at http:// 
www.awf.com/cseng/categories/oo.html to go with this book on which I expect 
to publish supplemental information about analysis patterns and provide 
additional explanations and notes about what I, and others, have learned about 
using the patterns. 

One of the biggest problems with this book is that there are so many gaps. I 
have described patterns from a few domains, but there are many other domains 
out there with patterns to understand. Even the domains I have covered have 
more patterns to find. And the patterns I have described are incomplete; there is 
much to learn about how to use them, what variations exist, what 
implementation issues appear, how they can be tested, and how to get the best 
performance. 
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This book reflects the incomplete state of my knowledge. To go further, you 
need to look at the growing body of work being generated by the patterns 
community. Other patterns books are being published, and even more will come 
out rapidly over the next few years. Although there isn't much yet on analysis 
patterns such as these, I hope this book will encourage more such books to appear. 
In many ways the greatest benefit of this book would be if it stops the endless 
succession of analysis and design books and starts a new succession of patterns 
books. 

One of the best places to get information on patterns is the World Wide Web. 
Ralph Johnson's patterns home page1 is the central source of patterns information. 
Ward Cunningham's Portland Pattern Repository2 also contains much valuable 
on-line information. 

A number of conferences are now including talks and sessions on patterns. 
The most focused patterns conference, however, is Pattern Language o f 
Programming (PLoP) held each September at Allerton Park in Illinois. The 
conference is a unique event, most notably in the way papers are presented. 
Instead of a formal presentation, each paper is critiqued in a writers workshop by 
the other authors. The result is a fascinating discussion of each paper, in which 
authors learn a lot about how other people view their work. 

The next step is to write some patterns of your own. This is not that daunting 
an experience. I have discovered that the patterns community is open to new 
ideas and keen to encourage more people to write patterns. PLoP is an excellent 
forum to submit a pattern and provides a first class venue to see the whole area of 
patterns developments. You can also publish patterns on the Web—the Portland 
Patterns Repository is expressly designed for this purpose. I also intend to publish 
other people's analysis patterns on this book's Web site. Indeed I hope that future 
editions of this book will contain patterns from other authors, and that my role 
will become more of an editor than an author. 

I wrote this book because, when I started out, I wanted to read a book such as 
this. I still do. I hope that this book and those that follow it will mean that future 
generations of software projects will not start from blank sheets of paper. 
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Techniques and Notations  

To write a book like this, I need to use some modeling techniques, but I don't 
want to spend too much time discussing them. After all, this is a book about 
patterns, not a book about modeling techniques (there are plenty of books on that 
subject). There are, as yet, no standards for techniques, so I am forced to choose 
something that I feel is appropriate and not too alien. I find that no method has 
everything and that I like to mix techniques from different methods. In this 
appendix I will discuss the techniques I use and the notation for them. 

A.1     Type Diagrams  

The type diagram shows a structural view of a system. It concentrates on 
describing the types of objects in the system and various kinds of static rela-
tionships that exist among them. The two most important kinds of relationships 
are associations (a customer rents a number of videos) and subtypes (a nurse is a 
kind of person). 

In this area lie the most contentious arguments about notation. Everybody 
chooses their own, very different, notations. There are thus many techniques to 
choose from for this book, all of which are broadly similar. Picking one is not 
easy. 

One strong contender is Rational Software's Unified Modeling Language 
(UML) [2]. But there are two problems with using this method for the book. First 
there is the matter of timing. This book was written during 1994 and 1995, and 
the Unified Modeling Language was only published after the book was fully 
drafted. Even as I write this, the notation is only available in a prerelease form, 
and Rational is discussing significant changes before making a 
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formal release available. The second problem is that the Unified Modeling 
Language concentrates on implementation modeling rather than conceptual 
modeling—and this book focuses on conceptual patterns. 

I chose Odell's [5] notation for the type diagrams primarily because his 
approach is the most conceptual of the major OO methods. I have adapted it in a 
number of places, however, to better fit my needs. 

Most methods have some form of structural modeling technique. For a tutorial on 
the subject, Odell [5] is the most suitable for this book as he uses a very conceptual 
approach. A developer should also read a more implementation-oriented book, 
such as Booch [1], to provide the implementation perspective. Cook and Daniels 
[4] provide the most rigorously defined description of structural modeling and are 
worth reading for that. 

A.1.1      Type and Class  

The starting point is the notion of a type, represented by a rectangle. It is sig-
nificant that I use the word type rather than class. It is very important to 
understand the difference between the two. A type describes the interface of a 
class. A type can be implemented by many classes, and a class can implement 
many types. A type can be implemented by many classes with different languages, 
performance trade-offs, and so forth. A single class can also implement many types, 
particularly where subtyping is involved. The distinction between type and class 
is very important in a number of design techniques based on delegation, as 
discussed in the "Gang of Four" book [3]. The two terms are often confused 
because most languages do not make an explicit distinction. Indeed most analysis 
and design methods do not make an explicit distinction. 

I find it useful to think about building type diagrams1 from three perspectives: 
conceptual, specification, and implementation [4]. Conceptual models model 
the way people think about the world. They are entirely mental pictures that 
ignore any technological issues. Conceptual models can vary, depending on 
whether they represent the real world or what we know about the world. An 
example of this is a person and a birth date. In the real world all people have birth 
dates, so it is reasonable to model birth date as a mandatory attribute of person. 
However, we can know about a person without knowing their birth date. Thus 
for many domains birth date can be optional in a conceptual model that reflects 
what we know of the world. This distinction can be very important for historical 
information. A model that represents the structure of the world as it is often can 
be best drawn as a snapshot of a moment in time. If it represents what we know, 
however, it often needs to reflect our memories, too. The models in this book 
take the perspective of 

This distinction can also apply to other techniques, but it is most pronounced with structural models. 
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capturing a model of what we know about the world, since that is the per-
spective most useful in information systems. 

Specification models are models that can be used to define the interface of the 
software components in the system. Specification models can be implicit or 
explicit. An example of an explicit specification model is a C++ header file, which 
details exactly what operations exist, their parameters, and their return types. 
Implicit specification models need to be combined with some conventions that 
show how they resolve to an explicit interface. For example, an attribute of 
birthdate on an implicit specification model resolves to the operations bi rthdate 
and birthdate: aDate for Smalltalk, and the operations Date getBirthdate() const 
and void setBirthDate(Date) for C++. 

Implicit specification models can be closer to conceptual models than 
explicit models, and they can also carry more information than many explicit 
interfaces. C++ and Smalltalk interfaces miss a great deal of information about 
the rules for using parts of the interface. Eiffel, which has assertions, can be 
more complete, but less comprehensible than an implicit model, which closely 
follows the conceptual model. 

Implementation models lay bare the internals of a class.2 They are useful as 
documentation and for designers of that class. They should not be used by any of 
the class's clients, except when they illustrate general implementation principles 
used throughout the project. 

Conceptual models and implicit specification models are almost identical. 
Thus you can consider the type diagrams in this book to be both conceptual 
models and implicit specification models. If a distinction does surface between 
these two, I point it out in the text. The few implementation models in the book 
are clearly labeled as such, but I use the same notation. 

Chapter 14 discusses how type models relate to implementation models. On 
those occasions where implementing a pattern introduces something beyond 
the bounds of Chapter 14, the implementation is discussed with the pattern. 

A.1.2      Associations, Attributes, and Aggregation  

Associations represent relationships among instances of types (a person works 
for a company, a company has a number of offices, and so on). A precise 
interpretation of associations depends on whether they are part of a conceptual, 
specification, or implementation model. A conceptual interpretation merely states 
that there exists a conceptual relationship among the objects. In terms of 
responsibility, they have responsibilities for knowing about each other. Thus an 
association between an order and customer is interpreted as meaning that an 
order knows its customer and vice versa. In a 

An implementation model would be more correctly called a class diagram. 
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specification model, operations exist for accessing and updating the relationship; 
an explicit specification model shows the operations and their names on the 
model. An implementation model interprets an association as the existence of a 
pointer or other reference. It is important to note that in conceptual and 
specification models, associations do not indicate data structure. Encapsulation 
is thus preserved. 

I like to make a distinction between an association and a mapping. A 
mapping (sometimes called role) is a directed link from one type to another. An 
association contains one or two mappings. A unidirectional association is just one 
mapping and can be seen as the same as a mapping. A bidirectional association 
contains two mappings, which are said to be inverses of each other. This inverse 
is not quite the same as that of inverse functions in mathematics. Essentially it 
means that if you navigate a mapping and its inverse, you will get a collection of 
objects that include the one you started from. Thus if a customer navigates 
through the set of orders it has made, each of those orders points back to that 
customer. The term source (or domain) indicates the type the mapping maps 
from, and the term target (or range) indicates the type the mapping maps to. (For 
example, in a mapping from customer to order, customer is the source and order 
is the target.) When a name appears with an association, the name is that of one 
of the mappings. You can tell which mapping it is by the position of the name to 
the association line: With the target at the front and the source at the back, the 
name is on the left. 

There is some controversy about the value of bidirectional associations. 
Conceptually all relationships are bidirectional. Consider an association between 
a person and their birthdate. It makes perfect conceptual sense to say there is a 
relationship between a date and the people born on that date. In a specification 
model this is not true. To give date a set of operations to all the things that 
reference it would bloat the birth date's interface to an unreasonable degree. The 
other problem with bidirectional associations is that they increase the coupling 
among types. This can make reuse more difficult. Many people use unidirectional 
associations to reduce the dependencies among types. The counterargument is 
that in information systems much of the work is navigating through the links 
among types. When these links are mainly one-way, it is more difficult to find 
your way around. An analogy is that of trying to find yourself around a city: 
One-way streets make the whole thing much more difficult, even if you know the 
city. 

The patterns in this book indicate bidirectional associations. When you use 
the patterns you can choose to use either bidirectional associations or 
unidirectional associations. The application you are working on should suggest 
which direction to use and which to discard. Your choice does not really affect 
the pattern. If you use bidirectional associations you can use the patterns in 
Section 14.1 to help you implement them. 
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A key aspect of associations is cardinality (sometimes called multiplicity). 
This specifies such things as how many companies a person can work for and how 
many children a mother can have. Cardinality is a feature of the mapping rather 
than the association: Each mapping has its own cardinality. There are many 
symbols for cardinality; Figure A.1 shows the ones I use in 

 
Figure A.1    Symbols for cardinality used in this book. 

this book. Mappings with an upper bound of one are called single-valued, and 
those with an upper bound of more than one are called multivalued. Multivalued 
mappings are assumed to represent a set unless otherwise indicated (by a short 
semantic statement). 

In this book I consider an attribute to be the same as a single-valued mapping. 
Sometimes I show an attribute inside a type's rectangle, sometimes with an 
association. The difference is merely that of notational convenience. 

Some methods use aggregation relationships, which are part/whole rela-
tionships (for example, a hammer is made up of a head and a haft). I don't use 
aggregation very much in this book. I don't find the concept terribly useful for 
domain models, because most of its semantics are on any association. It thus 
becomes another piece of notation to remember and argue over, and the result of 
the argument is usually not very important either way. I do, however, use it in the 
application tier (see Section 13.6). 
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Derived (or computed) associations describe how associations can be defined 
based on other base associations (thus grandfather is an association defined by 
using the parent association followed by the father association.) Derived 
mappings on a conceptual model indicate that a mapping is based on other 
mappings present on the model. On a specification model it indicates that the 
result of the accessor for a derived mapping is the same as using the combination 
of underlying mappings. In this way the derived mapping can also be seen as a 
constraint between the derived and the base mappings. Marking a mapping as 
derived has no significance for the underlying data structure other than this 
constraint. The implementor can choose any data structure as long as the user of 
the type is given the impression that the derived mapping is derived according to 
the model. On an implementation model derived mappings indicate the 
difference between stored data and a method over that data. 

There are many other variations on the association theme. I try to keep things 
as simple as possible. Some useful variations are discussed in Chapter 15 as 
association patterns. 

A.1.3      Generalization  

Let's consider personal and corporate customers of a business as a typical 
example of generalization. These two types of customers have differences but also 
many similarities. The similarities can be placed in a general customer type, with 
personal and corporate customer as subtypes. 

Again this phenomenon has different interpretations at the different levels of 
modeling. Conceptually we can say that corporate customer is a subtype of 
customer if all instances of corporate customer are also, by definition, instances of 
customer. In a specification model the interface of corporate customer must 
conform to the interface of customer. That is, an instance of corporate customer 
can be used in any situation where a customer is used, and the caller need not be 
aware that a subtype is actually present (the principle of substitutability). The 
corporate customer can respond to certain commands differently than another 
customer (polymorphism), but the caller need not worry about the difference. 

Inheritance and subclassing in OO languages is an implementation approach 
in which the subclass inherits the data and operations of the superclass. It has a lot 
in common with subtyping, but there are important differences. Subclassing is 
only one way of implementing subtyping (see Section 14.2). Subclassing can also 
be used without subtyping—but most authors rightly frown on this practice. 
Newer languages and standards increasingly try to emphasize the difference 
between interface-inheritance (subtyping) and implementation-inheritance 
(subclassing). 
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Two questions arise concerning the relationship between an object and a 
type. First, does an object have a single type that can inherit from supertypes 
(single classification), or does it have several types (multiple classification)? 
Multiple classification is different than multiple inheritance. With multiple 
inheritance a type can have many supertypes, but each instance is of a single 
type that may have supertypes. Multiple classification allows multiple types for 
an object without defining a specific type for the purpose. We might have 
personal, corporate, and important customers as subtypes of customer. A cus-
tomer might be both personal and important. With multiple classification we can 
give an object both the personal and important customer types (with customer 
inherited from them). Without multiple classification we must explicitly define 
an important personal customer type. If there are many subtypes, we can end up 
with a very large number of combinations, which is difficult to manage. 

Conceptually speaking, multiple classification is a more natural way of 
thinking. However, most OO languages, and certainly mainstream C++ and 
Smalltalk, use a single-classification approach. Many methods also use single 
classification. The trade-off is between a conceptually more natural approach that 
requires more effort in transforming to code, or a more implementation-bound 
approach that is easier to transform. I prefer the more conceptual approach and 
use multiple classification in this book. 

When using multiple classification we must show which combinations are 
legal by grouping subtypes into partitions, as shown in Figure A.2. Types 
within the same partition are disjoint; that is, no object can be an instance of 
more than one type within a single partition. Thus it is impossible for the 
supertype to be both subtype-1 and subtype-2. An incomplete partition 
indicates that an instance of the supertype need not be an instance of a subtype 
within that partition. A complete partition indicates that every instance of the 
supertype must also be an instance of a subtype within the partition. 

The second question is whether an object can change its type. For example, 
when a bank account is overdrawn, it substantially changes its behavior, with 
several operations (withdraw, close) overridden. Dynamic classification allows 
objects to change type within the subtyping structure, while static classification 
does not. Again the principal OO languages, and most OO methods, are static, 
and the same trade-offs apply as for single/multiple classification. This book 
takes the more conceptual dynamic classification approach. 

One way of looking at dynamic classification is that it unifies the notions of 
state and type. When using static classification we must pay attention to 
state-dependent behavior separately from subtyping. Dynamic classification 
treats them both the same. 
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Figure A.2    Generalization notation. 

An instance of the supertype may be subtype-! and subtype-4, but not subtype-1 and 
subtype-2. 

The use of dynamic classification brings to light a subtle difference between 
conceptual and implementation models. In a conceptual model all subtyping is 
considered dynamic, unless explicitly denied by the short semantic statement 
[immutable]. This reflects not only the changes that can occur in the world but 
also our changing knowledge of them. For some businesses it might be true that a 
personal customer cannot change into a corporate customer. It may also be true 
that a customer whom we thought was personal is actually corporate. Here our 
knowledge of the world implies a dynamic classification, even if the world itself is 
static. Information systems are usually built on our knowledge of the world, thus 
conceptually the subtyping is dynamic. 

However, the extra complexity of handling dynamic classification cannot be 
ignored. Thus conceptually dynamic subtypes are often declared static in a 
specification model. This effectively says that although we know that the 
classification can change, it happens rarely enough that we don't wish to go to the 
extra effort (and cost) of supporting it. If it ever does happen, the users will have 
to sort it out by copy and replace. For many situations the dynamism is 
sufficiently rare to make this approach worthwhile. Flexibility in the 
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An incomplete 
partition 
indicates that 
instances of 
supertype can 
be instances 
ofsubtype-4, 
subtype-5, or 
neither. 

A complete 
partition 
indicates that 
all instances 
ofsupertype 
must be 
instances of 
either 
subtype-1 or 
subtype-2. 
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long term can be maintained by ensuring that the accessor interface is the same in 
either case (see Section 14.2.6). 

In the end the decision to make a partition static or dynamic depends on the 
application, so I have tried not to make any general statements in the patterns. For 
simplicity I recommend using static partitions whenever you can when you are 
working in a statically classified language. 

If you are using a method that does not use multiple dynamic classification, 
then you will need to transform the models using the patterns developed in 
Section 14.2. 

A. 1.4      Rules and Semantic Statements  

Associations and subtypes allow us to say much about types, but not all. I may 
have a life insurance policy object with mappings for policyholder and 
beneficiaries. I can use the cardinality constraints to capture statements such as 
there is only one policyholder but there may be many beneficiaries; however, the 
constraints do not allow us to say the policyholder must not be a beneficiary. To 
do this we need a more flexible constraint. A constraint is a logical expression 
about a type that must always be true. Constraints are often missing from OO 
methods although they have been present in Eiffel (where they are called 
invariants) for a long time. 

I express constraints using semantic statements, as shown in Figure A.3. Short 
semantic statements refer to common situations that can be summed up in a 
couple of words and are added in square brackets. Table A.I lists the short 
semantic statements used in this book. 

  

  

A short semantic 
statement applied 
to a type. 

A short semantic 
statement applied 
to a mapping. 

 

A long semantic 
statement applied 
to a type. 

Figure A.3    Notation for semantic statements. 
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MARKER 
 

ATTACHED 
TO 

MEANING 
 [abstract] 

 
Type 
 

Type may not have any instances that are not instances 
of some subtype. 
 

[abstract] 
 

Mapping 
 

Should be overridden by subtypes of the domain. The 
source is also abstract. 
 

[class] 
 

Mapping 
 

Mapping is from the class rather than from instances. 
This is the equivalent to class variables or static 
members. 
 

[Dag] 
 

Recursive 
association 
 

Objects connected by this association form a directed 
acyclic graph. 
 [Dag] 

 
Mapping 
 

Mapping returns a directed acyclic graph of objects. 
 

[global] 
 

Package 
 

Package is visible to all other packages. 
 

[hierarchy] 
 

Recursive 
association 
 

Objects connected by this association form a 
hierarchy. 
 

[hierarchy] 
 

Multivalued 
mapping 
 

Mapping returns a hierarchy of objects. 
 

[historic] 
 

Historic 
mapping 
 

Keeps a history of previous connections (see Section 
15.3). 
 

[immutable] or 
[imm] 
 

Mapping 
 

Mapping cannot be altered after creation of an 
instance. 
 

[immutable] or 
[imm] 
 

Partition 
 

Subtypes are static. Objects cannot change type within 
this partition. 
 

[key: a type] 
 

Mapping 
 

A keyed mapping (see Section 15.2). 
 

[list]  
 

Multivalued 
mapping 
 

Mapping returns an ordered collection (list) of objects. 
 

[multiple 
hierarchies] 
 

Recursive 
association 
 

Objects connected by this association form several 
hierarchies. 
 

[singleton] 
 

Type 
 

Type can only have one instance. 
 

[numberl, 
number2] 
 

Mapping 
 

numberl is the lower bound and number2 the upper 
bound of the mapping. 
 

Table A.1    Short semantic statements.  

Not everything can be expressed as a short semantic statement. When more 
room is needed, I use a long semantic statement, which contains more text in a 
dog-eared box. A long semantic statement has a heading indicating what it 
describes. These headings are listed in Table A.2. 
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HEADING 
 

ATTACHED TO 
 

MEANING 
 

Constraint 
 

Type 
 

Statement that must be true for all instances of the 
type. 
 Derivation 

 
Derived mapping 
 

A way of deriving the mapping. Implementations 
can choose another equivalent way. 
 

Instances 
 

Type 
 

A list of all allowed instances of the type. 
 Method 

 
Operation 
 

Indicates the method for the operation. 
 Note 

 
Anything 
 

An informal comment. 
 

Overload 
 

Type 
 

Indicates how the type overloads some fea-ture of 
the supertype. 
 

Table A.2    Headings for long semantic statements.  

Not all methods provide a way of capturing the kind of information shown in 
semantic statements. It is important, however, that much of this information not be 
lost. Increasingly methods are providing some kind of visual note, similar to the 
long semantic statement, that can be used in this way. 

A.1.5      Fundamental Types  

In traditional data modeling the world is often divided into entities and attributes. 
The division is somewhat arbitrary. In practice it often boils down to attributes 
being the fundamental data types supported by the environment—usually integer, 
real, string, date, and perhaps a couple of others. 

With object systems we can easily define new types that have many of the 
same features as these built-in types. A classic example from Smalltalk is the 
fraction. In Smalltalk a fraction works just like any other number; indeed if we 
execute V3 in Smalltalk the answer is the fraction V3, not some pseudo-infinitely 
recurring decimal. 

When developing systems we must make use of these types. A classic 
example is handling monetary values. The value of a car in a database is typically 
held as a number, yet it is nonsense to say that a car costs 10,000. The currency is 
all important. With objects we can actually define a money type that knows both 
the number and the currency. It can perform addition (checking that the 
currencies match) and create a printout formatted the correct way. 

Table A. 3 lists the fundamental types used in this book. 
An important point about fundamental types is that mappings from a fun-

damental type to a nonfundamental type are never implemented. Otherwise, the 
fundamental type would get a huge interface crowded with accessors to 
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TYPE 
 

DESCRIPTION 
 Boolean 

 
True or false, with the usual operations. 
 

Currency 
 

Subtypes of unit representing monetary currencies (e.g., US dollars, sterling, 
yen). 
 

Date 
 

The usual dates (e.g., l-Apr-1995). 
 

Duration 
 

A subtype of quantity whose units are time (e.g., 5 days, 3 hours). Note that 
we cannot convert from days to months. 
 Integer 

 
The usual integers (...-1, 0, 1, 2...). 
 

Magnitude 
 

A type that supports the comparative operations, such as <, >, =, >, <. 
 

Money 
 

A subtype of quantity whose units are currencies (e.g., $5, 250 FFR). 
 

Number 
 

The supertype of integer, real, and fraction. 
 

Quantity 
 

A type with a number and units (e.g., 4 inches) (see Section 3.1). 
 Range 

 
A range between two magnitudes (see Section 4.3). 
 Real 

 
The usual real numbers. 
 

String 
 

A short piece of text. There is no fixed limit, but I usually interpret it as a 
short one-line text item. Longer items use the type text. 
 Text 

 
A long piece of text, usually with formatting. 
 Time 

 
Time of day (e.g., 1:20 p.m.). Not fixed to a specific date (see Time-point). 
 

Timepoint 
 

A point in time. It may be only a date, or it may be a combination of date and 
time. 
 Time Period 

 
A period with a start and end timepoint. A time period can tell if it overlaps 
with another, or if a timepoint lies within it. It is a Range of Timepoints. 
 

Time Reference 
 

The supertype of time period and timepoint. 
 

Unit 
 

The unit for a quantity (e.g., inches, newtons). 
 

Table A.3    Fundamental types used in this book. 

every type that used it. This would be both unwieldy and not reusable. A 
conceptual model can show that a mapping exists, since conceptually the 
mapping does exist, but a corresponding specification model cannot. 

Some authors refer to these kinds of types as literals; however, other authors 
use the term literal to stand for nonobject types (such as the type real in C++), 
which is why I use the term fundamental type. 
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I have not attempted to make a complete specification of fundamental types in 
this book. Consider this an exercise for the reader (or a future edition). Some of 
these types are given a specification in Cook and Daniels [4]. 

A.2     Intera ction Diagrams  

Interaction diagrams show how several objects collaborate to get something done. 
An interaction diagram has a number of vertical lines that represent objects. 
Arrows between the lines represent messages sent between objects, with 
sequence indicated by progression down the paper, as shown in Figure A.4. 
Interaction diagrams are widely used and simple to follow. One unusual thing I 
do is use a double-headed arrow to show where the same message is sent to many 
objects, as occurs in a loop or iterating over a collection. I also occasionally use a 
dashed line to show a return value; this is not something I do all the time, but it is 
sometimes useful when things are getting hairy. 
Message-1 starts the 
interaction 

An instance of type-1 sends 
message-2 to an instance of 
type-2 

A type-2 returns a value to a 
type-1 

A type-1 sends message-3 
tomanytype-2s(e.g., 
using an iterator over a 
collection of type-2s) 

Message-4 creates a new 
instance of type-3. 

Figure A.4    
Notation used for 
interaction 
diagrams . 

I use interactions quite a lot in this book to show behavior. Often I use them in 
conjunction with an event diagram (see Section A.3) because the two approaches 
complement each other well. Event diagrams define behavior in a manner that 
encourages parallelism, yet they do not indicate which objects do what. Interaction 
diagrams show how this behavior can be allocated between objects while 
suppressing the parallelism and the precise behavioral logic. 

You may be more familiar with seeing interaction diagrams expressed as 
numbered messages between boxes, which are equivalent to the lines down 
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page. I prefer the lines-down-the-page-form because I think it makes it easier to 
see the sequence of messages. 

Since interaction diagrams are so simple, you don't need much of a tutorial on 
them if you have not used them before. A good source for more details is Booch 
[1]. 

A.3     Event Diagrams  

Event diagrams are another form of behavioral model that I use. Although they 
are more complex than interaction diagrams, they do allow complete control to 
be specified. They also are able to express parallel behavior, which is very useful 
in business modeling. 

The boxes on an event diagram represent operations that complete by sig-
nalling an event. A trigger rule indicates that an event triggers an operation. 
Parallelism appears when an event type has more than one trigger rule defined 
on it. Hence in Figure A.5 the event type signaling the end of opera-tion-1 
triggers both operation-2 and operation-3 in parallel. This means that 
operation-2 and operation-3 can occur in any order or simultaneously. Paral-
lelism can also occur with a multiple trigger, which is shown by a double-headed 
arrow. This indicates that the event triggers the operation many times, such as 
when iterating over a collection. A label on the line indicates what collection is 
being iterated over. 

If a trigger rule leads into an operation via a control condition, the operation is 
only invoked if the control condition (a Boolean expression) evaluates to true. 
The control condition is often used to synchronize parallel threads. Each thread 
triggers the condition, which is designed to be true only at the appropriate 
synchronization point. 

Two common control conditions are the and condition and the z condition. 
The and condition is true only when all incoming trigger rules have fired once. It 
is shown by a & in the diamond. The z condition is true whenever there are no 
operations on the diagram that are triggered to run, that is, when all is quiet and 
the diagram has gone to sleep. It is shown by a z in the diamond (as in zzzzzz). A 
z condition is often used at the end of the diagram to synchronize the end of the 
diagram. 

The other conditional logic is that of the partition, as on operation-3. The 
event is subtyped depending on the outcome of the operation. A trigger rule can 
be placed on the supertype event to indicate a trigger that is fired whatever the 
outcome. The partition works the same way as in structural models. An event 
can have many partitions defined on it, a partition can have any number of events 
within it, and partitions can be defined on top of each other to any desired depth. 
Any event will be an instance of only one event type from each partition. 
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A control condition. 
Any Boolean 
expression that 
must be true for 
operation-3 to be 
invoked. If false 
nothing happens. 

A special control condition. 
True if all scheduled 
operations have been 
executed. 

A partition, exactly the same as 
for type diagrams. Indicates that 
event types may be subtyped 
for different triggering. The 
operation will result in one of the 
event types in the partition. 
Common triggers are shown on 
the supertype. 

A multiple trigger. 
Indicates that 
operation-6 will be 

invoked many times 
for one triggering 
event. Typically 
involves iterating 
over a collection. 

A clock event. Fires according 
to some time interval (e.g., each 
morning). 

Figure A.5    Notatio n for event diagrams.  

Event diagrams are conceptual in that they only say how some process works, 
not which objects carry out the process. Thus they complement interaction 
diagrams very well. For a tutorial on them see Odell [5]. 

A.4     State Diagrams  

State diagrams define the behavior of a single object by describing the various 
states the object can get into and how the object changes state. The most widely 
used form of state diagram in OO methods is that of the Harel state chart. I use a 
subset of this form in this book. A state diagram is drawn for a single type and 
represents the behavior of each instance of that type. 

 

A trigger rule. When 
the event occurs (i.e., 
on completion of 
operation-1) then 
operation-2 is invoked. The end of the 

process. 

Indicates the 
start of the 
process. 

An operation can 
be described by a 
subsidiary event 
diagram and/or by 
pre-and post-
conditions. 

  

Simple and control condition. 
True if all incoming triggers 
have fired. 
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Each state is shown by a box, as shown in Figure A. 6. The boxes are linked by 
transitions that show how an object can move from one state to another. The 
transition is labeled with the event that causes the transition. If a transition has a 
guard, then the transition only occurs when the event occurs, and the guard 
evaluates to true. The guard is a Boolean expression. If a transition has an action, 
then this action is executed during the transition to the new state. States can be 
generalized into superstates. A superstate can be used to define transitions that 
then apply to all substates. 

  

Figure A.6    Notation for state diagrams in this book.  

For a simple tutorial on Harel state charts, see Booch [1]. For a more com-
prehensive treatment, the best source is Cook and Daniels [4]. In this book I do 
not use state diagrams that much, and certainly none with the power of Harel state 
charts, but they do pop up occasionally. 

A.5     Package Diagrams  

On large models we need a way to organize the mass of types that appear on the 
type diagram. A single large type diagram is both too complex for humans to 
comprehend and too difficult for software to manage. A large diagram can be 
broken down into pages for a human, but an arbitrary choice of pages does little to 
control the software. Package diagrams, as shown in Figure A.7, provide a more 
controlled mechanism. 
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Transitions from this 
symbol indicate the initial 
state of an object. 

A transition is caused by 
an event. The guard, if 
present, must be true. 
The action, if present, 
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Figure A.7    Notation for describing packages. 

This diagram is taken from Figure 7 7.3. I'm using the Rational Software's Unified Modeling 
Language notation [2] for packages, as I find it clearer than Booch's original notation. 

A package (also called category domain, cluster, or subsystem) is a group of 
types (or classes). A type can belong to only one package. Usually types are 
assigned to packages so that types that collaborate often are put in the same 
package. Any type in the package can access any feature of any other type in the 
same package. 

Packages are linked by visibility relationships. If a client type wishes to 
make use of a server type in another package, a visibility relationship must exist 
between the client type and the server type. This is required for any service: 
calling an operation, holding in an attribute, or passing as a parameter. 

Visibility is different from a prerequisite. A prerequisite implies that one 
package needs the presence of another package to function. Prerequisites are 
transitive: If package C is a prerequisite of package B, and package B is a pre-
requisite of package A, then package C is a prerequisite of package A. This 
transitivity is not true for visibilities. Package A may not have visibility to 
package C; indeed package B may be specifically designed to hide package C 
from package A—this is the essence of a layered architecture. Prerequisites and 
visibilities are often confused because programming languages often merge the 
two together. C++ header files and Envy prerequisites define prerequisites and 
allow visibility to all prerequisites, which defeats the use of one package to hide 
another. All visibilities must be explicitly declared in a package. Hence in Figure 
A.7 the risk management application package must have an explicit visibility to 
the portfolio package to be able to use its 
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services. If that visibility were not present, the portfolio package would still be a 
prerequisite (via the valuation package), but there would be no visibility. 
Visibilities imply prerequisites but not the reverse. 

Within a package, types can be public or private. Public types are seen by 
packages that have visibility; private types can only be used by types within the 
same package. Packages can be made global, in which case all other packages have 
visibility to them. This is necessary for general components such as integers, 
strings, and collections. 

When developing a large system, we try to minimize the visibilities between 
packages so that the system has less dependencies and is thus easier to manage. In 
this book I discuss packages primarily in Chapters 11 and 12. 

Although this kind of model is essential for larger systems, it is not much 
discussed in methods. Booch [1] introduced the basic ideas that I use here, but his 
description is very brief, largely because it is difficult to discuss this subject 
without a substantial example. This lack has been rectified by Robert Martin, who 
gives a number of examples of the use of package models [6]. 
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Table of Patterns  

TEXT 
SECTION 
 

NAME 
 

PROBLEM 
 

SOLUTION 
 

2.1 
 

Party 
 

People and organizational units 
have similar responsibilities. 
 

Create a type party as a supertype 
of person and organization. 
 

2.2 
 

Organization 
Hierarchies 
 

Representing a hierarchical 
organization structure. 
 

Create a recursive association on 
organization. 
 

An organization structure has 
hierarchies or more complex links. 

2.3 
 

Organization 
Structure 
 New kinds of links appearing. 

Keeping a history of changes to the 
structure. 

Create organization structure as a 
directed relationship between two 
parties. Give it an organization 
structure type to represent the kind 
of relationship. 
 

2.4 
 

Accountability 
 

Representing organization 
structures, employment, 
management, professional 
registration, and contracts with a 
similar structure. 
 

Create accountability as a directed 
relationship between two parties. 
Give it an accountability type to 
represent the kind of relationship. 
 

331 
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2.5 
 

Accountability 
Knowledge Level 
 

Recording the rules that 
describe how accountabilities 
can be formed in a way that is 
easy to change. 

Create a knowledge level for 
accountability by associations 
between accountability type and 
party type. This knowledge level 
constrains the operational level of 
accountability and party. 
 

2.6 
 

Party Type 
Generalizations 
 

Of many party types in a model, 
most are similar to some other 
party type. 
 

Allow party types to be subtyped 
so they inherit accountability 
types. 
 

2.7 
 

Hierarchic 
Accountability 
 

Constraining some 
accountability types into a 
hierarchy. 
 

Define a subtype of accountability 
type that includes the hierarchy 
constraint. A list of levels allows 
you to name each level in the 
hierarchy. 
 

2.8 
 

Operating Scope 
 

Describing what responsibilit ies 
are implied by an 
accountability. 
 

Add a number of operating scopes 
to the accountability. The type of 
operating scope depends on the 
type of accountability. 
 

2.9 
 

Post 
 

Accountabilities are due to the 
job rather than the person doing 
it. 
 

Create a post as another subtype of 
party. Appoint a person to a post 
with an accountability. The holder 
of the post then gets the 
responsibilities of the post while 
they hold it. 
 

3.1 
 

Quantity 
 

Representing a value such as 6 feet 
or $5. 
 

Use a quantity type that includes 
both the amount and the unit. 
Currencies are a kind of unit. 
 

3.2 
 

Conversion Ratio 
 

Converting between quantities in 
different units. 
 

Record conversion ratios between 
units. 
 

3.3 
 

Compound Units 
 

Representing units such as 
kg/m2. 
 

Use a unit that is a combination of 
other units. 
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An object has a large number of 
quantity attributes. 

Recording information about an 
individual measurement of an 
attribute. 

3.4 
 

Measurement 
 

Tracking changes in a value to an 
attribute over time. 

Create an object to represent the 
individual measurement. This is 
linked to the object being 
measured and to a phenomenon 
type that describes the kind of 
measurement being made. 
 

3.5 
 

Observation 
 

Attributes are qualitative and thus 
cannot be measured with 
numbers. 
 

Create an observation type that 
links the object to a 
phenomenon. Each phenomenon 
is a value for some phenomenon 
type. 
 

3.6 
 

Subtyping 
Observation 
Concepts 
 

Phenomena are special cases of 
another phenomenon. 
 

Allow phenomena to be subtyped 
with an association in the 
knowledge level. 
 

3.7 
 

Protocol 
 

Dealing with similar phenomena 
when the method of observing can 
occasionally cause different inter-
pretation. 
Recording the accuracy and 
sensitivity of a measurement. 
 

Record the protocol used for 
determining the observation. 
 

3.8 
 

Dual Time Record 
 

Differences arise between when 
an observation is true and when 
you noticed it, and between when 
an event occurs and when you 
noticed it. 
 

Record both times separately for 
all such objects. 
 

3.9 
 

Rejected Observation 
 

Observations were made in error 
but cannot be erased. 
 

Keep them, mark them as 
rejected, and record what 
observation rejected them. 
 

3.10 
 

Active Observation, 
Hypothesis, and 
Projection 
 

Certainty in observations. 
Representing observations that 
you think may come to pass 
when you have to base treatment 
on that possibility. 
 

Subtype observations into active 
observations (I'm going to treat 
this), hypothesis (I'm going to 
investigate further), and 
projection (I think this may 
happen). 
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3.11 
 

Associated 
Observation 
 

Recording the evidence for a 
diagnosis. 
 

Treat the diagnosis as an 
observation with an association to 
the observations used as evidence. 
 

3.12 
 

Process of Observation 
 

Determining the process of 
observation and diagnosis. 
 

Each observation may lead to 
suggestions for further 
observations and interventions to 
be proposed, and to re-evaluation 
of contradictory observations. As 
these steps produce further 
observations, this leads to a 
continuous process of observation. 
 

4.1 
 

Enterprise Segment 
 

 
Breaking down a large 
enterprise into pieces using 
different criteria and varying 
degrees of  granularity.  
 

Define each criteria for 
breakdown as a dimension, and 
represent it as a hierarchy of 
elements. Define an enterprise seg-
ment as the combination of one 
element from each dimension. 
 

Indicating that measurements are 
calculated or read from a 
database. 
 

Recording the formulas for 
calculations. 
 

4.2 
 

Measurement Protocol 
 

The same phenomenon type 
can be determined in different 
ways depending on context. 
 

Define a measurement protocol that 
describes how to create a 
measurement for a phenomenon 
type. 
Measurement protocols can be 
sourced or calculated, calculations 
can be causal, comparative, or 
dimension combination. 
 

4.3 
 

Range 
 

Describing a range between two 
values. 
 

Define a range type with upper 
and lower bounds and suitable 
operations. 
 

4.4 
 

Phenomenon with 
Range 
 

Describing a phenomenon 
defined as a range on a 
phenomenon type. 
 

Give the phenomenon an attribute 
of range. 
Create a range function that links 
the range to the phenomenon 
under conditions described by 
other phenomena. 
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5.1 
 

Name 
 

Refering to an object. 
 

Give the object a string as its 
name. 
 

5.2 
 

Identification Scheme 
 

Ensuring an identification refers 
to only one object but different 
parties can refer to the object 
differently. 
 

Create identification schemes that 
contain identifiers, where each 
identifier refers to only one unit. A 
party can use any identification 
scheme. 
 

 
 

 
 

 
 

Copy the attributes of one over to 
the other, switch all references 
from the first to the other, and 
delete the first. 
 

5.3 
 

Object Merge 
 

Two objects are in fact the same. 
 

Mark one as superseded and give 
it a link to the other. 
 

 
 

 
 

 
 

Link the two object appearances 
with an essence that indicates 
they are the same. 
 

5.4 
 

Object Equivalence 
 

Some people think two objects 
are the same, but others think 
they are different. 
 

Create an equivalence for the 
objects. 
 

6.1 
 

Account 
 

Recording a history of changes 
to some quantity. 
 

Create an account. Each change is 
recorded as an entry against the 
account. The balance of the 
account gives its current value. 
 

6.2 
 

Transaction 
 

Ensuring that nothing gets lost 
from an account. 
 

Use transactions to transfer items 
between accounts. 
 

6.3 
 

Summary Account 
 

Looking at a group of accounts 
as if they were a single account. 
 

Create a summary account with 
the other account as children. 
 

6.4 
 

Memo Account 
 

Noting some quantity in a side 
account without using a 
transaction. 
 

Create a memo account that does 
not affect real transactions and 
does not hold real items. 
 

6.5 
 

Posting Rules 
 

Automating transfers between 
accounts. 
 

Define a posting rule between the 
accounts. 
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Define a singleton subclass for 
each method. 
  

 
 
 

 
 

Use the strategy pattern. 
 

6.6 
 

Individual Instance 
Method 
 

Giving each instance of a type 
its own method for some 
operation. 
 

Create a case statement hidden 
inside the object. 
 

 
 

 
 

 
 

Separate the different behaviors 
into parameters. 
  

 
 
 

 
 

Build a simple interpreter. 
 

 
 

 
 

 
 

Fire all outbound rules when a 
entry is put into an account. 
 

Explicitly ask a posting rule to 
fire. 
 6.7 

 
Posting Rule Execution 
 

Ensuring that the posting rules 
are all executed at the right 
time. 
 

Ask an account to fire its 
outbound posting rules. 

 
 

 
 

 
 

Backward chain the posting rules 
when an account is queried. 
 Define the rules on an account 
type. 
 6.8 

 

Posting Rules for Many 
Accounts 
 

Defining the same posting rules 
for many accounts. 
 Define the rules on a summary 

account. 

The account returns all entries, 
and the caller selects the ones it 
wants. 

The account provides an 
operation for each possible 
subset. 
 

6.9 
 

Choosing Entries 
 

Asking an account for a subset 
of its entries. 
 
Asking an object for a selection 
of objects in one of its 
collections. 
 

The caller passes a filter object 
to the account. 

6.10 
 

Accounting Practice 
 

Assigning several posting rules 
as a group. 
 

Create an accounting practice to 
group them together. 
 

6.11 
 

Sources of an Entry 
 

Seeing how a transaction was 
calculated. 
 

Record the creating posting rule, 
and the entries that it used in the 
calculation, with the new 
transaction. 
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6.12 
 

Balance Sheet and 
Income Statement 
 

Representing balance sheet and 
income statements. 
 

Create subtypes of account. 
 

6.13 
 

Corresponding 
Account 
 

Reconciling two parties' views of 
the same account. 
 

Treat each view as separate 
accounts that correspond to each 
other. 
 

6.14 
 

Specialized Account 
Model 
 

Using the general accounting 
patterns in a specific case. 
 

Subtype the pattern's types to 
support the specialized needs. 
 

Treat one account as the real 
account and use a memo account 
for the other. 
 

6.15 
 
 

Booking Entries 
Accounts 
 

Putting an entry in more 
than one account. 
 Treat one account as the real 

account and use a derived 
account for the other. 
 

8.1 
 

Proposed and 
Implemented Action 
 

Representing both what you 
intended to do and what you did. 
 

Use separate objects for the 
proposed and implemented 
actions. 
 

8.2 
 

Completed and 
Abandoned Actions 
 

Indicating how an action ended. 
 

An action is completed if it was 
carried out as intended, 
abandoned if not. 
 

8.3 
 

Suspension 
 

Putting an action on a temporary 
hold. 
 

Put a suspension on the action. 
Use a time range to show how 
long it lasts. 
 

Recording a group of proposed 
actions that you intend to 
perform together. 

Representing the dependencies 
among actions. 

8.4 
 

Plan 
 

Allowing different people to 
coordinate each other's plans. 

A plan is a collection of proposed 
actions linked by dependencies. 
Several parties can have different 
plans that refer to the same 
proposed action. 
 

8.5 
 

Protocol 
 

Performing standard procedures 
many times the same way. 
 

An action can be done according 
to a protocol. A protocol can be 
divided into subprotocols linked 
by dependencies. 
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8.6 
 

Resource Allocation 
 

Allocating resources to plans, 
protocols, and actions. 
 

General resource allocations 
allocate a quantity of a resource 
type. Specific resource 
allocations allocate specific 
resources. 
 

8.7 
 

Outcome and Start 
Functions 
 

Knowing when to carry out a 
protocol and what the outcome of 
the protocol, and any actions, will 
be. 
 

Start functions and outcome 
functions link a protocol to the 
observation concepts that 
trigger it and may be the result 
of it. 
 

9,1 
 

Contract 
 

Recording deals from the 
perspective of both the buyer and 
the seller. 
 

Use a contractor with both 
buying and selling parties. 
 

Dynamically selecting contracts 
for different purposes. 

9.2 
 

Portfolio 
 

Dynamically selecting objects. 

Define a portfolio as a collection 
of contracts. The contracts are 
selected by a filter — a Boolean 
expression used to determine 
which contracts fit the portfolio. 
 

9.3 
 

Quote 
 

Separate prices are given for 
buying and selling. 
 

Combine both prices into a 
single quote. 
 

Prices of instruments change over 
time. 

Considering hypothetical 
combinations of prices. 

9.4 
 

Scenario 
 

Prices of one instrument can 
affect prices of another. 

Create a scenario to capture the 
real or hypothetical state of the 
market. A scenario gives the 
price of any instrument in that 
state and includes rules to 
derive prices for hypothetical 
market states. 
 

10.1 
 

Forward Contracts 
 

A contract may be delivered in the 
future at today's prices. 
 

Use a contract with separate 
trade and delivery dates. 
 

10.2 
 

Options 
 

A party may choose to buy or sell 
something at a set price at some 
point in the future. 
 

An option is a subtype of 
contract with the additional 
behavior. 
An option is a separate object 
with a contract as an attribute. 
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A combination option is seen 
as one item by the salesperson 
but as a collection of simpler 
contracts by the dealers. 

10.3 
 

Product 
 

A salesperson sees one 
package, but only the items in 
the package are seen 
internally. 

Treat what the salesperson sells 
as a product and what is 
internally valued as a contract. 
 

10.4 
 

Subtype State 
Machines 
 

A barrier option has different 
behavior to an option, but 
seems like a subtype. Dealing 
with subtypes and state 
machines. 
 

Ensure both sub- and supertype 
objects respond to the same 
events. 
 

The application object checks the 
type of the domain object to 
ensure it will  understand the mes-
sage. 
Give the supertype an interface 
that encompasses all subtype 
behaviors. 

Treat the properties as a run time 
attribute. 

Use an intermediate object loaded 
by the domain object. 

10.5 
 

Parallel Application 
and Domain Hierarchies 
 

You are displaying a list of 
objects in a user interface. 
These objects are various 
subtypes, and some subtype 
properties need to be 
displayed. Your user interface 
objects must not fail by 
sending a message to an 
inappropriate object. 
 

Use exception handling package. 

11.1 
 

Multiple Access Levels 
to a Package 
 

Different clients of a package 
need different amounts of 
behavior. 
 

Split the package into separate 
packages for each level of access. 
Allow packages to have more 
than one interface. 
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Combine the two packages. 
 

Have two mutually visible 
packages. 
 

 
11.2 
 
 

 
Mutual Visibility 
 
 

 
Types in two packages need to 
see each other. 
 
 Decide that one type cannot see the 

other. 
 

11.3 
 

Subtyping Packages 
 

Using subtypes with packages. 
 

The subtype can be put in a 
separate package. Visibility to the 
package is with the supertype, but 
not vice versa. 
 

12,1 
 

Two-Tier Architecture 
 

Partitioning software on a 
client/server system. 
 

Put the user interface on the client 
and the database on the server. 
The user interface classes access 
the database directly. 
 

The two-tier architecture 
couples the user interface too 
tightly to the database design. 

12.2 
 

Three-Tier 
Architecture 
 The database interface cannot 

support a rich model of the 
domain. 

Have three logical tiers: 
application, domain, and 
database. 
 

12.3 
 

Presentation and 
Application Logic 
 

Application software handles 
both interpretation of the domain 
model and driving the user 
interface. 
 

Separate the application tier into 
presentation (user interface) and 
application logic (dealing with 
the domain model). Structure the 
application logic as a set of 
facades for the presentation. 
 

12.4 
 

Database Interaction 
 

Working with a database. 
 

Let the domain classes be 
responsible for saving themselves 
in the database. 
Create a separate layer to handle 
the interactions between 
database and domain objects. 
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Choose one direction to 
implement, and use an 
operation and a pointer. 
 
Put operations and pointers in 
both directions. 
 
Put operations in both 
directions but a pointer only in 
one. Use lookup for the other 
direction. 
 

 
14.1 
 
 

 
Implementing 
Associations 
 
 

 
Implementing a conceptual 
association. 
 
 

Put operations in both 
directions, and use a table and 
lookup for the pointers. 
 
Use inheritance. 
 
Use classes for each combination 
of subtypes with multiple 
inheritance. 
Use an internal flag. 
Delegate to a hidden class (state 
pattern). 
 

 
14.2 
 
 

 
Implementing 
Generalizations 
 
 

 
Implementing generalization, 
especially if multiple and 
dynamic classification is 
involved. 
 
 

Copy and replace. 
 

14.3 
 

Object Creation 
 

Creating an object. 
 

Use a creation method with 
arguments for all mandatory and 
immutable mappings. 
 

14.4 
 

Object Destruction 
 

Destroying an object. 
 

Have a specific destruction 
method. Define how much the 
delete should cascade. 
 

Let the class be responsible for 
storing and finding its instances. 
 14.5 

 
 

Entry Point 
 
 

Starting to look for objects. 
 
 Have a registrar find and store 

objects. 
 

14.6 
 

Implementing 
Constraints 
 

Implementing constraints. 
 

Give each object an operation to 
check its constraint. Call it at the 
end of modifiers when 
debugging. 
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15.1 
 

Associative Type 
 

Adding features to an association. 
 

Create a type for the association. 
Use a special notation. 
 

15.2 
 

Keyed Mapping 
 

Representing values in a mapping 
that are keyed off another type. 
 

Use a keyed mapping. 
 

15.3 
 

Historic Mapping 
 

Recording previous values of a 
mapping. 
 

Use a historic mapping. 
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Abandoned actions, 157, 160-161, 337 

Absence 
category observation, 46 
observation concepts, 47 

Abstract 
mapping, 136, 322 
posting rule, 151 type, 
322 

Accessors, 275-277, 278, 280 

Account. See also Summary account 
booking entries to multiple accounts, 97, 

127-132, 337 
corresponding, 96, 124-125, 337 
derived, 130-131 filter, 119, 120 
generally, 95, 97-98 memo, 96, 
103-104, 336 pattern, 335 posting, 
141 sign, 97 
specialized model, 96, 125-127, 337 
statement, 97 

Account-based firing, 112-113, 143 

Accountability abstraction, 23 generally, 17-18, 
22-24 hierarchic, 17, 28-30, 332 knowledge 
level, 17, 24-27, 332 operating scopes, 30-32 
organization hierarchies, 17, 19-21, 331 
organization structure, 17, 21-22, 331 party, 
17, 18-19 
party type generalizations, 17, 27-28, 332 
pattern, 331 post, 17, 32-33 

Accounting and inventory. See also Account; 
Entry; Individual instance method 

balance sheets and income statements, 96, 
123-124, 337 

patterns, 134 
posting rule execution, 96, 111-115, 336 
posting rules, 96, 104-105, 336 

Accounting and inventory (continued) posting 
rules for many accounts, 116—118, 

336 
practice, 119-122 practice pattern, 96, 337 
specialized account model, 96 Total 
Telecommunications example, use 

in, 133-134 transactions, 
95-96, 98-101 

Accounting framework, 132 

ACM. See Aroma Coffee Makers (ACM) 

Action 
abandoned, 157, 160-161, 337 
completed, 157, 160-161, 337 
implemented, 157, 158-160, 168, 337 
proposed, 157, 158-160, 168, 337 

Active observation, 36, 49-50, 334 

Actual status, 69-71 

Acyclic graph structure, 28. See also DAG 
(directed acyclic graph) 

Aggregation in type diagrams, 315-318 

Alexander, Christopher, 5, 6 

Analysis 
design techniques, 3 
generally, 1 pattern, 
310 

Anderson, Bruce, 5 

Application. See Parallel application 

Application facade 
common methods, 257, 262-264 contents of 
a facade, 257, 259-262 domain model, 
visibility to, 221 generally, 257-258 health 
care example, 257-259 methods for facade 
attributes, 260-262 multiple facades, 257, 
267-269 operations, 257, 264-265 type 
conversion, 257, 265-267 

Application logic. See Presentation and 
application logic 
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Architecture. See Layered architecture for 
information systems; Three-tier 
architecture; Two-tier architecture 

Arguments, 67 

Aroma Coffee Makers (ACM) 
accountability, 31 actual versus 
planned status, 71 dimensions of, 60 
enterprise segments, 61-65 
framework, use of resulting, 82-83 
location dimension, 63 organization 
hierarchies, 19-20 performance 
analysis, 57 

Asset, 157, 168-172 

Associated observation defined, 36 linking 
of knowledge and operational 

levels, 50-51 
pattern, 334 
trigger rule, 52 

Association objects, bidirectional 
implementation, 280 

Association patterns 
associative type, 297, 298-301 
generally, 297-298 historic mapping, 
297, 303-307 keyed mapping, 297, 
301-303 two-dimensional history, 
298 

Associations defined, 297 
one-way, 277 quantity in 
modeling, 38 recursive, 322 

Associations, implementation of. See also 
Bidirectional associations 

derived mappings, 281 
fundamental types, 277 
generally, 272, 274 interface, 
275-277 nonset mappings, 281 
pattern, 341 
type diagrams, use in, 315-318 
unidirectional, 274-275, 278, 316 

Associative type, 297, 298-301, 342 

Atomic unit, 39-41 

Attributes 
object information, 35 
phenomenon with range, 78-80 
quantity, 97-98 quantity in 
modeling, 38 type diagrams, use 
in, 315-318 

B  

Backward-chained firing, 114 

Balance sheets, 96, 123-124, 337 
Bags 

account, 98 collections, 273 
mappings with, 39-41 
protocol components, 165 

Bank 
derivatives trading system, 240, 245-246 
foreign exchange derivatives trading 
system. See Trading 

Barings Bank collapse, 205-206 

Barrier option, 211 Beck, Kent, 5, 

133, 289 Behavioral meta-model, 

163 

Bidirectional associations 
implemention of, 274-275, 278-281 
type diagrams, 316 

Black-Scholes analysis 
derivative contract, determining value of, 

245 
options, determining value of, 201-202 risk 
evaluation, 205 

Block method in Smalltalk, 108 

Booch,324 

Booking entries to multiple accounts, 97, 
127-132,337 

Boolean 
contract attribute, 177 
fundamental type, 324 
portfolio, use in, 180-182 

BPR (Business process reengineering), 10 

Broker, interface, 253 
Browser, 217, 218, 221-222 

Business process reengineering (BPR), 10 
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C 
C++ 

association interface, 277 
collection classes, 273-274 
constraints, implementation of, 294 
contracts, use in, 181 
exception handling, 223 
external iterator, 98 
history of, 5 
model prototypes, 58 
object creation, 289 
quotes, use in, 186, 188 
Total Telecommunications example, use in, 

133 
type checking, 218 

Calculated measurement protocol, 66-70 Call, 

in option contract, 202-204 
Calls, phone 

separation into day and evening, 143—145 
setting up of, 134, 142-143 time, charging 
for, 145—148 

Cardinality 
keyed mapping, use in, 60 
type diagrams, use in, 317 

Cascading delete, 290 

Category absence, 
46 
mapping to phenomenon type, 43—45 
pattern, 8 presence, 46 

Causal measurements protocol, 58, 68—73 

Class mapping, 322 
Classes 

collection, 273 
combination, 282 
entry point, use in, 293-294 

Classification, 318-321 

Coad, Peter, 6 

Combination option, 206 
Comparative measurements protocol, 58, 

68-75 
Comparative status type, 71-72 

Completed actions, 157, 160-161, 337 

Compound unit bags, use of, 39—41 defined, 
39 pattern, 332 quantity pattern extension, 
use in, 35 

Conceptual model 
analysis and design, compared, 1 
analysis and design techniques, use in, 3 
business process reengineering and, 10 
contract, 176-177 
creation of, 2 
individual instance method, 106 
quantity, use in, 38 
software language, expression of, 3 
software technology, independent of, 4 
type diagrams, use in, 314-315 

Conceptual schema, 242 

Concurrency, 244 Conformance, 

211-214, 215-216 

Constraint 
implementation of, 294, 342 phenomenon 
with range attribute, 79 type, 323 

Constructor parameter method, 138 

Consumable, 157, 168-172 Containers, 273, 

278 
Contract. See also Derivative contract; 

Forward contract 
generally, 175, 176-180 
package, 231-233 pattern, 
338 selectors, 182-184 
spot, 198 

Control condition, 140 

Conversion ratio 
generally, 35 
individual instance method, 39 
monetary values, 39 pattern, 332 
scenarios, used to convert, 39 unit 
conversion, 38 

Cook, 211, 213, 324-325 

Coplien, Jim, 5 

Copy and replace, in object merge, 90 

Index   345 



 
 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

  

Corporate finance observations. See also 
Aroma Coffee Makers (ACM); 
Measurement protocol 

enterprise segment, 58, 59-65 
framework, use of, 82-83 
generally, 57-58 
range, 58, 76-77 

Corresponding account, 96, 124-125, 337 

Cosmos Clinical Process Model, patterns used 
in, 158 

Cosmos project 
accountability model, development of, 18 
application facade, model based on, 

258-259 
health care modeling, 36 layered 
architecture for information 

systems, 240 
object of care, 59 
observations, 49 

Counterparty, 178 Creation of objects, 289, 

342 Creation parameter method, 138, 289 

Cross-product control condition, 140 

Cross-rate element, 192-194 Cunningham, 

Ward, 5, 310 Currency, fundamental type, 

324 

D 

DAG (directed acyclic graph), 166-168, 322 

Daniels, 211, 213, 324-325 

Database, use in two-tier architecture, 
240-242 

Database interaction 
domain tier, linking to data sources, 252 
generally, 240, 251-252 interaction diagram, 
254 interface tier, 252-256 pattern, 341 

Date fundamental type, 324 

Default method, 261-262 

Deletion of objects, 290 

Dependence, 162, 166-167 

Derivative contract 
domain hierarchies, 198, 216-223 
forward contract, 197, 198-200 options, 
197, 200-205 parallel application, 198, 
216-223 

Derivative contract (continued) product, 
197-198, 205-211 subtype state 
machines, 198, 211-216 

Derivative trade. See Derivative contract 

Derivatives trading system for a bank, 240, 
245-246 

Derived account, 130-131 

Derived mappings, 281, 317-318, 323 

Design analysis, 1 

Design templates associations, 
implementation of, 272, 

274-281 
constraints, implementation of, 273, 294 
design templates for other techniques, 273, 

295 
entry point, 273, 291-294 generalization, 
implementation, of, 273, 

281-288 
generally, 271-272 
goals of, 272 
model implementation, use in, 137 
object creation, 273, 289 object 
destruction, 273, 290-291 

Destruction of objects, 290-291, 342 

Diagrams 
event, 326-327 
interaction, 325-326 
package, 328-330 
state, 327-328 

Diagrams, type 
associations, attributes, aggregation, 

315-318 
fundamental types, 323-325 
generalization, 318-321 generally, 
313-314 semantic statements, 
321—323 type and class, 314-315 

Dictionary 
collection, 273 
historic mapping, use in, 305 
keyed mappings, use in, 301 

Digitalk Smalltalk. See Smalltalk 

Dimension combination, 58 
combination protocol, 74—75 
defined, 63 
enterprise segment, 58, 60-65 
properties of, 64-65 
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Directed acyclic graph (DAG), 166-168, 322 

Domain experts, involvement in conceptual 
modeling, 3 

Domain framework, 243-244 

Domain hierarchies, 198, 216-217, 340. See 
also Parallel application 

Domain tier, 242-245, 252 Double 

entry accounting, 98—99 Dual time 

record, 36, 47-48, 333 Duration, 

fundamental type, 324 Dynamic 

classification, 320 

E 

Each-entry posting rule, 143 

Eager firing, 111-112 

Edwards, John, 10 
Eiffel, 294, 321 

Einsteinian model, developer use of, 2 
Eligibility condition method, use in posting 

rules, 118 
Encapsulation, 274 

Enterprise segment 
dimension, defining of, 63-64 
dimension elements, 60-62 
dimension level type, 63 
generally, 58, 59 hierarchies of, 
59—60 object of care, 59 pattern, 
334 properties of, 65 top of 
hierarchy, 60 

Enterprise-wide modeling, 235 

Entry 
accounting, use in, 95 
booking to multiple accounts, 97, 127—132, 

337 
choosing of, 96, 118-119, 337 
double entry approach, 98—99 
memo, 129-130 sources of, 96, 
122-123, 337 storing of, 119 

Entry point 
classes, use of, 293-294 
find operations, implementation of, 293 
generally, 273, 291-292 
interface for finding objects, 292-293 

Entry point (continued) pattern, 342 
registrar objects, use of, 293-294 

Equivalance of objects, 85, 92-93, 335 

Essence/appearance model in object merger, 
91-92 

Event diagrams, 326-327 

External iterator, 98, 279 

External schema, 242 

F 
Facade. See also Application facade 

application logic tier, use in, 247 
client/server environments, stretching in, 

250-251 
database interface tier, use in, 253 
multiple, 267-269 

Filter 
account, 119, 120 
portfolio, 181-184 

Find arguments operation, 74-75 

Find operations, 293 

Firing approaches in posting rule execution 
account-based, 112-113 backward-chained, 
114 comparison of, 114—115 eager, 111-112 
posting-rule-based, 113-114 

Fixed format of a pattern, 6 

Flags, generalization implementation, 
283-284 

Focal event, 63 

Foreign exchange derivatives trading system 
for a bank, 176 

Forward contract 
date calculation, 199-200 
defined,198 generally, 197 
pattern, 339 tenor, 198-199 

Framework, accounting, 132 

Frameworks and patterns, 11-13 

Function 
outcome, 157, 172-174, 338 
range, 58, 80-81 
start, 157, 172-174, 338 
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Fundamental 
enterprise segment, 65 
types, 277, 324 

G 
Gang of Four creation patterns, 289 delegation, 

used in design, 314 initial publication of, 5 
patterns of, 110, 309 software interface and 
implementation 

differences, 4 software patterns, 
influence on, 6 

Generalization, implementation of delegation 
to a hidden class, 284-286 flags, 283-284 
generally, 273, 281-282 hasType operation, 
288 inheritance, 282 interface for, 287-288 
multiple inheritance combination classes, 

282 
pattern, 342 
replacement, creation of, 286 type 
diagrams, use in, 318-321 

Global package, 322 

Graphs 
directed acyclic graph (DAG), 166-168, 

322 plans and protocols used as, 
166-168 

H  

Hard-coding, 194 

HasType operation, implementation of, 288 

Hay, David, 4, 5, 132 
Health care example of application facade, 

258-259 

Hedge, defined, 177-178 

Hidden class, 284-286 

Hierarchic accountability acyclic 
graph structure, 28 generally, 
17 leveled, 29-30 multivalued 
mapping, 322 pattern, 332 
recursive association, 322 
rebalancing of subtypes, 30 
summary accounts, 101-103 
type, 28-29 

Hillside Group, history of, 5 

Historic mapping 
generally, 297, 303-305, 322 
pattern, 342 
two-dimensional history, 305—307 

Human artifact, conceptual model as, 2 

Hypothesis, 36, 49-50, 334 

I  

Idea, defined, 8 

Identification scheme, 85, 88-89, 335 

Identifier, 85-87 

Immutable mapping, 
322 partition, 322 

Implemented action 
generally, 157 pattern, 337 
planning, 158-160 
resource allocation, 168 

Implementing associations. See Associations, 
implementation of 

Implementing generalization. See 
Generalization, implementation of 

Income statement, 96, 123-124, 337 

Individual instance method 
calculated measurement protocol, 68 
conversion from Celsius to Fahrenheit, 39 
generally, 96, 106 
implementation, choosing of, 110-111 
internal case statement, 108-109 interpreter 
implementation, 110 parameterized method 
of implementation, 

109-110 
pattern, 336 
posting rules, use in, 105 singleton 
class of implementation, 

106-107 strategy pattern of 
implementation, 

107-108 

Information systems, layered architecture. See 
Layered architecture for information 
systems 

Inheritance, generalization implementation, 
282 

Instantiation of knowledge level, 26 

Instances, 323 
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Integer, fundamental type, 324 

Interaction diagram, 325-326 

Interface broker, 253 
destruction, 290-291 
generalization, 287-288 

Internal case statement, use in individual 
instance method, 108-109 

Internal schema, 242 

Interpreter implementation, use in 
individual instance method, 110 

Intervention, defined, 53—54 

Invariant check, 138 
Inventory and accounting. See Accounting and 

inventory 
Iterator, 98, 279 

J  
Johnson, Ralph, 5, 310 

K  
Keyed mapping 

association patterns, use in, 297, 301-303 
enterprise segment, use in, 60 
pattern, 342 
semantic statement, 323 

Keyed output, use in Total 
Telecommunications example, 135 

Knock-in, 212-214, 215 

Knock-out, 211 
Knowledge level 

accountability, 24-27, 332 
generally, 17 
instantiation of, 26 
operational levels and, 24-26, 50-51 
outcome functions, 173 
phenomenon type, 41-42 
planning patterns, 165 
posting rules, 116-118 
start functions, 173 

L  
Layered architecture for information systems 

database interaction, 240, 251-256 generally, 
225, 239-240 presentation and application 
logic, 240, 245-251 

Layered architecture for information systems 
(continued) three-tier architecture, 

240, 242-245, 
255-256 two-tier architecture, 

240-242 
Lazy checking, 170-171 

Legal values method, 261, 262, 263 

Lewis, 273 

List, collection, 273, 322 
Logic. See Presentation and application logic 

Logical data model, 243 

Long 
contracts, use in, 177-178 
options, use in, 202-204 

M  

Magnitude, fundamental type, 324 

Mapping. See also Historic mapping; Keyed 
mapping; Multivalued mapping; 
Single-valued mapping 

abstract, 136, 322 
arguments, list of, 67 
association, comparison to, 317 
category to phenomenon type, 43—45 
class, 322 
derived, 281, 318 
directed acyclic graph, 322 
identification scheme, use in, 88-89 
immutable, 322 
nonset, 281 
number, 322 
trigger, 137 

Mappings with bags, 39-41 

Measurement calculated, 67 generally, 
35, 41 operational level, 42 pattern, 
333 phenomenon type, and, 41—42 

Measurement protocol arguments, list of, 
67 calculated, 66, 67-68, 69-70 causal, 
58, 68-70 comparative, 58, 68-70 
corporate analysis, 65-66 creation for a 
phenomenon type, 58 creation of, 71-73 
defined,58 
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Measurement protocol (continued) 
dimension combination, 73-76 
pattern, 334 range functions, 81 
source, 66 status type, 58, 69-71 

Mellor, 211, 295 

Memo entry, 129-130 

Memo account, 96, 103-104, 336 
Mental model, creation of, 1-2 
Meta-model 

behavioral, 163 
defined, 26 pattern, 
298 

Method, operation, 323 

Methods for facade attributes, 260-262 

Model. See also Conceptual model 
choosing of, 2 Einsteinian, 2 
implementation, 315 logical data, 
243 Newtonian, 2 
specialized account, 96, 125-127, 337 
specification, 314-315 structural, in Total 
Telecommunications 

example, 134-136 
type, 10 

Modeling 
derivatives, 197 enterprise-wide, 
235 examples for, 8 implementation 
technique, 177 

Modeling principles 
abstract interface, providing of, 182, 196 
abstract supertypes, use of, 187 abstract type, 
providing of, 187 account value, 98 
alternative approaches, choice of, 204 
association, one-way or two-way decision, 

232 
attributes combined into new type, 186 
conceptual models linked to interfaces, 4 
conservation, principle of, 99 date 
calculations in forward contracts, 200 
derived features, 179 derived markers, use of, 
203 design templates, 272 feature, marking of, 
203 

model, divide into levels, 26 
model modification and type changes, 22 
modeling alternatives, choice of, 204 
models, usefulness of, 2, 13 
multiple attributes interacting with 

behavior, 38 
mutually visible packages, 232 notation, 
defining of, 305 operational level, 42 patterns 
as starting point, 13 portfolio, use of, 181 
postcondition of objects, 216 process, 
making into a feature of a type, 

195 
product/contract split, 210 responsibilities, 
allocation of, 211 responsibilities, separation 
of, 210 scenarios, use of, 191 sets of features, 
179 state charts, generalization effects, 216 
subtyping, use of, 208 supertype and subtype 
generalizations, 186 supertype logic, 24 type 
associations, 42 

Modifiers, 275, 276, 280 

Monetary values, 37-39 Money, 

fundamental type, 324 

Multilegged transaction 
defined, 96 generally, 
99-101 
Total Telecommunications example, use in, 

138 
Multiple 

access levels to a package, 226-230, 340 
classification, 319-321 
delete, 290 
hierarchies, 322 
source protocol, 67 
visibility, 227-230 

Multiplicity, 317 

Multivalued mapping accounting structure, 
137 associations, interface for, 275-276 
associative type, use in, 299 
bidirectional implementation, 278 
hierarchy, 322 type diagrams, use in, 317 

Mutual visibility, 230-233, 340 
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N  

Name of objects, 85, 86-87, 335 

Newtonian model, 2 

NHS Common Basic Specification, 158 

Non-entry point, 293 

Non-scenario approach, 190 

Nonfundamental object, 65 
Nonset mappings, 281 

Note, 323 

Number, fundamental type, 324 

Number mapping, 322 

O 

Object creation, 289, 342 Object 

destruction, 290-291, 342 Object 

equivalence, 85, 92-93, 335 

Object merge 
copy and replace, 90 
essence/appearance model, 91-92 
generally, 85, 90 pattern, 335 
superseding, 85, 90-91 

Object-oriented 
analysis, 38 
language, 89 
technique, 4 

Object technology reuse, 11 

Objects, finding of, 292-293 
Objects, referring to equivalence, 

92-93 identification scheme, 
88-89 merger, 90-92 name, 86-87 

Observation 
active, 36, 49-50, 334 associated, 36, 
50-51, 334 category, 43-46 generally, 
42-43 pattern, 333 phenomenon types, 
43 planning process, use in, 172-174 
process of, 36, 51-55, 334 qualitative 
information, use in, 35 qualitative 
measurements, 43 rejected, 36, 48, 333 

Observation concept 
absence and presence, use in, 46—47 
control condition, 53 subtyping, 35, 46, 
333 supertype of phenomenon, 46 

Odell, Jim 
business modeling, 10 
power type, 25-26 
structural modeling technique, 323 
type diagrams, 314 

One-way association, 277 

One-way pricing, 186, 187 
OO 

association interface, 275 
common methods, 263 
computer system, 85 
databases, use in information systems, 

244-245 
generalization, 281 implementing 
associations, 274 separation of 
responsibilities, 210 techniques, 3, 10 
type conversion, 265 visibility, 235 

OOPSLA, history of, 5 

Operating scope 
defined, 17, 31 
generally, 30 
model, 31 
pattern, 332 type, 
32 

Operational level 
knowledge, link to, 50-51 
measurement, 42 planning 
patterns, 165 posting rules, 
116-118 

Operations in application facades, 264—265 

Option 
barrier, 211 
Black-Scholes analysis, 201-202 
call and put, 202-204 
combination, 206 
compound, defined, 204 
event diagram, 201 
generally, 197, 200 
Harel state chart, 201 
hedging, 177-178 
longs and shorts, 202-204 
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Option (continued) pattern, 
339 structure of, 202 
subtyping, 204-205 

Organization hierarchy 
structure with explicit level model, 20 
modeling with, 17 
pattern, 331 
supertype model, 20 
two hierarchies modeled, 21 

Organization structure 
pattern, 331 
pattern requirement, 17 
rule, addition of, 21-23 
typed relationship, 21-22 

Outcome functions, 157, 172-174, 338 

Output 
account, defined, 117 Total 
Telecommunications example, use in, 135 

Overload, 323 

P 

Package, 322. See also Trading packages 

Package diagrams, 328-330 

Parallel application 
domain model, visibility of, 221-222 
exception handling, 223 
generally, 198, 216-217 
pattern, 340 
run-time attribute, 219-221 
supertype encompassing interface, 

218-219 type 
checking, 218 

Parameterized method, use in individual 
instance method, 109-110 

Parent-component association, use in 
protocol, 166 

Partition, immutable, 322 

Party 
accounts, use in, 125 
address book model, 18, 19 
contract package, relationship between, 

231-232 defined, 
17 pattern, 331 post 
subtype, 32 

Party type 
generalizations, 17, 27-28, 332 single 
inheritance hierarchy, 27-28 

Pattern. See also Association patterns; Design 
templates; Planning 

Alexander, Christopher, 5, 6 
analysis, 310 categories of, 8 
defined, 8 
domains, outside, 9-10 
fixed format, 6 frameworks 
and, 11-13 history of, 4-5 
literary form, 6-7 
meta-model, 298 naming of, 
7 origins of, 8—9 parts of, 6 
planning, 165 portfolio, 
history of, 7 table of, 
331-342 use of, 11-13 

Pattern Language of Programming (PLoP) 
conference, 5, 310 

Phenomenon type 
categories, mapping from, 43-45 
measurement and, 41-42 measurement 
protocol, 67 observation concept as a 
supertype, 46 qualitative phenomena used to 
describe, 58 

Phenomenon with range 
attribute, 58, 78-80 
function, 58, 80-81 
generally, 58, 77-78 pattern, 
335 

Phone, setting up new service, in Total 
Telecommunications example, 138—141. 
See also Calls, phone 

Plan, 157, 162-164, 338 

Planned status, 69-71 
Planning 

abandoned actions, 157, 160-161 
completed actions, 157, 160-161 
generally, 157-158 graphs, use as, 
166-168 implemented actions, 157, 
158-160 outcome function, 157, 
172-174 
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Planning (continued) plan, 157, 
162-164 proposed actions, 157, 
158-160 protocol, 157, 165-168 
resource allocation, 157, 168-172 
start function, 157, 172-174 
suspension, 157, 161-162 

PLoP (Pattern Language of Programming) 
conference, 5, 310 

Pointers used in bidirectional 
implementation, 278-279 

Polymorphism 
account entries operation, use in, 137 
measurement protocol, use in, 58, 71 
subtype of detail account, 136 

Portfolio 
browser, 217 
defined, 180 
dynamic, with filters, 181 
filters, 181-184 generally, 
175 pattern, 338 persistent, 
184 transient, 184 

Portland Pattern Repository, 310 

Post 
generally, 17 
party subtype, 32-33 
pattern, 332 

Posting account, 141 

Posting-rule-based firing, 113-114 

Posting rule execution 
account-based firing, 112—113 
backward-chained firing, 114 
firing approaches, comparison of, 114—115 
generally, 96 
eager firing, 111-112 
pattern, 336 
posting-rule-based firing, 113-114 

Posting rules each-entry, 143 generally, 
96, 104-105 many accounts, 96, 
116-118, 336 pattern, 336 
reversibility of, 105 structure of, 
151-152 transactions, abandoning 
of, 105 transform, 146-147 

Power type, 25 

Practical context of patterns, 8 

Practice, accounting, 119-122, 337 

Prerequisite, 329-330 
Presence 

category observation, 46 
observation concepts, 47 

Presentation and application logic 
application logic tier, 246—247 
applications, building of, 245 
client/server environments, 250—251 
generally, 240, 255-256 logic split, 
249-250 matrix, building of, 246 pattern, 
341 presentation tier, 246 risk report 
facade, 247-248 risk report presentation, 
247 visibilities between domains, 
248—249 

Primary party, 178 Principle of 

conservation, 99 Private type, 227 
Process of observation 

abstraction, 54-55 
generally, 36, 51 
pattern, 334 trigger 
rule, 51-54 

Product 
combination, common, 209 
generally, 205-206 link to 
contracts, 210 pattern, 197-198, 
339 spread, 207 straddle, 
205-206 subtyping, 208 

Projection, 36, 49, 334 

Proposed action generally, 
157 pattern, 337 planning, 
158-160 resource 
allocation, 168 

Protection proxy, 279 

Protocol. See also Measurement protocol 
defined, 46 
graphs, use as, 166-168 
multiple source, 67 multiple 
visibility, use in, 228 
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Protocol (continued) 
mutual visibilities, 232 
pattern, 333, 338 
planning, 157, 165-168 
observation, 35-36 value 
of, 46-47 

Proxy, protection, 279 

Public type, 227 

Put, in option contract, 202-204 

Q 
Qualitative 

measurements, 43 
phenomena, 58 

Quantity 
attribute, 97-98 defined, 35, 37 
fundamental type, 324 measurements as 
attributes, 37 monetary values, 37-38 
object-oriented analysis, use in, 38 pattern, 
332 unit, purpose of, in association name, 
36 

Quote 
abstract, 187, 188 
generally, 175 
number subtype, 186 
one-way pricing, 186, 187 
pattern, 338 
two-way pricing, 185, 187, 188 

R 

Range. See also Phenomenon with range 
corporate finance, use in, 76—77 defined, 
58 function, 58, 80-81 fundamental type, 
324 pattern, 335 

Ratio, conversion, 35, 38-39, 332 

Rational Software's Unified Modeling 
Language (UML), 313-314 

Real numbers, fundamental type, 324 

Record, object information, 35 Recursive 

association, 322 Registrar objects, use of, 

293-294 Rejected observation, 36, 48, 

333 Relational technique, 4 

Replacement, use in generalization 
implementation, 286 

Resource allocation, 157, 168-172, 338 

Retrieval method, 260-261, 262, 263 Reuse 

of object technology, 11 Reversibility of 

posting rules, 105 Rule, use in organization 

structure, 21-23 Rumbaugh, 211, 298-299 

Run-time attribute, 219-221 

S 
Scenario 

building of, 191-196 caching policy, 
196 cross-rate element, 192-194 
defined, 180 derived issue, 192 
elements, calculation of, 192 
elements, referencing of, 193 
generally, 39, 175 hard-coding, 194 
interactive formula builder, 194 
interpreter, 194 multiple access 
levels to a package, 

226-230 pattern, 339 sourced element, 
192 strengths of, 189-190 timepoint, 
adding to quote, 188-189 

Schema. See Three-tier architecture 

Selector, contract, 182-184 Semantic 

statements, 321-323 Sequence, 

dependency of, 162 

Set 
collections, 273 proposed 
plan actions, 165 

Shlaer, 211, 295 

Short 
contracts, use in, 177-178 
options, use in, 202-204 

Simple interpreter, 67 

Single classification, 319 

Single delete, 290 

Single-valued mapping association interface, 
275 category, change to phenomenon type, 
44-45 
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Single-valued mapping (continued) 
pointers, 278 
structure, use in implementation of, 137 
type diagrams, use in, 317 

Singleton class 
individual instance method, use in, 

106-107 Total Telecommunications 
example, use 

in, 145 
type, 322 

Smalltalk 
association interface, 277 
block method, 108 
collections, 273 
conceptual modeling, use in, 3 
constraints, implementation of, 294 
contracts, use in, 181 
exception handling, 223 
information systems applications, use in, 

244 
object creation, 289 quotes, use in, 186 
Total Telecommunications example, use 

in, 133 
Software 

implementation, defined, 4 
interface, defined, 4 language, 
3 patterns. See Pattern 
protocol, 166 

Source measurement protocol, 66 

Split process rule, 146 

Spot contract, 198 
Spread, defined, 207 

Standard Template Library (STL), 273 
Star schema 

defined,60-61 
focal event, 63 

Start function, 157, 172-174, 338 

Status type defined,58 measurement protocol, 
use in, 69-72 

STL (Standard Template Library), 273 

Storage schema, 242 

Storing entries, 119 

Straddle, 205-206 

State charts, conformance of, 211-214 

State diagrams, 327-328 

Strategy pattern, use in individual instance 
method, 107-108 

Stretching of a facade, 250-251 

String 
fundamental type, 324 
identification scheme, 88-89 

Structural constraint, 170 

Structural models, in Total 
Telecommunications example, 134—136 

Structure, implementation of, in Total 
Telecommunications example, 137—138 

Subclassing, 318 

Subtype state machines barrier option, 
211 conformance, problems with using, 

215-216 generally, 198 pattern, 339 state 
charts, conformance of, 211-214 

Subtyping 
observation concept, 35, 46, 333 
packages, 233-234, 340 relationship 
between facades, 268 

Summary account 
generally, 96, 101-103 
multiple, 127-129 pattern, 
336 
posting rules for many accounts, use in, 

116-118 

Superseding, 85, 90-91 Supertype 

observation concept, 46 Suspension, 

157, 161-162, 338 Symmetric 

property, 125 

T  
Tax, calculation of, in Total 

Telecommunications example, 148—150 

Telephone utility example. See Total 
Telecommunications (TT) 

Templates, design, 137 Temporal 

resource, 157 Tenor, 197, 

198-199 Text, fundamental type, 

324 

Three-schema architecture. See Three-tier 
architecture 
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Three-tier architecture 
domain tier, location of, 243-245, 255 
generally, 240, 242-243 pattern, 341 

Tilak chart, 64 

Time, fundamental type, 324 

Time period, fundamental type, 324 

Time reference, fundamental type, 324 
Timepoint, fundamental type, 324 

Total Telecommunications (TT) 
account-based firing, implementation of, 

134,143 
accounting practice diagrams, 153-154 
billing plan, 133 calls, setting up of, 134, 
142-143 framework, 150, 152-153 generally, 
133-134 new phone service, 134, 138—141 
posting rules, 134, 151-152 separation of day 
and evening calls, 134, 

143-145 
structural models, 134-136 structure, 
implementation of, 134, 137-138 tax, 
calculation of, 134, 148-150 time, charging 
for, 134, 145-148 

Trading 
contract, 175, 176-180 portfolio, 
175, 180-184 quote, 175, 
185-188 scenario, 175, 180, 
188-196 

Trading packages 
generally, 225-226 
multiple access levels, 225, 226-230, 340 
mutual visibility, 225, 230-233 private type, 
227 public type, 227 subtyping packages, 226, 
233-234, 340 

Transaction. See also Multilegged 
transaction; Two-legged transaction 

abandoning of, 105 generally, 95-96, 
98-99 pattern, 336 

Transfer transaction, 126 Transform 

posting rule, 146-147 Transformation 

patterns, defined, 271 Transivity property, 

125 

Trigger 
account, 111-112 
mapping, 137 
observation, process of, 51-54 Total 
Telecommunications example, use in, 135 

Two-dimensional history, 298, 305-307 

Two-legged transaction 
defined, 96 model, 100 
Total Telecommunications example, use in, 

138, 139 
Two-tier architecture, 240-242, 340 

Two-way pricing, 185, 187, 188 

Type 
abstract, 322 
associative, 297, 298-301, 342 
checking, 218, 276 
conversion, 265-267 
instances, 323 
mapping, 28 
model, 10. See also Design templates 
overload, 323 
singleton, 322 

Type diagram 
aggregation, 315-318 
associations, 315-318 
attributes, 315-318 
class, 314-315 
defined,313 
fundamental, 323-325 
generalization, 318-321 
rules and semantic statements, 321-323 
type, 314-315 

Typed relationship, use in organization 
structure, 21-22 

U  
Unidirectional associations, 274-275, 278, 316 
Unified Modeling Language (UML), 313-314 

Uniqueness constraint, use in identification 
scheme, 88-89 

Unit 
atomic, 39-41 compound, 35, 39-41, 332 
conversion ratio used to convert, 38—39 

356   Index 



 
 

DLKING ¶À¼ÒÖÆ×÷ , »¶Ó·ÃÎÊÎÒÃÇµÄÍøÕ¾ : www.dlking.com 

  

Unit (continued) 
fundamental type, 324 purpose of, in 
association name, 36 quantity 
combined with, 35 reference, 40 

Update method, 261, 262, 263 

V  
Validation method, 261, 262, 263 

Visibility  
generally, 234-235 multiple, 
227-228 mutual, 230-233, 340 
package diagrams, 329—330 
subtyping, 136, 233-234 

Visitor pattern approach, 218 

Visual Basic, software components, 11 

w  

Whole value, quantity as, 37 

Wirfs-Brock solution, 227 World 

Wide Web site, 309-310 
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