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How does software break? How do attackers make software break on purpose? Why are
firewalls, intrusion detection systems, and antivirus software not keeping out the bad guys?
What tools can be used to break software? This book provides the answers.

Exploiting Softwareis loaded with examples of real attacks, attack patterns, tools, and
techniques used by bad guys to break software. If you want to protect your software from
attack, you must first learn how real attacks are really carried out.
This must-have book may shock you—and it will certainly educate you.Getting beyond the
script kiddie treatment found in many hacking books, you will learn about

« Why software exploit will continue to be a serious problem

¢ When network security mechanisms do not work

e Attack patterns

e Reverse engineering

¢ Classic attacks against server software

e Surprising attacks against client software

e Techniques for crafting malicious input

¢ The technical details of buffer overflows

e Rootkits

Exploiting Softwareis filled with the tools, concepts, and knowledge necessary to break
software.
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Praise for Exploiting Software

"Exploiting Software highlights the most critical part of the software quality problem. As
it turns out, software quality problems are a major contributing factor to computer
security problems. Increasingly, companies large and small depend on software to run
their businesses every day. The current approach to software quality and security taken
by software companies, system integrators, and internal development organizations is
like driving a car on a rainy day with worn-out tires and no air bags. In both cases, the
odds are that something bad is going to happen, and there is no protection for the
occupant/owner.

This book will help the reader understand how to make software quality part of the
design—a key change from where we are today!"

—Tony Scott Chief Technology Officer, 1S&S General Motors Corporation

"It's about time someone wrote a book to teach the good guys what the bad guys
already know. As the computer security industry matures, books like Exploiting Software
have a critical role to play."

—Bruce Schneier Chief Technology Officer Counterpane Author of Beyond Fear and
Secrets and Lies

"Exploiting Software cuts to the heart of the computer security problem, showing why
broken software presents a clear and present danger. Getting past the 'worm of the day'
phenomenon requires that someone other than the bad guys understands how software
is attacked.

This book is a wake-up call for computer security."
—Elinor Mills Abreu Reuters' correspondent

"Police investigators study how criminals think and act. Military strategists learn about
the enemy's tactics, as well as their weapons and personnel capabilities. Similarly,
information security professionals need to study their criminals and enemies, so we can
tell the difference between popguns and weapons of mass destruction. This book is a
significant advance in helping the ‘white hats' understand how the 'black hats' operate.

Through extensive examples and 'attack patterns,' this book helps the reader
understand how attackers analyze software and use the results of the analysis to attack
systems. Hoglund and McGraw explain not only how hackers attack servers, but also
how malicious server operators can attack clients (and how each can protect themselves
from the other). An excellent book for practicing security engineers, and an ideal book
for an undergraduate class in software security."

—Jeremy Epstein Director, Product Security & Performance webMethods, Inc.

"A provocative and revealing book from two leading security experts and world class
software exploiters, Exploiting Software enters the mind of the cleverest and wickedest
crackers and shows you how they think. It illustrates general principles for breaking
software, and provides you a whirlwind tour of techniques for finding and exploiting
software vulnerabilities, along with detailed examples from real software exploits.

Exploiting Software is essential reading for anyone responsible for placing software in a
hostile environment—that is, everyone who writes or installs programs that run on the
Internet.”

—Dave Evans, Ph.D. Associate Professor of Computer Science University of Virginia



"The root cause for most of today's Internet hacker exploits and malicious software
outbreaks are buggy software and faulty security software deployment. In Exploiting
Software, Greg Hoglund and Gary McGraw help us in an interesting and provocative
way to better defend ourselves against malicious hacker attacks on those software
loopholes.

The information in this book is an essential reference that needs to be understood,
digested, and aggressively addressed by IT and information security professionals
everywhere."

—Ken Cutler, CISSP, CISA Vice President, Curriculum Development & Professional
Services, MIS Training Institute

"This book describes the threats to software in concrete, understandable, and
frightening detail. It also discusses how to find these problems before the bad folks do.
A valuable addition to every programmer's and security person'’s library!™

—Matt Bishop, Ph.D. Professor of Computer Science University of California at Davis
Author of Computer Security: Art and Science

"Whether we slept through software engineering classes or paid attention, those of us
who build things remain responsible for achieving meaningful and measurable
vulnerability reductions. If you can't afford to stop all software manufacturing to teach
your engineers how to build secure software from the ground up, you should at least
increase awareness in your organization by demanding that they read Exploiting
Software. This book clearly demonstrates what happens to broken software in the wild."

—Ron Moritz, CISSP Senior Vice President, Chief Security Strategist Computer
Associates

"Exploiting Software is the most up-to-date technical treatment of software security |
have seen. If you worry about software and application vulnerability, Exploiting
Software is a must-read. This book gets at all the timely and important issues
surrounding software security in a technical, but still highly readable and engaging,
way.

Hoglund and McGraw have done an excellent job of picking out the major ideas in
software exploit and nicely organizing them to make sense of the software security
jungle.”

—George Cybenko, Ph.D. Dorothy and Walter Gramm Professor of Engineering,
Dartmouth Founding Editor-in-Chief, IEEE Security and Privacy

"This is a seductive book. It starts with a simple story, telling about hacks and cracks. It
draws you in with anecdotes, but builds from there. In a few chapters you find yourself
deep in the intimate details of software security. It is the rare technical book that is a
readable and enjoyable primer but has the substance to remain on your shelf as a
reference. Wonderful stuff.”

—Craig Miller, Ph.D. Chief Technology Officer for North America Dimension Data

"It's hard to protect yourself if you don't know what you're up against. This book has the
details you need to know about how attackers find software holes and exploit
them—details that will help you secure your own systems."

—Ed Felten, Ph.D. Professor of Computer Science Princeton University
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Foreword

In early July 2003 | received a call from David Dill, a computer science professor at Stanford
University. Dill informed me that the source code to an electronic voting machine produced
by Diebold Election Systems, one of the top vendors, had leaked onto the Internet, and that
perhaps it would be worth examining it for security vulnerabilities. This was a rare
opportunity, because voting system manufacturers have been very tight with their
proprietary code. What we found was startling: Security and coding flaws were so prevalent
that an attack might be delayed because the attacker might get stuck trying to choose from
all the different vulnerabilities to exploit without knowing where to turn first. (Such delay
tactics are not recommended as a security strategy.) There were large, complex chunks of
code with no comments. There was a single static key hard wired into the code for encrypting
vote tallies. Insecure pseudorandom number generators and noncryptographic checksums
were used. And inspection of the CVS logs revealed an arbitrary, seemingly ad hoc source
code management process. And then there were the serious flaws.

Was the Diebold voting machine example an isolated incident of poor quality control? | don't
think so. Many companies such as Diebold are hard pressed to get their products to market
before their competitors. The company with the best, functionally correct system wins. This
incentive model rewards the company with the product that is available first and has the
most features, not the one with the most secure software. Getting security right is very
difficult, and the result is not always tangible. Diebold was unlucky: Their code was examined
in a public forum and was shown to be completely broken. Most companies are relatively safe
in the assumption that independent analysts will only get to see their code under strict
nondisclosure agreements. Only when they are held to the fire do companies pay the kind of
attention to security that is warranted. Diebold's voting machine code was not the first highly
complex system that | had ever looked at that was full of security flaws. Why is it so difficult
to produce secure software?

The answer is simple. Complexity. Anyone who has ever programmed knows that there are
unlimited numbers of choices when writing code. An important choice is which programming
language to use. Do you want something that allows the flexibility of pointer arithmetic with
the opportunities it allows for manual performance optimization, or do you want a type-safe
language that avoids buffer overflows but removes some of your power? For every task, there
are seemingly infinite choices of algorithms, parameters, and data structures to use. For
every block of code, there are choices on how to name variables, how to comment, and even
how to lay out the code in relation to the white space around it. Every programmer is
different, and every programmer is likely to make different choices. Large software projects
are written in teams, and different programmers have to be able to understand and modify
the code written by others. It is hard enough to manage one's own code, let alone software
produced by someone else. Avoiding serious security vulnerabilities in the resulting code is
challenging for programs with hundreds of lines of code. For programs with millions of lines
of code, such as modern operating systems, it is impossible.

However, large systems must be built, so we cannot just give up and say that writing such
systems securely is impossible. McGraw and Hoglund have done a marvelous job of
explaining why software is exploitable, of demonstrating how exploits work, and of educating
the reader on how to avoid writing exploitable code. You might wonder whether it is a good
idea to demonstrate how exploits work, as this book does. In fact, there is a trade off that
security professionals must consider, between publicizing exploits and keeping them quiet.
This book takes the correct position that the only way to program in such a way that
minimizes the vulnerabilities in software is to understand why vulnerabilities exist and how
attackers exploit them. To this end, this book is a must-read for anybody building any
networked application or operating system.

Exploiting Software is the best treatment of any kind that | have seen on the topic of software
vulnerabilities. Gary McGraw and Greg Hoglund have a long history of treating this subject.
McGraw's first book, Java Security, was a groundbreaking look at the security problems in the



Java runtime environment and the security issues surrounding the novel concept of untrusted
mobile code running inside a trusted browser. McGraw's later book, Building Secure Software,
was a classic, demonstrating concepts that could be used to avoid many of the vulnerabilities
described in the current book. Hoglund has vast experience developing rootkits and
implementing exploit defenses in practice.

After reading this book, you may find it surprising not that so many deployed systems can be
hacked, but that so many systems have not yet been hacked. The analysis we did of an
electronic voting machine demonstrated that software vulnerabilities are all around us. The
fact that many systems have not yet been exploited only means that attackers are satisfied
with lower hanging fruit right now. This will be of little comfort to me the next time | go to
the polls and am faced with a Windows-based electronic voting machine. Maybe I'll just mail
in an absentee ballot, at least that voting technology's insecurities are not based on software
flaws.

Aviel D. Rubin

Associate Professor, Computer Science

Technical Director, Information Security Institute
Johns Hopkins University



Preface

Software security is gaining momentum as security professionals realize that computer
security is really all about making software behave. The publication of Building Secure
Software in 2001 (Viega and McGraw) unleashed a number of related books that have
crystallized software security as a critical field. Already, security professionals, software
developers, and business leaders are resonating with the message and asking for more.

Building Secure Software (co-authored by McGraw) is intended for software professionals
ranging from developers to managers, and is aimed at helping people develop more secure
code.Exploiting Software is useful to the same target audience, but is really intended for
security professionals interested in how to find new flaws in software. This book should be of
particular interest to security practitioners working to beef up their software security skills,
including red teams and ethical hackers.

Exploiting Software is about how to break code. Our intention is to provide a realistic view of
the technical issues faced by security professionals. This book is aimed directly toward
software security as opposed to network security. As security professionals come to grips with
the software security problem, they need to understand how software systems break.

Solutions to each of the problems discussed in Exploiting Software can be found in Building
Secure Software. The two books are mirror images of each other.

We believe that software security and application security practitioners are in for a reality
check. The problem is that simple and popular approaches being hawked by upstart
"application security"” vendors as solutions—such as canned black box testing tools—barely
scratch the surface. This book aims to cut directly through the hype to the heart of the
matter. We need to get real about what we're up against. This book describes exactly that.



What This Book Is About

This book closely examines many real-world software exploits, explaining how and why they
work, the attack patterns they are based on, and in some cases how they were discovered.
Along the way, this book also shows how to uncover new software vulnerabilities and how to
use them to break machines.

Chapter 1 describes why software is the root of the computer security problem. We introduce
thetrinity of trouble—complexity, extensibility, and connectivity—and describe why the
software security problem is growing. We also describe the future of software and its
implications for software exploit.

Chapter 2 describes the difference between implementation bugs and architectural flaws. We
discuss the problem of securing an open system, and explain why risk management is the
only sane approach. Two real-world exploits are introduced: one very simple and one
technically complex. At the heart of Chapter 2 is a description of attack patterns. We show
how attack patterns fit into the classic network security paradigm and describe the role that
attack patterns play in the rest of the book.

The subject of Chapter 3 is reverse engineering. Attackers disassemble, decompile, and
deconstruct programs to understand how they work and how they can be made not to.
Chapter 3 describes common gray box analysis techniques, including the idea of using a
security patch as an attack map. We discuss Interactive Disassembler (IDA), the state-of-the-
art tool used by hackers to understand programs. We also discuss in detail how real cracking
tools are built and used.

InChapters 4,5,6, and 7, we discuss particular attack examples that provide instances of
attack patterns. These examples are marked with an asterisk.

Chapters 4 and 5 cover the two ends of the client—server model. Chapter 4 begins where the
bookHacking Exposed [McClure et al., 1999] leaves off, discussing trusted input, privilege
escalation, injection, path tracing, exploiting trust, and other attack techniques specific to
server software. Chapter 5 is about attacking client software using in-band signals, cross-site
scripting, and mobile code. The problem of backwash attacks is also introduced. Both
chapters are studded with attack patterns and examples of real attacks.

Chapter 6 is about crafting malicious input. It goes far beyond standard-issue "fuzzing" to
discuss partition analysis, tracing code, and reversing parser code. Special attention is paid
to crafting equivalent requests using alternate encoding techniques. Once again, both real-
world example exploits and the attack patterns that inspire them are highlighted throughout.

The whipping boy of software security, the dreaded buffer overflow, is the subject of Chapter
7. This chapter is a highly technical treatment of buffer overflow attacks that leverages the
fact that other texts supply the basics. We discuss buffer overflows in embedded systems,
database buffer overflows, buffer overflow as targeted against Java, and content-based buffer
overflows.Chapter 7 also describes how to find potential buffer overflows of all kinds,
including stack overflows, arithmetic errors, format string vulnerabilities, heap overflows,
C++ vtables, and multistage trampolines. Payload architecture is covered in detail for a
number of platforms, including x86, MIPS, SPARC, and PA-RISC. Advanced techniques such
as active armor and the use of trampolines to defeat weak security mechanisms are also
covered.Chapter 7 includes a large number of attack patterns.

Chapter 8 is about rootkits—the ultimate apex of software exploit. This is what it means for a
machine to be "owned." Chapter 8 centers around code for a real Windows XP rootkit. We
cover call hooking, executable redirection, hiding files and processes, network support, and
patching binary code. Hardware issues are also discussed in detail, including techniques used
in the wild to hide rootkits in EEPROM. A number of advanced rootkit topics top off Chapter 8.

As you can see, Exploiting Software runs the gamut of software risk, from malicious input to



stealthy rootkits. Using attack patterns, real code, and example exploits, we clearly
demonstrate the techniques that are used every day by real malicious hackers against
software.



How to Use This Book

This book is useful to many different kinds of people: network administrators, security
consultants, information warriors, developers, and security programmers.

¢ If you are responsible for a network full of running software, you should read this book
to learn the kinds of weaknesses that exist in your system and how they are likely to
manifest.

¢ If you are a security consultant, you should read this book so you can effectively locate,
understand, and measure security holes in customer systems.

e If you are involved in offensive information warfare, you should use this book to learn
how to penetrate enemy systems through software.

¢ If you create software for a living, you should read this book to understand how
attackers will approach your creation. Today, all developers should be security minded.
The knowledge here will arm you with a real understanding of the software security
problem.

e If you are a security programmer who knows your way around code, you will love this
book.

The primary audience for this book is the security programmer, but there are important
lessons here for all computer professionals.



But Isn't This Too Dangerous?

It's important to emphasize that none of the information we discuss here is news to the
hacker community. Some of these techniques are as old as the hills. Our real objective is to
provide some eye-opening information and up the level of discourse in software security.

Some security experts may worry that revealing the techniques described in this book will
encourage more people to try them out. Perhaps this is true, but hackers have always had
better lines of communication and information sharing than the good guys. This information
needs to be understood and digested by security professionals so that they know the
magnitude of the problem and they can begin to address it properly. Shall we grab the bull
by the horns or put our head in the sand?

Perhaps this book will shock you. No matter what, it will educate you.
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Chapter 1. Software—The Root of the
Problem

So you want to break software, leave it begging for mercy in RAM after it has relinquished all
of its secrets and conjured up a shell for you. Hacking the machine is almost always about
exploiting software. And more often than not, the machine is not even a standard
computer.m Almost all modern systems share a common Achilles' heel in the form of
software. This book shows you how software breaks and teaches you how to exploit software
weakness in order to control the machine.

[11 Of course, most exploits are designed to break off-the-shelf software running on off-the-shelf
computers used by everyday business people.

There are plenty of good books on network security out there. Bruce Schneier's Secrets and
Lies [2000] provides a compelling nickel tour of the facilities, filled to the brim with excellent
examples and wise insight. Hacking Exposed, by McClure et al. [1999], is a decent place to
start if you're interested in understanding (and carrying out) generic attacks. Defending
against such attacks is important, but is only one step in the right direction. Getting past the
level of script kiddie tools is essential to better defense (and offense). The Whitehat Security
Arsenal [Rubin, 1999] can help you defend a network against any number of security
problems. Ross Anderson's Security Engineering [2001] takes a detailed systematic look at
the problem. So why another book on security?

As Schneier says in the Preface to Building Secure Software [Viega and McGraw, 2001], "We
wouldn’'t have to spend so much time, money, and effort on network security if we didn't
have such bad software security." He goes on to say the following:

Think about the most recent security vulnerability you've read about. Maybe it's a killer
packet, which allows an attacker to crash some server by sending it a particular packet.
Maybe it's one of the gazillions of buffer overflows, which allow an attacker to take
control of a computer by sending it a particular malformed message. Maybe it's an
encryption vulnerability, which allows an attacker to read an encrypted message, or fool
an authentication system. These are all software issues. (p. Xix)

Of the reams of security material published to date, very little has focused on the root of the
problem—software failure. We explore the untamed wilderness of software failure and teach
you to navigate its often uncharted depths.



A Brief History of Software

Modern computers are no longer clunky, room-size devices that require an operator to walk
into them to service them. Today, users are more likely to wear computers than to enter

them. Of all the technology drivers that have brought about this massive change, including
the vacuum tube, the transistor, and the silicon chip, the most important by far is software.

Software is what sets computers apart from other technological innovations. The very idea of
reconfiguring a machine to do a seemingly infinite number of tasks is powerful and
compelling. The concept has a longer history as an idea than it has as a tangible enterprise.
In working through his conception of the Analytical Engine in 1842, Charles Babbage enlisted
the help of Lady Ada Lovelace as a translator. Ada, who called herself "an Analyst (and
Metaphysician)," understood the plans for the device as well as Babbage, but was better at
articulating its promise, especially in the notes that she appended to the original work. She
understood that the Analytical Engine was what we would call a general-purpose computer,
and that it was suited for "developping [sic] and tabulating any function whatever.... the
engine [is] the material expression of any indefinite function of any degree of generality and
complexity."[21 What she had captured in those early words is the power of software.

[21 For more information on Lady Ada Lovelace, see http://www.sdsc.edu/ScienceWomen/lovelace.html.

According to Webster's Collegiate dictionary, the word software came into common use in
1960:

Main entry:soft-ware

Pronunciation: ‘soft-"war, -"wer

Function: noun
Date: 1960

: something used or associated with and usually contrasted with hardware: as the entire
set of programs, procedures, and related documentation associated with a system and
especially a computer system; specifically : computer programs..."

In the 1960s, the addition of "modern, high-level" languages like Fortran, Pascal, and C
allowed software to begin to carry out more and more important operations. Computers
began to be defined more clearly by what software they ran than by what hardware the
programs operated on. Operating systems sprouted and evolved. Early networks were formed
and grew. A great part of this evolution and growth happened in software.[31 Software
becameessential.

[31 There is a great synergy between hardware and software advances. The fact that hardware today is
incredibly capable (especially relative to hardware predecessors) certainly does its share to advance the
state of the practice in software.

A funny thing happened on the way to the Internet. Software, once thought of solely as a
beneficial enabler, turned out to be agnostic when it came to morals and ethics. As it turns
out, Lady Lovelace's claim that software can provide "any function whatsoever" is true, and
that "any function" includes malicious functions, potentially dangerous functions, and just
plain wrong functions.

As software became more powerful, it began moving out of strictly technical realms (the
domain of the geeks) and into many other areas of life. Business and military use of software
became increasingly common. It remains very common today.

The business world has plenty to lose if software fails. Business software operates supply
chains, provides instant access to global information, controls manufacturing plants, and
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manages customer relationships. This means that software failure leads to serious problems.
In fact, software that fails or misbehaves can now

e Expose confidential data to unauthorized users (including attackers)
e Crash or otherwise grind to a halt when exposed to faulty inputs

¢ Allow an attacker to inject code and execute it

¢ Execute privileged commands on behalf of a clever attacker

Networks have had a very large (mostly negative) impact on the idea of making software
behave. Since its birth in the early 1970s as a 12-node network called the ARPANET, the
Internet has been adopted at an unprecedented rate, moving into our lives much more
speedily than a number of other popular technologies, including electricity and the telephone
(Eigure 1-1). If the Internet is a car, software is its engine.

Figure 1-1. Rate of adoption of various technologies in years. The
graph shows years (since introduction/Zinvention noted as year 0) on
the x-axis and market penetration (by percentage of households) on
the y-axis. The slopes of the different curves are telling. Clearly, the

Internet is being adopted more quickly (and thus with a more
profound cultural impact) than any other human technology in
history. (Information from Dan Geer, personal communication.)
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Connecting computers in a network allows computer users to share data, programs, and each
others' computational resources. Once a computer is put on a network, it can be accessed
remotely, allowing geographically distant users to retrieve data or to use its CPU cycles and
other resources. The software technology that allows this to happen is very new and largely
unstable. In today's fast-paced economy, there is strong market pressure on software
companies to deliver new and compelling technology. "Time to market" is a critical driver,
and "get it done yesterday" is a common mandate. The longer it takes to get a technology to
market, the more risk there is of business failure. Because doing things carefully takes too
much time and money, software tends to be written in haste and is poorly tested. This
slipshod approach to software development has resulted in a global network with billions of
exploitable bugs.

Most network-based software includes security features. One simple security feature is the
password. Although the movie cliché of an easily guessed password is common, passwords
do sometimes slow down a potential attacker. But this only goes for naive attackers who
attempt the front door. The problem is that many security mechanisms meant to protect
software are themselves software, and are thus themselves subject to more sophisticated
attack. Because a majority of security features are part of the software, they usually can be
bypassed. So even though everyone has seen a movie in which the attacker guesses a
password, in real life an attacker is generally concerned with more complex security features
of the target. More complex features and related attacks include

e Controlling who is allowed to connect to a particular machine

¢ Detecting whether access credentials are being faked

¢ Determining who can access which resources on a shared machine
e Protecting data (especially in transit) using encryption

¢ Determining how and where to collect and store audit trails

Tens of thousands of security-relevant computer software bugs were discovered and reported
publicly throughout the 1990s. These kinds of problems led to widespread exploits of
corporate networks. Today, tens of thousands of backdoors are said to be installed in
networks across the globe—fallout from the massive boom in hacking during the late 20th
century. As things currently stand, cleaning up the mess we are in is darn near impossible,
but we have to try. The first step in working through this problem is understanding what the
problem is. One reason this book exists is to spark discourse on the true technical nature of
software exploit, getting past the shiny surface to the heart of the problem.

Software and the Information Warrior

The second oldest profession is war. But even a profession as ancient as war has its modern
cyberinstantiation. Information warfare (IW) is essential to every nation and corporation that
intends to thrive (and survive) in the modern world. Even if a nation is not building IW
capability, it can be assured that its enemies are, and that the nation will be at a distinct
disadvantage in future wars.

Intelligence gathering is crucial to war. Because IW is clearly all about information, it is also
deeply intertwined with intelligence gathering.[4l Classic espionage has four major purposes:

[4] See the book by Dorothy Denning, Information Warfare & Security [1998], for more information on this
issue.

1. National defense (and national security)

2. Assistance in a military operation



3. Expansion of political influence and market share
4. Increase in economic power

An effective spy has always been someone who can gather and perhaps even control vast
amounts of sensitive information. In this age of highly interconnected computation, this is
especially true. If sensitive information can be obtained over networks, a spy need not be
physically exposed. Less exposure means less chance of being caught or otherwise
compromised. It also means that an intelligence-gathering capability costs far less than has
traditionally been the case.

Because war is intimately tied to the economy, electronic warfare is in many cases concerned
with the electronic representation of money. For the most part, modern money is a cloud of
electrons that happens to be in the right place at the right time. Trillions of electronic dollars
flow in to and out of nations every day. Controlling the global networks means controlling the
global economy. This turns out to be a major goal of IW.

Digital Tradecraft

Some aspects of IW are best thought of as digital tradecraft.
Main entry: tradeecraft
Pronunciation: 'trdd-"kraft
Function: noun
Date: 1961
: the techniques and procedures of espionage... (Webster's, page 1250)

Modern espionage is carried out using software. In an information system-driven attack, an
existing software weakness is exploited to gain access to information, or a backdoor is
inserted into the software before it's deployed.[3] Existing software weaknesses range from
configuration problems to programming bugs and design flaws. In some cases the attacker
can simply request information from target software and get results. In other cases
subversive code must be introduced into the system. Some people have tried to classify
subversive code into categories such as logic bomb, spyware, Trojan horse, and so forth. The
fact is that subversive code can perform almost any nefarious activity. Thus, any attempt at
categorization is most often a wasted exercise if you are concerned only with results. In some
cases, broad classification helps users and analysts differentiate attacks, which may aid in
understanding. At the highest level, subversive code performs any combination of the
following activities:

[51 See Ken Thompson's famous paper on trusting trust [1984].

1. Data collection

a. Packet sniffing
b. Keystroke monitoring
c. Database siphoning

2. Stealth



a. Hiding data (stashing log files and so on)
b. Hiding processes

c. Hiding users of a system

d. Hiding a digital "dead drop"”

3. Covert communication

a. Allowing remote access without detection
b. Transferring sensitive data out of the system
c. Covert channels and steganography

4. Command and control

a. Allowing remote control of a software system
b. Sabotage (variation of command and control)
c. Denying system control (denial of service)

For the most part, this book focuses on the technical details of exploiting software in order to
construct and introduce subversive code. The skills and techniques introduced in this book
are not new and have been used by a small but growing community of people for almost 20
years. Many techniques were developed independently by small, disparate groups.

Only recently have software exploit techniques been combined into a single art. The coming
together of disparate approaches is largely a historical accident. Many of the techniques for
reverse engineering were developed as an offshoot of the software-cracking movement that
started in Europe. Techniques for writing subversive code are similar to techniques for
cracking software protection (such as patching), so naturally the virus movement shares
similar roots and core ideas. It was not uncommon in the 1980s to find virus code and
software cracks on the same bulletin board systems (BBSs). Hacking network security, on the
other hand, evolved out of the community of UNIX administrators. Many people familiar with
classic network hacking think mostly of stealing passwords and building software trapdoors,
for the most part ignoring subversive code. In the early 1990s, the two disciplines started to
merge and the first remote shell exploits began to be distributed over the Internet.

Today, there are many books on computer security, but none of them explain the offensive
aspect from a technical programming perspective.l61 All of the books on hacking, including
the popular book Hacking Exposed by McClure et al. [1999], are compendiums of hacker
scripts and existing exploits focused on network security issues. They do nothing to train the
practitioner to find new software exploits. This is too bad, mostly because the people charged
with writing secure systems have little idea what they are really up against. If we continue to
defend only against the poorly armed script kiddie, our defenses are not likely to hold up well
against the more sophisticated attacks happening in the wild today.

[61 The time is ripe for books like this one, so we're likely to see the emergence of a software exploit
discipline during the next few years.

Why write a book full of dangerous stuff?! Basically, we're attempting to dispel pervasive
misconceptions about the capabilities of software exploits. Many people don't realize how
dangerous a software attacker can be. Nor do they realize that few of the classic network
security technologies available today do much to stop them. Perhaps this is because software
seems like magic to most people, or perhaps it's the misinformation and mismarketing



perpetuated by unscrupulous (or possibly only clueless) security vendors.

Claims commonly made in the security underground serve as an important wake-up call that
we can no longer afford to ignore.

How Some Software Hackers Think

"Give a man a crack, and he'll be hungry again tomorrow, teach him how to
crack, and he'll never be hungry again."

—+0ORC

What do people that break software maliciously believe? How do they approach
the problem of exploiting software? What have they accomplished? Answers to
questions like these are important if we are to properly approach the problem of
building secure systems correctly.

In some sense, a knowledgeable software hacker is one of the most powerful
people in the world today. Insiders often repeat a litany of surprising facts about
software attacks and their results. Whether all these facts are true is an
interesting question. Many of these claims do appear to have some basis in
reality, and even if they are exaggerated, they certainly provide some insight into
the malicious hacker mind-set.

Insiders claim that

e Most of the global 2000 companies are currently infiltrated by hackers. Every
major financial institution not only has broken security, but hackers are
actively exploiting them.

e Most outsourced software (software developed off-site by contractors) is full
of backdoors and is extremely difficult to audit independently. Companies
that commission this kind of software have not traditionally paid any
attention to security at all.

e Every developed nation on earth is spending money on cyberwarfare
capabilities. Both defensive and offensive cyberwarfare capabilities exist.

e Firewalls, virus scanners, and intrusion detection systems don't work very
well at all. Computer security vendors have overpromised and
underdelivered with classic network security approaches. Not enough
attention has been paid to software security issues.

Insiders often make use of a set of standard-issue questions to determine whether
a person is "in the know." Here are some of the claims commonly cited in this
activity. A person "in the know" usually believes the following about software
exploits:

e Software copy protection (digital rights management) has never worked and
it never will. It's not even possible in theory.

e Having executable software in binary form is just as good, if not better, than
having source code.

e There are no software trade secrets. Security through obscurity only helps
potential attackers, especially if obscurity is used to hide poor design.




There are hundreds of undisclosed exploits in use right now (known as
Oday's) and they will very likely remain undisclosed for years to come.

Nobody should depend on software patches and "full disclosure™ mailing lists
for security. Such sources tend to lag significantly behind the underground
when it comes to software exploit.

A majority of machines attached to the Internet (with very few exceptions)
can be remotely exploited right now, including those running the most up-to-
date, fully patched versions of Microsoft Windows, Linux, BSD, and Solaris.
Highly popular third-party applications including those from Oracle, 1BM,
SAP, PeopleSoft, Tivoli, and HP are also susceptible to exploit right now as
well.

Many "hardware" devices attached to the Internet (with few exceptions) can
be remotely exploited right now—including 3COM switches, the Cisco router
and its 10S software, the Checkpoint firewall, and the F5 load balancer.

Most critical infrastructure that controls water, gas and oil, and electrical
power can be exploited and controlled remotely using weaknesses in SCADA
softwareright now.

If a malicious hacker wants into your particular machine, they will succeed.
Re-installing your operating system or uploading a new system image after
compromise will not help since skilled hackers can infect the firmware of
your system microchips.

Satellites have been exploited and will continue to be exploited.

According to insiders in the underground, all of these things are happening now.
But even if some of these claims stretch the truth, it is high time for us to get our
collective head out of the sand and acknowledge what's going on. Pretending the
information in this book does not exist and that the results are not critical is
simply silly.




Bad Software Is Ubiquitous

Software security is typically thought of solely as an Internet problem, but this is far from the
truth. Although business has evolved to use the Internet, many software systems are isolated
on special proprietary networks or are confined to individual machines. Software is clearly
responsible for much more than writing e-mail, doing spreadsheets, and playing on-line
games. When software fails, millions of dollars are lost and sometimes people are killed.
What follows in this section are some well-known examples of software failures.

The reason that this kind of information is relevant to exploiting software is that software
failure that happens "spontaneously" (that is, without intentional mischief on the part of an
attacker) demonstrates what can happen even without factoring in malicious intent. Put in
slightly different terms, consider that the difference between software safety and software
security is the addition of an intelligent adversary bent on making your system break. Given
these examples, imagine what a knowledgeable attacker could do!

NASA Mars Lander

One simple software failure cost US taxpayers about $165 million when the NASA Mars
Lander crashed into the surface of Mars. The problem was a basic computational translation
between English and metric units of measure. As a result of the bug, a major error in the
spacecraft's trajectory cropped up as it approached Mars. The lander shut off its descent
engines prematurely, resulting in a crash.

Denver Airport Baggage

The modern Denver International Airport has an automated baggage system that uses
unmanned carts running along a fixed track—and all controlled by software. When it was first
brought on-line for testing, carts could not properly detect or recover from failures. This was
because of numerous software problems. The carts would get out of sync, empty carts would
be "unloaded" of nothing, and full carts would be "loaded" far beyond capacity. Piles of fallen
bags would not even stop the loaders. These software bugs delayed the opening of the
airport for 11 months, costing the airport at least $1 million a day.

MV-22 Osprey

The MV-22 Osprey (Figure 1-2) is an advanced military aircraft that is a special fusion
between a vertical liftoff helicopter and a normal airplane. The aircraft and its aerodynamics
are extremely complex, so much so that the plane must be controlled by a variety of
sophisticated control software. This aircraft, like most, includes several redundant systems in
case of failure. During one doomed takeoff, a faulty hydraulic line burst. This was a serious
problem, but one that can usually be recovered from. However, in this case, a software
failure caused the backup system not to engage properly. The aircraft crashed and four
marines were killed.

Figure 1-2. The MV-22 Osprey in flight. Sophisticated control
software has life-critical impact.

Official U.S. Navy photo by Photographer's Mate 1st Class Peter Cline.



The US Vicennes

In 1988, a US Navy ship launched a missile and shot down a hostile threat identified by the
onboard radar and tracking system as an enemy fighter aircraft (Eigure 1-3). In reality, the
"threat" was a commercial flight filled with unsuspecting travelers on an Airbus A320 (Eigure
1-4). Two hundred ninety people lost their lives when the plane was shot down. The official
excuse from the US Navy blamed cryptic and misleading output displayed by the tracking
software.

Figure 1-3. Fighter aircraft of the type identified by the US Vicennes
tracking software, and subsequently deemed hostile.

NASA / Dryden Flight Research Center.



Figure 1-4. An Airbus A320, misidentified as a fighter jet by the US
Vicennes tracking software and subsequently shot down, Killing 290
innocent people.

© Airbus, 2003. All rights reserved.

Microsoft and the Love Bug

The love bug, also known as the "I LOVE YOU" virus was made possible because the Microsoft
Outlook e-mail client was (badly) designed to execute programs that were mailed from



possibly untrusted sources. Apparently, nobody on the software team at Microsoft thought
through what a virus could do using the built-in scripting features. The damage resulting
from the "I LOVE YOU" virus was reported to be in the billions of dollars.[7l Note that this loss
was paid for by the Microsoft customers who use Outlook, and not by Microsoft itself. The
love bug provides an important example of how an Internet virus can cause very large
financial damage to the business community.

[71 Sources claim this bug cost the economy billions of dollars (mostly as a result of lost productivity). For
more information, see http://news.com.com/2100-1001-240112.html?legacy=cnet.

As this book goes to press, yet another large-scale worm called Blaster (and a number of
copycats) has swept the plant, causing billions of dollars in damage. Like the love bug, the
Blaster worm was made possible by vulnerable software.

Looking at all these cases together, the data are excruciatingly clear: Software defects are
the single most critical weakness in computer systems. Clearly, software defects cause
catastrophic failures and result in huge monetary losses. Similarly, software defects allow
attackers to cause damage intentionally and to steal valuable information. In the final
analysis, software defects lead directly to software exploit.


http://news.com.com/2100-1001-240112.html?legacy=cnet

The Trinity of Trouble

Why is making software behave so hard? Three factors work together to make software risk
management a major challenge today. We call these factors the trinity of trouble. They are

1. Complexity
2. Extensibility

3. Connectivity

Complexity

Modern software is complicated, and trends suggest that it will become even more
complicated in the near future. For example, in 1983 Microsoft Word had only 27,000 lines of
code (LOC) but, according to Nathan Myhrvold,[8l by 1995 it was up to 2 million! Software
engineers have spent years trying to figure out how to measure software. Entire books
devoted to software metrics exist. Our favorite one, by Zuse [1991], weighs in at more than
800 pages. Yet only one metric seems to correlate well with a number of flaws: LOC. In fact,
LOC has become known in some hard-core software engineering circles as the only
reasonable metric.

[Blwired Magazine wrote a story on this issue that is available at
http://www.wired.com/wired/archive/3.09/myhrvold.htmI? person=gordon_ _moore&topic_set=wiredpeople.

The number of bugs per thousand lines of code (KLOC) varies from system to system.
Estimates are anywhere between 5 to 50 bugs per KLOC. Even a system that has undergone
rigorous quality assurance (QA) testing will still contain bugs—around five bugs per KLOC. A
software system that is only feature tested, like most commercial software, will have many
more bugs—around 50 per KLOC [Voas and McGraw, 1999]. Most software products fall into
the latter category. Many software vendors mistakenly believe they perform rigorous QA
testing when in fact their methods are very superficial. A rigorous QA methodology goes well
beyond unit testing and includes fault injection and failure analysis.

To give you an idea of how much software lives within complex machinery, consider the
following:

Lines of Code System
400,000 Solaris 7

17 million Netscape

40 million Space Station
10 million Space Shuttle
7 million Boeing 777
35 million NT5

1.5 million Linux

<5 million Windows 95
40 million Windows XP


http://www.wired.com/wired/archive/3.09/myhrvold.html?person=gordon_moore&topic_set=wiredpeople

As we mention earlier, systems like these tend to have bug rates that vary between 5 and 50
bugs per KLOC.

One demonstration of the increase in complexity over the years is to consider the number of
LOC in various Microsoft operating systems. Figure 1-5 shows how the Microsoft Windows
operating system has grown since its inception in 1990 as Windows 3.1 (3 million LOC) to its
current form as Windows XP in 2002 (40 million LOC). One simple but unfortunate fact holds
true for software: more lines, more bugs. If this fact continues to hold, XP is certainly not
destined to be bug free!l®1 The obvious question to consider given our purposes is: How
many such problems will result in security issues? And how are bugs and other weaknesses
turned into exploits?

[91 Nor has it turned out to be, with serious vulnerabilities discovered within months of its release.

Figure 1-5. Windows complexity as measured by LOC. Increased
complexity leads to more bugs and flaws.
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A desktop system running Windows XP and associated applications depends on the proper
functioning of the kernel as well as the applications to ensure that an attacker cannot corrupt
the system. However, XP itself consists of approximately 40 million LOC, and applications are
becoming equally (if not more) complex. When systems become this large, bugs cannot be
avoided.

Exacerbating this problem is the widespread use of low-level programming languages such as
C or C++ that do not protect against simple kinds of attacks such as buffer overflows (which
we discuss in this book). In addition to providing more avenues for attack through bugs and
other design flaws, complex systems make it easier to hide or mask malicious code. In
theory, we could analyze and prove that a small program is free of security problems, but
this task is impossible for even the simplest desktop systems today, much less the enterprise-
wide systems used by businesses or governments.

More Lines, More Bugs

Consider a 30,000-node network, the kind that a medium-size corporation would probably
have. Each workstation on the network contains software in the form of executables (EXE)



and libraries, and has, on average, about 3,000 executable modules. On average, each
module is about 100K bytes in size. Assuming that a single LOC results in about 10 bytes of
code, then at a very conservative rate of five bugs per KLOC, each executable module will
have about 50 bugs:

~100K 10 KLOC

EXE EXE
5 bugs 50 bugs
KLOC ~ EXE

Now factor in the fact that each host has about 3,000 executables. This means that each
machine in the network has about 150,000 unique bugs:

50 bugs 3,000 EXEs 150,000 bugs
by —
EXE host host

That's plenty of bugs to be sure, but the real trouble occurs when we consider possible
targets and the number of copies of such bugs that exist as targets for attack. Because these
same 150,000 bugs are copied many times over 30,000 hosts, the number of bug
instantiations that an attacker can target is huge. A 30,000-machine network has about 4.5
billion bug instantiations to target (according to our estimate, only 150,000 of these bugs are
unique, but that's not the point):

150,000 bugs 30,000 host _ 4 5 piilion bug instantiations
host network in the network (a large target)

If we posit that 10% of all the bugs results in a security failure of some kind, and further
conjecture that only 10% of those bugs can be exercised remotely (over the network), then
according to our estimates, our toy network has 5 million remote software vulnerabilities to
attack. Resolving 150,000 bugs is a serious challenge, and properly managing the patches for
5 million bug instantiations spread over 30,000 hosts is even worse:

4.5 billion x 10% = 500 million security bug instantiations
500 million x 10% = 5 million remotely exploitable security bug targets

Clearly the attacker is on the winning side of these numbers. It is no surprise, given the
homogeneity of operating systems and applications (leading to these skewed numbers), that
worms like the Blaster worm of 2003 are so successful at propagating.[191

[10] Some security researchers conjecture that diversity might help address the problem, but experiments
show that getting this idea to work in practice is more difficult than it appears at first blush.

Extensibility

Modern systems built around virtual machines (VMs) that preserve type safety and carry out
runtime security access checks—in this way allowing untrusted mobile code to be
executed—areextensible systems. Two prime examples are Java and .NET. An extensible
host accepts updates or extensions, sometimes referred to as mobile code, so that the
system's functionality can be evolved in an incremental fashion. For example, a Java Virtual
Machine (JVM) will instantiate a class in a namespace and potentially allow other classes to
interact with it.

Most modern operating systems (OSs) support extensibility through dynamically loadable
device drivers and modules. Today's applications, such as word processors, e-mail clients,



spreadsheets, and Web browsers, support extensibility through scripting, controls,
components, dynamically loadable libraries, and applets. But none of this is really new. In
fact, if you think about it, software is really an extensibility vector for general-purpose
computers. Software programs define the behavior of a computer, and extend it in interesting
and novel ways.

Unfortunately, the very nature of modern, extensible systems makes security harder. For one
thing, it is hard to prevent malicious code from slipping in as an unwanted extension,
meaning the features designed to add extensibility to a system (such as Java's class-loading
mechanism) must be designed with security in mind. Furthermore, analyzing the security of
an extensible system is much harder than analyzing a complete system that can't be
changed. How can you take a look at code that has yet to arrive? Better yet, how can you
even begin to anticipate every kind of mobile code that may arrive? These and other security
issues surrounding mobile code are discussed at length in Securing Java [McGraw and Felten,
1999].

Microsoft has jumped headlong into the mobile code fray with their .NET framework. As
Figure 1-6 shows, .NET architecture has much in common with Java. One major difference is
a smaller emphasis on multiplatform support. But in any case, extensible systems are clearly
here to stay. Soon, the term mobile code will be redundant, because all code will be mobile.

Figure 1-6. The .NET framework architecture. Notice the
architectural similarity with the Java platform: verification, just-in-
time (JIT) compilation, class loading, code signing, and a VM.

[View full size image]




All entities in this

Mobile code has a dark side that goes beyond the risks inherent in its design for extensibility.
In some sense, viruses and worms are kinds of mobile code. That's why the addition of
executable e-mail attachments and VMs that run code embedded on Web sites is a security
nightmare. Classic vectors of the past, including the "sneakernet" and the infected executable
swapped over modems, have been replaced by e-mail and Web content. Mobile code-based
weapons are being used by the modern hacker underground. Attack viruses and attack
worms don't simply propagate, they install backdoors, monitor systems, and compromise
machines for later use in nefarious purposes.

Viruses became very popular in the early 1990s and were mostly spread through infected
executable files shuffled around on disks. A worm is a special kind of virus that spreads over
networks and does not rely on file infection. Worms are a very dangerous twist on the classic
virus and are especially important given our modern reliance on networks. Worm activity
became widespread in the late 1990s, although many dangerous worms were neither well
publicized nor well understood. Since the early days, large advances have been made in
worm technology. Worms allow an attacker to "carpet bomb™" a network in an unbridled
exploration that attempts to exploit a given vulnerability as widely as possible. This amplifies
the overall effect of an attack and achieves results that could never be obtained by manually
hacking one machine at a time. Because of the successes of worm technology in the late
1990s, most if not all global 1000 companies have been infected with backdoors. Rumors
abound in the underground regarding the so-called Fortune 500 List—a list of currently



working backdoors to the Fortune 500 company networks.

One of the first stealthy, malicious worms to infect the global network and to be widely used
as a hacking tool was written by a very secretive group in the hacker underground calling
itselfADM, short for Association De Malfaiteurs. The worm, called ADMwOrm [111 exploits a
buffer overflow vulnerability in domain name servers (DNS).[12l Once infected, the victim
machine begins scanning for other vulnerable servers. Tens of thousands of machines were
infected with this worm, but little mention of the worm ever made the press. Some of ADM's
original victims remain infected to this day. Alarmingly, the DNS vulnerability used by this
worm only scratched the surface. The worm itself was designed to allow other exploit
techniques to be added to its arsenal easily. The worm itself was, in fact, an extensible
system. We can only guess at how many versions of this worm are currently in use on the
Internet today.

[11] ADMwOrm-vi.tar can be found on various Internet sites and contains the source code to the infamous
ADM wOrm that first appeared in spring 1998.

[12] More information on BIND problems can be found at http://www.cert.org/advisories/CA-
98.05.bind_problems.html.

In 2001, a famous network worm called Code Red made headlines by infecting hundreds of
thousands of servers. Code Red infects Microsoft 11S Web servers by exploiting a very simple
and unfortunately pervasive software problem.[13l As is usually the case with a successful
and highly publicized attack, several variations of this worm have been seen in the wild. Code
Red infects a server and then begins scanning for additional targets. The original version of
Code Red has a tendency to scan other machines that are in proximity to the infected
network. This limits the speed with which standard Code Red spreads.

[13] Code Red exploits a buffer overflow in the idqg.dll, a component of ISAPI.

Promptly after its network debut, an improved version of Code Red was released that fixed
this problem and added an optimized scanning algorithm to the mix. This further increased
the speed at which Code Red infects systems. The success of the Code Red worm rests on a
very simple software flaw that has been widely exploited for more than 20 years. The fact
that a large number of Windows-based machines share the flaw certainly helped Code Red
spread as quickly as it did.

Similar effects have been noted for new worms, including Blaster and Slammer. We will
further address the malicious code problem and its relation to exploiting software later in the
book. We'll also take a look at hacking tools that exploit software.

Connectivity

The growing connectivity of computers through the Internet has increased both the number
of attack vectors (avenues for attack) and the ease with which an attack can be made.
Connections range from home PCs to systems that control critical infrastructures (such as the
power grid). The high degree of connectivity makes it possible for small failures to propagate
and cause massive outages. History has proved this with telephone network outages and
power system grid failures as discussed on the moderated COMP.RISKS mailing list and in
the book Computer-Related Risks [Neumann, 1995].

Because access through a network does not require human intervention, launching
automated attacks is relatively easy. Automated attacks change the threat landscape.
Consider very early forms of hacking. In 1975, if you wanted to make free phone calls you
needed a "blue box." The blue box could be purchased on a college campus, but you needed
to find a dealer. Blue boxes also cost money. This meant that only a few people had blue
boxes and the threat propagated slowly. Contrast that to today: If a vulnerability is
uncovered that allows attackers to steal Pay-Per-View television, the information can be
posted on a Web site and a million people can download the exploit in a matter of hours,
deeply impacting profits immediately.


http://www.cert.org/advisories/CA-

New protocols and delivery mediums are under constant development. The upshot of this is
more code that hasn't been well tested. New devices are under development that can connect
your refrigerator to the manufacturer. Your cellular phone has an embedded OS complete
with a file system. Figure 1-7 shows a particularly advanced new phone. Imagine what would
happen when a virus infects the cellular phone network.

Figure 1-7. This is a complex mobile phone offered by Nokia. As
phones gain functionality such as e-mail and Web browsing, they
become more susceptible to software exploit.

Courtesy of Nokia.
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Highly connected networks are especially vulnerable to service outages in the face of network
worms. One paradox of networking is that high connectivity is a classic mechanism for
increasing availability and reliability, but path diversity also leads to a direct increase in
worm survivability.

Finally, the most important aspect of the global network is economic. Every economy on
earth is connected to every other. Billions of dollars flow through this network every second,
trillions of dollars every day. The SWIFT network alone, which connects 7,000 international
financial companies, moves trillions of dollars every day. Within this interconnected system,
huge numbers of software systems connect to one another and communicate in a massive
stream of numbers. Nations and multinational corporations are dependent on this modern
information fabric. A glitch in this system could produce instant catastrophe, destabilizing
entire economies in seconds. A cascading failure could well bring the entire virtual world to a
grinding halt. Arguably, one target of the despicable act of terrorism on September 11, 2001,
was to disrupt the world financial system. This is a modern risk that we must face.

The public may never know how many software attacks are leveraged against the financial
system every day. Banks are very good about keeping this information secret. Given that
network-enabled computers have been confiscated from many convicted criminals and known
terrorists, it would not be surprising to learn that criminal and terrorist activity includes
attacks on financial networks.



The Upshot

Taken together, the trinity of trouble has a deep impact on software security. The three
trends of growing system complexity, built-in extensibility, and ubiquitous networking (or
connectivity) make the software security problem more urgent than ever. Unfortunately for
the good guys, the trinity of trouble has a tendency to make exploiting software much easier!

In March 2003, the Computer Security Institute released its eighth annual survey showing
that 56% of the 524 companies and large institutions polled acknowledged suffering financial
losses resulting from computer breaches during the previous year. The majority of these
breaches were carried out over the Internet. Of the compromised targets, the 251 willing to
tally their losses admitted that the hacking cost them roughly $202 million collectively. Even
if these numbers are off by a factor of ten, they are still unacceptably high. Although the
particular numbers reported in this highly popular survey can be disputed, trends emerging
from the annual completion of this survey are an excellent indicator of the growth and
importance of the computer security problem.



The Future of Software

The software security problem is likely to get worse before it gets better. The problem is that
software itself is changing faster than software security technology. The trinity of trouble has
a significant impact on many of the trends outlined in this section.

At the risk of being seriously wrong, we now consult our crystal ball and peer into the future
of software. Our mission is to understand where things are going and think about how they
will impact software security and the art of exploiting software. Our presentation is organized
in three time ranges. (Of course, anyone who purports to predict what is coming is destined
to be wrong. So take these musings with a grain of salt.[14l)

[14] An acknowledgement is in order. This material was developed with the input of many people, not the
least of whom make up Cigital's Technical Advisory Board. Major contributors include Jeff Payne (Cigital),
Peter Neumann (SRI), Fred Schneider (Cornell), Ed Felten (Princeton), Vic Basilli (Maryland), and Elaine
Weyuker (AT&T). Of course any errors and omissions are our fault.

Short-Term Future: 2003—2004

We begin with a discussion of what's on the immediate horizon as far as software goes. Many
of these trends are readily apparent as we write this book. Some have been emerging for a
few years.

More components: Component-based software is finally catching on. One reason for
this is the need for more robust, reliable, secure systems. Businesses with mission-
critical code are using systems such as Enterprise Java Beans (EJB), CORBA, and COM
(including its .NET instantiation). Components written in these frameworks work
naturally in a distributed environment and were created with inter-object
communication between multiple servers in mind. A handful of advanced development
shops are creating standardized components for special-purpose use (sometimes
creating security-critical components, such as a component for proper user
authentication). This can be extremely helpful when tackling the problem of building
security-critical software, because standard components implementing reasonable
security architecture can be integrated seamlessly into a new design. However, the art
of composing components into a coherent system while maintaining emergent
properties such as security is extremely difficult and poorly understood, making
component-based software subject to exploitation.

Tighter OS integration: Microsoft's integration of Internet Explorer into its base OS
was no accident. What was once a clear line between OS and application has become
very blurry. Many activities that once required special-purpose applications now come
standard in many OSs, and what appear to be stand-alone applications often are mere
facades created on top of multiple OS services. Deep OS integration leads to security
risk because it runs counter to the principle of compartmentalization. When exploiting
an application has as a side effect of complete compromise of the OS, exploiting a
system through software becomes much easier.

Beginning of encapsulation: Operating systems tend to do too much, in any case.
This leads to security and reliability problems. One way to combat the "too much stuff"
phenomenon brought about by tight integration of applications and OSs is to
encapsulate like functions together and then protect them from the outside. A good
example of what we mean can be found in the encapsulation of the OS by the JVM. The
JVM places much tighter control over programs that it runs than a generic OS. This is a
boon for software security. Of course, advanced security models based on language-
based encapsulation are hard to get exactly right. Many known software exploits have
been leveled against the JVM (see Securing Java [McGraw and Felten, 1998]).




Beginning of wireless: Wireless system adoption is beginning in earnest. Soon
802.11b and its (hopefully improved) successors will be widespread. Wireless
networking has a large (negative) impact on security because it works to break down
physical barriers even more. With no requirement for a wire to connect machines
physically, determining where a security perimeter is located becomes much harder
than it once was. Software exploits of wireless systems were widely trumpeted by the
press in 2001, and included a complete break of the wired equivalent privacy (WEP)
encryption algorithmI15l and the reemergence of address resolution protocol (ARP)
cache poisoning attacks (http://www.cigital.com/news/wireless-sec.html). 802.11i is
being rapidly adopted as this book goes to press. It promises a superior approach to
security than the much-maligned WEP.

[15] The WEP crack was popularized by Avi Rubin and Adam Stubblefield. For more information, see
http://www.nytimes.com/2001/08/19/technology/19WIRE.html or http://www.avirubin.com.

More PDAs (and other embedded systems): PDAs like the Palm Pilot are becoming
commonplace. New generations of these devices include embedded Internet capability.
Handspring's Treo represents the convergence of phone, PDA, and e-mail system into
one highly portable networked device. These devices are simple, hand-held network
appliances that can be used to carry out many security-critical activities, including
checking e-mail, ordering dinner, and buying stocks. PDAs are often programmed
remotely and make use of the mobile code paradigm to receive and install new
programs. Although there have been few software exploits of PDAs to date, standard
PDAs do not typically include a security framework.

Logically distributed systems: Component-based software and distributed systems
go hand in hand. Components, done right, provide logical pieces of functionality that
can be put together in interesting ways. Functionality of a complete system is thus
logically distributed among a number of interconnected components. This sort of
modular design is helpful in the sense that it enables separation of concerns as well as
compartmentalization, yet at the same time distributed systems are complicated and
hard to get right. The most common distributed systems today are geographically
colocated and often make use of a single common processor. The Windows family of
OSs, made up of hundreds of components such as DLLs, is a prime example. Windows is
a logically distributed system. Unfortunately, complexity is the friend of software
exploit; thus, distributed systems often make the job of exploiting software easier.

Introduction of .NET: Microsoft has joined the mobile code fray with the introduction
of .NET. Usually, when Microsoft enters a market in a serious way, this is a sign that the
market is mature and ready to be exploited. Java introduced the world to mobile code
and modern network-centric software design. .NET is likely to play a real role in mobile
code as it evolves. Exploits against advanced security models meant to protect against
malicious mobile code have been discussed for years. The emergence of an entire range
of VM technology, running from VMs for tiny 8-bit smart card processors at one end to
complicated application server VMs supporting systems like J2EE mean that one size
does not fit all from a security perspective. Much work remains to be done to determine
the type of security mechanisms that are reasonable for resource-constrained devices
(including J2ME devices) .I26l In the meantime, new VMs in the range are ripe for
software exploit.

[16] McGraw is currently doing Defense Advanced Research Projects Agency (DARPA)-supported
research on this problem: DARPA grant no. F30602-99-C-0172, entitled An Investigation of
Extensible System Security for Highly Resource-Constrained Wireless Devices.

Mobile code in use: The introduction of Java in 1995 was heralded with much hubbub
about applets and mobile code. The problem was, mobile code was ahead of its time. As
embedded Internet devices become more common, and many disparate systems are
networked together, mobile code will come into its own. This becomes obvious when
you consider that phones with JVMs are unlikely to be programmed through the phone's
buttons. Instead, code will be written elsewhere and will be loaded into the phone as
necessary. Although there are certainly critical security concerns surrounding mobile


http://www.cigital.com/news/wireless-sec.html
http://www.nytimes.com/2001/08/19/technology/19WIRE.html
http://www.avirubin.com

code (see Securing Java [McGraw and Felten, 1998] for examples), demand for and use
of mobile code will increase.

Web code and XML: Although the .com meltdown has lessened the hype surrounding
e-business, the fact remains that Web-based systems really do compress business value
chains in tangible ways. Business will continue to take advantage of Web-centric
systems to make itself more efficient. XML, a simple markup language for data, plays a
major role in data storage and manipulation in modern e-business systems. Web-based
code comes with many security head aches. If your business uses a Web server to store
mission-critical data, the security of that server (and any applications that run on it)
gains in importance. Huge numbers of exploits in the early 2000s aim to compromise
Web-based software.

Subscription services: The idea of paying for what you actually use is beginning to be
applied to software as well as other digital content. This leads to an obvious set of
security concerns, not the least of which is protecting the service or content (the target
of the subscription) from being stolen. Protecting digital content is, according to
computer science theory, an unsolved and unsolvable problem. Software exploits in this
area abound, even though egregious laws such as the Digital Millennium Copyright Act
(DMCA) aim to make such exploits illegal.

The near future of software is already upon us. The current state of the trends identified here
can be gleaned from digging into the following technologies, concepts, and ideas:

¢ Advanced programming languages (especially those languages with properties of type
safety)

e Java, scheme, Eiffel, ML (knowledge of lambda calculus is helpful)
e Distributed computing

¢ Containers

e Building secure software

e "Sandboxing" and encapsulation of executing code

¢ WAP, iMode, 2.5G, 3G

¢ Low-level networking

Medium-Term Future: 2005—-2007

The short-term trends we discussed earlier are likely to evolve, resulting in a new set of
salient ideas. Keep in mind that the further we peer into our crystal ball, the more likely we
are to be wrong.

Special-purpose computational units: Devices that serve one and only one
computational purpose are likely to emerge. Many such computational objects exist in
telecommunications systems today.[171 The emergence of everyday devices with
embedded software is interesting from a security perspective, especially if these devices
are network enabled. The famed "Internet toaster"” may become a reality, with the
downside being a risk that your breakfast will be maliciously burned by a bad guy.

[17] Note that there are counterexamples to this trend as well. For example, the only difference
between classes of engines in some automobile product lines is the control software that changes
engine performance parameters. This has led to the emergence of black market engine control code
(used to soup things up). Such control software runs on standard computation platforms. Hacking
control software in cars is commonly referred to as "chipping" the car.



Emergence of true objects: Objects in the physical world have form and function.
Computational capability will be added to many "ordinary" objects to enhance their
capabilities. Whether the new capability will take the form of a universal computer that
accepts mobile code to determine its function is an open question. From a user
perspective, "smart objects” will be the result. Software will play a major role in smart
objects, and compromising such objects from a security perspective is likely to involve
exploiting software.

.NET and Java: Systems involving VMs that run the same code on many diverse
platforms will become much more common. (Sun's pithy way of putting this is "write
once; run anywhere.") Since the introduction of Java in 1995, the JVM has taken the
software world by storm. .NET is Microsoft's response to the Java phenomenon.
Although VM technology allows for the use of advanced language-based security
models, VMs are also a critical extensibility driver, and, as we discussed earlier,
extensibility is dangerous.

Encapsulation of OS: OS encapsulation spearheaded by Java and .NET will continue to
gain prominence. The proliferation of such platforms brings the idea of a VM that can
really deliver "write once; run anywhere" capability closer to reality. Embedded devices
with hardware implementations of VMs will become more common. The end game of
this trend may well be "special-purpose"” OSs that are built specifically for the device
they support. An early example is the Palm OS. Because OS kernels typically run with
privilege, the idea of privileged code and superuser (SUID) capability will be transferred
to the device itself. This is a likely area for exploitation.

Widespread wireless and embedded systems: The concept of a wireless network
will become deeply entrenched and widespread. Security concerns will grow as more
business-critical applications come to include a wireless component.

Geographically distributed systems: Logically distributed systems such as Win32
will evolve into geographically distributed systems as special-purpose computational
units come into play. Once these systems begin to use the network as a communications
medium, security concerns are raised. Transport-level security through cryptography
can help to address these concerns, but "person-in-the-middle" attacks will become
commonplace, as will timing-related attacks such as race conditions. Software
exploitation in a geographically distributed system is interesting because the range of
protections offered by various different hosts in the system is likely to vary. Because
security is only as strong as the weakest link, part of an attack strategy will be to
determine which of a number of distributed hosts is the weakest.

Adoption of outsourced computation: Computation may come to be more like
electricity, with cycles available for the taking simply by "plugging something in." There
are myriad security concerns invoked by the idea of outsourcing computation.[181
Questions like, How can you trust an answer? How can you protect knowledge about the
problem you are solving from the host doing the computation? And how can you
properly delegate resources and charge for use? will become commonplace. The impact
on exploiting software will be large, because an attacker will need to determine not only
how to attack, but where, and redundancy will be used to detect attacks.

[18] This is, of course, reminiscent of the time-sharing systems from the 1960s and 1970s.

Software distribution: The idea of installing copies of an enterprise-grade program on
every machine will begin to make less sense. Instead, software functionality will be
delivered according to need, and users will be charged for the functions they use. The
Application Service Provider (ASP) model of software licensing is likely to catch on.
Software companies are preparing for this by changing the way they license and charge
for software today. A new class of software attacks directed at surreptitiously stealing
functions will evolve.

Mobile code taking over: Because of the pervasiveness of networking, all code in the



future will be mobile code. The term mobile code will fall out of use because it will be
redundant. Language-based security models will take on more importance, and attacks
against these kinds of security mechanisms (many of which were invented in the mid
1990s) will be seen in the wild.

Software practitioners interested in reacting to these trends and protecting code against
exploit should learn as much as possible about the following ideas:

Object-oriented thinking
Understanding temporal implications
Distributed systems

Security in a hostile environment
Assume nothing

Programming languages

Simplicity

Fault injection

Privacy and control

Long-Term Future: 2008-2010

Now we move ourselves way out on a limb to make some predictions for the long-term future
of software. Because software development and Internet time has led to a serious
acceleration in software change, these predictions are likely to be completely wrong. Take
these with a complete salt lick (not just a grain of salt).

True objects: The ultimate end at the intersection of computational objects, OS
encapsulation, and geographically distributed computation will result in true objects
becoming commonplace. Pens and paper will have application programming interfaces
(APIs). Light switches will run code. Exploiting software will be more fun than ever.

Disappearance of the OS: After being "embraced" and encapsulated by the VM, the
OS will begin to disappear. Applications will get their own OS-like services from various
components. Microsoft appears to agree, and it is easy to see why Microsoft is serious
about .NET. McNealy's "network as computer" message will come true. This trend may
make exploiting software harder. Today, with common monolithic platforms all sharing
the same vulnerabilities in widespread use, there is a huge number of potential targets.
In the future, picking targets is less likely to be so easy.

Computational services: The software distribution trend may evolve into a
marketplace of computational services. These services may be sold "by the cycle" to
programs that attach to them and request subcomputations.

Fabric of computation (ubiquity): Cycles may become as ubiquitous as air. Charging
for cycles (and for CPUs) will no longer make sense.

Intelligent devices: Devices will not only be "smart" in the sense that they will have
built-in software, artificial intelligence (Al) techniques will begin to be used in everyday
devices. Al techniques will be pressed into service for security, reliability, and other
emergent software properties.

All code mobile: Because the network is the computer, all code will be network based.



Location-based computation: Programs that react to where they are running will be
common. Cryptographic algorithms that only work at certain global positioning satellite
(GPS) coordinates will be widely used (not simply used by intelligence agencies like
today). There will be programs that help human users by reminding them of things (and
selling them things) based on physical proximity (*Don't forget to pick up milk."). WAP
phones are leading the way to a certain extent, with location-sensitive advertising
capabilities.

Self-organizing systems and emergent computation: Software that organizes itself
to solve a problem may come to be. Using genetic algorithms, classic search methods,
and biological metaphors, new kinds of software programs will come into being. Natural
biological defenses (such as an immune system) will be copied by future software
systems that wish to survive and thrive in a hostile environment. Self-organizing
software may be harder to exploit than the barely cobbled-together code of today.

Some pie-in-the-sky fields will deeply influence the far future of software. These are likely to
include

Al

Emergent systems and chaos theory
Automatic testing

Fault injection at component interfaces
Privacy

Interfaces

Ten Threads Emerge

Ten threads are woven throughout the previous predictions. They are
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Disappearance of the OS

Mass adoption of wireless networks

Embedded systems and specialized computational devices
Truly distributed computation

Evolution of "objects" and components

Information fabric (ubiquity)

Al, knowledge management, and emergent computation
Pay by the byte (or cycle or function)

High-level design/programming tools

Location-based computation (peer to peer)

Because of the speed with which software has evolved in its relatively short life span,
exploiting software is easy. Clearly, software evolution is not slowing down. If anything, this
makes the job of creating software that behaves extremely hard, and gives software
attackers plenty of working room.






What Is Software Security?

Making software behave is a process that involves identifying and codifying policy, then
enforcing that policy with reasonable technology. There is no silver bullet for software
security. Advanced technology for scanning code is good at finding implementation-level
mistakes, but there is no substitute for experience. Advanced technology for securing
applications is excellent for making sure that only approved software is executed, but it is not
good at finding vulnerabilities in executables.

The late 1990s saw a boom in the security market as many "security solutions™ were created
and peddled. Money flowed. Yet, after years of expenditures on firewalls, antivirus products,
and cryptography, exploits are on the rise. Vulnerabilities are increasing, as Figure 1-8
shows.

Figure 1-8. Software vulnerabilities as reported to CERT/CC. This
number continues to rise.
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In truth, firewalls do very little to protect networks. Intrusion detection products are riddled
with errors and cause too many false positives, falling short of commercial expectations.
Service companies do man-years of work, yet code is still hacked. Why is this the case? What
is it that we have been spending money on all this time?

One major factor is that security has been sold as a product, a silver bullet solution: "Just
buy this gizmo and all of your worries are taken care of, ma'am." You buy a red box, bolt it
into a rack, and expect...what? Most of the defensive mechanisms sold today do little to
address the heart of the problem—bad software. Instead they operate in a reactive mode:
Don't allow packets to this or that port. Watch out for files that include this pattern in them.
Throw partial packets and oversize packets away without looking at them. Unfortunately,
network traffic is not really the best way to approach the problem. The software that
processes the packets that are allowed through is the problem.

We can state in no uncertain terms that there are defects in the software you use every day,
and this software does things like run your network. In fact, software plays an integral role in
running most businesses today. We can try to keep bad people from getting access to our
broken software, but this problem is hard, and is getting harder as the traditional barriers



between foci of information disappear. To move faster and operate in Internet time, we allow
information to move faster. This means more services and an explosion of externally facing
interfaces. This means more applications exposed on the outer edge of our networks. This
means more software is exposed to potential attackers. Even home users are exposed, with
more software showing up in homes, cars, and pockets. Everyone is at risk.



Conclusion

Exploiting software is an art and a challenge. First you have to figure out what a piece of
code is doing, often by observing it run. Sometimes you can crash it and look at the pieces.
Sometimes you can send it crazy input and watch it spin off into oblivion. Sometimes you can
disassemble it, decompile it, put it in a jar, and poke it with experimental probes. Sometimes
(especially if you are a "white hat™) you can look at the design and spot architectural
problems.

This book is about the art of exploiting software. In fact, in some sense this book is an
offensive weapon. It is meant for hackers.[191 Script kiddies won't like this book because we
don't simply give away "just add water" hacks.I291 This book provides little value to someone
who simply wants to shoot guns on a computer network without knowing how guns are
crafted. Instead, this book is about exploiting software systems or, to stretch our analogy,
this book is about crafting guns by hand.

[191 we use the term hacker in its traditional sense as defined in the Hacker's Dictionary: hacker:
[originally, someone who makes furniture with an axe] n. 1. A person who enjoys exploring the details of
programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to
learn only the minimum necessary. 2. One who programs enthusiastically (even obsessively) or who
enjoys programming rather than just theorizing about programming. 3. A person capable of appreciating {
hack value} . 4. A person who is good at programming quickly. 5. An expert at a particular program, or
one who frequently does work using it or on it, as in "a Unix hacker." (Definitions 1 through 5 are
correlated, and people who fit them congregate.) 6. An expert or enthusiast of any kind. One might be an
astronomy hacker, for example. 7. One who enjoys the intellectual challenge of creatively overcoming or
circumventing imitations. 8. [deprecated] A malicious meddler who tries to discover sensitive information
by poking around. Hence "password hacker," "network hacker." See { cracker} . Available at
http://www.mcs.kent.edu/docs/general/hackersdict/.

[20] The term script kiddie is used to describe people who exploit computers using canned scripts, often
created and distributed by others. Most script kiddies don't care how hacks work, just that they do work.
Script kiddie is a derogatory comment, used to connote a person who has no real skills and leverages the
work of other malicious hackers in the same way that a child might maliciously shoot a loaded gun. This
book is not for script kiddies.

Software systems are, for the most part, proprietary, complicated, and custom made. This is
why exploiting software is a nontrivial undertaking. This is why a book like this is required,
and we may only be able to scratch the surface.

This is a dangerous book, but the world is a dangerous place. Knowing more serves to protect
you. Some people may criticize the release of this information, but our philosophy is that
keeping secrets and fostering obscurity only hurts us all in the end. We maintain that putting
books like these into the hands of the good guys will help to relegate a large number of
common software security problems to the dustbin of history.


http://www.mcs.kent.edu/docs/general/hackersdict/

Chapter 2. Attack Patterns

One very real problem in computer security is the lack of commonly accepted terminology.
Software security is no exception. Confusion by the popular press (which jumps at the chance
to cover computer security issues) doesn't help. Nor does intentional misuse of terms by
unscrupulous vendors trying to con you into buying their wares. In this section we'll
informally define some terms that are used throughout the book. Some people may not agree
with the way we're defining and using terms. Suffice it to say, our aim is clarity and
consistency, and we think carving up the space our way makes sense for this discussion.

The first and most important definition is the target. Half the fun of exploiting software is
picking your target. A software program that is under active attack, either remotely or
locally, is called target software.

A target could be a server on the Internet, a telephone switch, or an isolated system that
controls antiaircraft capability. To attack a target, it must be analyzed for vulnerabilities.
Sometimes this is called risk assessment. If a high-risk vulnerability is discovered, it is ripe
for exploitation. Vulnerability is not an exploit, but it is necessary for an exploit.

Software produces output. While testing, we observe software output to determine whether a
fault has resulted in a failure. The more output provided by the software, the easier it is to
detect faulty internal states and so forth. Observability is the probability that a failure will be
noticeable in the output space.[ll The greater the observability, the easier it is to test a given
piece of software. Software that produces no external output has no way to indicate a failure.
A highly observable program might be one that has embedded debug output capability. A
program that normally has low observability can be altered using a debugger to provide high
observability. This would be the case if a data flow tracer were attached to the target, for
example.

[11 For more information on the importance of observability and testing, see Software Fault Injection [Voas
and McGraw, 1999].

Exploiting software encompasses the idea of observability, especially when we think about
remote exploits. Throughout the book we discuss a number of techniques for improving
observability. The basic idea is to gather as much information about a program's possible
internal states as possible, both statically while it is being constructed and dynamically while
itis running.



A Taxonomy

To measure risk in a system, vulnerabilities must be identified. One basic problem is that
software vulnerabilities remain, for the most part, uncategorized and unidentified. Some
basic science exists, but it is sketchy and dated. The good news is that during the last few
years, a large body of specific software exploits have been identified, discussed, and
publicized in various parts of the software community.

Two common collections of vulnerabilities include the bugtrag mailing list, where many
exploits are first publicly discussed (http://www.bugtrag.com), and the CVE, where scientists
and academics catalog vulnerabilities. Note that in the early 2000s, bugtraq became a
commercial enterprise now exploited by Symantec to load their proprietary databases (which
they happily rent to subscribers). The CVE, administered by Mitre, is another attempt to
collect bug and flaw data in one place. The problem with the CVE is that it lacks much in the
way of categorization.

The two forums we mention do begin to allow researchers to ascertain that certain software
bugs commonly occur in many diverse products. There are, after all, a number of general
problems in software. Although two software products may suffer from a particular instance
of a buffer overflow bug, taken together with other instances, a general class of problems can
be defined. In many respects, a buffer overflow looks the same no matter which software
product it occurs in.

In our taxonomy, vulnerabilities (both bugs and flaws) are grouped together by central
characteristics and give rise to particular attack patterns. This is based on the following
premise:Related programming errors give rise to similar exploit techniques. Thus, we
aim to cover the generic problems of software rather than specific, known vulnerabilities.[2]1 A
general classification provides a framework that can be used when auditing large software
systems for vulnerabilities to understand and assess results. Such a framework can help an
auditor locate specific types of software problems. Of course, such information is useful both
in defending systems and in attacking them.

[21 we will, of course, provide plenty of real examples throughout the text.

Bugs

Abug is a software problem. Bugs may exist in code and may never be executed. Although
the term bug is applied quite generally by many software practitioners, we reserve use of the
term to encompass fairly simple implementation problems. For example, misusing strcpy()
in C and C++ in such a way that a buffer overflow condition exists is a bug. For us, bugs are
implementation-level problems that can be easily "squashed." Bugs can exist only in code.
Designs do not have bugs. Code scanners are great at finding bugs.

Flaws

Aflaw is also a software problem, but a flaw is a problem at a deeper level. Flaws are often
much more subtle than simply an off-by-one error in an array reference or the use of a
dangerous system call. A flaw is instantiated in software code but is also present (or absent!)
at the design level. For example, several classic flaws exist in error handling and recovery
systems that fail in an insecure fashion. Another example is exposure to cross-site scripting
attacks through poor design. Flaws may exist in software and may never be exploited.

Vulnerabilities


http://www.bugtraq.com

Bugs and flaws are vulnerabilities. A vulnerability is a problem that can be exploited by an
attacker. There are many kinds of vulnerability. Computer security researchers have created
taxonomies of vulnerabilities.[31

[31 Ivan Krusl and Carl Landwehr are two scientists who have studied vulnerabilities and have built
taxonomies. See Krusl [1998] and Landwehr et al. [1993] for more information.

Security vulnerabilities in software systems range from local implementation errors (e.g., use
of the get s() function call in C/C++), through interprocedural interface errors (e.g., a race
condition between an access control check and a file operation), to much higher design-level
mistakes (e.g., error handling and recovery systems that fail in an insecure fashion, or
object-sharing systems that mistakenly include transitive trust issues[4l).

[41 A transitive trust issue may occur when an object is shared with an agent that may then go on to share
the object further (in a manner that can't be controlled by the original granter). If you dole out a secret to
somebody, she may choose to share it, even if you don't want her to.

Attackers generally don't care whether a vulnerability is the result of a flaw or a bug,
although bugs tend to be easier to exploit. Some vulnerabilities can be directly and
completely exploited; others only provide a toehold for a more complex attack.

Vulnerabilities can be defined in terms of code. The more complex a vulnerability, the more
code must be examined to detect it. Sometimes just looking at code doesn't work though. In
many cases, a higher level description of what's going on other than what is available in code
is necessary. In many cases, a design description at a white board level is necessary. Other
times, detail regarding the execution environment must be known. Suffice it to say that there
is a significant difference between trivial program errors (bugs) and architectural flaws.
Trivial errors can often be fixed in a single line of code, whereas design flaws require a
redesign that almost always touches multiple areas.

For example, we can usually determine that a call to get s() in a C/C++ program can be
exploited in a buffer overflow attack without knowing anything about the rest of the code, its
design, or anything about the execution environment. To exploit a buffer overflow in gets(),
the attacker enters malicious text to a standard program input location. Hence, a get s()
vulnerability can be detected with good precision using a very simple lexical analysis.

More complex vulnerabilities involve interactions among more than one location in the code.
Precisely detecting race conditions, for example, depends on more than simply analyzing an
isolated line of code. It may depend on knowing about the behavior of several functions,
understanding sharing among global variables, and having knowledge of the OS providing
the execution environment.

Because attacks are becoming more sophisticated, the notion of what kind of vulnerabilities
actually matter is constantly changing. Timing attacks are now common, whereas only a few
years ago they were considered exotic. Similarly, two-stage buffer overflow attacks involving
the use of trampolines were once the domain of software scientists, but are now used in Oday
exploits.

Design Vulnerabilities

Design-level vulnerabilities carry this trend further. Unfortunately, ascertaining whether a
program has design-level vulnerabilities requires great expertise. This makes finding design-
level flaws not only hard to do, but particularly hard to automate. Design-level problems
appear to be prevalent and are at the very least a critical category of security risk in code.
Microsoft reports that around 50% of the problems uncovered during the "security push" of
2002 were design-level problems.[5l Clearly, more attention must be paid to design problems
to address software security risks properly.

[51 Michael Howard, personal communication.

Consider an error handling and recovery system. Failure recovery is an essential aspect of



security engineering. But it's also complicated, requiring interaction between failure models,
redundant designs, and defense against denial-of-service attacks. In an object-oriented
program, understanding whether an error handling and recovery system is secure involves
ascertaining a property or properties spread throughout a multitude of classes that are
themselves spread throughout the design. Error detection code is usually present in each
object and method, and error-handling code is usually separate and distinct from the
detection code. Sometimes exceptions propagate up to the system level and are handled by
the machine running the code (e.g., Java 2 VM exception handling). This makes it quite
difficult to determine whether a given error handling and recovery design is secure. This
problem is exacerbated in transaction-based systems commonly used in commercial e-
commerce solutions, in which functionality is distributed among many different components
running on several servers.

Other examples of design-level problems include object sharing and trust issues, unprotected
data channels (both internal and external), incorrect or missing access control mechanisms,
lack of auditing/logging or incorrect logging, ordering and timing errors (especially in
multithreaded systems), and many others. For more on design problems in software and how
to avoid them, see Building Secure Software [Viega and McGraw, 2001].



An Open-Systems View

Building a taxonomy of software vulnerabilities is not a new idea. However, the few published
approaches are outdated, and in general they fail to take a systemwide view of the problem.
The tradition of building fault taxonomies often attempts to separate coding faults and
"emergent faults" (those related to configuration and so forth), and treat them as separate,
independent problems [Krusl, 1998].I61 The problem is that software risk can only be
measured and assessed relative to a particular environment. This is because, in some cases,
a potentially fatal attack ultimately poses no risk if the firewall successfully blocks it.
Although a given piece of target software may itself be exploitable, the surrounding
environment may protect it from harm (if a firewall gets lucky or an intrusion detection
system catches an attack before any damage is done). Software is always part of a larger
system of connected hardware, language technologies, and protocols. The environment issue
is a double-edge sword, however, because many times the environment has a negative
impact on software risk.

[61 The 1978 Protection Analysis study (called PA) and the 1976 RISOS study are early attempts at
vulnerability classification.

The concept of "open systems" was first introduced in thermodynamics by von Bertalanffy .[71
The fundamental concept is that almost every technical system exists as a part of a larger
whole, and all the components are in a state of constant interaction. As a result, risk analysis
has evolved to consider the system at many levels: both supersets and subsets. Some
approaches for measuring software risk may not consider the environment as an essential
part of the story, but risk cannot be measured out of context.

[71 To learn about Ludwig von Bertalanffy, go to http://www.isss.org/lumLVB.htm.

A classic example of an environmental effect is demonstrated by taking a program that has
been successfully run with no security problems for years on a proprietary network and
putting it on the Internet. The risks change, immediately and radically. For reasons like
these, it makes little sense to consider code separate from any knowledge about the firewall
or the business context in which the software will operate. Likewise it doesn't make sense to
treat intrusion detection as an atomic network-level component divorced from the software
that should be monitored. The fact is, software communicates over networks, and simple
configuration settings can leave gaping security holes. Then again, proper firewall settings
can sometimes choke off an attack that would otherwise wipe out a Web server.

In the end, separating code from the environment that it ultimately runs in turns out to be an
artificial and misleading way of drawing a boundary in the system. In fact, such boundaries
end up being of little real use. The complicating factor is that a system can be broken down
into many hierarchical components of varying degrees of detail. A system viewed this way is
a collection of many components or objects existing at myriad levels. Each piece of software
in a system can likewise be viewed as a collection of many components or objects at different
levels. At almost any level of granularity, these objects communicate with each other.

Modern systems are complex and involve interactions at many different levels. The upshot of
all this is that the standard Tower-of-Hanoi—like conception of "stacked" applications (Eigure
2-1) is very misleading. High-level applications call directly into very low-level OS constructs
(even at the BIOS level), more often than many people think. So instead of a nice, clean,
organized communication hierarchy with everything neatly calling only its "immediately
surrounding" levels, almost everything can communicate with almost everything else on all
sorts of disjoint levels. This makes building a protection domain somewhat tricky, if not nigh
on impossible. Groups and domains can exist around any set of objects, and ultimately any
object involves both code and configuration. Ultimately, environment really matters, and
trying to treat code separate from the environment is doomed to fail.


http://www.isss.org/lumLVB.htm

Figure 2-1. A typical conceptual view of software applications (App)
as nested hierarchical structures. The reality is that applications are
not as nicely "stacked" as they appear to be here. This figure was
created by Ed Felten of Princeton University.
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Most (network) security books focus only on the environment around software. They talk
about fixing security problems at the router, the firewall, or by installing intrusion detection
software. Only recently (in 2001) were the first books dedicated solely to developing secure
software released (Building Secure Software by Viega and McGraw [2001], and Writing
Secure Code by Michael Howard and David LeBlanc [2002]).

We find it useful to divide approaches into two distinct subfields: software security and
application security.

Software security defends against software exploit by building software to be secure in the
first place, mostly by getting the design right (which is hard) and avoiding common mistakes
(which is easy). Issues critical to this subfield include: software risk management,
programming languages and platforms, auditing software, designing for security, security
flaws (buffer overflows, race conditions, access control and password problems, randomness,
cryptographic errors, and so on), and testing for security. Software security is mostly
concerned with designing software to be secure, making sure that software is secure, and
educating software developers, architects, and users.

Application security defends against software exploit in a post facto way, after
development is complete. Application security technology enforces reasonable policy about
the kinds of things that can run, how they can change, and what the software does as it is
running. Issues critical to this subfield include sandboxing code, protecting against malicious
code, locking down executables, monitoring programs as they run, enforcing software use
policy with technology, and dealing with extensible systems.

Note that both of these subfields must be considered when exploiting software.

Risk

By giving particular sorts of vulnerabilities a name, we can begin to attribute risk levels to
these vulnerabilities. Once a risk is associated with a named software bug or flaw, an
enterprise can calculate where budgets need to be allocated to reduce risk. On the other



hand, an attacker can use the same data to calculate the likelihood of leveraging the most
"bang for the bug." Clearly, some vulnerabilities cost less to exploit, just as some
vulnerabilities cost less to mend.

Risk describes the likelihood that a given activity or combination of activities will lead to a
software or system failure and, as a result, unacceptable resource damage will occur. To
some degree, all activities expose software to potential faulty behavior. The level of exposure
may vary depending on the reliability of the software, the amount of QA testing performed
against the software, and the runtime environment of the software.

Flaws and bugs lead to risk; however, risks are not exploits. Risks capture the probability
that a flaw or a bug will be exploited (our view is that high, medium, and low seem to work
better as parameters for this than exact numbers). Risks also capture the potential damage
that will occur. A very high risk is not only likely to happen, but is also likely to cause great
harm. Risks can be managed by technical and nontechnical means. Software risk
management takes into account software risks and attempts to manage the risks
appropriately given a particular situation.

What follows is an abbreviated treatment for measuring software risk in an environment.
Note that unlike some approaches, our approach does not take into account a deep
understanding of the attacker—only the target software. We ignore the problem of
categorizing and describing potential attackers in this book. Other books provide a
reasonable treatment of assessing the threat profile of attackers [Denning, 1998; Jones et
al., 2002]. Thus, the risk equation we present here is meant only to measure the damage to
software assuming that a capable attacker exists. Of course, if there are no capable
attackers, then there is no risk.

Damage Potential

In our model, if the target software is exploitable and the firewall does nothing to protect it
from attack, the result is extreme risk. Itis important to understand that risk in this sense
amounts only to the risk that the software will fail. We do not attempt to measure the value
or the cost of that failure. In other words, we don't tell you how much your stolen database
was worth. True risk assessment must measure the cost of a failure. In this case we take the
first step toward classifying risk—gathering the information about a potential software failure
but not calculating asset x value, potential cascading failures, and damage control.

Given our definitions, the equation for damage potential is

Attack Potency (given) ranging from 1 to 10 x

Target Exposure (measure or assume 100%) from O to 1.0 =

Damage Potential (result is in the range O to 10) x 10
Damage potential is a quantitative measurement. For example, if an attack is rated 10 points
on a scale from 1 to 10 points and you are 100% exposed to the attack (1.0 in the range
specified), then your site damage potential is 10 x 10 = 100%. This means your asset will be
100% compromised or destroyed.
Every attack has the real potential to create damage. We assess this potential by determining
the potency of an attack. High-potency attacks are more likely to cause noticeable problems

with applications (that is, things that users can see). Low-potency attacks do not cause
noticeable problems.

Exposure and Potency

Another dimension, exposure, is a measure of how easy or difficult it is to carry out an



attack. Exposure can also be measured. If an attack is blocked at the firewall, it is said to
have low exposure. By testing the fire wall, we can measure exposure for a given attack.

High-potency attacks, by definition, cause noticeable problems when they do their thing.
High-exposure attacks that are also high potency will cause a system to crash, but these
kinds of high-potency attacks usually indicate only that the firewall is not configured
properly. That is, they can in many cases be mitigated with reasonable firewall
configurations.

On the other hand, medium-exposure attacks that cause high-potency problems indicate a
weak target that is easily compromised. By definition, these attacks are not very likely to be
stopped by firewall rules alone. Thus they make excellent fodder for software exploit. High-
potency attack patterns that have medium-exposure dimensions include authentication
hijacking, protocol attacks, and extreme load situations. As we said, these kinds of attack
only sometimes can be prevented/mitigated using firewalls, intrusion detection, and other
common network security techniques. But note that these are attacks that cannot be easily
prevented by a particular software application because they tend to take advantage of
weaknesses at the communications level.

Input-driven attacks at the application level are usually high-exposure attacks. This means
they easily slip under the radar of standard firewall or network-level technologies. There are
many varieties of this kind of attac