
CHAPTER

31
Internet-Enabling Your
Applications with WebBroker
by Nick Hodges

IN THIS CHAPTER
• ISAPI, NSAPI, and CGI Web Server

Extensions 1645

• Creating Web Applications
with Delphi 1647

• Dynamic HTML Pages with HTML Content
Producers 1655

• Maintaining State with Cookies 1665

• Redirecting to a Different
Web Site 1670

• Retrieving Information from
HTML Forms 1671

• Data Streaming 1673

• Summary 1677

The Internet’s popularity has exploded, and its use by computer owners has become almost a
given. The technology that makes the Internet work is deceptively simple, and as a result,
many business organizations are using the technology to create intranets—small Web networks
accessible only to those within a given organization. Intranets are proving to be an inexpensive
and highly effective way to leverage an organization’s information systems. As new technolo-
gies arrive, some intranets are even being expanded to extranets—networks that allow limited
access but are not limited to an organization’s boundaries.

All of this, of course, makes programming for the Internet/intranet a very important arrow in a
programmer’s quiver. As you might expect, Delphi makes programming for the
Internet/intranet a very straightforward task. Delphi lets you bring its full power to the Web in
the following ways:

• By encapsulating the Hypertext Transfer Protocol (HTTP) in easily accessible objects

• By providing an application framework around the application programming interfaces
(APIs) of the most popular and powerful Web servers

• By providing a Rapid Application Development (RAD) approach to building Web server
extensions

With Delphi and its WebBroker components, you can easily build Web server extensions that
provide customized, dynamic Hypertext Markup Language (HTML) pages that include access
to data from virtually any source.

Database Development

PART IV
1644

TIP

The WebBroker components are provided as a part of Delphi Enterprise. If you are a
Delphi Professional user, you can purchase the WebBroker components as a separate
add-on. Visit the Borland Web site (http://www.borland.com) for more information.

The basic technology that makes the Web possible is quite simple. The two agents in the
process—the Web client, or client, and the Web server—must establish a communications link
and pass information to and from each other. The client requests information and the server
provides it. Of course, the client and the server have to agree on how to communicate and what
form the information they share will take. They do this across the Web with nothing more than
an ASCII byte stream. The client sends a text request and gets a text answer back. The client
knows little about what takes place on the server. This simple process allows for cross-platform
communication, normally by means of the TCP/IP protocol.

The standard method of communicating used on the Web is the Hypertext Transfer Protocol
(HTTP). A protocol is simply an agreement about a way of doing business, and HTTP is a pro-
tocol designed to pass information from the client to the server in the form of a request, and

from the server to the client in the form of a response. It does so by formatting information as
a byte stream of ASCII characters and sending this information between the two agents. The
HTTP protocol itself is both flexible and powerful. When used in concert with Hypertext
Markup Language (HTML), it can quickly and easily provide Web pages to a browser.

An HTTP request might look like this:

GET /mysite/webapp.dll/dataquery?name=CharlieTuna&company=Borland HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.mysite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

HTTP is stateless, which means that the server has no knowledge of the state of the client and
that the communication between the server and the client ends when the request has been satis-
fied. This makes creating database applications using HTTP somewhat problematic because
many database applications rely on the client having access to a live dataset. State information
can be stored through the use of cookies—pieces of information that are stored on the client as
a result of the HTTP response. Cookies are discussed later in the chapter.

ISAPI, NSAPI, and CGI Web Server Extensions
Web servers are the engines that make the Web function. They provide all the content to Web
browsers, whether that content is HTML pages, Java applets, or ActiveX controls. Web servers
are the tools that provide responses to a client’s request. Many different Web servers are avail-
able for use on any of the different popular platforms.

The Common Gateway Interface
The first Web servers could merely retrieve and return an existing, static HTML page. Web site
managers could provide nothing more in a Web site than the pages that were present on the
server at the time of the request. Soon, however, it became clear that a higher level of interac-
tion between client and server was required, and the Common Gateway Interface (CGI) was
developed as a result. CGI allowed the Web server to launch a separate process based on input
from the user, work on that information, and return a dynamically created Web page to the
client. A CGI program could do any type of data manipulation that the programmer required,
and it could return any sort of page that HTML would allow.

Standard CGI applications work by reading from STDIN, writing to STDOUT, and reading envi-
ronmental variables. WinCGI works by storing the request parameters in a file, launching the
WinCGI application, reading and processing the data in the file, and then writing an HTML
file, which is then returned by the Web server. Suddenly, the Web took a large step forward,
because servers could now provide tailored, unique responses to users’ requests.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1645

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

However, CGI and WinCGI applications have some drawbacks. Each request must launch its
own process on the server, so multiple requests can easily tie up even a moderately busy server.
The task of creating a file, launching a separate process, executing the process, and then writ-
ing and returning yet another file is relatively slow.

ISAPI and NSAPI
The major Web server vendors, Microsoft and Netscape, saw the weaknesses inherent in CGI
programming, but they also saw the advantages of dynamic Web creation. Therefore, instead of
using a separate process for each request, each company wrote APIs for its Web servers that
allowed Web server extensions to be run as dynamic link libraries (DLLs). DLLs can be loaded
once and then respond to any number of requests. They run as part of the Web server process,
executing their code in the same memory space as the Web server itself. Instead of having to
pass information back and forth as files, Web server extensions can simply pass the informa-
tion back and forth inside the same memory space. This allows for faster, more efficient, and
less resource-intensive Web applications.

Microsoft provides the rather simple and straightforward Internet Server Application
Programming Interface (ISAPI) with its Internet Information Server (IIS), and Netscape pro-
vides the more complex Netscape Application Programming Interface (NSAPI) with its family
of Web servers.

Delphi provides access to both APIs through the NSAPI.PAS and ISAPI.PAS units. To run the
applications in this chapter, you have to be running an IIS server, a Netscape server, or one of a
number of shareware or freeware servers that meet the ISAPI specification.

Database Development

PART IV
1646

TIP

If you do not currently have a Web server installed, you can download the Microsoft
Personal Web Server from Microsoft’s Web site (http://www.microsoft.com). It is
freeware and is ISAPI-compliant. It will run all the examples in this chapter.

Using Web Servers
Whichever Web server you are using, you should bear in mind several things when
running Web server applications. First of all, because the extensions are DLLs, they
will be loaded into memory and remain in memory while the Web server is running.
Therefore, if you are building and testing applications with Delphi, you may have to
shut down the Web server to recompile the application because Windows will not
allow you to rewrite a file that is being executed. This may vary between Web

Creating Web Applications with Delphi
Delphi’s WebBroker components make developing Internet/intranet applications easy. The fol-
lowing sections discuss these components and how they allow you to focus on the content of
your Web servers without having to worry about the details of HTTP communications protocols.

TWebModule and TWebDispatcher
If you select File, New from the Delphi menu, the New Items dialog box appears. Select the
Web Server Application icon to open a wizard that will allow you to select the type of Web
server extension. The three choices are ISAPI/NSAPI, CGI, and WinCGI applications. This
chapter deals with the ISAPI/NSAPI application type. The construction of the CGI server
extensions is done in almost the same manner; however, the ISAPI applications are easier to
deal with and run.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1647

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

servers, but it is true for the Microsoft Personal Web Server. In addition, Web servers
generally require that you select a base directory on your system as the root directory
for all your HTML files. You can tell Delphi to send your Web applications directly to
that directory by entering the full path of the directory into the Project, Options,
Directories/Conditionals Output Directory combo box. Finally, you can even debug
your Web applications while they are running. Delphi’s documentation includes
instructions on how to do this. These instructions can be found in the online help
under ISAPI, Debugging. The Web server is used as the host application. Each of the
major Web servers is configured a bit differently, so check your server’s documenta-
tion and the Delphi documentation mentioned for further information.

NOTE

Delphi also includes a project, ISAPITER.DPR, that allows you to run ISAPI modules on
an NSAPI-based Web server. The online help has information on how to set up a
Netscape Web server to run the ISAPI DLLs created in this chapter.

After you select the application type, Delphi creates a project based on a TWebModule. The
main project itself is a DLL, and the main unit contains the TWebModule. TWebModule is a
descendant of TDataModule, and it contains all the logic needed to receive the HTTP request
and respond to it. A TWebModule can accept only nonvisual controls, just like its ancestor. You
can use all the database controls, as well as the controls on the Internet page of the Component

Palette that produce HTML, to produce content in a TWebModule. This allows you to add busi-
ness rules for your Web-based application in the same manner as you can with TDataModule in
regular applications.

The TWebModule has an Actions property, which contains a collection of TWebActionItem
objects. A TWebActionItem allows you to execute code based on a given request. Each
TWebActionItem has its own name; when a client makes a request based on that name, your
code is executed and the appropriate response is given.

Database Development

PART IV
1648

NOTE

You can create a Web server application with one of your existing data modules. The
TWebModule has as one of its fields the TWebDispatcher class. This class is included on
the Component Palette as the TWebDispatcher component. If you replace the default
TWebModule in your Web server application with an existing data module by using the
Project Manager, you can drop a TWebDispatcher component on it and it will become
a Web server application. The TWebDispatcher component on the Internet page of
the Component Palette adds all the functionality encapsulated in the TWebModule. So
if you have all your business rules wrapped up in an existing TDataModule, making
those rules available to your Web applications is as easy as pointing and clicking. A
TDataModule with a TWebDispatcher component is functionally equivalent to a
TWebModule. The only difference is that you access the HTTP actions through the
TWebDispatcher component and not the TDataModule itself.

Select the TWebModule so that its properties are displayed in the Object Inspector. Select the
Actions property and either double-click it or select the property editor with the small ellipsis
(…) button. This will bring up the WebModule Actions dialog. Click the New button and select
the resulting WebActionItem in the property editor that appears. The Action item’s properties
will then be displayed in the Object Inspector. Go to the PathInfo property and enter /test.
Then go to the Events page in the Object Inspector and double-click the OnAction event to cre-
ate a new event handler. It will look like this:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin

end;

This event handler contains all the information about the request that generated this action and
the means to respond to it. The client’s request information is contained in the Request para-
meter, which is of type TWebRequest. The Response parameter is of type TWebResponse, and it

is used to send the necessary information back to the client. Within this event handler, you can
write any code necessary to respond to the request, including file manipulation, database
actions, and anything else needed to send an HTML page back to the client.

Before we get into the depths of the TWebModule, a simple example will help demonstrate the
basics of how a Web server application works. The simplest way to create an HTML page that
responds to the client’s request is to build the HTML on the fly. You can do this easily by using
a TStringList. After the HTML is placed into the TStringList, it can easily be assigned to
the Content property of the Response parameter. Content is a string, and it is used to hold the
HTML to be returned to the client. This is the only property of Response that must be filled
because it contains the data to be displayed. If it is left blank, the client’s browser will report
that the requested document is empty. Listing 31.1 shows the code that you must add to the
/test action item event handler.

LISTING 31.1 The WebModule1WebActionItem1Action Event Handler

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
Page: TStringList;

begin
Page := TStringList.Create;
try
with Page do
begin

Add(‘<HTML>’);
Add(‘<HEAD>’);

Add(‘<TITLE>Web Server Application -- Basic Sample</TITLE>’);
Add(‘</HEAD>’);
Add(‘<BODY>’);
Add(‘This page was created on the fly by Delphi<P>’);
Add(‘<HR>’);
Add(‘See how easy it was to create a page on the fly with Delphi’’s

➥Web Extensions?’);
Add(‘</BODY>’);
Add(‘</HTML>’);

end;
Response.Content := Page.Text;

finally
Page.Free;

end;
Handled := True;

end;

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1649

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

Save the project as SAMPLE1.DLL, compile it, and place the resulting file in the default directory
for your ISAPI- or NSAPI-capable Web server. Then, point your browser to the following
location:

<web server address>/sample1.dll/test

You should see the expected Web page in your browser, as shown in Figure 31.1.

Database Development

PART IV
1650

FIGURE 31.1
A sample Web page.

NOTE

If you take Listing 31.1’s code from the CD-ROM accompanying this book and place it
on your computer, maintaining the same directory structure as on the CD-ROM, you
can easily set your Web server up to access the HTML and the DLLs to run all the sam-
ple applications from this chapter. Simply create a virtual Web server directory for the
root directory and an ISAPI-capable directory that points to the \bin directory. Then,
you can open up the INDEX.HTM file in the root directory, giving you access to all the
sample code. Note that if you copy the files from the CD-ROM, they will have the
read-only flag set. You will have to remove that flag in Explorer if you want to edit
the files copied from the CD-ROM.

Note that the result of the project’s compilation is a DLL that conforms to the ISAPI specifica-
tion. The project’s source code reveals the following:

library Sample1;
uses
WebBroker,
ISAPIApp,
Unit1 in ‘Unit1.pas’ {WebModule1: TWebModule};

{$R *.RES}
exports
GetExtensionVersion,
HttpExtensionProc,
TerminateExtension;

begin
Application.Initialize;
Application.CreateForm(TWebModule1, WebModule1);
Application.Run;

end.

Note the three exported routines. These three—GetExtensionVersion, HttpExtensionProc,
and TerminateExtension—are the only three procedures required by the ISAPI specification.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1651

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

CAUTION

Like a typical application, your ISAPI application uses a global Application object.
However, unlike a regular application, this project does not use the Forms unit.
Instead, the WebBroker unit contains an Application variable declared as type
TWebApplication. It handles all the special calls needed to be able to hook into an
ISAPI- or NSAPI-capable Web server. As a result, you should never try to add the
Forms unit to an ISAPI-based Web server extension because this may confuse the
compiler into using the wrong Application variable.

This simple project illustrates how easy it is to build a Web server application and provide a
response to a client’s request by using Delphi. This was a relatively simple example, creating
HTML dynamically in code. However, as you will soon see, Delphi provides the tools to
respond in much more complex and interesting ways. Before looking at what Delphi can do in
this regard, we will delve a little deeper into the workings of a WebBroker application in the
following section.

TWebRequest and TWebResponse
TWebRequest and TWebResponse are abstract classes that encapsulate the HTTP protocol.
TWebRequest provides access to all the information passed to the server by the client, and

TWebResponse contains properties and methods that allow you to respond in any of the multi-
ple ways that the HTTP protocol allows. Both of these classes are declared in the HTTPAPP.pas
unit, which is used by the WebBroker.pas unit. ISAPI-based Web applications actually use
TISAPIResponse and TISAPIRequest, which are descendants of the abstract classes and are
declared in ISAPIAPP.PAS. The power of polymorphism allows Delphi to pass the TISAPIxxx
classes to the TWebxxx parameters of the OnAction event handler in TWebModule.

TISAPIRequest contains all the information passed by a client when making a request for a
Web page. You can gather information about the client from the request. Many of the proper-
ties may be blank for any given request, because not all fields are completed for every HTTP
request. The RemoteHost and RemoteAddr properties contain the IP address of the requesting
machine. The UserAgent property contains information about the browser that the client is
using. The Accept property includes a listing of the types of graphics that the user’s browser
can display. The Referer property contains the URL for the page that the user clicked to create
the request. If cookie information is present (cookies are discussed later in the chapter), it is
contained in the Cookie property. Multiple cookies can be more easily accessed by the
CookieFields array. If any parameters were passed with the request, they will all be contained
in a single string inside the Query property. They will also be broken out into an array in the
QueryFields property.

Database Development

PART IV
1652

NOTE

When you are passing parameters to a URL, they normally follow a question mark (?)
after the URL’s name. Multiple parameters are separated by ampersands (&), and if
the parameters contain spaces, a plus sign (+) is substituted for the spaces. Therefore,
a valid set of parameters might look like this inside an HTML page:

<A HREF=”http://www.someplace.com/ISAPIApp?Param1=This+
➥Parameter&Param2=That+Parameter”>Some Link

Most of the information for a TISAPIRequest is revealed in properties, but the class makes
public many of the functions used to fill those properties, thus allowing you to access the data
directly if you want. TISAPIRequest contains other properties than those discussed here, but
these are the main ones you should be interested in. All these properties can be used in your
OnAction event handler to determine the type of response your Web server application will pro-
vide. If you want to include information about the user’s IP address or vary the response based
on the type of browser the client is using, you can do that in your OnAction event handler.

You can see what a TISAPIRequest looks like by running the following project in your Web
server. Create a new Web server application, bring up the Actions property editor by double-
clicking the Actions property in the Object Inspector, and create a new TWebActionItem with

the PathInfo set to http. Go to the Internet page on the Component Palette and drop a
TPageProducer (discussed later in this chapter) on the WebModule; then add the code shown in
Listing 31.2 to the OnAction event handler for /http.

LISTING 31.2 The OnAction Event Handler

procedure TWebModule1.WebModule1Actions0Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
Page: TStringList;

begin
Page := TStringList.Create;
try
with Page do
begin

Add(‘<HTML>’);
Add(‘<HEAD>’);

Add(‘<TITLE>Web Server Extensions THTTPRequest Demo</TITLE>’);
Add(‘</HEAD>’);
Add(‘<BODY>’);
Add(‘<H3><FONT=”RED”>This page displays the properties

➥of the HTTP request that asked for it.</H3>’);
Add(‘<P>’);

Add(‘Method = ‘ + Request.Method + ‘
’);
Add(‘ProtocolVersion = ‘ + Request.ProtocolVersion + ‘
’);
Add(‘URL = ‘ + Request.URL + ‘
’);
Add(‘Query = ‘ + Request.Query + ‘
’);
Add(‘PathInfo = ‘ + Request.PathInfo + ‘
’);
Add(‘PathTranslated = ‘ + Request.PathTranslated + ‘
’);
Add(‘Authorization = ‘ + Request.Authorization + ‘
’);
Add(‘CacheControl = ‘ + Request.CacheControl + ‘
’);
Add(‘Cookie = ‘ + Request.Cookie + ‘
’);
Add(‘Date = ‘ + FormatDateTime (‘mmm dd, yyyy hh:mm’,

ÂRequest.Date) + ‘
’);
Add(‘Accept = ‘ + Request.Accept + ‘
’);
Add(‘From = ‘ + Request.From + ‘
’);
Add(‘Host = ‘ + Request.Host + ‘
’);
Add(‘IfModifiedSince = ‘ + FormatDateTime (‘mmm dd, yyyy hh:mm’,

ÂRequest.IfModifiedSince) + ‘
’);
Add(‘Referer = ‘ + Request.Referer + ‘
’);
Add(‘UserAgent = ‘ + Request.UserAgent + ‘
’);
Add(‘ContentEncoding = ‘ + Request.ContentEncoding + ‘
’);
Add(‘ContentType = ‘ + Request.ContentType + ‘
’);
Add(‘ContentLength = ‘ + IntToStr(Request.ContentLength) + ‘
’);

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1653

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

continues

LISTING 31.2 Continued

Add(‘ContentVersion = ‘ + Request.ContentVersion + ‘
’);
Add(‘Content = ‘ + Request.Content + ‘
’);
Add(‘Connection = ‘ + Request.Connection + ‘
’);
Add(‘DerivedFrom = ‘ + Request.DerivedFrom + ‘
’);
Add(‘Expires = ‘ + FormatDateTime (‘mmm dd, yyyy hh:mm’,

➥ Request.Expires) + ‘
’);
Add(‘Title = ‘ + Request.Title + ‘
’);

Add(‘RemoteAddr = ‘ + Request.RemoteAddr + ‘
’);
Add(‘RemoteHost = ‘ + Request.RemoteHost + ‘
’);
Add(‘ScriptName = ‘ + Request.ScriptName + ‘
’);
Add(‘ServerPort = ‘ + IntToStr(Request.ServerPort) + ‘
’);

Add(‘</BODY>’);
Add(‘</HTML>’);

end;
PageProducer1.HTMLDoc := Page;
Response.Content := PageProducer1.Content;

finally
Page.Free;

end;
Handled := True;

end;

Build the project and copy the resulting Project1.dll file in the default directory for your
ISAPI- or NSAPI-capable Web server. Point your Web browser to http://<your
server>/project1.dll/http; when you view this application; it will show you all the values
of the HTTP fields passed to the server in the request from your browser.

Of course, every request should have a proper response; therefore, Delphi defines the
TISAPIResponse class to allow you to return information to the requesting client. The most
important property of TISAPIResponse is the Content property. This is the property that will
contain the HTML code that is to be displayed for the client.

TISAPIResponse contains a number of additional properties that can be set by your application.
You can pass version information in the Version property. You can tell the client when the
information being passed back was last modified with the LastModified property. You can
pass information about the content, itself, with the ContentEncoding, ContentType, and
ContentVersion properties. The StatusCode property allows you to return error codes and
other status codes to the client.

Database Development

PART IV
1654

The real power of TISAPIResponse comes in its methods. Once you have properly formatted
your response, use the SendResponse method to force your Web application to send the
TWebResponse information back to the client. You can send any sort of data back to the client
using the SendStream method. Also, if your application decides to send the client somewhere
other than the response provided by the application itself, it can do so using the SendRedirect
method. SendRedirect is discussed later in the chapter.

Dynamic HTML Pages with HTML Content
Producers
Of course, building HTML code dynamically is not the most efficient way to provide Web
pages, so Delphi provides a number of tools to make building HTML pages much easier, more
efficient, and customizable. TCustomContentProducer is an abstract class that provides the
basic functionality for handling and manipulating HTML pages. TPageProducer,
TDataSetTableProducer, and TQueryTableProducer descend from it. When used together,
and with either existing or dynamically created HTML, these classes allow you to create a site
based on dynamic HTML pages, including data in tables, hyperlinks, and the full range of
HTML capabilities. These controls will not actually create HTML for you, but they make the
management of HTML and the dynamic creation of Web pages based on parameters and other
inputs quite simple.

TPageProducer
TPageProducer is used for the manipulation of straight HTML code. It uses customized
HTML tags, replacing them with the proper content. You create, either at design time or run-
time, an HTML template that contains special tags that are ignored by standard HTML. The
TPageProducer can then find these tags and replace them with the appropriate information.
The tags can contain parameters for passing information. You can even replace one custom tag
with text containing other custom tags, thus allowing you to link page producers together,
causing a “daisy chain” effect that enables you to define a dynamic Web page based on differ-
ing inputs.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1655

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

TIP

Most browsers react in specific ways to certain status codes. You can check the HTTP
specification at the Web site http://www.w3.org for the specific status codes.

These dynamic tags look just like regular HTML tags, but because they are not standard
HTML tags, they are ignored by the client’s browser. Such a tag looks like this:

<#CustomTag Param1=SomeValue “Param2=Some Value with Spaces”>

The tag should be surrounded by the less-than (<) and greater-than (>) brackets, and the tag’s
name must begin with a pound sign (#). The tag name must be a valid Pascal identifier.
Parameters with spaces must be entirely surrounded by quotes. These custom tags can be
placed anywhere inside your HTML document, even inside other HTML tags.

Delphi provides a number of predefined tag names. None of the values have any special action
associated with them; rather, they are defined only for convenience and code clarity. For exam-
ple, you are not required to use the tgLink custom tag for a link, but it makes sense (and is
clearer in your HTML templates) if you do so. Note that you can define all your custom tags
as you want, and they will all become tgCustom values. Table 31.1 shows the predefined tag
values.

TABLE 31.1 Predefined Tag Values

Name Value Tag Conversion Value

Custom TgCustom A user-defined or unidentified tag. It can be converted to any
user-defined value.

Link TgLink This tag should be converted to an anchor value. This is nor-
mally a hypertext link or a bookmark value (<A>..).

Image TgImage This tag should be converted to an image tag ().

Table TgTable This tag should be replaced with an HTML table
(<TABLE>..</TABLE>).

ImageMap TgImageMap This tag should be replaced with an image map. An image
map defines links based on hot zones within an image
(<MAP>...</MAP>).

Object TgObject This tag should be replaced with code that calls an ActiveX
control.

Embed TgEmbed This tag should be converted to a tag that refers to a
Netscape-compliant add-in DLL.

Using the TPageProducer component is rather straightforward. You can assign HTML code to
the component in either the HTMLDoc or HTMLFile property. Whenever the Content property is
assigned to another variable (usually the TISAPIResponse.Content property), it scans the
given HTML, calling the OnHTMLTag event whenever a custom tag is found in the HTML. The
OnHTMLTag event handler looks like this:

Database Development

PART IV
1656

procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin

end;

The Tag parameter contains the type of tag found (refer to Table 31.1). The TagString parame-
ter holds the value of the whole tag itself. The TagParams parameter is an indexed list of each
parameter, including the parameter name, the equal sign (=), and the value itself. The
ReplaceText parameter is a string variable that you will fill with the new value that will
replace the tag. The entire tag, including the angle brackets (< and >), is replaced in the HTML
code with whatever value is passed back in this parameter.

You can assign an HTML template to the TPageProducer in one of two ways. You can create
the HTML at runtime as a string and pass it to the HTMLDoc property, or you can assign an
existing HTML file to the HTMLFile property. This allows you to build HTML on the fly or to
use existing templates that you have prepared ahead of time.

For example, suppose you have an HTML file called MYPAGE.HTM with the following HTML
code in it:

<HTML>
<HEAD>

<TITLE>My Cool Homepage</TITLE>
</HEAD>
<BODY>
Howdy <#Name>! Thanks for stopping by my web site!
</BODY>
</HTML>

You can then assign the following code to the PageProducer.OnHTMLTag event handler:

procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
case Tag of

tgCustom: if TagString = ‘Name’ then ReplaceText := ‘Partner’;
end;

end;

This results in the following HTML code:

<HTML>
<HEAD>

<TITLE>My Cool Homepage</TITLE>
</HEAD>
<BODY>

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1657

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

Howdy Partner! Thanks for stopping by my web site!
</BODY>
</HTML>

Suppose that you used this code with the OnAction event in a WebModule, like this:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
PageProducer1.HTMLFile := ‘MYPAGE.HTM’;
Response.Content := PageProducer1.Content;

end;

The newly created page would be sent back to the client when requested. When the
PageProducer.Content property is called, it makes the given replacement of text for every tag
it finds, calling the OnHTMLTag event handler for each one. More complex pages might have
numerous entries in the case statement, replacing various different custom tags with large
chunks of HTML, links to other pages, graphics, tables, and so on.

TCustomPageProducer objects can also be linked together in a chain. You can use two of them
to produce a single page. For example, you might have a basic HTML template that holds stan-
dard header and footer code, along with custom tags that define some general values for the
page and the location of the main body of the page. You might pass this through one page pro-
ducer, replacing general data tags with information based on the user’s identity. Then, you
might replace the main body tag with customized code or more tags based on the information
requested by that user. The result could then be passed to yet another TPageProducer, which
would replace those specific tag values with the appropriate information.

TDataSetTableProducer and TQueryTableProducer
In addition to regular HTML documents, Delphi provides the TDataSetTableProducer to
allow you to easily and powerfully create HTML tables based on a given dataset.
TDataSetTableProducer allows you to fully customize all characteristics of the table, within
the limits set by HTML. This class can function to a large degree as a TDBGrid because you
can format individual cells, rows, and columns. You can access data from any dataset available
to your system, whether local or remote. This allows you to build enterprise-level Web sites
that access data from virtually any source.

TDataSetTableProducer behaves a bit differently than the other database controls in that it
accesses data directly from a TDataSet descendant rather than through a TDataSource. It has a
DataSet property that can be set at design time to any TDataSet descendant found in the same
TWebModule, or at runtime to any dynamically created value. After the DataSet property has
been set, you can access and configure the TDataSetTableProducer to display any of the
columns of the given dataset, as desired. The TableAttributes property allows you to set the
general characteristics of the table, again within the confines of the HTML specification.

Database Development

PART IV
1658

The Header and Footer properties are of type TStrings and allow you to add HTML code
before and after the table itself. You can use these properties in conjunction with your own
dynamically created HTML or with HTML from a TPageProducer. For instance, if the main
feature of a page is the table, you might use the Header and Footer properties to fill in the
basic structure of the HTML page. If the table is not the main focus of the page, you might
choose to use a custom TTag in a TPageProducer to place the table in the appropriate place.
Either way, you can use the TDataSetTableProducer to create data-based Web pages.

The Columns, RowAttributes, and TableAttributes properties are where customizing is done
for the table to be produced. The Columns property hides a very powerful component editor
that you can use to set most of the component’s attributes.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1659

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

TIP

Double-click the component itself or the Columns property in the Object Inspector to
invoke the Columns property editor.

The Caption and CaptionAlign properties determine how the caption of the table will be
shown. The Caption is the text displayed either above or below the table, serving to explain
the table’s contents. The DataSet property (Query in the TQueryTableProducer) determines
the data to be used in the table.

Other than the way they access data, TDataSetTableProducer and TQueryTableProducer
function identically. They have the same properties and are configured the same way. Because
of this, you will create a table that is the result of a simple join and use TQueryTableProducer
in an example to see how they both work.

Start a new Web application and drop a TQueryTableProducer from the Internet page of the
Component Palette and a TQuery and a TSession from the Data Access Palette page onto the
TWebModule. Set the QueryTableProducer1.Query property to Query1 and the
Query1.DatabaseName property to DBDEMOS. Save the project as TABLEEX.DPR. Then set the
Query1.SQL property as follows:

SELECT CUSTNO, ORDERNO, COMPANY, AMOUNTPAID, ITEMSTOTAL FROM CUSTOMER,
➥ORDERS WHERE

CUSTOMER.CUSTNO = ORDERS.CUSTNO
AND
ORDERS.AMOUNTPAID <> ORDERS.ITEMSTOTAL

This will produce a small, joined table that has all the customers from the CUSTOMER.DB table
in the standard DBDemos alias who have not yet paid all their orders in full. You can then build a
table that shows this data and highlight the amount owed. Set Query1.Active to True so that
the data will be displayed in the Columns editor.

Database Development

PART IV
1660

NOTE

All Web server applications that will be handling data and using Delphi’s data com-
ponents need to have a TSession included in the WebModule. Web server applications
can be accessed many times concurrently, and Delphi will run each ISAPI or NSAPI
server application in a separate thread for each request. As a result, your application
needs to have its own, unique session when talking to the BDE. A TSession with
the AutoSessionName property set to True in your application ensures that each
thread has its own session and does not conflict with other threads trying to access
the same data. All you need to do is make sure that there is a TSession present in
your project—Delphi takes care of the rest.

TIP

When you are building Web extension applications, the
TWebApplication.CacheConnections property can speed up your application. Each
time a client makes a request of your ISAPI or NSAPI application, a new thread is
spawned to handle your request, in the process creating a new instance of your
TWebModule. Normally, each thread is executed for a single connection, and the
TWebModule is destroyed when that connection is closed. If CacheConnections is set to
True, each thread is preserved and reused as needed. New threads are only created
when a cached thread is not available. This will speed performance by saving the
execution time for creating a TWebModule request every time. However, you have to
be really careful, because TWebModule.OnCreate is called only once for each cached
thread. When a cached thread is finished, it remains in the state it was at comple-
tion. This might cause problems the next time the thread is used, depending on what
happens in your OnCreate event. If you depend on OnCreate to initialize variables or
perform other initialization actions, you might not want to use cached connections.
Instead, you should use an additional method that initializes the data for your Web
application and then call that in the BeforeDispatch event handler. This way, each
time a request is made, the data for your Web module will be initialized.

You can check the current number of unused, cached connections with the
TWebApplication.InactiveCount property. TWebApplication.ActiveCount will tell
you the number of active connections. These two properties may help you determine
a good value for TWebApplication.MaxConnections, which limits the total number of
connections that the TWebModule can handle at once. An exception will be raised if
ActiveCount ever exceeds MaxConnections.

Double-click QueryTableProducer1 to invoke the Columns component editor. In the upper-left
area of the component editor, you can set the general properties for the table as a whole. The
lower half of the editor contains an HTML control that will display the table as it is currently
configured. The upper-right area contains a collection of THTMLTableColumn items that can be
configured to determine which fields of the database will be included in the table and how
those fields will be displayed. Delphi will automatically import the fields from the TQuery and
add them to the fields editor. This application will not display the last field, so select the
ItemsTotal field and delete it. In addition, select the AMOUNTPAID field, and set the BgColor
property to Lime.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1661

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

TIP

It might be a good idea to resize the Columns property editor in order to accommo-
date your table, especially if it will contain a number of columns.

In the upper-left part of the window, set the Border value to 1 so that you will be able to see
the border of the table in the component editor as it is built. Set the CellPadding value to 2 to
provide a bit of spacing between the border and the text. If you want to add a little color to the
table, set the BgColor property to Aqua. This will cause the default background color of the
table to be aqua. Note that this is the default color—setting the background color for a row or a
column will override this value. In addition, Column color settings take precedence over Row
color settings.

When Delphi creates the field columns for the table, it gives the HTML columns headers the
names of the fields. However, database field names often do not make nice table column head-
ings, so you can change the default values using the Title property. Title is a compound
property, and one of its subproperties is Caption. Set the Title.Caption properties of the four
columns to Cust #, Order #, Company, and Amount Owed, respectively. Amount Owed is not
quite what the fourth column currently represents, but you will customize the output for this
column a little later. The Title property also allows you to customize the vertical and horizon-
tal alignment, as well as the color of the column header cell.

NOTE

TTHMLTableColumn, like other table-related classes, has a Custom property. This prop-
erty lets you enter a string value for the given item in the table. This value will be
entered directly in the HTML tag that defines the given table element. Custom items
might include HTML cell, row, or column modifiers not included in the properties of

continues

That covers the basic properties for the table that you can set at design time. Now we will dis-
cuss the events associated with TQueryTableProducer that allow you to customize the table at
runtime. OnCreateContent occurs prior to any HTML being generated. It contains the
Continue parameter, a Boolean value that you can set. If your application determines that for
some reason the table should not be generated, you can set this parameter to False, and no
more processing will be done; a call to the Content property will return an empty string. It
might be used to do such things as prepare the query, set the TQueryTableProducer.MaxRows
property, or any other processing that you need to do before actually displaying the table.

For instance, in the current example, the application will need to step through each record in
the Query as the table is drawn. To ensure that as the table is built the query is pointing to the
proper record, the application has to manually increment the cursor in the query each time a
new row is started. To do that, the query has to start at the beginning, as does the
TQueryTableProducer. Therefore, a call to Query1.First in the OnCreateContent event han-
dler ensures that the query and the HTML table are in sync with each other. Therefore, add the
following code to the event handler for QueryTableProducer1.OnCreateContent:

procedure TWebModule1.QueryTableProducer1CreateContent(Sender: TObject;
var Continue: Boolean);

begin
QueryTableProducer1.MaxRows := Query1.RecordCount;
Query1.First;
Continue := True;

end;

The OnGetTableCaption event allows you to format the table’s caption however you want.
Double-clicking the event in the Object Inspector yields this event handler:

procedure TWebModule1.QueryTableProducer1GetTableCaption(Sender: TObject;
var Caption: String; var Alignment: THTMLCaptionAlignment);

begin

end;

The Caption parameter is a variable parameter that will hold the end result of your caption.
You can manipulate this parameter as you please, including adding HTML tags to size, color,
and format the font of the table’s caption. You can use the Alignment parameter to determine
whether the caption is aligned at the top or the bottom of the table.

Database Development

PART IV
1662

the class or proprietary HTML extensions. Microsoft Internet Explorer includes a num-
ber of table-formatting extensions that allow you to customize the frames of the
table. If you want to add these capabilities, make the entry in the Custom property in
the form of paramname=value. You can add multiple parameters separated by spaces.

Create an OnGetTableCaption for the example that you have been working on by double-
clicking it in the Object Inspector. Enter the following code to format the table’s Caption in
order to make it stand out a bit more on the page (this change will not be reflected on the
HTML table shown in the Columns property editor):

procedure TWebModule1.QueryTableProducer1GetTableCaption(Sender: TObject;
var Caption: String; var Alignment: THTMLCaptionAlignment);

begin
Caption := ‘Delinquent Accounts’;
Alignment := caTop;

end;

The OnFormatCell event can be used to change the appearance of an individual cell. In this
example, you can add code to highlight the Amount Owed cell of any company that has not paid
its bill in full. This gets a little trickier than with the regular grids, because
TQueryTableProducer only provides you with string values. However, as mentioned earlier,
you can use the CellRow and CellColumn parameters to move the cursor of the TQuery along
as the table is built, gathering the proper data and making calculations as each row is
processed.

The OnFormatCell event handler passes you the information about the current cell being for-
matted in the CellRow and CellColumn parameters. These are both zero-based. The rest of the
parameters are variable parameters to which you can assign values, depending on your applica-
tion’s logic. You can adjust the horizontal and vertical alignment of the data in the cell with the
Align and VAlign parameters. You can pass additional Custom parameters for the cell in the
CustomAttrs parameter, and of course, you can alter the actual text of the cell with the
CellData parameter.

The CellData parameter is of type string, which limits your ability to process it in its native
format. If the data were actually stored in the database as an integer, you would have to call
StrtoInt to convert it back to a usable number. The following code illustrates how you might
gather the actual TField values for the given cell. Perhaps future versions of Delphi will pass
the TField value into the OnFormatCell event handler in addition to or in place of the string
value. Add the code in Listing 31.3 to the OnFormatCell event handler for
TQueryTableProducer.

LISTING 31.3 The OnFormatCell Event Handler

procedure TWebModule1.QueryTableProducer1FormatCell(Sender: TObject;
CellRow, CellColumn: Integer; var BgColor: THTMLBgColor;
var Align: THTMLAlign; var VAlign: THTMLVAlign; var CustomAttrs,
CellData: String);

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1663

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

continues

LISTING 31.3 Continued

Owed, Paid, Total: Currency;
begin

if CellRow = 0 then Exit; // Don’t process the header row
if CellColumn = 3 then //if the column is the Amount Owed Column
begin

//Calculate the amount that the company owes
Paid := Query1.FieldByName(‘AmountPaid’).AsCurrency;
Total := Query1.FieldByName(‘ItemsTotal’).AsCurrency;
Owed := Total - Paid;
//Set CellData to amount owed
CellData := FormatFloat(‘$0.00’, Owed);
//if it is greater than zero, then highlight the cell.
if Owed > 0 then
begin

BgColor := ‘RED’;
end;
Query1.Next; //Advance the query since we came to the end of a row

end;
end;

This code gathers the data for each unpaid account, subtracts the Amount Owed from the
Amount paid, and then highlights in red the accounts that owe money. It illustrates how you
can use the current cursor of the TQuery component to access the data being displayed in the
HTML table.

Next, add the following strings to the TQueryTableProducer.Header property:

<HTML>
<HEAD>

<TITLE>Delinquent Accounts</TITLE>
</HEAD>
<BODY>
<CENTER><H2>Big Shot Widgets</H2></CENTER>
<P>
The Accounts highlighted in red are late in paying:
<P>

Now add this to the TQueryTableProducer.Footer property:

<P>
<I>This information is to be kept in the strictest confidence</I><P>
<I>Copyright 1999 by BigShotWidgets</I><P>
</BODY>
</HTML>

Database Development

PART IV
1664

This will cause the table to be placed between these two sets of HTML code, thus causing a
complete page to be created when the Content property of TQueryTableProducer is called in
the following code.

Finally, go back to the main TWebModule of your application and add a single Action, setting
its PathInfo to /TestTable. In its OnAction event handler, add the following code:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := QueryTableProducer1.Content;

end;

Then compile the project and make sure that the resulting DLL is accessible by your Web
server. Now, if you call the URL http://<your server>/tableex.dll/TestTable, you will
see the table with the header and footer text as well as the positive amounts owed highlighted
in red, as shown in Figure 31.2.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1665

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

FIGURE 31.2
A table-based Web page.

Maintaining State with Cookies
The HTTP protocol is a powerful tool, but one of its weaknesses is that it is stateless. This
means that after an HTTP conversation has been completed, neither the client nor the server

has any memory at all that the conversation even took place, much less what it was about. This
can present a number of problems for applications that run across the Web, because the server
is not able to remember important items such as passwords, data, record positions, and so on
that have been sent to the client. Database applications are particularly affected as they often
rely on the client knowing which record is the current record back on the server.

The HTTP protocol provides a basic method for writing information on the client’s machine to
allow the server to get information about the client from previous HTTP exchanges. Called by
the curious name cookies, they allow the server to write state information into a file on the
client’s hard drive and to recall that information at a subsequent HTTP request. This greatly
increases a server’s capabilities with respect to dynamic Web pages.

Cookies are no more than text values in the form of CookieName=CookieValue. A cookie
should not include semicolons or commas. The user can refuse to accept cookies, so no appli-
cation should ever assume that a cookie will be present. Cookies are becoming more and more
prevalent as Web sites get more and more sophisticated. If you are a Netscape user, you might
be surprised by what you find in your COOKIES.TXT file. Internet Explorer users might peek
into the \WINDOWS\COOKIES folder. If you want to track cookies as they are set on your
machine, both of these browsers allow you to approve individual cookie settings within their
security preference settings.

Managing cookies in Delphi is, pardon the pun, a piece of cake. The THTTPRequest and
THTTPResponse classes encapsulate the handling of cookies quite cleanly, allowing you to eas-
ily control how cookie values are set on a client’s machine as well as to read what cookies
have been previously set.

The work of setting a cookie is all done in the TWebResponse.SetCookieField method. Here,
you can pass a TStrings descendant full of cookie values, along with the restrictions placed on
the cookies.

The SetCookieField method is declared as follows in the HTTPAPP unit:

procedure SetCookieField(Values: TStrings; const ADomain, APath: string;
➥AExpires: TDateTime; ASecure: Boolean);

The Values parameter is a TStrings descendant (you will probably use a TStringList) that
holds the actual string values of the cookies. You can pass multiple cookies in the Values para-
meter.

The ADomain parameter allows you to define in which domain the given cookies are relevant. If
no domain value is passed, the cookie will be passed to every server to which a client makes a
request. Normally, a Web application will set its own domain here so that only the pertinent
cookies are returned. The client will examine the existing cookie values and return those cook-
ies that match the given criteria.

Database Development

PART IV
1666

For example, if you pass widgets.com in the ADomain parameter, all future requests to a server
in the widgets.com domain will pass along the cookie value set with that domain value. The
cookie value will not be passed to other domains. If the client requests big.widgets.com or
small.widgets.com, the cookie will be passed. Only hosts within the domain can set cookie
values for that domain, thus avoiding all sorts of potential for mischief.

The APath parameter allows you to set a subset of URLs within the domain where the cookie
is valid. The APath parameter is a subset of the ADomain parameter. If the server domain
matches the ADomain parameter, the APath parameter is checked against the current path infor-
mation of the requested domain. If the APath parameter matches the pathname information in
the client request, the cookie is considered valid.

For example, following the preceding example, if APath contained the value /nuts, the cookie
would be valid for a request to widgets.com/nuts and any further paths, such as
widgets.com/nuts/andbolts.

The AExpires parameter determines how long a cookie should remain valid. You can pass any
TDateTime value in this parameter. Because the client could be anywhere in the world, this
value needs to be based on the GMT time zone. If you want a cookie to be valid for 10 days,
pass Now + 10 as a value.

If you want to delete a cookie, pass a date value that is in the past (that is, a negative value)
and that will invalidate the cookie. Note that a cookie may become invalid and not be passed,
but that does not necessarily mean that the cookie is actually removed from the client’s
machine.

The final parameter, ASecure, is a Boolean value that determines whether the cookie can be
passed over nonsecure channels. A True value means that the cookie can only be passed over
the HTTP-Secure protocol or a Secure Sockets Layer network. For normal use, this parameter
should be set to False.

Your Web server application receives cookies sent by the client in the TWebRequest.
CookieFields property. This parameter is a TStrings descendant that holds the values in an
indexed array. The strings are the complete cookie value in param=value form. They can be
accessed like any other TStrings value. The cookies are also passed as a single string in the
TWebRequest.Cookie property, but normally you would not want to manipulate them here. You
can assign the cookies directly to an existing TStrings object with the
TWebRequest.ExtractCookieFields method.

A simple example can illustrate the ease with which Delphi deals with cookies. First, create a
new Web Application and add the WebUtils unit to your uses clause. The WebUtils unit is
included on the CD-ROM accompanying this book. Then create a new Web server application

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1667

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

and give it two actions—one named SetCookie and the other GetCookie. Set the code in the
OnAction event for SetCookie to the following:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
List: TStringList;

begin
List := TStringList.Create;
try

List.Add(‘LastVisit=’ + FormatDateTime(‘mm/dd/yyyy hh:mm:ss’, Now));
Response.SetCookieField(List, ‘’, ‘’, Now + 10, False);
Response.Content := ‘Cookie set -- ‘ + Response.Cookies[0].Name;

finally
List.Free;

end;
Handled := True;

end;

The OnAction code for GetCookie should be as follows:

procedure TWebModule1.WebModule1WebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
Params: TParamsList;

begin
Params := TParamsList.Create;
try
Params.AddParameters(Request.CookieFields);
Response.Content := ‘You last set the cookie on ‘ + Params[‘LastVisit’];

finally
Params.Free;

end;
end;

Set up a Web page that calls the following two URLs:

http://<your server>/project1.dll/SetCookie
http://<your server>/project1.dll/GetCookie

Database Development

PART IV
1668

NOTE

The TParamsList class is part of the WebUtils unit included on the CD-ROM. It is a
class that automatically parses out parameters from a TStrings descendant and
allows you to index them by the parameter’s name. For instance, TWebResponse gath-
ers all the cookies passed in an HTTP response and places them in the CookieFields

Set the cookie by calling for the first URL from a Web page in the same directory as the DLL.
This will set a cookie on the client machine that lasts for 10 days and contains the date and
time that the request was made in a cookie called LastVisit. If you have your Web browser
set to accept cookies, it should ask you to confirm the writing of the cookie. Then call the
GetCookie action to read the cookie, and you should see the date and time that you last called
the SetCookie action.

Cookies can contain any information that can be stored in a string. Cookies can be as big as
4KB, and a client can store as many as 300 cookies. Any individual server or domain is limited
to 20 cookies. Cookies are powerful but, as you can see, you should try to limit their use. They
certainly cannot be used to store large amounts of data on a client’s machine.

Very often, you will want to store more information about a user than can be stored in a
cookie. Sometimes you will want to keep track of a user’s preferences, address, personal infor-
mation, or even items in a “grocery cart” that are to be purchased from your e-commerce site.
This information can easily become rather voluminous. Rather than try to store all this infor-
mation in the cookie itself, it is often better to encode user information into a cookie rather
than storing the information as is. For instance, in order to store a collection of user prefer-
ences that are really Boolean values, you might store them in binary format inside the cookie.
Therefore, a cookie value of ‘1001’ might mean that the user does want further email updates,
does not want his or her email address given to other users, does not want to be added to your
list server, and does want to join your online discussion groups. You can use characters or
numbers to further encode even more data about a user in a cookie.

You can also store a user identification value in a cookie that uniquely identifies a user. You
can then retrieve that value from the cookie and use it to look up the user’s data in a database.
That way, you would be able to minimize the amount of data stored on the user’s computer and
maximize your control over the information that you maintain about a user.

Cookies can provide a powerful and easy way to maintain data about your users between indi-
vidual HTTP sessions.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1669

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

property, which is a TStrings descendant. The cookies are in the form
CookieName=CookieValue. TParamsList takes these values, parses them, and indexes
them by the parameter name. Therefore, the preceding parameter could be accessed
with MyParams[‘CookieName’], which would return CookieValue. You can use this
class, or you can use the Values property found in the TStrings class included in
the VCL.

Redirecting to a Different Web Site
Often, a given URL may want to change the destination of a user’s request. A Web application
may want to process some data based on a request and then serve back a page that may vary
depending on the nature of the request or a database entry. Web advertising does this fre-
quently. Often an ad graphic will point to another URL within the domain where it appears, but
clicking it takes the user to the advertiser’s home page. Along the way, data is gathered about
the request and then the client is handed off to the advertiser’s page. Frequently, the HTML
code for the advertisement’s graphic will contain parameters that describe the ad to the server.
The server can log that information and then pass the client on to the proper page. This tech-
nique is called redirection, and it can be very useful for a number of tasks.

Delphi’s TWebResponse class includes a method called SendRedirect. It takes a single string as
a parameter that should contain the full address of the site to which the client should be redi-
rected. The method is declared as follows:

procedure SendRedirect(const URI: string); virtual; abstract;

SendRedirect is declared as an abstract method in HTTPAPP.PAS and defined in ISAPIAPP.PAS.

A Web server could easily process an HTTP request that includes parameters and then pass
that request to a site named by one of those parameters. For instance, if a cool GIF file is on a
page, and the whole graphic is wrapped up as a hyperlink, the URL assigned to it might look
something like this:

➥

Given that information, an OnAction event in a Web server application named /transfer
might resemble the following code fragment:

procedure TWebModule1.WebModule1WebActionItem3Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
{Process Request.QueryFields[1] perhaps placing it in a database.
It holds the name of the GIF file that caused the user to click on it.
You might want to track the GIFs that are the most effective.
Then you can keep track of how many hits a particular company is
getting from your site by tracking the company name that is getting
requested in the Request.QueryFields[2] parameter}
//Then, you can call this to send the user on his merry way...
Response.SendRedirect(Request.QueryFields[0]);

end;

Database Development

PART IV
1670

By using this technique, you can create a generic transfer application that processes every
advertisement on a site. Of course, there may be other reasons for calling SendRedirect than
just advertising. You can use SendRedirect whenever you want to keep track of specific URL
requests and any data that might be associated with a particular hyperlink. Simply gather the
data from the QueryFields property and then call SendRedirect as needed.

Retrieving Information from HTML Forms
HTML-based forms are growing in use with the growth of the Internet and intranets. It is not a
surprise that Delphi makes gathering information from forms easy. This chapter does not cover
the details of creating an HTML-based form and the controls that go with it, but rather it deals
with how Delphi handles the forms and their data.

On the CD-ROM in the back of this book is a straightforward guest book application that gath-
ers the input from an HTML form and makes entries into a database table. Opening the
INDEX.HTM file in your browser can access the application. The HTML form for the guest book,
GUEST.HTM, uses the following line to define the form and the action to take when the user
clicks the Submit button:

<form method=”post” action=”guestbk.dll/form”>

This code causes the form to “post” its data when asked to do so and to call the given DLL
OnAction event. The form allows the user to enter his or her name, email address, home town,
and comments. When the user clicks the Submit button, that information is gathered up and
passed to the Web application.

The action with the name /form then receives the data in the Request.ContentFields, in the
form of standard HTTP parameters. ContentFields is a TStrings descendant that holds the
contents of the submitted form. The application contains a TTable named GBTable that is refer-
enced by the GBDATA alias. You will need to create this alias and point it to the /GBDATA direc-
tory where the Paradox tables reside in order to run the guest book. Listing 31.4 shows the
code that receives the content of the form and enters it into the database.

LISTING 31.4 Code for Retrieving Content of a Form

var
MyPage: TStringList;
ParamsList: TParamsList;

begin
begin

ParamsList := TParamsList.Create;
try try
ParamsList.AddParameters(Request.ContentFields);

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1671

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

continues

LISTING 31.4 Continued

GBTable.Open;
GBTable.Append;
GBTable.FieldByName(‘Name’).Value := ParamsList[‘fullnameText’];
GBTable.FieldByName(‘EMail’).Value := ParamsList[‘emailText’];
GBTable.FieldByName(‘WhereFrom’).Value :=
➥ParamsList[‘wherefromText’];

GBTable.FieldByName(‘Comments’).Value := ParamsList[‘commentsTextArea’];
GBTable.FieldByName(‘FirstTime’).Value :=
➥(CompareStr(ParamsList[‘firstVisitCheck’], ‘on’) = 0);
GBTable.FieldByName(‘DateTime’).Value := Now;
GBTable.Post;

except
Response.Content := ‘An Error occurred in processing your data.’;
Handled := True;

end;
finally
ParamsList.Free;
GBTable.Close;

end;
end;

The code first inserts the ContentFields property into a TParamsList. It then opens the
GBTable and inserts the data from the form into the appropriate fields. The code in Listing 31.4
is relatively straightforward.

The next portion of the code, shown in Listing 31.5, creates an HTML response that thanks the
user for making an entry. It uses some of the data from the form to address the user by name,
and it also confirms the user’s email address.

LISTING 31.5 Code for Creating an HTML Response

MyPage := TStringList.Create;
ParamsList := TParamsList.Create;

try
with MyPage do
begin
Add(‘<HTML>’);
Add(‘<HEAD><TITLE>Guest Book Demo Page</TITLE></HEAD>’);
Add(‘<BODY>’);
Add(‘<H2>Delphi Guest Book Demo</H2><HR>’);
ParamsList.AddParameters(Request.ContentFields);
Add(‘<H3>Hello ’+ ParamsList[‘fullnameText’]

➥+’ from ‘+ParamsList[‘wherefromText’]+’!</H3><P>’);
Add(‘Thanks for visiting my homepage and making

Database Development

PART IV
1672

➥an entry into my Guestbook.<P>’);
Add(‘If we need to e-mail you, we will use this address -- ’

➥+ParamsList[‘emailText’]+’’);
Add(‘<HR></BODY>’);
Add(‘</HTML>’);

end;
PageProducer1.HtmlDoc := MyPage;
finally
MyPage.Free;
ParamsList.Free;

end;
Response.Content := PageProducer1.Content;
Handled := True;

Finally, the application provides a summary of all guest book entries in the /entries action.

Data Streaming
Most of the data you will be providing to clients by HTTP requests will probably be HTML-
based pages. However, there may be a time when you want to send other types of data in
response to a user’s request. Sometimes you might want to provide different graphics or sounds
based upon a user’s input. You may have a special data format that you want to send down the
pipe to a user that can be specially handled by the client’s browser. For instance, Netscape pro-
vides a plug-in architecture that allows developers to write extensions to the Navigator browser
to handle any type of data. RealAudio, Shockwave, and other types of data streaming are
examples of Netscape plug-ins that can extend the power of the client’s browser.

Whatever the type of data you want to transmit, Delphi makes it easy to stream data back to a
client. The TWebResponse.SendStream method along with the TWebResponse.ContentStream
property enable you to send any type of data back to the client by loading it into a Delphi
stream class. Of course, you will need to let the client’s browser know what type of data is
being sent, so you will need to set the TWebResponse.ContentType property as well. Setting
this string value to an appropriate MIME type will allow the browser to properly handle the
incoming data. For instance, if you want to stream a Windows WAV file, you would set the
ContentType property to ‘audio/wav’.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1673

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

NOTE

MIME stands for Multipurpose Internet Mail Extensions. MIME extensions were devel-
oped to allow clients and servers to pass data by email that was more complex than
the standard text passed in most emails. Browsers and the HTTP protocol have

continues

Using streams allows you to pass any type of data from virtually any source on your Web
server’s machine. You can pass data from files that reside on your server or anywhere on your
network, from Windows resources built into your ISAPI DLL or other DLLs available to your
ISAPI DLL, or you can even construct the data on the fly and send it to the client. There is
really no limit to how or what you can send, as long as your client’s browser knows what to do
with the data.

Now we will construct a simple Web application that illustrates what can be done. You will set
up a Web page that displays images from various sources. The application will process the
image data as needed and return it to the client as requested. This will be surprisingly easy,
because Delphi provides numerous different stream classes that make gathering data into a
stream very easy, and the ISAPI extension classes make sending that data a snap as well.

To build the data streaming example, select File, New from the main menu and choose Web
Server Application from the resulting dialog. This will give you a TWebModule. Go to the Web
module, select it, and then go to the Object Inspecto. Double-click the Actions property and
create three actions called /file, /bitmap, and /resource.

Select the /file action, go to the Object Inspector, and select the Events page. Create an
OnAction event and then add the following code to the event handler:

procedure TWebModule1.WebModule1WebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
FS: TFileStream;

begin
FS := TFileStream.Create(JPEGFilename, fmOpenRead);
try
Response.ContentType := ‘image/jpeg’;
Response.ContentStream := FS;
Response.SendResponse;
Handled := True;

finally
FS.Free;

end;
end;

Database Development

PART IV
1674

adapted MIME extensions to allow you to pass almost any sort of data from a Web
server to a Web browser. Your Web browser contains a rather large list of these
MIME types, and it associates a particular application or plug-in with each MIME type.
When the browser gets that type, it looks up which application should be used to
handle that particular MIME type and passes the data to it.

The preceding code is pretty straightforward. If you set up the code from the CD-ROM on
your computer as described earlier, there should be a JPEG file called TESTIMG.JPG in the \bin
directory. The OnAction event handler creates a TFileStream that loads that file. It then sets
the proper MIME type to tell the client browser that a JPEG file is coming, and it then assigns
the TFileStream to the Response.ContentStream property. The data is then returned to the
client by calling the Response.SendResponse method. As a result, in the accompanying HTML
file, there should be a picture of a rose on the provided HTML page.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1675

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

NOTE

In the HTML that displays this JPEG file in your browser, you can simply place the ref-
erence to the Web application’s Action property directly in the IMG tag, like so:

The streaming examples can be displayed by means of the INDEX.HTM page in the
\STREAMS directory

The application is able to find the JPEG file because when it was created, it set the
JPEGFilename variable as follows:

procedure TWebModule1.WebModule1Create(Sender: TObject);
var
Path: array[0..MAX_PATH - 1] of Char;
PathStr: string;

begin
SetString(PathStr, Path, GetModuleFileName(HInstance, Path, SizeOf(Path)));
JPEGFilename := ExtractFilePath(PathStr) + ‘TESTIMG.JPG’;

end;

The /bitmap action will load a different image, but in a totally different way. The code for this
action is a bit more complicated. It looks like this:

procedure TWebModule1.WebModule1WebActionItem3Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
BM: TBitmap;
JPEGImage: TJPEGImage;

begin
BM := TBitmap.Create;
JPEGImage := TJPEGImage.Create;
try
BM.Handle := LoadBitmap(hInstance, ‘ATHENA’);
JPEGImage.Assign(BM);
Response.ContentStream := TMemoryStream.Create;

JPEGImage.SaveToStream(Response.ContentStream);
Response.ContentStream.Position := 0;
Response.SendResponse;
Handled := True;

finally
BM.Free;
JPEGImage.Free;

end;
end;

It takes a bit more work to get a bitmap converted to a JPEG and streamed out to the client. A
TBitmap is used to grab the bitmap out of the resource file. A TJPEGImage from the JPEG unit is
created and will convert the bitmap to a JPEG file.

The TBitmap class is created and then the Windows API call LoadBitmap is used to grab the
bitmap from the resource named ‘ATHENA’. LoadBitmap returns the bitmap’s handle, which is
assigned to the Handle property. The bitmap itself then is assigned immediately to the
TJPEGImage. The Assign method is overloaded and contains the smarts to convert the bitmap
to a JPEG.

Next comes a nice example of polymorphism. Response.ContentStream is declared as a
TStream, an abstract class. Because of the power of polymorphism, you can create it as any
type of TStream descendant you like. In this case, it is created as a TMemoryStream and used to
hold the JPEG with the TJPEGImage.SaveToStream method. Now the JPEG is in a stream and
can be sent out. An important but easy-to-forget step is to return the position of the stream to
zero after saving the JPEG into it. If this is not done, the stream will be positioned at the end,
and no data will be streamed out to the client. After all that is completed, the
Response.SendResponse method is called to send out the data stored in the stream. The result
in this case is the bust of Athena from Delphi’s About box.

Another way to load a JPEG is by using a resource entry. You can load a JPEG into an RES
file using the following code in an RC file and then compiling it using BRCC32.EXE. If you load
it as RCDATA, you can use the TResourceStream class to easily load it and send it to the client
browser. TResourceStream is a very powerful class that will load a resource from either the
EXE file itself or a resource located in an external DLL file. The /resource action illustrates
how to do this by loading the JPEG from the resource named ‘JPEG’ that is compiled into
the EXE:

procedure TWebModule1.WebModule1WebActionItem4Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.ContentStream := TResourceStream.Create(hInstance,

➥’JPEG’, RT_RCDATA);
Response.ContentType := ‘image/jpeg’;

Database Development

PART IV
1676

Response.SendResponse;
Handled := True;

end;

This code sends the data to the client a little differently. It is much more straightforward and is
again a nice example of polymorphism in action. A TResourceStream is created and assigned
to the ContentStream property. Because the TResourceStream’s constructor loads the resource
into the stream, no further action needs to be taken on the stream, and a simple call to
Response.SendResponse sends the data down the stream.

The final example streams out a WAV file that is stored as an RCDATA resource. This example
uses the Response.SendStream method to send out a stream created within the method. This
illustrates yet another way of sending stream data. You can create a stream, manipulate and
modify it as needed, and send it directly back to the client with the SendStream method. This
action should cause your browser to play a WAV file of a dog barking. Here is the code:

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
RS: TResourceStream;

begin
RS := TResourceStream.Create(hInstance, ‘BARK’, RT_RCDATA);
try
Response.ContentType := ‘audio/wav’;
Response.SendStream(RS);
Handled := True;

finally
RS.Free;

end;
end;

Summary
This chapter shows you how to build Web server extensions using the ISAPI/NSAPI exten-
sions. This information is easily transferable to the CGI applications that Delphi produces. We
discussed the HTTP protocol and how Delphi encapsulates it in its TWebRequest and
TWebResponse classes. We showed you how to build applications using the TWebModule and its
OnAction events with dynamic HTML. We then illustrated custom HTML documents with the
TContentPageProducer descendants. We also discussed accessing data and building HTML
tables using the TQueryTableProducer. Then, we discussed how to handle cookies and the
content of HTML forms. Finally, we showed you how to stream custom content back to the
client. In the next chapter, “MIDAS Development,” we will get back to a database-centric way
of thinking as you learn about the MIDAS multitier technology.

Internet-Enabling Your Applications with WebBroker

CHAPTER 31
1677

31
IN

TER
N

ET-E
N

A
B

LIN
G

Y
O

U
R

A
PPLIC

A
TIO

N
S

W
ITH

W
EBB

R
O

K
ER

