
Building an eZ publish site

Created 23/12/2003
The eZ publish documentation is a community project and is available under the GNU Free

Documentation License. If you edit the documentation your contribution will be released under the
terms of this license.

Table of contents
Building an eZ publish site 1
Prerequisits 1
Installation 1
Case 3
Creating a new site 4
Testing the administration interface 6
Setting up the main layout 8
Creating a bare-bone main template 9
Creating and using a custom style sheet 11
Customizing the main layout 13
Creating sections 16
The welcome page 17
Adding the contents of the welcome page 17
Setting the default page 18
Creating and using a custom template 19
The news page 21
Adding news articles 23
Assigning the News folder to the News section 25
Overview of the latest news 25
Full display of an article 29
News archive 32
The members page 35
Creating a custom content class 36
Adding members 38
List of members 44
Member info page 46
The guestbook 48
Creating the content class 48
Adding content 49
Creating the template 50
Adding an action button 52
Making the button work 54
The input template 56
Testing the guestbook 59
Implementing an approval mechanism 61
Modifying the entry page 61
Creating a workflow 61
Connecting the workflow to a trigger function 62
Approving entries 62
The "runcronjob" script 63

The links page 63
Adding content 64
Creating the template 65
Displaying the sub-folders 67
Displaying the contents of a folder 68
Creating a tree-style appearence 69
Same content at different locations 71

Building an eZ publish site

This chapter is basically a step-by-step tutorial that explains how to build an eZ publish site from
scratch. The tutorial is written for eZ publish 3.2. It is targeted at people who have little or no
previous experience with eZ publish, but have some generic knowledge about web development.
The tutorial demonstrates how eZ publish can be used to build a dynamic community-website. It
is based on the "learning-by-example" technique that many people prefer when it
comes to understanding and learning new technologies.

Throughout this chapter, a lot of new topics will emerge. Because of the flexible and complex
nature of eZ publish, it is impossible to understand and learn everything at once. In other words,
the reader should pay some, but definitely not too much attention to details. Advanced and
complex functionality is explained in later chapters. For now, the reader should simply follow and
accept the examples and solutions that are presented in the tutorial.

Prerequisits

To follow this tutorial, the reader should:
have access to and know how to use a computer system
be able to install eZ publish
have read and understood the "eZ publish basics" chapter
be able to navigate and manage files on a filesystem
be able to edit text files using a text editor
have basic knowledge of HTML
have some knowledge of CSS

Installation

Before beginning, you need to have eZ publish installed on a computer system. It should be
installed using the "Normal installation" method with the following settings:
Primary language: English
Additional languages: none
Site template(s): plain
Site access configuration: URL

In other words, you need to download, unpack and configure eZ publish using the setup wizard.
Choose the English language as the primary language. Don't choose any additional languages,
we won't need any at this point. Make sure you install only the "Plain" site and that
you choose the default site access configuration. Don't tamper with the default title, URL, etc. You
will learn how to change these manually later on. Security issues will be discussed in a different

eZ publish - http://ez.no 1 of 72

http://ez.no/developer/ez_publish_3/documentation/ez_publish_basics
http://ez.no/developer/ez_publish_3/documentation/installation/normal_installation

chapter, we won't bother with those at this point. Make a note of the URLs that can be used to
reach the administration and user interface of the plain site that was configured. These URLs are
presented at the final step of the installation. For a detailed explanation of the installation steps,
please refer to "The setup wizard" section within the "Installation" chapter.

Assuming that a plain site was installed correctly, you should be able to access the site's user
and administration interface. The URLs used to access the interfaces should look something like
this:

http://www.example.com/path/index.php/plain

and

http://www.example.com/path/index.php/plain_admin

The first URL will take you to the default public/user interface of the "Plain" site that
was installed. It should look something like this:

The second URL will take you to the login section of the site's administration interface, which
should look something like this:

eZ publish - http://ez.no 2 of 72

http://ez.no/developer/ez_publish_3/documentation/installation/the_setup_wizard
http://ez.no/developer/ez_publish_3/documentation/installation/

Case

Lets assume that you're approached by members of a local chess club called "The
Scandinavian Check Mates", TSCM for short. This is basically a small community that
consists of approximately 40 chess fanatics. The club has had a homepage for several years
now, which was made by a former TSCM member. Unfortunately, this member has moved to the
other side of the planet and has no intention of maintaining the TSCM webpages. Because of the
increasing popularity of the internet and the club itself, the members have decided that something
should be done with the site, which currently looks a bit "outdated".

The club members have no experience with web development. However, they all know how to
use a computer. Lately, they've been surfing around the internet, and have come up with a
temporary/preliminary list of requirements for a new club-site:
It should look slick & fancy, but not too bloated.
There should be a page with news bulletins.
A list of members must also be included.
It would be nice to have a guestbook of some sort.
It should be easy to maintain/update and extend the site.

What we have here is a typical situation where an organization needs a new website. The club
members have been inspired by looking at various sites on the internet and have a fairly good
idea of what they want. However, keep in mind that this is only a preliminary list of requirements.
An experienced developer should already have a gut feeling, telling that the club certainly will
come up with new requests along the way. In other words, we should be flexible throughout the
entire development process. Fortunately, flexibility and dynamic behavior are some of the key
features of eZ publish. Within a couple of hours, we shall deliver a powerful, dynamic, modern

eZ publish - http://ez.no 3 of 72

and expandable web solution that could be easily changed to suit any kind of small/mid-sized
community.

Creating a new site

We'll create a new site by reusing some of the elements and default files that were generated
when the "Plain" site was installed. This is achieved simply by renaming and changing
the contents of the "Plain" site's configuration files.

1. Renaming the siteaccess directories
As already mentioned, the plain site has two interfaces, a user interface and an administration
interface. Inside eZ publish, these are called "plain" and "plain_admin".
The "settings/siteaccess/" directory contains subdirectories for sites/interfaces that eZ
publish may be configured to run. Navigate into the directory and rename "plain" to
"tscm" and "plain_admin" to "tscm_admin".

Make sure that the user running the web server has write access to the
"settings/siteaccess/tscm" directory and the files that reside inside it.

2. Modifying the siteaccess files
eZ publish comes with a lot of configuration files, all residing in the "settings" directory.
The ".ini" files are the original/default eZ publish configuration files. These should
never be changed. Instead, you should always use the override system, which is basically a set of
files containing settings that will override the default configuration. In addition to the global
override configuration files, each site can have its own set of override files. eZ publish reads the
configuration files in the following order:

Default configuration files
(/settings/*)

Site specific override files
(/settings/siteaccess/[sitename]/*

Global override files
(/settings/override/*)

Configuration settings in (1) will be overridden by settings in (2), which again will be overridden by
settings in (3). Some of the override files end with an ".append" and some end with
the ".append.php" extension. The latter is because of security issues related to sites
running in non virtual host mode.

Edit the "settings/siteaccess/tscm/site.ini.append" file.

Modify the "SiteName=Plain" setting by replacing "Plain" with "The
Scandinavian Check Mates".

Modify the "SiteDesign=plain" setting to "SiteDesign=tscm". This tells the
system to use the "tscm" design when the user/public interface of the TSCM site is
accessed.

eZ publish - http://ez.no 4 of 72

Modify the "VarDir" setting to equal "tscm". This tells the system to use the
"var/tscm" directory instead of "var/plain".

Add the following lines at the end of the file:

[TemplateSettings]
TemplateCache=disabled
Debug=disabled

[ContentSettings]
ViewCaching=disabled

[DebugSettings]
DebugOutput=enabled

When building a site, it is always a good idea to turn off the cache engines and enable debug
output. When the "DebugOutput" is set to "Enabled", eZ publish will print a
lot of debug related information right below the actual page that it has rendered. Use this
information to solve problems. Debug output may be turned off at any time by setting
"DebugOutput=" to "disabled". The screenshots within this tutorial will not
contain any debug output.

Edit the "settings/siteaccess/tscm_admin/site.ini.append" file.

Modify the "SiteName=Plain" setting by replacing "Plain" with "The
Scandinavian Check Mates".

The "SiteDesign" setting in this file tells the system to use the default admin interface,
which is exactly what we want.

Modify the "VarDir" setting to equal "tscm". This tells the system to use the
"var/tscm" directory instead of "var/plain".

3. Modifying "settings/override/site.ini.append.php"
Edit the "settings/override/site.ini.append.php" file and replace the occurrences of
"plain" and "plain_admin" with "tscm" and
"tscm_admin". You'll probably have to do this six times.

4. Removing the plain var directory
Under "var/", each site has a directory that is used for storage of site specific content
files (usually images and binary files), logs and cache files. If the "var/plain" directory
exists, delete it.

We've already told eZ publish to use the "var/tscm" directory when the TSCM site is
accessed. The directory will be automatically created by eZ publish.

5. Creating a design directory
In the root directory of eZ publish, there is a subdirectory called "design". This
directory contains all the design related files that may be used by various sites. Navigate into the
design directory and create a subdirectory called "tscm". We will not (re)use any of the
files that reside in the "plain" directory; feel free to remove it.

Under the "design/tscm" directory, create the following subdirectories:

eZ publish - http://ez.no 5 of 72

fonts (for fonts, used when rendering bitmaps of text)

images (non-content specific images; banners, logos, etc.)

override (for custom overrides)

stylesheets (for CSS files)

templates (for site-specific templates)

In addition, create a subdirectory called "templates" inside the "override"
directory. Make sure that the user running the web server has write access to the this directory.

6. Testing
You should now be able to reach the site by replacing the "plain" and
"plain_admin" part of the URL with "tscm" and "tscm_admin".
Don't worry about the way we're accessing the site at this point (the [...]/index.php/tscm URL is
ugly and temporary), we'll discuss how to change the access method later on.

When browsing "tcsm", the site pops up without problems. But wait! How is this
possible? - you might ask; thinking that the design directory we just created is completely empty -
and we've told the system to look for design in that directory. The explanation is that if eZ publish
is unable to find something, it always falls back to the standard/default settings, designs, etc.
What you're looking at, is the output from one of the standard templates.

Testing the administration interface

Type in the URL that points to the administration interface of the TSCM site. You should see a
page that looks like this:

eZ publish - http://ez.no 6 of 72

Log into the administration interface with the default eZ publish administrator username/password
combination:

username: admin
password: publish

After a successful login, your browser should display a page that looks something like this:

eZ publish - http://ez.no 7 of 72

This is the standard administration page. What you're looking at is the root folder of the TSCM
site. Since we haven't created any content yet, the root folder is completely emtpy.

The administration interface will not be discussed in detail. However, throughout this tutorial you'll
learn how to use some its most important features. The point of this exercise was to bring up the
interface and log in. To minimize hassle, simply stay logged in (you'll need to use the
administration interface frequently). For a comprehensive walkthrough of the interface itself,
please refer to "The Administration Interface" chapter (unfortunately, this chapter hasn't been
published yet, it will be in the near future).

Clearing the caches
It is a good idea to clear the caches at this point. Just to make sure and to avoid unwanted
surprises. The following text explains how to do this:

Make sure you're logged into the administration interface.
Click the "Setup" tab.
Click on "Cache" (from within the menu on the left hand side).
Click "All Caches".

IMPORTANT!
You need to do this every time you create and make use of a new template (or else, you'll not be
able to see the changes that you've made). The next release of eZ publish (3.3) will have a
configuration setting for disabling the template override cache. When using 3.2, you'll have to
clear the cache manually.

eZ publish - http://ez.no 8 of 72

__FIX_ME__

Setting up the main layout

Lets keep things at a simple level. We'll put up a nice banner and a static menu on the top of the
page, reserve some space for dynamic content in the middle, and include a small footer at the
bottom. The following raw sketch illustrates how we wish to structure the layout of the site:

In other words, the TSCM site will consist of 5 parts:
Welcome page
News section
Member list
Guestbook
Links

Creating a bare-bone main template

eZ publish uses templates as the fundamental unit of site design. A template is basically an
extended HTML file that describes how some particular type of content should be visualized. The
system will automatically look for a file called "pagelayout.tpl", which is the main
template file. If it isn't found, eZ publish will fallback to the default/standard
"pagelayout.tpl" file (which resides under design/standard/templates/...).

Lets put some content into our own "pagelayout.tpl" file. At the minimum, it should
contain the following lines:

{*?template charset=latin1?*}

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

eZ publish - http://ez.no 9 of 72

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>
 <link rel="stylesheet" type="text/css"
href={"stylesheets/core.css"|ezdesign} />
 <link rel="stylesheet" type="text/css"
href={"stylesheets/debug.css"|ezdesign} />

 {* Inlcude the standard "page_head.tpl" file. *}
 {include uri="design:page_head.tpl"}
 </head>

 <body>
 Hello world!
 </body>

</html>

Clearly, this is simply a standard XHTML file with some additional eZ publish code. All eZ publish
specific template code is inside the "{" and "}" brackets.

Copy & paste the lines from above into a text editor and save the file as
"design/tscm/templates/pagelayout.tpl". Try to surf the site ([...]/index.php/tscm). The
browser should present you with a page containing the "Hello world!" string.

(IMPORTANT: Remember to clear the cache from within the administration page, or else, you will
probably not see any changes!).

Take a look at the document source (usually right click on the page and choose "View
Document Source") to view the output that eZ publish has generated so far. If everything
works properly, you should be able to see a bunch of meta and link-rel tags.

The following text contains a comprehensive explanation of the eZ publish specific code that
we've put into our custom main template file. Feel free to skip to the next section (the following
text is all about detail).

Template charset revelation

{*?template charset=latin1?*}

Reveals the charset of the template file to the template engine. If not specified, the engine will
fallback to the default template charset, which is specified in the "site.ini" configuration
file. It is possible to use special characters, for example UTF8 characters in a template. However,
to be able to use the templates with an arbitrary charset, they should be written in plain ASCII.

Special inclusion of style sheets

{"stylesheets/core.css"|ezdesign}
{"stylesheets/debug.css"|ezdesign}

What happens here is that the text strings within the quotes are being piped into an operator
called "ezdesign". This operator prepends the current site-design directory to the
inputted text. The result is a valid file location. The first line will return
"/design/tscm/stylesheets/core.css", the second line returns
"/design/tscm/stylesheets/debug.css". If the file doesn't exist, the operator will simply

eZ publish - http://ez.no 10 of 72

fallback to the standard design (/design/standard/stylesheets/...). Instead of specifying a
hardcoded location, we use the "ezdesign" operator. This will allow us to change the
design of the site in an easy way without having to modify the template file itself. The
"core.css" file is used by some of the standard templates; the "debug.css"
file is used to format the debug output.

Including the standard "page_head.tpl" file

{* Include the "page_head.tpl" file. *}
{include uri="design:page_head.tpl"}

The first line is simply a template comment (comments are placed inside "{*" and
"*}"). The second line tells the template engine to include the
"page_head.tpl" file. The contents of the included file will be inserted at the exact
position where the include function is called. Since we haven't got our custom
"page_head.tpl", the system will use the standard "page_head.tpl" file
(which is located here: "design/standard/templates/page_head.tpl"). This is an
important template file that takes care of setting some eZ publish specific variables, sets the
HTML page title, generates meta information and so on. It should always be included.

Creating and using a custom style sheet

So far we have only set up some basic things without generating any remarkable visual output.
Lets add some custom CSS code and tell the main template to use it. The following parts of the
tutorial will heavily depend on the CSS code presented in this section, so make sure you do this
part right.

The CSS code will tell the browser to use a custom background image, called
"background.png". This image file is available from the following link: background.png.
Grab and save the image as "design/tscm/images/background.png".

Creating a custom CSS file
Copy & paste the following lines (from the box below this text) and save the file as
"design/tscm/stylesheets/tscm.css".

body
{
 background-color: #ffffff;
 background-image: URL("/design/tscm/images/background.png");
 background-repeat: repeat;
}

p
{
 font-size: 80%;
}

td

eZ publish - http://ez.no 11 of 72

http://ez.no/content/download/40444/103304/file/background.png

{
 font-size: 100%;
}

hr
{
 height: 0px;
}

a
{
 color: #444444;
}

a:visited
{
 color: #666666;
}

a:hover
{
 color: #aaaaaa;
}

.main
{
 width: 732px;
 margin-left: auto;
 margin-right: auto;
}

.border
{
 color: #ffffff;
 background-color: #333333;
}

.menu
{
 width: 80%;
 background-color: #474747;
 margin-left: auto;
 margin-right: auto;
 text-align: center;
 font-size: 80%;
 padding: 2px;
}

.menu a
{
 color: #cccccc;
}

.menu a:visited
{
 color: #bbbbbb;
}

.menu a:hover
{
 color: #eeeeee;
}

eZ publish - http://ez.no 12 of 72

.content
{
 padding: 32px;
 text-align: left;
}

.footer
{
 color: #bbbbbb;
 background-color: #333333;
 padding: 4px;
 text-align: center;
 font-size: 70%;
}

.footer a
{
 color: #eeeeee;
}

.footer a:visited
{
 color: #eeeeee;
}

.footer a:hover
{
 color: #ef8e00;
}

.pagetitle
{
 font-size: 170%;
 padding-bottom: 8px;
}

Using the custom CSS file
Edit the main template file ("design/tscm/templates/pagelayout.tpl"). In the head
section, add the following code after the already existing stylesheet-related lines:

<link rel="stylesheet" type="text/css"
href={"stylesheets/tscm.css"|ezdesign} />

This line will tell eZ publish to make use of the custom CSS file that we just created.

Testing
Reload/refresh the TSCM page in the browser. You should be able to see that the background
has changed from plain white to grayish vertical stripes.

Customizing the main layout

eZ publish - http://ez.no 13 of 72

It is time to create the main layout for the site. We'll set up a simple layout using a table. The table
will be split up into the following sections:

The following list contains links to the banner and the layout-images that will be used to create the
main appearence of the site.
Banner image: banner.png
Upper left section of chess piece: piece_upper_left.png
Upper right section of chess piece: piece_upper_right.png
Lower left section of chess piece: piece_lower_left.png
Lower right section of chess piece: piece_lower_right.png

Grab and save these images inside the "design/tscm/images/" directory.

Setting up the main layout
Edit the main template file ("design/tscm/templates/pagelayout.tpl"). Copy &
paste the lines from the box below into the "body" section within the template file itself
(simply replace the "Hello world!" string with the following code).

<!-- Main table -->
<table cellspacing="0" cellpadding="0" class="main">

 <!-- Chess piece + banner + chess piece -->
 <tr>
 <td></td>
 <td><img src={"banner.png"|ezimage}
/></td>
 <td></td>
 </tr>

 <!-- Chess piece + main menu + chess piece -->
 <tr>

 <!-- Left chess piece -->
 <td></td>

 <!-- Main menu -->
 <td class="border">

 <!-- Main menu table -->
 <table cellspacing="0" cellpadding="0" class="menu">
 <tr>

eZ publish - http://ez.no 14 of 72

http://ez.no/content/download/40445/103307/file/banner.png
http://ez.no/content/download/40448/103316/file/piece_upper_left.png
http://ez.no/content/download/40449/103319/file/piece_upper_right.png
http://ez.no/content/download/40446/103310/file/piece_lower_left.png
http://ez.no/content/download/40447/103313/file/piece_lower_right.png

 <td>News</td>
 <td>Members</td>
 <td>Guestbook</td>
 <td>Links</td>
 </tr>

 <!-- End of main menu table -->
 </table>

 </td>

 <!-- Right chess piece -->
 <td></td>

 </tr>

 <!-- Left border + dynamic content + right border -->
 <tr>
 <td class="border"></td>
 <td class="content">{$module_result.content}</td>
 <td class="border"></td>
 </tr>

 <!-- Footer -->
 <tr>
 <td colspan="3" class="footer">
	 {include uri="design:footer.tpl"}
 </td>
 </tr>

<!-- End of main table -->
</table>

The footer
Notice that the main template includes a file called "footer.tpl". In other words, the
actual content of the footer will be put into this file instead of the main template file. This is simply
done in order to demonstrate and practice the split-up and inclusion of template files. Create an
empty text file and copy the following line into it (everything on one line):

Copyright © 2003 - The Scandinavian Check Mates -
Powered by eZ publish ™

Save the file as "design/tscm/templates/footer.tpl".

Testing
Reload/refresh the TSCM page again. (IMPORTANT: Remember to clear the cache from within
the administration page, or else, you will probably not see any changes!). You should see
something that resembles the following screenshot:

eZ publish - http://ez.no 15 of 72

Creating sections

In order to be able to separate and manage various parts of the site, we have to use something
called sections. Sections are used to segment the site in a logical way. They are very handy when
it comes to the creation of custom templates (override of standard templates in different ways)
and access control. For more information about sections, please read the Sections section within
the "eZ publish basics" chapter.

The TSCM site can be divided into four dynamic sections:
News
Members
Guestbook
Links

This separation will make our work a lot simpler when it comes to creating custom templates that
will override the standard templates. The following list of steps explains how to create the
sections:

Make sure you're logged into the administration interface.
Select/click the "Setup" tab.
Click on "Sections" (from the menu on the left hand side).
 The interface will display a list of the current sections.

Click "New".
In the name field, type in "News section".
Set the "Navigation Part" dropdown box to "Content".

eZ publish - http://ez.no 16 of 72

http://www.ez.no/developer/ez_publish_3/documentation/ez_publish_basics/content_management_in_ez_publish/sections
http://www.ez.no/developer/ez_publish_3/documentation/ez_publish_basics

Click "Store".

Repeat steps 5 through 7 for the remaining sections using the following section names:

"Member section"
"Guestbook section"
"Link section"

That's it.

The welcome page

This section explains how to

make use of the CMS to store a welcome page
configure eZ publish to show the welcome page by default
set up a custom layout/design for the welcome page

Adding the contents of the welcome page

eZ publish comes with a handful of ready-to-use content classes. Instead of hardcoding the
contents of the welcome page into a template file, we will use one of these classes for storing it.
The article class is more or less suitable for this purpose.
Make sure you're logged into the administration interface.
From the dropdown box in the middle of the screen, select "Article".
Click the "Create here" button.
The edit article page will appear.

Put some text into the title, intro and the body fields.
Feel free to use the example text presented here:
Title:
Welcome to the TSCM website!
Intro:
The Scandinavian Check Mates (TSCM) is a popular chess club located in Skien, the sub-capitol
of Norway. The check mates have been supporting chess-activities in Skien continuously since
the founding of TSCM in 1921.
Body:
We are a non-profit organization, incorporated with the state of Norway in 1963, that is dedicated
to the advancement of the game. As the recognized state affiliate of our national organization, the
Norwegian Chess Federation, we are responsible for sponsoring and conducting all local
championship tournaments for both youths and adults. Our extensive scholastic program includes
holding the state team championship event for primary, elementary, middle school, and high
school teams. At present, we have nine championship tournaments available for adults, with all
but the Senior Championship and Women's Championship open to everyone. We frequently lend
assistance and give publicity to local organizers who run chess tournaments and promote chess

eZ publish - http://ez.no 17 of 72

events.

Upload a thumbnail image by clicking the "Browse" button.
Feel free to use the following image file: chess_kings.png.

Click the "Send for publishing" button. We're done.
The system will bring you back to the root folder.

Setting the default page

The default configuration (for the TSCM site) instructs eZ publish to display the contents of the
root node. However, this is not what we want. The default display should be the contents of the
welcome article that we just created. In order to do this, we must:
Find the identification number of the node that points to the content object which contains the
actual welcome article.
Make a site-specific configuration change that will instruct eZ publish to display the desired node
instead of the root node.

Finding the ID of the node we want to display
In the administration interface, hover the mouse pointer over the article that you just created
(titled "Welcome to the TSCM website!"). Look in the status bar of the browser, it
should read something like:
"http://[...]/tscm_admin/content/view/full/44". The end of the URL specifies the actual
ID of the node. Your system may display a different number than 44. Make a note of the node's
identification number.

Changing the default node
Bring up the "settings/siteaccess/tscm/site.ini.append" file in an editor. Modify the
"IndexPage" setting so that it points to the desired node ID. If the desired node ID is
44, then the line should read "IndexPage=/content/view/full/44".

Testing
If you browse the site now, you'll see something like this:

eZ publish - http://ez.no 18 of 72

http://ez.no/content/download/40458/103342/file/chess_kings.png

eZ publish will display the desired node using the standard template for the "Article"
content class. The following section describes how to create and use a custom template.

Bug-note
If the image is missing: try to edit the article (by clicking on it from within the administration
interface) and upload the thumbnail image again. You may have to do this two or three times. The
image will eventually appear after a couple of uploads. This happens only the first time you
upload an image. This is an annoying bug in eZ publish 3.2 (will be fixed in the 3.3 release).

Creating and using a custom template

Since we're unsatisfied with the way our welcome page is displayed, we'll create a custom
template for it. This is easily solved by instructing eZ publish to use a desired template each time
a specific node is accessed. The following guide should take you through the necessary steps.
Bring up the administration interface.

eZ publish - http://ez.no 19 of 72

Click on the "Setup" tab.
Click on "Templates" (in the menu on the left hand side).
A list of template files will appear.

Locate a file called "/node/view/full" and click on it.
On the next page, simply click "Create New".
Type in "full_view_welcome" into the template name field.
Make sure the "Section" and "Class" dropdown boxes are set to
"Any".
Type in the identification number of the welcome-page node.
Make sure that "Empty" is chosen in the "Base template on" section.
Click create.

eZ publish will then generate a custom template that will be used instead of the standard template
every time the specified node is accessed. The newly generated template file will be put in the
"design/tscm/override/templates/" directory. Edit the newly generated file. You can
either use the administration interface for this (by clicking on the edit icon for the desired template
file) or your favourite text editor. Put the following lines into the file:

<div class="pagetitle">
 {attribute_view_gui attribute=$node.object.data_map.title}
</div>
<div class="imageright">
 {attribute_view_gui attribute=$node.object.data_map.thumbnail}
</div>
{attribute_view_gui attribute=$node.object.data_map.intro}
{attribute_view_gui attribute=$node.object.data_map.body}

This template code will simply extract the contents of the welcome object and display it in a nice
way. Clear the caches and try to browse the TSCM site again. By now, it should look something
like this:

eZ publish - http://ez.no 20 of 72

The news page

The news page will be the first "real" dynamic page that we create. Actually it will
consist of not one, but three dynamic pages:
Overview of the seven latest news articles
Full display of a specific article
News archive (list of all news articles)

The following sketch illustrates this:

eZ publish - http://ez.no 21 of 72

As you can see from the illustration, the news overview will be accessible from within the main
menu of the site. The full display of an article will be shown when the user clicks the title, the
thumbnail image or the "Read more" part of a specific article (also by clicking on an
article title from within the archive).

The archive will be accessible from the bottom of the news overview. It will simply present a list of
all the articles that have been published. The articles in the overview and the archive list will be
sorted by their publishing date (recent articles will appear at the top of the list).

Adding more CSS
In order to format the news-related pages in a nice way, we need to add a bit more CSS. Simply
copy and append the following CSS code to the contents of the "tscm.css" file.

.latest_news
{
 width: 75%;
 margin-left: auto;
 margin-right: auto;
}

eZ publish - http://ez.no 22 of 72

.headline_link a
{
 color: #000000;
 font-family: Times New Roman, Times;
 font-size: 140%;
}

.headline_link a:visited
{
 color: #000000;
 font-family: Times New Roman, Times;
 font-size: 140%;
}

.headline_link a:hover
{
 color: #888888;
 font-family: Times New Roman, Times;
 font-size: 140%;
 text-decoration: none;
}

.headline
{
 color: #000000;
 font-size: 200%;
 font-family: Times New Roman, Times;
 padding-bottom: 24px;
}

.news_archive
{
 width: 85%;
 font-size: 80%;
 margin-left: auto;
 margin-right: auto;
}

.center
{
 font-size: 80%;
 text-align: center;
}

Adding news articles

One way to start is by creating and structuring the actual news-content. The administration
interface of eZ publish makes this an easy match. For the news section, we'll use two of the built-
in content classes, Folder and Article. We'll create a folder dedicated for news. Later on, all news
articles will be placed inside this folder. The following list of steps explains how to create the
folder.
Bring up the administration interface.
Make sure you're in the root folder.
(If not: click the "Content" tab).

eZ publish - http://ez.no 23 of 72

From the dropdown box approximately in the middle of the screen, select "Folder".
Click the "Create here" button.
Fill out the name and the description fields.
Name:
News
Description:
This folder contains all the news articles.

Click "Send for publishing".
The system will bring you back to the root folder.

What we've done so far is that we've created a folder. A folder is simply a named container into
which we put things that belong there. Obviously, we'll put all our news articles into the newly
created folder. Having a folder without content is kinda silly, so lets create a couple of news
articles. The following list of steps explains how to create an article within the newly created News
folder.
Bring up the administration interface.
Make sure you're in the root folder.
(If not: click the "Content" tab).

Click on the name of the folder that we just created.
The system will take you to it (and show the empty contents of the folder).

From the dropdown box, select "Article"
Click the "Create here" button.
The system will bring up the "Edit Article" page.

Fill in the Name, Intro and Body fields. For example, you could add the following content:
Title:
Batman beats Joker at local tournament
Intro:
Batman was playing against the evil Joker. The game ended in a non-violent way. However,
rumor has it that NCF is considering sanctions against both players in this game for crimes
against chess.
Body:
After beating his main competition in round 2, The Joker seemed to have things wrapped up.
Indeed, Batman quickly won two pawns in his round 3 game against The Joker (1412). Then
Batman seemed to enter a twilight zone of the mind in which he forgot how to play chess. After a
series of incredible blunders Batman escaped from a lost middlegame into a totally lost endgame,
down a piece and several pawns in a simple position where the pawns could not be stopped.
Then the Joker, 'dizzy from success' as the Russians say, allowed Batman to trap his bishop and
force a repetition of the position; but the fat lady hadn't sung yet. Batman, dissatisfied with
swindling a draw in a game which most players would long since have resigned, wanted more. So
he declined to force the repetition, and promptly walked into a one-move knight fork of his own
king and rook. Rumor has it that NCF is considering sanctions against both players in this game
for crimes against chess.

Add a thumbnail image.
Feel free to use this image: article_image_01.png

Click the "Send for publishing" button.
The system will bring you back to the "News" folder.
You should be able to see the title of article that you've just created.

Having only one news article is boring, so lets create another one.
Simply repeat the first steps of the previous step-by-step list (create a news article in the news
folder).

eZ publish - http://ez.no 24 of 72

http://ez.no/content/download/40593/103683/file/article_image_01.png

Feel free to use the following content:
Title:
New TSCM site
Intro:
The board of TSCM has decided that it is time to change the original web page, which hasn't
been changed since 1998. The new site will be powered by a system called eZ publish and will
hopefully be a bit more flexible than the static page that we've had before.
Body:
Since John is gone, and because of the increasing popularity of the internet and our club, TSCM
has decided to hire a freelance developer called Jane Doe to build a new TSCM site. The site will
be running on the top of a sophisticated system called "eZ publish" (created by a
handful of crazy people at http://www.ez.no) and will hopefully become the part of our new
image.The Scandinavian Check Mates would like to thank John Doe (the previous webmaster) for
his efforts. Rumors say that John moved to Brazil a couple of months ago. He will be offline for
some years while researching the capitalist's primitive slaughter of the rain forests.

Add a thumbnail image.
Feel free to use this image: article_image_02.png

Click the "Send for publishing" button.
The system will bring you back to the News folder.
You should be able to see the title of the articles that were added.

Assigning the News folder to the News
section

The "News" folder is currently assigned to the default eZ publish section, which is
section one. However, we wish to gain a bit more control over the content that is inside this folder.
This means that we'll have to assign the folder (and its contents) to a custom section. We've
already created a couple of custom sections. The following text explains how to to assign the
"News" folder (and its contents) to the "News section".
Bring up the administration interface.
Click on the "Setup" tab.
Click on "Sections" (from within the menu on the left hand side).
Locate the line that says "News section".
Click on the small "binder" icon (assign) which is within the "News section"
line.
The "Choose section assignment" page will appear.

Set the radio button to the "News" folder.
Click the "Select" button.

eZ publish will then assign the "News" folder and all the articles in it (also future
articles that are placed there) to the "News section".

eZ publish - http://ez.no 25 of 72

http://ez.no/content/download/40594/103686/file/article_image_02.png

Overview of the latest news

The main menu (just below the site-banner) contains a link called "News". When this
link is accessed, eZ publish should display the seven latest news articles. We'll achieve this
functionality by creating a custom version of the "Folder" content class' full-view
template. The full-view template will list the children of the node that is being accessed. Each
child will be shown using a custom line-view template.

Fixing the menu
First, we have to make sure that the link in the menu works. The following piece of code takes
care of this:

News

Insert this code into the "pagelayout.tpl" file (replace the previous News-link). Note
that we're not telling eZ publish the ID of the node that contains the "News" folder.
We're using the URL alias of the "News" folder, which is "news". The URL
alias is piped into the "ezurl" operator. The operator takes care of setting the correct
path based on the siteaccess settings.

Browse the TSCM site. Click on the "News" link. eZ publish will then display the
contents of the "News" folder using the standard full-view folder template. A standard
line-view template will be used to display each child of the folder. The browser should display
something that resembles the following screenshot:

Creating custom templates
The following text explains how to generate a custom full-view-template for the

eZ publish - http://ez.no 26 of 72

"Folder" content class within the "News" section.

Bring up the administration interface.
Click on the "Setup" tab.
Click on "Templates" (in the menu on the left hand side).
A list of template files will appear.

Locate "/node/view/full.tpl" and click on it.
On the next page, simply click "Create New".
Type in "full_view_news_folder" into the "Name" field.
Set the "Class" dropdown box to "Folder".
Set the "Selection" dropdown box to "News section".
Do not enter anything into the node field (leave it blank).
In the "Base template on" section, select "Empty file".
Click "Create".

This will generate an empty file
("design/tscm/override/templates/full_view_news_folder.tpl") and instruct eZ publish to
use it every time a folder in the "News section" is viewed. Put the following lines into
the file:

<h1>Latest news</h1>

{* Grab some of the content of the node that is being viewed. *}
{let children=fetch(content, list, hash(parent_node_id, $node.node_id,
 sort_by, $node.sort_array,
 limit, 7,
 class_filter_type, include,
 class_filter_array, array(
'article')))}

{* LOOP: For each child of the node... *}
{section name=Child loop=$children}

 {* Display the content of the child using a line-view template. *}
 {node_view_gui view=line content_node=$Child:item}

 <hr>

{* End of loop. *}
{/section}

{* End of namespace. *}
{/let}

This piece of template code does the following:
Displays the name of the node that is being viewed.
Grabs the seven most recent articles from the node that is being viewed.
Displays the grabbed articles using a line-view template.

Try to access the "News" page again (either by refreshing the page or by clicking on
the "News" link on the main menu). You should be presented with something like this:

eZ publish - http://ez.no 27 of 72

The newly generated full-view template will automatically make use of the standard line-view
template. The following text explains how to create a custom template for the line-view of the
"Article" class within the "News section".
Bring up the admininstration interface.
Click on the "Setup" tab.
Click on "Templates" (in the menu on the left hand side).
 A list of template files will appear.

Locate "/node/view/line.tpl" and click on it.
On the next page, simply click "Create New".
Type in "line_view_news_article" into the "Name" field.
Set the "Class" dropdown box to "Article".
Set the "Selection" dropdown box to "News section".
Do not enter anything into the node field (leave it blank).
In the "Base template on" section, select "Emtpy file".
Click "Create".

This will generate the "design/tscm/override/templates/line_view_news_article.tpl"
template file. eZ publish will use this template every time it is instructed to display a list-view of
article objects within the "News section". Put the following lines into the file:

<table class="latest_news">
 <tr>
 <td colspan="2">
 <div class="headline_link">

 {attribute_view_gui
attribute=$node.object.data_map.title}

 </div>

eZ publish - http://ez.no 28 of 72

 </td>
 </tr>
 <tr>
 <td>
 {attribute_view_gui attribute=$node.object.data_map.intro}
 </td>
 <td valign="top">

 {attribute_view_gui
attribute=$node.object.data_map.thumbnail image_class="small"}

 </td>
 </tr>
</table>

This code snippet takes care of getting and displaying some the contents of a news article. For
each article, the headline, the intro and the article's thumbnail image is displayed. Browse the
"News" page again. You should be looking at a page that resembles the following
screenshot:

Full display of an article

eZ publish - http://ez.no 29 of 72

The news overview that we created in the previous section displays a list of the seven most
recent articles that are stored inside the news folder. However, the page only shows a small
fragment of the articles. The entire contents of an article can be accessed by clicking its headline
or image. These are links to the full view of the article. When accessed, you should be able to see
something like this:

What you're looking at is the standard template that eZ publish uses to display the full contents of
an article object. The standard template is rather boring. We should really use a custom template
instead. The following text explains how to generate a custom full-view-template for the
"Article" content class within the "News section".
Bring up the administration interface.

eZ publish - http://ez.no 30 of 72

Click on the "Setup" tab.
Click on "Templates" (in the menu on the left hand side).
A list of template files will appear.

Locate "/node/view/full.tpl" and click on it.
Click "Create New" to create a new template.
Type in "full_view_news_article" into the "Name" field.
Set the "Class" dropdown box to "Article".
Set the "Selection" dropdown box to "News section".
Do not enter anything into the node field (leave it blank).
In the "Base template on" section, select "Empty file".
Click "Create".

This will generate an empty file
("design/tscm/override/templates/full_view_news_article.tpl") and instruct eZ publish
to use it every time an article that resides in the "News section" is viewed. Put the
following lines into the newly generated file:

{* Display the headline, use huge characters. *}
<div class="headline">
 {attribute_view_gui attribute=$node.object.data_map.title}
</div>

{* Display the thumbnail image, right-justified. *}
<div class="imageright">
 {attribute_view_gui attribute=$node.object.data_map.thumbnail}
</div>

{* Display the intro-text using bold characters. *}

 {attribute_view_gui attribute=$node.object.data_map.intro}

{* Display the actual body/content of the article. *}
{attribute_view_gui attribute=$node.object.data_map.body}

This code will take care of displaying an article in a nice way. Try to access one of the articles
from within the "Latest News" page (by clicking on either a headline or an image). You
should be presented with something like this:

eZ publish - http://ez.no 31 of 72

News archive

In the news archive, we simply wish to list all the news articles that have been published. The list
should contain the headline/title of the articles and the date they were published.

We could produce the archive by overriding the folder class' standard full-view template within the
news section. However, this template has already been overridden when we created a custom
template for the news page. A possible solution is to create a new view. We'll call it "archive-
view". The following text explains how to create a new view and how to make a custom
template for it. In addition, the manual creation of an URL alias is also explained; we'll create a
friendly URL for the news archive.

Creating a new view
The following text explains how to create a new view.

Create the following directories:
"design/tscm/templates/node"
"design/tscm/templates/node/view"

Create an empty file and save it as "design/tscm/templates/node/view/archive.tpl".

eZ publish - http://ez.no 32 of 72

Creating a custom template
The following text explains how to create a custom template for the newly created view.

Bring up the administration interface.
Click on the "Setup" tab.
Click on "Templates" (in the menu on the left hand side).
A list of template files will appear.

Click on an arbitrary template file.
A new page with a dropdown box will appear.
Make sure the dropdown box is set to "tscm".
Click set.
Go back to the template list (using the menu on the left hand site).
Jump to the last page by using the navigator at the bottom of the page.
Locate "/node/view/archive.tpl" and click on it.
On the next page, click "Create New".
Type in "archive_view_news_folder" into the "Name" field.
Set the "Class" dropdown box to "Folder".
Set the "Selection" dropdown box to "News section".
Do not enter anything into the node field (leave it blank).
In the "Base template on" section, select "Empty file".
Click "Create".

This will generate the "design/tscm/override/templates/archive_view_news_folder.tpl"
template file. eZ publish will use this template every time it is instructed to display an archive-view
of a folder within the News section. Put the following lines into the newly created template file:

<div class="pagetitle">
 News archive
</div>

{* Grab all the news articles. *}
{let children=fetch(content,
 list,
 hash(parent_node_id, $node.node_id,
 sort_by, $node.sort_array,
 class_filter_type, include,
 class_filter_array, array('article')
)
)
}

<table class="news_archive">
 <tr>
 <td>
 Article:
 </td>
 <td>
 Published:
 </td>
 </tr>

 {* Loop through all articles that we just fetched. *}
 {section name=Child loop=$children}
 <tr>
 <td>
 {* Display a link to the article. *}
 {$:item.name}

eZ publish - http://ez.no 33 of 72

 </td>
 <td>
 {* Display the date the article was published. *}
 {$:item.object.published|l10n(shortdate)}
 </td>
 </tr>
 {* End of loop. *}
 {/section}
</table>

{/let}

This code will take care of listing all the news articles that are published in a nice fashion.

Creating an URL alias for the News archive
At this point, the news archive can only be reached using a system URL that tells eZ publish
which view to use and which node to show ("[...]/content/view/archive/[node-number]" -
 where [node-number] is the identification number of the node that "contains" the
News folder object). In order to be able to reach the news archive using a friendly URL, we must
manually create a URL alias for it. The following text explains how to do this.

Bring up the admininstration interface.
Click on the "Content" tab.
The system will display contents of the root folder.

While hovering your mouse pointer over the "News" folder,
look in the status bar of the browser.
It should display something like:
"http://[...]/tscm_admin/content/view/full/[node-number]"
Make a note of the node number.

Click on the "Setup" tab.
Click on "URL translator" (in the menu on the left hand side).
In the "System URL" field, type in: "content/view/archive/[number]
In the "Virtual URL" field, type in: "news/archive"
Click "Add".

What we have done is that we've instructed eZ publish to recognize the friendly URL, and when
accessed, display the news archive. At this point, you should be able to access the news archive
using both the system URL and the newly created virtual URL:
http://[...]/index.php/tscm/content/view/archive/[node-ID-of-News-folder]
http://[...]/index.php/tscm/news/archive

Try to browse these URLs. In either case, the browser should display something that looks like
this:

eZ publish - http://ez.no 34 of 72

The following text explains how to create a link that can be used to access the news archive.

Creating the actual link to the archive
We'll make the archive accessible from the bottom of the latest news page. Insert the following
code at the end of the "design/tscm/override/templates/full_view_news_folder.tpl" file:

<div class="center">

Click here to access the news archive...

</div>

The members page

The case states that the TSCM people would like to have some sort of member-list. We could
create this statically, but what fun would that be? Also, simple list of members is rather boring. We
could easily store information about the members in the CMS. Lets keep things at a simple level
and divide the member section into two pages:
Member-list page
Member information page

eZ publish - http://ez.no 35 of 72

http://ez.no/developer/ez_publish_3/documentation/building_an_ez_publish_site/case

The member-list page should contain a list of all the club-members. Each row in the list showing
the name of a member. The names could be displayed as hyperlinks. When one of these links is
accessed, the system should take us to another page (the member information page). This page
could be used to display all the information that we have about a member.

Creating a custom content class

As pointed out in the previous section, we'll use the CMS to store information about the members.
Lets say that we would like to store the following information (for each member):
Name
Nickname
Date of birth
Gender (Male/Female)
Telephone number
E-mail address
Facial photo

But wait! How can we store all this custom information? If you take a look at the list of the built-in
content classes, you'll discover that none of them is even close to being suitable for storing
information about TSCM members. What we have here is a typical content management problem.
Fortunately, unlike other content management systems, eZ publish allows the users to create
their own content classes. Instead of having to fit our data into a predefined, rigid structure, we
have the power to create our own custom structure. The following list of steps explains how to do
this.
Make sure that you're logged into the administration interface.
Click on the "Setup" tab.
Click on "Classes" - from within the menu on the left hand side.
A list of class groups will appear.

Click on "Content" (from within the list).
A list of available classes will appear.

Click on the "New class" button.
The class edit page will appear.

eZ publish will then start the creation process of a new, custom content class. We'll need to
specify a name for this class, lets just call it "Member". An identifier will also have to
be specified. Each content class may be identified using its ID number or identifier string. The
identifier is a friendly string. It is easier to remember and more flexible than an ID number.
Type "Member" into the name filed.
Type "member" into the identifier filed.

We'll now start adding attributes to our new "Member" content class. The following
text explains how to add the desired attributes.

The "Real name" attribute.
This attribute will be used to store the real name of a member. We'll use the built in "Text
line" datatype for this attribute. Since we can't have a member without a name, we'll set the
required flag. This means that every time somebody tries to add or modify a member, the system
will not update that member as long as the name field is empty.

eZ publish - http://ez.no 36 of 72

Select "Text line" from the "Datatypes" dropdown box.
Click the "New" button (adjacent to the "Datatypes" dropdown box).
A new attribute will appear.

Type "Real name" into the name field.
Type "realname" into the identifier field.
Make sure that the "Required" and "Searchable" checkboxes are checked.
The rest of the checkboxes should be unchecked.

You've now added the first attribute to the "Member" class. Since the
"Searchable" checkbox is checked, this attribute will be searchable by the built-in
search engine. In other words, it will be possible to search for members (by name). This
functionality will be revealed and explained at a later stage.

The "Nickname" attribute.
Some chess fanatics tend to have lame nicknames such as "King", "Knight-
rider", "Rookie" etc. The nickname attribute will be used to store a possible
nickname.

Select "Text line" from the "Datatypes" dropdown box.
Click the "New" button (adjacent to the "Datatypes" dropdown box).
A new attribute will appear.

Type "Nickname" into the name field.
Type "nickname" into the identifier field.
Type "Nickname missing." into the default field.
Make sure that the "Searchable" checkbox is checked. The rest of the checkboxes
should be unchecked.

The "Date of birth" attribute.
This attribute will be used to store the birthdate of a member. We'll use the built-in "Date
field" datatype.

Select "Date field" from the "Datatype" dropdown box.
Click the "New" button (adjacent to the "Datatypes" dropdown box).
A new attribute will appear.

Type "Date of birth" into the name field.
Type "birthdate" into the identifier field.
Make sure that the "Required" checkbox is checked. The rest of the checkboxes
should be unchecked.

The "Gender" attribute.
This attribute will be used to specify whether a member is a male or a female specimen. The
"Selection" datatype will be used. This datatype is perfect for quick'n dirty single and
multiple choice scenarios.

Select "Selection" from the "Datatype" dropdown box.
Click the "New" button (adjacent to the "Datatypes" dropdown box).
A new attribute will appear.

Type "Gender" into the name field.
Type "gender" into the identifier field.
Click on the "New option" button.
You'll now have two options.

Type "Male" into the first option field.
Type "Female into the second option field.

eZ publish - http://ez.no 37 of 72

Make sure that the "Required" checkbox is checked. The rest of the checkboxes
should be unchecked.

The "Telephone number" attribute.
This attribute will be used to store a member's telephone number. Since some people don't have
a phone, we'll not mark this attribute as required. We'll use the "Text line" attribute to
store phone numbers.

Select "Text line" from the "Datatype" dropdown box.
Click the "New" button (adjacent to the "Datatypes" dropdown box).
A new attribute will appear.

Type "Telephone number" into the name field.
Type "phone" into the identifier field.
Type "Phone number missing." into the default field.
Leave the default checkbox settings.

The "E-mail address" attribute.
This attribute will be used to store a member's electronic mail address. Since some people don't
have an E-mail address, we'll not mark this attribute as required. We'll use the "E-mail
address" attribute to store the members e-mail addresses.

Select "Email" from the "Datatype" dropdown box.
Click the "New" button (adjacent to the "Datatypes" dropdown box).
A new attribute will appear.

Type "E-mail" into the name field.
Leave the default checkbox settings.

The "Picture" attribute.
This attribute will be used to store a digitized photograph of a member's face. We'll only allow
image files that are smaller than one megabyte.

Select "Image" from the "Datatype" dropdown box.
Click the "New" button (adjacent to the "Datatypes" dropdown box).
A new attribute will appear.

Type "Picture" into the name field.
Type "picture" into the identifier field.
Set the maximum file size to 1 MB.

That's it. The "Member" class is now made up of exactly those seven attributes that
we wished for at the beginning. Click the "Store" button; eZ publish will then store the
class definition in the database. The next section explains how to add member objects.

Adding members

The previous section explained how to build a custom content class for storing information about
members. We'll now use the administration interface to create a couple of instances of this class.
In other words, we'll create a bunch of member objects and put some data into them.

Lets create a couple of members. They should all be put into a dedicated "Members"

eZ publish - http://ez.no 38 of 72

folder. By now, you should be able to do the following operation(s) without following a detailed
step-by-step guide.
Create a folder called "Member" (in the root of the content folder).
Assign this folder to the "Members section".
Navigate into the members folder.
Create a couple of member objects.
Feel free to use the example data provided below.

Example data:

eZ publish - http://ez.no 39 of 72

eZ publish - http://ez.no 40 of 72

Alexander Ferrari
Happy King
1970.02.02
Male
555-3212
alex@example.com
alex_ferrari.png

Henry Von Metal
Draculaboy
1967.03.02
Male
555-3456
dracula@example.net
henry_metal.png

eZ publish - http://ez.no 41 of 72

http://ez.no/content/download/42160/107677/file/alexander_ferrari.png
http://ez.no/content/download/42163/107686/file/henry_metal.png

eZ publish - http://ez.no 42 of 72

Pia Pianissimo
LadyQueen
1975.07.06
Female
555-5555
lollipop@example.com
pia_pianissimo.png

Thomas Hellbender
Dark Bishop
1977.05.12
Male
666-0911
hellraiser@example.org
thomas_hellbender.png

eZ publish - http://ez.no 43 of 72

http://ez.no/content/download/42162/107683/file/pia_pianissimo.png
http://ez.no/content/download/42161/107680/file/thomas_hellbender.png

List of members

The member-list page will contain a list of all the club members. Each row in the list will show the
name of a member. The following text explains how to create the member list page.

First of all, add the following lines to the CSS file:

.member_list
{
 width: 85%;
 font-size: 80%;
}

Make sure that the "Members" link in the main menu points to the
"Member" folder.
Create a new override for the "/node/view/full.tpl" template.
Feel free to call it "full_view_member_folder.tpl".
Set the override keys to the "Folder" class and the "Member" section.

Replace the contents (if any) of the generated template file with the code provided below.

<div class="pagetitle">
 Current members
</div>

{* Grab all the child nodes. *}
{let children=fetch(content, list, hash(parent_node_id, $node.node_id,
 sort_by,
$node.sort_array))}

 <table class="member_list" cellpadding="0" cellspacing="0"
border="0">

 {* Loop through all nodes that we just fetched. *}
 {section name=Child loop=$children}

 {* Output the name as a link to the node containing the
member. *}
 <tr>
 <td>
 {$:item.name}
 </td>
 </tr>

eZ publish - http://ez.no 44 of 72

 {* End of loop. *}
 {/section}

 </table>

{/let}

This code will list the name of all the members. Try to surf the member page. You'll see that the
correct template pops up. However, despite that we've added members to the member folder, no
names will appear. This phenomenon is normal. By default, content that is stored using custom
classes is not accessible to anonymous users. We'll need to allow anonymous web surfers to
read content that is stored in "Member" objects. The following text explains how to do
this.
Make sure that you're logged into the administration interface.
Click on the "Users" tab.
A list of users/groups will appear.

Click on "Roles" (from within the menu on the left hand side).
A list of roles will appear.

Click on the "Anonymous" user.
The properties of the Anonymous user will appear.

Click on the "Edit" button.
Click the "New" button.
Select "Content" from the "Give access to module" dropdown box.
Click the "Allow limited" button.
Select "Read" from the "Function" dropdown box.
Click the "Allow limited" button.
Set the class to "Member", the section and the owner to "Any".
Click the "OK" button.
Click the "Store" button.

The properties of the anonymous user will be displayed again. The last line should read
something like "Content Read Class(Member)" - which means that the anonymous
user has read-access to member objects in the content module.

Try to browse the "Members" page again. If everything was done correctly, you'll be
able to see a list of members; the page should look something like this:

eZ publish - http://ez.no 45 of 72

Member info page

This page will be used to display all the information that we have about a member. Currently,
when a member is accessed (using one of the links from within the member list page), eZ publish
displays all the attributes of that member using the default object view. The following list of steps
explain what you should do to change this.

Append the following lines of code to the TSCM CSS file.

.member_info
{
 border-style: none;
 font-size: 80%;
}

Create a new override for the "/node/view/full.tpl" template.
Feel free to call it "full_view_member_class.tpl".
Set the override keys to the "Member" class and the "Member" section.
Replace the contents (if any) of the generated template file with the code provided below.

<div class="pagetitle">
 Member information
</div>

<div class="imageleft">

eZ publish - http://ez.no 46 of 72

 {* Display a picture of the member. *}
 {attribute_view_gui attribute=$node.object.data_map.picture}
</div>

{* Display the attribute names and their values. *}
<table class="member_info" cellspacing="4" cellpadding="3">
 <tr>

<td>{$node.object.data_map.realname.contentclass_attribute.name}:</td>
 <td>{attribute_view_gui
attribute=$node.object.data_map.realname}</td>
 </tr>
 <tr>

<td>{$node.object.data_map.nickname.contentclass_attribute.name}:</td>
 <td>{attribute_view_gui
attribute=$node.object.data_map.nickname}</td>
 </tr>
 <tr>

<td>{$node.object.data_map.birthdate.contentclass_attribute.name}:</td>
 <td>{attribute_view_gui
attribute=$node.object.data_map.birthdate}</td>
 </tr>
 <tr>

<td>{$node.object.data_map.gender.contentclass_attribute.name}:</td>
 <td>{attribute_view_gui
attribute=$node.object.data_map.gender}</td>
 </tr>
 <tr>

<td>{$node.object.data_map.phone.contentclass_attribute.name}:</td>
 <td>{attribute_view_gui
attribute=$node.object.data_map.phone}</td>
 </tr>
 <tr>

<td>{$node.object.data_map.email.contentclass_attribute.name}:</td>
 <td>{attribute_view_gui
attribute=$node.object.data_map.email}</td>
 </tr>
</table>

This code takes care of displaying member information in a nice way. The picture of a member is
displayed at the left hand side. Information about the member (name, phone number, etc.) is
displayed on the right hand side (prepended by the name of the attribute). Notice that the names
of the attributes is not hardcoded in the template file. Whenever you decide to rename an attribute
(for example replace "Real name" with "Name" - you will not have to
bother with updating the template file. The following screenshot shows what the output should
look like at this point.

eZ publish - http://ez.no 47 of 72

The guestbook

The case states that "The Scandinavian Check Mates" would like to have a guestbook
of some sort. The guestbook is somewhat different from what we've been doing so far. It will
provide functionality that allows anonymous surfers to add content to the CMS of eZ publish
through the TSCM website. In addition, we'll make use of the workflow system to approve
guestbook entries.

The guestbook section of the site will basically consist of two parts:
List of entries
Entry submit page

The list of entries will be a read-only page showing all the entries that have been added to the
guestbook. The submit page will be accessible from the "List of entries" page. It will
display a form (with a couple of text fields), a "Submit" and a "Cancel"
button.

Creating the content class

Since eZ publish doesn't have a built-in content class that is 100% suitable for our guestbook
needs, we'll simply build our own. Let's say that for each guestbook entry, we would like to store
two things:
The name of the person who signs the guestbook

eZ publish - http://ez.no 48 of 72

http://ez.no/developer/ez_publish_3/documentation/building_an_ez_publish_site/case

The entry/text itself

Use the administration interface to build a content class called "Guestbook entry". If
you're not used to creating custom classes, read the "The members page" section again.

Make sure that the class is built up of a "text line" and a "text field". The
text line will be used to store the name/nick of the person who submits an entry. The text field will
be used to store the entry itself. Make sure that the text line is the first attribute and call it
"Name". Let the identifier be "name". The second attribute (the text field)
should be called "Entry" and its identifier should be "entry". The guestbook
doesn't have to be searchable, so feel free to turn off the searchable options. Make sure that both
attributes are required. The length of the first attribute should be limited to 32 characters. The
"Preferred number of rows" of the second attribute should be set to 15.

Finally, make sure that the anonymous role has read access to the newly generated content
class. If you're unsure about this, read the "List of members" section again.

Adding content

In order to be able to test the guestbook properly, we'll need to add some content to it. Use the
administration interface to create a folder called "Guestbook" and put a couple of
guestbook entries in it. Make sure that the nodes in the folder are sorted by the date/time they
were published (in the reverse order). To do this, select "Published" from the the
"Sort by" dropdown box from within the edit page of the "Guestbook"
folder. In addition, select the "Ordering" radiobutton that is on the right hand side
(adjacent to "Main"). This will instruct eZ publish to show the most recent entries on
the top of the list. If you lack inspiration, feel free to use the following example data for the
guestbook folder:

Folder description:
This is the official guestbook of The Scandinavian Check Mates. Feel free to add an entry (press
the "Sign the guestbook" button that is below this text). Please note that the TSCM
club reserves the right to moderate and/or remove offensive and tasteless entries.

Guestbook entries:
Name: Madonna DeLafore
Entry: Hello! My name is Madonna and I would really like to join your club. However, I must say
that the new club-site looks a bit dull. I've heard rumors about webshop functionality, tree-menus
and polls, will this be implemented in the near future? I hope so. Take care!

Name: Bill Collins
Entry: Your lame jimbo jumbo chess club sucks! We have a much better chess club in Porsgrunn
with a lot of geeks who are much much smarter than you! This site is a joke. I know that our
Porsgrunn club doesn't have a site but thats just because we're cool. Cool people don't need a
silly website to gain respect.

Name: Tina Turnoff
Entry: Hi! Currently, I am a member of the Porsgrunn chess club. However, after surfing your site,

eZ publish - http://ez.no 49 of 72

http://ez.no/developer/ez_publish_3/documentation/building_an_ez_publish_site/the_members_page
http://ez.no/developer/ez_publish_3/documentation/building_an_ez_publish_site/the_members_page/list_of_members

I must say you guys seem so exciting. Could I please, please join your club? Pretty please, with
sugar on top! I'm aware of that I have to move to Skien and I'm very much prepared to do so! PS:
Bill is my ex-boyfriend and he is an idiot.

Creating the template

Use the administration interface to create a template override for the guestbook folder. Hints:
Remember to assign the guestbook folder to the guestbook section. Override the
"/node/view/full.tpl" template for the folder class within section
"Guestbook". Name the new template "full_view_guestbook_folder". Base
the template on an empty file. In addition, you should also make sure that the
"guestbook" link in the main menu actually points to the guestbook. When you're
finished with all this, attempt to write your own template code that takes care of displaying the
following elements:
The guestbook folder's description
A list of all the guestbook entries

Put your code into the newly generated/empty "design/tscm/override/templates/full.tpl"
file. If you're unsure about the template code (or if you're simply just lazy), feel free to peek at (or
copy) the template code that is provided below.

<div class="pagetitle">
 {$node.name}
</div>

<table class="guestbook">
 <tr><td>
 {$node.object.data_map.description.content.output.output_text}
 </td><td>

 </td></tr>
 <tr><td>
 <!-- The button will be here! -->
 </td><td>
 </td></tr>
</table>

{* Grab all the guestbook entries. *}
{let name=test counter=0 children=fetch(content,
 list,
 hash(parent_node_id,
 $node.node_id,
 sort_by,
 $node.sort_array
)
)
}

<table class="news_archive">

{* Loop through all the entries. *}
{section loop=$:children}

eZ publish - http://ez.no 50 of 72

 {* Increment the counter by one. *}
 {set counter=$:counter|inc}

 <tr><td>
 <hr />
 Submitted by {$:item.object.data_map.name.content|wash}
 on {$:item.object.published|l10n(shortdate)}:

 {$:item.object.data_map.entry.content|wash}
 </td></tr>

{* End of loop. *}
{/section}

 <tr><td><hr /></td></tr>
</table>

<div class="center">
 Number of entries in the guestbook: {$:counter}
</div>

{* Release the counter and the children variable. *}
{/let}

Notice the use of the "wash" operator. It takes care of translating bogus strings into
friendly ones. The wash operator will make sure that HTML tags found inside guestbook entries
don't mess up the output. In other words, people who submit text with HTML tags will not be able
to destroy the original page layout. Tags will be displayed as normal text (they will not be
interpreted by the browser).

The template code above makes use of an image called "guestbook.png". Feel free to
use the following icon/image: guestbook.png. This image is non-content specific (it belongs to
layout/design), so therefore, we'll place it inside the TSCM design directory. Download and place
the image into the "design/tscm/images/" directory.

Some of the HTML code that was presented above also makes use of some additional CSS.
Make sure you put the following lines into the TSCM CSS file (things might look a bit ugly without).

.guestbook
{
 margin-left: auto;
 margin-right: auto;
 width: 95%;
}

If you've used the example data and the example code, you should be looking at something that
resembles the following screenshot (when accessing the guestbook page from the main menu).

eZ publish - http://ez.no 51 of 72

http://www.ez.no/content/download/42951/109653/file/guestbook.png

Adding an action button

Edit the template file that is used to display the guestbook page
("design/tscm/override/templates/full_view_guestbook_folder.tpl"). Copy and paste the
code that is provided below at a location where you wish to display the "Sign the
guestbook" button. This button will take the user to the input form. If you used the
suggested code from the previous section then find the HTML comment that says "The
button will be here!" and simply replace it with the code that is provided below.

<form method="post"
 action={"content/action/"|ezurl}>

eZ publish - http://ez.no 52 of 72

 <input class="button"
 type="submit"
 name="NewButton"
 value="Sign the guestbook" />

 <input type="hidden"
 name="ClassID"
 value="__REPLACE_WITH_CLASS_ID__" />

 <input type="hidden"
 name="NodeID"
 value="{$node.node_id}" />
</form>

Make sure that you replace the "__REPLACE_WITH_CLASS_ID__" part with the
identification number of the "Guestbook entry" class. Hint: a class' identification
number can be acquired by browsing "Classes" from within the "Setup"
part of the administration interface.

Attempt to reload the guestbook page. You should now be able to see the "Sign the
guestbook" button below the description text. By now, the page should look something like
this:

Let's just take a moment and look at the code that was presented above. It is nothing more than a
standard HTML form that uses the POST method to send data back to the web server. The
"ezurl" operator will take care of translating the action string into
"index.php/tscm/content/action/" - this will become the requested URL. For information
about eZ publish URLs, please refer to the "eZ publish URLs" section within the eZ publish basics
chapter. In this particular case, the URL will tell eZ publish that it should attempt to execute the

eZ publish - http://ez.no 53 of 72

http://ez.no/developer/ez_publish_3/documentation/ez_publish_basics/ez_publish_urls
http://ez.no/developer/ez_publish_3/documentation/ez_publish_basics

"action" function within the "content" module using the "tscm"
siteaccess. Behind the curtains, eZ publish will actually run the
"kernel/content/action.php" file.

The second part/line instructs the browser to display a button labelled "Sign the
guestbook". In addition, this line also contains the name of the eZ publish action that we
wish to execute when the button is pushed. So, what should eZ publish do? Well, we wish to
create a new guestbook entry object. In other words, we have to tell eZ publish that it should
create a new object. The "NewButton" string instructs eZ publish to start the action-
process of creating a new object.

The third part/line is used to inform eZ publish about the type of the object we wish to create. In
this case, eZ publish should create a guestbook entry object (an instance of the guestbook entry
class). In order to be able to create the desired class, eZ publish needs to know the identification
number of the class that we wish to instantiate an object of.

The fourth part/line is used to provide eZ publish with an identification number of a node. This is
simply done in order to pinpoint a location (of some node) within the content node tree. During a
publishing process, eZ publish will place the newly created object in a new node. The new node
will automatically become the child of the node that was revealed/pinpointed. In this particular
case, it is the node containing the guestbook folder object that will be the parent node.

Making the button work

If you try to click the "Sign the guestbook" button at this point, you'll probably meet a
rude page that resembles the following screenshot.

That's right buddy, the object is unavailable! This phenomenon is perfectly normal; and the
explanation is fairly simple. When clicked, the "Sign the guestbook" button that we just
put in initiates an action within the content management system. eZ publish will attempt to create
a new object using the current user, which in this case (since nobody is logged in) is the built-in

eZ publish - http://ez.no 54 of 72

"Anonymous" user. Not surprisingly, the default security settings do not allow
anonymous users to mess around with content. In order to make the button work, we'll simply
have to let anonymous users to be able to do two things:
Create guestbook entries within the guestbook section
Edit the contents of guestbook entries

The following step-by-step guide explains how to enable this functionality.
Make sure that you're logged into the administration interface.
Click on the "Users" tab.
A list of users/groups will appear.

Click on "Roles" (from within the menu on the left hand side).
A list of roles will appear.

Click on the "Anonymous" user.
The properties of the Anonymous user will appear.

Click on the "Edit" button.
Click the "New" button.
Select "Content" from the "Give access to module" dropdown box.
Click the "Allow limited" button.
Select "Create" from the "Function" dropdown box.
Click the "Allow limited" button.
Set the class to "Guestbook entry", the section to "Guestbook" and the
Parent class to "Any".
Click the "OK" button.
Click the "Store" button.

At this point, the list of role policies for the anonymous user should look something like this:

The previous list of steps took care of adding "Create" privileges to the anonymous
role. In addition, we'll also have to add "edit" privileges to this role. Repeat the
previous steps, but this time make sure that you select the "Edit" function (at step two)
and that you select "Self" from within the owner list (at step three). The rest of the
selections should be the same as in the list of steps presented above.

IMPORTANT!
When finished, make sure that you press the store button.

At this point, the list of role policies for the anonymous user should look something like this:

eZ publish - http://ez.no 55 of 72

The input template

Go ahead and surf the "Guestbook" page again. Attempt to press the "Sign the
guestbook" button (which at this point should work). Instead of the "Object
unavailable" message, you should be presented with a page that resembles the following
screenshot:

eZ publish - http://ez.no 56 of 72

If it worked, it means that eZ publish allowed the anonymous user to create a new guestbook
entry object. What you're looking at is the default edit template, which resides in the
"design/standard/templates/content/edit.tpl" file. This template contains a lot of
functionality that we don't need (version control, set.). What we need is a template that shows two
fields (the name and the entry field) and two buttons (Submit and Cancel). The following text
explains how to create a template override and a custom template for guestbook entries.

Until now, we've been doing template overrides by using the web based administration interface.
The administration interface can only be used to create basic template override rules.
Complex/advanced rules must be input manually to the override file of the target siteaccess. What
the administration interface does is that it simply manipulates this file when you create/edit/delete
template overrides. Let's create the guestbook-entry template override manually. The following
list of steps should guide you through it.
Acquire and make a note of the identification number of the "Guestbook entry" content
class. (Hint: Admin->Setup->Classes->Content)
Acquire and make a note of the identification number of the guestbook section. (Hint: Admin-
>Setup->Sections)
Edit the "settings/siteaccess/tscm/override.ini.append" file.
Notice that the file contains the overrides that we've added so far.

Scroll down to the end of the file and add the following lines to it:

[edit_guestbook_entry]
Source=content/edit.tpl

eZ publish - http://ez.no 57 of 72

MatchFile=edit_guestbook_entry.tpl
Subdir=templates
Match[class]=__REPLACE_WITH_CLASS_ID__
Match[section]=__REPLACE_WITH_SECTION_ID__

Make sure that you replace the "__REPLACE_WITH_CLASS_ID__" with the
identification number of the "Guestbook entry" content class. You'll also need to
replace the "__REPLACE_WITH_SECTION_ID__" with the identification number of
the guestbook section. When finished, save the file, clear all caches, surf the guestbook and
press the "Sign the guestbook" button again. At this point, the system should not
display anything. That is because the "edit_guestbook_entry.tpl" file doesn't exist.
Let's fix this problem. Create the new template file
("design/tscm/override/templates/edit_guestbook_entry.tpl") and put the following lines
of code into it:

<div class="pagetitle">
 Add a guestbook entry
</div>

<form enctype="multipart/form-data"
 method="post"
 action={concat("/content/edit/",
 $object.id,
 "/",
 $edit_version)|ezurl}>

<table class="layout">
 <tr><td>

 {include uri="design:content/edit_validation.tpl"}
 {include uri="design:content/edit_attribute.tpl"}

 <div class="buttonblock">
 <input class="defaultbutton"
 type="submit"
 name="PublishButton"
 value="Submit" />

 <input class="button"
 type="submit"
 name="DiscardButton"
 value="Cancel" />

 <input type="hidden"
 name="MainNodeID"
 value="{$main_node_id}" />
 </div>
 </td></tr>
</table>
</form>

The action URL is constructed by concatenating several strings. The final string is translated
using the "ezurl" operator. The URL reveals the module that we wish to access
(content), the function that should be executed (edit), the identification of the object ($object.id)
and the version ($edit_version) that should be edited. Since this interface is only meant to be
used to create new nodes (and not edit existing nodes), the version number will always be one.

eZ publish - http://ez.no 58 of 72

The "edit_validation.tpl" takes care of validating the input once it is submitted. Omitting
this line will still not allow the submission of partially or completely empty entries. The system will
simply not display the warning. Since we've set both the entries to be required (when we created
the "Guestbook entry" class), eZ publish will not allow empty entries.

The "edit_attribute.tpl" takes care of displaying the actual input fields and their names.

The "PublishButton" string (name of the "Submit" button) instructs the
system to publish the object that is being edited.

The "DiscardButton" string (name of the "Cancel" button) instructs the
system to discard the object that is being edited.

The hidden "MainNodeID" field reveals the identification number of the node that will
be the parent of the node that is being published. This is the main location of the node that is
being published. Without this field, eZ publish will not be able to publish the object.

Testing the guestbook

Try pressing the "Sign the guestbook" button again. The system should then generate
a page that looks something like the following screenshot:

Try to submit an empty entry, eZ publish should not allow this and it will present you with a
message that resembles the one in the following screenshot:

eZ publish - http://ez.no 59 of 72

Now, put some text into the fields and simulate a user error by hitting the "Cancel"
button (instead of "Submit"). The system should respond with the following page:

As you can see, eZ publish will kindly ask if you're sure about the cancel operation. Since we
pressed "Cancel" by accident, let's inform the system about this (hit
"Cancel" again). You should be back at the "Add a guestbook entry" page
with the content that you just typed in preserved in the input fields. Press "Submit". eZ
publish will then add the entry to the guestbook. The system should bring you back to the
guestbook page and you should be able to see the new entry at the top of the list. This concludes
the basic guestbook functionality.

eZ publish - http://ez.no 60 of 72

Implementing an approval mechanism

The guestbook that we've created so far allows anonymous people to "publish"
arbitrary information on the TSCM website. Sometimes this is a good idea, sometimes it is not. A
classic example is that malicious people misuse such functionality to post tasteless and/or
offensive text. To prevent this problem, we could make use of some sort of a mechanism that
ensures the approval of content before it is published. eZ publish provides a built-in workflow
system that is designed to deliver such functionality (and a lot more). Please note that the
workflow system is huge and complex. In this part of the tutorial, we will only use it to create a
simple workflow for the purpose of demonstration and learning. However, I'm sure that you'll
quickly understand and discover the wonderful and waste possibilities of the eZ publish workflow
engine.

Modifying the entry page

From now on, our policy is that all guestbook entries will have to be approved by the site
administrator. New entries will not pop up instantly in the list of entries. We should inform the
users about this. Let's modify the "Add an entry" page. Go ahead and edit the
template that is used to input/post a guestbook entry and add the following text:

Please note that your signature/entry will not be visible right away. Our policy is that all content
(guestbook entries included) has to be approved by the the site administrator. Please check back
within a couple of hours/days to see if your entry was approved or not.

At this point, the guestbook entry page should look something like this:

Creating a workflow

We'll create a simple workflow. It will be used to ensure the approval of guestbook entries made
by anonymous users. The following list of steps should take you through it.
Log into the administration interface.
Click on the "Setup" tab.
Click on "Workflows" (from within the menu on the left hand side).
A list of workflow groups will appear.

Click on the "Standard" group.
An empty list should appear.

Press the "New workflow" button.

eZ publish - http://ez.no 61 of 72

The "Editing workflow" page will appear.

Provide a custom name for this new workflow (fill out the name field). For example, you could call
it "Guestbook entry approval".
In the events section, set the dropdown box to "Event/Approve".
Click the "New" button.
A new event will be added to this workflow.

Feel free to type something into the description field. You may also leave it blank.
Set the "Editor" list to "admin". This field is used to define the target user
(the user that will be doing the approval).
Select the "Guestbook section" (set it in the sections field).
Set the "Users without approval" to "Administrator users".
Press the "Store" button.

That's it. You have now created a workflow definition.

Connecting the workflow to a trigger
function

What we have done so far is that we have created a new workflow called "Guestbook entry
approval". This workflow alone doesn't do anything. It has to be assigned/connected to a
trigger function. Without a trigger function, the workflow definition will simply sit there and do
nothing. Go ahead and carry out the following steps:
Make sure that you're logged into the administration interface.
Click on the "Setup" tab.
Click on "Triggers" (from within the menu on the left hand side).
A list of triggers will appear.

Locate the line that says "Content - Publish - Before" and set the corresponding
dropdown box to "Guestbook entry approval".
Press the "Store" button.

Now, surf the TSCM site again and attempt to submit/add a new guestbook entry. You'll quickly
discover that the entry will not be visible on the guestbook page. So, where did it go? At this point
the object that contains the entry is in an unpublished state. It is waiting for an approval by the
administrator user.

Approving entries

At this point, we have an unpublished object that awaits approval. Let's check it out and approve
it.
Make sure that you're logged into the administration interface.
Click the "Personal" tab.

eZ publish - http://ez.no 62 of 72

The administrator user's personal page will appear.

Click on "Collaboration" (from within the menu on the left hand side).
Click on the item that says "New guestbook entry awaits your approval".

At this point, you should be looking at a page that resembles the following screenshot:

This is the current collaboration frontend of the eZ publish administration interface. It can be used
to review/approve/deny/etc. objects, collaborate with other users and so on. Actually, there is a lot
of functionality in here.

Press the "Approve" button. The entry will be taken to a temporary publishing queue.
If you surf/refresh the TSCM guestbook page again, you will still not be able to see the new (by
now approved) guestbook entry. The queue must first be flushed/processed. The following
section explains how to do this.

The "runcronjob" script

The execution/processing of workflows, notifications and other tasks that should be run
periodically must be carried out by an external (non-user/web-dependant) mechanism. This is the
job of the "runcronjobs.php" file that resides inside the root of the eZ publish directory.
This file takes care of processing the mentioned things and it must be executed periodically. The
most common way to do this is to set up a cronjob that runs every 5 minutes or so. The script can
also be executed manually.

Let's keep things at a simple level and run the "runcronjobs.php" file manually. You
can do this easily by executing the script from within a shell using PHP:

[path_to_dir_containing_php]/php runcronjobs.php

If "php" is available directly (not in the path environment variable), replace the
"[path_to_dir_containing_php]" with the path to the directory that contains the PHP
executable. On most UNIX/Linux systems the path is "/usr/bin/". Hint: use the
"whereis" command to locate the PHP executable if you're unsure about the location.
Windows users can use the built-in search utility to search for "php.exe".

Once the "runcronjobs.php" script is executed, the pending/approved object(s) will be
published. Try to surf the TSCM guestbook page again and you'll see that the new (approved)
guestbook entry now appears in the list of entries.

The links page

eZ publish - http://ez.no 63 of 72

The links page
The links part of the site will basically be a page that displays a collection of links that we wish to
make available for our visitors. This will not be just a boring list of links. First of all, we'll make use
of the CMS engine of eZ publish to make a simple category-structure. Secondly, we'll create a
neat template that displays the links section of the content node tree in a fancy tree-style view.
The following mock-up shows this:

Banner: THE SCANDINAVIAN CHECK MATES
LINKS

 (+)-Chess sites

 (-)-Educational sites
 |-Berkeley
 |-Stanford
 |-University of Oslo

 (+)-Local sites

Adding content

In order to be able to test the "Links" page properly, we'll need to add some content.
Use the administration interface to create a folder called "Links" (within the root of the
content node tree). Feel free to add the following description for this folder:

The links folder contains all the links that we wish to share with the rest of the world. Use the tree-
menu on the left hand side to navigate the links collection. Each and every link belongs to at least
one category. The categories are folders. Click on a folder to expand/view it's contents.

Don't forget to assign the "Links" folder to the correct/corresponding section (the
"Links section"). As before, the section will be used in conjunction with the template
override. Now, create a couple of sub-folders within the "Links" folder. The sub-folders
will act as categories. Feel free to create the following sub-folders:

Name: Description:

Chess sites This folder contains links to a couple of very popular chess sites on the internet.

Educationa
l sites

This folder contains links to popular academic institutions. Stay in school; don't
do drugs!

eZ publish - http://ez.no 64 of 72

Local sites This folder contains links to some local sites. Warning! Local sites tend to be
boring and lame.

News sites This folder contains links to news sites. Don't believe everything you read.
Politicians just love to brainwash the masses.

Each link will be put inside one of the sub-folders. Use the built-in "Link" content class
to create a couple of nodes containing link objects. Make sure that you type something into the
"Title" and the "URL" fields (in this particular case, the rest of the fields can
be safely ignored). Feel free to use the following example data:

Chess sites:
Chess Doctor - http://www.chessdoctor.com
Chess King - http://www.chessking.com
Chess Kit - http://www.chesskit.com
Test Your Chess - http://www.testyourchess.com

Educational sites:
Berkeley - http://www.berkeley.edu
Stanford - http://www.stanford.edu
University of Twente - http://www.utwente.nl
University of Oslo - http://www.uio.no

Local sites:
eZ systems - http://www.ez.no
Skien Kommune - http://www.skien.no
Telemark Newspaper - http://www.ta.no
Varden Newspaper - http://www.varden.no

News sites:
BBC News - http://www.bbcnews.co.uk
Sky News - http://www.sky.com/skynews/home
Slashdot - http://www.slashdot.org
The Register - http://www.theregister.co.uk

Creating the template

Make sure that the "Links" link from within the main menu actually works (edit the
pagelayout template file and fix it). Now, if you attempt to access the link, you'll probably be
presented with a page that looks something like this:

eZ publish - http://ez.no 65 of 72

If you have been paying attention during the earlier stages of the tutorial, you should be familiar
with the stuff that comes next. What you're looking at is the default/standard full view template.
The next natural step is to change this. Use the administration interface to create a template
override. If you're still unsure about this procedure, refer to the following hints:
Override this file: "/node/view/full.tpl"
Name of new template: "full_view_links_folder.tpl"
Matching keys: folder class, links section
Base on: empty file

Now that we've created the override, let's start thinking about the template itself. On the left hand
side, we could display a list of the sub-folders that are inside the main "Links" folder.
When a sub-folder is accessed (the user clicks on it within the browser), eZ publish should list the
sub-folder's contents. In this case, the sub-folders contain hyperlinks. Each of these should be
presented as a link. When clicked/accessed, the browser should follow the link by opening it in a
new window/tab. On the right hand side, we could for example display the name and the
description of the folder that was accessed. All this may sound a bit difficult at first. However, it is
actually fairly simple. We'll put it together step by step, one piece at a time.

We'll need a bit of CSS, so let's start by adding the following lines to the "tscm.css" file:

.links
{
 font-size: 80%;
 vertical-align: top;
 width: 200px;
}

Now, edit the template file that was created when you added the template override (should be
"design/tscm/override/templates/full_view_links_class.tpl") and put in the following
lines:

<div class="pagetitle">
Links
</div>
<table>
 <tr>
 <td class="links">
 {* Include the tree menu. *}
 {include uri="design:links_tree_menu.tpl"}
 </td>
 <td valign="top">
 {* Display the folder's name. *}
 {$node.name}

 {* Display the description of the folder. *}
 {attribute_view_gui
attribute=$node.object.data_map.description}
 </td>
 </tr>
</table>

As you can see, we are splitting the page into two parts (vertical split) using a table. The left
portion will be used to display the tree menu, the right portion will be used to display information

eZ publish - http://ez.no 66 of 72

about the folder that is being accessed. When the "Links" link is accessed (from within
the main menu), the right portion will automatically display its name and description (the
"Links" folder is simply just another folder from which we can extract the name and the
description fields). If you attempt to browse the "Links" page at this point, eZ publish
will generate something that looks like this:

Displaying the sub-folders

The {include uri="design:links_tree_menu.tpl"} line within the template code presented
in the previous section instructs eZ publish to include a file called
"links_tree_menu.tpl". The "design:" prefix specifically states that it should
look inside the "templates" and the "override/templates" sub-folders of the
current (tscm) design folder. Obviously, eZ publish will first try to include the
"design/tscm/templates/links_tree_menu.tpl" file. Create this file and attempt to write a
piece of template code that always loops through and displays the sub-folders of the
"Links" folder. You'll need to acquire and specify the identification number of the
"Links"-node. The folders should be displayed as links. A link should point to the full
view of the node that contains the actual folder object. Feel free to peek at/use the following
template code:

{* Loop through all sub-folders within the "Links" folder. *}
{section loop=fetch(content,
 list,
 hash(parent_node_id, __NODE_ID_OF_LINKS__,
 class_filter_type, include,
 class_filter_array, array('folder'),
 sort_by, $node.sort_array)) }

 {* Display the folder-name as a link to a full view of the node. *}

 <a href={concat("/content/view/full/", $:item.node_id, "/"
)|ezurl}>
 {$:item.name}

{* End of sub-folder loop. *}
{/section}

If you're using the code that was presented above, make sure that you replace the
"__NODE_ID_OF_LINKS__" part with the identification number of the
"Links"-folder node. Notice that we're using the fetch function directly inside a section
(without doing a "let" first). Refresh the links page. At this point, you should be looking
at a page that looks someting like this:

When you click on the name of the different folders, the template will display information about
the folder that was accessed (on the right hand side). However, regardless of the folder that was
accessed, the template will always display the entire list of sub-folders within the
"Links" folder. This happens because we hardcoded the identification number of the

eZ publish - http://ez.no 67 of 72

"Links" node.

Displaying the contents of a folder

Whenever a folder is accessed, its contents should be listed directly underneath the name of the
folder. This is similar to the visual navigation of a filesystem through a graphical user interface. To
achieve this, we must first add some sort of logic that "detects" the folder that is being
accessed. We must check if the identification number of the node being listed matches the
identification number of the node that is being accessed. We'll use the "section"
function combined with the "show" parameter to create an IF-THEN-ELSE like
mechanism:

{* Check if this node(folder) is the one that was accessed: *}
{section show=eq($:item.node_id, $node.node_id))}

 TEST

{* End of if-section. *}
{/section}

When a folder is accessed (clicked), this code will print a "TEST" string directly
underneath the target folder.

The "$:item.node_id" variable contains the identification number of the node that is
being listed. The "$node.node_id" variable contains the identification number of the
node that is being accessed. The "eq" operator is used to compare the two
identification numbers. This operator returns true if the numbers are equal (false otherwise). The
boolean output from the eq operator is handled by the "show" parameter of the section
function. If the show parameter is set to true, the template parser will process the section. If the
show parameter is set to false, the section will be skipped. Insert these lines right before the
"{* End of sub-folder loop. *}" comment of the code within the
"links_tree_menu.tpl" file. At this point, the "links_tree_menu.tpl" file should
contain the following lines:

{* Loop through all sub-folders within the "Links" folder. *}
{section loop=fetch(content,
 list,
 hash(parent_node_id, __NODE_ID_OF_LINKS__,
 class_filter_type, include,
 class_filter_array, array('folder'),
 sort_by, $node.sort_array)) }

 {* Display the folder-name as a link to a full view of the node. *}

 <a href={concat("/content/view/full/", $:item.node_id, "/"
)|ezurl}>
 {$:item.name}

eZ publish - http://ez.no 68 of 72

 {* Check if this node(folder) is the one that was accessed: *}
 {section show=eq($:item.node_id, $node.node_id)}

 TEST

 {* End of if/else structure. *}
 {/section}

{* End of sub-folder loop. *}
{/section}

Refresh the "Links" page and access/click on the different folders. The
"TEST" string will magically appear beneath the folder that was accessed/clicked.
Instead of outputting "TEST", we should be looking at the contents of the folder that
was accessed. We'll simply loop through and display the contents of the folder. The following
template code takes care of this:

{* Loop through all the nodes(links) within this folder. *}
{section loop=fetch(content,
 list,
 hash(parent_node_id, $:item.node_id,
 class_filter_type, include,
 class_filter_array, array('link'),
 sort_by, $:item.sort_array)) }

 {* Display the name of each link as a link. *}

 {$:item.name}

{* End of link-list loop. *}
{/section}

Simply replace the "TEST" string (and the line-break) with the code that was
presented above. Refresh the "Links" page and try to click on one of the folders again.
The folder's contents should be listed. The following screenshot shows what happens when the
"Educational sites" folder is clicked:

Creating a tree-style appearence

What we have done so far is that we've created a dynamic list. This list can be easily altered so
that it appears like a tree-style view. In order to do this, we will add some indentation and a fancy
set of icons.

Download the following images and put them inside the "design/tscm/images/"
directory:

eZ publish - http://ez.no 69 of 72

folder_closed.png
folder_open.png
link.png

The "folder_open" icon should be displayed in front of the folder that is being
accessed. The "folder_closed" icon should be displayed in front of all the other folders
(the ones that are not being accessed. The "link.png" should be displayed in front of
the links. In addition, the links should be slightly indented. All this can be added within a matter of
seconds by slightly altering the "links_tree_menu.tpl" file. At this point, this template
file should look something like this:

{* Loop through all sub-folders within the "Links" folder. *}
{section loop=fetch(content,
 list,
 hash(parent_node_id, __NODE_ID_OF_LINKS__,
 class_filter_type, include,
 class_filter_array, array('folder'),
 sort_by, $node.sort_array)) }

 {* Check if this node(folder) is the one that was accessed: *}
 {section show=eq($:item.node_id, $node.node_id)}

 {* Display the folder as "open". *}

 <a href={concat("/content/view/full/", $:item.node_id, "/"
)|ezurl}>

{$:item.name}

 {* Loop through all the nodes(links) within this folder. *}
 {section loop=fetch(content,
 list,
 hash(parent_node_id, $:item.node_id,
 class_filter_type, include,
 class_filter_array, array('link'),
 sort_by,
$:item.sort_array)) }

 {* Indent the stuff that comes next (creates a sub-level
effect). *}

 {* Display the name of each link as a link. *}
 <a href="{$item.object.data_map.link.content}"
target="_blank">
 {$:item.name}

 {* End of link-list loop. *}
 {/section}

 {* Else: this is not the node(folder) that was accessed. *}
 {section-else}

 {* Display the folder as "closed" (and don't list the
contents). *}

eZ publish - http://ez.no 70 of 72

http://www.ez.no/content/download/43466/110977/file/folder_closed.png
http://www.ez.no/content/download/43467/110980/file/folder_open.png
http://www.ez.no/content/download/43468/110983/file/link.png

 <a href={concat("/content/view/full/", $:item.node_id, "/"
)|ezurl}>

{$:item.name}

 {* End of if/else structure. *}
 {/section}

{* End of sub-folder loop. *}
{/section}

As you can see, we've added the icons and indented the links. In addition, we've duplicated the
code that displays the name (and the icon) of the folder that is being listed by the outer loop. This
is done in order to be able to display different icons depending on the state of the folder (the
"folder_open" icon will be displayed adjacent the folder being accessed, the
"folder_closed" icon will be displayed next to all other folders). The "section-
else" statement acts as an ELSE branch. At this point, when the the "Educational
sites" is clicked, the browser should display something that resembles the following
screenshot:

That's it. We've created a simple/generic tree navigator that could be easily altered to function in
other kind of contexts.

Same content at different locations

Two of the links that were put inside the "Local sites" folder are links to the websites of
some local newspapers. It would be nice to have these available under the "News
sites" folder. This can be easily achieved without duplicating content. Because of the unique
structure of eZ publish, a node can appear at several locations within the content node tree. The
following list of steps explain how to make the "Telemark Newspaper" node to appear
both in the "Local sites" and the "News sites" folder.
Make sure that you're logged into the administration interface.
Navigate the content tree and find the node that is titled "Telemark Newspaper".
Edit the node.
(Click on the nodes name and then the "Edit" button.)

Click the "Add locations" button.
A navigation page will appear.

Use the navigator to locate and select the "News sites" folder.
Click the "Select" button.

If you browse the "Links" part of the site and check out the "Local sites"
and then the "News sites" folder, you'll see that "Telemark Newspaper"
appears under both categories. This concludes the first part of the "Building an eZ publish
site" tutorial.

eZ publish - http://ez.no 71 of 72

eZ publish - http://ez.no 72 of 72

