Inside Livedournal's Backend

“holy hell that's a lot of hits!”

July 2004

Brad Fitzpatrick
brad@danga.com

Danga Interactive
danga.com / livejournal.com

SOMERIGHTS RESERLIED

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/1.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

The Plan

LiveJournal overview
Scaling history

Perlbal
- |load balancer

memcached
— distributed caching

MogileFS

— distributed filesystem

I * Question Policy
I - Anytime... interrupt!

Before we begin...

* Pace
- told to go slow
- too bad
- too much
— hold on tight

http://www.danga.com/words/

LiveJournal Overview

college hobby project, Apr 1999

blogging, forums

aggregator, social-networking (‘friends')

3.9 million accounts; ~half active

* 50M+ dynamic page views/day. 1k+/s at
peak hours

* why it's interesting to you...

- 90+ servers, working together

- lots of MySQL usage

- lots of failover

- Open Source implementations of otherwise
commercial solutions

LivedJournal Backend

(as of a few months ago)

Akamal |(ooooo
- o === web request
A4 ” - secure request
User Internet Internap == mail r_E[I”EEt]}
=== USErpic reque
- conditional
Il

Secure s U database
G erUers ‘ \ BiglP Mail user data

Proxy | *—.4'

Web } Pool of Peers
I_'—
o
web |} MEMCACHE n
NP 7| servers Pool of Master/Sla
 — 00 aster/alaves
=
Jesus =
il
o GLOBAL
05T CLUSTER
[m]
[m]
m|

[[= = = I = s I = = v [= s Y = = i I = s I o O = i I = s Y = = s I o = I = = i I = Y Y = O o = I = = Y = = i I = o = = s = = = = o
]]]]

]]]
CartmanJH Chef JH Santa rg’-‘ Green JI" Riheyergn Big Buned4 Eyndit:atiun4

USER CLUSTERS |

I * From 1 server to 90+....
- where it hurts
I - how to fix
* Learn from this!
- don't repeat my mistakes
— can implement much of our design on a single
server

Backend Evolution

I * shared server (killed it)
I * dedicated server (killed it)

One Server

— still hurting, but could tune it
- learned Unix pretty quickly
- CGl to FastCGil

* Simple

N

I * Site gets slow eventually.
I - reach point where tuning doesn't help

One Server - Problems

* single point of failure

* Need servers
- start “paid accounts”

Two Servers

* Paid account revenue buys:
- Kenny: 6U Dell web server
- Cartman: 6U Dell database

server
* bigger / extra disks

* Network simple
- 2 NICs each

e Cartman runs MySQL on
Internal network

I Two Servers - Problems

* Two points of failure
I * No hot or cold spares

* Site gets slow again.
- CPU-bound on web node
- heed more web nodes...

I * Buy two more web nodes (1U this time)
- Kyle, Stan
e QOverview: 3 webs, 1 db
* Now we need to load-balance!

- Kept Kenny as gateway to outside world
- mod_backhand amongst 'em all

Four Servers

=1 |
—— @

I * web nodes broadcasting their state

- free/busy apache children
- system load

mod_backhand

* internally proxying requests around
- network cheap

I * Points of failure:
- database
I - kenny (but could switch to another gateway
easily when needed, or used heartbeat, but we
didn't)
e Site gets slow...
- 10-bound
- need another database server ...
- ... how to use another database?

Four Servers - Problems

Five Servers
introducing MySQL replication

* We buy a new database server
* MySQL replication

* Writes to Cartman (master)

* Reads from both

Writes/
Reads

~
\ T Replication
|

Reads

Slave

I e get db_handle() : $dbh
— existing
I * get_db _reader() : $dbr
— transition to this
- weighted selection
* permissions: slaves select-only
- mysql option for this now
* be prepared for replication lag

- easy to detect in MySQL 4.x
— user actions from $dbh, not $dbr

Replication Implementation

More Servers

Site's fast for a while,
Then slow
More web servers,

More database slaves, |

10 vs CPU fight

BIG-IP load balancers

- cheap from usenet

- LVS would work too

- nowadays: wackamole

FFFFFFF

Chaos!

Where we're at...

hEY
web request
secure request

=== mail request
userpic request
conditional

7] database

user data

—J)

Pool of Peers

—

Pool of Master/Slaves

Internap

Secure
SErvers

MEMCACHE
HetApp

==
Jesus J

CartmanJH Chef JH Santa rg’-‘ Green JI" Riheyergn Big Buned4 Eyndit:atiun4

USER CLUSTERS |

I Problems with Architecture

I “This don t scale...”

e Slaves upon slaves doesn't scale well...
— only spreads reads

w/ 1 server w/ 2 servers

500 reads/s

250 reads/s

200 write/s

250 reads/s

200 writes/s 200 write/s

Eventually...

* databases eventual consumed by writing

400

write/s

400

write/s |

400 |
Wwrite/s

400
write/s

400

write/s

400 |
write/s

400
write/s

I Not to mention,
* Database master is point of failure
I * Reparenting slaves on master failure tricky at

best
— (without downtime)

I Spreading Writes

* Our database machines already did RAID

* We did backups

* So why put user data on 6+ slave machines?
(~12+ disks)
— overkill redundancy
— wasting time writing everywhere

I Introducing User Clusters
* Already had get db handle() vs
get db reader()
* Specialized handles:

* Partition dataset
- can't join. don't care. never join user data w/
other user data

* Each user assigned to a cluster number
* Each cluster has multiple machines

- writes self-contained in cluster (writing to 2-3
machines, not 6)

I User Cluster Implementation

e $u = LJ::load user(“brad”)
— hits global cluster
— $u object contains its clusterid

* $dbcm = LJ::get_cluster _master($u)
- writes
— definitive reads

* $dbcr = LJ::get_cluster reader($u)
- reads

User Clusters

SELECT userid,
clusterid FROM

/ \ 12 User Cluster 3

Global Slave

—
—

* almost resembles today's architecture

userid: 839

Clusterid: 2 User Cluster 2

SELECT
FROM

user WHERE WHERE
user="'bob' userid=839
NE= \

OMG i like
totally hate
my parents
they just
dont
understand me
and i h8 the
world omg 1lol

rofl *! /-
AN .

add me as a
friend!!!

I * per-user numberspaces

User Cluster Implementation

- can'tuse AUTO_INCREMENT
- avoid it also on final column in multi-col index:
(MylSAM-only feature)
* CREATE TABLE foo (uid INT, postid INT
AUTO_INCREMENT, PRIMARY KEY (userid, postid))

* moving users around clusters

- balancing disk IO

- balance disk space

— monitor everything
* cricket
* nagios
* ...whatever works

I DBI::Role — DB Load Balancing

I * Our library on top of DBI
I - GPL; not packaged anywhere but our cvs

* Returns handles given a role name
- master (writes), slave (reads)
— directory (innodb), ...
- cluster<n>{,slave,a,b}
- Can cache connections within a request or
forever

* Verifies connections from previous request
* Realtime balancing of DB nodes within a role

- web / CLI interfaces (not part of library)
- dynamic reweighting when node down

Where we're at...

hEY
web request

secure request
=== mail request

userpic request

conditional
7] database

user data

—J)

Pool of Peers

—

Pool of Master/Slaves

Internap

Secure
SErvers

MEMCACHE

HetApp

CartmanJH Chef JH Santa rg’-‘ Green JI" Riheyergn Big Buned4 Eyndit:atiun4

USER CLUSTERS |

- lame
* n x User cluster masters
- n X lame.

e Slave reliance
— one dies, others reading too much

Points of Failure

* 1 x Global master

Solution?

Master-Master Clusters!

— two identical machines per cluster
* both “good” machines

- do all reads/writes to one at a time, both
replicate from each other

- intentionally only use half our DB hardware at a
time to be prepared for crashes

- easy maintenance by flipping active node

- backup from inactive node

TA B

I * failover can't break replication, be it:
I — automatic

Master-Master Preregs

* be prepared for flapping
- by hand
* probably have other problems if swapping, don't need
more breakage

* fun/tricky part is number allocation
— same number allocated on both pairs
- avoid AUTO INCREMENT
— cross-replicate, explode.
- do your own sequence generation w/ locking, 3™
party arbitrator, odd/even, etc...

I Cold Co-Master

* inactive pair isn't getting reads

but not useful (few min to hours)
* switch at night, or
* sniff reads on active pair, replay to inactive

guy Clients

v !

I * after switching active machine, caches full,

Hot cache,
happy.

Cold cache,
sad. TA

Summary Thus Far

Dual BIG-IPs (or LVS+heartbeat, or..)
~40 web servers

1 “global cluster”:
— non-user/multi-user data
— what user is where?

- master-slave (lame)
* point of failure; only cold spares

* pretty small dataset (<4 GB)
- future: MySQL Cluster!
* in memory, shared-nothing, 99.999% uptime

bunch of “user clusters”:
- master-slave (old ones)
- master-master (new ones)

Static files...

web request
secure request
mail request
userpic request
conditional
fatabase

Directory

Internet

Internap

ioQ

SH

user data

Secure ‘ \ . 1
SErvers BiglP

rIllrmq.ur } L.J

Web Pool of Peers
I_'—
Web MEMCACHE n
HetApp pdo
SErvers
Pool of Master/Slaves
=
Jesus =
b |
o GLOBAL
05T CLUSTER
[m]
[m]
m|

[[= = = I = s I = = v [= s Y = = i I = s I o O = i I = s Y = = s I o = I = = i I = Y Y = O o = I = = Y = = i I = o = = s = = = = o
]]]]]

CartmanJH

]
Chef rg’-‘

Big Buned4

Eyndit:atiun4

_Sants JW

Green JI"

]
Ribeye rg’]

USER CLUSTERS |

I e static content
I - images, CSS

Dynamic vs. Static Content

- TUX, epoll-thttpd, etc. w/ thousands conns
- boring, easy
* dynamic content

— session-aware
* site theme
* browsing language
— security on items
- deal with heavy (memory hog) processes

- exciting, harder

Misc MySQL Machines

Akamai |Doooo
I i o === web request
o - . secure request
Directory o
User Internet Internap mail request
=== Userpic request
conditional
Secure 7] database
Servers user data
Pool of Peers
web [k MEMCACHE n
Hethpp oo Servers .
Pool of Master/Slaves
| ==
BEEUE - .

GLOBAL

05T CLUSTER
]
]
]
I OO0 000000 00000000 00000000 00000000 O0OO0OO0O0OOO0oDOOO0OO0OOoO0o0Oao
]]]]]]]
CartmanJH Chef JH Santarg"‘ GreenJI" Riheyergn Big Buned4 Eyndit:atiun4

USER CLUSTERS |

MyISAM vs. InnoDB

We use both
MyISAM

- fast for reading xor writing,

- bad concurrency, compact,

- no foreign keys, constraints, etc
- easy to admin

InnoDB
- ACID

— good concurrency
* long slow queries while updates continue
* directory server

Mix-and-match.

I Postfix & MySQL

I * 4 postfix servers
- load balance incoming connections w/ BIG-IP
— each runs tiny MySQL install

* replicates one table (email_aliases)
* Incoming mail uses mysqgl map type
- To: brad@livejournal.com
- SELECT email FROM email_aliases WHERE
alias='brad@livejournal.com’

* Don't have rebuild huge DBM files every few
minutes

Logging to MySQL

mod_perl logging handler
new table per hour

- MyISAM

Apache access logging off

- diskless web nodes, PXE boot
— apache error logs through syslog-ng

INSERT DELAYED
- increase your insert buffer if querying

minimal/no indexes
- table scans are fine

background job doing log analysis/rotation

Load Balancing!

Akamai |Doooo
' = === weh request
o || - secure request
User Internet Internap mail request
=== Userpic request
B conditional
- - database
Secure . . O
G erUers BiglP \ Mail user data
1 L —
o
Proxy li “‘J
Web Pool of Peers
web |h MEMCACHE n
Hethpp oo Servers
——————— | Pool of Master/Slaves
==
Jesus =
S
u GLOBAL
05T CLUSTER
]
]
]

[[= = = I = s I = = v [= s Y = = i I = s I o O = i I = s Y = = s I o = I = = i I = Y Y = O o = I = = Y = = i I = o = = s = = = = o
]]]]]

]]
CartmanJH Chef JH Santa rg’-‘ Green JI" Riheyergn Big Buned4 Eyndit:atiun4

USER CLUSTERS |

I Load Balancing Problem
I Overview

* slow clients (hogging mod_perl/php)
I - even DSL/Cable is “slow”

- need to spoon-feed clients
* who will buffer?

* heterogeneous hardware and response
latencies

- load balancing algorithms
— unlucky, clogged nodes

* dealing with backend failures

* The “Listen Backlog Problem”
- is proxy/client talking to kernel or apache?

* live config changes

I Two proxy / load balancing
I layers

* 1: IP-level proxy
I - little or no buffering

* 1 or 2 machines
- hot spare, stateful failover

* finite memory
- Gbps+ switching
* 2: HTTP-level proxy
- more machines
- buffer here

I * Options:

I — Commercial:

Proxy layer 1: IP-level

* BIG-IP, Alteon, Foundry, etc, etc...

- Open Source:
e Linux Virtual Server, Wackamole*

* load balance methods:
- round robin, weighted round robin
— least connections

* some have L7 capabilities
- useful, but still need another proxy layer...

I * Options:
I - mod_ proxy

Proxy layer 2: HTTP-level

* “typical” setup with mod_perl

* to one host by default

* mod_rewrite + external map program (prg:) with
mod_proxy dest ([P])

- broadcast Apache free/idle status from Apache scoreboard
- flakey

* “proxy connect error” to clients
- pound
- mod_backhand
- Squid
- plb (pure load balancer)
* Frustrated, needy, we wrote our own...

Perlbal

Perl
uses Linux 2.6's epoll
single threaded, event-based

console / HTTP remote management
- live config changes

handles dead nodes

static webserver mode

- sendfile(), async stat() / open()
plug-ins

- GIF/PNG altering

Perlbal: Persistent Connections

* persistent connections
— perlbal to backends (mod_perls)
- know exactly when a connection is ready for a

new request
* keeps backends busy

e connection known good
— tied to mod_perl, not kernel

* verifies new connections
— one new pending connect per backend
- verifies backend connection
* OPTIONS request w/ keep-alive
* response quick for apache
* multiple queues

- free vs. paid user queues

I Perlbal: cooperative large file
I serving

* large file serving w/ mod_perl bad...
I - buffering

* internal redirects
- to URLs (plural) or file path

* (hence Perlbal's web server mode)
- client sees no HT TP redirect

* The path:

- Perlbal advertises “X-Proxy-Capability: reproxy”
to backend

- backend (mod_perl) does path trans & auth,
sees proxy capability, sends URL/path back in

header, not response
* let mod_perl do hard stuff, not push bytes around

Internal redirect picture

i .

1.HTTP request T 6. Merged Response (3's headers, 5's body)

Perl ba I 5. Response
2. HTTP reguest w/
#-Proxy-Capabilities: reproxy \
4. Request
5 JHetEsiEs, TUX, thttpd,
¥-Reproxy-URL: http://, http:// mogstured
mod_perl
TUX thitpd, | [

mogstored

D000

MogileFS: distributed filesystem

* looked into Lustre, GFS, scared of in-
development status

* MogileFS main ideas:
—- files belong to classes
* classes: minimum replica counts (thumbnails == 1)

- track what devices (disks) files are on
* states: up, temp_down, dead

— keep replicas on devices on different hosts
* Screw RAID! (for this, for databases it's good.)

— multiple tracker databases
* all share same MySQL cluster database

- big, cheap disks (12 x 250GB SATA in 3U)
- dumb storage nodes

MogileFS components

* clients
- small, simple Perl library
I - FUSE filesystem driver (unfinished)
* trackers
- interface between client protocol and MySQL
Cluster

* MySQL Cluster

- In memory, multiple machines

e Storage nodes

- NFS or HTTP transport
* [Linux] NFS incredibly problematic

- HTTP transport is Perlbal with PUT & DELETE
enabled

FotoBilder image
GET request

Caching!

User

Akamai |Doooo

F o

]

| :
Internet Internap

ioQ

Secure
SErvers
L

Hethpp oo Servers
==
Jesus
I | o
]
[a = =]
]
]
]
O

GLOBAL
CLUSTER

MEMCACHE

SH

web request
secure request
mail request
userpic request
conditional
fatabase

user data

—J)

Pool of Peers

—

Pool of Master/Slaves

[[= = = I = s I = = v [= s Y = = i I = s I o O = i I = s Y = = s I o = I = = i I = Y Y = O o = I = = Y = = i I = o = = s = = = = o

]

]

]

]

]

Big Buned4

Eyndit:atiun4

CartmanJH

]
Chef rg’-‘

_Sants JW

Green JI"

]
Ribeye rg’]

USER CLUSTERS |

I * caching's key to performance
I e can't hit the DB all the time

Caching

- MyISAM: major r/w concurrency problems

- InnoDB: good concurrency
* not as fast as memory

- MySQL has to parse your queries all the time
* better with new MySQL 4.1 binary protocol
* Where to cache?

- mod_perl caching (address space per apache child)

- shared memory (limited to single machine, same with
Java/C#/Mono)

- MySQL query cache: flushed per update, small max
Size

- HEAP tables: fixed length rows, small max size

memcached

http://www.danga.com/memcached/

our Open Source, distributed caching system
run instances wherever there's free memory
no “master node”

clients distribute requests

In use by:

- Livedournal, Slashdot, Wikipedia, Meetup, malil
systems, efc...

protocol simple and XML-free; clients for:

- perl, java, php(x3), python, ruby, C(?)...

How memcached works

* requests hashed out amongst instance

“buckets”
- CRC32("key”) = 383472 % num_buckets = 6
- bucket 23 ... server 10.1.0.23: send: "key” =

T ”
value
3 hosts, 7 buckets; 512 MB = 1 bucket (arbitrary)

10.1.0.18 10.1.0.20 10.1.0.23
1024 MB; buckets 0-1 2048 MB; buckets 2-5 512 MB; bucket 6

weather = dismal key = value
tu:29323 = 1091029955

memcached — speed

C

— prototype Perl version proved concept, too slow
async |O, event-driven, single-threaded
libevent (epoll, kqueue, select, poll...)

- run-time mode selection

lockless, refcounted objects

slab allocator

— glibc malloc died after 7~8 days
* variable sized allocations, long life = difficult

- slabs: no address space fragmentation ever.
O(1) operations

- hash table, LRU cache

multi-server parallel fetch (can't do in DBI)

I * 10 unique hosts
I - none dedicated

LivedJournal and memcached

e 28 instances (512 MB = 1 bucket)
* 30 GB of cached data
* 90-93% hit rate

— not necessarily 90-93% less queries:
* FROM foo WHERE id IN (1, 2, 3)
* would be 3 memcache hits; 1 mysql query

- 90-93% potential disk seeks?
* 12 GB machine w/ five 2GB instances
- left-over 'big' machines from our learn-to-scale-
out days

I What to Cache

I * Everything?
I e Start with stuff that's hot

* Look at your logs
- query log
— update log
- slow log
* Control MySQL logging at runtime
- can't
* (been bugging them)
- sniff the queries! Net::Pcap
° count
- add identifiers: SELECT /* name=foo */

I °* more code

I — using
— populating
— Invalidating
- easy, if your API is clean

* conceptually lame

— database should do it

* kinda.

* database doesn't know obiject lifetimes
- putting memcached between app and DB doesn't work

* more stuff to admin
- but memcached is easy
— one real option: memory to use

Caching Disadvantages

I MySQL Persistent Connection
I Woes

* connections == threads == memory

* max threads
- limit max memory

* with 10 user clusters:
- Bob is on cluster 5
— Alice on cluser 6
- Do you need Bob's DB handles alive while you
process Alice's request?

* Major wins by disabling persistent conns
— still use persistent memcached conns
- db hits are rare
- mysqgl conns quick (opposed to, say, Oracle)

Software Overview

BIG-IPs

Debian

- Linux 2.4

- Linux 2.6 (epoll)
mod_perl
MySQL

Perlbal
MogileFS

Questions?

Akamal |(ooooo
a - === web request
Q - secure request
User Internet Internap mail rFqUEH
=== USEerpic request
B conditional
B . fatabase
Secure H . . O
Cervers BiglP Mail user data
B
Proxy li *—lél
mog1 Web Pool of Peers
LI—
m]
web b MEMCACHE n
mogZ HetApp poo Cervers
- Pool of Master/Slaves
mog.. =
Jesus =
Ehhhal
u GLOBAL
o7 CLUSTER
[m] I
]
[m]

i = = = = = = = o = = = = = = I = I o s s = i i = = o i = = = = = = o = = = = I = = [= [o [y = s s = = = = [y

[u]

[u]

]

[u]

Cartman |||

O
Chef ’g’-l

_santa Q]

]
Green JH

]
Ribeye rg“

USER CLUSTERS | x10

Big Bunen:q

Syndicatiunri

Thank youl!

Questions to...
brad@danga.com

Slides linked off:
http://www.danga.com/words/

