and BIND

Pro DNS and BIND

Ron Aitchison

Apress-

Pro DNS and BIND
Copyright © 2005 by Ron Aitchison

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-494-0
Library of Congress Cataloging-in-Publication data is available upon request.
Printed and bound in the United States of America 9 8 7 6 54 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Technical Reviewer: Brian Wilson

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc

Copy Editor: Ami Knox, Susannah Pfalzer

Assistant Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Linda Weidemann, Wolf Creek Press

Proofreader: Linda Seifert

Indexer: Valerie Perry

Artist: Kinetic Publishing Services, LLC

Interior Designer: Van Winkle Design Group

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The sample files and source code for this book is available to readers at http://www.apress.comin the
Downloads section.

To my parents, Gordon and Vera Aitchison.
Any good characteristics I possess I owe entirely to their
good genes and a good upbringing. My bad characteristics
I had to work at strenuously on my own.

Contents at a Glance

About the AUthor o XXi
About the Technical Reviewer i XXiii
ACKNOWIBAgMENTS XXV
INtrodUCHiON XXVii
PART 1 Principles and Overview
CHAPTER 1 AnlntroductiontoDNS.................. 3
CHAPTER 2 Zone Files and Resource Records 21
CHAPTER 3 DNSOperations......................c. ... 39
CHAPTER 4 DNSTYPES.o 61
CHAPTERS5 DNSandIPv6................., 77
PART 2 Get Something Running
CHAPTER 6 InstallingBIND.................., 95
CHAPTER7 BINDTypeSamples......................cooiiiiiiiiiiii.. 121
CHAPTER8 CommonDNSTaskscooiiiiiiiiiii.. 155
CHAPTER 9 DNS DiagnosticsandTools.................................... 183
PART 3 DNS Security
CHAPTER 10 DNS Secure Configurations 235
CHAPTER 11 DNSSEC............ 283
PART 4 Reference
CHAPTER 12 BIND Configuration Reference................................. 331
CHAPTER 13 ZoneFileReference 405

PART 5

CHAPTER 14
CHAPTER 15

PART 6

APPENDIX A
APPENDIX B

CONTENTS AT A GLANCE

Programming
BIND APIs and Resolver Libraries.............................. 475
DNS Messagesand Records 507
Appendixes
Domain Name Registration.................................... 533
DNSRFCS ... 541

v

Contents

Aboutthe AUthor XXi

About the Technical Reviewer xxiii

ACKNOWIBAgMENTS XXV

Introduction XXVii
PART 1 Principles and Overview

CHAPTER1 AnlintroductiontoDNS 3

A Brief History of Name Servers. ..., 3

Name Server BasiCS ... 4

The Internet Domain Name System 5

Domainsand Delegation 5

Domain Authority 6

DNS Implementation and Structure 8

Root DNS Operations ...t 9

Top-LevelDomains i 11

DNS System Components ..., 15

Zonesand ZoneFiles 15

Master and Slave DNS Servers............................... 17

DNS Software. 17

SUMMANY ... e e 18

CHAPTER 2 Zone Files and Resource Records 21

ZoneFileFormat 21

ZoneFile Contents. ... 22

AnExampleZoneFile........... 23

The STTLDIrective 26

The $ORIGIN Directiveoo i, 27

The SOAResource Record. ..., 28

The NSResource Record, 30

The MX Resource Record. 32

The AResource Record i, 33

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

CNAME Resource Record.ccoiiiii i, 34
When CNAME Records MustBe Used 36
Additional Resource Records. ... 36
PTRResource Records..............cooviiiiiiiiiiens. 36
TXTResource Records ...t 37
AAAA Resource Records. ... 37
NSEC, RRSIG, DS, DNSKEY, and KEY Resource Records........... 37
SRV Resource Records 37
Standard Configuration File Scenarios.............................. 37
SUMMANY ... 37
DNSOperations ... 39
The DNS Protocol i 39
DNS QUEMIES. ..o 40
Recursive QUEriES 41
lterative (Nonrecursive) Queriesoov.s. 43
Inverse QUEriESt 45
DNS Reverse Mapping ... 45
IN-ADDR.ARPA Reverse-Mapping Domain 45
Zone Maintenance.oo it 52
Full Zone Transfer (AXFR) 53
Incremental Zone Transfer (IXFR) 54
Notify (NOTIFY) 55
DynamicUpdate................. 55
Alternative Dynamic DNS Approaches......................... 56
Security OVerview 57
SUMMANY ... 59
DNSTypes i 61
Master (Primary) Name Servers ..., 62
Slave (Secondary) Name Servers................cccoiiiiiiiiin... 64
Slave (Secondary) DNS Behavior 65
Caching Name Servers. ...t 67
Caching Implications. i, 69
Forwarding (Proxy) Name Servers ..., 69
Stealth (DMZ or Split) Name Server............................. ... 71
Stealth Servers andthe View Clause 72
Stealth Server Configuration 72
Authoritative-only Name Server ol 74

SUMMANY ... 75

CHAPTER 5

PART 2

CHAPTER 6

CHAPTER 7

CONTENTS
DNSandIPv6.. 77
PG . . 79
IPv6 Address Notation................. 80
IPv6 AddresS TYPESo 80
Prefix or Slash Notation 81
Global Unicast IPv6 Address Allocation 81
IPv6 Global Unicast Address Format........................... 82
Status of IPv6 DNS Support. ... 84
The AAAA vs. A6 Resource Record 84
Mixed IPv6 and IPv4 Network Support......................... 84
IPv6 Resource Records. ... 85
The AAAAResource Record. ..., 87
Reverse IPvE Mapping i 88
The IPv6 PTR Resource Record. ..., 91
SUMMANY ... e 92
Get Something Running
InstallingBIND ... 95
Fedora Core 2 Installation 96
UpgradingBIND 9 97
Configuring BIND 9 100
FreeBSD Installation 103
BIND9 Nonbasenstall..........................cooiiiit 104
BIND9Baselnstall .. 104
FreeBSD 5.3 ISSUES 105
Building BIND from Source ...t 106
Windows Server 2000 Installation 108
SUMMArY 118
BIND Type Samples .. 121
BeforeWe Start 121
Configuration Layout....... ... 122
Configuration Conventions.......................ocoiinn.. 122
Zone File Naming Convention 123
Required ZoneFiles............l 124
BIND named.conf File Formatand Style 129
Standard Zone Files. 130

ix

X

CONTENTS

CHAPTER 8

Master DNS Server ... 132
Master Name Server Configuration 132
Slave DNS Servert 134
Slave Name Server Configuration............................ 134
Caching-only DNS Server. ...t 137
Caching-only Name Server Configuration..................... 137
Forwarding (a.k.a. Proxy, Client, Remote) DNS Server 139
Forwarding Name Server Configuration....................... 139
Stealth (a.k.a. Splitor DMZ) DNS Server........................... 141
Stealth Configuration. 142
Authoritative-only DNS Server 145
Authoritative-only Name Server Configuration................. 145
View-based Authoritative-only DNS Server......................... 147
View-based Authoritative-only Name Server Configuration. 147
Security and the view Section..................... 150
SUMMANY ... 153
CommonDNSTasks 155
Delegate a Subdomain (Subzone). 156
Domain Name Server Configuration.......................... 156
Subdomain Name Server Configuration. 158
Virtual Subdomains. 160
Domain Name Server Configuration.......................... 160
Configure Mail Servers Fail-Over 162
Delegate Reverse SubnetMapscocviiiiiiint 162
Assignee ZoneFile............... 163
Assignor (End-user) ZoneFile ...l 164
DNSLoadBalancing.............cocoiiiiiiii i 165
Balancing Mail L 165
Balancing Other Services..................... i, 166
Balancing Services 167
Controlling the Round-Robin 167
Effectiveness of DNS Load Balancing 167
Definean SPFRecord. i 168
TXTRRFormat. ... 169
SPFtypeValues 170
SPF Record Examples. ... 174
Supporting http://example.com i 177

Apache Configuration 178

CHAPTER 9

CONTENTS

Out-of-Sequence Serial Numbers.t 179
Use of Wildcards in Zone Files 180
SUMMANY ... 181
DNS Diagnosticsand Tools................................ 183
DNSUtilities 183
The nslookup Utility. ... 184
nslookup Command Format. 185
Quick Examples 185
OptioNS. . ..o 187
Examples: CommandLinecoiiiiiiiia... 189
Example: Interactive Mode. 190
BINDdigUtility.o 191
Quick Examples 192
digSyntax. ... 192
digOplions ... 193
digExamples ... 196
digOutput. ... 198
digResponseValues.................oiiii i 200
BIND named-checkconf Utility 201
named-checkconf Syntax. 201
named-checkconf Options.................................. 201
BIND named-checkzone Utility 202
named-checkzone Syntax 202
named-checkconf Options.................................. 202
INAC . 203
rdecSyntax. ... 204
mMAc Options 204
rndc.conf Clauses and Statements........................... 204
rndc Configuration Examples......................, 206
rndc Commands. i 210
rndc-confgen Utility. 211
rndc-confgen Syntax............. ... 211
rndc-confgen Options. ... 212
BIND nsupdate Utility i 213
nsupdate Syntax 213
nsupdate Options................ i 213
nsupdate Command Format 214

nsupdate Example................. ...l 215

Xi

Xii

CONTENTS

PART 3

CHAPTER 10

dnssec-keygen Utility 216
dnssec-keygen Syntaxl 217
dnssec-keygen Optionsl 217
dnssec-keygen Examples.l 219

dnssec-signzone Utility 219
dnssec-signzone Syntax.o it 220
dnssec-signzone Options.. 220
dnssec-signzone Examples, 222

Diagnosing DNS Problems.................. o i, 223
Before the Problem Happens................................ 224
When the Problem Occurs 225

SUMMArY ... 230

DNS Security

DNS Secure Configurations 235
Security Overview and Auditl 236
DNS Normal DataFlow................. 237
Security Classification...................................... 238
Administrative Security. 239
Up-to-Date Software....................., 239
Limit Functionality L 240
Limit Permissions 241
Running BIND As Nonroot. ...t 245
BINDinaChrootJail....................................... 251
Streamthelog............o 256
Software Diversity 257
A Cryptographic OVerviewc.ooiririiii e, 257
Symmetric Cryptography 258
Asymmetric Cryptography ...t 259
Message Digests 260
Message Authentication Codes.............................. 261
Digital Signatures.o i 262
DNS CryptographicUse ..., 262
Securing Zone Transfers. i 263
Authentication and Integrity of Zone Transfers................. 265

TSIG Configuration.o i 265

CHAPTER 11

PART 4

CHAPTER 12

CONTENTS

Securing Dynamic Updates 270
TSIG DDNS Configuration................................... 272
SIG(0) Configuration 276

SUMMANY ... 281

DNSSEC........................ . 283

The DNSSEC Environment 283
Islands of Securityc. 284
Chainsof Trust i 286
Securing or SigningtheZonel 288
Secure Zone Maintenance ...l 296
Secure Delegation................ i 299
Dynamic DNSand DNSSECooiintt. 300

DNSSEC Implementation i, 301
Securing the example.comZone............................. 301
Establishing a Trusted Anchor 311
Signing the sub.example.comZone.......................... 314
Creating the Chainof Trust. 315
KeyRollover 317

DNSSEC Lookaside Validation.................................... 323
DLV Configuration i 324
DLV SEIVICE. ... e 326

SUMMANY ... 327
Reference

BIND Configuration Reference 331

BIND Command Line.................c i, 331
BIND Debug Levelsco i, 332
BINDSignals..............oooi i 333

BIND Configuration Overviewcoiiiiiiiiininn. 334
Layout Styles ... 335
named-checkconf IsYour Friend. 336

BINDCIAUSES oo e e e 336
BIND address_match_list Definition.......................... 339
BINDaclClause ... 341
BIND controls Clause., 342

BIND include Statemento 343

Xiii

Xiv

CONTENTS

BINDkey Clause. ... 345
BIND logging Clause, 345
BIND Iwres Clausecovirii e 346
BIND mastersClauseccciiiiiiiiin... 346
BIND options Clause ..., 347
BIND server Clausecoovirinie e 348
BIND trusted-keysClausecooa... 349
BIND view Clause. 350
BINDzone Clauseccoviriniiiiiiaeaenn, 351
BIND Statements...............o i 352
BIND controls Statementsl 363
inetStatement 363
BIND logging Statements.....................l 364
channel Statement 365
category Statement. ... 367
BIND Resolver Statements............... i 370
VW 370
search 370
NAOtS ... 371
BIND Transfer Statements L. 371
allow-notify. 371
allow-transfer. 372
allow-update. 372
allow-update-forwardingl 373
also-notify. 374
alt-transfer-source, alt-transfer-source-v6.................... 374
ixfr-from-differences............ 375
MaX-journal-Sizettt 375
max-refresh-time, min-refresh-time 376
max-retry-time, min-retry-time 376
max-transfer-idle-in 376
max-transfer-idle-out 376
max-transfer-time-in............ 377
max-transfer-time-out, 377
multi-master. o 377
NOtifY ..o 377
notify-source, notify-source-v6.............................. 378
provide-iXfr 379
request-ixfr. 379

serial-query-rate 379

CONTENTS XV

transfer-format. 379
transfer-source, transfer-source-v6.......................... 379
transfers-in. 380
fransfers-per-ns............ . 380
transfers-out......... 381
update-policy 381
use-alt-transfer-source. L. 382
DNSBIND Operations...............ooiiiii i 382
avoid-v4-udp-ports, avoid-v6-udp-ports. 382
check-names 382
cleaning-interval 383
COTBSIZE . ..ottt e 383
database 383
datasize. ... 383
diglup. ... 384
(0] 1<T01 (0] o 384
dual-stack-server 384
dump-file. ... 385
eANS-UdP-SIZE 385
fileS. . 385
heartbeat-interval 385
hostname 385
interface-interval 386
lame-ttl ... 386
liSten-on 386
SteN-0N-VBo 386
match-mapped-addresses. 387
max-cache-size............ 387
max-cache-ttl......... 387
max-ncache-ttl. 388
memstatistics-file 388
pid-file 388
POM. . 388
preferred-glue 388
QUETYIOG. . . oot 389
recursing-file 389
SBIVEI-Id ..o 389
SACKSIZE 389
statistics-file. 389

tep-listen-queue. ... 390

Xvi CONTENTS

fep-clients. ... 390
VB SION . 390
zone-statistics 390
DNS BIND Query Statements.l 391
additional-from-auth, additional-from-cache.................. 391
allow-quUery. 391
allow-recursion i 391
auth-nxdomain............ ... 392
blackhole.......... 392
delegation-only 392
forward 392
forwarders. 392
MINIMal-reSPoNSeSottt 393
query-source, qUery-source-v6 393
TECUISIONo 393
recursive-clients 393
root-delegation-only, 394
ISet-Order. ... 394
SOMIiSt 394
DNS BIND Security Statements. 396
algorithm. 396
disable-algorithms. L 396
dnssec-enable 396
dnssec-lookaside. 397
dnssec-must-be-secure. ...l 397
key-directory 397
random-deviCe. ... 397
SBCIEY. ... 398
sig-validity-interval 398
tkey-dhKey 398
tkey-domain........... 399
tkey-gssapi-credential 399
DNS BIND server Statements L. 399
bogus. ... 399
BANS . . 400
KBYS .o 400
fransfers ... 400
DNS BIND view Statements.................. il 400
match-clients.............. 400
match-destinations 401

match-recursive-only 401

CHAPTER 13

CONTENTS

DNS BIND zone Statements. 401
check-names 401
file. . . 401
MaSterS 402
e 402
SUMMANY ... 403
Zone File Reference.. 405
DNS Zone File Structure. ... i 405
DNS Directives. ... 406
The $ORIGIN Directive.co i, 406
The SINCLUDE Directive, 407
The STTLDirective. 409
The $GENERATE Directiveoo.. 410
DNS Resource Records ..., 411
Resource Record Common Format........................... 415
RRSEIS 418
Resource Record Descriptions, 419
IPv4d Address (A) Record ...t 419
Experimental IPv6 Address (A6) Record. 420
IPv6 Address (AAAA)Record ... 422
AFS Database (AFSDB)Recordcooiiines. 423
Address Prefix List (APL) Record. 424
ATM Address (ATMA)Record 425
Certificate (CERT)Record, 425
Canonical Name (CNAME) Record.c.ovut 426
Delegation of Reverse Names (DNAME) Record. 428
DNSKEYRecord ... 429
Delegation Signer (DS)Recordcoiuin... 430
System Information (HINFO) Record.......................... 432
Integrated Services Digital Network (ISDN) Record............. 432
IPSEC Key (IPSECKEY) Recordcoviiiinn.s. 432
Public Key (KEY)Record, 433
Key Exchanger (KX) Recordccoiiiiin... 435
Location (LOC)Recordcoviiriiiiien.. 436
Mailbox (MB) Record. ... 437
Mail Group (MG) Record, 438
Mailbox Renamed (MR) Record.............................. 439
Mailbox Mail List Information (MINFO) Record 440

Mail Exchange (MX) Recordccoiiiiiint.. 441

Xvii

xviii

CONTENTS

PART 5

CHAPTER 14

Naming Authority Pointer (NAPTR) Record. 444
Name Server (NS)Record. ..., 447
Network Service Access Point (NSAP) Record 450
Next Secure (NSEC)Recordcovviviiiiinnnt 452
Pointer (PTR)Record 453
X.400 to RFC 822 E-mail (PX)Record 455
Responsible Person (RP)Record 456
Resource Record Signature (RRSIG) Record 457
Route Through (RT)Record ...t 459
Signature (SIG)Record 459
Start of Authority (SOA)Recordl 460
Services (SRV)Record.oi i 464
SSH Key Fingerprint (SSHFP)Record 466
Text(TXT)Record. ... 467
Well-Known Service (WKS) Record. 468
X.25 Address (X25)Recordl 469
Alternative Cryptographic Algorithms. 469
User-Defined RRS 470
SUMMANY ... 471
Programming
BIND APIs and Resolver Libraries......................... 475
BIND APL OVEIVIEWottt e 475
Advanced Database APl (adb) 475
Simple Database APl (sdb)...................., 476
The Simple Database API(sdb). ..., 476
Callback Qverview. ..., 477
Registering the Callbacks. 478
Adding the Driver to BIND. ..., 481
The Callback Functions., 483
ReturningRRs. 488
Memory Management for Drivers............................ 490
Logging for Drvers ...t 491
Testingthe Driver........... i 492
sdb Sample Driver.l 493
Resolver Libraries ...t 498

POSIX Library Status................... 498

CHAPTER 15

PART 6

APPENDIX A

APPENDIX B

CONTENTS

The RES Library Set 499
Invokingthe RES Library iiiiintt. 499
The _resStructure.................coiiiiii 499
RES Library Functions., 501
SUMMArY ... 505
DNS MessagesandRecords 507
DNS Message Formats. ...t 509
DNS Message OVerviewcooiiiiniiniinen... 511
DNS Message Format. ...t 513
DNS Message Header.coviiriiiiniian... 513
DNSQUESTION SECTION ... 516
DNS ANSWER, AUTHORITY, and ADDITIONAL SECTIONS. 517
EDNSOTransactions ..., 519
OPT Pseudo RRFormat.........................cooiil. 520
DNSBinaryRRFormat...................... i 521
Security Algorithm Formats 528
NSECBitmap Format................... 529
SUMMANY .. 530
Appendixes
Domain Name Registration................................ 533
ANSWBIS ... 534
DNSRFCs............................. 541

Xix

About the Author

RONALD (RON) AITCHISON is the President of Zytrax, Inc., a Montreal-based company that spe-
cializes in wireless and wire-line IP communications. Zytrax develops its own products as well
as undertaking specialized consulting, training, system design, and development for clients.
Zytrax is currently developing the Netwidget—a business appliance family aimed at bringing
the compelling cost advantages of Open Source to small- and medium-sized companies by
offering trivial user installation, and robust and reliable operation combined with high levels
of security. Netwidget uses BIND, NSD, DHCP, Apache, Squid, ProFTP, Samba, Courier e-mail,
OpenLDAP, and OpenSSL, among many other high-quality packages, and is developed in a
mixture of C and Ruby. Zytrax supports its own and customer-hosted DNS, web, e-mail, and
LDAP services on a mixed network of Windows, Linux, and, increasingly, FreeBSD system:s,
and has been an Open Source user since 1998.

Prior to founding Zytrax in 1994, Ron worked in senior roles in development, sales, and
marketing in both Europe and the US. He started his computer career in 1973 as a grunt systems
programmer developing communications software for mainframes in a nineteenth-century
palace outside of Edinburgh, Scotland. His major achievement in those years was, as cofounder
of the local micro-club, persuading Intel to ship the UK’s second 8086 system for club use ahead
of minor competition such as IBM and others. He moved into sales and marketing for a number
of years before returning to real—technical—work when he established Zytrax. He was educated
in mechanical engineering at the University of Strathclyde in Glasgow, Scotland, a long time ago.

XXi

About the Technical Reviewer

BRIAN WILSON is the associate director of technology at the Fisher College of Business at
The Ohio State University. He has worked in the IT industry for the last 16 years. Brian spe-
cializes in network and firewall design and implementation, and he oversees and directs
all technical aspects of the Fisher College of Business. He received a BS in computer science
engineering from The Ohio State University.

In his off time, Brian spends time with his wife and three children at their country home.

Brian enjoys listening to and watching baseball. Over the past couple of years, Brian has
become determined to be a horseman with the acquisition of a new quarter horse.

XXxiii

Acknowledgments

The author would like to gratefully acknowledge the patience and forbearance of a number
of individuals during the writing of this book:

The Apress team of Kylie Johnston, Ami Knox, Ellie Fountain, and Susannah Pfalzer, who
struggled valiantly to both keep me on track and to force me to write in something vaguely
resembling the English language. Brian Wilson, who kept me on the straight and narrow when
I threatened to, and frequently did, veer into the dense underbrush. Finally and especially,
Jason Gilmore, who foolishly put the idea for this book into my head in the first place. His fre-
quent comments of “Don’'t understand this sentence/paragraph/section” on my Pulitzer Prize
winning streams of prose drove me wild but were, in every case, on the mark, and the subse-
quent rework contributed to a significant improvement on my, with hindsight, pathetic
originals.

One of the sad things about e-mail is that one never meets the individuals who took the
time from busy lives to respond to questions and provide insight and information on numer-
ous obscure topics. I would like to thank, in no particular order, Paul Vixie, Olaf Kolkman,
Miek Gieben, Jakob Schlyter, and Simon Josefsson.

Finally, I would like to single out Jacco Tunnissen, who runs the superb site www.dnssec.net,
for his help, contacts, and advice as well as the regular streams of information that he sent me
whenever I was chasing down some definitive reference and had exhausted all other avenues.

In spite of all the help, any errors are entirely the responsibility of the author.

XXV

Introduction

Every time you get e-mail, every time you access a web page, you use the Domain Name
System (DNS). In fact, over 2 billion such requests hit the DNS root-servers alone every day.
Every one of those 2 billion requests originate from a DNS that supports a group of local users,
and every one of them is finally answered by a DNS server that may support a high-volume
commercial web site or a modest, but much loved, family web site. This book is about under-
standing, configuring, diagnosing, and securing the DNS servers that do the vital work.

Many years ago when I set up my first pair of DNS servers, [wasted my time looking for
some practical advice and some sensible description of the theory involved. I found neither.

I completed the DNS rite-of-passage—this book was born from that experience.

DNS is a complex subject, but it is also unnecessarily cloaked in mystery and mythology.
This book, I hope, is a sensible blend of practical advice and theory. You can treat it as a simple
paint-by-numbers guide to everything from a simple caching DNS to the most complex secure
DNS (DNSSEC) implementations. But the background information is there for those times
when you not only need to know what to do, but you also need to know why you are doing it,
and how you can modify the process to meet your unique needs.

Who This Book Is For

This book is about running DNS systems based on BIND 9.3.0—the first stable release that
includes support for the latest DNSSEC (DNSSEC.bis) standards and a major functional
upgrade from previous BIND 9 releases. If you run or administer a DNS system, are thinking
about running a DNS system, need to upgrade to support IPv6 DNS, need to secure a DNS for
zone transfer, dynamic update, or other reasons, need to implement DNSSEC, or simply want
to understand the DNS system, then this book is designed to provide you with a single point
of reference. The book progressively builds up from simple concepts to full security-aware
DNSSEC configurations. The various features, parameters, and Resource Records that you
will need are all described and in the majority of cases illustrated with one or more examples.
The book contains a complete reference on zone files, Resource Records, and BIND’s named. conf
configuration file parameters. Programmers and the insatiably curious will find BIND’s Simple
Database API, resolver library interfaces, and the gory details of DNS wire-format messages
compelling reading.

How This Book Is Structured

This book is about the Domain Name System. Most of the examples used throughout the book
are based on the Berkeley Internet Name Domain, universally known as BIND, which is the
most widely deployed name server software in current use. BIND version 9.3.0—a major func-
tional upgrade to support the latest DNSSEC standards—was used as the baseline version for
all the examples. During the course of writing the book, version 9.3.1—a bug clearance-only

Xxvii

XXviii

INTRODUCTION

version—was released. While the book references 9.3.0 throughout, the majority of, but not all,
tests were rerun on the new version—the only difference noted was the change to the config-
ure variable used when building a base version for FreeBSD, which is related to FreeBSD, not
BIND. Readers are advised to always obtain and use the latest stable BIND version.

Like most technical books, this is a mixture of descriptive text, reference material, and
samples. For those completely unfamiliar with the subject, Part 1 (Chapters 1 to 5) is designed
to introduce DNS in a progressive manner and could be read as a classic text on the subject.
For those of a hands-on disposition, Part 2 provides an alternative entry point, with the vari-
ous earlier chapters to be read as needed. Experienced readers would typically head straight
for the meat in either Parts 3, 4, or 5, depending on their area of interest. As well as providing
help and guidance during your initial endeavors, it is my fervent hope that this book will also
provide you with an indispensable reference work for years to come.

Chapter 1, “An Introduction to DNS”

Chapter 1 provides introductory and background material to the DNS as a specific implemen-
tation of the general name server concept. The key concepts introduced are the domain name
hierarchy, delegation, DNS operational organization, the role of ICANN, and the various com-
ponents that comprise a DNS system, including zones and zone files. The chapter is for those

who are unfamiliar with the topic or the changes that have occurred in the recent past.

Chapter 2, “Zone Files and Resource Records”

Here you are introduced to the basic Resource Records and directives used to construct zone
files. An example forward-mapping zone file is introduced that is used throughout the book
and illustrates key DNS operational concepts such as resilience and location diversity. Those
with little or no knowledge of zone files and their construction will find this chapter a gentle
introduction to the topic.

Chapter 3, “DNS Operations”

This chapter describes the basic operation of a DNS system, including queries, referrals, reverse
mapping, zone transfers, and dynamic updates. A brief overview of DNS security is presented
to familiarize readers with the potential threats posed when running DNS systems. This chap-
ter is intended to give the reader a thorough grounding in the theory and background to these
topics.

Chapter 4, “DNS Types”

The text in this chapter breaks down configuring a DNS into a number of types such as master,
slave, caching only, forwarding, Stealth, and authoritative only with the objective of giving the
reader a set of building blocks from which more complex configurations can be constructed.
This chapter will be useful to those unfamiliar with the range of possibilities offered by the DNS
and its BIND implementation, including the new view clause introduced with the BIND 9 series.

INTRODUCTION

Chapter 5, “DNS and IPv6”

Chapter 5 focuses on IPv6 and the DNS features that support this increasingly widespread
protocol. A brief overview of IPv6 address structure and notation is provided for those cur-
rently unfamiliar with this topic.

Chapter 6, “Installing BIND”

This chapter covers the installation of BIND on Linux (Fedora Core 2), FreeBSD, and Windows
2000 from binary packages. For those cases where a package is not available, building from
a tarball is also described.

Chapter 7, “BIND Type Samples”

The zone and named. conf sample files for each of the DNS types introduced in Chapter 4 are
provided. While these samples can be used as simple paint-by-number implementations,
explanations are included to allow the configurations to be tailored to user requirements.

Chapter 8, “Common DNS Tasks”

A number of standard DNS configurations are described and illustrated with sample files and
implementation notes. The items covered include delegation of subdomains, load balancing,
fixing sequence errors, delegation of reverse subnets, SPF records, and the use of wildcards.

Chapter 9, “DNS Diagnostics and Tools”

The major utilities supplied with a BIND distribution, including those used for security opera-
tions, are covered with multiple use examples. The reader, however, is encouraged—especially
with dig and nslookup—to get out and explore the Internet using these tools. A practical exam-
ple is used to illustrate to some diagnostics techniques and procedures.

Chapter 10, “DNS Secure Configurations”

DNS security is broken into four parts: administrative security, securing zone transfers, secur-
ing dynamic update, and DNSSEC. An overview of general cryptographic processes including
symmetric and asymmetric encryption, digital signatures, and MACs, which form the basis of
DNS security implementations, is provided for readers unfamiliar with this topic.

Chapter 11, “DNSSEC”

This chapter deals exclusively with the latest DNSSEC.bis security standards and covers both
the theory and implementation. Zone signing, chains of trust, Zone Signing Keys and Key
Signing Keys, DNSSEC Lookaside Validation (DLV), and key-rollover procedures are all cov-
ered with practical examples.

XXix

XXX

INTRODUCTION

Chapter 12, “BIND Configuration Reference”

As suggested by the title, this is purely a reference section, and it catalogues and describes
with one or more examples the clauses and statements used in BIND’s named. conf file. The
chapter is organized in a manner that allows the reader to easily find appropriate statements
to control specific BIND behaviors.

Chapter 13, “Zone File Reference”

This is purely a reference section that describes each Resource Record in the current IANA
list—normally with one or more examples to illustrate usage.

Chapter 14, “BIND APIs and Resolver Libraries”

Designed more for programmers and designers, you will need a reasonable understanding of
C to make sense of this chapter. The new BIND Simple Database API and the original BIND
RES library are covered, together with an overview of the current status of DNS-related POSIX
interfaces.

Chapter 15, “DNS Messages and Records”

This chapter covers the gory details of DNS wire-format messages and RR formats. A reason-
able working knowledge of decimal, hex, and binary notations are required to make sense of
the chapter. Essential reading if you are developing DNS applications, when RRs are not sup-
ported by your sniffer application or you are insatiably curious about how this stuff works.

Appendix A, “Domain Name Registration”

This appendix is a collection of material, presented in FAQ format, that may help to answer
questions about registering domains in a variety of situations.

Appendix B, “DNS RFCs”
This appendix presents a list of RFCs that define the DNS and DNS-related topics.

Additional Material

In addition, the author maintains a web site about the book (www.netwidget.net/books/
apress/dns) that covers additional material, including links to alternative DNS software,
resolver language bindings, and background reading on various topics covered in the book,
which may be of use to the reader.

INTRODUCTION

Conventions

The following conventions are used throughout the book:

* The # (hash or pound) symbol is used to denote a command prompt and always pre-
cedes a command to be entered. The command to be entered starts after this symbol.

* Lines consisting of four dots (....) in zone and configuration files are used to denote that
other lines may or may not be present in these files. The dot sequence should not be
entered in the actual files.

* When describing command syntax, the following convention is used throughout:
command argument [option1] keyword [option2 [optional3] ...]

where all items in bold, which include command and keywords, must be entered as is.
Optional values are enclosed in square brackets and may be nested. Where repeated
options are allowed, a sequence of three dots is used to indicate this.

Contacting the Author

The author may be contacted at ron.aitchison@netwidget.net, and he maintains links and
other information relating to this book at www.netwidget.net/books/apress/dns.

XXXi

PART 1

Principles and
Overview

CHAPTER 1

An Introduction to DNS

The Internet—or any network for that matter—works by allocating a locally or globally
unique IP address to every endpoint (host, server, router, interface, etc.). But without the
ability to assign some corresponding name to each resource, every time we want to access
aresource available on the network, the web site www.example.com for instance, it would be
necessary to know its physical IP address, such as 192.168.34.166. With hundreds of million
of hosts and more than 50 million web sites,! it's an impossible task—it’s also pretty difficult
with even a handful of hosts and resources.

To solve this problem, the concept of name servers was created in the mid-1970s to
enable certain attributes (or properties) of a named resource, in this case the IP address of
www . example. com, to be maintained in a well-known location—the basic idea being that people
find it much easier to remember the name of something, especially when that name is reason-
ably descriptive of function, content, or purpose, rather than a numeric address. This chapter
introduces basic name server concepts and provides a bit of background regarding the evolu-
tion of the Domain Name System from a tool used for managing just a few hundred hosts to
a global utility responsible for maintaining smooth operation of the entire modern Internet.

A Brief History of Name Servers

The problem of converting names to physical addresses is as old as computer networking. Even
in times long since past, people found it easier to remember they were using a teletype device
called “tty2”rather than “port 57 of the MCCU” or whatever the addressing method then in use.
Furthermore, administrators wanted the flexibility to reconfigure equipment while leaving
users with a consistent way of describing the device they were using. In the preceding example,
the user could continue to use “tty2” even if the device had been reconfigured to be on port 23
of the mythical MCCU. Simple configuration files were typically used to perform address trans-
lation. As networking, rather than simple communications, emerged in the early 1970s, the
problem became more acute. IBM’s System Network Architecture (SNA), probably the grand-
father of networking, contained a rudimentary mainframe database for name translation when
originally published in 1974. The much-maligned Open Systems Interconnect (OSI) Model,
developed by the International Organization for Standardization (ISO—www.1s0.0rg), defined
Address/Name Translation services at the Transport Layer (Layer 4) when initially published in
1978. NetBIOS provided the NetBIOS Name Server (NBNS) when originally defined in 1984,
which later morphed into Microsoft’s Windows Internet Naming Service (WINS).

"http://news.netcraft.com/archives/web_server survey.html

CHAPTER 1 = AN INTRODUCTION TO DNS

The first ARPANET (the network that morphed into the Internet) RFC, the quaintly named
Request For Comments that document and standardize the Internet, on the concept of domain
names dates from 1981 (RFC 799), and the definitive specifications for the Internet’s Domain
Name System as we know it today were published in 1987 (RFC 1034 and RFC 1035).

Name Server Basics

When a name server is present in a network, any host only needs to know the physical address of a
name server and the name of the resource, a web site for example, it wishes to access. Using this
information, it can find the address (or any other stored attribute or property) of the resource by
interrogating (commonly referred to as querying) the name server. Resources can be added,
moved, changed, or deleted at a single location, the name server, and new information will be
immediately available to every host using this name server. Our name server is simply a special-
ized database that translates names to properties—typically IP addresses—and vice versa. Name
servers both simplify network management and make networks more dynamic and responsive
to changes.

Solutions, however, can also generate problems. If our name server is not available, then
our host cannot access any resource on the network. We have made the name server a critical
resource. So we had better have more than one name server in case of failure.

The initial solution to the problem of name server availability was to introduce Primary
and Secondary name servers. If the Primary name server did not respond to a query, the host
would retry using the Secondary name server. So critical is the name server that today it is
common to see lists of three, four, or more name servers. The terms Primary and Secondary
name servers, and even Tertiary, and Quartiary name servers, while still widely used, imply
priority of access, which works against availability. Not only would such prioritization cause
transaction bunching on the Primary name server, degrading overall performance, but in the
case where the Primary name server was inoperable, every transaction would have to wait for
a timeout before retrying with the Secondary, and so on. Most name server software uses
some form of randomized, measured response time or round-robin access to the name server
list to try and spread loads and decrease response times.

As our network grows, we start to build up a serious number of names in our name server.
This gives rise to three new problems:

1. Organization: Finding any entry in the database of names becomes increasingly slow
as we power through many millions of names looking for the one we want. We need a
method to index or organize the names.

2. Scalability: If every host is accessing our name servers, the load becomes very high.
We need a method to spread the load across a number of name servers.

3. Management. With many name records in our database, the management problem
becomes increasingly difficult, as multiple administrators attempt to update records
at the same time. We need a method to separate (known as delegating) the administra-
tion of these name (generally known as resource) records.

The need to satisfy these three requirements led to the creation and evolution of the
Internet’s Domain Name System (DNS), discussed in the next section.

CHAPTER 1 " AN INTRODUCTION TO DNS

The Internet Domain Name System

The Internet’s Domain Name System is a specific implementation of the name server concept
optimized for the prevailing conditions on the Internet. From our brief history of name
servers, we saw that three requisites emerged:

1. The need for a hierarchy of names
2. The need to spread the operational loads on our name servers
3. The need to delegate the administration of our name servers

The Internet DNS elegantly solves all three problems.

Note The standard RFCs that define the basic DNS functionality, RFC 1034 and RFC 1035, were both writ-
ten over a quarter of a century ago—1987—and authored by Dr. Paul Mockapetris while at the Information
Sciences Institute of the University of Southern California. Although many subsequent RFCs have modified
certain DNS behaviors, the core functionality remains intact. This is indeed a remarkable achievement.

Domains and Delegation

The Domain Name System uses a tree (or hierarchical) name structure. At the top of the tree
is the root node followed by the Top-Level Domains (TLDs), then the Second-Level Domains
(SLD) and any number of lower levels, each separated with a dot.

Note The root of the tree is represented most of the time as a silent dot (.), but there are times when it
is VERY important.

TLDs are split into two types:
1. Generic Top-Level Domains (gTLD): For example, . com, .edu, .net, .org, .mil, etc.
2. Country Code Top-Level Domains (ccTLD): For example, .us, .ca, .tv, .uk, etc.

Country Code TLDs use a standard two-letter sequence defined by ISO 3166.2 Figure 1-1
illustrates this diagrammatically.

2www.iso.o0rg/iso/en/prods-services/iso3166ma/02is0-3166-code-1ists/1list-en1.html

CHAPTER 1 = AN INTRODUCTION TO DNS

Root

Delegation

ccTLD

Figure 1-1. Domain structure and delegation

What is commonly called a domain name, for instance example.com, is actually a combi-
nation of an SLD name and a TLD name and is written from left to right with the lowest level
in the hierarchy on the left and the highest level on the right:

sld.tld

The term Second-Level Domain is technically precise in that it defines nodes at the second
level within the domain name hierarchy, but is long-winded. To be even more long-winded,
there are also Third-Level Domains, which are especially relevant with ccTLDS, and so on. By
convention—or perhaps laziness—the term domain, or domain name, is generally used to
describe a delegated entity, for instance, example.com, which consists of the SLD example and
the TLD com. Unless precision is required, the term domain name will be used throughout the
remainder of this book.

Domain Authority

The concepts of authority and delegation lie at the core of the Domain Name System hierarchy
and exactly mirror its hierarchical organization. Each node within the domain name hierarchy is
assigned to an authority—an organization or person responsible for the management and oper-
ation of that node. Such an organization or person is said to administer the node authoritatively.
The authority for a particular node can in turn delegate authority for lower levels of that node
within the domain name hierarchy. The rules and limitations of the authority are covered by
agreements that flow through the various nodes in the hierarchy.

The authority for the root domain lies with the Internet Corporation for Assigned Num-
bers and Names (ICANN—www. icann.org/). Since 1998, ICANN, a nonprofit organization, has
assumed this responsibility from the United States Department of Commerce. When ICANN
was established, part of its mandate was to open up that part of the domain name hierarchy
for which it is responsible to commercial competition. To facilitate this competition, it created
the concept of accredited registrars, organizations to which ICANN delegated limited responsi-
bilities for the sale and administration of parts of the domain name hierarchy.

The gTLDs are authoritatively administered by ICANN and delegated to a series of accredited
registrars. The ccTLDs are delegated by ICANN to the individual countries for administration

CHAPTER 1 " AN INTRODUCTION TO DNS

purposes. Figure 1-1 also shows how any authority may in turn delegate to lower levels in the
hierarchy; in other words, it may delegate anything for which it is authoritative. Each layer in
the hierarchy may delegate the authoritative control to the next or lower level.

In the case of ccTLDs, countries define their own rules for delegation. Countries like the
United States (ccTLD .us) and Canada (ccTLD .ca) and others have decided that they will
administer both at the national level and delegate to each state (US) or province (Canada)
using a two-character state/province code (for example, .ny = New York, .qc = Quebec,

.md = Maryland, etc.). Thus example.us is the domain name of example that was delegated
from the US national ccTLD administration, and example.md.us is the domain name of
example that was delegated from the state of Maryland in the US.

Other countries like the United Kingdom and Brazil among many have opted for func-
tional segmentation in their delegation models. Thus example. co.uk is the domain name of
example registered as a company from the UK registration authority and example.com.br is the
domain name of example registered as a company from the Brazilian registration authority.

Delegation within any domain may be almost limitless and is decided by the delegated
authority. For example, many states in the US and provinces in Canada delegate cities within
state/province domains: the domain name example.nb.us would be the town of Example in the
State of Nebraska in the United States, and indeed we could have mycompany.example.nb.us,
which would be the domain name of mycompany in the town of Example in the state of Nebraska
in the United States.

Reading a domain name from right to left will track its delegation. This unit of delegation
is referred to as a zonein the DNS specifications.

So What Is www . example.com?

From our reading previously, we can see that www.example.com is built up from www and
example.com. The domain name example.com part was delegated from a gTLD registrar,
which in turn was delegated from ICANN.

The owner of the domain chose the www part since they are now the delegated authority
for the example.com domain name. They own everything to the left of the delegated domain
name, in this case example. com.

The leftmost part, the www in this case, is called a host name. Keep in mind that only by
convention do web sites use the host name www (for World Wide Web), but a web site can be
named fred.example.com—few may think of typing this into their web browser, but that does
not invalidate the name!

Every computer that is connected to the Internet or an internal network and is accessed
using a name server has a host name. Here are some more examples:

www . example.com The company web service
ftp.example.com The company file transfer protocol server
pcl7.example.com Anormal PC

accounting.example.com The main accounting system

A host name must be unique within the delegated domain name, but can be anything the
owner of example.com wants.

CHAPTER 1 = AN INTRODUCTION TO DNS

Finally, consider this name:
Www. us.example.com

From our previous reading, we figure the domain name is example. com; the www probably
indicates a web site, which leaves the us part.

The us part was allocated by the owner of example.com (who is authoritative) and is called
a subdomain. In this case, the delegated authority for example.com has decided that their
organization is best served by a country-based subdomain structure. They could delegate the
responsibility internally to the US subsidiary for administration of this subdomain, which
could in turn create a plant-based structure; for example, www.cleveland.us.example.com
could indicate the web site of the Cleveland plant in the US organization of example. com.

To summarize: the owner can delegate, in any way they want, anything to the left of the
domain name they own (or were delegated). The delegated owner is also responsible for
administering this delegation.

Note www. example.com and www.us.example.com are commonly—but erroneously—referred to as
Fully Qualified Domain Names (FQDN). Technically an FQDN unambiguously defines a domain name to the
root and therefore must terminate with the normally silent dot; for instance, www.example.com. (with
the dot) is a valid FQDN, but www. example. com (without the dot) is not.

DNS Implementation and Structure

The Internet’s DNS implementation exactly maps the domain name delegation structure
described previously. There are name servers (servers that run DNS software) at each level in
the delegated hierarchy, and the responsibility for running the name server lies with the
authoritative control at that level. Figure 1-2 shows this diagrammatically.

=
Root &
DNS

T B .edu
DNS |

Domain [E]
(User) =
DNS

Figure 1-2. DNS mapped to domain delegation

Root

ccTLD Delegation

CHAPTER 1 " AN INTRODUCTION TO DNS

The root name servers (hereafter called the root-servers) are the most critical resource
on the Internet. When any name server worldwide is queried for information about a domain
name for which it does not currently have information, it first asks (queries) one of the root
DNS servers. There are currently 13 root-servers worldwide, described in further detail later
in this chapter. The root-servers are known to every name server in the world using a special
zone file, which is distributed with all DNS software.

The TLD name servers (gTLD and ccTLD) are operated by a variety of organizations under
ICANN agreements and described more completely later in this chapter.

The owner of a domain name has been delegated the authority for administering the
domain name and therefore has the responsibility for the operation of the user (or domain
name) name servers—there must be a minimum of two. The name server operational respon-
sibility may be delegated to an ISP, a web hosting company, or increasingly a domain name
registrar. Many companies and domain name owners, however, elect to run their own name
servers and even delegate the authority and responsibility for subdomain name servers to
separate parts of their organization.

When any name server cannot answer, or resolve, a request for a name, for instance,
fred.example.com, the query is passed to a root-server (discussed in the next section), which
returns a referral to the appropriate TLD name server, which in turn provides a referral to the
appropriate domain (user) name server. Figure 1-3 illustrates this process.

Referral to .com gTLDDNS ~ [mill DNS

=fred. le. =
Query=fred.example.com l Root

<
= Query=fred.example.com -
S > =l 1w
DNS &= o Referral to example.com DNS &SIl pns
<
Query=fred.example.com »w =W Domain
, Authoritative Answer T B (User)
N DNS

Figure 1-3. The operational DNS hierarchy

Root DNS Operations

The root-servers (root DNS) are the responsibility of ICANN but are operated under an agree-
ment known as the Cooperative Research and Development Agreement (CRADA) that was
signed between ICANN and the US Department of Commerce (www.icann.org/committees/
dns-root/crada.htm). This agreement covers the methods and processes by which updates

10

CHAPTER 1

AN INTRODUCTION TO DNS

to the root name systems are carried out. ICANN also created the Root Server System Advisory
Committee (RSSAC) to provide advice and guidance as to the operation and development of
this critical resource. The IETF was requested by the RSSAC to develop the engineering stan-
dards for operation of the root-servers. This request resulted in the publication of RFC 2870.
There are currently 13 root-servers. They occupy a reserved domain name, root-servers.net.
Each root-server typically comprises more than one physical server but shares a common IP
address. Root-servers are named from a.root-servers.net through m.root-servers.net as

shown in Table 1-1.

Table 1-1. Root-Servers

Server Operator Locations IP Address
A VeriSign Global Registry Services Dulles, VA 198.41.0.4
B Information Sciences Institute Marina del Rey, CA 1Pv4:192.228.79.201,
IPv6: 2001:478:65::53
C Cogent Communications Chicago; Herndon, VA; IPv4:192.33.4.12
Los Angeles; New York City
University of Maryland College Park, MD 1Pv4:128.8.10.90
NASA Ames Research Center Mountain View, CA 1Pv4: 192.203.230.10
F Internet Systems Consortium, Auckland, Beijing, Brisbane, 1Pv4:192.5.5.241,
Inc. (ISC) Dubai, Hong Kong, Jakarta, IPv6: 2001:500::1035
Johannesburg, Lisbon, Los
Angeles, Madrid, Monterrey,
Moscow, Munich, New York
City, Osaka, Ottawa, Palo Alto,
Paris, Prague, Rome, San Fran-
cisco, San Jose, Sao Paulo, Seoul,
Singapore, Taipei, Tel Aviv, Toronto
G US DOD Network Information Vienna, VA 1Pv4:192.112.36.4
Center
H US Army Research Lab Aberdeen, MD IPv4:128.63.2.53,
IPv6:
2001:500:1::803f:235
I Autonomica/NORDUnet Amsterdam, Ankara, Bangkok, 1Pv4: 192.36.148.17
Brussels, Bucharest, Chicago,
Geneva, Frankfurt, Helsinki, Hong
Kong, Kuala Lumpur, London,
Milan, Oslo, Stockholm, Tokyo,
Washington DC
] VeriSign Global Registry Services Amsterdam; Atlanta; Dulles, VA 1Pv4: 192.58.128.30
(2 locations); London; Los Ange-
les; Miami; Mountain View, CA;
Seattle; Seoul; Singapore; Ster-
ling, VA; Stockholm; Tokyo
K Réseaux IP Européens Network Amsterdam, Athens, Doha, Frank- 1Pv4: 193.0.14.129,
Coordination Centre (RIPE) furt, London, Milan IPv6: 2001:7fd::1
L Internet Corporation for Assigned Los Angeles IPv4:198.32.64.12
Names and Numbers (ICANN)
M WIDE Project Paris, Seoul, Tokyo 1Pv4: 12.27.33,

IPv6:

2001:dc3::35

CHAPTER 1 " AN INTRODUCTION TO DNS

Note The number 13 is not a perverse desire by anyone to operate a number of servers seen by some
cultures as unlucky, but rather a technically determined limit enabling common root-server queries to be
answered within a single 512-byte UDP transaction and hence reduce root-server loads. The 13 root-server
limit will likely remain permanent for the foreseeable future.

The job of the root-servers is to provide a referral to the authoritative name servers for
the required TLDs (gTLDs or ccTLDs). For example, if a user requests information about
fred.example.com, then the root-servers will supply a list of the authoritative name servers
for the .com TLD. In 2004, ICANN took over responsibility for the maintenance of the root-
servers TLD master file—the file that lists the authoritative servers for each TLD. Distribution
of this file to each of the operational root-servers is carried out using secure transactions. To
further increase security, the server providing the root updates is only accessible from the
operational root-servers. It is not a publicly visible server. Figure 1-4 illustrates this process.

Public Access Publicly Invisible

__ | _m.root-servers.net ICANN
(_> : 4—} Master TLD
P TTTTT T Servers File
' Secure Distribution
a.root-servers.net |- - (DNSSEC)

Figure 1-4. Root-servers update process

Top-Level Domains

As was mentioned earlier in this chapter, Top-Level Domains are split into Generic Top-Level
Domains and Country Code Top-Level Domains. Each group is administered slightly differently,
but all are controlled by ICANN. ICANN controls the gTLDs by a purely contractual process. In
the case of ccTLDs, since multiple countries are involved, the process is essentially consultative
rather than purely contractual.

Generic Top-Level Domains

Generic Top-Level Domains, or gTLDs, are controlled by ICANN using a contractual process.
When competition was introduced into the registration of domain names, ICANN established
two separate entities:

11

12

CHAPTER 1 = AN INTRODUCTION TO DNS

1. Registry Operators: Registry Operators contract with ICANN to operate the authorita-
tive gTLD DNS servers (see Figure 1-2 earlier). There is a single Registry Operator for
each of the gTLDs, for example, the US Department of Defense, Network Information
Center, is the Registry Operator for the .mil gTLD, but each Registry Operator will
operate multiple name servers. DNS queries to the root-servers are supplied with
a referral to the authoritative gTLD servers for the specific gTLD; for example, if the
query is for example.net, then the root-servers will supply the list of . net authoritative
DNS servers. Registry Operators obtain the list of SLDs from one or more Registrars.
The public has no contact with the Registry Operator. However, a number of Registry
Operators are also Registrars; for example, VeriSign, Inc., is the Registry Operator for
the .com gTLD but is also a well-known Registrar.

2. Registrars: Registrars are accredited by ICANN through a contractual process to interact
with the public to register one or more gTLDs. When you purchase or renew a domain
name, you deal with a Registrar. The Registrar maintains all the required details,
including owner name, administrative contact, billing contact, technical contact, the
authoritative name servers for the domain name, etc. The Registrar is responsible for
providing the Registry Operator for the gTLD with an extract of the data, which consists
of the Second-Level Domain Name and the name and IP addresses of the authoritative
DNS servers for the Domain. This information is exclusively used to answer DNS
queries.

The separation of functionality between the Registry Operator and the Registrar allows
the relevant organizations involved to specialize and—importantly—ensures that specialists
handle operation of the TLD name servers. Figure 1-5 illustrates this process.

INTERNET PUBLIC
ACCESS ACCESS
________________________ \
: Registry Operator :
1
1 1
! 4 w | ZoneFile |! .
\| TDservers |||~ ” | Generation)) Registrars H
! 1Secure
! | Transactions

Figure 1-5. Registry Operator—Registrar relationship

ICANN inherited the gTLDs listed in Table 1-2 on its establishment in 1998.

CHAPTER 1 " AN INTRODUCTION TO DNS 13
Table 1-2. gTLDs Available Prior to November 2000
gTLD Use Registry Operator Registrars
.arpa Address and Routing Parameter Area (ARPA) IANA (www.iana.org/ Not available for
reserved for use in Internet infrastructure arpa-dom) registration
.com Historically for abbreviation of company VeriSign, Inc. ICANN-Accredited
Registrars
.edu Special TLD reserved for use by certain US EDUCAUSE EDUCAUSE
educational institutions (www.educause.edu)
.gov Reserved exclusively for use by the US US General Services US General Services
government Administration Administration (GSA)
.int Reserved exclusively for use by organiza- IANA (www.iana.org/ TANA
tions established by international treaty int-dom)
.mil Reserved exclusively for use by the US US DOD Network Infor- US DOD Network
military mation Center Information Center
.net Historically for use by network operators VeriSign, Inc. until June 2005 ICANN-accredited
registrars
.org Historically a nonprofit organization Public Interest Registry ICANN-accredited

(www.pir.org) DNS oper-

ated by Afilias Limited

registrars

In November 2000, ICANN authorized the following new gTLDs you see in Table 1-3.

Table 1-3. gTLDs Authorized by ICANN in November 2000

gTLD Use Registry Operator
.aero Reserved for use by the airline industry Société Internationale de Télécom-
munications Aéronautiques (SITA—
www.sita.aero)
.biz Generic business name domain NeuLevel, Inc. (www.neulevel.biz)
.coop Reserved for use by cooperatives Dot Cooperation LLC
(www. cooperative.org)
.info Generic information resources Afilias Limited (www.afilias.info)
.museum Reserved for use by museums Museum Domain Management Asso-
ciation (http://musedoma.museum)
.name For use by individuals—vanity domain names Global Name Registry
(www. gnr.name)
.pro Professional organizations RegistryPro (www.nic.pro)

The ICANN agreements with the Registry Operators covering the post-2000 gTLDs have
specified that information registration services and WHOIS services be made more easily
available by reserving the use of nic and whois SLD names for each of the gTLDs. For exam-
ple, to obtain registration information for the . coop gTLD, you need enter only www.nic.coop
(or just nic.coop). To obtain WHOIS services for the .museum gTLD, you need enter only
www.whois.museum (or whois.museum).

14

CHAPTER 1 = AN INTRODUCTION TO DNS

Note WHOIS is quite literally a service by which anyone can find “who is” the owner, and other pertinent
details, of domain names or IP addresses. Registrars and in some cases third parties provide access to the
registration databases using the standard WHOIS protocol (RFC 3912).

As may be seen from the list in Table 1-3, some of the gTLDs, such as .aero, have limited
registration policies; others do not. During 2004, ICANN undertook a review of gTLD policy,
one of the effects of which was to create a new gTLD subset called Sponsored TLDs (sTLDs)
to clarify the form of registration access to be offered by new gTLDs. The domains .museum,
.coop, and .aero are all now classified as sTLDs, as are the two new domains authorized in
April 2005 and shown in Table 1-4. The domains .biz, .info, .name, and .pro have unrestricted
registration policies. As of the time of writing, an additional eight possible new gTLDs were
under consideration by ICANN.

Table 1-4. sTLDs Authorized by ICANN in April 2005

TLD Use Registry Operator

.jobs Reserved for use by employment companies and human Employ Media LLC
resources organizations (www.employmedia. com)

.travel Reserved for use by the travel industry Tralliance Corporation

(www.tralliance.info)

Country Code Top-Level Domains

Country Code Top-Level Domains are controlled by ICANN and consist of a two-character
code defined by ISO 3166. ICANN has neatly sidestepped the thorny issue of what is a coun-
try by the use of ISO 3166. ISO 3166 is controlled by a branch of the United Nations, which
is pretty experienced in the matter of defining what is, and what is not, a country!

ccTLDs are delegated by ICANN to a country code manager. Country code manager is
a historic term reflecting a time when the Internet was a small and intimate place—more
often today the country code manager is a branch of government, and the country-code
itself has become a valuable economic resource.

The relationship between ICANN and country code managers is complicated by sover-
eignty and cultural sensitivity, and the process is largely consultative rather than contractual.
It is a testament to the good will of all parties that the process works as well as it does. In gen-
eral, country managers are responsible for administering and operating their delegated country
codes and the associated TLD servers with regard to their local circumstances and within the
spirit of RFC 1591.

The country delegation models are typically based on a federated model, for example, by
state or province—example.md.us—or a functional model, for example, example.co.uk or
example.com.br. However, many exceptions do exist reflecting local conditions and needs—
the most famous that spring to mind are . tv (Tuvala) and .1a (Laos), whereby those countries
have sought to optimize the economic value of the domain name resource.

The Internet Assigned Numbers Authority IANA) maintains a current list of country code
managers at www.iana.org/cctld/cctld-whois.htm on behalf of ICANN.

CHAPTER 1 " AN INTRODUCTION TO DNS

DNS System Components

A Domain Name System includes three components:
1. Data that describes the domain(s) (called zone files and introduced in the text that follows)
2. One or more name server (DNS) programs
3. Aresolver program or library

A single name server may support zero, one, or many domains. The data for each domain,
or zone, describes global properties of the domain and the hosts (or services) provided by that
domain. This data is defined in the form of textual Resource Records (RRs) organized in zone
files. The format of zone files and their Resource Records is standardized in RFC 1035. Zone
files are therefore portable across all standard DNS software.

The DNS program typically does three things:

1. It reads one or more zone files, which describe the domains for which it is responsible.

2. Depending on the DNS software functionality, it reads a configuration file, which
describes various required behaviors (for example, to cache or not).

3. Ttresponds to questions (queries) from local or remote clients (other name servers or
resolvers).

The resolver program or library is installed on each host and provides a means of translat-
ing a user’s request for, say, waw.example.com into one or more queries to DNS servers using
mostly the UDP protocol. A resolver is a complex program, but the standards allow for a much
simpler implementation called a stub resolver. Almost all resolvers installed on Windows and
*nix systems (for example, Linux, UNIX, and BSD) are stub resolvers. A web browser, for exam-
ple, uses a stub resolver library to translate the name (or URL) entered into the address line of
the browser, such as www.example.com, to an IP address, which it can use to access the required
resource, in this case a web site, via the Internet.

Zones and Zone Files

The term zone and its relationship to the domain name can be very confusing. A zone file trans-
lates the domain name into operational entities, such as hosts, mail servers, services, and other
characteristics, for use by DNS software. Subdomains delegated by the domain name owner are
also described using zone files. The original DNS specifications called these subzones—a term
that has mercifully disappeared over time. A zone file therefore describes that part of the domain
name which is being handled by the DNS software—a zone designates an operational entity
managed by a DNS or name server.

Zone files contain Resource Records, or RRs, that describe a domain or a subdomain. A
zone file will typically consist of the following types of Resource Records:

1. Data that describes the zone authority, known as the Start of Authority (SOA) Resource
Record. This Resource Record is mandatory in all zone files.

2. All hosts within the zone—typically defined using Address (A) Resource Records.

15

16

CHAPTER 1 = AN INTRODUCTION TO DNS

3. Data that describes global information for the zone—typically MX Resource Records
describing the domain’s mail servers and NS Resource Records describing the name
servers that are authoritative for the domain.

4. In the case of subdomain delegation, the name servers responsible for this subdomain—
using NS Resource Records.

5. In the case of subdomain delegation, a record (called a gluerecord and described in
Chapter 8) that allows the name server to reach the subdomain name server(s)—
typically one or more A Resource Records.

The following shows a simple example of a zone file showing most of the items men-

tioned in the preceding list. It is not important at this stage to understand the detail of each
line, which is described in the next chapter.

)

; IPv4 zone file for example.com

$TTL 2d ; default TTL for zone
$ORIGIN example.com.

)

@

)

)

; Start of Authority record defining the key characteristics of the zone (domain)

IN SOA nsi.example.com. hostmaster.example.com. (

2003080800 ; sn = serial number
12h ; refresh
15m ; retry = update retry
3w ; expiry
2h 5 min = minimum
)

name servers Resource Records for the domain

IN NS nsil.example.com.

the second name servers is
external to this zone (domain).

IN NS ns2.example.net.
mail server Resource Records for the zone (domain)
3w IN MX 10 mail.example.com.

the second mail servers is
external to the zone (domain)
IN MX 20 mail.anotherdomain.com.

; domain hosts includes NS and MX records defined above
; plus any others required

nsil IN A 192.168.254.2
mail IN A 192.168.254.4
joe IN A 192.168.254.6
WWW IN A 192.168.254.7

The individual Resource Records are described in Chapter 2, many more sample zone

files are presented in Chapter 7, and a complete Resource Record reference is provided in
Chapter 13.

CHAPTER 1 " AN INTRODUCTION TO DNS

Master and Slave DNS Servers

Early in this chapter, you saw that more than one name server is required to increase reliabil-
ity and performance. It is not uncommon nowadays to see sites with four, five, or more name
servers, each of which may be in a physically different location, and each of which must have
access to the zone file. In order to reduce the management overheads involved in synchroniz-
ing zone files, the DNS specifications allow for a single DNS server to own a master copy of the
zone file and to allow zone transfers (described in Chapter 3) to the other (slave) name servers.
The terms zone master, or master DNS, and zone slaves, or slave DNS, are commonly applied
to the respective name servers. The terms master and slave simply define which name server
has the master copy of the zone file; they do not imply any priority of access. The master-slave
relationship is illustrated in Figure 1-6.

1
DNS | ons |
Master Zone 7| Slave Zone | _ !
Zone Transfer

é Master Zone File

Figure 1-6. Zone master and slave relationship

Note In a perfect world, all terminology is unambiguous. The original DNS specifications used the terms
Primary and/or master and Secondary (called slave previously) to describe the zone transfer process. The
terms Primary and Secondary are still widely used to describe the order of DNS in many places such as reg-
istration of domain names and when defining network properties on PCs or hosts. In an attempt to reduce
confusion, BIND introduced the terms master and slave in the context of zone transfers as shown earlier.
This book will use these terms throughout. When reading other documents and purely in the context of
zone transfers, Primary = master and Secondary = slave.

DNS Software

There is a dizzying choice of DNS software tailored to suit a range of user requirements. Berke-
ley Internet Name Domain—always referred to as BIND—is an Open Source implementation
currently developed by the Internet Systems Consortium, Inc. (www. isc.org) and is probably
the most widely known and deployed of the DNS implementations, and indeed most of this
book documents BIND features. BIND, however, is by no means the only DNS solution avail-
able or for that matter the only Open Source DNS solution.

17

18

CHAPTER 1 = AN INTRODUCTION TO DNS

BIND has historically been viewed as the high-quality reference implementation of the
IETF RFCs that specify DNS functionality. As a consequence, BIND has generally traded per-
formance for generic functionality. The most recent BIND releases, BIND version 9, are placing
arenewed emphasis on performance.

Historically, all the root-servers used BIND software. In order to encourage diversity,
some of the root-servers now run the NSD DNS (www.nlnetlabs.nl/nsd) software, which
provides a DNS implementation optimized for high performance. It has traded some generic
functionality for raw performance, which may be up to twice that offered by an equivalent
BIND configuration.

Microsoft Windows Servers are particularly well provided with DNS solutions. The
Microsoft Server packages come bundled with a native DNS server. The current versions of
BIND provide a binary package that will run on Windows NT 4.0 and Windows 2000 Server.

One of the major criticisms leveled over the years against many of the DNS software
implementations is the lack of ability to dynamically add or remove zones without having to
stop and start the DNS server. This criticism reflects both the increasingly dynamic nature of
the Internet—more changes, more frequently—and the increased volume of traffic involved.
Many users are reluctant to stop answering queries for even the seconds needed to stop and
restart DNS software. While Dynamic DNS, supported by BIND and described in Chapter 3,
allows editing of individual Resource Records within zones, it cannot add or remove entire
zones. A number of the newer DNS implementations are providing database back-ends to
contain the zone file data. This database can be dynamically updated and thus obviate the
need to restart the DNS server. The corollary of this upside is that errors are also immediately
propagated. With DNS data typically cached for 24 hours or longer, it can take a long time to
remove even a simple error.

Which DNS solution best works for any user will reflect the functional and organizational
requirements and—as always—will require clear understanding of the trade-offs and limita-
tions that may be involved.

It is important to remember that the format of zonefiles used by DNS software is stan-
dardized by RFC 1035. Migrating from one implementation of DNS software to another can
thus be considerably eased. Where a feature is unique to BIND (not standardized), it will be
clearly indicated in the text.

Summary

This chapter introduced a lot of terminology and concepts that will be used throughout the
rest of the book. The text described the need for name servers, which translate the descriptive
name of a resource to its physical network address, and identified them as being essential for
the operation of a dynamic and flexible network of any size.

The Internet’s Domain Name System was introduced as being a specific implementation
of the name server concept. You learned about the Internet’s DNS domain name hierarchy, in
particular the separation of the Top-Level Domains into Generic TLDs, for which ICANN is
fully authoritative, and Country Code TLDs, which are administered by the individual sover-
eign countries. You now also know the component parts of a domain name, for instance,
www . example. com consists of a host name (www), an SLD (example), and a TLD (.com). You also

CHAPTER 1 " AN INTRODUCTION TO DNS

encountered the key concepts of an authority, the entity or person, responsible for a particular
node in the domain name hierarchy, and delegation, the process by which the authority at a
higher level in the domain name hierarchy may transfer authority to lower levels. The chapter
finally introduced DNS software, the server and resolver programs that execute the DNS func-
tion, including BIND, the most widely used and implemented DNS server software.

Chapter 2 describes zone files and the most common Resource Records used in these files.

19

CHAPTER 2

Zone Files and
Resource Records

A zone file describes or translates a domain name into the characteristics, hosts, and serv-
ices provided by the domain in a way that can be used by DNS software. Badly configured
zone files can make a domain unreachable, send e-mail to the wrong location, or even redi-
rect customers to a competitor’s web site. No question, these are serious consequences, but
it gets worse. Answers to gueries from a badly configured DNS may be cached (or stored) by
other DNS systems for hours, days, or even weeks. It can take a long time for the effects of an
error to be rectified—your customers or employees can be left without service or access for
prolonged periods. Correctly configured zone files are essential to the running of every serv-
ice offered by an organization with Internet presence.

This chapter describes the format and layout of zone files and the most common
Resource Records (RRs) and directives that are used in the forward mapping of a zone. Forward
mapping defines the zone characteristics and the IP addresses used by any hosts (or services)
within the zone; for example, it could contain an RR that maps the host www.example.com to
an IPv4 address such as 192.168.2.3. Reverse-mapping zones, which define the IP address-
to-host relationship and the unique RRs used in their definition, are described in Chapter 3.
A reverse-mapping zone file could, for instance, contain an RR that defines the IPv4 address
192.168.2.3 to have the name www. example . com. Because this topic is so central to DNS, zone
files and their contents are discussed at length in several other chapters, most notably in
Chapter 7, where we’ll consider various zone file samples, and Chapter 13, which offers a
complete reference on all the RRs and directives.

Zone File Format

Zone files are text files, standardized by RFC 1035, that may be read or edited using any stan-
dard editor and can contain three types of entries:

e Comments. All comments start with ; (semicolon) and continue to the end of the line.
Comments can additionally be added to any other record type and are assumed to ter-
minate the line.

* Directives: All directives start with $ and are used to control processing of the zone files.

* Resource Records: Resource Records are used to define the characteristics, properties,
or entities contained within the domain. RRs are contained on a single line with the
exception that entries enclosed in parentheses can spread across multiple lines.

21

22

CHAPTER 2 © ZONE FILES AND RESOURCE RECORDS

The following is a sample zone file fragment that illustrates the preceding points and
entry types:

; this is a full line comment

$TTL 12h ; directive - comment terminates the line

$ORIGIN example.com.

; Start of Authority (SOA) record defining the zone (domain)

; illustrates an RR record spread over more than one line

; using the enclosing parentheses

@ IN SOA nsl.example.com. hostmaster.example.com. (
2003080800 ; se = serial number

3h ; ref = refresh

15m ; ret = update retry
3w ; ex = expiry

2h20m ; min = minimum

)

; single line RR
IN NS nsi.example.com.

The preceding Start of Authority RR could have been written on a single line as shown here:

@ IN SOA nsi.example.com. hostmaster.example.com. 2003080800 3h 15m 3w 3h

Note Standard RFC1035 zone files define time periods in seconds, which results in very large numbers.
In the preceding fragment, the values 3h, 15m, 3w, and 2h20m use a BIND-specific short form for time-in-
seconds values. The case-insensitive short forms allowed are m = minutes, h = hours, d = days, and
w = weeks. The standards-compliant time-in-seconds values used previously would be 10800, 900,
1814400, and 8400, respectively. This book uses the BIND short format throughout simply because it is more
easily understood. A number of alternative DNS implementations have adopted the BIND format as a de facto
standard. If you want to stick to the standard and use seconds, keep a calculator handy.

Zone File Contents

One of the many confusing aspects of zone file definition is that it offers many shortcuts and
ways to avoid excessive two-finger typing. In general, there is more than one way to do almost
everything in a zone file. In the interests of clarity, this chapter uses a single zone file format to
avoid confusion. Where appropriate, shortcuts and alternative formats will be illustrated.

In general, a zone file will typically contain the following Resource Records and directives,
each of which is described in more detail later in the chapter:

» The$TTL directive: Defines the default Time to Live (TTL) value for the zone or domain—
the time a Resource Record may be cached (or saved) by another DNS server. This directive
is mandatory.

CHAPTER 2 = ZONE FILES AND RESOURCE RECORDS

The $ORIGIN directive: The domain name for the zone being defined. This directive is
optional.

A Start of Authority (SOA) RR: The SOA Resource Record, which must appear as the first
RR in a zone file, describes the global characteristics of the zone or domain. There can
be only one SOA RR in a zone file. This RR is mandatory.

The Name Server (NS) RR: Defines name servers that are authoritative for the zone or
domain. There must be two or more NS Resource Records in a zone file. NS RRs may
reference servers in this domain or in a foreign or external domain. These RRs are
mandatory.

The Mail Exchanger (MX) RR: Defines the mail servers for the zone. There may be zero
or more MX RRs in a zone file. If the domain does not provide e-mail services, there is
no need for any MX RRs. An MX RR may reference a mail server in this domain orin a
foreign or external domain. This RR is optional.

The Address (A) RR: Used to define the IPv4 address of all the hosts (or services) that
exist in this zone and which are required to be publicly visible. IPv6 entries are defined
using AAAA (called Quad A) RRs. There may zero or more A or AAAA RRs in a zone file.
This RR is optional.

The CNAME RR: Defines an Alias RR, which allows one host (or service) be defined as
the alias name for another host. There may be zero or more CNAME RRs in a zone file.
This RR is optional.

Other Resource Record types and directives exist, some of which will be introduced in later
chapters. You'll find a full list of Resource Record types and zone file directives defined in Chap-
ter 13. The preceding RRs and directives allow the definition of a fully functional zone file.

An Example Zone File

The example zone file that appears later in this section illustrates the general format of a zone
file and shows how Resource Records are used to describe the characteristics of the zone. Each
directive and RR is described in detail and in the context of this example zone file. In this
example, the zone example.com has the following characteristics:

The zone has two name servers, one hosted in this domain (ns1.example.com), the
other externally (ns2.example.net).

The zone has two mail servers, one hosted in the domain (mail.example.com) and a
second (backup) mail server hosted externally (mail.example.net).

The zone has an internal web service with a name of www. example. com.

The zone has an FTP server with a name of ftp.example.com (but provided by
ftp.example.net).

The zone has a single publicly visible host called joe.example.com.

23

24 CHAPTER 2 = ZONE FILES AND RESOURCE RECORDS

The preceding scenario both illustrates some specific features of zone files and defines
a zone that will provide some important services even in the event of failures or outages. Fig-
ure 2-1 shows the preceding configuration in operation.

example.net site

. example.net site
Location A

Location B
DNS Queries

Retries to ns2.example.net

Mail | Diverts mail to mail.example.net |
Delivery|" ="~~~ ~""""77777

nsi joe mail | [www mail ns2 ftp1

Host names are * l Host names are
ns1.example.com, etc. Forwarding mail server ftp.example.net, etc.
retries delivery to
mail.example.com

Figure 2-1. Example configuration

The configuration provides some simple resilience and will continue to accept mail even

if the site at Location A is off-line for some period of time. It achieves resilience using the fol-
lowing strategies:

» There are two name servers located in separate physical locations. In the event
nsil.example.comis unreachable, ns2.example.net will continue to provide DNS service
for example. com. Failure to provide for geographical separation of name servers led to
Microsoft’s web sites being off-line for over 23 hours in one famous incident in 2001.!

¢ In the event that mail cannot be delivered to mail.example.com, the zone records (the MX
RRs described in the section “The MX Resource Record” later in this chapter) will cause
redirection to mail.example.net. The server mail.example.net would be configured as a
forwarding mail server for the domain example.com. The mail server mail.example.net

will retry at periodic intervals to deliver the mail to mail.example.com. No mail will be lost
even during extended outages.

Many smaller sites think this kind of resilient configuration is only for large and complex
organizations and therefore locate both the alternate name and mail servers on the same site.
There is nothing wrong with this kind of configuration, and indeed it is very common—especially
in smaller organizations and a surprising number of large ones as well. However, it is also easier

! www.wired.com/news/technology/0,1282,41412,00.html

CHAPTER 2 = ZONE FILES AND RESOURCE RECORDS

than you think to organize peering by simply swapping backups with another friendly or non-
competitive site (that is, you back up for me and I'll back up for you). Both sites gain the same
resilience, and no money need change hands because the additional traffic should be negligi-
ble at both locations as long as the sites are reasonably similar in traffic volumes.

Clearly the web site at www.example.com would be non-operational during an outage of
location A, but you may already see that by using the name server at ns2.example.net this
could be replicated by simply defining an alternate IP address for the host www.example.comin
the zone file used by this name server. Chapter 8 describes some additional ways to provide
resilience using the DNS features.

The zone file that describes this configuration is shown here:

; IPv4 zone file for example.com

$TTL 2d ; default TTL for zone

$ORIGIN example.com. ; base domain-name

; Start of Authority record defining the key characteristics
; of the zone (domain)

Q IN SOA nsi.example.com. hostmaster.example.com. (
2003080800 ; se = serial number
12h ; ref = refresh
15m ; ret = update retry
3w ; ex = expiry
2h 5 min = minimum
)
; name servers Resource Records for the domain
IN NS nsi.example.com.

; the second name server is
; external to this zone (domain).
IN NS ns2.example.net.
; mail server Resource Records for the zone (domain)
; value 10 denotes it is the most preferred
3w IN MX 10 mail.example.com.
; the second mail server has lower preference (20) and is
; external to the zone (domain)
IN MX 20 mail.example.net.
; domain hosts includes NS and MX records defined previously
; plus any others required

nsi IN A 192.168.254.2

mail IN A 192.168.254.4

joe IN A 192.168.254.6

WiWW IN A 192.168.254.7

; aliases ftp (ftp server) to an external location
ftp IN CNAME ftp.example.net.

The following sections explain each directive and RR type used in the example zone file.

25

26

CHAPTER 2 © ZONE FILES AND RESOURCE RECORDS

The $TTL Directive

Every Resource Record may take an optional Time to Live value specified in seconds. The $TTL
directive is standardized in RFC 2038 and defines the default TTL value applied to any RR that
does not have an explicit TTL defined. TTL in the DNS context means the time in seconds that
arecord may be cached (stored) by another name server or in some cases a resolver. Caching
is explained in Chapter 4.

The formal syntax for this directive is as follows:

$TTL time-in-seconds
From the example zone file:
$TTL 2d

The preceding $TTL directive uses the BIND-specific short form d to indicate days. The
RFC 2038 format equivalent is as follows:

$TTL 172800

The time-in-seconds value may take the value 0, which indicates never cache the record,
to a maximum of 2147483647, which is over 68 years! The current best practice recommenda-
tion (RFC 1912) proposes a value greater than one day, and on RRs that rarely change, you
should consider multiweek values.

The TTL determines two DNS operational characteristics:

* Access load: The lower the TTL, the more frequently DNS queries will occur, and the
higher the operational load on the zone’s name server.

* Change propagation: The TTL value represents the maximum time that any change
will take to propagate from the zone name server to all users.

It is simple to change the zone-wide TTL by altering a single $TTL zone file directive. Many
users will set this to a very high value, say, two weeks or more, in normal operational use, and
thus minimize name server access. When planned changes and upgrades occur that affect the
zone records, for example, IP address changes or new service installation, the $TTL will be
reduced in advance to a lower value, say 12 hours (12h or 43200). When service has stabilized,
the TTL will be restored to the previous high value. The value 2d used in the example file repre-
sents a reasonable balance for stable zones.

The $TTL directive must appear before any RR to which it will be applied, and BIND 9 will
now refuse to load a zone that does not have a valid $TTL directive.

Note In older versions of BIND (prior to BIND 9), the default TTL value for the zone was defined in the
SOA RR (described in the section “The SOA Resource Record” later in this chapter). RFC 2308 defines both
implementation of the $TTL directive and the change to the SOA RR.

CHAPTER 2 = ZONE FILES AND RESOURCE RECORDS

The $ORIGIN Directive

The $ORIGIN directive was standardized in RFC 1035 and defines the domain name that will be
appended to any incomplete name (sometimes called an unqualified name) defined in an RR.
This process, whereby a value is appended to names that do not end with a dot, is a major
source of confusion, anger, and puzzlement when running DNS systems because the process
happens invisibly.

The $ORIGIN Substitution Rule If a name appears in a Resource Record and does not end with a
dot, then the value of the last, or only, $ORIGIN directive will be appended to the name. If the name does end
with a dot, then it is a Fully Qualified Domain Name (FQDN) and nothing will be appended to the name. This
rule will be illustrated in the following section. The terminating dot in a FQDN is interpreted as the root of the
domain tree or hierarchy. Recall from Chapter 1 that although this dot is normally silent (omitted), it is occa-
sionally VERY important. This rule requires careful attention as to whether the dot is present.

The formal syntax for $ORIGIN is as follows:
$ORIGIN domain-name

Returning to the example zone file:
$ORIGIN example.com.

The name of the domain defined by this zone file—example.com.—is defined in the $ORIGIN
directive. The domain-name is always a FQDN—it always ends with a dot. $ORIGIN directives can
appear anywhere in a zone file and will be used from the point they are defined onwards:

$ORIGIN example.com.
; RRs from here will append example.com.

$ORIGIN us.example.com.
; RRs from here will append us.example.com.

The $ORICGIN directive is not mandatory. BIND will assume that the $ORIGIN value is defined
by the name of the zone defined in its configuration file (the named. conf file described in Chap-
ter 7). This book always uses an $0RIGIN directive for three reasons:

* Azone file is self-descriptive and self-contained, it requires no reference to any further
information.

¢ The substitution rule (defined previously) is much less confusing—the value to be sub-
stituted is immediately apparent (that is, the last $ORIGIN directive).

¢ Not all software may implement the same assumptions about the $ORIGIN directive.
Zone files are more portable when the directive is included.

It is always tempting to take shortcuts, but as with all things there may be consequences.

27

28

CHAPTER 2

ZONE FILES AND RESOURCE RECORDS

The SOA Resource Record

The SOA Resource Record defines the key characteristics and attributes for the zone or

domain and is standardized in RFC 1035. As befits the most important RR in the zone file, it is
among the most complex and takes a significant number of parameters. The formal syntax of
the SOA RR is as follows:

name ttl class rr name-server e-mail sn refresh retry expiry min

Here is the SOA RR from the example zone file:

@ IN

SOA nsil.example.com. hostmaster.example.com. (
2003080800 ; sn = serial number

3h
15m
3w
3h
)

; refresh time

; retry = update retry
; expiry

5 min = minimum

The SOA RR has two layout rules:

¢ Typically uses the standard multiline format, in which case the open parenthesis, (,
must appear on the first line; the closing parenthesis,), can appear on the same or any
subsequent line.

¢ The separators between fields can be either spaces or tabs. Traditionally, in zone files
tabs are used to make a more attractive layout and to clearly indicate which fields are
missing.

Table 2-1 maps the values from the example file to the formal syntax.

Table 2-1. SOA RR Syntax

Syntax Example Usage Description

name @ The @ symbol substitutes the current value of $0RIGIN (in the
example file this is example.com.).

ttl There is no tt1 value defined for the RR, so the zone default
of 2d (172800 seconds) from the $TTL directive will be used.

class IN IN defines the class to be Internet. Other values exist but are

name-server

e-mail

nsi.example.com.

hostmaster.
example.com.

rarely used. They are defined in Chapter 13 purely for the sake
of completeness.

Defines the Primary Master name server for the zone and has
a special meaning only when used with Dynamic DNS con-
figurations, which are covered in Chapter 3. The name server
referenced here also needs to be defined using an NS RR. In
DNS jargon this is called the MNAME field.

Defines an administrative e-mail address for the zone. It is
recommended in RFC 2142 that the e-mail address hostmaster
is used for this purpose, but any stable and valid e-mail address
can be used. While this field uses unusual dot separators (the @
symbol has special significance in a zone as described earlier)
to define the e-mail address, in the case of the example file,
mail will be sent to hostmaster@example.com. In DNS jargon this
is known as the RNAME field.

CHAPTER 2 = ZONE FILES AND RESOURCE RECORDS

Syntax

Example Usage

Description

sn

refresh

retry

expiry

min

2003080800

12h

15m

3w

3h

Defines the serial number currently associated with the zone.
The serial number must be updated every time any change is
made to the domain. sn can take any number in the range 0 to
4294967295. By convention, but this is only a convention, a
date format is used with the form yyyymmddss, where yyyy

is the four-digit year number, mm is the month, dd is the day,
and ss is the sequence number in case the zone file is updated
more than once per day! The value from the example zone file
indicates that the last update was on August 8, 2003. This value
is used during zone transfer operations (described in Chapter
3) to determine whether the zone file has been changed. Recovery
from an out-of-sequence sn value is not trivial as you'll see in
Chapter 8. Extreme care should be taken when updating this
number. The use of the date convention is designed to minimize
errors as well as provide a simple way to track the date of the
last change to the zone.

When the refresh value is reached, the slave name server
(described in Chapter 1) for this zone will try and read the
SOA RR from the zone master. If the sn value in the SOA RR is
higher than that currently stored by the slave, a zone transfer
operation is initiated to update or refresh the slave’s copy of
the zone records. Depending on the how zone transfers are
implemented, the value of this parameter may determine how
quickly changes are propagated from the master to the slave.
Zone transfers are described in Chapter 3. Typical values are
from 3 to 24 hours.

Defines the retry interval in seconds if the slave fails to make
contact with the zone master during a refresh cycle. Typical
values are from 10 to 60 minutes.

Defines the time in seconds after which the zone records are
assumed to be no longer authoritative. BIND interprets this to
mean that the records can no longer be considered valid and
consequentially stops responding to queries for the zone. Thus,
when the refresh time limit is reached, the slave will try and
contact the zone master and in the case of a failure will attempt
reconnection every retry period. If contact is made, both the
refresh and expiry counts are reset. If the slave has failed to
make contact when expiry is reached, the slave will stop
responding to any queries. The zone is essentially dead at this
point. To allow for major outages, expiry is typically set to a
very high value—1 to 3 weeks.

min was redefined in RFC 2308 to be the period of time that
negative responses can be cached by the slave. Thus if a request
is made for fred.example.com and it cannot be resolved—it
does not exist—then the slave will return NO DOMAIN error
(NXDOMAIN). The slave will continue to return this value until
min expires, at which point it will retry the failing operation.
BIND allows a min value in the range 0 to 10800 (three hours).

To illustrate the use of the $0RIGIN statement and its substitution rule, this zone file frag-
ment shows how it is possible to rewrite the SOA statement:

29

30

CHAPTER 2 © ZONE FILES AND RESOURCE RECORDS

; fragment from example - does not use substitution

$TTL 2d ; default TTL for zone

$ORIGIN example.com.

; Start of Authority record defining the key characteristics of the zone (domain)

@ IN SOA nsil.example.com. hostmaster.example.com. (
2003080800 ; se = serial number
12h ; ref = refresh
15m ; ret = update retry
3w ; ex = expiry
2h 5 min = minimum
)

The SOA RR could be rewritten to use the $ORIGIN substitution rule as shown here:

; fragment rewritten to use $ORIGIN substitution
$TTL 2d ; default TTL for zone
$ORIGIN example.com.
; Start of Authority record defining the key characteristics of the zone (domain)
@ IN SOA ns1 hostmaster (
2003080800 ; se = serial number

12h ; ref = refresh
15m ; ret = update retry
3w ; ex = expiry

2h 5 min = minimum

)

In the preceding fragment, because ns1 and hostmaster are not FQDNs (they do not end
with a dot), the value of the $ORIGIN is appended to each name, creating ns1.example.com. and
hostmaster.example.com., respectively, as in the initial example file. This format is rarely seen,
however, as it can be quite confusing, although it is technically and functionally correct.

Note The name field used in all the RRs (termed in DNS jargon a /abel) was originally defined to allow any
letter, digit, or a dash (—); names or labels must start and end with a letter or a number. The specifications
were liberalized by RFC 2181 to allow underscores (_), but there are reputedly still implementations that do
not allow them in host names, so it is safest to avoid underscores if possible.

The NS Resource Record

The NS Resource Record is standardized in RFC 1035 and defines the authoritative name
servers (there must be at least two) for the domain or zone. The NS RR syntax is as follows:

name ttl class rr name

Let’s return to the example file:

CHAPTER 2 © ZONE FILES AND RESOURCE RECORDS

; name servers Resource Records for the domain
IN NS nsil.example.com.
; the second name server is
; external to this zone (domain).
IN NS ns2.example.net.

The separators between fields can be either spaces or tabs. Traditionally, in zone files tabs
are used to make a more attractive layout and to clearly indicate which fields are missing.

Table 2-2 maps the formal syntax to the first NS record used in the example zone file,
which is internal to the zone.

Table 2-2. NS RR Syntax

Syntax Example Usage Description

name This field is blank (may be either a space or a tab character) and
implicitly substitutes the current value of the name field (in this
case, the name field of the SOA RR). You could also write this
record as example.com. IN NS nsi.example.com., which may
be less confusing. This is an example of how the same result may
be achieved in different ways.

ttl There is no ttl value defined for the RR, so the zone default of
2d from the $TTL directive will be used.

class IN IN defines the class to be Internet.

name nsl.example.com. Defines a name server that is authoritative for the domain. In
this example, an FQDN format has been used, but it could have
been written as just ns1 (without the dot) and $ORIGIN substitu-
tion would take place. This NS record points to a name server
within the domain and therefore must have a corresponding
ARR for IPv4 (or AAAA RR if IPv6) defined.

The second NS RR from the example file is as follows:
IN NS ns2.example.net.

This is the classic method of defining a second name server for the domain. In the event
that one name server is not available, the alternate server, ideally at a geographically different
location, will be used, thus ensuring access to services such as mail even if the main site is not
available due to backbone, power, or other system outages.

The second NS RR is defined to be in a foreign or external zone and therefore does not
require an A RR if IPv4 (or AAAA RR if IPv6). In addition, it must be defined using an FQDN—
it must terminate with a dot. To illustrate the possible errors that may be caused inadvertently
by $ORIGIN substitution, assume that the terminating dot on this RR was omitted in error, that
is, it was written as ns2.example.net (without a terminating dot). DNS software would apply
substitution and create a name of ns2.example.net.example.com.—not the desired result!

31

32

CHAPTER 2 © ZONE FILES AND RESOURCE RECORDS

Note The external name server (ns2.example.net) must contain a zone file, and be either a master or a
slave, for the zone example. com. Failure to do so will result in what is called lame delegation. Lame delegation
occurs when an NS RR points to a name server that does not answer authoritatively for the zone or domain.

The MX Resource Record

The MX RR is standardized in RFC 1035 and defines the mail servers (or mail exchangers in
the quaint DNS jargon) for the domain or zone. The formal syntax is as follows:

name ttl class rr preference name
In the example file, the following MX RRs are defined:

; mail server Resource Records for the zone (domain)
3w IN MX 10 mail.example.com.
; the second mail server is
; external to the zone (domain)
IN MX 20 mail.example.net.

The separators between fields can be either spaces or tabs. Traditionally, in zone files tabs
are used to make a more attractive layout and to clearly indicate which fields are missing.

Table 2-3 maps the formal syntax to the first MX record used in the example file, which is
internal to the domain.

Table 2-3. MX RR Syntax

Syntax Example Usage Description

name This field is blank and implicitly substitutes the value of
the right-hand name field from the previous RR (in the
example file, this is example.com.).

ttl 3w This illustrates the use of an explicit tt1 value in a Resource
Record that overrides the zone default (defined in the
$TTL directive). The value shown (3 weeks) is signifi-
cantly higher than the example zone default, which is
2 days. Because the domain MX RR is unlikely to
change—its corresponding A Resource Record may
change more frequently—why not minimize the DNS
load on what is a normally very actively used RR type?
The ttl can, however, take any value required including
omission, in which case the zone default will be used.

class IN IN defines the class to be Internet.

preference 10 The preference field indicates the relative preference or
priority of the mail server it defines and can take any
value between 0 and 65535. The lower the number, the
more preferred is the server. Traditionally, the most pre-
ferred mail server has the preference value 10. There is
absolutely no reason for this other than it allows another
MX record with a more preferred value (a lower number)
to be added without changing any other record!

CHAPTER 2 = ZONE FILES AND RESOURCE RECORDS

Syntax Example Usage Description

name mail.example.com. Defines a mail server with the defined preference value
for the domain. In this example, an FQDN format has
been used, but you could write this as just mail (without
the dot), and $ORIGIN substitution will take place. This
MX record points to a mail server within the domain
and therefore must have the corresponding A RR for
IPv4 (or AAAA for IPv6) defined.

The second MX RR from the example file is as follows:
IN MX 20 mail.example.net.

This is the classic method of defining a backup mail server, which has a lower preference
value—20 in the example case. In the event that the first mail server is not available, the backup
mail server, ideally at a geographically different location, would be used. This backup mail server
would normally be defined as a simple forwarding mail server for the domain—constantly
attempting to pass the mail to the most preferred (or Primary) mail server (mail.example.com)
when service is happily restored.

The second MX RR is defined to be in a foreign or external domain and therefore does not
require an A RR if IPv4 (or an AAAA RR if IPv6) and must always be an FQDN—it must end
with a dot.

The A Resource Record

The A RR is standardized in RFC 1035 and defines the IPv4 address of a particular host in the
domain or zone. The equivalent RR for IPv6 is the AAAA RR described in Chapter 5. The formal
syntax of the Address RR is as follows:

name ttl class rr ipv4

In the example file, the following A RRs are defined:

nsi IN A 192.168.254.2
mail IN A 192.168.254.4
joe IN A 192.168.254.6
WWW IN A 192.168.254.7

The separators between fields can be either spaces or tabs. Traditionally, in zone files tabs
are used to make a more attractive layout and to clearly indicate which fields are missing.
Table 2-4 maps the formal syntax to the first A RR used in the example zone file.

33

34

CHAPTER 2 © ZONE FILES AND RESOURCE RECORDS

Table 2-4. A RR Syntax

Syntax Example Usage Description

name nsi The name is unqualified, causing $0RIGIN substitution. You could
write this as ns1.example.com. (using the FQDN format), which
may be more understandable.

ttl There is no ttl value defined for the RR, so the zone default of 2d
from the $TTL directive will be used.

class IN IN defines the class to be Internet.

ipv4 192.168.254.2 Defines that the host ns1 has the physical IPv4
address192.168.254.2. Records defined by NS or MX RRs that have
names contained within this domain must have corresponding
A RRs as shown in the example zone file for ns1 and mail. Any other
hosts the user wishes to make publicly visible are also defined using
A RRs; in the example file, this includes the web service (www) and
the host named joe for some reason best known to the owner of
the domain.

It is permissible to define the same IP address with multiple names as shown in the fol-
lowing fragment, in which the name server and the web server are colocated on the same
machine:

nsl IN A 192.168.254.2
mail IN A 192.168.254.4
joe IN A 192.168.254.6
; this A RR has the same IPv4 address as nsi above
WWW IN A 192.168.254.2

The same result can be achieved using a CNAME record (see the code fragment that fol-
lows). Multiple IP addresses can also be defined for the same host as in this fragment, where
three IPv4 addresses are provided for the host www.example.com:

WIWW IN A 192.168.254.2
IN A 192.168.254.7
IN A 192.168.254.8

DNS software will supply the defined IP address in a round-robin or random order
(defined by configuration directives) to successive queries. This feature may be used to pro-
vide load balancing and is further described in Chapter 8. The preceding fragment also
illustrates the use of a null or blank name to inherit the previous name, that is, all the entries
with a blank name relate to www (and assuming an $0RIGIN directive of example.com will define
www . example.com).

CNAME Resource Record

The CNAME RR is standardized in RFC 1035 and defines an alias for an existing host defined
by an A RR. The formal syntax is as follows:

name ttl class rr canonical-name

CHAPTER 2 = ZONE FILES AND RESOURCE RECORDS

In the example file, the following CNAME RR is defined:
ftp IN CNAME ftp.example.net.

The separators between fields can be either spaces or tabs. Traditionally, in zone files tabs
are used to make a more attractive layout and to clearly indicate which fields are missing.
Table 2-5 maps the formal syntax to the CNAME RR used in the example zone file.

Table 2-5. CNAME RR Syntax

Syntax Example Usage Description

name ftp The name is unqualified, causing the $ORIGIN directive
value to be substituted. You could write this as
ftp.example.com. (using the FQDN format), which
may be more understandable.

ttl There is no ttl value defined for the RR, so the zone
default of 2d from the $TTL directive will be used.

class IN IN defines the class to be Internet.

canonical-name ftp.example.net. Defines that the name ftp.example.comis aliased to the
host ftp.example.net. in a foreign or external domain.
In DNS jargon, ftp.example.net. is referred to as the
canonical name, which simply means the expected or
real name.

CNAME RRs are often used when assigning service names to existing hosts, for example, if
a host is actually called bill but runs an FTP and a web service, then CNAME RRs are fre-
quently used to define these services as in the following fragment:

ftp IN CNAME bill
WWW IN CNAME bill
bill IN A 192.168.254.21

CNAME RRs have some limitations. It is permissible but considered very bad practice to
chain CNAME records.

nsi IN A 192.168.254.2
mail IN A 192.168.254.3
joe IN CNAME www.example.com.
WIWW IN CNAME ~ mail.example.com.

CNAME records should not be used with either NS or MX records; thus in the example
file, if the mail server and web server were colocated on the same host, the following would
be technically invalid but would typically work—an approach that is widely used!

IN MX mail.example.com.
mail IN CNAME ~ www.example.com.
WWW IN A 192.168.254.7

35

36

CHAPTER 2 © ZONE FILES AND RESOURCE RECORDS

The following fragment is valid and achieves the same result:

IN MX mail.example.com.
mail IN A 192.168.254.7
Wi IN CNAME ~ mail.example.com.

The rule defining the preceding (RFC 1034 section 3.6.2) is cautious in regard to use
of excessive indirection and says that if a name appears on the right-hand side of an RR (as
mail.example.com does in the preceding MX RR in the fragment), it should not appear in the
left-hand name of a CNAME RR. Many working configurations use this construct routinely.
There is always a risk that one day the specification may be tightened and the configuration
may not work.

You need to be aware of two other consequences when using CNAME RR. First, CNAME
causes the name server to do more work—both the CNAME and the CNAME’d RR must be
looked up by the name server. In high-volume name servers, this additional workload may
be a consideration. Second, the CNAME RR and the target (CNAME'd) RR record are returned
in the answer. When dealing with large answers, this may cause the response to exceed the
512-byte limit of a DNS UDP transaction, thus reducing performance.

When CNAME Records Must Be Used

As noted earlier, CNAME RRs are frequently and commonly used to map services such as FTP,
web, gopher, and others onto a single host. Multiple A RRs may also be used to achieve the
same result. In general, only two cases require CNAME records to be used—there is no alterna-
tive available. The first is when the real or canonicalhost lies in a foreign or external domain, as
illustrated in the example file where ftp.example.comis aliased to ftp.example.net. The second
is when the user wishes to address a web site using either www.example.com or just example.com.
In this case, the functionality would be implemented using the following fragment:

; define an IP that resolves to example.com

IN A 192.168.254.7
; alias www.example.com to example.com
Wi IN CNAME example.com.

The preceding definition will require a configuration change to your web server, which is
fully covered in Chapter 8.

Additional Resource Records

In this chapter, you have seen the main RRs used in constructing zone files. Many more RR
types exist and are documented, with examples, in Chapter 13. For the sake of completeness,
some of the more commonly used additional or specialized RRs are briefly described in the
following sections.

PTR Resource Records

Pointer (PTR) RRs are used only for reverse-mapping zones and are the corollary of the
Address RRs. PTR RRs map an IPv4 address to a name—an A RR maps a name to an IPv4

CHAPTER 2 = ZONE FILES AND RESOURCE RECORDS

address. Reverse mapping and PTR records are described in Chapter 3. PTR RRs are also used
when reverse mapping an IPv6 zone, as you'll see in Chapter 5.

TXT Resource Records

Text (TXT) RRs were historically used to define generic text to be associated with a name. The
text may be anything the user wishes. The Sender Policy Framework (SPF) antispam initiative
uses the TXT RR to carry its information. You'll find the SPF record format defined in Chapter 8
and the generic TXT RR in Chapter 13.

AAAA Resource Records
The AAAA RR is used to define forward mapping of IPv6 hosts, which is covered in Chapter 5.

NSEC, RRSIG, DS, DNSKEY, and KEY Resource Records
These RRs are used in Secure DNS (DNSSEC) configurations as described in Chapters 10 and 11.

SRV Resource Records

Service (SRV) RRs are relatively new and used to map services onto hosts. Chapter 13
describes the SRV RR, and Chapter 8 contains a discussion of the use of SRV records when
used in load balancing and resilience.

Standard Configuration File Scenarios

Chapter 7 defines further example configurations, including the required zone files for com-
mon DNS types such as master, slave, caching, forwarding, and authoritative-only name servers.
Chapter 8 contains a number of common configurations that illustrate various aspects of zone
files, and Chapter 13 includes a full reference section on zone files and Resource Records.

Summary

This chapter described the format and content of zone files. You learned about the $TTL direc-
tive, used to set the default TTL for the zone. You also encountered the $ORIGIN directive, used
to set the base name for the zone, and the $ORIGIN substitution rule, the cause of much DNS
aggravation. Using the example zone file as a guide, the text explained the various Resource
Record types used to construct basic zone files such as the Start of Authority, Name Server,
Mail Exchanger, and Address Resource Records.

Chapter 3 explains DNS operations: the types of DNS queries that may be used; reverse
mapping, the process by which an IP address may be mapped to a host name; zone transfers,
the method by which zone files are updated from the master to the slave name servers; and
finally, a brief overview of the security issues involved in running a DNS service.

37

CHAPTER 3

DNS Operations

This chapter describes the operation of a DNS system. Namely, you'll learn about the follow-
ing topics:

* DNS queries: How does your browser find www.example.com? How does your mail soft-
ware know where to send your outgoing e-mail? Such operations use DNS queries.

* Reverse mapping. How does your mail software determine your identity? How do you
find out who is hacking your system? These types of operations use a technique known
as reverse mapping.

e Zone maintenance: How does the address of your new FTP service get propagated
across the Internet? How are your customers notified of any change to your e-mail
provider? These operations use zone maintenance.

e DNS security: How do you prevent your web site being hijacked? How do you ensure
that your e-mail is delivered to you and not someone else? In this chapter, you'll learn
key DNS security concepts.

This chapter references configuration directives defined in BIND’s named. conf file, which
controls its operational behavior. Chapter 12 describes these directives. A number of zone files
containing DNS Resource Records (RRs) are used to illustrate certain points, as discussed in
Chapter 2. Chapter 13 contains a complete reference on each record type. The PTR RRs used
in reverse mapping of a zone are described in this chapter.

But first let’s get some simple DNS protocol details out of the way.

The DNS Protocol

DNS operations, for example, queries and zone maintenance operations, by default use port
53. For performance reasons, queries use the UDP protocol with a block-size limit of 512 bytes.
TCP can be optionally negotiated on a transaction-by-transaction basis for query operations,
but due to the performance overhead incurred with TCP, this is essentially a theoretical capa-
bility. However, if the response to a query exceeds 512 bytes, TCP is negotiated and used.
Exceeding the 512-byte response size limit is typically avoided at all costs, and indeed the limit
of 13 root-servers is the maximum that can be returned in a single 512-byte UDP transaction.
Zone maintenance operations for reliability reasons use TCP again by default on port 53.

39

40

CHAPTER 3 " DNS OPERATIONS

Note The preceding information is for normal DNS operations. When using DNSSEC (see Chapter 11),
response data volumes can increase significantly, and a feature known as EDNSQ is used to negotiate a UDP
block size greater than 512 bytes. BIND can be optionally configured to use a port other than 53 for operations.

DNS Queries

The major task carried out by a name server is to respond to gueries (qQuestions) from a local
or remote resolver or another name server acting on behalf of a resolver. The resolver (or more
normally the stub resolver) is the software library installed on each PC used to translate a user
or application request to a query to the local DNS. For instance, a typical query would be
“What is the IP address of www.example.com?” The resolver will use a locally configured DNS
server to perform the queries. Figure 3-1 illustrates this process.

User types

www.example.com

DNS Query RETTECEE Inbrowser

1

Root Servers Answer NS guery ! |

1

NS ¢ Query | I_} Local |~ i Resolver <_- !

.com TLD Answer Answer__ ________________ :
DNS Query
example.com Answer

Figure 3-1. DNS queries

Note The list of name server systems used by the resolver (or stub resolver) is obtained from the
Network Properties in Windows systems and from /etc/resolv.conf in Linux, BSD, or UNIX systems.

A name server may have zone files that define it to be authoritative for some (if any)
domains and slaves for others, and may be configured to provide caching, forwarding, or
other behaviors for other domains or users. Zone files were introduced in Chapter 2.

There are three types of queries defined for DNS systems:

1. Recursive queries: A recursive query is one in which the receiving name server will do all
the work necessary to return the complete answer to the question. Answering a query
recursively may involve the name server in multiple transactions to a number of other
name server systems. Name servers are not required to support recursive queries.

CHAPTER 3 " DNS OPERATIONS

2. Iterative (or nonrecursive) queries: In an iterative query, if the name server already has
the answer, it will return it. If the name server does not have the answer, it will return
any information that may be useful, but it will not make additional requests to other
name servers systems. All name servers must support iterative queries.

3. Inverse queries: The user wants to know the domain name given a Resource Record.
Name servers were not required to support inverse queries, and the feature was rarely,
if ever, implemented. It finally succumbed to the inevitable when RFC 3425 declared
it to be obsolete.

Note The process called reverse mapping, which returns a host name given an IP address, does not
use inverse queries but instead uses recursive and iterative (nonrecursive) queries using the special domain
name IN-ADDR.ARPA. Historically, reverse IPv4 mapping was not mandatory. Many systems—especially
mail servers—now use reverse mapping for simple security and authentication checks, so proper imple-
mentation and maintenance of reverse mapping is now practically essential.

Next, I'll introduce each type of query in further detail.

Recursive Queries

A recursive query is one that the name server fully answers (or gives an error). Name servers
are not required to support recursive queries, and the resolver (or another name server acting
recursively on behalf of another resolver) negotiates the use of recursive service using bits in
the query headers. There are three possible responses to a recursive query:

1. The answer to the query accompanied by any CNAME records (aliases) that may be use-
ful for example the response to a query for an A RR will follow any CNAME chain. The
response will indicate whether the data is authoritative or cached (nonauthoritative).

2. An error indicating the domain or host does not exist (NXDOMAIN). This response may
also contain CNAME records that pointed to the nonexisting host.

3. Atemporary error indication—for instance, it can’t access other name servers due to
network error, etc.

In arecursive query a name server will, on behalf of the client (resolver or stub resolver),
chase the trail of name servers across the universe to get the real answer to the question. The
journey of a simple recursive query such as “What is the IP address of waw.example.com?” to a
name server that supports recursive queries but is not authoritative for example.com (it is not
the master or slave for example.com zone) will look something like this:

1. Auser types the URL http://www.example.cominto a browser.
2. The browser sends a request for the IP address of www.example.com to its resolver.

3. The resolver queries the locally configured name server for the IP address of
www . example.com.

41

42

CHAPTER 3 " DNS OPERATIONS

10.

11.

12.
13.

The local name server looks up www.example.comin local tables (its cache)—but it’s
not found.

The local name server sends a query to a root-server for the IP (the A RR) of
www.example.com.

The root-server only supports iterative (nonrecursive) queries (see the upcoming sec-
tion “Tterative (Nonrecursive) Queries”) and answers with a list of name servers that
are authoritative for the gTLD . com (this is called a referral).

The local name server selects one of the authoritative gTLD servers and sends a query
for the IP of www.example. com.

The gTLD name server only supports iterative queries and answers with the authorita-
tive name servers for the Second-Level Domain (SLD) example. com (a referral).

The local name server selects one of the authoritative DNS servers for example. com and
sends a query for the IP (the A RR) of www.example. com.

The zone file for example.com defines www.example.com as a CNAME record (an alias)
for joe.example.com. The authoritative name server answers with the www.example.com
CNAME RR and, in this case, the A RR for joe.example.com, which we will assume is
192.168.254.2.

The local name server sends the response joe.example.com=192.168.254.2 (together
with the CNAME RR www=joe) to the original client resolver.

The resolver sends www.example.com=192.168.254.2 to the user’s browser.

The browser sends a request to 192.168.254.2 for the web page.

Figure 3-2 illustrates a recursive query in action.

Recursive Query

DNS Query

Root Servers Referral 1 Query

DNS |«

1
1
1
DNS {M' » Local |— 4'\,
n

.com TLD

=]
(3]
(2]
S
<
[1°]
)
w
o
o
=
w
3+
@

Referral ||~ T _______ 1
DNS Query
example.com Answer

Figure 3-2. Recursive query

CHAPTER 3 " DNS OPERATIONS

Which Name Server Is Used

In the case where multiple name servers are available, as is the case with the root-servers or
gTLD servers in the preceding explanation, which one should our local DNS use? Most name
servers use some algorithm to spread the load and therefore ensure the fastest possible result.
In the case of BIND, it maintains a metric called the round-trip time (RTT) in which it tracks
the response time to queries from each name server. When a list of name servers is initially
supplied in a referral, each name server has an RTT of zero (there is no RTT). In this case, BIND
will access each name server once in a round-robin at the end of which an RTT metric is avail-
able for each name server. Thereafter BIND will select the name server with the lowest RTT
and continue to use it until its RTT exceeds the RTT of one of the other name servers, at which
time that name server becomes the preferred choice.

Iterative (Nonrecursive) Queries

An iterative (or nonrecursive) query is one where the name server may provide a partial answer
to the query (or give an error). Name servers must support nonrecursive queries.
There are four possible responses to a nonrecursive query:

1. The answer to the query accompanied by any CNAME records (aliases) that may be
useful. The response will indicate whether the data is authoritative or cached (non-
authoritative).

2. An error indicating the domain or host does not exist (NXDOMAIN). This response may
also contain CNAME records that pointed to the nonexisting host.

3. An temporary error indication—for example, can't access other DNSs due to network
error, etc.

4. Areferral—a list of two or more name servers (and IP addresses) that are closer to the
requested domain name. These may or may not be the authoritative name servers for
the final domain in the query. A referral is the normal response method used by root-
servers and TLD servers since both name server types only support iterative queries.

The journey of a simple query such as “What is the IP address of www.example.com?” to
aname server supporting iterative (nonrecursive) queries but that is not authoritative for
example.com would look something like this:

1. A user types the URL http://www.example.cominto a browser.
2. The browser sends a request for the IP address of waw.example. com to its resolver.

3. Theresolver on a host sends the query “What is the IP address of www.example.com?”
to its locally configured name server.

4, The local name server looks up www.example.comin local tables (its cache)—but it’s
not found. The local name server responds with a referral containing the list of root-
Servers.

5. The resolver sends a query to a root-server for the IP (the A RR) of waw.example. com.

6. The root-server answers with a list of name servers that are authoritative for the
gTLD . com (a referral).

43

44

CHAPTER 3 " DNS OPERATIONS

7. The resolver selects one of the authoritative gTLD servers returned in the referral and
sends a query for the IP of www.example.com directly to that name server—not the
locally configured DNS.

8. The gTLD name server answers the resolver with the authoritative name servers for
the SLD example. com.

9. The resolver selects one of the authoritative SLD name servers returned in the referral
and sends a query for the IP of www.example.com directly to that name server (not the
locally configured name server).

10. The zone file for example.com defines www.example.com as a CNAME record (an alias) to
joe.example.com. The authoritative name server answers with the ww CNAME RR and,
in this case, the A RR for joe.example.com, which we will assume is 192.168.254.2.

11. The resolver sends www.example.com=192.168.254.2 to the browser.
12. The browser sends a request to 192.168.254.2 for the web page.

Figure 3-3 illustrates an iterative query.

Iterative (Nonrecursive) Query

DNS ¢ Query DNS <‘| e

Root Servers Referral Local —l el |

T 1

er g '

DNS < Query L2 | Resolver !

.com TLD Referral !

DNS 4,—|(Ml e
example.com Answer

Figure 3-3. Iterative query

The preceding sequence is very artificial. A resolver technically must be capable of follow-
ing referrals. The resolver that is installed on most common systems—this includes Windows,
Linux, BSD, and Unix systems—is in fact a stub resolver. A stub resolver, which is defined in
the standard, is a minimal resolver that cannot follow referrals. In general, locally configured
name servers used by PCs or workstations must support recursive queries to avoid returning
referrals to the stub resolver.

Note Windows 2000 and XP have what is called a caching resolver. This is a stub resolver—it cannot
follow referrals—with a simple cache to increase performance and reduce network traffic.

CHAPTER 3 " DNS OPERATIONS

Inverse Queries

An inverse query maps a Resource Record to a domain. An example inverse query would be
“What is the domain name for this MX record?” Inverse query support was always defined to
be an optional service within the DNS specifications, and it was permitted for name servers
to return a response of “Not implemented” (NOTIMP), which they almost invariably did! Con-
sequently, inverse queries were not widely used and were quietly put to rest when they were
made obsolete by RFC 3425.

At first blush it may seem obvious that inverse queries are used to find a host name given an
IP address. This not the case. The IP to host query process is called reverse mapping or reverse
lookup and uses normal recursive and iterative (nonrecursive) queries with the special domain
IN-ADDR.ARPA. Reverse mapping is introduced in the next section.

DNS Reverse Mapping

Given a domain name, a normal DNS query tries to determine its IP address. At times, however,
you'll find it useful to be able to determine the name of the host given a particular IP address.
While sometimes this is required for diagnostic purposes, more frequently these days it is used
for security reasons to trace a hacker or spammer; indeed, many modern mailing systems use
reverse mapping to provide simple authentication by using DNS lookup policies, for instance,
IP-to-name and name-to-IP, to confirm that the specified IP address does represent the indi-
cated host.

In order to perform reverse mapping using normal recursive and iterative queries, the
DNS designers defined a special (reserved) domain name called IN-ADDR.ARPA. The next sec-
tion describes how this special domain is constructed.

IN-ADDR.ARPA Reverse-Mapping Domain

Reverse mapping can look very complicated. It is, however, an elegant and simple concept
and uses a simple variation of the domain name hierarchy introduced in Chapter 1.

The normal domain name structure is hierarchical starting from the root. A domain name
is written left to right, but the hierarchical structure is right to left.

domain name = www.example.com

The highest node in the hierarchy (or tree) is . com, the Top-Level Domain (TLD); the next
(lower) is .example, the Second-Level Domain; and finally the lowest is www, which is the host
name and, recall from Chapter 2, is always defined in a zone file. To enable an IPv4 address to
be used in a normal query operation, it must converted into a domain name as described next.

An IPv4 address is written as follows:

192.168.254.17

This IPv4 address defines a host address of 17 in the Class C address range 192.168.254.x
(see the sidebar “IPv4 Addresses and CIDR”). In this case, the most important part (the highest
node) is on the left (192), not the right. This is a tad awkward and would make it impossible to
construct a sensible tree structure that could be searched in a single lifetime.

45

46

CHAPTER 3 " DNS OPERATIONS

The solution is elegantly simple: to create the domain name, reverse the order of the
address and build the hierarchy under the special domain name IN-ADDR.ARPA (the SLD is
IN-ADDR, the TLD is ARPA).

Note IN-ADDR.ARPA can also be written as in-addr . arpa, which is perfectly acceptable since domains
are case insensitive; but the case should be preserved, so this book will continue to use IN-ADDR.ARPA.

Finally, the last part of the IPv4 address (17) is the host address and hosts, as you may
recall from Chapter 2, are always defined inside a zone file. The result of the preceding manip-
ulation is as follows:

IPv4 address =192.168.254.17

Class C base = 192.168.254 ; omits the host address = 17
Reversed Class C base = 254.168.192

Added to IN-ADDR.ARPA domain = 254.168.192.IN-ADDR.ARPA

The organization of the IN-ADDR.ARPA domain is shown in Figure 3-4.

Root

ARPA Delegation

.IN-ADDR

Figure 3-4. IN-ADDR . ARPA reverse mapping

Finally, a zone file is constructed to describe all the hosts in the reverse-mapped zone
using the special PTR Resource Record, which is described in the next section. The resulting
zone file will look something like this:

; simple reverse mapping zone file for example.com

$TTL 2d ; default TTL for zone

$ORIGIN 254.168.192.IN-ADDR.ARPA.

; Start of Authority record defining the key characteristics of the zone (domain)

@ IN SOA nsl.example.com. hostmaster.example.com. (
2003080800 ; sn = serial number
12h ; refresh
15m ; retry
3w ; expiry
2h 5 min = minimum

)

)

CHAPTER 3 " DNS OPERATIONS

; name servers Resource Records for the domain

IN NS nsil.example.com.
the second name server is
external to this zone (domain).

IN NS ns2.example.net.
5 PTR RR maps an IPv4 address to a host name
2 IN PTR nsil.example.com.
4 IN PTR mail.example.com.
16 IN PTR joe.example.com.
17 IN PTR www . example.com.

Note The PTR RRs in the preceding zone file use Fully Qualified Domain Names (FQDN) ending with a dot

because of the $ORIGIN substitution rule, which was described in Chapter 2.

IPV4 ADDRESSES AND CIDR

An IPv4 address is a 32-bit value that allows 4,294,967,296 unique addresses. It’s difficult to remember
numbers of this size, so the conventional way of writing an IP address is in dotted decimal format, for
example, 192.168.23.17.

A dotted decimal IP address is constructed as follows:

1. A 32-bit address contains 4 X 8-bit bytes (or octets).

2. Each 8-hit byte (octet) may represent 256 (0—255) values. The internal (machine) representation of the
byte (octet) is known as hexadecimal and may contain the hexadecimal values 00 to FF.

3. Dotted decimal simply converts the 8-bit value for each byte (octet) to its decimal value (which is
always in the range 0 to 255) and separates each value with a dot to make it more readable.

Each IPv4 address has two components: a network address and a host address. The boundary between,
or the number of bits in, the network address part and the host address part is determined by the address
class and the netmask or the subnetmask.

Before the advent of Classless Inter-Domain Routing (CIDR), the world was a simple place—we had four
classes of IPv4 addresses: A, B, C, and D (there is also a class E, but for all practical purposes it is not used).
The IP address Class is defined by the setting of the top (leftmost) 4 bits of the IP address (or bits 0-3 using
the IETF’s notation). The IP class provides the separation between the host and the network part of the IP
address as shown in the following table:

Continued

47

48

CHAPTER 3 " DNS OPERATIONS

Class Example Bits 28-31 Network Bits Host Bits Netmask

A 126.0.0.0 Oxxx 8 24 255.0.0.0

B 172.16.0.0 10xx 16 16 255.255.0.0

C 192.22.22.0 110x 24 8 255.255.255.0
D 224.0.0.0 1110

The following notes explain and expand on some of the points in the preceding table:

1. x=Don't care.
2. Class D addresses are used for multicasting protocols exclusively, for example, OSPF, IGMP, etc.

3. Classes A, B, C, and D are routed IPs (the IPv4 address ranges 10.x.x.x, 172.16.xx to 172.31.xx, and
192.168.x.x are reserved for private use and should only be routed inside a user’s private network.
They should not be routed across the Internet).

4. The term netmask refers to the standard mask for the address class. You will see later that different
masks may be used with any IP class.

5. The terms netmask and subnetmask are subtly different, but they will be used here as if they were
Ssynonymous.

Classless Inter-Domain Routing

Classless Inter-Domain Routing essentially removes the idea of class from IPv4 addresses and allows admin-
istrations to allocate and route any valid subnet from any convenient base IP class; the idea being that if you
want a group of 32 IP addresses, whether you take them from an IP Class C address or from an IP Class B
address is notimportant. You simply want 32 IP addresses. The following table shows two 32-address sub-
nets, one from a nominal Class B range, the other from a nominal Class C range—spot the difference!

Class Network Netmask
B 172.28.227.192 255.255.255.224
© 192.168.15.64 255.255.255.224

In short, the key factors in a CIDR world become the network (base) IP address and the netmask.

IP Prefix, or Slash Notation

It is common practice to combine IP addresses and their netmask into a single notation called the /P prefix,
or more commonly slash notation. In the preceding example, the IP address 172.28.227.192 with a subnet
mask of 255.255.255.224 would be written in the slash or IP prefix notation as 172.28.227.192/27. The IP
address to the left of the slash (/) is the network (base) IP address, and the number (1 to 32) to the right of
the slash is the number of contiguous bits in the netmask. The following table illustrates this notation:

CHAPTER 3 " DNS OPERATIONS

Slash Form Network IP Netmask No. of IPs
192.168.32.0/19 192.168.32.0 255.255.224.0 8192
172.28.127.64/27 172.28.127.64 255.255.255.224 32
172.28.127.0/24 172.28.127.0 255.255.255.0 256

In the preceding examples, you will see that multiple Class C addresses have been extracted from a
Class C IP address and subclass C addresses have been subnetted from a Class B address just to illustrate
the flexibility of CIDR.

The PTR Resource Record

The PTR RR is standardized in RFC 1035 and maps an IPv4 address to a particular host in the
domain or zone as opposed to an A RR, which maps a name to an IPv4 address. The formal
syntax is as follows:

name ttl class 1r name

In the example file, the following PTR RRs are defined:

2 IN PTR nsil.example.com.
4 IN PTR mail.example.com.
16 IN PTR joe.example.com.
17 IN PTR www . example.com.

As you may recall from Chapter 2, the separators between fields can be either spaces or tabs.
Table 3-1 maps the formal syntax to the first PTR RR used in the example zone file.

Table 3-1. PTR RR Syntax

Syntax Example Usage Description

name 2 While this looks like a number, it is in fact treated as a name.
The name is unqualified, causing the $0RIGIN directive value to
be substituted. You could have written this as 2.254.168.192.
IN-ADDR.ARPA. (using the FQDN format).

ttl There is no ttl value defined for the RR, so the zone default
of 2d from the $TTL directive will be used.

class IN IN defines the class to be Internet.

name nsi.example.com. Defines that a query for 192.168.254.2 will return ns1.example.

com. This name must be written in the FQDN notation (it must
end with a dot). If the dot were omitted in error, then $ORIGIN
substitution would create ns1.example.com.254.168.192.
IN-ADDR.ARPA..

49

50

CHAPTER 3 " DNS OPERATIONS

Only one IPv4 address may be mapped to a host name using PTR RR. Where multiple
A RRs or CNAME RRs can be used to define the same IPv4 address, only one name can appear
in the IN-ADDR.ARPA zone file. In the zone fragment that follows, either ns1 or waww could appear in
the IN-ADDR.ARPA zone:

nsi IN A 192.168.254.2
; this A RR has the same IPv4 address as nsi1 above
WWW IN A 192.168.254.2

Same definition using a CNAME RR:

nsi IN A 192.168.254.2
WiW IN CNAME nsi.example.com.

Reverse-map lookups are used extensively by e-mail software. If two names are defined
for a host, using either A or CNAME RRs, that provides e-mail (SMTP) services, then the mail
server name should always be defined in the IN-ADDR.ARPA zone file. Failure to do this will
result in mail being rejected by any mail server that implements reverse lookup as part of an
authentication (antispam) process. The zone fragment that follows shows the same host being
defined using two A RRs:

mail IN A 192.168.254.4
; this A RR has the same IPv4 address as mail above
WwW IN A 192.168.254.4

Same definition using a CNAME RR:

mail IN A 192.168.254.4
Wi IN CNAME ~ mail.example.com.

The IN-ADDR.ARPA zone should define the mail host to enable reverse-lookup checks by,
say, e-mail software.

; the IN-ADDR.ARPA zone file defines mail not www
4 IN PTR mail.example.com.

The reverse-map may reference a host defined in the forward-map zone file using either
an A or a CNAME RR as shown here:

WWW IN A 192.168.254.4
ftp IN CNAME ~ mail.example.com.

The reverse map defines the host forward mapped with a CNAME:
4 IN PTR ftp.example.com.
IPv6 also uses the PTR RR for reverse mapping in the domain IP6.ARPA and is described in

Chapter 5.

Reverse-Map Queries

Reverse-map queries use normal recursive or iterative queries, as described previously, under
the special domain IN-ADDR.ARPA. The .ARPA (now renamed the Address and Routing Parameter

CHAPTER 3 " DNS OPERATIONS

Area) domain is structured hierarchically with ICANN/IANA (www.icann.org) at the root as nor-
mal and is administered jointly by ICANN/IANA and the IETF/IAB (RFC 3172). Unlike forward
domains, which use the gTLD or ccTLD servers as the next level of delegation, IPv4 addresses
are delegated through the Regional Internet Registries (RIRs), which are shown in Table 3-2.

Table 3-2. Regional Internet Registries

RIR Name Coverage Web

APNIC Asia Pacific www.apnic.net
ARIN North America, Southern Africa, parts of the Caribbean www.arin.net
LACNIC South America, parts of the Caribbean www.lacnic.net
RIPE Europe, Middle East, Northern Africa, parts of Asia www.Tipe.net

AFRINIC Africa (This RIR is planned to be fully accredited by ICANN in www.afrinic.net
late 2005/2006 and at that time will assume responsibilities for
African registrations that are presently handled by ARIN and RIPE.)

IPv4 addresses are allocated in netblocks by the RIRs to either a Local Internet Registry
(LIR), typically an ISP, or to a National Internet Registry (NIR), which in turn will allocate to
an LIR. Each Internet Registry level is delegated the responsibility for reverse mapping the
addresses it has been assigned. The LIR may delegate the responsibility for reverse mapping
to the end user if static IPv4 addresses are involved. However, the organization of reverse map-
ping is based on each dot-separated value in an IP address as shown in Figure 3-4. If the last
part of the IPv4 address assigned to an end user is a subnet (less than 256 addresses), then a
problem arises because any entity, a domain name or an address block, in the domain hier-
archy can be delegated once and only once. In the case of a subnet, the same netblock would
require to be delegated to each subnet user. To illustrate this point, assume the netblock
192.168.254.0 is to be allocated to four users, each of whom will have 64 addresses (a subnet
of 64 addresses). These will be allocated as shown here in slash or IP prefix notation (see the
sidebar “IPv4 addresses and CIDR”):

First User - 192.168.254.0/26 (same as netmask of 255.255.255.192)

Second User - 192.168.254.64/26 (same as netmask of 255.255.255.192)
Third User - 192.168.254.128/26 (same as netmask of 255.255.255.192)
Fourth User - 192.168.254.192/26 (same as netmask of 255.255.255.192)

When the netblock for this group is reverse mapped, the host part is omitted as defined
previously, giving 192.168.254, and then reversed to the IN-ADDR.ARPA domain, giving the
following:

254.168.192.IN-ADDDR.ARPA

Each of our four users would require delegation of this domain in order to provide the
reverse mapping of their own assigned address range. This contravenes the single delegation
principle defined previously.

In order to overcome this limitation, the construction of reverse maps for the delegation
of subnets uses a very specialized reverse-map name construct that essentially creates an
additional namespace and is described in Chapter 8. Reverse mapping of subnets is very
uncommon, since not all organizations are aware of the special techniques involved.

51

52 CHAPTER 3 " DNS OPERATIONS

A reverse-map inquiry using a recursive query is shown in Figure 3-5 for the IPv4 address
192.168.250.15, which is assumed to have been reverse-map delegated all the way to the end user.

Recursive Query for 15.520.168.192.IN-ADDR.ARPA

DNS Query
Root Servers P Tpe T TS !
192.IN-ADDR.ARPA | Referral Query ' |
< Command|
Quer T <
DNS < V||_> I_[:)Ncgl ; Resolver »| Line !
RIR (.168) Referral > A“SWGF_ ________________ :
DNS < Query
LIR (.250) Referral
DNS Query
END-USER (.15) Answer

Figure 3-5. Reverse-mapping query

The examples appearing in this reverse-map section use, in the interest of promoting good
netizen-ship, a private IPv4 address (from the set defined in RFC 1918), which in Figure 8-5 is
192.168.250.15. This is shown as interrogating the root-servers for the purpose of illustration
only. These IPv4 addresses are private and are meaningless as far as the public network is con-
cerned, yet recent studies suggest that up to 7% of all queries received at some root-servers
comprise reverse-map queries for private IPv4 addresses, which are caused as a result of badly
configured name servers. If the local configuration contains private IP addresses in any zone
files, then a reverse-mapped zone file for the private IP range must be included in the name
server configuration to prevent these meaningless queries being forwarded to the public root-
servers. In Chapter 7, the section “Reverse-Map Zone Files” shows an example of such a
configuration.

Zone Maintenance

In order to simplify the operation of multiple name servers, it is useful if a single source can
update multiple servers. This process—zone maintenance—can involve transfer of zone files
from one DNS server to another—between a master and slave DNS for the zone—using fea-
tures of the DNS protocol.

The time between transferring zone file changes is a major determinant of the speed with
which changes to the zone information are propagated throughout the Internet. The initial
design of DNS allowed for changes to be propagated using full zone transfer (AXFR) operations,
but the world of the Internet was simpler and more sedate in those days (1987). The desire to
speed up the process of zone update propagation, while minimizing use of resources, has
resulted in a number of changes to this aspect of DNS design and implementation from

CHAPTER 3 " DNS OPERATIONS

simple—but effective—tinkering such as incremental zone transfer (IXFR) and NOTIFY mes-
sages to the more complex concept of dynamic update (DDNS).

Warning While zone transfers are generally essential for the efficient operation of DNS systems, they
are also a major source of threat. A slave DNS can become poisoned if it accepts zone updates from a mali-
cious source. Care should be taken during DNS configuration to ensure that, as a minimum, the slave DNS
will only accept transfers from known and trusted sources. The example configurations provided in later
chapters implement these minimum precautions.

Full Zone Transfer (AXFR)

The original DNS specifications (RFC 1034 and RFC 1035) envisaged that slave (or Secondary)
name servers for the zone would poll the master name server for the zone. The time between
polling is determined by the refresh value of the domain’s SOA Resource Record, which was
described in Chapter 2. In a typical zone file, this value will be 12 hours or more.

The DNS polling process is accomplished by the slave name server sending a query to the
zone master requesting the SOA RR. If the SOA RR’s serial number is greater than the current
one maintained by the slave name server, a full zone transfer (AXFR) is requested by the slave
DNS. This is the reason it is vital to be disciplined about updating the SOA serial number every
time anything changes in any of the zone records. The following example demonstrates updat-
ing the serial number using the recommended date number format of yyyymmaddss, where
yyyy is a four-digit year number, mm is a two-digit month number, dd is a two-digit day num-
ber, and ss is a sequence number so that the zone can be updated more than once per day.
Assume an SOA RR as shown here:

@ IN SOA nsil.example.com. hostmaster.example.com. (
2003080803 ; sn = serial number
3h ; refresh time
15m ; retry = update retry
3w ; expiry
3h 5 min = minimum
)

Using the date format, this shows that this zone file was last updated four times (ss = 03)
on August 8, 2003. If we assume that today’s date is September 7, 2003, then the serial number
should be set to the value shown here:

@ IN SOA nsi.example.com. hostmaster.example.com. (
2003090700 ; sn = serial number
3h ; refresh time
15m ; retry = update retry
3w ; expiry
3h 5 min = minimum

)

53

54

CHAPTER 3 " DNS OPERATIONS

The sequence number has also been reset to 00 to ensure we have plenty of space for fix-
ing errors! If the month and date of the preceding example were to be swapped in error, then
the serial number would be

2003070900 ; sn = serial number

This number is not greater than the previous number, so the slave would not request a
zone transfer and the updates would not be propagated. The fix in this case is simple, since
the error is back in time. The following example shows the serial number being incorrectly
placed forward in time:

2005090700 ; sn = serial number

To restore this serial number to the correct date is much more complex, and you would
only want to do it once in your life. The procedure is documented in Chapter 8. Remember
that the date format is a widely used and recommended convention; BIND does not validate
the number for correct ranges, that is, the following is accepted quite happily by BIND:

2003144500 ; sn = serial number

which is the 45th day of the 14th month of 2003! In this case, a zone transfer will take place
because the number is greater than our initial value.
Zone transfer (AXFR) operations use TCP on port 53.

Warning Not updating the serial number field of the SOA RR when any change is made to the zone file
is one of the most common causes of head scratching, screaming, and other more seriously aberrant behav-
ior when dealing with DNS systems. Always update the SOA RR serial number when you make any changes
to a zone file.

Incremental Zone Transfer (IXFR)

Transferring very large zone files can take a long time and waste bandwidth and other resources.
It is especially wasteful if only a single record has been changed! RFC 1995 introduced incremen-
tal zone transfers (IXFR), which as the name suggests allows the slave name server and master
name server to transfer only those records that have changed.

The process works as for AXFR. The slave name server sends a query for the domain’s SOA
RR to the zone master every refresh interval. If the serial number of the SOA RR is greater than
the one currently stored by the slave, the name server requests a zone transfer and indicates
whether or not it is capable of accepting an incremental zone transfer (IXFR). If both master
and slave name servers support the feature, an incremental zone transfer (IXFR) takes place;
otherwise a full zone transfer (AXFR) takes place. Incremental zone transfers (IXFR) use TCP
on port 53.

The default mode for BIND when acting as a slave name server is to request IXFR unless
it has been configured not to by use of the request-ixfr statement in the server or options
clause of the named. conf file (see Chapter 12 for details).

CHAPTER 3 " DNS OPERATIONS

The default mode for BIND when acting as a master name server is to use IXFR only when
the zone is dynamic. The use of IXFR is controlled through the provide-ixfr statement in the
server or options clause of the named. conf file (see Chapter 12 for details).

Incremental zone transfers (IXFR) affect only the volume of data that is transferred; they
have no impact on the time it takes to propagate zone file changes.

Notify (NOTIFY)

RFC 1912 recommends an interval of 2 to 12 hours or higher on the refresh interval for the
SOA RR. This means that changes to the zone master may not be visible to the zone slave for
up to 12 hours or whatever this value is set to. In the fast moving world of the Internet, this
may be unacceptable.

RFC 1996 introduced a scheme whereby the zone master will send a NOTIFY message to
the zone slave name server whenever the zone is loaded or updated. This message indicates
that a change may have occurred in the domain records. The slave on receipt of the NOTIFY
message will request the SOA RR from the zone master, and if the serial number is greater
than the one currently stored, will attempt a zone transfer using either a full zone transfer
(AXFR) or an incremental transfer (IXFR).

BIND’s default behavior is to send NOTIFY messages to slave name servers that are defined
in the NS Resource Records for the zone. NOTIFY behavior in BIND is controlled by notify,
also-notify, and notify-source statements in the zone or options clauses of the named. conf
file (see Chapter 12 for details).

NOTIFY can considerably reduce the time to propagate zone changes to servers.

Dynamic Update

The classic method of updating zone RRs is to manually edit the zone file and then stop and
start the name server to read the zone files and propagate the changes. When the volume of
changes reaches a certain level, this can become operationally unacceptable—especially
considering that in organizations that handle large numbers of zone files, such as service
providers, BIND can take a long time to restart as it initializes very large numbers of zone files.
Many larger users of DNS seek a method to rapidly change the zone records while the
name server continues to respond to user queries. There are two architectural approaches
to solving this problem:

1. Allow runtime updating of the zone RRs from an external source or application.
2. Directly feed the zone RRs from a database, which can be dynamically updated.

RFC 2136 takes the first approach and defines a process, called Dynamic DNS (DDNS),
whereby zone records can be updated from one or more external sources. The key limitation
in this specification is that a new domain or zone cannot be added or deleted dynamically. All
records within an existing zone can be added, changed, or deleted—with the exception that
the SOA RR cannot be added or deleted since this would essentially add or remove the zone.

As part of RFC 2136, the term Primary Master was introduced to describe the name server
defined in the SOA Resource Record for the zone. When dynamically updating zone RRs, it is
essential to update only one server even though there may be multiple master servers for the
zone. In order to solve this problem, a boss server must be selected. The boss server, the pri-
mary master, has no special characteristics other than it is defined as the name server in the

55

56

CHAPTER 3 " DNS OPERATIONS

SOA RR and may appear in an allow-update statement of BIND’s named. conf configuration file
to control the dynamic update process (see Chapter 12 for details).

Dynamic DNS (DDNS) is normally described in conjunction with Secure DNS features—
specifically TSIG (RFC 2845) and TKEY (RFC 2930). DDNS, however, does not require or rely
on TSIG/TKEY features.

The reason the two features are tightly coupled is that by enabling Dynamic DNS, zone
files may be opened up to the possibility of corruption or poisoning by malicious sources.
Simple IP address protection can be configured into BIND (using BIND’s allow-update state-
ment described in Chapter 12), but this provides limited protection. System architecture can
further remove risk by positioning both the target name server and all the hosts that are allowed
to update it behind secure perimeters. The real power, however, of DDNS is that remote and
distributed users are able to semi-autonomously update and control their domain configura-
tions. Under these circumstances, serious users of Dynamic DNS will always use TSIG/TKEY
procedures, described in Chapter 10, to authenticate incoming requests.

BIND'’s default DDNS behavior is to deny from all hosts. Control of dynamic update is pro-
vided by the BIND named. conf statements allow-update (usable with and without TSIG/TKEY)
and update-policy (only usable with TSIG/TKEY) in the zone or options clauses. The state-
ments and clauses mentioned are described in Chapter 12.

There are a number of Open Source tools that will initiate DDNS updates; these include
nsupdate, which is one of the utilities distributed with BIND and whose use is described in
Chapter 9.

Alternative Dynamic DNS Approaches

As noted earlier, the major limitation in DDNS (RFC 2136) is that new domains cannot be
created dynamically. Alternative approaches to this problem do exist.

BIND-DLZ (bind-dlz.sourceforge.net) takes a much more radical approach and uses a big
patch to BIND 9 that replaces all zone files with a single zone file which simply describes a data-
base. BIND-DLZ supports the major Open Source databases including MySQL, PostgreSQL,
BDB, and OpenLDAP All incoming DNS queries are first directed to the database access routines
so that new, modified, or deleted zone data is immediately reflected in the name server’s
responses. As with all things in life, there is a trade-off. Depending on the selected database,
performance can drop precipitously; however, the latest Berkeley DB (BDB) drivers are showing
excellent results—with benchmarks approaching raw BIND performance.

PowerDNS (www.powerdns.com) is an authoritative-only name server that takes a similar
approach with its own (non-BIND) code base by referring all queries to the database back-end
and thereby allowing new domains to be added dynamically.

Caution The use of real-time changes to DNS records without the proper safeguards can result in trivial
errors being immediately propagated throughout the Internet with catastrophic consequences. Since DNS
caches will typically hold such records for 12 or more hours (determined by either the $TTL for the zone file
or the TTL value for the specific Resource Record), such errors can take a long time to correct.

CHAPTER 3 " DNS OPERATIONS

Security Overview

DNS operation, the simple act of running a DNS, opens up potential security threats. This is
true of any publicly accessible service, for example, a web site or FTP site. Somehow it is easier
to forget that DNS is a publicly accessible service.

This security overview steps back from the detail of DNS security configuration minutiae—
Chapters 10 and 11 cover DNS security configuration—to try and provide a clear and dispassionate
overview of the topic. There is nothing more annoying, on finding oneself in deep trouble
halfway up a mountain, that one really didn’t need to climb this particular mountain.

The critical point in defining security policies and procedures is to understand what needs
to be secured—or rather what threat levels need to be secured against and what threats are
acceptable. The answers to these two points will be very different if the DNS is running as a
root-server versus running a modest in-house DNS serving a couple of low-volume web sites.

The term DNSSECis thrown around as a blanket term to cover DNS security. This is not
quite correct. There are at least three forms of DNS security, two of which are (relatively) pain-
less and a full-blooded DNSSEC implementation that is (relatively) painful.

Security Threats

In order to be able to assess both the potential threats and the possible countermeasures, it is
first and foremost necessary to understand the normal data flow in a DNS system. Figure 3-6
shows this flow.

Dynamic
Updates Network/

r} Remote Resolver
@ Admin ©)
Queries Queries
>

Primary |<€ Remote

Master (4) | Caching
Master Transfers Resolver
(©)]

Slave(s)

-

Zone
Files

TSIG , SIG(0), TKEY

m} Server-Server DNSSEC

» Server-Client

Figure 3-6. DNS data flow

Every part of this data flow—each numbered line in Figure 3-6—is a potential source of
threat. Table 3-3 defines the potential outcomes of compromise at each point and the possible
solutions.

57

58

CHAPTER 3 " DNS OPERATIONS

Table 3-3. DNS Security Threats

Number Area Threat Classification Solutions
1 Zone files File corruption (malicious or Local System Administration
accidental)
2 Dynamic Unauthorized Updates, IP address Server-Server Network architecture,
updates spoofing (impersonating update TSIG, SIG(0), or
source) disable
3 Zone IP address spoofing (impersonating Server-Server Network architecture,
transfers update source) TSIG, TKEY, or
disable
4 Remote Cache poisoning by IP spoofing, Server-Client DNSSEC
queries data interception, or a subverted
master or slave
5 Resolver Data interception, poisoned cache, Remote DNSSEC, SSL/TLS
queries subverted master or slave, local Client—Client
IP spoofing

The first phase of any security review is to audit what threats are applicable and how seri-
ously they are rated in the particular organizational circumstances. As an example, if dynamic
updates are not supported—BIND’s default mode—there is no dynamic update threat!

It can be easier to disable a process than to secure it. While alternate processes may be
required, these may be far simpler to secure. As an example, for organizational reasons it may
be easier to manually update zone records on each name server than to secure or limit zone
transfers. In this case, simply disabling all zone transfers is the securest solution. This is some-
times referred to as security by obscurity.

Finally, a note of caution: the further you go from the zone master, the more complicated the
solution and implementation. Unless there is a very good reason for not doing so, it is recom-
mended that you always start from the zone master and work outward. It would be a tad
frustrating to have completed a successful implementation of a complex DNSSEC solution
only to discover that the installation’s zone files were world readable and writable.

Security Classification

The security classification is simply a means to allow selection of the appropriate remedies
and strategies for avoiding the implied risk. All the methods described next are discussed in
detail in Chapters 10 and 11. The numbering used in the following list relates to Figure 3-6.

» Local threats (1): Local threats are usually the simplest to prevent, typically requiring
good system administration polices. Zone files and any DNS configuration files—
named. conf contains lots of interesting data—should be secure, that is, have limited
read and write access and be securely backed up. Stealth (or Split) name servers can
be used to minimize public access (described in Chapter 7), and BIND can be run as
a chroot jail (described in Chapter 10).

CHAPTER 3 " DNS OPERATIONS

 Server-Server (2): If an organization runs slave name servers, it will do zone transfers.
It is possible to run multiple master name servers rather than master-slave servers.
Alternative methods are required to distribute zone files, but these methods may be
easier to secure than zone transfers depending on the organization’s requirements and
procedures. If zone transfers are required, BIND offers multiple configuration para-
meters that can be used to minimize the inherent risks in the process (described in
Chapter 12), and TSIG and TKEY offer secure methods for transmission of zone files
(described in Chapter 10).

* Server-Server (3): The BIND default is to deny dynamic zone updates. If an organization
requires this feature, then BIND provides a number of configuration parameters to
minimize risk (described in Chapter 12). Network architecture design—all systems
involved within a trusted perimeter—can further reduce the exposure. TSIG and SIG(0)
can be used to secure the transactions (described in Chapter 10).

¢ Server-Client (4): Remote caches can become poisoned—their contents can become
corrupted to point at competitor’s web sites—by IP spoofing, data interception, and
other hacks. While modest web sites probably have little to fear from this form of attack,
if the site is high profile, high volume, open to competitive threat, or a high revenue
earner, then the costs and complexity of implementing a full-scale DNSSEC solution
may be worthwhile. DNSSEC implementations have immediate applicability to high-
volume users (ISPs, service providers), within specialized communities (root-servers
and TLD servers) or within controlled groups (intranets, extranets). DNSSEC imple-
mentation is described in Chapter 11.

* Client-Client (5): The current versions of the DNSSEC protocol allow for a concept called
the security-aware resolver whereby the security chain can be propagated to the client
resolver. Additionally, BIND allows SSL/TLS to be used to secure the transmission path
between the client resolver’s host and the local name server.

Summary

This chapter described the various operations and services provided by the DNS protocol.
These operations include queries, recursive and interative (nonrecursive); zone transfers; and
dynamic update. I described the process known as reverse mapping, in which a normal query
is used to obtain the name of a host given its IP address, and illustrated it with some examples.
The chapter concluded with a brief overview of the security implications that necessarily arise
from running any DNS service.

Chapter 4 describes a number of name server (DNS) types while recognizing that the
majority of name servers are required to provide multiple functions.

59

CHAPTER 4

DNS Types

DNS servers play a wide variety of roles—a single name server may be a master for some zones,
a slavefor others, and provide caching or forwarding services for still others. Indeed, much of
BIND’s power comes from allowing fine-grained control over operational functionality.

The role of the name server is controlled by its configuration file, which in the case of BIND
is called named. conf. The combination of global parameters in the named. conf file (defined in an
options clause) and the zones being serviced (defined in one or more zone clauses) determine
the complete functionality of the name server. Depending on the requirements, such configura-
tions can become very complex. In order to provide an approachable starting point to what can
become a task of daunting complexity, this chapter breaks down configuration of the name
server into a number of basic fypes such as a master server type and an authoritative-only server
type. It describes their characteristics and properties, in isolation, to create a series of building
blocks from which progressively more complex configurations can be constructed. In some
cases, the basic types may themselves be sufficient to create the required name server such as
a caching-only server type or a forwarding server type; in other cases, the required name server
may consist of, for example, many master server types, many slave server types, and a caching
server type. Indeed, in later chapters of this book, we will meet many examples that combine
a number of these basic types to create unique solutions.

In order to most effectively introduce the characteristics of the each basic name server
type, where appropriate, some BIND configuration file (named. conf) fragments are used. The
term clause is used to describe a group of related statements that can appear in the named.conf
file. This terminology is applied rigorously throughout this book in the interests of consistency
and ease of understanding rather than the myriad terms used in other documentation on this
subject. The full format and layout of the named. conf file is described in Chapter 12, but the
following identifies some important clauses and statements used in this file and which appear
in the upcoming fragments:

* The options clause. The options clause groups together statements that control the
global behavior of the name server. In some cases, the global statements may be over-
ridden in specific clauses such as the zone clause.

» The zone clause groups statements that relate to specific zones within the configuration—
the zone clause for example. com will define all the characteristics or properties of the zone.

* The type statement is used within a zone clause and defines how the name server will
act for the specific zone (for example, it may act as a master or as a slave for the zone).

61

62 CHAPTER 4 " DNS TYPES

¢ The recursion statement controls whether recursive queries are supported or not.
Caching is an artifact of recursion, and therefore this statement effectively controls
the provision of caching services in the name server. This statement may appear either
in a global options clause or a view clause. By default, BIND will support recursive
queries and hence provides caching.

* The file statement is used to define the physical location of the zone file and appears
in a zone clause.

Master (Primary) Name Servers

A master DNS configuration, also known as a zone master configuration, contains one or more
zone files for which this DNS is authoritative and which it reads from a local file system. The
term master is related to the location of the zone file rather than any other operational charac-
teristics. A master may be requested to transfer zone files—using zone transfer operations
(described in Chapter 3)—to one or more slave servers whenever the zone file changes.

Note The term master was introduced in BIND 8.x releases and replaced the slightly confusing term
Primary.

Zone master status for a zone is defined in BIND by including type master; in the zone
clause of the named. conf file as shown by the following fragment:

// example.com fragment from named.conf
// defines this server as a zone master for example.com
zone "example.com" in{

type master;

file "master.example.com";

};

In the preceding fragment, zone "example.com" defines the zone to which the following
statements apply, type master defines this DNS to be the zone master for example.com, and
file "master.example.com" defines the name of the zone file containing the Resource Records
(RRs) for example. com.

Figure 4-1 illustrates a zone master DNS.

CHAPTER 4 " DNS TYPES

DNS . DNS
Master Zone 771 Slave Zone
Zone Transfer

T 35

(zneFie

Figure 4-1. Master and slave servers

Note The terms Primary and Secondary name servers are widely used in two contexts. In the context of
zone transfer, Primary is used to describe what this book calls the zone master and Secondary describes the
zone slave. Unfortunately, the terms Primary and Secondary are also frequently used when describing the order
of name servers, for example, when registering a domain name, and in many PCs when defining the order of
DNS used in the network properties on Windows systems especially. BIND 8 introduced the terms master and
slaveto try and reduce the confusion caused by the conflicting use of Primary and Secondary. This book uses
the terms master and slave throughout when describing name servers used in zone transfer operations; purely
in this context the terms Primary means master and Secondary means slave. Just to further confuse things, the
term Primary Master has crept into the jargon. This term has a special meaning only in the context of Dynamic
DNS (DDNS) updates and is defined to be the name server that appears in the SOA Resource Record (discussed
in Chapter 2).

A zone master obtains the zone data from a local zone file as opposed to a zone slave, which
obtains its zone data via a zone transfer operation from the zone master. This seemingly trivial
point means that it is possible to have any number of zone masters for any zone if that makes
operational sense. Zone file changes need to be synchronized between zone masters by a
manual or automated process. This may be easier to manage than securing the zone transfer
operations inherent in a master-slave configuration.

A master name server can indicate (using NOTIFY messages) zone changes to slave servers.
This ensures zone changes are rapidly propagated to the slaves rather than simply waiting for
the slave to poll for changes at each SOA RR refresh interval. The BIND default is to automati-
cally NOTIFY all the name servers defined in NS records for the zone.

NOTIFY messages may be disabled by use of the configuration statement notify noin
BIND’s named. conf file in the zone clause for the domain.

When a DNS server that is a master for one or more zones receives a query for a zone for
which it is not a master or a slave, then it will act as configured. In BIND, this behavior is
defined in the named. conf file:

63

64

CHAPTER 4 " DNS TYPES

1. If caching behavior is permitted and recursive queries are allowed (described in Chap-
ter 3), the server will completely answer the request or return an error.

2. If caching behavior is permitted and iterative (nonrecursive) queries only are allowed,
the server can respond with the complete answer if it is already in the cache because of
another request, a referral, or return an error.

3. If caching behavior is not permitted (an authoritative-only DNS server), the server will
return a referral or an error.

Tip Example configuration files for a master name server are provided in Chapter 7.

Slave (Secondary) Name Servers

The critical nature of DNS—no Internet services can work without it—requires that there be
at least two name servers to support each domain or zone; larger or more active domains may
rely on many more. For instance, examination of the NS Resource Records using the dig tool
(see Chapter 9) shows a typical range from 4 to 9 name servers for a number of high-profile
zones. It is possible to run multiple master name servers, but any changed zone files must be
copied to all masters. Apart from the obvious problem of synchronization when multiple mas-
ters are used, each master must be reloaded to use the new zone files, thus taking the name
server out of service for a short period of time. With larger sites being hit hundreds of times
per second, even modest out-of-service times can /ose thousands of DNS transactions—
effectively making the site unreachable or slowing down access. To resolve this problem, the
DNS specifications provide a feature—zone transfer—whereby one name server, the slave

(or Secondary), can be updated from a zone master (or Primary) while continuing to provide
responses to queries for the zone.

A slave name server obtains its zone information from a zone master, but it will respond
as authoritative for those zones for which it is defined to be a slave and for which it has valid
zone records, that is, the zone records have not expired. The act of transferring the zone may
be viewed as having delegated the authority for the zone to the slave for the time period
defined in the expiry value of the SOA record (described in Chapter 2) and thus enables the
slave to respond authoritatively to queries.

Note There is no visible difference to other name servers between the response from a zone master and
the response from a zone slave.

Slave status is defined in BIND by including type slave in the zone clause of the
named. conf file as shown by the following fragment:

CHAPTER 4 " DNS TYPES

// example.com fragment from named.conf
// defines this server as a zone slave
zone "example.com" in{

type slave;

file "slave.example.com";

masters {192.168.23.17;};

};

In the preceding fragment, zone "example.com" defines the zone for which the following
statements apply, and type slave; indicates that this name server will act as a slave for
example.com. The statement file "slave.example.com"; is optional and allows the zone data
to be saved to the specified file. If the name server is reloaded, it can read the zone data from
this file rather than forcing a new zone transfer from the master, as would be the case if no file
statement were present. The file statement can save considerable time and resources. The
statement masters {192.168.23.17}; defines the IP address of the name server that holds the
master zone file for this zone. One or more IP addresses may be present. There can be more
than one master DNS for any zone.

A slave server attempts to update the zone records when the refresh parameter of the SOA
RR (described in Chapter 2) is reached. If a slave has still not reached the master DNS when
the expiry time of the SOA RR for the zone has been reached, it will stop responding to queries
for the zone. The slave will not use time-expired data.

Slave (Secondary) DNS Behavior

As previously mentioned, slave servers will respond as authoritative to queries for the domain
as long as they hold valid zone records. This feature provides the user with a lot of flexibility
when registering name servers for a given domain. When registering such name servers, the
only requirement is that the servers listed will respond as authoritative to queries for the
domain or zone. It is not necessary to define the zone master as one of these name servers;
two or more slave servers will satisfy the requirement. This flexibility allows the zone master
to be hidden from public access if required. To illustrate why such a strategy may be useful,
consider the following scenario: if a slave zone file becomes corrupted through a malicious
attack, it can be quickly restored from the master by a zone transfer. If the master zone file were
to become similarly corrupted, the zone files may have to be restored from backup media, which
could take some time. One way to prevent such a problem is simply to avoid it by not making
the master publicly visible. It is visible to the slave only using the masters parameter of BIND’s
named.conf but would not appear in any NS RR for the zone. Every name server, master, or
slave that the user wishes to make visible must be defined using an NS RR in the zone.

Figure 4-2 illustrates a typical master and single slave configuration.

65

66

CHAPTER 4 " DNS TYPES

a
«
TLD DNS) Remote DNS

-——r (Recursive)
1
1

Referral |

Master DNS -

.
1

1

1

|I

Domain Name 5 :

1

AXFR :
1

1

Domain Name < -
Slave DNS

Figure 4-2. Typical master and slave configuration

Figure 4-3 illustrates a slave server when used with a hidden master.

| ————
TLD DNS) Remote DNS

- o (Recursive)
! 7
1
Referral
Hidden Master etemal . |
) AXFR) '
Domain Name ; Domain Name
Master DNS Slave DNS :
.
AXFR Domain Name | <€ -
Slave DNS

Figure 4-3. Hidden master-slave configuration

Slave vs. Cache

A zone slave obtains all the zone data for which it is acting as a slave via zone transfer opera-
tions, and this process should not be confused with a cache. The slave server uses the refresh
value from the SOA Resource Record to time-out its zone data and will then retransfer all the
zone data. On the other hand, a cache contains individual Resource Records obtained in
response to a specific query originating from a resolver or another name server acting on
behalf of a resolver and discards each RR when its TTL is reached. In addition, a slave server
always responds authoritatively to requests for information about its zone. A cache will only

CHAPTER 4 " DNS TYPES

respond authoritatively with zone data the first time it obtains the data (directly from the
master or slave) and thereafter, when reading from its cache, the data is not marked as
authoritative.

Change Propagation Using NOTIFY

The slave will periodically poll the zone master for changes at a time interval defined by the
refresh parameter of the zone’s SOA RR. In this scenario, the refresh parameter, which may be up
to 12 hours, controls the time taken to propagate zone changes. If NOTIFY behavior is enabled in
the zone master—BIND’s default—then every time the zone is loaded or reloaded a NOTIFY mes-
sage is sent to all the slave servers defined in the NS RRs of the zone file. On receipt of a NOTIFY
message, the slave will request a copy of the zone’s SOA RR. If the serial number of the current
zone data is lower than the serial number of the newly requested SOA RR, then the slave initiates
a zone transfer to completely update its zone data. There can be zero, one, or more slave name
servers for any given zone.

The NOTIFY message—and its subsequent zone transfer operation—presents a potential
security threat. To minimize this threat, BIND’s default behavior is to only accept NOTIFY mes-
sages from the zone master (name servers listed in the masters statement). Other acceptable
NOTIFY sources can be defined using the allow-notify statement in the named. conf file.

Tip Example configuration files for a slave DNS are provided in Chapter 7.

Caching Name Servers

A caching server obtains specific information in the form of one or more Resource Records
about a domain from a zone’s authoritative name server (master or slave) in order to answer

a host query, and subsequently saves, or caches, the data locally. On a subsequent request for
the same data, the caching server will respond with its locally stored data, from the cache. This
process will continue until the Time to Live (TTL) value of the RR expires, at which time the RR
will be discarded from the cache. The next request for this RR will result in the name server
again contacting an authoritative name server for the zone. Caches considerably increase DNS
performance for local PCs or hosts and can also significantly reduce network loads by obtain-
ing a single copy of frequently accessed data and making it available many times with no
additional overhead. Consider the example file in which the mail server was defined using the
following RR:

3w IN MX 10 mail.example.com.

The effect of caching in this case is that every request for the mail server for example.com
for the next three weeks will be satisfied from the cache and will require no further—possibly
slow—network access. If a caching name server is reloaded or restarted, then caches are
always erased and the process begins again. It is worth emphasizing at this point that the only

67

68

CHAPTER 4 " DNS TYPES

way RR data is removed from a cache is by either its TTL expiring or the name server being
reloaded. This means that changes to the preceding MX record will take up to three weeks to
propagate throughout the Internet and thus only stable RRs, such as mail servers, would typi-
cally have such very long TTL values.

If the caching server obtains its data directly from an authoritative DNS, then it too will
respond as authoritative. Otherwise, if the data is supplied from its cache, the response is
nonauthoritative.

By default, BIND will cache Resource Records. This behavior is defined using the recursion
parameter—the default is recursion yes;—in BIND’s named. conf file. This may seem a little
strange at first, but caching is essentially an artifact of recursive query behavior.

Note There are many configuration examples that show caching behavior being controlled using a type
hint statement in the zone declaration section of BIND’s named. conf configuration file. These configura-
tions confuse two distinct but related functions. If a server provides caching services, then it must support
recursive queries, and recursive queries need access to the root-servers. Root-server access is provided
using the type hint statement in a special root-server zone. The root-server zone definition is described
in Chapter 7.

A caching server will have a named. conf file that includes the following fragment:

// options clause fragment of named.conf
// recursion yes is the default and may be omitted
options {
recursion yes;
1

// zone clause

// the DOT indicates the root domain = all domains
zone "." IN {

type hint;

file "root.servers";

};

The options clause indicates the following statements apply to all zones in the configura-
tion unless explicitly overridden with another statement; recursion yes; turns on caching
behavior, which is the BIND default and could be omitted. The zone "."; clause defines the
normally silent root domain and is used to access any zone that is not defined in the remainder
of the configuration; type hint; simply indicates the zone references the root domain and is
only ever used in conjunction with a zone "."; clause. The statement file "root.servers";

locates the zone file that contains the Address (A) RRs of the root-servers.

Tip The root.servers zone file, which may be called named. ca or named. root, is normally supplied
with BIND distributions. Chapter 7 illustrates an example root.servers zone file.

CHAPTER 4 " DNS TYPES

Caching Implications

To cache or not to cache is a crucial question in the world of DNS, since it incurs substantial
performance overheads and runs the risk of cache poisoning, or corruption through mali-
cious attacks. This downside must be offset against the significant performance gains that are
obtained when using a caching DNS. The most common uses of DNS caching configurations
are as follows:

¢ As aname server acting as master or slave for one or more zones (domains) and as a
caching server for all other queries. A general-purpose name server.

¢ Asa caching-only local server—typically used to support standard PC-based resolvers
(stub resolvers), which as you may recall from Chapter 1 require recursive query sup-
port that is only provided by a caching name server. This is sometimes called a proxy
DNS server, but this book associates the term proxy with a forwarding name server
(described in the next section).

However, if a general purpose name server is being hit thousands of times per second
in support of a high-volume site then performance becomes a major factor, and in this case
caching would typically be disabled. Furthermore, there are many DNS administrators who,
due to the cache-related dangers described previously, will never allow caching behavior on a
name server that has any master or slave zones. BIND provides only limited controls to dis-
able caching behavior, principally by including the statement recursion no; in the named.conf
file, but many caching overheads remain. There are now a number of Open Source and com-
mercial DNS servers that stress high performance and that do not provide caching services—
they are said to be authoritative-only servers.

Tip Example configuration files for a caching DNS are provided in Chapter 7.

Forwarding (Proxy) Name Servers

A forwarding (a.k.a. proxy, client, or remote) DNS server is one that forwards all queries to
another DNS and caches the results. On its face, this looks a pretty pointless exercise. However,
a forwarding DNS server can pay off in a couple ways when access to an external network is
slow, expensive, or heavily congested:

1. The name server to which queries are forwarded will provide recursive query support
resulting in a single query-answer DNS transaction. If the local name server were a
caching-only server and did not forward queries, multiple transactions would occur,
thus increasing network load and time delays.

2. The local or on-site forwarding DNS server will cache results and thereby provide both
faster responses for frequently accessed information and eliminate unnecessary exter-
nal traffic.

Forwarding name servers can also be used tactically to ease the burden of local admin-
istration. Each PC may be defined to use a local forwarding name server, which in turn is

69

70

CHAPTER 4 " DNS TYPES

defined to pass all queries to an external server. If the external DNS server changes, for example,
when the user changes ISP, a single configuration change to the local name server’s named. conf
file is required rather than having to change all the local PC configurations. The same result
can be accomplished using DHCP, but that is not always convenient.

Forwarding may also be used as part of a Stealth (or Split) server configuration, which is
described in the next section, for perimeter defense.

Figure 4-4 illustrates the use of forwarding DNS.

PC Local DNS Single DNS Transaction »| Remote DNS

R(St:’b €——— (Caching) |<€ (Recursive)
esolver) Low-speed or Conaested Link

Figure 4-4. Forwarding DNS server

BIND allows configuration of forwarding using the forward and forwarders parameters
either at a globallevel (in an options clause) or on a per-zone basis (in a zone clause) of the
named. conf file. Both configurations are shown in the following examples.

The following named. conf fragment causes global forwarding of all queries received by
the name server.

// options clause fragment of named.conf

// forwarders can have multiple choices

options {
forwarders {10.0.0.1; 10.0.0.2;};
forward only;

b

// zone clauses

By defining the forwarders statement in the options clause, it applies to the whole configu-
ration unless overridden in a subsequent zone clause. The forwarders and forward statements
are always used in conjunction with each other. The forwarders {10.0.0.1; 10.0.0.2;}; state-
ment contains two [P addresses that are used in rotation; one, two, or more IP addresses may
be used. The forward only; statement forces all queries to be forwarded. The next fragment
provides forwarding for the specific zone only:

// zone clause fragment of named.conf

zone "example.com” IN {
type forward;
forwarders {10.0.0.1; 10.0.0.2;};
forward only;

};

CHAPTER 4 " DNS TYPES

Where dial-up links are used with forwarding name servers, BIND’s general-purpose nature
and strict standards adherence may not make it an optimal solution. A number of alternative
DNS solutions specifically target support for such links. BIND defines two parameters, dialup and
heartbeat-interval (see Chapter 12), whose objective is to minimize network connection time.

Tip Example configuration files for a forwarding DNS are provided in Chapter 7.

Stealth (DMZ or Split) Name Server

A Stealth server is defined as a name server that does not appear in any publicly visible NS RRs
for the domain. Stealth servers are used in configurations that are sometimes called demilita-
rized zone (DMZ) or Split servers, and can be defined as having the following characteristics:

¢ The organization needs to expose DNS servers to provide access to its public services
such as web sites, mail, FTP sites, and so forth.

¢ The organization does not want the world to see any of its internal hosts either by inter-
rogation (query or zone transfer) or in the event the DNS service or external servers are
compromised.

A Stealth or Split server architecture is illustrated in Figure 4-5.

Stealth |5 =|W External
DNS(S) [l Rl DNS(S)

= 3 =
ru Multllwmed = l
Firewall/

= l DMZ| Host l
Private Public

Private Public

Hosts Hosts

Figure 4-5. Stealth or Split server architecture

The external or public servers are configured to provide authoritative-only responses and
no caching services—recursive queries are not accepted. In this case, caching is both wasteful
in terms of performance and a possible source of pollution or corruption, both of which can
lead to system compromise. The zone file used by these public servers is a public subset of the

!

72

CHAPTER 4 " DNS TYPES

zone file data and will contain only those systems or services that the user needs to make visi-
ble, for example, an SOA RR (required), NS RRs for the public (not Stealth) name servers, MX
RRs for mail servers, and A RRs for, say, www.example.com and ftp.example.com for the public
web and FTP services.

Zone transfers can be allowed between the public name servers as required, but they
should not transfer, or accept transfers from, the Stealth server. This clear separation between
the private and public side of the network is necessary, because if the public name server is
compromised, then simple inspection of the named. conf file or zone files must not yield infor-
mation that describes any part of the hidden network. BIND’s named. conf directives such
master, allow-notify, allow-transfer, and others, if present, will provide information that
allows an attacker to penetrate the veil of privacy.

Stealth Servers and the View Clause

BIND provides a view clause that may be used to provide similar functionality using a single
server, but this does not address the problem of the name server host system being compro-
mised, and by simple inspection of the named. conf file, additional data about the organization
can be discovered. Careful consideration of the likelihood of file system compromises on pub-
licly visible servers and the design of the view statements must be undertaken before using
view in a Stealth DNS configuration. BIND’s view statement can, however, be used to augment
the functionality of the public and private parts of a Stealth configuration, and this is
described further in Chapter 7.

Stealth Server Configuration

A simple public master zone file containing only those hosts and services that are required to
support public or external access for the organization is shown here. This zone file does not
contain any hosts or services used in the internal network.

; public zone master file
; provides minimal public visibility of external services

example.com. IN SOA nsl.example.com. hostmaster.example.com. (
2003080800 ; se = serial number
12h ; ref = refresh
15m ; ret = update retry
3w ; ex = expiry
3h 5 min = minimum
)
IN NS nsil.example.com.
IN NS ns2.example.com.
IN MX 10 mail.example.com.
IN MX 20 mail.example.net.
nsi IN A 192.168.254.1
nsi IN A 192.168.254.2
mail IN A 192.168.254.3
WwW IN A 192.168.254.4
ftp IN A 192.168.254.5

CHAPTER 4 " DNS TYPES

The internal name server—the Stealth server—zone file will make visible internal and
external hosts, provide recursive queries and all manner of other services. For instance, this
name server would use a private zone master file that could look like this:

; private zone master file used by Stealth server(s)
; provides public and private services and hosts

example.com. IN SOA ns3.example.com. hostmaster.example.com. (
2003080800 ; se = serial number
12h ; ref = refresh
15m ; ret = update retry
3w ; ex = expiry
3h ; min = minimum
)
IN NS ns3.example.com.
IN NS ns4.example.com.
IN NS 10 mail.example.com.
IN MX 20 mail.anotherdomain.com.
; public hosts
mail IN A 192.168.254.3
WWW IN A 192.168.254.4
ftp IN A 192.168.254.5
; private hosts
joe IN A 192.168.254.6
bill IN A 192.168.254.7
fred IN A 192.168.254.8
ns3 IN A 192.168.254.9
ns4 IN A 192.168.254.10
accounting IN A 192.168.254.28
payroll IN A 192.168.254.29

Clearly, at some point the internal users must cross the perimeter to access external serv-
ices, including DNS services. There are two possible solutions to this problem:

1. The classic firewall solution in which the internal systems, including the DNS server,
are permitted, on a transaction-by-transaction basis, to send and receive data exter-
nally.

2. BIND 9’s view clause may be used to provide support for caching and recursive query
services for the internal network on the public DNS server. The view clause can be used
to provide these services while continuing to deny them to external users and without
exposing the structure of the internal network. The relevant configuration files and a
further explanation of this style of operation is provided in Chapter 7. This solution
does not eliminate the need for a firewall for non-DNS traffic.

Figure 4-6 illustrates the traffic flows for Firewall and BIND view-based solutions.

73

74

CHAPTER 4 " DNS TYPES

Classic Firewall Solution

DNS
Firewall | ¢ »
Private Public

BIND9 view Solution
|
|—' o> ONS [€«—>
| BIND9 view is used to limit support for

recursive queries to generic site IP
address range

Private Public

Figure 4-6. Firewall and DNS view perimeter solutions

Note There is a third possibility, which is to define the internal network as using exclusively private IP
addresses and to use a NAT gateway as the means of securing the internal network and limiting access to
the external world. The world of the Internet has many conceptual disagreements. The argument between
those who view NAT as a perfect solution that kept the Internet alive when it was threatening to run out of
IPv4 addresses and those who see NAT as inherently evil is one of the more contentious. This book will stay
gracefully agnostic on the topic of NAT other than to point out that, increasingly, services that are delivered
to desktops, such as VolP, do require network visibility of end-user systems.

Example configuration files for a Stealth DNS configuration are provided in Chapter 7.

Authoritative-only Name Server

The term authoritative-only name server is normally used to describe two related properties of
a DNS server:

1. The name server will deliver authoritative answers—it is a zone master or slave for one
or more domains.

2. The name server does not cache.

CHAPTER 4 " DNS TYPES

Authoritative-only servers are typically used in two distinct configurations:

1. As public or external servers in a Split (a.k.a. DMZ or Stealth) DNS configuration used
to provide perimeter security

2. As high-performance name servers, for example, root-servers, TLD servers, or name
servers for high-volume sites

Authoritative-only servers typically have high performance requirements. For many years,
BIND was the only DNS software used by the root-servers and many of the TLD servers, which
also have serious performance requirements, since it provides a high-quality, high-function, and
stable platform. However, general-purpose DNS software, such as BIND, while providing an
excellent solution, is not optimized for use in high-performance authoritative-only servers. There
are now a number of Open Source and commercial alternatives that specialize in high-performance
authoritative-only DNS solutions as discussed in Chapter 1. The latest releases of BIND have
placed renewed emphasis on its performance characteristics.

It is not possible to directly control caching behavior in BIND, but the recursion statement
effectively inhibits caching as shown in the following BIND named. conf configuration file fragment:

// options clause fragment of named.conf
// recursion no = effectively inhibits caching
options {
recursion no;
1

// zone clauses

BIND provides three more parameters to control caching: max-cache-size (limits the size
of the cache on the file system) and max-cache-ttl (defines the maximum time RRs may live in
the cache and overrides all RR TTL values), neither of which will have much effect on perform-
ance in the particular case just discussed, and allow-recursion, which provides a list of hosts
that are permitted to use recursion—all others are not.

Note Example configuration files for an authoritative-only DNS are provided in Chapter 7.

Summary

This chapter described a number of commonly used DNS configurations and characteristics.
Name servers rarely perform a single function. They are almost by their nature schizophrenic.
Indeed, the strength of general-purpose DNS software, especially BIND, is that it can be used
to precisely configure multifaceted solutions. You also learned about the behavior of zone
masters, zone slaves, caching servers, forwarding servers, and authoritative-only servers. You
saw the configuration of Stealth (or Split) servers used in perimeter defense employing both
classic configurations and BIND’s new (as of BIND 9) view clause.

In Chapter 5, we look at the world of IPv6 and its implications for DNS.

75

CHAPTER 5

DNS and IPv6

While IPv6 provides many improvements in network management, one of the major driving
forces behind its design was to greatly increase address space. An IPv4 address uses 32 bits,

whereas an IPv6 address uses 128 bits. IPv6 is theoretically capable of providing many millions

of IP addresses for every human on the planet!

The original IETF specifications for IPv6 date from 1995 but the Classless Inter-Domain
Routing and Network Address Translation (see the sidebar “IPv4 Addresses and CIDR” in Chap-
ter 3) initiatives of the mid-90s effectively postponed the urgent need for additional address
space. Until very recently IPv6 usage was largely confined to experimental networks such as the
IETF’s 6bone (www.6bone.net) and large scale deployment was limited to academic institutions.

Yet the year 2002 signaled the start of several significant developments that have given
new impetus to IPv6 and have significantly increased its deployment:

Hardware availability: The 3rd Generation Partnership Project (www.3gpp.org), consist-
ing of mobile wireless equipment suppliers and operators, has mandated that IPv6 be
used to communicate from all 3G (next generation) handsets. The first IPv6 mobile
public call was publicly demonstrated in late 2004.

DNS support: IPv6 addresses are already published by 5 of the 13 root-servers and a
recent presentation to RIPE (the European-based Regional Internet Registry and oper-
ator of k.root-server.net) indicates that 8 of the 13 root-servers are IPv6 ready.

Addpress allocation: IPv6 address block allocations may be obtained via all the currently
operational Regional Internet Registries (RIRs), which comprise ARIN (www.arin.net cov-
ering North America and Southern Africa), RIPE (www.ripe.net covering Europe, North
Africa, and the Middle East), APNIC (www.apnic.net covering Asia Pacific), and LACNIC
(www.lacnic.net covering South America). The new AFRINIC registry (Wwww.afrinic.net
covering Africa) is not planned to be operational until late 2005 or early 2006.

Software availability. 1Pv6 stacks and dual (IPv6/IPv4) stacks are now available for Win-
dows (Server 2003 and XP), Linux, UNIX, and the BSDs (FreeBSD, NetBSD, and OpenBSD).

Mainstream technology. The IETF has recognized the production status of IPv6 and has
documented the winding-up of the 6bone experimental and test bed network with final
transfer of its special IPv6 addresses range to IANA by June 2006.

Probably the most significant push for IPv6, however, is coming from the changing nature
of Internet-based applications. Classic Internet applications such as those providing web access,
e-mail, and FTP use the traditional client-server model and can handle mapping private

77

78

CHAPTER 5 " DNS AND IPV6

addresses to a limited range of IPv4 public IP addresses using Network Address Translation
strategies with some help from Application-Level Gateways (ALGs). However, the new genera-
tion of Internet applications such as Instant Messaging (IM) and Voice over IP (VoIP), among
others, use a peer-to-peer model and increasingly require always-on capabilities (permanent
connection to the Internet) and need end-user address transparency—any given user’s equip-
ment address must be publicly visible and fixed, or static, over a reasonable period of time.
The current IPv4 address scheme is incapable of providing all peer-to-peer users with end-
user address transparency—there simply are not enough addresses. Figure 5-1 illustrates the
difference between the client-server model with NAT and peer-to-peer applications.

Client-Server Model
Private IP(s) Public IP(s)

NAT Private to Public translation
maps source (PC) - dest (web) pair

N
PC T ra—

« Server

PC initiates access

A

NAT response uses inverted
souce (PC) - dest (web) IP pair
to map local PC

Peer-to-Peer Model

VolIP Peer initiates access
VolP

PC Which PC? NAT
<— Peer

NAT has no existing source-dest
pair to map a specific PC

Figure 5-1. Address transparency

The huge investment in IPv4 together with the size of the current installed base means
IPv4 will not disappear overnight. IPv6 and IPv4 will have to coexist for some considerable
period of time, and serious attention has been paid to transition and interworking schemes in
the various IPv6 RFCs. There are significant implications for the DNS systems in both IPv6 and
mixed IPv6/IPv4 environments.

Now that you have a better general understanding for why IPv6 will soon become a par-
ticularly important part of the network environment, let’s take a moment to introduce the
IPv6 protocol before delving into the implications it will have on DNS implementations.

IPv6

CHAPTER 5

DNS AND IPV6 79

IPv6 is a big and complex protocol providing many new features for the efficient operation
and management of dynamic networks, including the following:

* Significantly expanded address space using 128 bits (IPv4 uses a 32-bit address).

¢ Scoped addresses—IPv6 addresses can be limited to the local LAN, a private network,
or be globally unique.

e Security is defined as part of the protocol.

* Autoconfiguration—stateless or stateful (DHCP enhancements).

* Mobile IPv6 (MIPv6) is significantly more powerful than its IPv4 counterpart.

This section is not designed to fully describe the IPv6 protocol but rather to familiarize

you with the addressing features of IPv6 as they affect the DNS system.

Each IPv6 network interface, for instance, a LAN card on a PC or a mobile phone, may
have more than one IPv6 address—that is, IPv6 is naturally multihomed. An IPv6 address has a
scope: it can be restricted to a single LAN, a private network, or be globally unique. Table 5-1
defines the types of IPv6 addresses that are supported and contrasts them with the closest
IPv4 functional equivalent.

Table 5-1. Comparison of IPv6 and IPv4 Functionality

IPv6 Name Scope/Description IPv4 Equivalent Notes
Link-Local Local LAN only. Auto- No real equivalent. Automatically configured by
matically assigned based Assigned IPv4 over ARP'd most stacks from the LAN
on MAC. Cannot be routed = MAC. Media Access Control (MAC)
outside local LAN. address of the network inter-
face. Scoped address concept
new to IPv6.
Site-Local Optional. Local site only. Private network address Work is ongoing by the IETF
Cannot be routed over with multihomed inter- to clarify the use of the Site-
Internet. Assigned by user. face is closest equivalent. Local address and support has
currently been withdrawn.
Global Unicast Globally unique. Fully Global IP address. IPv6 and IPv4 similar but
routable. Assigned by IPv6 can have other scoped
IANA/delegated addresses.
Aggregators.
Multicast One-to-many. Hierarchy Similar to IPv4 Class D. Significantly more powerful
of multicasting. than IPv4 version. No broad-
cast in IPv6, replaced by
Multicast.
Anycast One-to-nearest. Uses Unique protocols in Some Anycast addresses

Loopback

Global Unicast addresses.
Routers only. Discovery
uses.

Local interface scope.

IPv4, for example, IGMP.

Same as IPv4 127.0.0.1.

reserved for special functions.

Same function.

80

CHAPTER 5 " DNS AND IPV6

IPv6 Address Notation

An IPv6 address consists of 128 bits, whereas an IPv4 address consists of 32 bits. An IPv6
address is written as a series of eight hexadecimal strings separated by colons. Each string
represents 16 bits. IPv6 examples:

all the following refer to the same address
2001:0DB8:0234:C1AB:0000:00A0: AABC:003F

leading zeros can always be omitted
2001:DB8:234:C1AB:0:A0:AABC: 3F

not case sensitive - any mixture allowed
2001:db8:234:C1ab:0:A0:aabc:3F

Complete zero entries can be omitted entirely but only once in an address. Examples:

full ipv6 address
2001:db8:234:C1AB:0000:00A0:0000:003F
address with single 0 dropped
2001:db8:234:C1ab:0:A0: :003F

but the following is invalid
2001:db8:0234:C1ab: :A0: :003F

Multiple zero entries can be omitted entirely but only once in an address. Examples:

omitting multiple zeros in address
2001:db8:0:0:0:0:0:3F

can be written as

2001:db8:3F

lots of zeros (loopback address)
0:0:0:0:0:0:0:1

can be written as

N

all zeros (unspecified, a.k.a unassigned IP)
0:0:0:0:0:0:0:0

can be written as

but this address
2001:db8:0:1:0:0:0:3F

cannot be reduced to this
2001:db8::1::3F # INVALID

instead it can only be reduced to
2001:db8::1:0:0:0:3F

or

2001:db8:0:1::3F

IPv6 Address Types

The type of IP address is defined by a variable number of the top bits of its address—the bits are
collectively known as the binary prefix (BP). Only as many bits as required are used to identify
the address type as shown in Table 5-2, which is defined in RFC 3513.

CHAPTER 5 ' DNS AND IPV6 81

Table 5-2. IPv6 Address Types

Use Binary Prefix Description/Notes

Unspecified 00...0 IPv6 address = 0:0:0:0:0:0:0:0 (or ::). Used before an address allo-
cated by DHCP (equivalent of IPv4 0.0.0.0).

Loopback 00...1 IPv6 address = 0:0:0:0:0:0:0:1 (or ::1). Local PC Loopback address
(equivalent of IPv4 127.0.0.1).

Multicast 11111111 IPv6 Multicast replaces both multicast and broadcast in IPv4.

Link-Local Unicast 11111110 10 Local LAN scope. Lower bits assigned by user.

Reserved Unicast 1111111011 Was the Site-Local address range. This address range is currently

reserved by IANA while the IETF considers the status of the Site-
Local features of IPv6.

Global Unicast All other values ~ Assigned by IANA and Aggregators. IANA currently assigns
addresses to Aggregators from the range starting with the binary
prefix 001. The binary prefix 0011 1111 1111 1110 (hex 3FFE) is
currently used by the 6bone for experimental purposes, but this
use will be discontinued and the address range will be returned to
the IANA pool of available addresses in June 2006. The Global Uni-
cast address format is defined in the section “Global Unicast IPv6
Address Allocation.”

Note The term Aggregatoris used to describe various Internet Registries that are responsible for the
allocation of IPv6 addresses and for IPv6 reverse-map delegation.

Prefix or Slash Notation

IPv6 addresses use the IP prefix or slash notation in a similar manner to IPv4 to indicate the
number of contiguous bits in the netmask. Examples:

a single IP address - 128 bit netmask for loopback
equivalent of IPv4 255.255.255.255 or /32

1:1/128

Link-Local address mask

FE0::/10

typical end user site prefix routing mask
2001:db8:222::/48

typical end user subnet routing mask
2001:db8:222:1::/64

Global Unicast IPv6 Address Allocation

The IPv6 Global Unicast address is hierarchical and is divided into what was historically called
a site prefix, but which has now been renamed a global routing prefix, a subnet ID and inter-
face ID address parts. Various agencies or address registrars—called Aggregators in IPv6
terminology—assign the global routing prefix as defined in Figure 5-2.

82

CHAPTER 5 " DNS AND IPV6

ICANN/IANA
| RIR | | RIR | Regional

m National
| ISP/LIR | | ISP/LIR | Local

Figure 5-2. IPv6 hierarchical address allocation

RFC 3177 defines the current IETF/IAB policy for end-user IPv6 address allocation. End
users may be allocated one of three IPv6 address ranges:

1. Normal end user: An end user is normally allocated a full 80 bits of address space (see
Table 5-4 in the next section for full format). The allocated address space may be assigned
in any way required by the end user. This normal end-user address range allocation is
greater than the whole of the current IPv4 Internet. This allocation is written as /48 in the
slash or IP prefix notation.

2. Single subnet. Where it is known that only a single subnet (site) will be used, the end
user may be allocated only 64 bits of address space. This allocation is written as /64 in
the slash or IP prefix notation.

3. Single device: Where it is known that only one device will be used, a single IPv6 address
may be allocated. This allocation is written as /128 in the slash or IP prefix notation.

Internet Registries may, however, allocate much larger IPv6 address blocks to groups of
users such as governments.

IPv6 Global Unicast Address Format

The generic format of an IPv6 Global Unicast address is shown in Table 5-3.

CHAPTER 5 ' DNS AND IPV6

Table 5-3. Generic IPv6 Global Unicast Address Format

Name Size Description/Notes

Global routing prefix 48 bits The format of this field may vary depending on the assigned
use (see Table 5-4 in the next section).

Subnet ID 16 bits Used for subnet routing.

Interface ID 64 bits Equivalent of the host address in IPv4.

End-User IPv6 Address Format

The address block 2001::/16 is assigned by IANA to Aggregators—the Regional Internet Reg-
istries which in turn may assign them to National Internet Registries and/or Local Internet
Registries (ISPs) for subsequent allocation to end users as shown in Figure 5-2. This address
block has the format defined in Table 5-4.

Table 5-4. IPv6 Global Unicast End-User Address Format

Name Size Description/Notes

Global Routing Prefix of 48 Bits—Assigned by IANA/Aggregator

Reserved 3 bits 001—Global Unicast address block allocated by IANA (all other
values are reserved).

TLAID 13 bits 00000 0000 0001 (address block 2001::/16)—assigned by IANA for use
by the Regional Internet Registries.

Sub-TLA 13 bits Assigned by IANA to the RIRs. The RIRs assign blocks from this range

to the Next-Level Aggregator (NLA).

NLA 19 bits Assigned by RIR to the Next-Level Aggregator, which may be, as you
can see in Figure 5-2 earlier, either a National Internet Registry or a
Local Internet Registry. The NLA assigns blocks from its allocated
address range to end users.

80 Bits—Assigned by the User
Subnet ID 16 bits Used for subnet routing.
Interface ID 64 bits Equivalent of the host address in IPv4.

A request by an end user for an IPv6 address block should be directed to the Local LIR,
which is normally, but not always, an ISP. Lists of LIRs may be obtained from each RIR as
defined in Table 5-5.

Table 5-5. Regional Internet Registries

RIR Name Coverage Web

APNIC Asia Pacific www.apnic.net
ARIN North America, Southern Africa, parts of the Caribbean www.arin.net
LACNIC South America parts of the Caribbean www.apnic.net
RIPE Europe, Middle East, Northern Africa, parts of Asia www.ripe.net

AFRINIC Africa (This RIR is planned to be fully accredited by ICANN in www.afrinic.net
late 2005/2006 and at that time will assume responsibilities for
African registrations that are presently handled by ARIN and RIPE.)

83

84

CHAPTER 5 " DNS AND IPV6

Note Every Aggregator or Internet Registry that assigns IPv6 address blocks also has the responsibility to
provide reverse-map delegation. IPv6 is designed to provide complete reverse-map coverage down to every
host or end device.

Status of IPv6 DNS Support

The DNS has included support for IPv6 from its earliest definition in 1995. During that time the
IPv6 standard has evolved, indeed is still evolving, and the DNS specifications have evolved in
parallel. The essence of any such evolution is the need to experiment, to solve new problems,
and to provide new functionality. Not all experiments are successful—were this not true, then it
is doubtful if any real progress could be made. The following sections describe the current DNS
features and functionality that support IPv6 in its current stage of evolution.

The AAAA vs. A6 Resource Record

DNS IPv6 support is the subject of some confusion and requires some historical perspective.
As previously stated, DNS has supported IPv6 since 1995 (RFC 1886). This RFC specifies that
IPv6 forward mapping will use an AAAA (QUAD A) RR. Reverse mapping (described in Chap-
ter 3) was defined to use an extended version of the PTR RR under the domain name IP6.INT.

RFC 2673 (1999) and RFC 2874 (2000) introduced new DNS capabilities to more effi-
ciently support IPv6 services—specifically network renumbering—using new bit labels and
two new RRs. The A6 RR was designed to be used for forward mapping, and the DNAME RR
was designed to enhance support for reverse mapping. These new RRs were defined to dep-
recate the use of the AAAA RRs in IPv6 and mixed IPv6/IPv4 networks.

However, after considerable debate and amid much controversy, the IETF issued RFC
3363 (2002), which changed RFC 2673 and RFC 2874 to EXPERIMENTAL status—effectively
removing the A6 and DNAME RRs from operational use. The current IETF recommendation is
contained in RFC 3596 (largely a reissue of RFC 1886) and has DRAFT STANDARD status as
summarized here:

* Forward mapping of IPv6 addresses will use the AAAA (Quad A) RR (same as RFC 1886).
* Reverse mapping will use the IP6.ARPA domain (change from RFC 1886).
* Reverse mapping will use the PTR RR (same as RFC 1886).

The AAAA and PTR RRs are used exclusively in all the examples since they constitute the
current IETF recommendation. For the sake of completeness, the A6 and DNAME RRs are
described in Chapter 13.

Mixed IPv6 and IPv4 Network Support

A DNS system must support both IPv6 and IPv4 networks during what may be a long transi-
tional period. BIND 9 provides two features for supporting this capability:

CHAPTER 5 ' DNS AND IPV6

» Forward mapping of IPv4 addresses (using A RRs as described in Chapter 2) and IPv6 ad-
dresses (using AAAA RRs and described in this chapter) may appear in the same zone file.

* BIND 9 supports both IPv4 and IPv6 native protocol DNS queries. Previous versions,
while supporting IPv6 AAAA and PTR RRs, only supported IPv4 protocol queries. Thus,
it is possible to query a BIND 9 DNS using IPv4 and obtain an IPv6 AAAA RR and/or an
A RR and conversely to query a DNS using IPv6 and obtain an A RR and/or an AAAA RR.

The reverse-mapping files, however, cannot be mixed since IPv4 reverse maps under the
domain IN-ADDR.ARPA while IPv6 uses IP6.ARPA.

IPv6 Resource Records

As previously mentioned, the current IETF recommendation defined in RFC 3596 mandates the
use of the AAAA RR for forward mapping of IPv6 address records and PTR RRs for the reverse
mapping of IPv6 addresses. To illustrate the use of the two RRs, the standard IPv4 zone file
introduced in Chapter 1 is enhanced to provide support for both IPv4 and IPv®6. It is assumed
that all the defined systems will provide dual stack support; that is, each host is capable of
responding to both IPv4 and IPv6 protocol requests. This is one of a number of techniques that
may be used during IPv4 to IPv6 transition, and is embraced by all mainstream platforms,
including Microsoft Windows, Linux, UNIX, and BSD platforms.

Note Transition from IPv4 to IPv6 may be handled using a variety of other techniques such as NAT-PT
(RFC 2766), which lie outside the scope of this book.

The standard IPv4 version of the example zone file is shown here:

5 IPv4 zone file for example.com

$TTL 2d ; default TTL for zone

$ORIGIN example.com.

; Start of Authority RR defining the key characteristics of the zone (domain)

@ IN SOA nsi.example.com. hostmaster.example.com. (
2003080800 ; sn = serial number
12h ; refresh
15m ; retry = update retry
3w ; expiry
2h 5 min = minimum
)
; name server RRs for the domain
IN NS nsil.example.com.

; the second name server is
; external to this zone (domain).
IN NS ns2.example.net.
; mail server RRs for the zone (domain)
3w IN MX 10 mail.example.com.

85

86

CHAPTER 5 " DNS AND IPV6

; the second mail server is
; external to the zone (domain)

IN MX 20 mail.example.net.

; domain hosts includes NS and MX records defined earlier
5 plus any others required

nsi
mail
joe
WWW

IN A 192.168.254.2
IN A 192.168.254.4
IN A 192.168.254.6
IN A 192.168.254.7

; aliases ftp (ftp server) to an external location

ftp

IN CNAME ftp.example.net

The IPv6 user configuration used throughout the following sections is as follows:

1.

Example, Inc. has been allocated a normal end-user IPv6 address range of
2001:db8::/48. This allocation provides addresses in the range 2001:db8:0:0:0:0:0:0
(or 2001:db8::) to 2001:db8:0:FFFF:FFFF.FFFF:FFFF:FFFE which may be assigned
and used at the discretion of Example, Inc. The global routing prefix is 2001:db8:0::,
which is assumed to be allocated by IANA and the various Aggregators (the Regional
and Local Internet Registries).

Example, Inc. will have two IPv6 subnets: the first contains the hosts ns1.example.com
and mail.example.com and the second contains joe.example.com and www.example.com.

IPv6 addresses in the first subnet will lie in the range 2001:db8:0:1::/64 and in the sec-
ond 2001:db8:0:2::/64.

Each host supports dual stack operation—it has both an IPv4 address and an IPv6
address.

IPv6 reverse-map delegation is automatically provided by the Aggregators that allocated
the IPv6 address range, and Example, Inc. is required to provide reverse-mapping sup-
port for its locally assigned addresses using the IP6.ARPA domain.

When this configuration is upgraded to support IPv6 and IPv4, the modified zone file
becomes the following:

; transitional IPv6/IPv4 zone file for example.com

$TTL 2d ; default TTL for zone

$ORIGIN example.com.

; Start of Authority RR defining the key characteristics of the zone (domain)

e

IN SOA nsil.example.com. hostmaster.example.com. (
2003080800 ; sn = serial number
12h ; refresh
15m ; retry = update retry
3w ; expiry
2h 5 min = minimum
)

; name server RRs for the domain

IN NS nsi.example.com.

CHAPTER 5 " DNS AND IPV6

; the second name server is
; external to this zone (domain).

IN NS ns2.example.net.
; mail server RRs for the zone (domain)
3w IN MX 10 mail.example.com.

; the second mail server is
; external to the zone (domain)
IN MX 20 mail.example.net.
; domain hosts includes NS and MX records defined above
; plus any others required
; the following hosts are in IPv6 subnet 1

nsi IN A 192.168.254.2

nsi IN AAAA 2001:db8:0:1::1

mail IN A 192.168.254.4

mail IN AAAA 2001:db8:0:1::2

; these hosts are defined to be in the IPv6 subnet 2
joe IN A 192.168.254.6

Jjoe IN AAAA 2001:db8:0:2::1

WWW IN A 192.168.254.7

WWW IN AAAA 2001:db8:0:2::2

; aliases ftp (ftp server) to an external location
ftp IN CNAME ftp.example.net

For the purposes of clarity, only the preceding zone file has repeated the name of each
host in the AAAA RR. Using blank label substitution, these names could have been omitted as
shown in the following fragment for the www.example.com RR:

WWW IN A 192.168.254.7
IN AAAA 2001:db8:0:2::2 ; = www

Forward mapping of the IPv6 address is accomplished using the AAAA (Quad A) RR,
which is described in the next section.

Note The address range 2001:db8::/32 is nonroutable and specifically reserved by RFC 3849 for use in
documentation.

The AAAA Resource Record

The AAAA (Quad A) RR is the current IETF recommendation for defining forward mapping of
IPv6 addresses and is defined in RFC 3596. It is equivalent to the A RR used for IPv4 forward
mapping. The formal syntax is as follows:

name ttl class rr ipvé

87

88

CHAPTER 5 " DNS AND IPV6

In the enhanced IPv6/IPv4 example file shown previously, the following AAAA RR is
defined:

nsi IN AAAA 2001:db8:0:1::1

The separators between fields can be either spaces or tabs. Traditionally, in zone files tabs
are used to make a more attractive layout and to clearly indicate which fields are missing.
Table 5-6 maps the formal syntax to the AAAA RR used in the example zone file.

Table 5-6. AAAA RR Syntax

Syntax Example Usage Description

name nsi The name is unqualified, causing the $0RIGIN directive value to
be substituted. You could have written this as ns1.example.com.
(using the FQDN format), which may be more understandable.

ttl There is no ttl value defined for the RR, so the zone default of 2d
from the $TTL directive will be used.

class IN IN defines the class to be Internet.

ipvé 2001:db8:0:1::1 This is a Global Unicast address and takes the format defined
by Table 5-4 earlier. The address shown uses the zero elimina-
tion feature of IPv6 and could have been written as
2001:db8:0:1:0:0:0:1. The value 2001:db8:0 is the global routing
prefix assigned by IANA and the Aggregators (the Inter-
net Registries). The first 1 is the subnet and the value : : 1 is the
locally (end-user) assigned interface ID.

Recall from earlier that IPv6 provides scoped addresses. Our hosts will have Link-Local
IPv6 addresses as well as the Global Unicast addresses used previously. When software on the
host wishes to access a local host, it does not use a name server to look up the address; instead
it uses a local Multicast group to find all such local hosts. Only Global Unicast addresses need
appear in the zone file.

Reverse IPv6 Mapping

Unlike IPv4, where reverse mapping is frequently not delegated to the end user, IPv6 mandates
delegated reverse mapping. The end user is therefore responsible for creation of reverse-mapping
zone files using the IP6.ARPA domain for the address range they have been assigned. The IP6.ARPA
domain is similar to the IN-ADDR.ARPA domain used for reverse mapping of IPv4 addresses and
described in Chapter 3. From the zone files defined previously, you can see that the Global Unicast
address range allocated to the end user Example, Inc. is as follows:

2001:db8:0::/48

Example, Inc. is responsible for reverse mapping the 80-bit addresses in this range (see
Table 5-4). IPv6 reverse mapping uses the normal principle of reversing the address and plac-
ing the result under the domain IP6.ARPA. The key difference from the IN-ADDR.ARPA domain
(described in Chapter 3) is that a nibbleis the unit of delegation. A nibble is one of those

CHAPTER 5 ' DNS AND IPV6

glorious terms that have survived to enter the jargon. Each byte (or octet) is comprised of 8
bits; a nibble is part of a byte and consists of 4 bits. So a nibble is a small byte! In the context

of reverse mapping, each character in the IPv6 address string constitutes a nibble. To illustrate
how this works, we must write each character—with no zero elimination—of the Example, Inc.
assigned addresses range:

2001:0db8:0000::/48

Each character is reversed and separated with the normal dot notation to give a reverse-
map domain name as shown here:

0.0.0.0.8.b.d.0.1.0.0.2.IP6.ARPA
Finally, we construct a zone file to contain the definitions as shown here:

; reverse IPV6 zone file for example.com

$TTL 2d ; default TTL for zone

$ORIGIN 0.0.0.0.8.b.d.0.1.0.0.2.IP6.ARPA.

; Start of Authority RR defining the key characteristics of the zone (domain)

@ IN SOA nsi.example.com. hostmaster.example.com. (
2003080800 ; sn = serial number
12h ; refresh = refresh
15m ; retry = update retry
3w ; expiry = expiry
2h 5 min = minimum
)

; name server RRs for the domain

IN NS nsil.example.com.

; the second name server is
; external to this zone (domain).

IN NS ns2.example.net.
5 PTR RR maps a IPv6 address to a host name
hosts in subnet ID 1

[

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0 IN PTR nsi.example.com.
2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0 IN PTR mail.example.com.
; hosts in subnet ID 2

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.0.0.0 IN PTR joe.example.com.
2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.0.0.0 IN PTR www . example.com.

The individual PTR address labels can become brutally long. The constructed domain
name, however, does not have to reflect the address segmentation between the global routing
prefix and the end-user part of the address as shown in the preceding example. If we assume
that Example, Inc. will only ever have a maximum of 65,535 hosts in each subnet (uses 16 bits of
the interface ID), then we can move some more of the end-user address into the zone domain
name, which is written once, to reduce the address part in each PTR line, which may be written
many hundreds of times. Thus the IPv6 address splits in Table 5-7 achieve the same result.

89

90 CHAPTER 5 " DNS AND IPV6

Table 5-7. IPv6 Alternative Reverse Mappings

Zone Name PTR Part Note

0.0.0.0.8.b.d.0.1.0.0.2.IP6.ARPA. 1.0.0.0.0.0.0.0.0.0.0.w= Uses a split based on the global routing
0.0.0.0.0.1.0.0.0 prefix.

0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.0.0.= 1.0.0.0 Uses a split based on user convenience to

0.0.8.b.d.0.1.0.0.2.IP6.ARPA. reduce the size of each PTR RR. Because the

subnet ID appears in the zone name, a sec-
ond zone file is required in this scenario to
describe subnet 2.

The two zone files to implement this alternate structure are shown next. Here’s the zone
file for subnet ID 1:

; reverse IPV6 zone file for example.com subnet ID 1

$TTL 2d ; default TTL for zone

$ORIGIN .0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.IP6.ARPA.

; Start of Authority RR defining the key characteristics of the zone (domain)

@ IN SOA nsi.example.com. hostmaster.example.com. (
2003080800 ; sn = serial number
12h ; refresh = refresh
15m ; retry = update retry
3w ; expiry = expiry
2h 5 min = minimum
)

; name server RRs for the domain

IN NS nsil.example.com.

; the second name server is
; external to this zone (domain).

IN NS ns2.example.net.
; PTR RR maps a IPv6 address to the hostnames in subnet ID 1
1.0.0.0 IN PTR nsi.example.com.
2.0.0.0 IN PTR mail.example.com.

And the zone file for subnet ID 2:

; reverse IPV6 zone file for example.com subnet ID 2

$TTL 2d ; default TTL for zone

$ORIGIN .0.0.0.0.0.0.0.0.0.0.0.0.2.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.IP6.ARPA.

; Start of Authority RR defining the key characteristics of the zone (domain)

@ IN SOA nsl.example.com. hostmaster.example.com. (
2003080800 ; sn = serial number
12h ; refresh = refresh
15m ; retry = update retry
3w ; expiry = expiry
2h 5 min = minimum
)

; name server's RRs for the domain
IN NS nsi.example.com.

CHAPTER 5 ' DNS AND IPV6

; the second name server is
; external to this zone (domain).

IN NS ns2.example.net.
5 PTR RR maps a IPv6 address to the hostnames in subnet ID 2
1.0.0.0. IN PTR joe.example.com.
2.0.0.0 IN PTR www . example.com.

The PTR RR that is used in IPv6 is described in the next section.

Note An earlier version of the IPv6 specification used the reverse-map domain IP6.INT. This domain
has been superseded in RFC 3596 with IP6.ARPA to make it consistent with IPv4’s IN-ADDR . ARPA domain.

The IPv6 PTR Resource Record

The PTR RR is standardized in RFC 1035 and maps an IPv6 address to a particular interface ID
(host in IPv4 terminology) in the domain or zone as opposed to an AAAA RR, which maps a
name to an IPv6 address. The formal syntax is as follows:

name ttl class rr name
In the first reverse-map example zone file, the first PTR RR is defined as follows:
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0 IN PTR nsi.example.com.

The separators between fields can be either spaces or tabs.
Table 5-8 maps the formal syntax to the first PTR RR used in the example zone file.

Table 5-8. PTR RR Syntax

91

Syntax Example Usage Description
name 1.0.0.0.0.0.0.0.0.0.= This is the subnet ID and interface ID parts of the IPv6 address
0.0.0.0.0.0.1.0.0.0 written in reverse nibble format. While this looks like a number, it

is in fact treated as a name. The name is unqualified causing the
$ORIGIN directive value to be substituted. You could have written
thisas 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.'=
8.b.d.0.1.0.0.2.IP6.ARPA. (using the dot-terminated FQDN

format).

ttl There is no ttl value defined for the RR, so the zone default of 2d

from the $TTL directive will be used.

class IN IN defines the class to be Internet.

name nsi.example.com. Defines that a query for 2001:db8: : 1 will return ns1.example. com.

92

CHAPTER 5 " DNS AND IPV6

Summary

This chapter described the use and implementation of IPv6 as it relates to the DNS. The chapter
started by describing the long history of IPv6 starting around 1995 and suggested that a number
of factors are currently causing a rapid increase in the spread and deployment of IPv6. A brief
tutorial on IPv6 address notation was provided to allow the reader to become familiar with its
format and usage.

The status of DNS support was clarified due to some confusion created by the withdrawal
of support for bit labels and the A6 and DNAME RR by the IETF in RFC 3363. The current IETF
IPv6 DNS recommendation specifies that forward mapping of IPv6 addresses will use the
AAAA (Quad A) RR, and reverse mapping will use the PTR RR under the domain IPV6.ARPA.

In Chapter 6, we move from theory to practice by looking at the installation of BIND 9 on
Linux, BSD (FreeBSD), and Windows platforms.

PART 2

Get Something
Running

CHAPTER 6

Installing BIND

BIND (Berkeley Internet Name Domain) is an Open Source implementation of the Domain
Name System protocols originally developed by the University of California, Berkeley. BIND is
generally viewed as the reference implementation of the Internet’s DNS, the standard against
which all other implementations are compared. Due to its stability and high quality, BIND is
the most widely deployed DNS software, servicing most of the root and gTLD name servers as
well as innumerable ISPs, commercial organizations, and, because of its incomparable cost
advantage (freely available under the BSD license), even very small sites and individual PCs.
In 1994, the responsibility for BIND development moved from Berkeley to Internet Systems
Consortium, Inc. (ISC), a US-based nonprofit company that is also, among other things, the
operator of the k.root-servers.net (one of the 13 root-servers). ISC funding comes from a
wide variety of corporate sponsors for whom the availability of high-quality DNS software is
vital to their commercial interests. BIND, reflecting its widespread deployment, is available
on a bewildering number of OS platforms.

This chapter describes the installation of BIND 9.3.0—the stable version at the time the
test were run—on a variety of widely deployed OS platforms using their packaged formats
where available:

» Fedora Core 2 (FC2): A representative Linux platform. Fedora is a community-
supported Open Source OS project sponsored by Redhat, Inc. (See fedora.redhat.com
for more information.) Standard Fedora Core Development RPMs (Redhat Package
Managers) were used.

* FreeBSD: A representative OS from the BSD/Unix family that comprises FreeBSD,
NetBSD, OpenBSD, and DragonflyBSD. (See www. freebsd.org for more information.)

» Windows 2000 Server: ISC supplies a binary packaged version of BIND for Windows
2000 and NT 4.0.

Note Prior to the book being published, BIND version 9.3.1—a maintenance-only update—was released.

Some limited tests were performed with this version of the software. Users are advised to always obtain the
latest stable version of software.

Many of BIND’s security features require OpenSSL. Both FreeBSD and Fedora Core 2
install this package by default, and no special action is required. The Windows binary version

95

96

CHAPTER 6 " INSTALLING BIND

of BIND uses standard Windows services and libraries, and again no special action is required.
In the event that a packaged version of software is not available, the chapter describes building
BIND from a source tarball—the widely used term that describes the file (typically ends with
tar.tz) containing the source and makefiles necessary to build the software and packaged
using the tar (archive) and compress utilities. In all cases BIND was configured and tested as

a simple caching server using the files described in Chapter 7 in the section “Caching-only
DNS Server.”

It is increasingly common that default installations of BIND are either configured to run
in a sandbox or chroot jail (FreeBSD and Fedora) or offer an optional package to do so (bind-
chroot RPM on Fedora). This method of running BIND is described in Chapter 10.

The installation procedures make no attempt to secure the various files before running
BIND. This was deliberately done to avoid complication. Various methods of securing a BIND
installation are described in Chapter 10, and once thoroughly familiar with the initial installa-
tion and configuration, you are urged to read this chapter before running a live or operational
Server.

We start by looking at installation of BIND 9.3.0 on Fedora Core 2 as a representative
example of a Linux installation—it could just as easily have used Debian, Mandriva, Gentoo,
SuSe, or one of the many other Linux distributions.

Note BIND typically runs as a daemon on Linux, Unix, and BSD systems and as a service on Windows
0Ses. When running as a daemon or service, it is called named not BIND. This book uses the term BIND to
describe the package and named to describe the running or operational software.

Fedora Core 2 Installation

This section describes the installation, configuration, and testing of BIND 9.3.0 on a clean
Fedora Core 2 system using the standard Fedora Core Development RPMs available from a
variety of sources. The Fedora Core software is freely available for download at fedora.redhat.
com or may be purchased as a multi-CD set for a very modest cost from a number of suppliers.
The installed FC2 configuration used the following features:

1. The FC2 graphical configuration option was selected (Anaconda).
2. Automatic partitioning was selected.
3. Aserver install was selected.

4. The GNOME desktop was selected rather than KDE (both were offered during the
install process). Whether a GUI desktop is selected and which one is a matter of user
taste and the purpose of the system. The author adheres to the security adage “Only
install what you need” and would not normally install a GUI desktop for a pure server-
based system. However, BIND can be used on a dedicated DNS server, a multifunction
server, and a desktop PC—selecting a GUI interface enabled exposure to the widest
variety of possible issues.

CHAPTER 6 " INSTALLING BIND

5. DNS was not selected from the list of software available during the install procedure
since it was a requirement to install BIND 9.3.0. If this option is not selected, it will still
lead to a partial installation of BIND for reasons noted later in the section. If DNS soft-
ware is selected during the install process, it will configure a chrooted caching server
but does have the merit that some files that would otherwise be missing are installed.
Various notes in the following sections identify the differences in installation resulting
from selecting this option or not.

6. The Graphical Internet Utilities option was selected. The browser would be used to
find and retrieve the various required packages. In a non-GUI server installation, com-
mand-line FTP commands would be used.

7. The development tools were installed only because this system was going to be used
later to build BIND from a tarball. Installing development tools is a matter of taste, but
a secure server especially would never have development tools installed. Either RPMs
would be used exclusively or all development would be done on a separate machine,
and the applications moved to the target server.

Installation of FC2 took less than 30 minutes and was very uneventful on a 1GHz PC.

Note FC2 has the Redhat SE Linux options built-in but disabled by default due to potential kernel
incompatibilities. Fedora Core 3 is the first system targeted to fully support the SE Linux extensions. For
more information about SE Linux, see www.nsa.gov/selinux/.

Upgrading BIND 9

Before describing the specific details of the install, it is worth spending a few moments to
review the general policy of Fedora Core to help understand what was done and why. Each
Fedora Core release, for instance FC2, is maintained and updated primarily for security rea-
sons. New and updated functionality is typically added to the Fedora Core Development
system, which is constantly rolling forward to the next releases. The Fedora Core web pages
strongly encourage use of either the yum or apt tools to keep the base updated. However, to
keep the process as generic as possible, neither of these auto-update capabilities was used.
Instead, the Fedora Core Development RPMs were obtained and installed. The Fedora Core
Development RPMs do not track individual FC releases, and in some cases additional RPMs,
not defined in the RPM dependencies, had to be installed. The resulting system has a pure
FC2 kernel (2.6.5-1.358), but some of the infrastructure was upgraded to an FC3 or higher
standard through the use of these additional RPMs.

Post FC2 Installation

Selecting DNS during the FC2 install process causes a default installation of BIND 9.2.8-13 as
shown:

rpm -q bind
bind-9.2.8-13

97

98

CHAPTER 6 " INSTALLING BIND

If the DNS software option was not selected during the FC2 install process, the previous
command will still show the same result. This is because the basic (non-DNS) system requires
certain DNS libraries to be installed, which in turn picks up various dependencies leading to
a partial BIND install.

If DNS software is selected during FC2 setup, the default BIND install configures a chrooted
caching name server whose /etc/named. conf file is shown here:

// generated by named-bootconf.pl

options {
directory "/var/named";
/*
* If there is a firewall between you and nameservers you want
* to talk to, you might need to uncomment the query-source
* directive that follows. Previous versions of BIND always asked
* questions using port 53, but BIND 8.1 uses an unprivileged
* port by default.
*/
// query-source address * port 53;
1
//
// a caching-only nameserver config
//
controls {
inet 127.0.0.1 allow { localhost; } keys { rndckey; };
1
zone "." IN {
type hint;
file "named.ca";
};

zone "localhost" IN {
type master;
file "localhost.zone";
allow-update { none; };

};

zone "0.0.127.in-addr.arpa" IN {
type master;
file "named.local";
allow-update { none; };

};

include "/etc/rndc.key";

CHAPTER 6 " INSTALLING BIND

The default installation also configures the name server to allow rndc (see Chapter 9)
usage from the loopback address only. This installation may be started with the following
command:

/etc/rc.d/init.d/named start

The default name server is not configured to load at system startup—a process that is
described later in this section.

Version Upgrade

The installation objective was to install BIND 9.3.0. The following process should be used irre-
spective of whether DNS software was selected or not during the FC2 installation. Using
Mozilla (the FC2 default installed browser), the following Fedora Core Development RPMs
were obtained from www.rpmfind.net:

* bind-9.3.0-2.1386.rpm: This RPM provides the basic name server application (the
named daemon) and is mandatory.

* bind-utils-9.3.0-2.1386.rpm: This RPM provides a number of tools and utilities such
as dig, nslookup, and nsupdate (all described in Chapter 9).

* bind-1ibs-9.3.0-2.1386.rpm: This RPM provides resolver and other libraries to invoke
DNS services.

* bind-devel-9.3.0-2.1386.rpm: This RPM is optional and contains source and header
modules that may be used when building BIND and other applications.

The preceding RPMs were all downloaded to /tmp.
Prior experience had shown that BIND 9.3.0 requires a minimum version of the GLIBC
libraries of 2.3.4 or higher. The currently installed version of GLIBC on FC2 was verified using

rpm -q glibc
glibc-2.3.3-27

Since this version is lower than the known requirement, the following Fedora Core Devel-
opment for 386 RPMs were downloaded from www.rpmfind.net (all demanded by various
dependencies):

e glibc-2.3.4-3.1386.rpm: GNU generic libc providing support for the standard C library
function calls.

e glibc-common-2.3.4-3.1386.rpm: GLIBC dependency containing library binaries and
locale information.

e glibc-devel-2.3.4-3.1386.rpm: GLIBC dependency containing headers and other
modules used when building most software.

e glibc-headers-2.3.4-3.1386.rpm: GLIBC dependency from GLIBC also responsible for
updating the headers files contained in /usr/include.

99

100

CHAPTER 6 "' INSTALLING BIND

* ncsd-2.3.4-3.1386.rpm: GLIBC dependency containing support libraries for caching
services.

* selinux-1.20.1-2.1i386.rpm: Dependency from GLIBC. This RPM dependency reflects
the use of the Fedora Core Development RPMs.

One of the easiest ways to solve all those terrible interdependencies with RPMs is to cre-
ate a new directory (in this case /tmp/glibc), then download or move all the preceding RPMs
into it and issue the following command:

rpm -Uvh /tmp/glibc/*

This command upgrades the installed versions of software defined by the RPMs in
/tmp/glibc. The U signifies upgrade an existing installation, and vh is used to provide a format-
ted display indicating progress of the command.

Note If the preceding upgrade is not performed, then BIND may decide to terminate rapidly with a seg-
mentation fault with the following message in syslog (/var/log/messages): “/ust/lib/libisc.s0.9: symbol
__snprint_chk, version GLIBC_2.3.4 not defined in file libc.s0.6 with link time reference failed.”

Finally, to upgrade BIND, the following command was used:

rpm -Uvh /tmp/bind*

Note The various RPMs were downloaded from the rpmfind.net service. BIND 9.3.0 RPMs were not
available for Fedora Core 2 due to the policy described earlier. Instead, the Fedora RPMs used were all under
the generic Fedora Core Development for i386 classification. Various other RPMs existed for Fedora Core 3
and in some, but not all, cases for Fedora Core 2. These RPMs were not used.

Configuring BIND 9

A BIND installation requires the following items. Their presence is determined by whether or
not DNS software was selected during the initial installation, as shown here:

¢ A user and group account called named, verified using either vipw/vigr or id named.
This account is present irrespective of whether DNS software was selected during FC2
installation or not.

¢ A documented named. conf file in /etc, which is present if DNS software is selected dur-
ing FC2 installation but not present otherwise. There is also a file called named. custom,
which is used by the DNS GUI tool (see the upcoming section, “Fedora DNS GUT”).

CHAPTER 6 " INSTALLING BIND

¢ Anamed.ca zone file in /var/named, which provides the root-servers zone file. This file is
present if DNS software is selected during FC2 installation but not present otherwise.

* Alocalhost.zone file in /var/named to forward map the localhost domain. This file is
present if DNS software is selected during FC2 installation but not present otherwise.

* Anamed.local zone file in /var/named, which provides a reverse-map zone file for local-
host. This file is present if DNS software is selected during FC2 installation but not
present otherwise.

* A startup and shutdown script for named in /etc/rc.d/init.d. This script is present
irrespective of whether DNS software was selected during FC2 installation or not.

e Startup and shutdown links to the script in the various run-level directories, for instance,
/etc/rc.d/rc5.d or /etc/rc.d/xc3.d. These links are not present regardless of whether
DNS software was selected during FC2 installation.

Fedora DNS GUI

Fedora Core has adopted a very GUI-oriented interface. The file /etc/named. customis used by
a GUI DNS configuration utility called system-config-named, which can be invoked from the
command line or under System Settings » Server Settings » DNS from the main graphical
menu. A cursory look at this utility showed that it appeared to require as much knowledge as
manual configuration, and its rudimentary help file was not even hyperlinked to the BIND
help files. This utility was not used again.

Configuring BIND Files

Depending on how you installed FC2, a number of the required files may be missing as noted
earlier. There are three ways that these files may be installed:

1. Manually create them. The master.localhost zone file and localhost.rev formats are
described with examples in the section “Required Zone Files,” located in Chapter 7.

2. FTP them in from a separate server or location. The root.servers zone file may be
obtained from many locations, but the definitive file may be obtained from
ftp://ftp.internic.net/domain/named.root.

3. Obtain and run the RPM caching-nameserver-7.3-3.noarch.rpm, which configures
BIND as simple caching server and installs all the required files.

The named. conf file for a simple caching server (described in the section “Caching-only
DNS Server” located in Chapter 7) was manually constructed in /etc/named. conf. The missing
files (named.ca, localhost.zone, and named.local) were FTP’d from a local server and renamed
using the conventions adopted by this book:

¢ The named. ca file was renamed to root.servers.
e The localhost.zone file was renamed to master.localhost.

e The named.local file was renamed localhost.rev.

101

102 CHAPTER 6 "' INSTALLING BIND

Note The files are renamed in accordance with the conventions used throughout this book and described
in the section “Configuration Conventions” located in Chapter 7. While such renaming may be a matter of
taste, it is done purely in the interests of eliminating errors that may be caused through the use of meaning-
less file names.

A new directory was created and allocated the correct permissions to allow for the stan-
dard log file (/var/log/named/example.log).

cd /var/log

mkdir named

touch named/example.log
chown named:named named/*
chmod 0664 named/*

o H OH R

BIND was now started using the following command:

/etc/rc.d/init.d/named start

To confirm the named daemon was running, the following command was issued:

ps ax |grep named
1846 ? S 0:00 /usr/sbin/named -u named

To verify that named was operational, the following dig command was issued (digis a
general-purpose diagnostic utility described in Chapter 9).

dig @192.168.2.2 example.com any

5 <<>> DiG 9.3.0 <<>> ©192.168.2.2 example.com any

;5 global options: printcmd

;5 Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33647

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 0

53 QUESTION SECTION:
;example.com. IN ANY

;; ANSWER SECTION:
example.com. 51322 IN NS ns2.example.com.
example.com. 51322 IN NS nsi.example.com.

55 AUTHORITY SECTION:
example.com. 51322 IN NS nsi.example.com.
example.com. 51322 IN NS ns2.example.com.

CHAPTER 6 " INSTALLING BIND

;5 Query time: 9 msec

55 SERVER: 192.168.2.2#53(192.168.2.2)
55 WHEN: Mon Jan 24 13:46:06 2005

;3 MSG SIZE rcvd: 92

The @192.168.2.2 forces the dig command to use the name server at the defined address—
in this case, the IP address of the newly installed DNS caching server. The preceding is a good
result, though you may want to replace example. com with your favorite domain name, and
confirmed that named was working correctly. In order to force local use of the new DNS caching
server, /etc/resolv.conf must be edited to include the server’s IP as the first nameserver
record in this file. The edited resolv.conf file should look something like the following:

search example.com
nameserver 192.168.2.2

If named should be loaded on startup, then the named script must be invoked from the rc.d
directory for the run levels required. The following shows named being started and stopped from
both run-level 3 (tty) and run-level 5 (GUI):

1In /etc/rc.d/init.d/named /etc/rc.d/rc5.d/S68named
1In /etc/rc.d/init.d/named /etc/rc.d/rc5.d/K68named
1In /etc/rc.d/init.d/named /etc/rc.d/rc3.d/S68named
1In /etc/rc.d/init.d/named /etc/rc.d/rc3.d/K68named

The 68 in the S and K values is arbitrary. Finally, the system was rebooted to test that auto-
matic startup was working correctly, syslog checked for errors (/var/log/messages), and named
checked to be running with the following command:

ps ax |grep named
1846 ? S 0:00 /usr/sbin/named -u named

There are a number of additional RPMs that can be used to configure BIND, including
the bind-chroot RPM to enable named to run in a sandbox or chroot jail. This technique, which
seeks to limit the locations where named can read and write in the server filesystem, is described
in Chapter 10.

FreeBSD Installation

FreeBSD 4.x ships with BIND version 8.x as the default or base installation. FreeBSD 5.3—the
first of the stable 5.x series—ships with Bind 9.3.0 and by default runs in a sandbox or chroot
jail (use of chroot jails is described in Chapter 10).

FreeBSD differentiates between a base DNS install and a normal (nonbase) DNS install.
This differentiation allows two versions of BIND to be installed completely independently of
each other—they use separate named. conf files and program locations. It is thus possible to
test a new DNS release by installing as the nonbase system, changing only the /etc/rc.conf
file or using the command line to run the tests. Reversion to the previous version is trivial

103

104

CHAPTER 6 "' INSTALLING BIND

since it has not been removed during the testing process. Once testing is complete, a base
system install can be used to replace the base version. The base version of named is installed
in /usr/sbin and the tools in /usr/bin, whereas a normal (nonbase) installation is made to
/usr/local/sbin and the tools to /usr/local/bin. The base version of named assumes the
named. conf file is located in /etc/namedb/named. conf, whereas a nonbase install assumes
/usr/local/etc/named.conf. FreeBSD creates the user account bind (as opposed to named
for Linux) for use with BIND installations.

In all the cases that follow, the FreeBSD ports collection was used to perform the installs.

BIND 9 Nonbase Install

Assuming you have updated the ports-dns collection to get the latest versions, issue the fol-
lowing commands:

cd /usr/ports/dns/bind9
make install clean

The preceding sequence installs BIND 9 in /usr/local/sbin and the tools in /usr/local/
bin and assumes the named.conf file is in /usr/local/etc. To run BIND 9 at startup from this
location, edit /etc/rc.conf as follows:

add following line if not present

named_enable="YES"

the line below must replace the line named program="/usr/sbin/named' if present
otherwise add it

named_program="/usr/local/sbin/named"

Either copy the named. conf file from /etc/namedb to /usr/local/etc before starting BIND
(via the named daemon) or create a new version of the file in this directory. To use the BIND 9
tools installed earlier, the command must be preceded with the BIND 9 tool directory path
as shown:

/usr/local/bin/dig @192.168.2.2 example.com any

Use of @192.168.2.2 (assuming 192.168.2.2 is the address of this server) will force use of
the local DNS irrespective of the state of the /etc/resolv.conf file.

BIND 9 Base Install

This section assumes you either want to run the latest version of BIND as the base system—
replacing the existing BIND—or a new install with Bind 9 as the base system. Assuming you
have updated the ports-dns collection, issue the following commands:

cd /usr/ports/dns/bind9
make PORT_REPLACES BASE_BIND9=yes install clean

CHAPTER 6 " INSTALLING BIND

Note From BIND versions 9.3.1, the preceding should be replaced by make WITH PORT REPLACES
BASE_BIND9=yes install clean.

The preceding sequence installs BIND 9 in /usr/sbin and the tools in /usr/bin, and assumes
the configuration file is /etc/namedb/named. conf. To run BIND 9 at startup, /etc/rc.conf may
need to be edited as shown in the following fragment:

add the following line if not present
named_enable="YES"

add the following line if not present
named_program="/usr/sbin/named"

No special action is required to run BIND 9 tools: The following command will run the
base BIND 9 tool dig:

dig ©192.168.2.2 example.com

Use of @192.168.2.2 (assuming 192.168.2.2 is the address of this server) will force use of
the local server irrespective of the state of the /etc/resolv.conf file.

FreeBSD 5.3 Issues

FreeBSD 5.3 installs Bind 9.3.0 as the default (or base) version and automatically configures it
to run in a sandbox or chroot jail. Chapter 10 describes the use of chroot jails. The chroot jail
configuration assumes all BIND’s files are located under /var/named—including named. conf,
log files, and PID files. FreeBSD installs hard links in /etc/namedb so you can continue to find
the files where you thought they would be. To disable the sandbox or chroot jail if required,
add to /etc/zc.conf the following line(s):

named_chrootdir= # disables jail/sandbox
named_pidfile="/var/run/named/pid" # Must set this in named.conf as well

named_chroot autoupdate="NO" # Automatically install/update chrooted
components of named. See /etc/rc.d/named.
named_symlink enable="NO" # Symlink the chrooted pid file

The default value of the parameters controlling named operation in /etc/defaults/rc.conf
are as follows:

named_enable="YES"
named_program="/usr/sbin/named"
named_flags="-u bind"

named pidfile="/var/run/named/pid"
named_chrootdir="/var/named"
named_chroot autoupdate="YES"

Run named, the DNS server (or NO).

path to named, if you want a different one.
Flags for named

Must set this in named.conf as well

Chroot directory (or "" not to auto-chroot it)
Automatically install/update chrooted
components of named. See /etc/rc.d/named.
Symlink the chrooted pid file

H oH HF ¥ H F R

named_symlink enable="YES"

105

106

CHAPTER 6 "' INSTALLING BIND

As always, you should not update the /etc/defaults/rc.conf file but rather edit /etc/xc.conf,
which will overrule any entries already defined in /etc/defaults/rc.conf. FreeBSD does not
ship with localhost.zone or named.local (localhost.zrev in this book’s terminology) files;
instead there is a script, /etc/namedb/make-1localhost, which will help you define these files.

Building BIND from Source

This section describes building BIND from a source tarball. In general, there are only three
reasons to build BIND using this method:

1. There is no available package or RPM either for the particular host or OS or the right
version number.

2. Unique features are required that are not satisfied by the standard packages or RPMs.
3. You like to control everything yourself and have a high tolerance for pain.

Life is not all simple, however, and if building from tarballs, the advantages of any pack-
aged system (for instance, RPMs) are not available. Any dependencies on other software will
have to be manually identified—perhaps even discovered at run time!

The test build was run under the Fedora Core 2 installation described earlier. The objec-
tive of this procedure was to replicate the existing Fedora build using software built from the
tarball. To build BIND from the source tarball, follow these steps:

1. Download the source tarball from www. isc.org (bind-9.3.0.tar.tz) or one of its
mirrors into /usr/src. You can use any suitable location, but /usr/src is a general
convention.

2. Unzip the tarball using the following commands:

cd /usr/src
tar xzf bind-9.3.0.tar.gz

3. When this operation is complete, it will have created a new directory named bind-
9.3.0. Move to this directory:

cd bind-9.3.0

4. The software must now be configured using the following command (the line has been
split for formatting reasons only and should be entered as a single line):

./configure —prefix=/usr —sysconfdir=/etc —localstatedir=/var \
—disable-threads -with-openssl

The configure arguments used in this line are

* —prefix: Indicates that named will be installed to /usr/sbin and the tools to
/usr/bin

CHAPTER 6 " INSTALLING BIND

* —sysconfdir: Tells named to look for named. conf in /etc/named. conf
* —localstatedir: Tells named to write the PID file to /var/run/named.pid
e —disable-threads: The safest (or indeed the only safe) option on most systems

e —with-openssl: Indicates that DNSSEC services will be built (requires OpenSSL to
be installed—the default for FreeBSD and Fedora)

If you are building for FreeBSD, the arguments —disable-1inux-cap and -with-randomdev=/
dev/random should also be used, and by convention —sysconfdir=/etc/namedb is used
to locate named. conf.

Caution The preceding step configures BIND such that after issuing make install (see step 6) it will
overwrite any currently installed BIND package. If the software built is incorrect or fails, you will have a non-
operational DNS system. It may be wiser to use a technique such as described in the FreeBSD section and
use —prefix=/usxr/local. This will have the effect of installing named to /usr/local/sbin and the tools
to /user/local/bin and provide two copies of BIND. The newly built system can then be tested (any cur-
rently running version will have to be stopped first) and only when you are completely satisfied rebuilt using
the preceding parameters. If anything goes wrong during testing of the new software, DNS service can be
restored by simply restarting the previous BIND version from /usr/sbin/named.

5. If anything goes wrong with the configure sequence, check the entered line carefully
and inspect the file config. log, which contains the output of the configure session
including error messages. When the configure process is finished (less than five min-
utes on a 1GHz PC), BIND should now be built using the following single command:

make

6. The make command outputs voluminous data and takes roughly 20 minutes on a 1GHz
PC. On successful completion, issue the following command:

make install

This will install all the various files generated by the build—well over 200 or so. Run-
ning this command with the . /configure arguments defined earlier will replace any
existing installed version of BIND—please read the earlier Caution.

Note In the event that an error occurs during any of the configure, make, or make install procedures,
before rerunning, issue the command make distclean to remove any previous data before starting the se-
quence. As noted previously, the configure command logs its output to config. log. In the case of make and
make install, the commands may be run with data being logged to a file, for instance,. make >make. log.

107

108

CHAPTER 6 " INSTALLING BIND

Windows Server 2000 Installation

A packaged binary version of BIND that will install on either Windows 2000 (Server, Advanced
Server, or Professional) or Windows NT 4.0 (Server, Advanced Server, or Workstation) is avail-
able from the ISC site (www.isc.org). The package also includes standard Uninstall functions.
This section describes installation of BIND 9.3.0 on a Windows 2000 server using the standard
binary package. The installation process was found to be fast and simple.

Note The Uninstall function supplied with BIND 9.3.0 will work for any BIND 9 versions. Previous Win-
dows BIND versions (BIND 8.x) have their own Uninstall functions. The Windows Server 2003 family is not
supported by current BIND releases.

1. Download Bind 9.3.0.zip from the ISC site and unzip it into a temporary location, for
example, c:\temp\bind.

2. There is a small file called readme1st.txt with the distribution that provides some
information about the installation. In particular it mentions that BIND (or named. exe)
will run as a service on Windows 2000/NT 4.0 and will require a user account called
named with specific permissions. The install process will create the required account
and permissions.

3. In the temporary directory (c:\temp\bind), find and double-click BindInstall.exe,
which will display the screen shown in Figure 6-1.

Wersion 2.0.0
Browse | Uriinztall |
Exit |

Target Directary:

Service dccount Mame

Inamed

Service Account Password

Caonfirm Service Account Password

— Dptions

¥ Automatic Startup
v Keep Config Files &fter Uninstall
™ Start BIND Service After Instal

—Progre:

Current Dperation;

Figure 6-1. BIND install screen

CHAPTER 6 "' INSTALLING BIND

The password entry is optional—it can be left blank or not as you choose. The test instal-
lation left the entry blank and used the default Service Account Name as shown in Figure
6-1. The default install directory is c: \Winnt\system32\dns (or %SystemRoot%\system32\dns
in Windows terms). Do not check the box labeled Start BIND Service after Install. Click the
Install button.

. Use Windows Explorer to create a directory called c: \Winnnt\system32\dns\etc\named
and then create three subdirectories called run, zones, and log. Place or create the
master.localhost, localhost.rev, and root.servers files in the zones subdirectory and
the named. conf file that follows into the %4SystemRoot%\system32\dns\etc directory (in
the test system, this was c: \Winnt\system32\dns\etc). This file is the standard example
file used in the Chapter 7 section “Caching-only DNS Server,” modified to reflect the
Windows path values in the installation. BIND will accept either Windows or Unix line
termination conventions.

// generated by ME
// CACHING NAME SERVER for WINDOWS 2000 Server
/7 Jan 2004
// a. changed directory statement to windows format
// b. changed location of log file to named\log\named.log
// c. changed location of all zone files to named\zones
// d. added pid-file directive in named\run\named.pid
options {

directory "C:\Winnt\system32\dns\etc";

// version added for security, otherwise may be able

// to exploit known weaknesses

version "not currently available";

pid-file "named\run\named.pid";

recursion yes;

};

// log to named\log\named.log events from info UP in severity (no debug)
// defaults to use 3 files in rotation
// failure messages up to this point are in the event log
logging{
channel my_log{
file "named\log\named.log" versions 3 size 250k;
severity info;
};
category default{
my_log;
};
};
zone "." {
type hint;
file "named\zones\root.servers";

};

109

110

CHAPTER 6

zone "localhost" in{

type master;

file "named\zones\master.localhost";

INSTALLING BIND

allow-update{none;};

};

zone "0.0.127.in-addr.arpa" in{

type master;

file "named\zones\localhost.rev";

allow-update{none;};

};

5. The test installation uses the NTFS filesystem and requires permissions to be set to
allow BIND to write the log and PID files. Use Windows Explorer to find the BIND
install directory (Figure 6-2 shows the default in c: \Winnt\system32\dns).

EY C:\WINNT \system32'dns'etc

File Edit

View Faworites Tools

Help

=Back v = - | Q) Search |%Folders £ | [P FE < w2 | EE- g

Address I[:I CHWINNT syskem3Z2idnstete

j 6”60

Folders

x

Marme £

Size | Type

| Modified

EI{:I system3z
{11 cache
F-Z3 CatRook
{:l certsry
D clients
{13 Com
{3 config
-3 dhep
{:l dicache
=3 dns
- {E backup
-{23 bin
R |
E-Z3 named
D log
{:I run
{17 zones
- [Z3 samples
BT drivers

[

[(Anamed
named, conf

File Folder
ZKBE COMNF File

1/22}2005 11:59
12/13}2004 5:00

Figure 6-2. Select BIND install directory

CHAPTER 6 "' INSTALLING BIND

6. Select the etc directory, right-click, and from the pop-up menu click Properties. This
will display a tabbed window from which the Security tab should be selected. Click the
Permissions button (which will display the window shown later in Figure 6-4 without
the named account). To add this account, click the Add button and then find and select
the user account called named and click Add (see Figure 6-3).

Look, in: Ig PC11 j
Mame | I Folder |:|
7 Iwiak_PCT1 PCT1
€7 ManagementService PC11
€ mediazone FC11 |
7 moia PC11
& named PC11
ﬂ MetShows ervices FC11
€ patrick PC1 =l

4dd Check Hames |

FC114named

QK Carncel
4

Figure 6-3. Add the named account

7. Add all permissions except full control and leave the Allow inheritable permissions. . .
check box set (the default) as shown in Figure 6-4. Finally, click OK.

8. BIND installs its software to a nonstandard location (the default is %SystemRoot%\
system32\dns\bin). To use diagnostic tools such as dig and other command-line tools,
the full path will be required or the Windows path environment variable can be changed
to include the BIND installation directory. You can then forget where the BIND tools
are installed! The path variable can be set using the following procedure. Start by select-
ing Start » Settings » Control Panel » System as shown in Figure 6-5.

112

CHAPTER 6 " INSTALLING BIND

ekc Properties ﬂ E

Genelall w'eh Shalingl Sharing Security |

Name ~| add.
ﬁ named [PC | =
ﬁ Poveer Uzers [PC114Power Usgers) &I
€5 SYSTEM
€7 Users [PC114U sers)
| | B
Permizzions: Al Deny
Full Cantrol O O
WModify O
Fiead & Execute O
List Folder Contents O
Read O
Wwrike O

Advanced... |

= Allow inkernitable permizsions from parent to propagate to this

object
QK I Cancel Spply

Figure 6-4. Change permissions

E3 Control Panel M=l E3

Fil= Edit Wiew Favorites Tools Help |

‘oBack v = - | @isearch [YFeolders ¢ | % R w2 | =]

Address I[EI Conkrol Panel

Mame ¢ | Commenkt | ﬂ
anlder Ciptions Cusktomizes the display of files and folders, changes file associations, and m...
Fants Displays and manages fonts on your computer
f&Game Conkrollers
@Internet Options

Adds, removes, and configures game contraller hardware such as joysticks ..,
Configure wour Inkernet display and connection settings.,

WEIIC Control Set

ﬁiner Options
(& Printers
@Regional Options

Phone and Mode. ..

%Keybnard Customizes your kevboard settings
!L:i'fi]Licensing Changes licensing options
Mouse (Cuskomizes your mouse sethings
Metwork and Dial-... Connects to okher compaters, netwoarks, and the Internet

NI Contral Pragrarn For rnonitor [diagnose [YLAN | Teaming
Configures wour telephone dialing rules and modem properties
Configures energy-saving settings For wour computer

Adds, remaoves, and configures local and netwark, prinkers

Cusktomizes settings for display of languages, numbers, times, and dates

%Szanners and Ca... Configuresinstalled scanners and cameras
Scheduled Tasks Schedules computer kasks to run aukomatically
c:BfStuunl:Is and Mulki,.. Assigns sounds to events and configures sound devices
=] Provides system information and changes environment settings

|Pr0vides syskem information and changes environment settings

K

Figure 6-5. Select system

CHAPTER 6 "' INSTALLING BIND

9. Double-click System and then click Environment Variables on the Advanced tab,
as shown in Figure 6-6.

System Properties

Generall Networkldentificatinnl Haldwalel User Profiles Advanced |

— Performance

._ = Performance optiohs contral how applications use memary,
== B .
which affects the speed of your computer.

Perfarmance Options. ..

— Enwironment W ariables

Erwironment variables tell your computer where to find certain
twpes of information.

Environment Y ariables... I

r— Startup and Flecoveny
Startup and recoveny options tell your computer how ta start
and what to doif an eror causes your computer to stop,

Startup and Recovery... |

(0] 4 Cancel | Apply |

Figure 6-6. Select environment variables

10. Find and double-click the path line in the top window and add %SystemRoot%\
system32\dns\bin (or specify wherever your BIND bin directory is located) as shown
in Figure 6-7. Click OK in both dialog boxes to exit.

Note The path separator on Windows is a semicolon, not a colon, as in the Unix world. Setting the path
has the effect of automatically locating, say, dig or nsupdate. However, there is a Windows version of
nslookup that will be found first. Using the BIND version of ns1ookup either requires a full path command,
such as c: \winnt\system32\dns\bin\nslookup when running it from the command line, or the preceding
path directive must be placed first in the list—which has the disadvantage that it will add an extra check for
all other program loading operations that use normal Windows locations.

113

114

CHAPTER 6 " INSTALLING BIND

11.

12.

Environment ¥ariables 7
—User variables For Administrakor
‘ariable | Yalue |ﬂ
lib C:\Program Filesi\Microsoft Yisual Studio, .
MSDevDir C:\Program FilesiMicrosoft Yisual Studio, .
path C:Y\Program Filesi\Microsoft Yisual Studio. ..
TEMP C:\Documents and Settingsiadministrat., ..
THMP C:\Documents and Settings\administrat,,, |[=
T, .. | Edit... | Delete |
Edit User Yariable K Ei |—
Wariable Mame: | path
Yariable Value:
K I Cancel |
Mew. ., | EdIE... | Deleke |
QK | Cancel |

Figure 6-7. Edit path environment variable

The test installation used Windows 2000 Server, which runs the standard Windows
DNS service by default. Before the BIND service is started, it is necessary to stop and
permanently disable the standard Windows DNS service. To do this, access Computer
Management (Start » Programs » Administrative Tools » Computer Management).
Expand Services and Applications, and then double-click Services and find DNS Server
(see Figure 6-8).

Double-click DNS Server, select Disable from the Startup type combo box, and click Stop.
When the service has been confirmed as stopped, click OK (see Figure 6-9). Because the
standard Windows DNS service is being replaced with the BIND DNS service, this proce-
dure has the effect of permanently disabling the Windows DNS service at startup.

E Computer Management

J Action Yiew “ o =

|

B2 = nm

CHAPTER 6

INSTALLING BIND

M [=] E3

Tree I

ﬁ Performance Logs and Alerts ;I
bl Shared Folders

D Users

D Groups

EI--@ Skorage

----- (23 Disk Management

----- &? Disk. Defragmenter
= Logical Drives

[]—-@ Remowable Storage
E--Bﬂ Services and Applications
&-8 oHep

[]—--8 Telephorey

----- 5 WMI Control

% Services

-5 Indexing Service
]% Internet Information Services

- wins
i3 NS

| (2

Mame ¢ | Description | Skatus | Startup Tvpe | Log i
%F\Ierter Motifies sel... Starbed Aukarnatic Loca
%Applicatinn Manage... Provides s.., Manual Loca
%F\SP.NET State Serv... Provides s... Manual A4Sl
%F\utomatic Updates Enables th,., Started Aukarnatic Loca
%Backgmund Intellig... Transfersf... Manual Loca
%Bnnt Infarmation M., Provides th,.. Manual Loca
%ClipBook Supporks .., Manual Loca
%COI\’H Event Syskem Provides a... Started Manual Loca
%Computer Browser Maintains a... Started Automatic Loca
%DHCP Client Manages n... Starbed Aukarnatic Loca
%DHCP Server Provides d... Started Aukarnatic Loca
%Distributed File Syst... Manageslo... Starked Aukornatic Loca
%Distributed Link. Tra.., Sends nokif,.. Started Aukarnatic Loca
%Distributed Link Tra... Shores info... Manual Loca
%Distributed Transac... Coordinate.., Started Aukarnatic Loca
%DNS Client Resolves a,.. Starte Aukarnatic Loca

5 Server Started Aubomatic O

%Event Liog Logs event... Started Aukornatic Loca

Fax Service Helps wou ... Manual Loca
Maintains Fi. .. Manual

%File Replication
4

Figure 6-8. Select DNS service

DNS Server Properties (Local Computer)

General | Log Dnl Hecoveryl Dependenciesl

[7] x|

Service name: DMS
Digplap name: IDNS Server
D' ezcription: IAnswers query and update requests for Domain Mame £

Path to executable:

CWIMM T \Spstemd2vdns. exe

Startup type: Dizabled

i

Service status: Stopped

Start I Stop |

Fause

Fesume |

“Y'ou can specify the start parameters that apply when pou start the service

from here.

Start parameters: I

oK

Cancel Apply

Figure 6-9. Stop DNS service

115

116 CHAPTER 6 " INSTALLING BIND

13. Find and double-click ISC BIND (see Figure 6-10).

| acion vew || = & [B@E|(F DB 2] 1 »

Tree I Mame £ | Description | Skatus | Skartup Twpe | Log i:l
ﬁ Perfarmance Logs and Alerts ;I %File Replication Mainkains Fi. .. Marwal Loca
[°7 Shared Falders %File Server for Maci,.. Enables Ma.., Started Aukornatic Loca
_.; Device Manager %FTP Publishing Service Provides F... Starked Autaomatic Loca
: -#&3 Local Users and Groups %IIS Admin Service Allows adm... Started Aukomatic Loca
[0 Users %Indexing Service Indexes co... Manual Loca
- (13 Groups %Internet Authentica... Enables au... Started Aukornatic Loca
EI@ Storage 8 Irternet Connectio... Pravides n... Manual Loca
([Disk Management %Internet Explorer Inkernet E... Started Aukornatic Loca
B Disk Defragmenter % Irtarnet Pratocal Enables Int... Started Autamatic Loca
=3 Logical Drives %Intersite IMessaging Allows sen, ., Disabled Loca
B F.!emovable Stfjra.ge 84 IPSEC Palicy Agert Manages 1., Started Autamatic Loca

E"__Eé”[')ﬁé:”d ipplications ¥15C BIND Started Automatic

: %Kerberos Key Distri,.. Generates ... Disabled Loca

- ﬂ Telephony

% WHMI Conkral %License Logging Ser. .. Started Automatic Loca
_____ % E—— %Lngical Disk Manager Logical Disk.., Skarbed Aukomatic Loca
Tndesdng Service %Lngical Disk Manage... Administrat. .. Manual Loca
Internet Information Services %Messenger Sends and ... Started Autaomatic Loca

% WINS %MSSQL:&:SOPHOS Skarted Aukornatic Loca
- & DNS | |#amssqLseryer Started Automatic Loca

57 M3SQLServerADHel. . Manual Loca ™
1] |] ?? | _vl_I

Figure 6-10. Find ISC BIND

14. Double-click ISC BIND and click Start. The Startup type is set to Automatic by default,
which means it will load on startup.

Note Any errors will be logged under Applications in the Event Log.

15. To test the DNS server, open a DOS box (select Start » Run, enter cmd in the dialog
box, and then click OK) and try a dig command (described in Chapter 9):

dig @192.168.2.2 example.com any

; <<>> DiG 9.3.0 <<>> @192.168.2.2 example.com any

;5 global options: printcmd

;5 Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33647

;5 Tlags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 0

CHAPTER 6 "' INSTALLING BIND

55 QUESTION SECTION:
;example.com. IN ANY

55 ANSWER SECTION:
example.com. 51322 IN NS ns2.example.com.
example.com. 51322 IN NS nsl.example.com.

55 AUTHORITY SECTION:
example.com. 51322 IN NS nsl.example.com.
example.com. 51322 IN NS ns2.example.com.

;5 Query time: 9 msec

55 SERVER: 192.168.2.2#53(192.168.2.2)
55 WHEN: Mon Jan 24 13:46:06 2005

553 MSG SIZE rcvd: 92

The @192.168.2.2 forces the dig command to use the name server at the defined address
irrespective of the settings in the TCP/IP properties—in this case, it is the IP of the newly
installed DNS caching server. The preceding was a good result, though you may want to
replace example.com with your favorite domain name and confirm that named is working
correctly. In order to force local use of the new DNS caching server, either modify the
DNS setting in the TCP/IP properties (select Start » Control Panel » Network and Dial-
up Connections » Local LAN, right-click and select Properties, and then find and
double-click Internet TCP/IP) or create a %SystemRoot%\system32\dns\etc\resolv.conf
file. The resolv.conf file should look something like the following:

search example.com
nameserver 192.168.2.2

16. To fully test the server, it is necessary to reboot. When the server has rebooted, use
Event Viewer to check the Applications log for failure messages, and then use Task
Manager to check that the ISC BIND service started up (it loads as named. exe) as shown
in Figure 6-11.

Installing BIND on Windows 2000 Pro; Windows 2000 Server; Windows 2000 Advanced
Server; or Windows NT 4.0 Server, NT 4.0 Advanced Server, or NT 4.0 Workstation is a simple
task requiring little user intervention. The entire process takes less than 10 minutes. If you
need or want consistency of DNS for maintenance and other purposes across mixed Windows,
Unix, Linux, or BSD environments, using BIND is the only solution. As a happy side benefit,
you also get dig, nsupdate, rndc, and other tools, meaning that you can diagnose, update, and
control BIND installations on other OS platforms from a Windows desktop or server.

117

118

CHAPTER 6 " INSTALLING BIND

H windows Task Manager M= B2
File Options Wiew Help

Applications ~ Processes |F‘erFormance|

Image Name | PID | CPU I CPU Time | Mem Usage |:|
k-meleon. exe 1676 00 0:02:53 12,168 K
SbeMss, exe 1836 Juln] 00126 13,052 K
OWSTIMER. EXE 1840 00 0:00:04 5,584 K
ALZAgent. exe 1856 00 00016 §,245 K
WinMamk exe 1854 oo 0:00:12 1,880 K
WINS.EXE 1896 00 0:00:02 4,172 K
svchost, exe 19038 oo 0:00:01 9772k
aspnet_wp.exe 1952 Juln] 0:03:54 72,980 K
dfssve.exe 1960 00 0:00:00 1,584 K
inetinfo. exe 2003 Juln] 00343 17,284 K
Managementagent 2132 oo 0:00:12 8,268 K
TASKMGR.EXE 2424 01 0:00:00 2,500 K
RsEng.exe 2452 oo 0:00:13 16,930 K
mdm. exe 2664 oo 0:00:00 2,776 K
svchost, exe 2672 aa 0:00:00 3,388 K
DLLHOST.EXE 2685 00 0:00:29 5,376 K
TNMC, B Ju]n] 0:00:06 16,544 K

e 2804 0 5,948 K
flash.exe ao 0014 4460k >

End Process |
|F‘ru:u:esses: 56 |CF‘U Usage: 2% Meri Usage: 364303k | 1197404k i

Figure 6-11. Task Manager

Summary

This chapter covered the installation of BIND 9.3.0 on a variety of widely available OS plat-
forms. In order to keep installations simple, no attempt was made during the installations to
secure the various files used by BIND. You are urged to read Chapter 10 before running BIND
operationally.

BIND was installed on Fedora Core 2 as a representative of the Linux range of OS plat-
forms. The BIND installation using standard RPMs was simple, but can, depending on how
it is installed, result in an incomplete installation—missing zone files—that required some
trivial corrective action.

BIND was installed on FreeBSD as representative of the BSDs (FreeBSD, NetBSD,
OpenBSD, and DragonflyBSD) and Unix OS platforms. The powerful ports collection was
used to perform the installation. No problems were encountered during this installation
when using either the 4.x and 5.x releases.

CHAPTER 6 "' INSTALLING BIND

The packaged binary version of BIND for Windows was installed on a Windows 2000
Server and a full set of tests run to ensure it was fully functional. No problems were encoun-
tered during this installation.

To cover those situations where a packaged version is not available, BIND was compiled
on the Fedora Core 2 platform from a source tarball.

The next chapter looks at the detailed configuration of BIND necessary to run the DNS
types defined in Chapter 4.

119

CHAPTER 7

BIND Type Samples

This chapter presents sample BIND configurations and accompanying descriptions for each
of the DNS types described in Chapter 4. But before jumping into these configurations, let’s
take a moment to quickly review these types:

» Zone master: A name server that responds authoritatively for the zone, which reads the
zone file from a local file system and which is capable of transferring the zone file to
one or more slave servers

» Zone slave: A name server that responds authoritatively for the zone but which obtains
its zone file by a zone transfer from a zone master

* Caching server. A name server that provides recursive query support to clients and that
saves the results in a cache

e Forwarding server. A name server that passes all queries for which it has no cached
results to a caching name server

e Stealth or Split server: A name server configuration, typically used in perimeter defense,
which separates the services provided to external and internal users

* Authoritative-only server: A name server that only provides responses for zones for
which it is either a zone master or a zone slave and that does not support recursive
queries

Most name server configurations are schizophrenic in nature—they may be masters for
some zones, slaves for others, forward others, and provide caching services for all comers. Each
configuration type described next represents a building block and may be used in a stand-alone
configuration or be combined with other types to provide more complex configurations.

Before We Start

In order to make sense of the samples used in this chapter, the following sections cover some
background information and formatting issues.

121

122

CHAPTER 7 ©" BIND TYPE SAMPLES

Configuration Layout

A BIND system consists of the following items:

* A named.conf file, which describes the server characteristics and the zone files used.

The entries in this file are described in Chapter 12. The named. conf file is normally
located in /etc for most Linux distributions, 4SystemRoot%\system32\dns\etc for
Windows, and in either /etc/namedb or /usr/local/etc for BSD-based systems.

Depending on the configuration, the name server may use one or more zone files describ-
ing the domains being managed. The entries in zone files are described in Chapter 2;
Chapter 13 provides a complete reference. By convention the zone files are normally
located in /var/named for Linux and most Unix-based systems, but this location can be
controlled by BIND configuration parameters (using the directory statement).

Depending on the services being provided by the name server, it may require additional
zone files describing the localhost environment and root-servers.

All the configuration files are deliberately kept simple—references are provided to various
chapters that describe more advanced parameters as appropriate. Comments are included in
the files to describe functionality, but in general they are complete and can be copied directly
to a name server configuration with some simple editing to change local name values, IP
addresses, and file names.

Configuration Conventions

For reasons of consistency, the configuration scenario used throughout this chapter adheres
to these characteristics:

The domain name is example.com.

The zone has two name servers. One is hosted within example.com, the other in an
external or foreign domain.

The IP addresses used assume the private Class C address 192.168.254.0/24—a slightly
artificial case (for information on address classes and the / notation, see the sidebar
“IPv4 Addresses and CIDR” in Chapter 3).

The zone consists of the following servers:

* Two mail servers: One is hosted within example.com, and a second (backup) mail
server hosted in an external or foreign domain.

* Aweb server hosted internally and accessed as www.example.com.
* An FTP server hosted externally and accessed as ftp.example.com.

¢ An additional host called joe.example.com for some reason best known to the
domain owner.

CHAPTER 7 " BIND TYPE SAMPLES

Note Some readers may think using example.com as the default domain name in sample configurations
is about as exciting as reviewing a Hello World coding snippet. However, the dilemma is that most of the
really bizarre or interesting domain names that would be descriptive or just plain fun to use have already
been registered! It would seem a little unfair if the domain name owner were suddenly bombarded with
strange diagnostic commands or other artifacts while readers experiment with features. RFC 2606 identifies
that IANA (www.iana.org) in its infinite wisdom has reserved the domain names example.com, .org, and
.net purely for the purposes of experimentation and documentation. In the interests of being a good neti-
zen, this book generally uses example.com throughout, but just to spice things up a bit it occasionally uses
example.net.

Zone File Naming Convention

If your particular situation calls for just one or two zone files, then it may not matter how you
title them. However, as the number of zone files increase, this can quickly become a manage-
ment problem, so establishing a standard file naming convention is key in order to quickly
locate a particular file. These days it seems everyone has their own ideas regarding an ideal nam-
ing convention, and thus something that is supposed to be useful can become contentious. This
book uses the following convention throughout:

» /var/named/: This base directory contains all the housekeeping zone files (for example,
localhost zone files, reverse-mapping zone files, root.servers zone file, etc.) with a sub-
directory structure used as follows:

e /var/named/master: This directory contains the master zone files.
e /var/named/slave: This directory contains the slave zone files.
e /var/named/view: This directory contains the view zone files.

* Master zone files are named master.example.com (master.example.net etc.); if it is
a subdomain it will be master. sub-domain.example.com.

e Slave zone files are named slave.example.com (or slave.example.fr, etc.); if it is a sub-
domain it will be slave.sub-domain.example.com, etc.

* The root server zone file is called root.servers (typically called named. ca or named. root
in BIND distributions).

¢ The reverse-mapping file name uses the IP address in its correct or normal order with
.rev appended to it. For example, if the zone is 23.168.192.IN-ADDR.ARPA, then the
reverse-mapping zone file is called 192.168.23.rev. There is no reason for the zone file
name to be as confusing as the reverse-mapped zone file contents!

The localhost zone file is called master.localhost (typically called localhost.zone when
supplied with BIND distributions). The reverse-mapping file is called localhost.rev
(typically called named. local when supplied with many BIND distributions).

123

124

CHAPTER 7 ©" BIND TYPE SAMPLES

Note For most Linux and BSD BIND distributions, there is a small overhead after installation to rename
the standard distribution files, but the equation “meaningless file names +2 AM panic = serious chance of
error” is one that should be avoided at all costs. There are plenty of things in the DNS world that need to be
remembered—meaningless file names are not one of them.

Keep in mind this is just a convention, and does not affect the behavior of BIND. That
said, you are not bound to following these rules; however, it’s crucial that you do establish
some sort of convention in order to lessen the possibility of administration gaffes.

Required Zone Files

Depending on operational requirements, BIND may need a number of zone files to allow it
to provide the required functionality—these are in addition to any zone files that explicitly
describe master or slave zones.

root.servers

This file (called named. ca or named.root in many distributions but renamed root.servers in

this book) is a standard zone file containing A RRs for the root-servers (A.ROOT-SERVERS .NET—
M.ROOT-SERVERS.NET). When BIND is initially loaded, it uses this zone file to query the root zone
to obtain a complete list of the current authoritative root-servers and subsequently uses the
obtained list rather than the root.servers zone file. When a name server cannot resolve a query
from its local zone files or its cache, it uses the name servers obtained via this query to return a
referral (if an iterative query) or to find an answer (if a recursive query). The root. servers file is
defined using a normal zone clause with a type hint statement as in the following example:

// BIND named.conf fragment

zone "." {
type hint;
file "root.servers";
b
The zone "." declaration is short for the root zone (the normally silent dot at the end of

an FQDN). A query to this zone will return a list of the root-servers, which is then used by the
name server as a starting point for any domain query, for which there is no locally defined
zone (slave or master) or a cached answer.

By convention, the hint zone is usually included as the first zone clause in named. conf, but
there is no good reason for this—it may be placed anywhere suitable. If the configuration is
running an internal name service on a closed network, or the name server does not support
recursive queries, the root.servers file or hint zone is not required. If the zone is not defined,
but recursive queries are required, BIND has an internal list that it uses.

The root-servers change very infrequently for obvious reasons; nevertheless, the zone file
supplied with any distribution will eventually become outdated. A new zone file can be obtained
from a number of locations including ICANN/INTERNIC (ftp://ftp.internic.net/domain
download file named.root). BIND will log any discrepancies from the current root.servers zone
file and the list it obtains on the initial query of the root zone (see earlier), but will carry on using

CHAPTER 7 " BIND TYPE SAMPLES

the retrieved list. The root.servers file should be updated perhaps every 12 months or when-
ever there are log messages noting discrepancies when BIND loads. A root.servers fragment
is shown here:

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache "

; configuration file of BIND domain name servers).
)

; This file is made available by InterNIC

5 under anonymous FTP as

; file /domain/named.root

; on server FTP.INTERNIC.NET

; -OR- RS.INTERNIC.NET

5

; last update: Jan 29, 2004

; related version of root zone: 2004012900

; formerly NS.INTERNIC.NET

5

. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

The trailing dot in the NS RR line earlier indicates it is an FQDN and signifies this is a
name server for the root domain. In total, there are 13 name servers listed in this zone file,
namely a.root-servers.net tom.root-servers.net.

master.localhost

This zone file allows resolution of the name localhost to the loopback address 127.0.0.1 when
using the name server. Any query for localhost from any host using the name server will return
127.0.0.1—namely its fixed localhost address. This file is particularly important because local-
host is used by many applications. The localhost zone is defined as shown here:

// BIND named.conf fragment
zone "localhost" in{
type master;
file "master.localhost";
allow-update {none;}; // optional
};

In the standard files supplied with many BIND 9 distributions, the zone-specific state-
ment allow-update (none;); is defined, which suppresses any, accidental or malicious,
Dynamic DNS (DDNS) behavior that may corrupt the localhost zone file. Dynamic DDNS is
disabled by default in BIND 9, and the statement is not strictly required—its inclusion may
be regarded as defensive or paranoid at your discretion. An example master.localhost file
(called localhost or localhost.zone in many distributions) is shown here:

125

126

CHAPTER 7 ©" BIND TYPE SAMPLES

$TTL 86400 ; 24 hours could have been written as 24h or 1d
$ORIGIN localhost.
@ 1D 1IN SOA @ hostmaster (
2004022401 ; serial
12h ; refresh
15m ; retry
1w ; expiry
3h ; minimum
)
@ 1D IN NS @ ; localhost is the name server
1D IN A 127.0.0.1 ; always returns the loop-back address

The file embodies the true minimalist (and occasionally incomprehensible) tradition of con-
figuration files. Extensive use is made of @ which will force $0RIGIN substitution, as explained in
Chapter 2. Every record uses a 24-hour (1D) TTL; in RFC 1035 format this time value would be
86400. Even recent BIND distributions use a zone e-mail address of root (the historic practice),
current practice (RFC 2142) recommends the use of hostmaster for this purpose, and the file has
been correspondingly modified.

The following offers an alternate version of the preceding file that may be more under-
standable:

$TTL 1d ;
$ORIGIN localhost.
localhost. IN SOA localhost. hostmaster.localhost. (
2002022401 ; serial
3H ; refresh
15M ; retry
1w ; expire
3h ; minimum

)
localhost. IN NS localhost. ; localhost is the name server
localhost. IN A 127.0.0.1 ; the loop-back address

Note The preceding file uses the BIND only abbreviations for time periods in an ugly variety of upper-
and lowercase formats to reinforce the point that they are case-insensitive.

IPv6 Localhost

The IPv6 localhost or loopback address is : : 1 and is defined using an AAAA RR (a Quad A RR).
Recall from Chapter 5 that A and AAAA RRs may be freely mixed in a zone file enabling the
standard master.localhost zone file to be modified, thus requiring no change to the zone file
declaration in the named. conf file, as shown here:

CHAPTER 7 " BIND TYPE SAMPLES

$TTL 86400 ; 24 hours could have been written as 24h or 1d
$ORIGIN localhost.
@ 1D 1IN SOA @ hostmaster (
2004022401 ; serial
12h ; refresh
15m ; retry
1w ; expiry
3h ; minimum
)
@ 1D IN NS @ ; localhost is the name server
1D IN A 127.0.0.1 ; IPv4 loop-back address
1D IN AAAA ::1 ; IPv6 loop-back address

Reverse-Map Zone Files

Reverse mapping describes the process of translating an IP address to a host name. This
process uses the reserved domain IN-ADDR.ARPA and, if it is to be supported, requires a corre-
sponding zone file. Reverse-mapping and its zone file format are described in Chapter 3.

Note Many service providers do not provide delegation of reverse mapping for IPv4 addresses (described
in Chapter 8), and as a consequence users can get into the bad habit of not including reverse-map files in
their name server configurations. If the name server is behind a firewall/NAT gateway and is using local (RFC
1918) IPv4 addresses, for example, 192.168.0.0/16, it is very important that a reverse-map zone file be
included to cover the private IPs being used. Failure to do so will result in queries for these IPs being passed
to the public network—consuming both resources and slowing up all local traffic while operations timeout.
Recent studies suggest that up to 7% of all traffic hitting certain root-servers comes from badly configured
name servers, which generate unnecessary reverse-map queries for local IP addresses.

0.0.127.IN-ADDR.ARPA

This special zone allows reverse mapping of the loopback address 127.0.0.1 to satisfy applications
that do reverse or double lookups. It is sometimes called named. local in Linux distributions but is
renamed localhost.rev in this book. Any request for the address 127.0.0.1 using this name server
will return the name localhost. The 0.0.127.IN-ADDR.ARPA zone is defined as shown here:

// BIND named.conf fragment

zone "0.0.127.IN-ADDR.ARPA" in{
type master;
file "localhost.rev";
allow-update{none;}; // optional

};

In the standard files supplied with many BIND 9 distributions, the zone-specific statement
allow-update (none;); is defined, which suppresses Dynamic DNS (DDNS) behavior. This is

127

128

CHAPTER 7 ©" BIND TYPE SAMPLES

BIND 9’s default mode and is not strictly required—its inclusion may be regarded as defensive,
paranoid, or prudent at your discretion. An example localhost.rev file is shown here:

$TTL 86400 ; 24 hours

; could use $ORIGIN 0.0.127.IN-ADDR.ARPA.

@ IN SOA localhost. hostmaster.localhost. (
1997022700 ; Serial
3h ; Refresh
15 ; Retry
1w ; Expire
3h) 5 Minimum

IN NS localhost.
1 IN PTR localhost.

This file, supplied with most BIND distributions, normally has no $0RIGIN directive (the com-
ment line shows the form the $0RIGIN directive would take if present) and thus serves to illustrate
the additional work required when it is missing. In this case, the @ name is taken to mean the value
in the zone clause of named. conf, which in the preceding named. conf fragment reads as follows:

zone "0.0.127.IN-ADDR.ARPA" in{

This name will be used by the $0RIGIN substitution rule within this file. The absence of an
$ORICGIN directive means looking in two places (the named. conf file and the zone file) to under-
stand exactly what is happening. In the last line of this file, the leading 1 is a name and because
it is unqualified (it does not end with a dot), $ORIGIN substitution also takes place. This line
could have been written as follows:

1.0.0.127.in-addr.arpa. IN PTR localhost.

IPv6 Localhost Reverse Map

The IPv6 loopback address is written typically as ::1 but its full format is 0:0:0:0:0:0:0:1. Recall
from Chapter 5 that reverse mapping for IPv6 uses a reversed nibble format—each 4 bits of the
128-bit address is defined and then placed under the IP6.ARPA domain. This leads to the bru-
tally long definition that follows and which comprises one followed by 31 zeros:

1.0.IP6.ARPA.

The split between the zone or domain name part and the host part defined inside the
zone file is arbitrary. The following definitions use a domain name comprising the global rout-
ing prefix (or site prefix) of 48 bits and the remainder defined inside the zone file. The zone
clause fragment for named. conf is shown here:

// named.conf fragment

zone "0.0.0.0.0.0.0.0.0.0.0.0.IP6.ARPA" in{
type master;
file "localhost-ipv6.rev";
allow-update {"none";};

};

CHAPTER 7 " BIND TYPE SAMPLES

Here is the zone file localhost-ipv6.rev:

$TTL 86400 ; 24 hours
$ORIGIN 0.0.0.0.0.0.0.0.0.0.0.0.IP6.ARPA.
@ IN SOA localhost. hostmaster.localhost. (
1997022700 ; Serial
3h ; Refresh
15 ; Retry
1w ; Expire
3h) 5 Minimum
IN NS localhost.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR localhost.

BIND named. conf File Format and Style

The following notes provide a brief overview of some terminology to enable the reader to
make sense of the files presented in this chapter, though some reference to Chapter 12 will
be necessary if a detailed description of a particular value is required.

BIND’s standard documentation uses a confusing number of terms to describe the vari-
ous elements in the named. conf file. To reduce the confusion that can arise, this book uses only
two terms consistently throughout. Individual configuration lines are called statements. Each
statement is terminated with a semicolon. Statements are defined within clauses. A clause
starts on new line, and all its statements are enclosed within braces (curly brackets) and ter-
minate with a semicolon. The following fragment illustrates this organization:

// zone starts a new clause
zone "example.com" {
// all clause statements are contained within braces
// type, file, and masters are statements and terminate with a semicolon
type slave;
file "slave.example.com";
masters {10.0.0.1;};
// the zone clause is terminated with a closing brace

};

BIND named. conf clauses and statements can seem quite complex, and BIND is pretty
picky when it comes to syntax—semicolons, braces, and all that wonderful stuff. There are
many named. conf layout styles possible, the majority of which are simply designed to mini-
mize syntax errors. The following examples show various layout styles, each of which is
handled by BIND:

// dense single-line layout style
zone "example.com" {type slave; file "sec.example.com"; masters {10.0.0.1;};};
// multiple-line layout style
zone "example.com" {
type slave;
file "slave.example.com";
masters {10.0.0.1;};

};

129

130

CHAPTER 7 ©" BIND TYPE SAMPLES

// a slightly confusing hybrid layout style
zone "example.com" {

type slave;

file "slave.example.com";

masters {10.0.0.1;}; };

Use the layout style that makes the most sense and that will be the least error prone.

Finally, there is the question of quotes or no quotes with names. In the preceding fragment,
zone "example.com" could have been written as simply zone example.com. The rule is if a name
contains spaces, it must be enclosed in quotes; if not, the enclosing quotes are optional. This
book mostly uses enclosing quotes with names, but especially with reserved names such as any
and none (or "any" and "none") will occasionally omit the enclosing quotes.

Standard Zone Files

The next sections describe the detail configuration of BIND’s named. conf and, where appropriate,
the zone files for each of the DNS types. Unless otherwise noted, the standard zone files defined
earlier for root.servers, master.localhost, and localhost.rev are unchanged. Also, unless other-
wise noted, the example.com zone file first introduced in Chapter 2 remains unchanged. However,
for convenience it is reproduced here:

; simple zone file for example.com

$TTL 2d ; default TTL for zone

$ORIGIN example.com. ; base domain-name

; Start of Authority RR defining the key characteristics of the zone (domain)

@ IN SOA nsil.example.com. hostmaster.example.com. (
2003080800 ; se = serial number
12h ; ref = refresh
15m ; ret = update retry
3w ; ex = expiry
2h 5 min = minimum
)
; name server RR for the domain
IN NS nsil.example.com.

; the second name server is
; external to this zone (domain).

IN NS ns2.example.net.
; mail server RRs for the zone (domain)
3w IN MX 10 mail.example.com.
; the second mail servers is external to the zone (domain)
IN MX 20 mail.example.net.

; domain hosts includes NS and MX records defined above
5 plus any others required

nsi IN A 192.168.254.2
mail IN A 192.168.254.4
joe IN A 192.168.254.6
WWW IN A 192.168.254.7

; aliases ftp (ftp server) to an external domain
ftp IN CNAME ~ ftp.example.net.

CHAPTER 7 " BIND TYPE SAMPLES

Common Configuration Elements

The named. conf files used in the example files have a common core containing statements and
clauses, which are either required or advisable. This common core is shown here, and each
part briefly described:

// Master & Caching Name Server for Example, INC.
// Recommended that you always maintain a change log in this file as shown here
// CHANGELOG:
// 1. 9 july 2005 INITIALS or NAME
// a. did something
// a. 23 july 2005 INITIALS or NAME
// a. did something again
// b. another change
// options clause defining the server-wide properties
options {

// all relative paths use this directory as a base

directory "/var/named";

// version statement for security to avoid hacking known weaknesses

// if the real version number is published

version "not currently available";
b
// logging clause
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages up to this point are in syslog e.g. /var/log/messages
//
logging {

channel example_log{

file "/var/log/named/example.log" versions 3 size 250k;
severity info;

b

category default{

example_log;

b
b

The file always starts with a gentle reminder that, as with all configuration files, disci-
plined commenting of all changes is one of the simplest and most powerful diagnostic tools
available as well as being plain good sense. The directory statement in the example shown is
the normal path but serves as a constant reminder of the base used for any relative file name
(those that don't start with a /) such as zone files. The version statement inhibits disclosure of
the BIND version number. This is done to prevent advertising that the site is running a version
of BIND that may have a known exploit—it makes any attacker’s life a tad more difficult. The
logging clause simply streams all messages into a separate file, rotates the log when it reaches
250K in size, and keeps the last three rotated versions. If a logging clause is not present, all log-
ging is done using syslogd.

131

132

CHAPTER 7 ©" BIND TYPE SAMPLES

Master DNS Server

Recall from the description in Chapter 4 that a zone master will supply authoritative data for
the zone. There may be one or more zone masters and zero or more zone slaves for any given
domain or zone. The term master simply means that the zone file will be read from the local
filestore, and the name server will respond to requests for zone transfer from slaves if permit-
ted by named. conf configuration parameters.

Master Name Server Configuration

The BIND configuration samples that follow provide the following functionality:

* The name server is a master for the zone example. com. This characteristic is defined by
the zone "example.com" clause containing a type master; statement.

* The name server provides caching services for all other domains. This characteristic is
defined by the combination of the recursion yes; statement in the options clause and

non non

the zone "."clause "." (the root zone).

* The name server provides recursive query services for resolvers or other name servers
acting on behalf of resolvers. This characteristic is defined by the recursion yes; state-
ment in the options clause.

Here is the BIND named. conf file:

// Master & Caching Name Server for EXAMPLE.COM.
// Recommended that you always maintain a change log in this file as shown here
// CHANGELOG:
// 1. 9 july 2005 INITIALS or NAME
// a. did something
// a. 23 july 2005 INITIALS or NAME
// a. did something again
// b. another change
// options clause defining the server-wide properties
options {
// all relative paths use this directory as a base
directory "/var/named";
// version statement for security to avoid hacking known weaknesses
// if the real version number is published
version "not currently available";
// configuration unique options statements
// optional - disables zone transfers except for the slave
// in the example.net domain
allow-transfer {192.168.1.2;};
// optional - BIND default behavior is recursion
recursion yes;

};

CHAPTER 7 " BIND TYPE SAMPLES

// logging clause
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages up to this point are in syslog e.g. /var/log/messages
//
logging {

channel example log{

file "/var/log/named/example.log" versions 3 size 250k;

severity info;

b

category default{

example log;

1
1
// root.servers - required zone for recursive queries
zone "." {
type hint;
file "root.servers";
};

// zone clause - master for example.com
zone "example.com" in{
type master;
file "master/master.example.com";
allow-update {none;};
b
// required local host domain
zone "localhost" in{
type master;
file "master.localhost";
allow-update {none;};
b
// localhost reverse map
zone "0.0.127IN-ADDR.ARPA" in{
type master;
file "localhost.rev";
allow-update {none;};
b
// reverse map for local addresses at example.com
// uses 192.168.254.0 for illustration
zone "254.168.192.IN-ADDR.ARPA" in{
type master;
file "192.168.254.rev";
allow-update {none;};

};

The allow-transfer statement prohibits any zone transfer except to the defined IP
address—in this case it is the IP address of ns2.example.net (defined in the sample zone file—
see earlier). BIND 9’s default behavior is to allow zone transfers from any host that requests

133

134

CHAPTER 7 ©" BIND TYPE SAMPLES

one. An alternative strategy is to disable all transfers in the options clause and selectively
enable them in each zone clause as shown in this fragment:

options {

allow-transfer {none;};

zone "example.com" in {
allow-transfer {192.168.1.2;};

};

Additional zone clauses defining either type master or type slave may be added as
required to create larger configurations.

Slave DNS Server

The functionality of the slave name server was described in Chapter 4. The term slave sim-
ply defines that a name server will obtain the zone records using zone transfer operations
but will answer authoritatively for the zone for as long as it has valid zone data (defined by
the expiry field of the zone’s SOA RR). The term slave in no sense implies priority of access.
As previously described, slave servers will be accessed, in general, just as frequently as any
master name server.

Slave Name Server Configuration

The BIND named. conf slave sample configuration provides the following functionality:

e The name server is a slave for the zone example. com. This characteristic is defined by the
zone "example.com" clause containing a type slave; statement.

* The name server provides caching services for all other domains. This characteristic is
defined by the combination of the recursion yes; statement in the options clause and

non non

the zone "."clause "." (the root zone).

* The name server provides recursive query services for resolvers or other name servers
acting on behalf of resolvers. This characteristic is defined by the recursion yes; state-
ment in the options clause.

The sample configuration file shows that the slave name server is provided in an external
or foreign domain called example.net (not example.com) by the following fragment from the
standard zone file:

; the second name server is
; external to this zone (domain).
IN NS ns2.example.net.

CHAPTER 7 " BIND TYPE SAMPLES

This type of configuration is normally used for physical diversity. If the example. com site
is off-line due to communication or other problems, then example.net, assumed to be at a dif-
ferent physical location, will continue to provide service for the example.com zone or domain.
Clearly this is not always practical, and the second name server could have been defined as
ns2.example.com and located on the same site. There is nothing wrong with such a configura-
tion other than the risk associated with a physical outage. The named. conf sample file that
follows, based on the standard sample file, would be located at ns2.example.net.

// Slave & caching Name Server for EXAMPLE.NET.
// provides slave name server support for example com
// Recommended that you always maintain a change log in this file as shown here
// CHANGELOG:
// 1. 9 july 2005 INITIALS or NAME
// a. did something
// a. 23 july 2005 INITIALS or NAME
// a. did something again
// b. another change
//
options {
// all relative paths use this directory as a base
directory "/var/named";
// version statement for security to avoid hacking known weaknesses
// if the real version number is published
version "not currently available";
// configuration unique statements
// disables all zone transfer requests
allow-transfer {"none";};
// optional - BIND default behavior is recursion
recursion yes;
};
//
// log to /var/log/named/examplenet.log all events from info UP
// in severity
// defaults to use 3 files in rotation
// failure messages up to this point are in (syslog) /var/log/messages
logging{
channel examplenet log{
file "/var/log/named/examplenet.log" versions 3 size 250k;
severity info;
1
category default{
examplenet log;
b
1

135

136

CHAPTER 7 ©" BIND TYPE SAMPLES

// required zone for recursive queries

zone "." {

type hint;

file "root.servers";
};

// assumes this server is also master for example.net
zone "example.net" in{
type master;
file "master/master.example.net";
allow-update {none;};
1
// slave for example.com; see following notes
zone "example.com” in{
type slave;
file "slave/slave.example.com";
masters (192.168.254.2;);
// allows notify messages only from master
allow-notify {192.168.254.2;};
};
// required local host domain
zone "localhost" in{
type master;
file "master.localhost";
allow-update{none;};
};
// localhost reverse map
zone "0.0.127.IN-ADDR.ARPA" in{
type master;
file "localhost.rev";
allow-update{none;};
};
// reverse map for example.net local IPs
// assumed 192.168.1.0 (see notes)
zone "1.168.192.IN-ADDR.ARPA" IN {
type slave;
file "slave.192.168.1.rev";
masters {192.168.1.1;};

};

The example.comslave zone statement file "slave/slave.example.com"; is optional and
allows the slave to store the zone records obtained on the last zone transfer. If BIND is reloaded,
the current stored zone file—assuming it is still within the TTL time defined by the SOA RR
expiry field—is used rather than immediately requesting a zone transfer and thus wasting both
time and network resources. To create the secondary file initially, just create an empty file with
the correct file name; BIND will complain the first time it loads the new file but not thereafter.

The zone example.com contains a statement masters {192.168.254.2;}; which has a sin-
gle IP address referencing ns1.example.com; any number of IP addresses could appear in the

CHAPTER 7 " BIND TYPE SAMPLES

list. There may be one or more zone masters. The allow-notify {192.168.254.2;}; statement
disables NOTIFY messages from any host except the zone master to minimize possible mali-
cious action.

The reverse map for the local IP addresses at example.net (zone "1.168.192.IN-ADDR.ARPA")
is defined as a slave for administrative convenience—only one copy of this zone file need be
maintained. IN-ADDR.ARPA zones provide all the normal zone functionality, including master and
slave. This zone could have been defined as a master with a local copy of the reverse-map zone
file, which is the more normal, but unnecessary, configuration.

The named. conf file shows ns2.example.net acting as a zone master for its zone or domain
(example.net). It could equally well have been a slave for the domain or even contained no
zone section or clause for example.net.

Caching-only DNS Server

The caching-only name server is one that provides caching service to its clients—resolvers or
other DNSs acting on behalf of resolvers. When the caching-only name server obtains the
answer to a query, it saves the resulting Resource Records (RRs) to local file or in-memory
storage and will return this saved result to a subsequent query for the same information until
the TTL value of the saved RR expires, at which time it will discard the RR. If the caching server
is restarted, the current cache will be discarded.

Note A DNS cache is not the same as a slave’s zone data. Zone data consists of all the zone records
obtained through zone transfer operations, and importantly this data is timed out using the values in the
zone’s SOA RR. A cache contains individual RRs obtained as answers to specific queries and timed out
according to the TTL value of the specific RR.

Caching-only Name Server Configuration

The BIND named. conf configuration sample provides the following functionality:

* The name server is neither a master nor slave for any domain. There are no zone clauses
for other than essential zones needed for local operations (master.localhost and
localhost.rev) and to support recursive queries (the root zone).

* The name server provides caching services for all domains. This characteristic is

defined by the recursion yes; statement in the options clause and the zone "." clause
(the root zone).

¢ The name server provides recursive query services for resolvers or other DNSs acting on
behalf of resolvers. This characteristic is defined by the recursion yes; statement in the
options clause.

137

138 CHAPTER 7 ©" BIND TYPE SAMPLES

Here is the BIND named. conf:

// Caching Name Server for Example.COM.
// Recommended that you always maintain a change log in this file as shown here
// CHANGELOG:
// 1. 9 july 2005 INITIALS or NAME
// a. did something
// a. 23 july 2005 INITIALS or NAME
// a. did something more
// b. another change
//
options {
// all relative paths use this directory as a base
directory "/var/named";
// version statement for security to avoid hacking known weaknesses
// if the real version number is published
version "not currently available";
// configuration-specific option clause statements
// disables all zone transfer requests
allow-transfer{"none"};
// optional - BIND default behavior is recursion
recursion yes;
1
//
// log to /var/log/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages up to this point are in (syslog) /var/log/messages
//
logging{
channel example log{
file "/var/log/named/example.log" versions 3 size 250k;
severity info;
b
category default{
example log;
b
};
// required zone for recursive queries
zone "." {
type hint;
file "root.servers";
1
// required local host domain
zone "localhost" in{
type master;
file "master.localhost";
allow-update{none;};

};

CHAPTER 7 " BIND TYPE SAMPLES

// localhost reverse map

zone "0.0.127.IN-ADDR.ARPA" in{
type master;
file "localhost.rev";
allow-update{none;};

};

This is a caching-only name server and contains no zones (other than localhost) with
master or slave types. Previous samples for master and slave server types included caching
behavior combined with one or more master or slave zones.

The reverse-map zone has been omitted since it is assumed that an external body, for exam-
ple, an ISP, is the zone master for example.com and is therefore also responsible for the reverse
map. The reverse-mapping zone could be added if required for local operational reasons.

Forwarding (a.k.a. Proxy, Client, Remote)
DNS Server

The functionality of the forwarding name server was described in Chapter 4 and is used
primarily to minimize traffic on congested, slow, or expensive external network connections,
for example, a dial-up network.

Forwarding Name Server Configuration

The BIND named. conf configuration sample provides the following functionality:

* The name server is neither a master nor slave for any domain. There are no zone
clauses for other than essential zones needed for local operations (master.localhost
and localhost.rev).

* The name server provides caching services for all domains. This characteristic is an
artifact of BIND’s normal behavior. When the results of queries forwarded to an external
name server are returned, they are automatically cached.

* The name server does not provide recursive query support. This characteristic is
defined by the recursion no; statement and by the definition of the forward only;
statement in the options clause.

* The name server forwards all queries to a remote DNS—which must provide recursive
query support—from all local resolvers (global forwarding). This characteristic is
defined by the forward and forwarders statements in the options clause.

Here is the BIND named. conf:

139

140

CHAPTER 7 ©" BIND TYPE SAMPLES

// Forwarding & Caching Name Server for Example, INC.

// Recommended that you always maintain a change log in this file as shown here

// CHANGELOG:
// 1. 9 july 2005 INITIALS or NAME
// a. did something
// a. 23 july 2005 INITIALS or NAME
// a. did something more
// b. another change
//
options {
// all relative paths use this directory as a base
directory "/var/named";
// version statement for security to avoid hacking known weaknesses
version "not currently available";
// configuration specfic options statements
forwarders {10.0.0.1; 10.0.0.2;};
forward only;
// disables all zone transfer requests
allow-transfer{"none"};
// turn off recursion
recursion no;
1
// log to /var/log/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages up to this point are in (syslog) /var/log/messages
logging{
channel example log{
file "/var/log/named/example.log" versions 3 size 250k;
severity info;
1
category default{
example log;
1
1
// required local host domain
zone "localhost" in{
type master;
file "master.localhost";
allow-update{none;};
};
// localhost reverse map
zone "0.0.127.IN-ADDR.ARPA" in{
type master;
file "localhost.rev";
allow-update{none;};

};

CHAPTER 7 " BIND TYPE SAMPLES

The forwarding name server typically contains no zones (other than localhost) with
master or slave types.

The reverse-map zone has been omitted since it assumed that an external body, for
example an ISP, is the zone master for the domain and is therefore also responsible for the
reverse map. It could be added if required for local operational reasons.

The forward statement must be used in conjunction with a forwarders statement. The
statement forward only overrides local recursive query behavior. All queries are forwarded
to a recursive name server that will return a complete answer in a single transaction, thus
minimizing external network traffic, while local clients see an apparently recursive name
server.

Since all queries are forwarded to another name server, the root.servers zone
(type hint) is omitted.

Forwarding can also be done on a per-zone basis, in which case the values defined
override the global options. The following example shows its use in a zone clause:

// BIND named.conf fragment
// use of forward in a zone clause
zone "example.net" in{
type forward;
forwarders{10.0.0.3;};
forward only;

};

In the preceding fragment, all queries (indicated by forward only) for the domain
example.com will be forwarded to the host 10.0.0.3, whereas the global forwarders statement
in the main file uses the hosts 10.0.0.1 and 10.0.0.2. If forward first had been used, then the
sense would be this: forward to host 10.0.0.3 and if no response is obtained only then use
the global forwarders 10.0.0.1 and 10.0.0.2.

Stealth (a.k.a. Split or DMZ) DNS Server

The functionality of the Stealth name server configuration—typically used to provide perime-
ter security—was described in Chapter 4. Figure 7-1 illustrates the conceptual view of a Stealth
(a.k.a. Split or DMZ) DNS server configuration.

The key concept in a Stealth DNS system is that there is a clear line of demarcation
between the internal Stealth server(s) and the external or public name server(s). The primary
difference in configuration is that Stealth servers will provide a comprehensive set of services
to internal users to include caching and recursive queries and would be configured as a typical
zone master, slave, or a caching-only server (see earlier), while the public server may provide
limited services and would typically be configured as an authoritative-only server (see the sec-
tion “Authoritative-only DNS Server” later in this chapter).

141

142

CHAPTER 7 ©" BIND TYPE SAMPLES

= =
Stealth External
= =
DNS(S) |[==] = DNS(S)
=
=
o =
= =
== Multihomed Firewall/ =
NAT DMZ Host
— =
= Private Public =
= =

Private Public
Hosts Hosts

Figure 7-1. Split/Stealth server configuration

There are two critical points in a Stealth configuration:

1. The zone file for the Stealth server may contain both public and private hosts, whereas
the public server’s zone file will contain only public or publicly visible hosts.

2. To preserve the stealth nature, it is vital that the public named. conf file does not include
statements such as master, allow-notify, allow-transfer, etc. with references to the
IP(s) of the Stealth server. If the Stealth server’s IP were to appear in the public name
server and its file system were to be compromised, the attacker could gain knowledge
about the organization—could penetrated the veil of privacy—by simply inspecting
the named. conf file.

Stealth Configuration

The samples that follow depict named. cont files for the public and private name servers used
in a Stealth or Split configuration.

Stealth (Private) Configuration Files

Here is the BIND named. conf file used on the private or Stealth name servers:

// Master & Caching Name Server for Example, INC. STEALTH SIDE

// Recommended that you always maintain a change log in this file as shown here
// CHANGELOG:

// 1. 9 july 2005 INITIALS or NAME

// a. did something

// a. 23 july 2005 INITIALS or NAME

// a. did something again

// b. another change

CHAPTER 7 " BIND TYPE SAMPLES

//
options {
// all relative paths use this directory as a base
directory "/var/named";
// version statement for security to avoid hacking known weaknesses
// if the real version number is published
version "not currently available";
// configuration-specfic options statements
// optional - BIND default behavior is recursion
recursion yes;
1
//
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages up to this point are in syslog e.g. /var/log/messages
//
logging{
channel example log{
file "/var/log/named/example.log" versions 3 size 250k;
severity info;
};
category default{
example_log;
};
};
// required zone for recursive queries
// transactions will pass through a classic firewall

zone "." {

type hint;

file "root.servers";
b

// zone clause - master for example.com
zone "example.com” in{
type master;
file "master/master.example.com.internal";
allow-update{none;};
b
// required local host domain
zone "localhost" in{
type master;
file "master.localhost";
allow-update {none;};

};

143

144 CHAPTER 7 ©" BIND TYPE SAMPLES

// localhost reverse map
zone "0.0.127IN-ADDR.ARPA" in{
type master;
file "localhost.rev";
allow-update{none;};
b
// reverse map for local address at example.com
// uses 192.168.254.0 for illustration
zone "254.168.192.IN-ADDR.ARPA" in{
type master;
file "192.168.254.rev";

};

The zone file master.example.com.internal will contain both the public and internal
hosts—the standard sample zone file has been modified to add some internal or private hosts.

; simple zone file for example.com

$TTL 2d ; default TTL for zone

$ORIGIN example.com. ; base domain-name

; Start of Authority RR defining the key characteristics of the zone (domain)

@ IN SOA ns3.example.com. hostmaster.example.com. (
2003080800 ; se = serial number
12h ; ref = refresh
15m ; ret = update retry
3w ; ex = expiry
2h 5 min = minimum
)
; name server RRs for the domain
IN NS ns3.example.com.
; mail server RRs for the zone (domain)
3w IN MX 10 mail.example.com.
; the second mail servers is external to the zone (domain)
IN MX 20 mail.example.net.

; domain hosts includes NS and MX records defined previously
; plus any others required

mail IN A 192.168.254.4

joe IN A 192.168.254.6

WWw IN A 192.168.254.7

; aliases ftp (ftp server) to an external domain
ftp IN CNAME ~ ftp.example.net.

; private hosts and services

ns3 IN A 192.168.254.10
accounts IN A 192.168.254.11

hr IN A 192.168.254.12

last IN A 192.168.254.233

CHAPTER 7 " BIND TYPE SAMPLES

The Stealth side zone file uses a nonpublicly visible name server, ns3.example.com, to pro-
vide local DNS services. A single name server is used in this configuration file, but two or more
could be used depending on the size of the organization and the requirement for resilience.
This file does not reference the public name servers ns1.example.comand ns2.example.com,
which are defined in the zone file used by the public server (as discussed in the next section)
to minimize unnecessary traffic across the firewall. The mail servers referenced are the same
as those used in the public server to avoid having to synchronize mail from multiple servers,
and it is assumed all access to the mail servers will be via a firewall.

Public Configuration Files

The BIND named. conf file for the public name server is the same as that defined for an
authoritative-only name server (discussed in the next section). The zone file used will be
the standard sample zone file that contains only public hosts and services.

BIND provides a powerful view clause that may be used to provide similar functionality
using a single server. The view clause allows different users or clients to gain access to different
services. When a view clause is used, the Stealth and public zone files are hosted on the same
server. If this host’s file system is compromised for any reason, then simple inspection of these
files will reveal information about the organization. Unless the file system can be guaranteed
against compromise, the view clause cannot provide a Stealth DNS solution in a highly secure
environment. The descriptions that follow, however, extend this topic further and present
configurations in which the real power of the view clause can be used.

Authoritative-only DNS Server

An authoritative-only name server will only provide authoritative answers to queries for zones
or domains for which it is either a master or a slave. It will not provide either caching or recur-
sive query support. If security is not the primary requirement, then the view clause may be
used to provide authoritative-only services to external users and more comprehensive serv-
ices to internal users as described in the section “Stealth (Private) Configuration Files.” An
example configuration of this style of operation using a view clause is also shown in the
“View-based Authoritative-only DNS Server” section.

Authoritative-only Name Server Configuration

The BIND named. conf configuration sample provides the following functionality:

* The name server is the zone master for example. com. This characteristic is defined by
the inclusion of the zone "example.com" clause.

¢ The name server does not provide caching services for any other domains. This is
defined by the recursion no; statement in the options clause and the absence of the

non

zone "." clause (root zone).

* The name server does not provide recursive query services for resolvers or other DNSs
acting on behalf of resolvers. It supports only iterative queries. This characteristic is
defined by the recursion no; statement in the options clause.

145

146 CHAPTER 7 ©" BIND TYPE SAMPLES

* The name server is optimized for maximum performance. Any optional but performance-
affecting characteristics should be inhibited. In the following sample, the allow-transfer
"none"; }; statement is shown for this reason as well as reasons of security.

Here is the BIND named. conf:

// Authoritative only Name Server for Example, INC.
// Recommended that you always maintain a change log in this file as shown here
// CHANGELOG:
// 1. 9 july 2005 INITIALS or NAME
// a. did something
// a. 23 july 2005 INITIALS or NAME
// a. did something again
// b. another change
//
options {
// all relative paths use this directory as a base
directory "/var/named";
// version statement for security to avoid hacking known weaknesses
version "not currently available";
// configuration specfic options statements
recursion no;
// disables all zone transfer requests
// for performance as well as security reasons
allow-transfer{"none"};
};
/7
// log to /var/log/zytrax-named all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages up to this point are in (syslog) /var/log/messages
//
logging{
channel example_log{
file "/var/log/named/example.log" versions 3 size 250k;
severity info;
b
category default{
example_log;
b
};
zone "example.com" in{
type master;
file "master/master.example.com";
allow-update{none;};

};

CHAPTER 7 " BIND TYPE SAMPLES

// reverse map for local address at example.com
// uses 192.168.254.0 for illustration
zone "254.168.192.IN-ADDR.ARPA" in{
type master;
file "192.168.254.rev";
};
// required local host domain
zone "localhost" in{
type master;
file "master.localhost";
allow-update{none;};
};
// localhost reverse map
zone "0.0.127.IN-ADDR.ARPA" in{
type master;
file "localhost.rev";
allow-update{none;};

};

The authoritative-only server does not provide services for any domain except those for
which it is either a master or a slave; as a consequence the root.servers zone file is not pres-
ent (zone ".").The recursion no; statement inhibits recursive behavior; the name server will
return a list of root-servers (a referral) if it receives a query for a domain or zone for which it is
neither master nor slave.

The reverse-mapping zone (zone "254.168.192.IN-ADDR.ARPA") would typically not be
present on a performance-oriented server, but the prevalence of reverse lookups by mail sys-
tems probably means that it will be present in a practical configuration.

BIND provides three statements to control caching behavior, max-cache-size and
max-cache-ttl, neither of which will have any effect on performance in the preceding case;
and allow-recursion, which allows a list of hosts that are permitted to use recursion—all

others are not (a kind of poor man’s view clause).

View-based Authoritative-only DNS Server

The functionality of the authoritative-only name server was described in Chapter 4. If
high security is not the primary requirement, then the view clause may be used to provide
authoritative-only services to external users and more comprehensive services, including
caching, to internal clients.

View-based Authoritative-only Name Server Configuration
The BIND named. conf configuration sample provides the following functionality:
* The name server is the zone master for example.com. This characteristic is defined by

the inclusion of the zone "example.com" clause in both view clauses but each referenc-
ing a different zone file.

147

148

CHAPTER 7 ©" BIND TYPE SAMPLES

* The name server does not provide caching services for any external users. This is defined
by the recursion no; statement in the view "badguys" clause and the absence of the

non

zone "." clause (root zone) within the same view clause.

¢ The name server does not provide recursive query services for any external resolvers or
other DNSs acting on behalf of resolvers. It supports only iterative queries. This charac-
teristic is defined by the recursion no; statement in the view "badguys" clause.

* The name server provides caching services for internal users. This is defined by the
recursion yes; statement in the view "goodguys" clause and the presence of the

non

zone "." clause (root zone) within the same view clause.

* The name server provides recursive query services for internal users. This is defined
by the recursion yes; statement in the view "badguys" clause.

Here is the BIND named.conf:

// View-based Authoritative Name Server for EXAMPLE, INC.
// Recommended that you always maintain a change log in this file as shown here
// CHANGELOG:
// 1. 9 july 2005 INITIALS or NAME
// a. did something
// a. 23 july 2005 INITIALS or NAME
// a. did something again
// b. another change
//
// global options
options {
// all relative paths use this directory as a base
directory "/var/named";
// version statement for security to avoid hacking known weaknesses
version "not currently available";
};
//
// log to /var/log/example.com all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages up to this point are in (syslog) /var/log/messages
//
logging{
channel example log{
file "/var/log/named/example.log" versions 3 size 250k;
severity info;
1
category default{
example log;
1
1

CHAPTER 7

// provide recursive queries and caching for internal users

view "goodguys" {
match-clients { 192.168.254.0/24; }; // the example.com network
recursion yes;
// required zone for recursive queries

zone "." {

type hint;

file "root.servers";
b

zone "example.com" {

type master;

// private zone files including local hosts
file "view/master.example.com.internal”;
allow-update{none;};

b

// required local host domain

zone "localhost" in{

type master;

file "master.localhost";
allow-update{none;};

b

// localhost reverse map

zone "0.0.127.IN-ADDR.ARPA" in{

type master;

file "localhost.rev";
allow-update{none;};

b

// reverse map for local address at example.com
// uses 192.168.254.0 for illustration
zone "254.168.192.IN-ADDR.ARPA" in{

type master;

file "view/192.168.254.rev.internal";
allow-update{none;};

b
}; // end view

// external hosts view
view "badguys" {
match-clients {"any"; }; // all other hosts
// recursion not supported
recursion no;
zone "example.com" {
type master;
// only public hosts
file "view/master.example.com.external”;
allow-update{none;};

};

BIND TYPE SAMPLES

149

150

CHAPTER 7 ©" BIND TYPE SAMPLES

// reverse map for local address at example.com
// uses 192.168.254.0 for illustration
zone "254.168.192.IN-ADDR.ARPA" in{

type master;

file "view/192.168.254.rev.external";
allow-update{none;};
b

}; // end view

The principle when using view clauses is that each view contains all the zone clauses
required within that view and defines how they will behave within that view. The zone
example.com appears in each view clause but references a different zone file (in the file state-
ment). The zone file master.example.com.internal will contain both internal and public hosts,
whereas the zone file master.example.com.external will have only the publicly visible hosts.
The same principle applies to the reverse-mapping files: 192.168.254.rev.internal will con-
tain reverse mapping for all the internal and public hosts, whereas 192.168.254.rev.external
will only reverse map externally visible or public hosts.

The view "goodguys" clause provides recursive support and consequentially requires a
root.servers zone file (zone "."). The view "badguys" clause does not require this zone, since
it does not support recursive queries, and it is not present. Similarly, there is no need for the
master.localhost and localhost.rev zone files in the view "badguys" clause, (all local requests
are answered by the view "goodguys" clause) and they are again not present.

The order in which the view statements are defined is very important. In the view "goodguys"
clause, the line match-clients { 192.168.0.0/24; }isused to match the 256 IP addresses from
192.168.254.0 to 192.168.254.255 (the IP prefix format, or slash notation, for defining an IP address
range is described in Chapter 3 in the sidebar entitled “IPv4 Addresses and CIDR”). Only when
this match fails does the process fall through to the view "badguys".In the view "badguys",
match-clients {"any"; }; isinterpreted to be “any not matched previously.” If the order of view
clauses were reversed, all IP addresses, including the internal IP addresses (192.168.254.0/24),
would match “any” and hence no additional services would be provided to internal clients.

Security and the view Section

Both this chapter and Chapter 4 have suggested that there is a weakness in use of the view
clause if the name server’s file system is compromised. This is in no sense a reflection on
BIND’s innate security, quite the contrary. In order to compromise the file system, an attack
does not depend upon BIND or BIND’s integrity, but rather can focus on any software running
in the host with the sole objective of gaining some form of root privilege or even limited (read-
only) access to well-known locations. If the zone files master.example.com.internal and
192.168.254.rev.internal could be read, then all the information about the internal organi-
zation of the zone could be discovered irrespective of all BIND’s attempts to stop it.

However, careful inspection of the named. conf file earlier indicates that it contains relatively
innocuous data, which would be of very little use to a hacker and indeed the most revealing
data, namely the line match-clients { 192.168.254.0/24; };, may be available via a simple
whois enquiry!

This characteristic of the view clause means that it can be used irrespective of the state of the
underlying file system where it will not expose private information. The view clause can be used
in a Stealth configuration to provide access from the internal network as illustrated in Figure 7-2.

CHAPTER 7 " BIND TYPE SAMPLES

Bind 9 view Solution

DNS [€——>»
Pc |[€—>»| DNs |€—I | Firewall | Bind9view used to limit support

for recursive queries to generic
site IP address range.

Private Public

Figure 7-2. Use of BIND’s view section in a Stealth configuration

This named. conf sample file on the public side of this configuration provides the following
services:

* The name server does not provide caching services for any external users. This charac-
teristic is defined in the view "badguys" clause by the recursion no; statement in the

options clause and the lack of a zone "." (root zone).

¢ The name server does not provide recursive query services for any external resolvers or
other DNSs acting on behalf of resolvers. It supports only iterative queries. This charac-
teristic is defined in the view "badguys" clause by the recursion no; statement in the
options clause.

* The name server provides caching services for internal users. This characteristic is
defined in the view "goodguys" clause by the recursion yes; statement in the options

clause and the presence of the zone "." (root zone).

* The name server provides recursive query services for internal users. This characteristic
is defined in the view "goodguys" clause by the recursion yes; statement in the
options clause.

The BIND named. cont file for this configuration is shown here:

// View based Authoritative Name Server for EXAMPLE.COM.

// Recommended that you always maintain a change log in this file as shown here

// CHANGELOG:

// 1. 9 july 2005 INITIALS or NAME

// a. did something

// a. 23 july 2005 INITIALS or NAME

// a. did something again

// b. another change

//

// global options

options {
// all relative paths use this directory as a base
directory "/var/named";

151

152 CHAPTER 7 ©" BIND TYPE SAMPLES

// version statement for security to avoid hacking known weaknesses
version "not currently available";
};
//
// log to /var/log/example.com all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages up to this point are in (syslog) /var/log/messages
//
logging{
channel example log{
file "/var/log/named/example.log" versions 3 size 250k;
severity info;
1
category default{
example log;
b
1
// provide recursive queries and caching for our internal users
view "goodguys" {
match-clients { 192.168.254.0/24; }; // example.com's network
recursion yes;
// required zone for recursive queries

zone "." {

type hint;

file "root.servers";
b

}; // end view

// external hosts view
view "badguys" {
match-clients {"any"; }; // all other hosts
// recursion not supported
recursion no;
zone "example.com" {
type master;
// only public hosts
file "view/master.example.com.external”;
15
// reverse map for local address at example.com
// uses 192.168.254.0 for illustration
zone "254.168.192.IN-ADDR.ARPA" in{
type master;
file "view/192.168.254.rev.external";

};

}; // end view

CHAPTER 7 " BIND TYPE SAMPLES

To invoke the service from the Stealth side of the configuration, the zone "." (defined as
type hint in the sample file earlier) should be replaced with the following fragment, which
forwards all requests for domains other than example.comto ns1.example.com—one of the
public name servers.

// BIND named.conf fragment
// forwards requests for domains other than example.com
// to the public name server nsil.example.com = 192.168.254.2
zone "." in{
type forward;
forwarders{192.168.254.2;};
forward only;

};

There are no files involved in this configuration that will divulge additional information
that is not already publicly available or that could be found out without access to any of the
systems or hosts involved in the configuration. The most revealing information is contained in
the line match-clients { 192.168.254.0/24;, the IPv4 address range used by the entire config-
uration, and as previously noted this could probably be obtain with a whois enquiry. To further
tighten security, communication between the Stealth server and the public name server could
use a unique port and thus allow port 53 access to be entirely blocked in the firewall configura-
tion. The point about this configuration is to illustrate the power of the view clause and the kind
of applications in which it can be used irrespective of the environment in which it is running.

Summary

This chapter introduced a number of configuration samples that reflect widely used DNS
types while bearing in mind that name servers are normally multifunctioned. The objective
of the chapter is to acquaint you with the configuration of a set of building blocks, DNS types,
from which more complex configurations can be constructed. The text described BIND 9’s
powerful new view clause, together with its use in various Stealth configurations. This new
clause provides many opportunities to reduce physical configurations in secure perimeter
defenses, but careful attention to system design and especially named. conf file contents may
be required to maximize its potential.

Chapter 8 presents some advanced DNS configurations including delegation of subdo-
mains, load balancing, and resilience, among many others.

153

CHAPTER 8

Common DNS Tasks

This chapter describes a number of common configurations when working with zone files
and in some cases with BIND. These solutions are presented to assist you to quickly imple-
ment some commonly used features, to recover from errors, and to illustrate some of the
more subtle uses of the DNS. The following topics are covered:

The examples shown use a number of BIND’s named. conf statements, which are described

Houw to delegate a subdomain: This configuration allows the domain name owner to
pass the responsibility to a subdomain owner, which may be another party or another
part of the organization, who will be entirely responsible for the zone files describing
the subdomain.

How to delegate a virtual subdomain: This configuration uses a single zone file to pro-
vide subdomain addressing, for instance, www. us.example.com or www. uk.example.com.

Houw to configure fail-over mail servers: The configuration allows backup mail servers to
be provided to support a domain.

Houw to reverse-map subnets: This configuration allows the delegation of reverse map-
ping to subnets of typically less than 256 IPv4 addresses.

How to load balance with DNS: The configurations describe various ways in which load
balancing may be implemented using DNS features. The BIND statements that control
the order in which addresses are returned are also covered.

How to define an SPF record: The Sender Policy Framework (SPF) is an antispam meas-
ure that allows an e-mail server to verify that the SMTP source is valid for the sending
e-mail address. SPF records are currently implemented by Microsoft, Google, and AOL
to name but three of the many hundreds of thousands of users.

How to supporthttp://example.com: The configuration allows both the URL
www . example.com and example.com to directly address a web or other service. The
required changes to the Apache server are also covered.

Houw to fix an out-of-sequence SOA serial number: The process used to fix various
SOA serial number errors is covered.

How to use DNS wildcards: The DNS RRs support the use of a wildcard (*). The section
on wildcards illustrates the use of this error-prone feature.

in Chapter 12, and standard Resource Records, which are defined in Chapter 13. If you are

155

156

CHAPTER 8 ©© COMMON DNS TASKS

running name server software other than BIND, the zone files will remain the same, but the
configuration statements may differ.

In the next section, the process of delegation of a subdomain, us.example.com, is described
to illustrate the general principle of delegation within an owner’s domain name space. The
domain owner can delegate everything to the right of the domain name in any way that makes
sense—or for that matter that doesn’t make sense!

Delegate a Subdomain (Subzone)

This solution configures a zone to fully delegate the responsibility for a subdomain to another
name server. This is not the only possible method of defining subdomains—another solution
involves configuring what this book calls a virtual or pseudo subdomain, which uses a single
zone file to provide subdomain addressing structures. Assume the following addressing struc-
ture is required for the subdomain:

» Zone (domain) name: example.com

* Domain host name: bill.example.com

* Subdomain name: us.example.com

* Subdomain host or service name: ftp.us.example.com

To ease the zone administration load, this solution assumes the responsibility for the sub-
domain will be fully delegated to the us.example.com administrator who will be responsible for
the subdomain zone files and their supporting name servers. The zone administrators of the
corporate domain for example.com want nothing further to do with us.example.com other than
it has generously agreed to act as the slave DNS for the subdomain name servers. When dealing
with subdomains, it is important to remember that as far as the Internet registration authorities
and the TLD servers are concerned, subdomains do not exist. All queries for anything that ends
with example.com will be referred to the name servers for the example. com zone or domain. In
turn, these name servers are responsible for referring the query to the subdomain name servers.
For the want of any better terminology, the name servers for example.com are called the domain
name servers and are visible to the gTLD . com servers; the name servers for us.example.com are
called the subdomain name servers and are visible only to the domain name servers (they are
invisible to the gTLD servers).

Note The term subzone was originally defined in RFC 1034 to describe what is today most commonly
called a subdomain. This book uses the term subdomain throughout.

Domain Name Server Configuration

The following is a fragment from BIND’s named. cont file controlling the example.com domain
name servers:

CHAPTER 8 ©° COMMON DNS TASKS

// named.conf file fragment

zone "example.com" in{
type master;
file "master.example.com";
};
// optional - example.com acts as the slave (secondary) for the delegated subdomain
zone "us.example.com"” IN {
type slave;
file "slave.us.example.com";
masters {10.10.0.24;};

};

The optional definition of a slave (Secondary) name server for our delegated us.example.com
subdomain is good practice but not essential. The subdomain can use any suitable name
server. The zone file master.example.com will contain the domain configuration supporting
two name servers for both the domain and the subdomain. The following zone file fragment
shows this configuration:

; zone fragment for 'zone name' example.com
$TTL 2d ; default TTL is 2 days
$ORIGIN example.com.

@ . IN SOA nsl.example.com. hostmaster.example.com. (

2003080800 ; serial number

12h ; refresh = 12 hours

15m ; update retry = 15 minutes

3w12h ; expiry = 3 weeks + 12 hours

2h20m ; minimum = 2 hours + 20 minutes

)

; main domain name servers

IN NS nsi.example.com.

IN NS ns2.example.com.
; mail domain mail servers

IN MX mail.example.com.
; A records for preceding name servers
nsi IN A 192.168.0.3
ns2 IN A 192.168.0.4
; A record for preceding mail server
mail IN A 192.168.0.5

; subdomain definitions in the same zone file

5 $ORICIN directive simplifies and clarifies definitions

$ORIGIN us.example.com. ; all subsequent RRs use this ORIGIN

; two name servers for the subdomain

@ IN NS ns3.us.example.com.

; the preceding record could have been written without the $ORIGIN as
; us.example.com. IN NS ns3.us.example.com.

157

158 CHAPTER 8 ©© COMMON DNS TASKS

; or @ IN NS ns3
; the second name server points back to preceding nsi
IN NS nsil.example.com.
; A records for name server ns3 required - the glue record
ns3 IN A 10.10.0.24 ; glue record
; the preceding record could have been written as
; ns3.us.example.com. A 10.10.0.24 if it's less confusing

The preceding fragment makes the assumptions that the domain name server ns1.
example.comwill act as a slave for the us.example.com subdomain. If this is not the case, any
other name server can be defined the same way; but if this second name server also lies in the
us.example.com domain, then it will require an A RR. The A RR for ns3.example.com for the pre-
ceding subdomain is the so-called gluerecord (see the “Glue Records in DNS” sidebar). It is
necessary to allow a DNS query for the subdomain to return a referral containing both the
name of the name server and its IP address. IP addresses are always defined using an A RR
(or an AAAA RR if IPv6).

GLUE RECORDS IN DNS

Strictly speaking, glue records (the IP address of the name server defined using an A or AAAA RR) are only
required for every name server lying within the domain or zone for which it is a name server. The query
response—the referral—must provide both the name and the IP address of the name servers that lie within
the domain being queried. In practice, the Top-Level Domain (TLD) servers provide the IP address for every
Second-Level Domain (SLD) name server, whether in the domain or not, in order to minimize the number of
query transactions. When a query to a Generic Top-Level Domain (gTLD) is issued, this name server provides
the glue records for all the SLD domain’s name servers. These glue records were defined and captured when
the domain was registered. In the preceding configuration, the domain name server is acting in this role and
must supply the IP addresses of the name servers in response to subdomain queries. To satisfy this require-
ment, the A RR for the name server (ns3.us.example.com) is a glue record and must be present. The
reason a glue record must exist for servers within the domain, but is required only for performance reasons
for those in a foreign or external domain, can be illustrated by looking at what would happen if the glue
record were not present. If we assume the query to the gTLD server for example. com returned the name
but not the IP address of ns1.example.com, then a further query would be required for the A record of
ns1.example.com; but since the IP of the SLD name server is not yet known, it must requery the gTLD
server, which answers again with the name but not the IP . . . and so on ad infinitum. Name servers for a
domain (for instance, example . com) that lie in another domain (for instance, ns1.example.net) only
needthe name, since a normal query for the A RR of ns3.example.net will return the required IP. As noted
earlier, to increase performance the IP addresses of all name servers for a domain, whether the name servers
lie in the queried domain or not, are always returned by root and TLD name servers.

Subdomain Name Server Configuration

The BIND named. cont file controlling the subdomain name servers will contain statements
similar to the following fragment:

CHAPTER 8 ©° COMMON DNS TASKS

// named.conf file fragment for the subdomain us.example.com

zone "us.example.com" in{
type master;
file "master.us.example.com";

};

The file master.us.example.com will contain the subdomain (us.example.com) configura-
tion and use the two name servers that were defined in the preceding domain fragment. Here
is a fragment of the subdomain zone file:

; zone file for subdomain us.example.com
$TTL 2d ; zone default of 2 days
$ORIGIN us.example.com.

IN SOA ns3.us.example.com. hostmaster.us.example.com. (
2003080800 ; serial number
2h ; refresh = 2 hours
15m ; update retry = 15 minutes
3wi2h ; expiry = 3 weeks + 12 hours
2h20m ; minimum = 2 hours + 20 minutes
)
; subdomain name servers
IN NS ns3.us.example.com.
IN NS nsi.example.com. ; see following notes
; subdomain mail server
IN MX 10 mail.us.example.com.
; preceding record could have been written as
; IN MX 10 mail
; A records for preceding name servers
ns3 IN A 10.10.0.24
nsi.example.com. IN A 192.168.0.3 ; 'glue' record
; A record for preceding mail server
mail IN A 10.10.0.25
; next record defines our ftp server
ftp IN A 10.10.0.28

; the preceding record could have been written as
; ftp.us.example.com. A 10.10.0.24 if it's less confusing

; other subdomain records

The preceding fragment makes the assumption that ns1.example.comwill act as a slave
server for the us.example.com subdomain. If this is not the case, other name servers could be
defined in a similar manner. The A record for ns1.example.comis a so-called glue record and is
not strictly necessary because it is already available from a previous query. This point is worth
emphasizing further since it illustrates the nature of the DNS hierarchy. To make any query for
the subdomain us.example.com, the example.com domain must have been queried first. Since
nsi.example.comis one of the name servers for example.com, its IP address is already known

159

160

CHAPTER 8 ©© COMMON DNS TASKS

to the DNS that issues the subdomain query. If the second name server for the subdomain lies
in an external or foreign domain, there is no need for the glue record. Its inclusion, however,
will speed up query response by removing the need for a further query to the root and gTLD
servers if the external domain is not present in the cache. An external name server definition
would use a standard A RR as shown in the following fragment:

; zone fragment for subdomain us.example.com
; second name server is external domain
IN NS nsi.example.net.
; A records for external name server
nsi.example.net. 1IN A 172.17.0.24

The FTP service host, and any others required, are only defined in the subdomain zone
file and are not visible in the domain name-server zone file.

Virtual Subdomains

This solution defines what this book calls a virtual or pseudo subdomain in which the domain
and the subdomain definitions appear in the same zone file. Subdomains may also be fully
delegated, and this is the subject of a previous solution. The advantage of this configuration

is that unlike a fully delegated subdomain, no additional name servers are required while still
creating the subdomain style addressing structure. The disadvantage is that all changes to both
the domain and the subdomain will require reloading of the main zone file. The addressing
structure required is assumed to be the following:

* Zone (domain) name: example.com

e Domain host name: bill.example.com

* Subdomain name: us.example.com

* Subdomain host name: ftp.us.example.com

This solution assumes that for operational reasons the owner has decided to maintain all
the information for example.com and us.example.comin a single zone file.

Domain Name Server Configuration

The BIND named. conf file will contain statements similar to the following fragment defining
the zone example.com as normal:

// named.conf file fragment

zone "example.com" in{
type master;
file "master.example.com";

};

The file master.example.com will contain the domain and subdomain configuration and
support two name servers.

CHAPTER 8

; zone fragment for example.com
$TTL 2d ; zone TTL default = 2 days
$ORIGIN example.com.
@ IN SOA nsil.example.com. root.example.com. (

2003080800 ; serial number

2h ; refresh = 2 hours

15m ; update retry = 15 minutes

3wi2h ; expiry = 3 weeks + 12 hours

2h20m ; minimum = 2 hours + 20 minutes

)
; main domain name servers

IN NS nsi.example.com.

IN NS ns2.example.com.
; mail servers for main domain

IN MX 10 mail.example.com.
; A records for preceding name servers
nsi IN A 192.168.0.3
ns2 IN A 192.168.0.4
; A record for preceding mail servers
mail IN A 192.168.0.5
; other domain-level hosts and services
bill IN A 192.168.0.6

; subdomain definitions
$ORIGIN us.example.com.
IN MX 10 mail
; preceding record could have been written as
; us.example.com. IN MX 10 mail.us.example.com.
; A record for subdomain mail server
mail IN A 10.10.0.28
; the preceding record could have been written as
; mail.us.example.com. A 10.10.0.28 if it's less confusing
ftp IN A 10.10.0.29
; the preceding record could have been written as
; Ttp.us.example.com. A 10.10.0.29 if it's less confusing

; other subdomain definitions as required
$ORIGIN uk.example.com.

COMMON DNS TASKS

Additional subdomains could be defined in the same file using the same strategy. For
administrative convenience, the standard zone file $INCLUDE directive may be used to include

the subdomain RRs as demonstrated in the following fragment:

161

162

CHAPTER 8 ©© COMMON DNS TASKS

; fragment from zone file showing use of $INCLUDE

; other domain-level hosts and services
bill IN A 192.168.0.5

; subdomain definitions
$INCLUDE sub.us.example.com
; other subdomain definitions as required

This solution illustrates that subdomain addressing can be easily accomplished in a single
zone file at the possible cost of administrative convenience. This structure, as well as being
simpler than a fully delegated subdomain, does not require any additional name servers.

Configure Mail Servers Fail-Over

This solution is provided for the sake of completeness and uses material already covered in
Chapter 2. It configures a DNS server to provide fail-over or alternate mail service when the
primary mail service is off-line or not accessible for a period of time. It involves use of the
preference field of the MX RRs (see Chapter 13) as shown in the following fragment:

; zone file fragment
IN MX 10 mail.example.com.
IN MX 20 mail.example.net.

mail IN A 192.168.0.4

If the most preferred mail server, the one with the lowest number (10), which in the pre-
ceding fragment is mail.example.com, is not available, mail will be sent to the second most
preferred server, the one with the next highest number (20), which in the preceding fragment
ismail.example.net. The secondary mail server (mail.example.net), which would ideally be
located at a separate geographic location, would typically be configured as a simple relay (or
forwarding) mail server with a very long retry time, in which case it will accept the mail and try
and relay it to the proper destination (mail.example.com) over the next six weeks or whatever
you configure the retry time to be.

Delegate Reverse Subnet Maps

This solution describes how to delegate reverse mapping for subnets. Delegation of reverse sub-
net maps may be used by ISPs or other service providers as a means to enable a user of a static IP
range, delegated from the service provider, to be responsible for their own reverse-mapping
zone files. In the example shown, a subnet is defined to be less than 256 IPv4 addresses though
the solution could be used for any part of an IPv4 address range. Normal reverse mapping is
described in Chapter 3 and in our example case is assumed to reverse map down to the third ele-
ment of an IPv4 address; for instance, assume an IPv4 address of 192.168.199.15, then normal
reverse mapping will typically cover the 192.168.199 part, which is then reversed and placed
under the domain IN-ADDR.ARPA, giving 199.168.192.IN-ADDR.ARPA. The resulting reverse map

CHAPTER 8 ©° COMMON DNS TASKS

will contain the hosts from 192.168.199.0 to 192.168.199.255. We now assume that subnets of

64 addresses are assigned to four separate users (192.168.199.0/26, 192.168.199.64/26,
192.168.199.128/26, 192.168.199.192/26) and to minimize work the assignee wishes to delegate
responsibility for reverse mapping to the subnet users (the assignors). The reverse map has been
delegated once to the assignee of 192.168.199.0 and cannot therefore be delegated again. Our
assignee must use a special technique defined in RFC 2317. The technique involves creating
additional space in the reverse-map address hierarchy. Both the assignee and the assignor (end
user) are required to implement the technique in their zone files; examples of both are shown

in the upcoming text.

Assignee Zone File

The following fragment shows the 192.168.199.64/26 subnet as a fragment of a reverse-map
zone file located at the assignee (using the example.net domain) of the subnet:

; zone file fragment for example.net
$TTL 2d ; zone default TTL = 2 days
$ORIGIN 199.168.192.IN-ADDR.ARPA.

@ IN SOA nsi.example.net. hostmaster.example.net. (

2003080800 ; serial number
2h ; refresh
15m ; update retry
2w ; expiry
3h 5 minimum
)

IN NS nsil.example.net.

IN NS ns2.example.net.

; definition of other IP address 0 - 63

; definition of our target 192.168.199.64/26 subnet

; name servers for subnet reverse map

64/26 IN NS nsi.example.com.

64/26 IN NS ns2.example.com.

; the preceding could have been written as

; 64/26.199.168.192.IN-ARDDR.ARPA. IN NS ns2.example.com.
; IPs addresses in the subnet - all need to be defined

; except 64 and 127 since they are the subnets multicast

; and broadcast addresses not hosts/nodes

65 IN CNAME 65.64/26.199.168.192.IN ADDR.ARPA. ;qualified
66 IN CNAME 66.64/26 j;unqualified name

67 IN CNAME 67.64/26

125 IN CNAME 125.64/26

126 IN CNAME 126.64/26

; end of 192.168.199.64/26 subnet

; other subnet definitions

163

164

CHAPTER 8 ©© COMMON DNS TASKS

The method works by forcing the CNAME lookup to use the name servers defined for the
subnet; that is, the address 65 will find the CNAME 65.64/26.199.168.192.IN-ADDR.ARPA., which
is resolved to the name servers nsl.example.com. and ns2.example.com., both of which in this
case are located at the assignor (end user). The 64/26 name, which makes the additional name
space look like a IP prefix or slash notation address, is an artificial, but legitimate, way of con-
structing the additional space to allow delegation. The / (slash) relies on a liberal interpretation
of the rules for a name or label (RFC 2181), but it could be replaced with - (dash)—for instance,
64-26, if that makes you more comfortable. Any number of subnets of variable size can be as-
signed in this manner; that is, the subnet following the one defined previously could be 128/27
(32 IP addresses) or 128/28 (16 addresses) or 128/25 (128 IP addresses). No changes are required
to the BIND configuration to support this reverse map.

Assignor (End-user) Zone File

The zone file for the reverse map (ns1.example.comin this example) is a conventional reverse
map and looks like this:

$TTL 2d ; zone default = 2 days
$ORIGIN 64/26.199.168.192.IN-ADDR.ARPA.

@ IN SOA nsi.example.com. hostmaster.example.com. (

2003080800 ; serial number
2h ; refresh
15m ; update retry
2w ; expiry
3h 5 minimum
)

IN NS nsil.example.com.

IN NS ns2.example.com.

; IPs addresses in the subnet - all need to be defined
; except 64 and 127 since they are the subnets multicast
; and broadcast addresses not hosts/nodes

65 IN PTR fred.example.com. ;qualified
66 IN PTR joe.example.com.

67 IN PTR bill.example.com.

125 IN PTR web.example.com.

126 IN PTR ftp.example.com.

; end of 192.168.23.64/26 subnet

Finally, the reverse-map zone clause in the named. conf file needs to be changed to reflect
the revised zone name. The following example shows the reverse-map zone clause fragment:

// named.conf fragment at example.com

// revised reverse-map zone name

zone "64/26.199.168.192.IN-ADDR.ARPA" in{
type master;
file "192.168.23.rev";

};

CHAPTER 8 ©° COMMON DNS TASKS

Note The technique used in the preceding method is credited to Glen A. Herrmannsfeldt, who is obviously
a very creative person and one might conjecture had problems persuading his ISP to delegate reverse-
mapping responsibility.

DNS Load Balancing

These solutions use the DNS to configure various forms of load balancing. In this context load
balancing is defined as the ability to use standard DNS services to share the load between two
or more servers providing the same or similar services. The section covers the following topics:

¢ Balancing mail

* Balancing other services (for instance, web or FTP)
* Balancing services using the SRV RR

* Controlling the order of RRs

This section ends with a brief discussion of the effectiveness of DNS-based load-balancing
strategies.

Balancing Mail

Mail is unique in that two possible strategies may be used. The following fragment shows use
of multiple MX records with equal-preference values:

; zone file fragment
IN MX 10 mail.example.com.
IN MX 10 maill.example.com.
IN MX 10 mail2.example.com.

mail IN A 192.168.0.4

mailt IN A 192.168.0.5
mail2 IN A 192.168.0.6

The name sever will deliver the MX RRs in the order defined by the rrset-order statement
(defined later in this section and fully in Chapter 12) and which defaults to round-robin (or
cyclic) order. The requesting SMTP server will then apply its algorithm to select one from the
equal-preference list that may work against the BIND rrset-order statement. Currently send-
mail (8.3.13), Exim (4.44), and Postfix (2.1) all have documented references to indicate they
use a random algorithm for records of equal preference; indeed, Postfix allows control over
the behavior using the smtp_randomize addresses parameter (default is yes). In this case, the
randomizing algorithm may select the very IP that BIND’s rrset-order algorithm positioned,
say, last in the returned order. Documentation for gmail, courier-mta, and Microsoft (Exchange
and IIS SMTP) does not describe what these packages do with equal-preference MX values.
An alternative approach is to use multiple A records with the same name and different IP
addresses as shown in this fragment:

165

166

CHAPTER 8 ©© COMMON DNS TASKS

; zone file fragment
IN MX 10 mail.example.com.

mail IN A 192.168.0.4

IN A 192.168.0.5
IN A 192.168.0.6

The name server will deliver the A RRs in the order defined by the rrset-order statement in
BIND’s named. conf file. In order to satisfy reverse lookup requests used by most mail servers for
simple authentication, all the IP addresses listed must be reverse mapped tomail.example.com
as shown in the following fragment:

; reverse-map file fragment
; for 0.168.192.IN-ADDR.ARPA

4 PTR mail.example.com.
5 PTR mail.example.com.
6 PTR mail.example.com.

The net effect of the two methods is the same. In the case of equal-preference MX records,
the control of load lies with the SMTP server’s algorithm. In the case of multiple A RRs, control
lies with the name server, which in the case of BIND provides the rrset-order statement to
select the order of A RRs (RRsets) as well as other RRsets. In both the preceding cases, each
mail server must be capable of either synchronizing mailbox delivery or all but one of the
servers must be mail relays or forwarders.

Balancing Other Services

This section illustrates load balancing with web and FTP services, but the same principle
applies to any service. In this case the load-balancing solution uses multiple A RRs as shown
in the following fragment:

; example.com zone file fragment

ftp IN

A 192.168.0.4
ftp IN A 192.168.0.5
ftp IN A 192.168.0.6
www IN A 192.168.0.7

wew IN A 192.168.0.8
This RR format, which relies on blank name replication, produces exactly the same result:

; example.com zone file fragment

ftp IN A 192.168.0.4
IN A 192.168.0.5
IN A 192.168.0.6
waw IN A 192.168.0.7
IN A 192.168.0.8

CHAPTER 8 ©° COMMON DNS TASKS 167

The name server will deliver all the IP addresses defined for the given name in answer to a
query for the A RRs; the order of IP addresses in the returned list is defined by the rrset-order
statement in BIND’s named. conf file. The FTP and web servers must all be exact replicas of each
other in this scenario.

Balancing Services

The SRV record provides load balancing by using both a priority field and a weight field for
fine-grained control as well as providing fail-over capability. The SRV RR description in Chap-
ter 13 contains an example illustrating its use in load balancing. The SRV RR is not yet widely
supported at this time with two notable exceptions: Lightweight Directory Access Protocol (LDAP),
which was partly responsible for development for the SRV record and which is used as a part
of the discovery process for LDAP servers and the Session Initiation Protocol (SIP) used in VoIP.

Controlling the RRset Order

BIND versions after 9.2.3 fully implement the rrset-order statement, which can be used to
control the order in which equal RRs, an RRset, of any type are returned. The rrset-order
statement can take a number of arguments, which are described in Chapter 12, but the follow-
ing fragment only uses the order keyword, which may take the values fixed—the order the
records were defined in the zone file; cyclic—start with the order defined in the zone file and
round-robin for each subsequent query; and random—randomly order the responses for every
query. The rrset-order statement can only appear in the global options clause for BIND but
can take addition arguments that can make it applicable to one or more zones. An example
named. conf fragment follows that will return any RRset (a set of equal RRs) in round-robin order:

// named.conf fragment
options {
// other options
rrset-order {order cyclic;};
};

Assume a zone file has the following MX records:

; zone file fragment for example.com
MX 10 maili.example.com.
MX 10 mail2.example.com.
MX 10 mail3.example.com.

The first query to this zone for MX records will return in the order maili.example.com.,
mail2.example.com., mail3.example.com.; the second query will return mail3.example.com.,
maill.example.com., mail2.example.com.; and so on in cyclic (or round-robin) order.

Effectiveness of DNS Load Balancing

Clearly the effects of caching can significantly distort the effectiveness of any DNS IP address
allocation algorithm. A TTL value of 0 may be used to inhibit caching or the increasingly com-
mon very short TTL values (30-60 seconds) could be used to reduce the potentially negative
caching effect, but only at the cost of a significant rise in the number of DNS queries. It would

168

CHAPTER 8 ©© COMMON DNS TASKS

be a little unfortunate to achieve excellent load balancing across two or three web servers at
the cost of requiring ten more name servers. Intuition, without serious experimentation, would
suggest that assuming a normal TTL (12 hours or more) and any changing IP allocation algo-
rithm (cyclic or random) loads would be reasonably balanced (measured by request arrivals
at an IP) given the following assumptions:

e Traffic is balanced over a number of DNS caches, that is, traffic originates from a num-
ber of ISPs or customer locations where DNS caches are maintained. Specifically there
are no pathological patterns where 90% (or some largish number) of the load originates
from one particular cache.

¢ The volume of traffic is reasonably high since pathological patterns are more likely in
small traffic volumes.

DNS load balancing cannot, however, account for service loading; for instance, certain trans-
actions may generate very high CPU or resource loads. For this type of control only a specialized
load balancer—which measures transaction response times from each server—will be effective.

Define an SPF Record

This section defines how to configure a Sender Policy Framework (SPF) record for a domain
and its mail servers. SPF is being proposed as an IETF experimental standard to enable valida-
tion of legitimate sources of e-mail. The information found in this section is based on the
current versions of the SPF specification and may change—current information may be
obtained from www.ietf.org/internet-drafts/draft-schlitt-spf-classic-01.txt.

The design intent of the SPF record is to allow a receiving Message Transfer Agent (MTA) to
verify that the originating IP (the source-ip) of an e-mail from a sender is authorized to send
mail for the sender’s domain. The SPF information is contained in a standard TXT RR (though
anew RR type may be allocated if and when SPF reaches standardization by the IETF). The
TXT RR is described in Chapter 13. If an SPF (TXT) RR exists and authorizes the source IP
address, the mail can be accepted by the MTA. If the SPF (TXT) RR does not authorize the IP
address, the mail can be bounced—it did not originate from an authorized source for the
sender’s domain. If the domain does not have an SPF RR, the situation is no worse than before.
Many commercial and Open Source MTAs have already been modified to use the SPF record,
including sendmail, gmail, Postfix, courier, Exim, and Microsoft Exchange to name but a few.
There is a less widely implemented proposal from Yahoo! called DomainKeys (http://antispam.
yahoo.com/domainkeys), which is a cryptographic-based solution. Microsoft is advocating a
standard called Send ID,! which contains SPF as a subset but adds a new Purported Responsi-
ble Address (PRA) field to the e-mail to provide additional checking.

This solution both describes the format of the SPF record and presents a number of
example configurations. The following terminology is used to simplify the subsequent
descriptions:

* Sender: The full e-mail address of the originator of the mail item (obtained from the
return path in the actual SPF checks), for instance, info@example.com.

! More information on Send ID can be found at www.microsoft.com/mscorp/twc/privacy/spam/senderid/
overview.mspx.

CHAPTER 8 ©° COMMON DNS TASKS

* Sender-ip: The IP address of the SMTP server trying to send this message, for instance,
192.168.0.2.

e Sender-domain: The domain name part of the sender’s e-mail address, for instance,
assume the sender is info@example.com, then the sender-domain is example.com.

The SPF record defines one or more tests to verify the sender. Each test returns a condi-
tion code (defined by the pre field shown in the next section). The first test to pass will
terminate SPF processing.

TXT RR Format
The standard TXT RR format is defined as follows:

name ttl class 1r text

The SPF record is entirely contained in the text field (a quoted string). SPF defines the
contents of the quoted string as shown here:

"v=spf1 [pre] type [[pre] type] ... [mod]"

SPF records are normally defined for the domain and the mail server(s). The following
shows a zone file fragment containing SPF records for the domain and the mail server, which
in this case only allows mail for the domain to be sent from the host mail.example.com.

; zone file fragment for example.com
IN MX 10 mail.example.com.

mail IN A 192.168.0.4

; SPF records

; domain SPF

example.com. IN TXT "v=spfi mx -all"
; mail host SPF

mail IN TXT "v=spf1l a -all"

The following text describes the fields used in an SPF record and references where appro-
priate the v=spf1 mx -all SPF record from the preceding example fragment:

v=spf1 Field

This field is mandatory and defines the version being used. Currently the only version sup-
ported is spfl.

pre Field

This optional (defaults to +) field defines the code to return when a match occurs. The possible
values are + = pass (default), - = fail, ~ = softfail (indeterminate result), ? = neutral. If a test is
conclusive, either add + or omit (defaults to +) as in the first test in the example fragment, which
could have been written as +mx. If a test might not be conclusive, use ? or ~. - is typically only
used with -all to indicate the action if there have been no previous matches as in the termi-
nating test from the same fragment.

169

170

CHAPTER 8 ©© COMMON DNS TASKS

type Field

This defines the mechanism type to use for verification of the sender. Multiple type tests may
be defined in a single SPF record. In the example fragment, there are two type tests, mx (or +mx)
and all (-all). Each of the type values is described in detail in the section “SPF Type Values.”

mod Field

Two optional record modifiers are defined. If present, they should follow the last type direc-
tive, that is, after the terminating all. The current values defined are as follows:

redirect=domain Field

This redirects verification to use the SPF record of the defined domain. This format may be
used to enable additional processing in the event of a failure or may be used on its own in an
SPF to provide a single domain-wide definition. This format is the same as the type include
but may be used without the terminating all type.

This SPF allows additional processing using the SPF for example.net if the mail from
example. com tests fail:

IN TXT :"v=sfpl mx ?all redirect=example.net"

This SPF redirects all processing for example.com to a standard SPF record in the domain
example.net:

IN TXT "v=spf1l redirect=_spf.example.net"
The zone file for example.net would include the following record:

_spf IN TXT "v=spfi mx -all"

exp=text-rr Field

The exp type, if present, should come last in an SPF record (after the all type if present). It
defines the name of a TXT record, text-rr, whose text may be optionally returned with any fail-
ure message. This fragment shows a trivial example where the sender of the mail is informed
that they are not authorized to send mail. More complex examples, including the use of macro
expansion, can be constructed, referring users to a site that could inform them of the proce-
dure to define SPF records.

; domain example.com SPF record
IN TXT "v=spfi mx -all exp=getlost.example.com"
; the getlost TXT record
getlost IN TXT "You are not authorized to send mail for the domain"

The text field is allowed to contain macro expansions as described in the section “Macro
Expansion.”

SPF type Values

The SPF type parameter defines either the mechanism to be used to verify the sender or to
modify the verification sequence as described in the following sections.

CHAPTER 8 ©° COMMON DNS TASKS

Basic Mechanisms

These types do not define a verification mechanism but affect the verification sequence:

* include:domain: Recurse testing using the supplied domain. The SPF record for domain
replaces the sender-domain’s SPF and processing uses the rules defined in the included
SPE This is the most common form when clients send mail through an ISP’s servers.

¢ all: Terminates a test sequence if no positive results have been found previously.

Sender Mechanisms

These types define a verification mechanism.

Type ip4 Format

This type may take one of the following formats:
ip4:ipv4 ip4:ipv4/cidr

The ip4 type uses the sender-ip for verification. If the sender-ip is the same as ipv4, the test
passes. This may take the additional argument ip4:ipv4/cidr, in which case if the source IPv4
address lies in the range defined by cidr(the IP prefix or slash notation), the test passes. This
type uses no additional DNS resources and is therefore the recommended solution for [Pv4.

This SPF only allows e-mail for the domain to be sent from 192.168.0.2:

IN TXT "v=spf1l ip4:192.168.0.2 -all"

This SPF allows mail to be sent from any of the 32 addresses that contains the address
192.168.0.38 (CIDR range is from 192.168.0.32-63):

IN TXT "v=spf1 ip4:192.168.0.38/27 -all"

Type ip6 Format

This type may take one of the following formats:
ip6:ipv6 ip6:ipv6/cidr

The ip6 type uses the same formats defined for ip4 previously. This type uses no addi-
tional DNS resources and is therefore the recommended solution for IPv6.
The following only allows messages for the domain to be sent from the single address
2001:db8:0:0:0:0:0:10:
IN TXT "v=spf1l ip6:2001:db8::10 -all"

The next example allows mail to be sent from 32 addresses that contain the address
2001:db8:0:0:0:0:0:10 (range is from 2001:db8:0:0:0:0:0:1 to 2001:db8:0:0:0:0:0:1f).

IN TXT "v=spf1i ip4:2001:db8::10/123 -all"

Type a Format

This type may take one of the following formats:

17

172

CHAPTER 8 ©© COMMON DNS TASKS

The a type uses an A RR for verification. In the basic format with no additional arguments, if
the A RR for the sender-domain is the same as the sender-ip, the test passes. The optional form
a/cidr will apply the test to the extended range defined by the IP prefix (or slash) notation. The
form a:domain will cause the test to be applied to the A RR of domain, and a:domain/cidr will
apply the test to the range of IPs defined by the IP prefix (or slash) notation. The domain argu-
ment may also use macro expansion, defined later in this section. The a and a/cidr formats
require an A RR for the domain as shown in the following fragment:

; zone fragment for example.com
$ORIGIN example.com.

@ IN A 192.168.0.2
IN TXT "v=spf1i a -all"

This SPF allows only the host smtp.example.net to send mail for the domain example.com:
IN TXT "v=spf1 +a:smtp.example.net -all"

The advantage of using the preceding construct is that if the IP address of smtp.example.
com changes, the preceding SPF record does not change. The cost, however, is one more DNS
transaction for every SPF check.

Type mx Format

This type may take one of the following formats:
mx mx/cidr mx:domain mx:domain/cidr

The mx type uses the MX RRs and the mail server A RRs for verification. Remember, this type
uses the MX RR for the domain, which may not be the same as the SMTP server for the domain.
In the basic format with no additional arguments, the MX record for the sender-domain and the
A RRs for the defined mail host(s) are obtained; if the IP address of the sender-ip matches any of
the mail host IPs, the test passes. The form mx: /cidr applies the address range defined by cidr
(IP prefix or slash notation) is used for the match. The format mx:domain uses the MX and A RRs
for domain instead of the sender-domain, and the format mx: domain/cidr extends the IP address
check to the cidr (IP prefix or slash notation) range of IP addresses. The domain argument may
also use macro expansion defined later in this section. Use of the mx format involves at least two
DNS lookups per SPF verification operation.

This SPF allows mail from the domain example.com to be sent from any mail server
defined in an MX RR for the domain example.net:

IN TXT "v=spfi mx:example.net -all"

This SPF allows mail to be sent from any of the 16 IP addresses containing each of the
mail servers defined in MX records for the sending domain:

IN TXT "v=spf1 mx/28-all"

CHAPTER 8 ©° COMMON DNS TASKS

Type ptr Format

This type may take one of the following formats:
ptr ptr:domain

The ptr type uses PTR RRs of the sender-ip for verification. In the basic format with no
additional arguments, the sender-ip is used to query for the host name using the reverse map.
The A or AAAA RR for the resulting host is then obtained. If this IP matches the sender-ip and
the sender-domain is the same as the domain name of the host obtained from the PTR RR,
then the test passes. The form ptr:domain replaces the sender-domain with domain in the final
check for a valid domain name. The domain argument may also use macro expansion defined
later in this section. The PTR record is the least preferred solution since it places a load on the
IN-ADDR.ARPA (IPv4) or IP6.ARPA (IPv6) reverse-map domains, which generally have less
capacity than the gTLD and ccTLD domains.

This SPF would allow any host in the domain example.com that is reversed mapped to
send mail for the domain:

IN TXT "v=spfi ptr -all"

Type exists Format

This type may take one of the following formats:
exists exists:domain

The exists type tests for existence of the sender-domain using an A RR query. In the basic
format with no arguments, an A RR query is issued using the sender-domain and if any result
is obtained, the test passes. The form exists:domain applies the same test but for domain. The
domain argument may also use macro expansion defined later in this section. The exists form
requires an A RR for the domain as shown in the following zone file fragment:

; zone fragment for example.com

$ORIGIN example.com.

@ IN A 192.168.0.2
IN TXT "v=spf1l +exists -all"

Macro Expansion

The SPF record allows macro expansion features using a %(x) format where % indicates a
macro and x is a character defining the macro type as defined in Table 8-1.

173

174

CHAPTER 8

COMMON DNS TASKS

Table 8-1. SPF Macro Expansion Arguments

Macro Function

%(c) Only allowed in TXT records referenced by the exp field. The IP of the receiving MTA.

%(d) The current domain, normally the sender-domain %(0), but replaced by the value of any
domain argument in the type field as discussed previously.

%(h) The domain name supplied on HELO or EHLO, normally the host name of the sending
SMTP server.

%(1) The sender-ip value. The IP of the SMTP server sending mail for user info@example.com.

%(1) Replace with local part of sender. For instance, if the senderis infor@example.com, the
local part is info.

%(0) The sender-domain value. For instance, if the e-mail address is info@example.com, the
sender-domain is example.com.

%(p) The validated domain name. The name obtained using the PTR RR of the sender-ip. Use
of this macro will require an additional query unless a ptr type is used.

%(r) Only allowed in TXT records referenced by the exp field. The name of the host
performing the SPF check. Normally the same as the receiving MTA.

%(t) Only allowed in TXT records referenced by the exp field. Defines the current timestamp.

%(s) Replace with sender e-mail address, for instance, info@example.com.

%(v) Replaced with in-addr if sender-ip is an IPv4 address and ip6 if an IPv6 address. Used to

construct reverse-map strings.

The preceding macros may take one or more additional arguments as follows:

« 1:Indicates reverse the order of the field. For instance, %(or) would display example.com
as com.example, and %(ir) would display 192.168.0.2 as 2.0.168.192. The default splitting
point for reversing the order uses . (dot) as the separator but any other separator may be
used; for instance, %(sr@) would split info@example.com at the @ separator and when re-
versed will display example.com.info (when fields are rejoined they will always use a . [dot]).

* Digit: The presence of a digit (range 1 to 128) controls the number of rightmost names or
labels displayed. For instance, %(d1) uses the d part to extract the current domain (assume
its example.com) as defined previously, and the qualifying digit (1) displays only one right-
most label from the name, in this case com; but %(d5) would display five right-hand names
or labels up to the maximum available, which in this example would display example.com.

SPF Record Examples

The following examples are designed to illustrate various uses of the SPF record. The SPF
macro expansion features in particular can lead to complex definitions; further examples may
be discovered by interrogating such domains as microsoft.com, aol.com, and google.com, all of
whom are among the 750,000+ domains that currently publish SPF records. A dig command
(introduced in Chapter 9) such as shown here will yield an SPF record if published:

dig example.com txt

Substitute your favorite domain in the preceding example to verify the existence of an SPF

record.

CHAPTER 8 ©° COMMON DNS TASKS

Single Domain Mail Server
This example assumes a single mail server that both sends and receives mail for the domain:
; zone file fragment for example.com

$ORIGIN example.com.
IN MX 10 mail.example.com.

mail IN A 192.168.0.4
; SPF records
; domain SPF

@ IN TXT "v=spf1l mx -all"
; mail host SPF
mail IN TXT "v=spf1l a -all"

The domain SPF is returned from a sender-domain query using the sender e-mail address;
for instance, the senderis info@example.com, and the sender-domain is example.com. The SPF
record only allows the MX host(s) to send for the domain. The mail host SPF is present in case
the receiving MTA uses a reverse query to obtain the sender-ip host name and then does a query
for the SPF record of that host. The SPF record states that the A record of mail.example.comis
permitted to send mail for the domain. If the domain contains multiple MX servers, the domain
SPF would stay the same, but each mail host should have an SPF record.

SMTP Server Offsite

This example assumes the domain example.com will send mail through an off-site mail server
in example.net, for instance, an ISP:

; zone file fragment for example.com
$ORIGIN example.com.
IN MX 10 mail.example.net.

; SPF records

; domain SPF

@ IN TXT "v=spf1 include:example.net -all"
; WARNING: example.net MUST have a valid SPF definition

This format should be used if and only if it is known that example.net has a valid SPF
record. The include recurses (restarts) verification using the SPF records for example.net. Mail
configuration changes are localized at example.net, which may simplify administration. The
include could have been replaced with redirect as shown here:

@ IN TXT "v=spfl redirect=example.com"

Virtual Mail Host

This example assumes example.net is the host for a large number of virtual mail domains and
supplies SMTP services for others. The zone file fragment that follows describes one of the vir-
tual mail domains example.org:

175

176

CHAPTER 8 ©© COMMON DNS TASKS

; zone file fragment for example.org
$ORIGIN example.org.
IN MX 10 mail.example.net.

; SPF records
; domain SPF
@ IN TXT "v=spfl include:example.net -all"

The domain SPF is returned from a sender-domain query using the sender e-mail address;
for instance, the sender is info@example.org, and the sender-domain is example.org. The SPF
record recurses to the domain name example.net for verification.

Here is the zone file for example.net:

; zone file fragment for example.net
$ORIGIN example.net.
IN MX 10 mail.example.net.

mail IN A 192.168.0.37

; SPF records

; domain SPF - any host from

; 192.168.0.32 to 192.168.0.63 can send mail
; and any MX host

@ IN TXT "v=spf1l ip4:192.168.0.37/27 mx -all"
; mail SPF
mail IN TXT "v=spf1 a -all"

The domain SPF is returned from a sender-domain query using the sender e-mail address;
for instance, the sender is info@example.net, and the sender-domain is example.net or the
include:example.net if the mail originated from the example.org zone. The SPF record allows
any host in the 32 address subnet that contains 192.168.0.37 to send mail for this domain
(example.net) and any hosted virtual domain, that is, example.org in the preceding example.
The SPF also allows any host defined in an MX RR as an alternative if the first test fails and
allows for a future reconfiguration of the network that may move the host mail.example.net IP
address outside the defined ip4 range. The scenario could have used a slightly shorter version:

@ IN TXT "v=spf1l mx/27 -all"

This record has the same effect as a:192.168.0.37/27 but will cost a further DNS lookup
operation, whereas the IP is already available. The scenario relies on the fact that customers will
only send mail via the domain example.net, that is, they will not send mail via another ISP when
at home or when traveling. If you are not sure if this is the case, the sequence can be terminated
with ?all, which indicates that the results may not be definite—it allows the mail to pass, per-
haps after logging the incident to capture statistics. If the domain contains multiple MX servers,
the domain SPF would stay the same, but each mail host would have an SPF record.

No Mail Domain

This example assumes that the domain example.org never sends mail from any location—ever.
Typically this would be done to prevent bogus mail using this domain for everyone else—it is a
supreme act of self-sacrifice!

CHAPTER 8 ©° COMMON DNS TASKS

; zone file fragment for example.org
; zone does NOT contain MX record(s)
$ORIGIN example.org.

; SPF records
; domain SPF
@ IN TXT "v=spf1i -all"

This SPF test will always fail since the only condition it tests is the -all, which, because of
the - (minus), results in a fail.

Using Macro Expansion

This example uses macro expansion in the SPF and the polite message sent to users to indi-
cate that the sender may be being impersonated. The zone file fragment is as follows:

; zone file fragment for example.com
$ORIGIN example.com.
IN MX 10 mail.example.com.

; SPF records

; domain SPF

@ IN TXT "v=spfi exists:%(d) -all ext=badguy.example.com"

badguy IN TXT "The email from %(s) using SMTP server at %(i) was rejected \
by %(c) (%(x)) at %(t) \
because it failed the SPF records check for the domain %(p). \
Please visit http://abuse.example.com/badguys.html for more information"

The badguy TXT RR is split across multiple lines (each ending with a \) for presentation
reasons only and should appear on a single line in the zone file. The exists:%(d) tests for the
existence of the sender-domain, which is the default value for the exists test but is used to
illustrate use of macros in expressions.

Supporting http://example.com

This solution configures a name server to allow URLs of the form http://www.example.com and
http://example.com—both URLs will address (or resolve to) the same web server. Seems it’s
the cool thing to do these days. To make this feature work also requires a change to the web
server. The required change to Apache when using virtual hosts is also provided.

; zone fragment for example.com
$TTL 2d ; zone ttl default = 2 days
$ORIGIN example.com.

; SOA NS MX and other records

177

178

CHAPTER 8 ©© COMMON DNS TASKS

; define an IP that will resolve example.com

@ IN A 192.168.0.3
; you could also write the preceding line as
; example.com. 1IN A 192.168.0.3
WIWW IN CNAME example.com. ; dot essential

; aliases www.example.com to example.com

; OR define another A record for www using same host

; this is the least number of changes and saves a CNAME
WWW IN A 192.168.0.3

The preceding will also work for any other host name as long as different ports are in use;
for instance, ftp://example.com will work if the FTP server was appropriately configured and
on the same host, which in the preceding case is 192.168.0.3.

Apache Configuration

This configuration assumes the use of virtual hosts on an Apache (1.3.x or 2.x) server. Apache’s
httpd.conf configuration file containing the VirtualHost section for example.com would look
something like the following fragment:

<VirtualHost 10.10.0.23>
ServerAdmin webmaster@example.com
DocumentRoot /path/to/web/root
ServerName www.example.com
ErrorLog logs/www.example.err
CustomLog logs/www.example.log common
</VirtualHost>

A second VirtualHost definition is added with ServerName modified to reflect the
example.com change as follows:

<VirtualHost 10.10.0.23>
ServerAdmin webmaster@example.com
DocumentRoot /path/to/web/root
ServerName example.com
Errorlog logs/example.err
CustomLog logs/example.log common
</VirtualHost>

In the preceding example, a second log and error file is used to avoid possible corruption.
An alternate method is to use a single VirtualHost definition with the ServerAlias directive as
shown here and which only requires single log and error files:

<VirtualHost 10.10.0.23>
ServerAdmin webmaster@example.com
DocumentRoot /path/to/web/root
ServerName www.example.com
ServerAlias example.com
Errorlog logs/example.err
CustomLog logs/example.log common

CHAPTER 8 ©° COMMON DNS TASKS

In many cases, when example.comis entered, your ever-helpful browser will auto-
complete (or guess) that what you really meant was www.example.com and add the www
automatically. So after all that hard work in many browsers, example.com would have
worked even if you had done nothing!

Caution If you are using MS FrontPage extensions with a single VirtualHost definition, then the
ServerName must be the name that is used to log in to FP. In the preceding example, the FrontPage login
name used would be www.example.com.

Out-of-Sequence Serial Numbers

The serial number field of the SOA RR (described in Chapter 2) by convention uses a date
format defined to be yyyymmddss where yyyy is the four-digit year number, mm is the two-digit
month number, dd is the two-digit day within month number, and ss is a two-digit sequence
number within the day. Since this is only a convention, BIND and most other DNS software
does not validate the format of this field; it is very easy to introduce errors into this number
and get out of sequence. Zone transfer to zone slave will, in the event of zone file changes,
occur only if the serial number of the SOA RR is greater that the previous one. So the dreaded
day has come and while pondering the meaning of life during a zone file update the serial
number is changed, BIND has been restarted, and only with something approaching shock
and awe you discover the SOA serial number is incorrect. Apart from ritual suicide, what can
be done?

To illustrate the fixes possible, it is assumed that today’s date is 28 February 2003 (serial num-
ber 2003022800). If the erroneous serial number entered is less than today, that is, 2003022700, the
fix is trivial: simply correct the serial number and restart or reload BIND or reload the zone with
rndc (see Chapter 9). If the number is too high, it depends on how high the number is and how
frequently the zone file is changed. Assume the changed serial number was set to 2004022900,
which as we all know does not exist, 2003 not being a leap year; however, BIND does not know
that and a zone transfer will have taken place, 29 being greater than 28. The simple fix is to incre-
ment the date again to 2003030100 and keep using the sequence number until the correct date is
reached (tomorrow in this case). This works unless you will require to make more than 99 changes
until the erroneous date is reached.

If all the quick solutions are not acceptable, for instance, the serial number is 2008022800,
then it’s time to get out the calculator or do some serious mental arithmetic. The SOA serial
number is an unsigned 32-bit field with a maximum value of 23" which gives a range of 0 to
4294967295, but the maximum increment to such a number is 231 -1 or 2147483647, incre-
menting the number by the maximum would give the same number. Using the maximum
increment, the serial number fix is a two-step process. First, add 2147483647 to the erroneous
value, for example, 2008022800 + 2147483647 = 4155506447, restart BIND or reload the zone,
and make absolutely sure the zone has transferred to all the slave servers. Second, set the SOA
serial number for the zone to the correct value and restart BIND or reload the zone again. The
zone will transfer to the slave because the serial number has wrapped through zero and is

179

180

CHAPTER 8 ©© COMMON DNS TASKS

greater that the previous value of 4155506447! RFC 1982 contains all the gruesome details of
serial number comparison algorithms if you are curious about such things.

Use of Wildcards in Zone Files

The standard wildcard character * (asterisk) can be used as a name with any RR. Wildcards
can have unintended consequences and should only be used with considerable caution.

Note The Internet Architecture Board (IAB) has even published a paper on the subject of wildcard usage
after the infamous use of wildcard A RRs by a gTLD operator to redirect users to a default page when any
domain was not found (www.iab.org/documents/docs/2003-09-20-dns-wildcards.html).

Wildcards can be very confusing in the DNS specifications because of the normal sense
in which wildcards are used in search expressions to find items with imprecisely known infor-
mation. For example, the command 1s |grep $*.html will list all files in the given directory
ending with .html; in this case, the * means any character any number of times. In the case
of zone files, the wildcard creates records of the RR type they are used with such that any query
for a particular RR type and for which an explicit RR does not exist will be answered with the
wildcard RR data as if it did exist—that is, no query for the given RR of that type will fail. This
may not be the intended result. While wildcards may be used with any RR type, they are most
commonly used with MX records as shown in the following zone file fragment:

; zone file for example.com

$TTL 2d ; zone default = 2 days

$ORIGIN example.com.

@ IN MX 10 mail.example.com.
* IN MX 10 mail.example.com.

In the preceding fragment, an MX query for bill.example.com, joe.example.com, and
everythingelse.example.comwill return the hostmail.example.com. The following example
shows how an existing RR will block the operation of the wildcard:

; zone file for example.com

$TTL 2d ; zone default = 2 days

$ORIGIN example.com.

@ IN MX 10 mail.example.com.
* IN MX 10 mail.example.com.
subdomain IN MX 10 mail.example.net.

As before, MX queries will return mail.example.com except queries for subdomain.
example.com, which will return mail.example.net, and any undefined names below subdomain
such as bill.subdomain.example.com will return NXDOMAIN (no name).

CHAPTER 8 ©° COMMON DNS TASKS

A wildcard cannot do anything that cannot be done by one or more (perhaps many more)
RRs. There is no essential reason to use wildcards other than to reduce the amount of data that
may otherwise have to be defined. Whether this reduction in administrative effort is worth the
potentially confusing effect of using wildcards in RRs is a matter for local decision.

Summary

This chapter covered a number of common name server configurations and also illustrated
some more subtle uses of the DNS system.

The next chapter describes the use of various DNS diagnostic tools and techniques to
cover the situations where head-scratching fails to yield the required results.

181

CHAPTER 9

DNS Diagnostics and Tools

Diagnosing DNS problems can be complex, made so by its interaction with other DNS
systems. A DNS problem may originate locally or anywhere in the chain of name servers that
provide the response to a query. Finding the location of the problem is, depending on your
outlook, either the bane or the challenge of a DNS administrator’s life. This chapter is divided
into two parts. The first describes a number of tools that may be used to verify, support, or
interrogate DNS systems—DNS utilities. The second part looks at diagnosing DNS systems,
in some cases using the tools described, in other cases using other methods such as log
inspection and invoking debug levels to increase reporting.

DNS Utilities

There are a number of DNS utilities, some of which are specific to BIND distributions and some
of which are available on a variety of platforms. The author maintains reference material about
this book on his site, www.netwidget.net/books/apress/dns; there you will find listed additional
DNS utilities—including web-based and Windows utilities—not covered in this book. The fol-
lowing utilities are introduced in this chapter:

* nslookup: Utility for interrogating DNS servers. Widely available on multiple platforms,
including Windows.

* dig: Utility for interrogating DNS servers. Typically only available on BIND-supported
platforms.

¢ rndc: Remote maintenance tool for BIND.

* rndc-confgen: Utility to generate keys and rndc. conf files for use with the rndc utility—
including a trivial default configuration.

* nsupdate: Utility for dynamically updating zone files.
* named-checkconf: Utility for checking the syntax of the named. cont file.
* named-checkzone: Utility for verifying zone files.

* dnssec-signzone: Utility for cryptographically signing zones for use with DNSSEC.bis.
Chapter 11 makes significant reference to this utility.

* dnssec-keygen: Utility for generating keys used in various secure DNS transactions.
Chapters 10 and 11 make significant reference to this utility.

183

184

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

The descriptions typically take the form of a quick usage example followed by a detailed
description of the various options and parameters available, in some cases followed by further
advanced examples. This chapter omits the host utility—yet another DNS interrogation utility
similar in function to nslookup and dig but having neither the batch service of dig nor the
interactive format of nslookup. For information on this utility, use man host or host -hata
command-line prompt.

Every DNS administrator should be thoroughly familiar with either nslookup or dig for
troubleshooting and diagnostic work. If a choice needs to be made, it will depend on circum-
stance. If you are working on a variety of platforms, nslookup is available on Linux, BSD, and
Windows platforms and may be the best choice. If DNSSEC (Secure DNS) is being imple-
mented or in the short-term plans there is no choice, dig is DNSSEC aware, nslookup is not.

The following sections all use the ubiquitous example.com domain in conjunction with
private IPv4 addresses to illustrate the various commands. This is done purely in the interests
of being a good netizen. If you run the dig and nslookup examples on the public network,
some will work, many will not—the actual commands and results were all carried out using
a private configuration and are intended to illustrate techniques and formats rather than be
taken literally. However, example.com does in fact exist on the public network and resolves to
an IPv4 address of 192.0.34.166, which is on a reserved IANA netblock. It is not a very interest-
ing domain for experimentation, however, since it has only a limited number of hosts; for
instance, there is a www.example.com RR, but it does not have MX RRs or an FTP site or any-
thing really exciting. Instead, either build your own name server using one or more of the
example configurations in Chapter 7 and use it as the basis of experimentation or get onto the
public network and select a domain that you either know well or are curious about, replace
the example.comin the various examples with your chosen domain name, and try and explore
it using the commands as a starting point. You may be astonished at some of the results you
get—and don't forget to look for the more exotic RR types (a full list is defined in Chapter 13)
such as LOC RRs (geographic location RRs), which are surprisingly frequent, or discover who
publishes SPF records (in TXT RRs), or find how many MX or NS RRs some of the more high-
profile domains have and whether they are all on the same subnet. An endless world of fun is
at your fingertips.

Note One of the happy side effects of installing BIND on Windows NT 4.0 or Windows 2000 even if it
is not used as a name server is that all the diagnostic tools are also installed, including dig, rndc, and
nsupdate—see Chapter 6 for how to install BIND on Windows.

The nslookup Utility

The nslookup utility was officially deprecated in favor of dig, but with the latest BIND releases
it seems to have received a new lease on life. The major advantage of nslookup is its almost
universal availability, specifically on Windows systems where dig is still pretty exotic. There-
fore, if you work in a mixed environment, you are more likely to come across nslookup than
dig. nslookup provides both command-line and interactive formats. It can look relatively triv-
ial at first glance, but its configuration parameters (in .nslookuprc in the user’s home directory

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

or by default from /etc/resolv.conf or Windows Network Properties), which may be modified
in interactive mode, adds tremendous power to the utility. The default configuration parame-
ters can be displayed using the -all option (or set all option in interactive mode).

Tip The Windows version of the nslookup command is documented in the Microsoft Knowledge Base
article number 200525 (http://support.microsoft.com/default.aspx?scid=kb;en-us;200525).

nslookup Command Format

nslookup has four generic command formats:

» Format I: Lookup target using the default name server:
nslookup [-opt] target

e Format 2: Lookup target using the specific name server:
nslookup [-opt] target dns

e Format 3: Enter interactive mode using the default name server:
nslookup [-opt]

» Format 4: Enter interactive mode using the specific name server:
nslookup [-opt] - dns

Format 4 does not work in the native Windows version of nslookup but does on any BIND
version, including the BIND version installed on Windows. To achieve the same effect on the
native Windows version requires use of the server command after entering interactive mode
using Format 3.

Quick Examples

The following examples are provided for readers who prefer to experiment before reading about
the multiple options that can affect the behavior of the nslookup command. They are designed
to illustrate techniques and should not be taken literally (though the domain example.com does
exist on the public network) but rather replace example.com with your favorite domain name and
experiment with various formats. The nslookup command is available on Linux, Unix, BSD, and
Windows systems.

Format 1: Using the command-line mode with the default name server to perform a sim-
ple host lookup:

nslookup www.example.com
Server: nsi.example.com
Address: 192.168.2.53

Name: www.example.com
Address: 192.168.2.80

185

186 CHAPTER 9 ©' DNS DIAGNOSTICS AND TOOLS

This returns the A record for www.example.com using the default name server—in this case
ns1.example.com, which is defined in Windows Network Properties or /etc/resolv.conf in
Linux and BSD systems.

Format 1: Using the command-line mode with the default name server to perform a
simple reverse map IP lookup:

nslookup 192.168.2.80
Server: nsil.example.com
Address: 192.168.2.53

Name: www.example.com
Address: 192.168.2.80

This returns the PTR record for 192.168.2.80 using the IN-ADDR.ARPA domain hierarchy.
Format 2: Using the command-line mode with a specific name server to perform a simple
host lookup:

nslookup www.example.com 192.168.255.53
Server: nsil.example.net
Address: 192.168.255.53

Name: www.example.com
Address: 192.168.2.80

This returns the A record for www.example.com using the name server at 192.168.255.53.
The command format allows either an IP or a name for the specified name server, so the pre-
ceding command could have been written as follows:

nslookup www.example.com nsi.example.net

Interactive Format

nslookup’s interactive format (Formats 3 and 4) provides a single prompt (>) and allows any
directive that follows to be entered. To terminate interactive mode, use Ctrl+C (for Windows
and for Linux and BSD if no command is currently active), Ctrl+D (Linux and BSD only), or
exit (Windows, Linux, and BSD). In Linux or BSD, Ctrl+C will terminate a currently active
interactive command or will terminate nslookup if no command is active.

nslookup -all

// 1list all records in the domain - needs axfr to be enabled
> 1s example.com

// 1list all text records in domain

> 1s -t TXT example.com

// set the base domain to be used for subsequent commands

> set domain=example.org

// find host
> mail

// returns mail.example.org

// exit interactive mode
> exit

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS 187

Options

nslookup provides a dizzying number of options that vary its processing. Some of these options
are only available in interactive mode. The Windows version adds a couple of unique commands.
Multiple options can be specified on a single command line.

The set of options defined in Table 9-1 will only work in interactive mode.

Table 9-1. nslookup Interactive Commands

Option Parameters

0S

Mode

Processing

1s [opt] domain

lserver dns
server

root root-dns

Y

Lists all the information for the target domain.
This command uses AXFR to transfer the zone
file. If AXFR is disabled on the target domain, the
1s command will fail with an appropriately
obscure error. Takes the standard redirection
commands > or >> file name to output or ap-
pend to a file for subsequent processing. The
options supported are:

-a: Lists aliases (CNAME) in the domain (syno-
nym for -t CNAME).

-d: The default behavior. Lists all records in the
domain (synonym for -t ANY).

-h: Lists all information records in the domain
(synonym for -t HINFO).

-s: Lists all well-known service records in the
domain (synonym for -t WKS).

-t: Lists the specific record type in the domain,
for instance, -t A.

Sets the name server for subsequent commands.
May be either a name or an IP address. The name
is looked up using the original default name
server (before any server or lserver commands
are issued). The default server is defined in /etc/
resolv.conf or in the .nslookuprc file in the user’s
home directory for Linux and BSD systems and in
Network Properties for Windows systems.

Changes the root server used for certain opera-
tions and can be specified as a name, for instance,
k.root-servers.net, or an IP.

OS Column Key: Mode Column Key:
W= Windows only B = Interactive and command-line format
A = Windows, Linux, BSD I = Interactive only

U = Linux, BSD C = Command-line only

188 CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

The options defined in Table 9-2 may be used in interactive mode if preceded with the key-
word set or on the command line if preceded with - (hyphen). When used on the command line,
the option only affects the single command (it is not saved). When used with set in interactive
mode, the option will persist until set by another similar option command. In interactive mode,
the command set all will list the default settings (the equivalent command-line version would
be nslookup -all).In anumber of cases a short form is also provided.

Table 9-2. nslookup Options

Option Parameters 0s Mode Processing

all A B Displays a list of the default values used by
nslookup, including the current name server.

class= class A B Allows the class value to be set for all subsequent
commands and may take the case-insensitive
values IN (Internet—the default), ANY, CH (CHAOS),
and HS (HESIOD).

domain= domain-name A B Allows a base to be set for all subsequent
searches when used in interactive mode. The
default domain is defined in /etc/resolv.conf
for Linux or BSD systems and Network Prop-
erties for Windows systems. Setting domain= will
reset any previously defined srchlist.

[no]debug

[no]deb A I Allows control over the debugging information—
debug (short form deb) turns it on, nodebug (or
nodeb) turns it off. The default is nodebug.

[no]d2 A I Enables/disables debugging information—d2
turns it on, nod2 turns it off. The default is nod2.

[no]defname A I Controls whether a domain name (in either

[no]def domain or srchlist) is added to a target, which
does not end with a dot, that is, it is NOT an
FQDN. See also the entry for search for full
behavior description.

[no]ignoretc A I Controls whether packet truncation errors are
ignored (ignoretc) or whether they cause termi-
nation (noignoretc—the default).

[no]msxfer w I Controls use of MS fast zone transfer. msxfer
turns it on, nomsxfer (the default) turns it off.

[no]recurse A B Controls recursive behavior. recurse (the

[no[rec] default) turns it on, and norecurse turns it off.

[no]vc A I Controls whether to use TCP (vc) or UDP
(novc)—the default is novc.

[no]search A I This parameter controls how the srchlist= value

[no]sea is used. search and defname are interrelated
based on the matrix shown in Table 9-3 for
targets that are not FQDNs.

0OS Column Key: Mode Column Key:

W= Windows only
A = Windows, Linux, BSD
U = Linux, BSD

B = Interactive and command-line format
I = Interactive only

C = Command-line only

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS 189

Option Parameters 0s Mode Processing

port= port-no.

type= rr-type
querytype=

retry= number

root= dns

srchlist= dom1/dom2

A B Changes the default port from the default (53) to
that specified by port-no.

A B May take most case-insensitive RR type values,
including the meta RRs ANY, IXFR, and AXFR. The
default value is type=A. type=ANY with a domain
root name will return any RR with a blank name
(label) entry—these include SOA, NS, and MX
RRs if directed at an authoritative server for the
domain—and thus it provides a quick way to get
useful domain info.

A B Controls the number of retries that will be
attempted. The default is 4.

A B Controls the name server used when querying
the root-servers. The default is typically f.root-
server.net. (on Linux and BSD) and
a.root-servers.net on Windows.

A I Allows setting of a search list (up to six names
are allowed separated by a forward slash).

0S Column Key:

W= Windows only

A = Windows, Linux, BSD
U = Linux, BSD

Mode Column Key:
B = Interactive and command-line format
I = Interactive only

C = Command-line only

Table 9-3 shows the relationship between the search and defname options when used with

srchlist.

Table 9-3. Effect of the search and defname Options

search defname Result

search defname Adds domain names from srchlist or until answer is found
nosearch defname Adds domain name from domain

nosearch nodefname Must be an FQDN

search nodefname Must be an FQDN

In all cases, the first good result will terminate the command—srchlist cannot be used
to look up multiple targets. In general, the srchlist is most useful with subdomains but can
be used with different domains.

Examples: Command Line

Use this command to get mail records for a domain:

nslookup -type=MX example.com

190

CHAPTER 9 ©' DNS DIAGNOSTICS AND TOOLS

The following lists all the options being used and gets the host address for mail.example.com:

nslookup -all mail.example.com

The next command gets the SOA record using a specific DNS:

nslookup -type=SOA example.com 192.168.23.53

This one gets all records without labels (the zone apex or root) for the domain (gets SOA,
NS, and MX and others if defined) if pointed at an authoritative server for the domain; other-
wise, it returns only NS RRs:

nslookup -type=any example.com nsi.example.com

Finally, the following gets all domain records if zone transfer (AXFR) is not inhibited for the
domain (will return BAD ERROR VALUE if inhibited using an allow-transfer statement or similar):

nslookup -type=axfr example.com

Example: Interactive Mode

Enter interactive mode and list the default options—this test was run on a Windows system

to illustrate the default superset offered by the Windows native version of nslookup—the items
noted as Windows only will not be present on a BIND nslookup utility. Lines beginning with //
are intended as comments to describe the function of the following line and should not be
entered; only those beginning with the prompt (# or ») should be entered:

nslookup -all
Default Server: nsi.example.com
Address: 192.168.2.53
Set options:
nodebug
defname
search
Tecurse
nod2
novc
noignoretc
port=53
type=A
class=IN
timeout=2
retry=1
r00t=A.ROOT-SERVERS.NET.
domain=example.com
MSxfr [note: Windows only MS fast zone xfer]

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

IXFRversion=1 [note: Windows only incremental zone xfer]
srchlist=example.com

// 1list all records in the domain - needs axfr to be enabled

> 1s example.com

// list all text records in domain

> 1s -t TXT example.com

// set the base domain to be used for subsequent commands

> set domain=example.org

// find host

> mail

// returns mail.example.org

// but will handle full format also

> mail.example.org

// return mail.example.org as expected

>set type=any

> example.com

// list apex records for the domain example.com

// and override the domain= value set previously

> set type=mx

// type=mx is persistent

> example.com

// this works as expected for the domain root

> www.example.com

// fails because there is no MX RR for www.example.com!

> set type=a

> www.example.com

// works as expected to give IP

>set type=any

// this is much more useful because it will get all RRs with given name

> www.example.com

// will return ALL RRs with this name.

// exit interactive mode

> exit

Tip The nslookup default is type=a (an A RR only will be returned). It is far better, as illustrated in the
preceding sequence, to change this to ANY (set type=ANY), since it will get all records with a particular
name, which would include an A RR if present. You get a lot more bang for the buck with type=ANY!

BIND dig Utility

dig is the current DNS diagnostic tool of preference, but as noted earlier, it is not always
widely available and rarely on Windows systems. dig has both a command line and a batch
mode (but no interactive mode like nslookup). In general, the command line of dig is more
powerful than nslookup—even allowing multiple queries in a single line—and the batch mode
makes running check files a breeze. dig offers a daunting array of options, but the following
section provides simple examples.

191

192

CHAPTER 9 ©' DNS DIAGNOSTICS AND TOOLS

Quick Examples

The following examples are offered for those readers who wish to experiment before reading
about the huge number of options that are available with the dig command. They are designed
to illustrate that a lot can be done with a limited set of options. They should not be taken liter-
ally; instead, replace example.com and the various IP addresses with your favorite domain name
and start exploring. More examples are shown at the end of this section.

The following returns any RRs without a label—it will provide the SOA, NS, and MX RR at
the domain apex if pointed at an authoritative server for the domain; otherwise, it returns only
the domain NS RRs:

dig example.com any

This returns only the MX record for the domain:

dig example.com mx

The next command returns the A record for the www.example.com using a specific name
server indicated by the @ argument—either a name or an IP address may be used:

dig @ns2.example.com www.example.com

Using the following command will always generate much more interesting results
because the pseudo RR type ANY is slightly misleading and actually means all RRs with the
given name, so any hidden RRs such as AAAA, TXT, RP, or KEY RR types with the same name
will be displayed as well as the A RR:

dig @ns2.example.com www.example.com any

To return all domain records using zone transfer (if allowed), try this command:

dig example.com axfr

This command returns the PTR RR for the IP address:

dig -x 192.168.23.23

dig Syntax

dig [@dns] domain [[-c]g-type] [[-t]g-class] [+q-opt] [-d-opt] [%comment]

Note The dig command uses a mixture of positional/contextual arguments and identified options (that is,
identified with an option value @, -, or +) to keep simple queries—simple! There are times when it is neces-
sary to disambiguate the g-type and q-class options described later, and in this case both can be specified
in an identified option format—the examples illustrate this usage.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

dig Options
Table 9-4 defines the options available with the dig command. The dig command may be con-

trolled using a file (.digrc) in the user’s home directory to set defaults that will override the
/etc/resolv.conf file.

Table 9-4. dig Options

Parameter Value Description

@dns Defines the optional name or IP address (IPv4 or [Pv6 format) of
the name server to be used for the query. The default is defined in
/etc/resolv. conf for Linux and BSD systems and Network Properties
for BIND’s dig on Windows. If present, it must be preceded by
@.dig @192.168.2.53 www.example.com.

domain Defines the name to be used in the query. Unlike nslookup, if this is an IP
address, it must be preceded with the -x option (see d-opt field entry).

g-type RR Defines the type of record to return and may take any valid, case-
insensitive, RR type, including ANY, IXFR, and AXFR. If omitted, the
value A is assumed. This parameter may appear following the domain
name or may be optionally preceded with -t in the identified option
format. The following two commands will obtain only the TXT RR at
the specified host if present:

dig www.example.com txt
dig -t txt www.example.com

To get a full listing of the domain records, use the AXFR option. The
AXFR feature may be disallowed by the allow-transfer statement in
named. conf, in which case the command will fail with a “Connection
refused” message. When using the IXFR type, it takes the form IXFR=sn,
where sn indicates display all changes since the serial number sn on
the SOA RR. The value ANY will list all available records at domain; thus
to get a listing of the SOA, NS, and MX records, as well as any others at
the domain apex, use

dig @nsi.example.com example.com any

If the dig is directed at a nonauthoritative server, it will return only the
domain NS RRs, which can then be used to to issue the above query.

g-class IN The default is IN. May be optionally preceded with -c in the identified
ANY option format. The value ANY is a valid option for both g-type and
HESIOD g-class, and to ensure the correct value is used (to disambiguate in
CHAOS the jargon), always specify both q-type and g-class when using this

value as shown here (the lines beginning with // are comments and
should not be entered):

// this will get any record for class IN only

dig example.com any

// this will get any record for any class

dig example.com any any

Alternatively, you can use an identified option format with -c for
g-class and -t for g- type. When the identified option format is used,
the parameter order is not important as shown here:

dig -c any -t any example.com
See the entry for d-opt for the identified option format.
g-opt The following options are preceded with a plus (+) and control how the

resulting DNS query operates. Multiple values may appear in a single
command.

Continued

193

194

CHAPTER 9

DNS DIAGNOSTICS AND TOOLS

Table 9-4. Continued

Parameter

Value

Description

bufsize=bytes

domain=name

ndots=num

[noJaaonly

[no]aaflag

[no]additional

[no]adflag

[no]all
[no]answer
[noJauthority
[no]besteffort

[no]comments
[no]cdflag

[no]cl

[no]cmd
[no]defname
[no]dnssec

[no]fail

[no]identify
[no]ignore

[no]multiline

Defines the number of bytes to be advertised in an EDNS0 OPT
meta (or pseudo) RR. May be set to any value in range 0 to
65535. Only used with the dnssec option (the default is 4096).

Replaces the default domain name (found in resolv. conf).

Defines the minimum number of dots that must appear in a
domain name before it is used as a qualified name. Domain
names with a lower number of dots will have any default do-
main name (from resolv.conf) added before the query is issued
(the defaultis 1).

Controls whether to use authoritative query only (the default is
noaaonly).

Synonym for [noJaaonly.

Controls whether to print the ADDITIONAL SECTION (the default
is additional).

Controls setting the AD flag. Setting this flag has no effect on
a query and is provided for completeness only. (the default is
noadflag)

Sets or unsets all flags that control printed values for example
additional or comments (the default is all).

Controls whether to the print ANSWER SECTION (the default is
answer).

Controls whether to print the AUTHORITY SECTION (the default
is authority).

Controls whether dig will attempt to print malformed
responses (the default is nobesteffort).

Controls whether to print comments (the default is comments).

Sets the CD (Checking Disabled) bit, which inhibits a security-
aware name server from performing data authentication on
signed zones (must be used with the dnssec option) (the default
is nocdflag).

Controls whether to print class information (the default is c1).

Controls whether to echo valid dig command-line arguments
(the default is cmd).

Synonym for [no]search.

Controls whether to set the DNSSEC OK (D0) bit in the OPT
pseudo header, thus requesting a security-aware name server
to provide security information (the default is nodnssec).

Controls whether dig will stop processing if it receives a
SERVFAIL message to one of the default name servers listed in
resolv.conf (the default is fail).

Only valid with short option and suppresses or prints the name
server identity (the default for the short option is noidentify).

Controls whether to ignore truncation errors rather than retry
using TCP (the default is noignore).

Displays long RRs in standard parentheses format for multiple-
line display. (the default is nomultiline).

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

Parameter Value Description

[no]nssearch If set, dig will attempt to obtain the SOA RRs for each authori-
tative name server for the domain name being queried (the
default is nossearch).

[no]question Controls whether to print QUESTION SECTION (the default is
question).

[no]qr Controls whether to print the outgoing query (the default is
nogr).

[no]recurse Controls recursive query behavior. Recursion is automatically
inhibited when nssearch and trace are invoked (the default is
recurse).

[no]search Controls whether to use any domain or searchlist parameters
in resolv.conf (the default is nosearch).

[no]short Controls whether to display only the answers to the query; for
instance, in an A query, short will only display the IP address(es)
(the default is noshort).

[no]sigchase Controls whether signature chains (chains of trust) will be
followed or not for signed zones. This option is not enabled by
default and requires dig to be built with DDIG_SIGCHASE.

[no]stats Controls whether to display dig statistics (the default is stats).

[no]tcp Controls whether to use TCP (tcp) or UDP (notcp) for queries
(the default is notcp unless AXFR or IXFR is used).

[no]topdown Controls whether signature validation is carried out top-down.
Not enabled by default and requires dig to be built with
DDIG_SIGCHASE (the default is notopdown).

[no]trace Using the trace option causes dig to inhibit its default recursion
and issue queries for the requested name to the root-servers
and follow (and print) all referrals until an authoritative name
server for the domain name is reached (the default is notrace).

[no]ttlid Controls whether to print TTL (the default is tt1id).

[no]vc Synonym for [no]tcp.

retry=num Controls the number of query retries to each server (the default
is 2).

time=secs Controls the query timeout period (the default is 4 secs).

tries=num Controls the number of tries to each server (the default is 3).

trusted-key=key Defines the base64 material to be used as a trusted key when
chasing signatures. Not enabled by default and requires dig to
be built with DDIG_SIGCHASE.

d-opt The following options control how dig operates and are

preceded with a minus (-). Multiple options may appear in a
single command line.

Use IPv4. Only valid for dual-stack (IPv4/IPv6) servers.
Use IPv6. Only valid for dual-stack (IPv4/IPv6) servers.

Defines the IP address to be used in the outgoing dig (query)
message. Only required on a multihomed server.

Continued

195

196

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

Table 9-4. Continued

Parameter Value

Description

-C

-f filename

-y key

Indicates a q-class argument follows (this is the identified
option format) and can be used as a convenience or to dis-
ambiguate from the same g-type options.

Specifies a file containing batch commands. Any options speci-
fied on the command line will be in effect during the batch run,
that is, they are global. Lines beginning with ; or # or \n in the
batch file are ignored and may be used as comment or white-
space lines. Each line in the batch file will represent a single
command-line query.

If set in conjunction with an IPv6 reverse-map request (using
the -x option), this will use the IP6.INT (deprecated) reverse-
map domain name rather than the current IP6.ARPA domain
name.

Signs the message with TSIG using the key file in dir.
Displays a short list of the dig options available and exits.
Changes the port used for queries to port (the default is 53).

Indicates a g-type (RR type) argument follows (this is the
identified argument format).

Displays the dig version number and exits.

Specifies that inverse notation is being used as shown here (the
lines beginning with // are comments and should not be entered):
// this will fail NXDOMAIN (not found)

dig 192.168.2.53

// instead use

dig -x 192.168.2.53

// OR if you are a masochist!

dig 53.2.168.192.in-addr.arpa ptr

Allows the user to enter the base64 shared secret to be used in a
TSIG transaction. This both a long process and extremely dan-
gerous. Use only if desperate and the -k option is not viable.

dig Examples

The following examples are designed to illustrate techniques and should not be taken liter-
ally—rather use them as a starting point for experimentation and exploration on a domain of

your choice.

dig Host Query

Here is a simple host lookup that defaults to an A RR:

dig www.example.com

The preceding command could have been written as follows (uses a positional argument

so the order is important):

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

dig www.example.com a

Or again, the same command using the identified option format—order is not important:

dig -t a www.example.com

Contrast the previous output with the short response by using this command:

dig -t a www.example.com +short

As noted previously, type ANY will always obtain more interesting results by providing all
RRs with any given name.

dig www.example.com any

This command forces use of the name server at 192.168.2.224 for the query:

dig @192.168.2.224 www.example.com a

To force use of the named server at ns1.example.com for the query, use the following:

dig @nsi.example.com www.example.com a

The next command is a reverse-map query that returns PTR RR:

dig -x 192.168.2.224

dig Domain Query

Here is a quick domain lookup that returns all RRs without labels, the domain apex or root,
and typically gets SOA, NS, MX, and others. If a nonauthoritative server is used, it returns only
the NS RRs:

dig @nsi.example.com example.com any

The corresponding identified option format—order not important:

dig @nsi.example.com -t any example.com

The next command forces use of the name server at 192.168.2.224 for the query:

dig @192.168.2.224 example.com any

197

198

CHAPTER 9 ©' DNS DIAGNOSTICS AND TOOLS

This forces use of the name server at ns1.example.net for the query:

dig @nsi.example.net example.com a

dig Multiple Queries

dig will accept multiple queries per command line—as long as each query is clearly identified
(or disambiguated). This multiple domain lookup returns nonlabel RRs (at domain apex) for
both domains:

dig example.com any example.net any

The following multiple domain lookup returns A RR for the first domain and domain apex
RRs for the second domain:

dig example.com example.net any

This multiple domain lookup returns apex RRs for the first domain and an A RR for the
second:

dig example.com any example.net

If a command line starts with one format, it must be consistent—this fails on the second
query:

dig example.com -t any example.net any

But this format works for both:

dig example.com -t any example.net -t any

And this really does work—though how useful it would be is questionable!

dig example.com any example.net any example.org any

And this works as well:

dig www.example.com www.example.net fred.example.net

dig Output
The following shows the output from a simple dig command to the sample example.com zone
using one of the authoritative name servers for the zone. Chapter 11 shows the output from a

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

dig command issued to a DNSSEC signed zone, and Chapter 15 contains the output from
a dig command to the root-servers.

dig @nsi.example.com www.example.com

; <<>> DiG 9.3.0 <<>> @nsi.example.com www.example.com

;5 global options: printcmd

;5 Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 826

;5 flags: qr aa rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 2, ADDITIONAL: 2

55 QUESTION SECTION:
swww.example.com. IN A

55 ANSWER SECTION:

www.example.com. 86400 IN A 10.1.2.1
www.example.com. 86400 IN A 192.168.254.3
www.example.com. 86400 IN A 172.16.2.1
www.example.com. 86400 IN A 192.168.2.5

55 AUTHORITY SECTION:
example.com. 86400 IN NS nsil.example.com.
example.com. 86400 IN NS ns2.example.com.

5, ADDITIONAL SECTION:
nsl.example.com. 86400 IN A 192.168.2.6
ns2.example.com. 86400 IN A 192.168.23.23

;5 Query time: 31 msec

;5 SERVER: 192.168.2.3#53(ns1.example.com)
55 WHEN: Tue May 31 20:16:25 2005

53 MSG SIZE rcvd: 165

The output from a dig command is a formatted version of the binary, or wire format,
message response to the query formed from the dig command parameters (unless the +short
option is used). The detailed layout of the message is described in Chapter 15. The preceding
response reflects a typical positive response to a dig command and includes the following
items:

e The >>HEADER<< is an interpreted version of the message header. The flags and values of
the status fields are defined in the next section, “dig Response Values.”

e The QUESTION SECTION reflects the original query that is being answered, which was in
this case a query for the A RR of www.example.com.

e The ANSWER SECTION provides the four A RRs for www.example.com that fully answer the
question in this case. If the ANSWER SECTION is present but contains no entries, then the
query was not successful, and the status field in the HEADER typically provides the reason
unless the response was a referral, in which case the status field will be NOERR (see Chap-
ter 15 for a referral dig response).

199

200

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

e The AUTHORITY SECTION provides the NS RRs of the servers that are authoritative for the
domain example. com.

e The ADDITIONAL SECTION provides information that may be useful to the server; in this
case, it is the A RRs of the name servers.

dig Response Values

This section describes the various fields that are present in the >>HEADER<< output to a dig
command.

DNS Flags

The values of the flags in the dig command >>HEADER<< are an interpretation of various bits set
in the message header, which is described in Chapter 15, Table 15-2.

gr: Query Response. This flag is set in the preceding dig response. This flag simply means
that this is a response to a query and will always be set in a dig response.

aa: Authoritative Answer. This flag is set in the preceding dig response. This flag means
that either the response came from an authoritative name server for the domain, which
is true for the preceding case, or this was the first time the data was read from an authori-
tative name server into a caching name server. In the latter case, if the dig command is
immediately reissued, the aa bit will not be set because it will have been read from the
cache, in which case the aa bit is never set.

rd: Recursion Desired. This flag is set in the preceding dig response. This flag is copied
from the query request (the dig command) and means that the incoming query (the dig
message) requested recursive support.

ra: Recursion Available. This flag is set in the preceding dig response. This flag means that
the responding name server (ns1.example.com) supports recursive queries.

ad: Authenticated Data. This flag is not set in the preceding dig response. This flag is only
valid with DNSSEC (the +dnssec option was set in the dig command) and indicates the
target name server is security aware (the dnssec-enable yes; statement is present in the
named. conf file), the query response came from a signed zone, and the data was fully
authenticated.

cd: Checking Disabled. This flag is not set in the preceding dig response. This flag is only
valid with DNSSEC and indicates the issuing query wishes to bypass any DNSSEC valida-
tion sequence to be performed by the name server when accessing a signed zone. This
flag will only be set in the response to a dig command if the +cdflag option is used.

do: DNSSEC OK. This flag is not set in the preceding dig response. This flag is only valid
with DNSSEC and is set in the extended OPT PSEUDOSECTION that is always present in
DNSSEC transactions (see Chapter 11). It will only be set in a dig response if the +dnssec
option is used and the target name server is security aware (a dnssec-enable yes; state-
ment is present in its named. conf).

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

DNS Status

The values of the status field in a dig response are an interpretation of the RCODE field of the
message header and are described in Chapter 15, but reproduced here for convenience:

NOERR: No error condition.
FORMERR: Format error—the name server was unable to interpret the query.

SERVFAIL: Server failure—the name server was unable to process this query due to either
a problem with the name server or a requested feature that cannot be satisfied, such as a
recursive request to an authoritative-only name server.

NXDOMAIN: Name error—meaningful only for responses from an authoritative name server,
this code signifies that the domain name referenced in the query does not exist.

NOTIMP: Not implemented (versions of BIND prior to 9.3 would respond with NOTIMPL)—
the name server does not support the requested operation.

REFUSED: The name server refuses to perform the specified operation for policy reasons.
For example, a name server may not wish to provide the information to the particular
requester or a name server may not wish to perform a particular operation, for example,
a zone transfer (AXFR).

YXDomain: Name exists when it should not (RFC 2136).
YXRRSet: RRset exists when it should not (RFC 2136).

NXRRSet: RRset that should exist does not (RFC 2136).
NotAuth: Server not authoritative for zone (RFC 2136).

NotZone: Name not contained in zone (RFC 2136).

BIND named-checkcont Utility

The named-checkconf utility verifies the syntax of the named. conf file that controls BIND’s
operation. Whenever changes are made to the named. conf file, this utility should be run before
restarting BIND. If you do not do this and you do have a problem, your name server will be
off-line while you scramble around making changes—under pressure. If the named. conf file
has no errors, the utility provides silent confirmation—it outputs nothing. No news in this
case is indeed good news.

named-checkconf Syntax
named-checkconf [-j] [-t directory] [-v] [-z] [filename]

named-checkconf Options

Table 9-5 describes the options available with the named-checkconf command.

201

202

CHAPTER 9

DNS DIAGNOSTICS AND TOOLS

Table 9-5. named-checkconf Options

Argument

Meaning

-J

-t directory

filename

Relevant only with the -z option when checking zone files that are dynamically
updated and causes the utility to check any journal files (zonefile. jnl).

Chroots to directory when running the check to ensure the correct permissions
are available for include statements when run in a similar chrooted environment;
that s, the -t directory argument is the same as would be used on the BIND
command line when running in a chroot jail or sandbox.

Prints the named-checkconf version number and exits.

Causes named-checkconf to load and verify the master zone files specified in
named.conf. The utility displays the zone file name and the SOA serial number
for each zone found.

Optional. The name of the configuration file to be checked. If not specified, it
defaults to /etc/named. conf on Linux or /etc/namedb/named. conf on BSD sys-
tems and %SystemRoot\system32\dns\etc\named. conf on Windows.

BIND named-checkzone Utility

The named-checkzone utility verifies the nominated zone file and provides a useful method to
ensure correctness of a zone file before loading into a live name server.

named-checkzone Syntax

named-checkzone [-c class] [-d] [-D] [-j] [-k mode] [-n mode] [-o filename]
[-q] [-t directory] [-v] [-w directory] zonename filename

named-checkconf Options

Table 9-6 defines the options available to control processing of the named-checkzone utility.

Table 9-6. BIND named-checkzone Options

Options Parameter Meaning and Use

-C class Zone class. The default is IN. May take values CH (CHAOS) or HS
(HESIOD).

-d Turns on debugging.

-D Writes zone file in canonical (alphabetic by host name) order to
stdout (console). If used with the -o option, this option will write
output to a file.

-j If using DDNS, this option will read any journal file when checking
the zone.

-k mode Performs check-name functions (see the check-name statement in

Chapter 12) to verify that host names are in compliance with RFC
952 and RFC 1123 formats. The value of mode may be fail, warn, or
ignore, which indicates the action to be taken if the check fails.
Many modern RRs (notably SRV) will fail these checks.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

Options Parameter Meaning and Use

-n mode Causes all NS RRs to be verified for a corresponding A RR (a so-
called glue record). The mode value indicates the action if the check
fails and may take one of the values fail, warn, or ignore.

-0 filename Only valid when used with -D and defines an optional output file name.
-q Quiet mode. Displays no error messages, just the termination code.
-t directory Chroots to directory when running the check to ensure the correct

permissions are available for include statements when run in a
similar chrooted environment; that is, the -t directory argumentis
the same as would be used on the BIND command line when run-
ning in a chroot jail or sandbox.

-w directory Defines a directory that will be used for relative addressing in
$INCLUDE directives. The default is /var/named.

-V Displays the version number of named-checkzone and exits.

zonename The domain name of the zone being checked.

filename The name of the zone file to be checked.

rndc

The rndc utility controls the name server and may, depending on the value of the controls
clause in the named. conf file, be run from one or more local or remote locations, including
Windows NT 4.0 (Server or Workstation) and Windows 2000 (Server or Pro). BIND defaults to
enable rndc access from localhost (127.0.0.1) whether required or not. If rndc will not be used,
it must be explicitly disabled using a blank controls clause, that is, controls {};.

The rndc utility uses TCP to access the name server on port 953 by default and requires a
shared secret to provide TSIG-like authentication on each transaction. The various features
supported by the utility are defined in a configuration file called rndc. conf. However, to make
initial setup a trivial process, rndc will operate without an rndc. conf file and with a default
shared secret. The required default secret is created by running the following command:

rndc-keygen -a

This command generates two files in the directory in which named. conf resides. The first is
rndc.key which contains a default key clause, used by both rndc and BIND, and rndc. conf.sample,
which may be edited to provide additional control of rndc operation. This default configura-
tion is sufficient to support a localhost service but should be enhanced if remote access is
required. The rndc command-line options are described next followed by the format of the
rndc. conf file. The commands available when using rndc are then documented, and finally a
worked example is shown that supports access to multiple name servers from a remote host.

Note The default shared secret name is nominally defined to be "rndc-key"; the Fedora Core and some
other Linux distributions, however, seem to use "rndckey". The rndc.key file should be inspected to verify
the key clause name used by any specific distribution.

203

204

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

rndc Syntax
rndc [-c config-file] [-k key-file] [-p port] [-s server] [-V] [-y key-id] command

rndc Options

Table 9-7 describes the command-line options available with rndc.

Table 9-7. rndc Options

Option Parameter Meaning and Use

-c config-file By default, the configuration file is called rndc. conf, but may be
changed using this option.

-k key-file If this option is not used, the key is assumed to be in the rndc.conf
file. If an rndc. conf file is not present, the default rndc.key file cre-
ated by the rndc-confgen -a command is used. The key-file defines
a shared secret (HMAC-MD?5 algorithm), which was generated by the
rndc-confgen utility.

-p port The default port used by rndc is 953. This option may be used to change
the port number and must be supported by an equivalent inet state-
ment in the controls clause of BIND’s named. conf file to change the
port number.

-s server The server to be accessed, which may be defined as either a name or
an IP address (IPv4 or IPv6). If none is specified, the default value from
the rndc. conf file is used. If neither is present (the default configura-
tion), localhost is assumed.

-V If used, this turns on verbose logging.

-y key-name Uses the key-name when connecting to the server and must be defined
in a key clause in the rndc. conf file. If none is specified, a key statement
will be looked for in the server clause for the server specified in the -s
option. If this is not present, the default-key statement in the options
clause is checked, and if not present (the default configuration),
"rndc-key" is used from the rndc.key file created by the rndc-confgen
-a command.

command The rndc command to be executed, for instance, halt.

rndc.conf Clauses and Statements

The rndc. conf file controls the connection and authentication of the rndc utility to one or
more name servers. This file has a similar structure and syntax to named. conf, but with a sig-
nificantly reduced number of clause types and a limited number of statements.

Note To provide consistent terminology, this book uses the term clause to describe an entity that starts
with the name of the clause, which is enclosed in braces and terminated by a semicolon and may contain
a number of statements. The rationale for this policy is contained in Chapter 12.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

The rndc. conf file may contain comments that are exactly the same as those used in the
named. conf file: multiline C style (/* */), single line C++ style (//), or single-line Unix style (#).
The rndc. conf file may take a single options clause, one or more server clauses, and one or
more key clauses.

The options Clause

A single options clause may be defined in the rndc. conf. The options clause defines the default
server, authentication key, and port that will be used if not overridden on the command line.
It may contain three statements. The first is the default-server statement, which defines the
name or IP address of the server that will be used unless overridden by the -s option. If no
default-server is specified, localhost is assumed. The second is the default-key statement,
which defines the default key-name as a quoted string. It is used if the -y option is not supplied
on the command line. If no default-key is defined, the default "rndc-key" is used from the
rndc. key file created by rndc-confgen -a.The third is the default-port statement, which, in
the absence of a -p option, will define the port number to be used for connection to the server.
In the absence of either, port 953 is used. The following example shows an options clause:

// rndc.conf fragment

options {
default-server 127.0.0.1;
default-key "my-key";
default-port 3346;

};

In the preceding case, a corresponding inet statement in the controls clause of
named. conf will be required to specify port 3346 and reference "my-key".

The sexrver Clause

One or more server clauses may exist. The server clause defines a specific name server (either
aname or an IP address) that rndc may connect to. It may take two statements. The first is the
key statement, which defines the specific key to be used to connect to the server. If not present,
the default-key statement is used. The second, the port statement, defines the port number to
be used with the specific server. If not present, the default-port statement from the options
clause is used; otherwise the rndc default of 953 is used. The example that follows illustrates

a typical server clause:

// rndc.conf fragment
server "nsl.example.net" {
key "nsi.example.net";

port 953;
1

The key Clause

One or more key clauses may be defined. The key clause defines the name of a shared secret key
that may be used by one of the servers being accessed. The key clause may take two statements.
The algorithm statement identifies the encryption algorithm and must take the case-insensitive

205

206

CHAPTER 9 ©' DNS DIAGNOSTICS AND TOOLS

value hmac-md5. This is followed by the secret statement, which contains the base64 encoding of
the key enclosed in quotes. The example that follows illustrates a key clause:

// 1ndc.conf file fragment
key "nsi.example.net" {
algorithm hmac-mds;
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0OIG1hZGUgZm9yIGEgd29tYW4K";

};

There are two ways to generate the keys clause: either using the rndc-confgen utility
(see the section that follows)—this creates a complete key clause that may be edited into
the rndc. conf file without change—or using the dnssec-keygen command (see the section
“dnssec-keygen Utility” later in the chapter), in which case some editing will be required.
There must also be a corresponding key clause in the named. conf for the name server being
accessed. The key clause in the named.conf and rndc. conf files are exactly the same, and as
with named. conf, key clauses must appear before being used.

rndc Configuration Examples

To set up a default configuration—one in which rndc access is only allowed from localhost—
requires no modifications to the named. conf file, and the default authentication key file (zndc. key)
is set up using the following command:

rndc-confgen -a

The following example shows the configuration of rndc.conf on the host bill.example.com
(192.168.2.15) to allow access to two name servers with names of ns1.example.com (IP 192.168.2.3,
which uses a port number of 3396) and ns2.example.com (IP 192.168.2.4, which uses the default
port 953). Each server will use a separate key for security. There are many ways to create the
rndc. conf; one such method is shown that keeps typing and editing to a minimum.

The key for use with ns1.example.com is generated using the following command (see the
section “rndc-confgen” for details):

rndc-confgen -k nsil.example.com -p 3396 -s 192.168.2.3 > rndc.conf

The command creates a 128-bit HMAC-MD5 shared secret (the rndc-confgen default) with
aname of ns1.example.com (the -k option). The -p option is used to create the default-port
statement, and the -s option defines the IP address used in the default-server statement. The
rndc. conf file as shown here is created:

Start of rndc.conf
key "nsi.example.com" {
algorithm hmac-mds;
secret "tRNNxQ240B7Gwc/XhS+VLQ==";

};

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

options {
default-key "nsi.example.com";
default-server 192.168.2.3;
default-port 3396;

};

End of rndc.conf

Use with the following in named.conf, adjusting the allow list as needed:
key "nsi.example.com" {

algorithm hmac-mds;

secret "tRNNxQ240B7Gwc/XhS+VLQ==";

#};

#

controls {

inet 192.168.2.3 port 3396

allow { 192.168.2.3; } keys { "nsi.example.com"; };
#};

#

End of named.conf

The rndc-confgen utility helpfully outputs comments to indicate the required changes to
the named. conf file for the name servers being accessed, which, since they are comments, you
can leave in the file or, if they offend you, delete them. This file will work for ns1.example.com,
but to allow the same rndc. conf file to be used for ns2.example.com, we create another key
again using rndc-confgen (though we could use dnssec-keygen and some trivial editing).

rndc-confgen -k ns2.example.com -s 192.168.2.4 >>rndc.conf

This command again creates a 128-bit shared secret using the HMAC-MD?5 algorithm (the
rndc-confgen default) with a name of ns2.example. com. It also creates an additional options
clause that will be removed. The resulting output is appended to the rndc. conf file created by
the first rndc-confgen command as shown next (the comment line containing "// start of
second (appended) rndc.conf file" was added to indicate the split and would not be pres-
ent). The presence of multiple comment lines may appear confusing, but is an artifact of the
super-friendly rndc-confgen’s willingness to help the user. The output has been left intact,
since this reflects the real output from this sequence of commands:

Start of rndc.conf
key "nsi.example.com" {
algorithm hmac-mds;
secret "tRNNxQ240B7Gwc/XhS+VLQ==";

};

options {
default-key "nsi.example.com";
default-server 192.168.2.3;
default-port 3396;

1

End of rndc.conf

207

208

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

Use with the following in named.conf, adjusting the allow list as needed:
key "nsi.example.com" {

algorithm hmac-mds;

secret "tRNNxQ240B7Gwc/XhS+VLQ==";

#};

#

controls {

inet 192.168.2.3 port 3396

allow { 192.168.2.3; } keys { "nsi.example.com"; };
#};

#

End of named.conf

// start of second (appended) rndc.conf file
Start of rndc.conf
key "ns2.example.com" {
algorithm hmac-mds;
secret "oSbqEQ7KVw3PZ1lisH+g/XQ==";
};
options {
default-key "ns2.example.com";
default-server 192.168.2.4;
default-port 953;
};
End of rndc.conf

Use with the following in named.conf, adjusting the allow list as needed:
key "ns2.example.com” {

algorithm hmac-mds;

secret "oSbqEQ7KVw3PZlisH+g/XQ==";

#};

#

controls {

inet 192.168.2.4 port 953

allow { 192.168.2.4; } keys { "ns2.example.com"; };
#};

#

End of named.conf
To create the final rndc. conf file, three edits must be performed using your favorite editor:

1. Move the key clause for ns2.example.com to just below the key clause for
ns1.example.com (key clauses must always appear before they are referenced).

2. Add a server clause for ns2.example.com.

3. Delete the second options clause that was generated by the last rndc-confgen file,
which is not required.

The various comment fields from both rndc-confgen commands will be retained because
they provide some useful information. The final rndc. conf file will look as shown here (com-
ments beginning with // have been inserted to show the edits described earlier):

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS 209

Start of rndc.conf
key "nsi.example.com" {

algorithm hmac-mds;

secret "tRNNxQ240B7Gwc/XhS+VLQ==";
¥
// moved ns2.example.com key clause
key "ns2.example.com" {

algorithm hmac-mds;

secret "oSbqEQ7KVw3PZ1isH+g/X0==";
};

options {
default-key "nsi.example.com";
default-server 192.168.2.3;
default-port 3396;
};
server ns2.example.com { // create server clause
key ns2.example.com;
port 953; // required because of default-port in options clause
1
End of rndc.conf

Use with the following in named.conf, adjusting the allow list as needed:
key "nsi.example.com" {

algorithm hmac-mds;

secret "tRNNxQ240B7Gwc/XhS+VLQ==";

#};

#

controls {

inet 192.168.2.3 port 3396

allow { 192.168.2.3; } keys { "nsl.example.com"; };
#};

End of named.conf

// start of second (appended) rndc.conf file
Start of rndc.conf

// deleted second options clause

End of rndc.conf

Use with the following in named.conf, adjusting the allow list as needed:
key "ns2.example.com" {
algorithm hmac-mds;
secret "oSbqEQ7KVw3PZ1lisH+g/X0==";
};

controls {

inet 192.168.2.4 port 953

allow { 192.168.2.4; } keys { "ns2.example.com"; };
b

End of named.conf

R E E EE T N

210

CHAPTER 9 ©' DNS DIAGNOSTICS AND TOOLS

The two key clauses and controls clause must be made available in the named. conf file
for the respective name servers, ns1.example.comand ns2.example.com, as shown in the com-
ment lines. The key clauses used in both rndc. conf and named. conf are identical, so it is also
possible to use the actual key clause, not the commented versions, which will save some edit-
ing. To run rndc to connect to ns1.example.com (the default in the rndc. conf file), the following
command would be used:

rndc stop

This form of the command uses the defaults defined in the options clause to connect to
ns1.example.com and therefore requires no options. To run rndc with ns2.example.com, the fol-
lowing command would be used:

rndc -s ns2.example.com stop

This form uses the values defined in the server clause for ns2.example.com.

Note The rndc. conf file contains extremely sensitive shared-secret information and should be read
protected from nonessential users. The key clauses that will added to the named. conf files for the servers
nsi1.example.comand ns2.example.com should use the normal technique of placing them in a separate
file and including them in the named. conf file. The included files should then be read protected from
nonessential users.

The next section describes the commands that may be used with rndc.

rndc Commands

The rndc utility provides a number of commands to control the operation of the name server
as shown in Table 9-8.

Table 9-8. rndc Commands

Command Options Meaning or Use

dumpdb Dumps the cache to the default named_dump.db file in the
location defined by a directory statement (or the
location and file name defined by the dump-file
statement of named. conf).

flush [view] Without the optional view, flushes all current caches. If
view is used, it will only flush the cache for the specified
view name.

freeze zone [class [view]] Stops all dynamic updates on the zone and updates the

zone file with any outstanding entries in the . jnl file.
The dynamic update is reenabled with a thaw zone
command. A view within class may be optionally
selected.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

Command Options

Meaning or Use

halt

notrace
querylog
reconfig

refresh zone [class [view]]

reload [zone [class [view]]]

retransfer zone [class [view]]

stats

status

stop

thaw zone

trace [level]

Causes the name server to be immediately halted. The
name server cannot be restarted using an rndc
command.

Sets debug level to 0.
Toggles logging of all queries to the relevant log file.
Reloads the named. conf file and new zones only.

Schedules a zone transfer of a nominated slave zone.
May optionally define the class and view to be
transferred.

Reloads named.conf and all zone files but retains all
cache entries. If the optional zone parameter is used,
it will only reload the nominated zone, and the class
and view may be additionally selected.

Forces a zone transfer of a nominated slave zone. May
optionally define the class and view to be transferred.

Dumps current zone statistics to the default /var/named/
named.stats file (or the name defined in the statistics-
file statement of named. conf). Only valid if the
zone-statistics yes; statement appears in the

named. conf file.

Displays various information about the name server
including the current status of query logging.

Causes a graceful stop of the name server, allowing any
dynamic update and zone transfers to complete. The
name server cannot be restarted by an rndc command.

Enables dynamic updates to the specified zone. This is
issued after a freeze zone command. unfreezeisa
synonym for thaw.

If issued without the optional level parameter, this will
increment the current debug level by one. The level
parameter explicitly sets the debug level.

rndc-confgen Utility

The rndc-confgen utility is used to generate HMAC-MD5 shared-secret (symmetric) keys and
a shell rndc. conf configuration file for use with rndc. When the -a option is used, it creates a
default configuration (rndc.key file) for use with localhost access only. When used without the
-a option, rndc-confgen writes all output to stdout that must be captured to a file using a redi-
rection command. The output file contains comments describing the format of the inet
statement required in the controls clause of named. conf.

rndc-confgen Syntax

rndc-confgen [-a] [-b keysize] [-c key-file] [-h] [-k keyname] [-p port]
[-r randomdev] [-s address] [-t chrootdir] [-u user] [>outfile]

211

212

CHAPTER 9

DNS DIAGNOSTICS AND TOOLS

rndc-confgen Options

Table 9-9 describes the options available for use with the rndc-confgen utility.

Table 9-9. rndc-confgen Options

Option

Parameter

Meaning or Use

-a

>outfile

keysize

key-file

key-name

port

randomdev
keyboard

address

chrootdir

user

This option creates a configuration for use with rndc in its default
mode of operation (with localhost only). The file rndc. key is written
into the same directory as named. conf (and is read by both named and
rndc) and an rndc. conf. sample file, which may be edited for subse-
quent configuration of rndc.

Defines the key size for use with the HMAC-MD5 MAC algorithm. May
take a value in the range 1 to 512 and defaults to 128 if not defined.

When used with the -a option, defines an alternative file name (re-
places the default rndc. key). If this option is used, the key-file name
must be included in the named. conf file, since BIND only looks by
default for rndc.key.

Displays a list of the options and exits.

The key-name to be used when creating the key clause. The default is
"rndc-key", though some distributions change this to "rndckey".

The port number to be used for rndc connections. The default is 953.
This option overrides the default-port statement in the rndc.conf
file.

Defines the source of randomness used to generate keys. The
default is to use /dev/random, in which the OS captures randomness
(entropy) from various system events. If significant key generation
is being done, this source may become depleted, and the utility will
apparently freeze, waiting for entropy. Typing any characters on the
keyboard will allow the system to capture randomness from the typ-
ing intervals. Many systems also provide /dev/urandom, which is
faster but significantly less random, leading to less secure keys. If
neither device is present, the value keyboard may be used to force
use of the keyboard technique described earlier.

The IP address (IPv4 or IPv6) to which connection will be made. The
value overrides the default-server statement of the options clause
in the rndc. conf file.

Only valid with the -a option and defines the directory in which
BIND will be run chrooted; that is, directory will be the same value
as used with BIND’s -t command-line option for defining a chroot
base directory. A copy of the rndc. key file is placed in this directory.

Defines the user (UID) name whose permission will be applied to
the rndc. key file. If used in conjunction with the -a option, only the
copy in the -t directory will be allocated the defined user (UID)
permission.

If used without the -a option, output from rndc-confgen is written
to stdout, and therefore the standard redirection command will
capture the data to the outfile name.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

BIND nsupdate Utility

The nsupdate utility allows dynamic updating of the zone files for which the name server is the
Primary master—the name server that appears on the SOA RR for the zone. nsupdate typically
accepts commands from the console but may optionally be used to read commands from a
batch file. Zones may not be added or deleted using nsupdate, but a zone’s SOA RR may be
edited. Zones being dynamically updated should not be manually edited. Should manual edit-
ing be required, the server should be stopped, the manual edit carried out, the . jnl1 files for
the zone deleted, and the server restarted; alternatively, you could use the rndc freeze zone
command, edit the zone, delete any . jnl files for the zone, and then use rndc thaw/unfreeze
zone to enable dynamic updates for the zone. nsupdate uses UDP by default, but if the update
is greater than 512 bytes, TCP will be used. nsupdate may be secured using either TSIG or SIG(0)
transaction security—both methods, including illustrative examples, are described in Chap-
ter 10. The keys used in both TSIG and SIG(0) are generated using the dnssec-keygen utility.
Dynamic updates are controlled by the allow-update or update-policy statements in view,
options, or zone clauses of the named. conf file (see Chapter 12). Dynamic updates can be per-
formed on both normal and signed (DNSSEC) zones as described in Chapter 11.

nsupdate Syntax

nsupdate [-d] [-k key-file | -y keyname:secret |] [-1 udpretries] [-t timeout]
[-u interval] [-v] [filename]

nsupdate Options
Table 9-10 defines the options available with the nsupdate utility.

Table 9-10. nsupdate Options

Option Parameter Meaning or Use
-d Turns on debug mode.
-k key-file Defines the name of the key-file output when the dnssec-keygen

program that created the key was run. This option must have the
.private suffix appended on the command line, but both the .key
and .private files must be available in the same directory.

-r udpretries Defines the number of retries for a dynamic update. The default is
3. The value of 0 means no retries are attempted.

-t timeout Defines the time in seconds before the update is regarded as having
failed. The default is 300. The value 0 will disable timeout checking.

-u interval If an update fails, this option may be used to define the time in
seconds between retries. The default is 3.

-v By default, nsupdate will use UDP unless the block size is greater
than 512 bytes, in which case TCP will be used. This option forces
use of TCP for all updates.

Continued

213

214 CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

Table 9-10. Continued

Option Parameter Meaning or Use

-y keyname:secret Allows a shared secret to be entered on the command line. This is a
dangerous option and should only be used if there is no alternative.
The keyname field is the name as it appears in the receiving server’s
key clause, and secret is the base64 material that comprises the
secret key!

filename The optional filename may be used to supply update commands
from a nominated file. The default is to accept commands from
stdin (the console).

nsupdate Command Format

nsupdate commands define the environment, the RRs to be deleted or added, and any required
conditions (prerequisites) for the updates to take place. The prerequisites are optional and allow
checks to be performed before the update is executed. Commands are built locally and only sent
using either the send command or a blank line. Any number of RRs (and the required prerequi-
sites) may be added or deleted in a single send operation, or individual RRs may be added or
deleted in a single send operation.

The command formats and their meaning are defined in Table 9-11.

Table 9-11. nsupdate Commands

Command Parameter Meaning or Use

answer Displays the results of the last send operation.
class INICHIHS The zone class. The default is IN.

local address [port] If not specified, the nsupdate utility sends updates

using a random port number on the configured IP
address for the host. This option may be used to
define a specific IP and optionally a port number.

key name secret Has the same meaning and overrides the value of the
-y option on the nsupdate command line.

prereq nxdomain name The following update add or update delete com-
mands will only be executed if the defined name does
not exist in the zone.

prereq yxdomain name The following update add or update delete
commands will only be executed if the defined name
does exist in the zone.

prereq nxrrset name [class] type The following update add or update delete
commands will only be executed if the defined name
and RR type do not exist in the zone. class is optional
and, if not present, defaults to IN.

prereq yxrrset name [ttl] type The following update add or update delete
commands will only be executed if the defined name
and RR type do exist in the zone. class is optional
and, if not present, defaults to IN.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

CGommand

Parameter

Meaning or Use

prereq yxrrset
quit
send

Server

show
update add

update delete

zone

name [ttl] type data

server-name [port]

name [ttl] [class]
type data

name [ttl] [class]
type data

Zone-name

The following update add or update delete
commands will only be executed if the defined name,
RR type, and data do exist in the zone.

Terminates the nsupdate utility.

Sends the current command or commands,
equivalent to a blank line being entered.

Defines the name server to which the updates will be
sent until the next server command is issued. The
optional port parameter may be used to override the
default port (53). If not specified, nsupdate will send
updates to the Primary master name server for the
Zone.

Displays the last send operation.

The RR to be added as it will appear in the zone file,
for instance, update add fred 8600 IN A 192.168.2.3.

The RR that should be deleted, for instance, update
delete fred A 192.168.2.3.

Defines the name of the zone that will be used for
subsequent updates until another zone command is
issued. If not supplied, nsupdate will attempt to guess
the required zone from the update add and update
delete commands.

nsupdate Example

The following sequence is used to add an MX record and its corresponding A RR for the
domain example.com and is secured using SIG(0)—see Chapter 10:

cd /var/named/dynamic
nsupdate -k Kexample.com.+001+00706.private
server nsi.example.com

update add example.com. 36000 IN MX 10 mail2.example.com.

send
show

#
>
> zone example.com
>
>
>

Outgoing update query:
;5 ->>HEADER<<- opcode: UPDATE, status: NOERR id: O

;; flags: ; ZONE: 0, PREREQ: 0, UPDATE: 0, ADDITIONAL: 0
> update add mail2 36000 IN A 192.168.2.5

> send
> show

Outgoing update query:
;5 ->>HEADER<<- opcode: UPDATE, status: NOERR id: O
;5 flags: ; ZONE: 0, PREREQ: 0, UPDATE: 0, ADDITIONAL: O

> quit

215

216

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

dnssec-keygen Utility

The dnssec-keygen utility is a general-purpose cryptographic key generation utility that gener-
ates keys for use with TSIG, SIG(0), TKEY, and DNSSEC (DNSSEC.bis) operations (see Chapters
10 and 11) and well as generic KEY or DNSKEY RRs and, with a modest edit, also for IPSECKEY
RRs. When the utility is run, it outputs a key-file reference. The key-file is used subsequently
in dnssec-signzone and other commands, and references two files created in the current work-
ing directory (the directory from which the command was run) with the following names:

Khostname.+algorithm+key-tag.private
Khostname.+algorithm+key-tag.key

where K is a fixed identifier, hostname is the host name value in FQDN format (terminated with
a dot) from the dnssec-keygen command line (see “dnssec-keygen Options” later in this chap-

ter), and + is a fixed separator. algorithmis a three-digit number identifying the key algorithm
specified in the command line and takes the following values:

001 = RSA-MD5

002 = Diffie-Hellman
003 =DSA

005 = RSA-SHA-1

157 = HMAC-MD5

The next + is a fixed separator, key-tag is a five-digit value (generated with a modified one’s
complement algorithm) used to identify this key from others that may have the same hostname.
The key-tag is used explicitly, implicitly in other places, in the Delegated Signer (DS) RR of
DNSSEC.bis (see Chapter 11).

The .private file contains the private key of a public key (asymmetric) algorithm, for
example, RSA-SHA-1, or the shared secret in a symmetric algorithm, for example, HMAC-MD5.
The .key file contains a formatted KEY or DNSKEY RR, depending on the -k and -n arguments
that follow such that the file may be directly included in a zone file using the $INCLUDE directive
(see Chapter 13).

Caution The dnssec-keygen utility always generates .private and . key files. When used with a
shared-secret (symmetric) algorithm such as HMAC-MD5 for use in TSIG operations to secure DDNS or zone
transfers, the . key file will contain a KEY RR with the shared secret! This is a potentially dangerous file and
must not be included in any zone file; instead, it should be deleted immediately unless there is a very good
reason to retain it, in which case it must be secured.

The .private file of any public key system contains highly sensitive information, and when it
has been used for, say, zone signing, should be taken off-line, which may mean physically remov-
ing it from the system or moving to another location and securing with appropriate privileges.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

When using dynamic update with signed zone files, however, the . private file of the Zone Signing
Key (ZSK) must be on-line at all times and should be secured with minimal read permissions.

dnssec-keygen Syntax

dnssec-keygen -a algorithm -b keysize -n type [-c class] [-e]
[-f flag] [-g generator] [-h] [-k] [-p protocol]
[-r randomdev] [-s strength] [-t type] [-v level] hostname

dnssec-keygen Options

Table 9-12 shows the various options available with the dnssec-keygen utility.

Table 9-12. dnssec-keygen Options

Option Parameter Meaning and Use

-a algorithm Defines the cryptographic algorithm for which the key is being
generated and may take one of the following case-insensitive values:
RSAMDs: Digital signature using MD5 digest and RSA public key
(asymmetric) cryptography
RSASHA1: Digital signature using SHA-1 digest and RSA public key
(asymmetric) cryptography
DSA: Digital signature using NIST Digital Signature Architecture
DH: Diffie-Hellman public key (asymmetric) cryptography
HMAC-MD5: Shared-secret Message Authentication Code (MAC) with
MDS5 digest

-b keysize Specifies the number of bits to be used in the key and depends on the
algorithm being used:
RSA-MD5 range 512 to 2048 (current RSA recommendation is 1024
but this changes over time)
RSA-SHA-1 range 512 to 2048 (current RSA recommendation is 1024
but this changes over time)
DSA range 512 to 1024 (must be a multiple of 64)
DH range 128 to 4096
HMAC-MD5 range 1 to 512

-C class Defines the class of the KEY or DNSKEY RR generated. The default is
IN. May take the case-insensitive value IN (Internet), CH (CHAOS), or
HS (HESIOD).

-e Valid only with RSA-MD5 and RSA-SHA-1—and specifies to use a
large exponent when generating the key. Some cryptographic papers
have suggested that use of a large exponent is more secure, but
significantly increases computational resources required. The default
is to use a normal exponent.

-f flag Defines a flag to be set in the flags field of the resulting DNSKEY or
KEY RR. The only value currently supported is KSK, which defines for
DNSSEC.bis operations that this a Key Signing Key, or KSK (see Chap-
ter 11). The value of the flags field (see Chapter 13) will be set to 257
if this option is defined—indicating the SEP bit is set.

-g generator Used only for the Diffie-Hellman algorithm. Value may be either 2 or 5
and defines the generator of the prime number used in the algorithm.
The default is to use the values defined in RFC 2539 and, if not
possible, to use the value 2.

Continued

217

218

CHAPTER 9

DNS DIAGNOSTICS AND TOOLS

Table 9-12. Continued

Option

Parameter

Meaning and Use

-h
-k

-V

hostname

rr-type

protocol

randomdev
keyboard

strength

type

level

Outputs a summary of the dnssec-keygen options and exits.

If present, a KEY RR will be created in the . key file; if not present,
a DNSKEY RR will be created. If the algorithm being used is either
HMAC-MD5 or DH, the -k option is defaulted, thus creating a KEY RR.

Determines, together with the -k option, the value of the flags field
on the KEY or DNSKEY RR created (see Chapter 13). Table 9-13 shows
the possible values of rr-type (case insensitive) with the flags field
and RR type generated.

Defines the value of the proto field used in the KEY and DNSKEY RRs
(see Chapter 13). This is currently restricted to the value 3, which is
the default. This field had a historic usage in the KEY RR that was
limited to the value 3 by RFC 3445.

Defines the source of randomness used to generate keys. The default
is to use /dev/random, in which the OS captures randomness (entropy)
from various system events. If significant key generation is being done,
this source may become depleted, and the utility will apparently freeze,
waiting for entropy. Typing any characters on the keyboard will allow
the system to capture randomness from the typing intervals. Many
systems also provide /dev/urandom, which is faster but significantly
less random, leading to less secure keys. If neither device is present,
the value keyboard may be used to force use of the keyboard technique
described earlier. The default is to use /dev/random if it exists.

Not currently used. Defines the strength of the generated key and
may take the value 0 to 15.

No known current use. The default is AUTHCONF (authenticate and
encrypt). May take the values AUTHCONF, AUTH, CONF, NOAUTH, and NOCONF
NOAUTHCONF.

Defines the debugging level and may take the values 0 to 3.

Defines the name of the KEY or DNSKEY RR that will be generated.
For ZSKs and KSKs used in DNSSEC.bis operations, this will be the
zone apex; for example, if the zone name is subdomain.example.com,
then hostname will be subdomain.example.com. In TSIG operations, the
name used is defined in the key clauses of the peers and may be
hostname or any other suitable value.

Table 9-13 shows the results of using the -n and the -k option values (the X indicates the
rr-type is rejected) together with the value of the flags field.

Table 9-13. Key RR Matrix

-n no -k -k

host (or entity) X 512 (KEY)
other 0 (DNSKEY) X

user X 0 (KEY)
zone 256 (DNSKEY) 256 (KEY)

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

RFC 3445 defines the valid flag field values to be 0, 256, and 257, so the host flags field
in Table 9-13 will be interpreted as 0 or exactly the same as the user value. DNSSEC.bis ZSKs
and KSKs use the zone value (without -k), and normal KEY RRs use user (or host if you prefer
a change).

dnssec-keygen Examples

The following command will generate a shared secret for use with TSIG operations (when -a
hmac-mds is used, a KEY RR is always generated, so the -k option is not required):

dnssec-keygen -a hmac-md5 -b 128 -n user example.com
Kexample.com.+157+23417

The following command will generate a public/private key pair using the DSA algorithm
for use, say, as a KSK in DNSSEC.bis. It creates a DNSKEY RR with a flags field of 257:

dnssec-keygen —a dsa -b 1024 -f KSK -n zone example.com
Kexample.com.+003+03733

The following command will generate a public/private key KEY RR for use with, say, SIG(0)
dynamic update (DDNS) security using the RSA-SHA-1 algorithm:

dnssec-keygen —a rsashal -b 1024 -k -n user bill.example.com
Kexample.com.+005+03733

dnssec-signzone Utility

The dnssec-signzone utility secures a zone file by cryptographically signing it using a public key
(asymmetric) algorithm for use in DNSSEC signed zones (see Chapter 11). Zones are signed
using one or more Zone Signing Keys and optionally one or more Key Signing Keys. Use of sep-
arate ZSKs and KSKs is the currently IETF recommended best practice. The utility performs the
following tasks:

1. Sorts the RRs into canonical order (alphabetic based on name).

2. Adds an NSEC RR for each name in the zone file such that it is possible to chain through
the list of all valid names. This process provides proof of nonexistence of any name.

3. Signs each RRset in the zone file by adding an RRSIG RR (a digital signature), including
the NSEC RRs added in Step 2, using the ZSK.

4. Signs the DNSKEY RRset comprising the ZSK and KSK at the zone apex or root with the
KSK—if requested.

5. Optionally creates (through the -g option) files containing the DS RR and the KSK for
use by the parent zone to create a chain of trust.

6. Writes a signed zone file. The default is to append .signed to the zone file name.

219

220

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

The RRSIG RRs that sign each RRset (in Step 3) have a start time value (when they become
valid) and an end time value (when they expire). By default, time dnssec-signzone uses the UTC
value of the local run time minus 1 hour (for clock skew) as the start time and the end time is
set to the start time plus 30 days. If nothing else is done to the signed zone file, it will become
invalid after this period. Both start and end values can be changed by options described in
Table 9-14. The input zone file, the zone file to be signed or re-signed, may be an unsigned zone
file, or it can be a signed zone file. If it is a signed file, then existing signatures may be renewed,
depending on their remaining period of validity. The default behavior is that any signature that
has less than one quarter of its time remaining will be renewed to either the default (30 days) or
a user-defined value. Thus if the original signature period was 30 days, then only RRSIG RRs
with less than 7.5 days remaining will be renewed.

If the ZSK and KSK values to be used in the signing process are not defined explicitly, the
dnssec-signzone command will use any DNSKEY value in the zone file for which it can find a
corresponding private key in the current directory to sign the file. While leading to much shorter
command lines (and the dnssec-signzone command line can get to be pretty big), it is always
better to explicitly define the ZSK and KSK values in the command line to ensure that the results
are as expected. This is especially true when key rollovers are being processed (see the section
“Secure Zone Maintenance” in Chapter 11) when inactive DNSKEY RRs may be present in the
zone file.

All time values used in dnssec-signzone operations are relative to Universal Coordinated
Time (UTC, historically known as GMT or Greenwich Mean Time), so it is vital that both the
name server clock is correctly synchronized to a suitable time source, for instance, using NTP
or the ntpdate command, and that the time zone is correctly configured on the system.

Note If a signed file, say, master.example.com.signed, is input to a dnssec-signzone command, the
output file will, unless changed by the - option described in Table 9-14, be master.example.com.signed.
signed—perhaps not the desired result.

dnssec-signzone Syntax

dnssec-signzone [-a] [-c class] [-d directory] [-e end-time]
[-f output-file] [-g][-h] [-i interval] [-k ksk-key-file]
[-1 domain] [-n threads] [-oorigin] [-p] [-r randomdev]
[-s start-time] [-t] [-v level] [-z] zonefile [zsk-key-file.]

dnssec-signzone Options

Table 9-14 describes the options available with the dnssec-signzone utility.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

Table 9-14. dnssec-signzone Options

Meaning and Use

Option Parameter
-a

-C class

-d directory
-e end-time

-f output-file
-8

-h

-i interval

-k ksk-key-file
-1 domain

Verifies the generated signatures. A new zone file is not written.

The default is IN, but this may take the standard optional values of
CH (CHAOS) or HS (HESIOD).

Looks for key-files in the defined directory as opposed to the current
working directory.

Defines the time the RRSIG RRs will expire; defaults to 30 days,
but may be overridden with this option. May take the format
YYYYMMDDHHMMSS or +secs (seconds from -s start-time)
or now+secs (seconds from current run time).

Defines the file name of the signed zone file to be created. The default
output file name is the zone file name with .signed appended to it;
for instance, if the zone file name is master.example. com, the default
output file name is master.example.com.signed. When signing (or re-
signing) a signed zone, this value should be the same as the input file
name to avoid changes to the named. conf file.

If present, generates files containing the DS RR and the DNSKEY RR
to be used by the parent zone when creating a chain of trust. The files
are named dsset-domain. and keyset-domain. (both files names ter-
minate with a dot) where domain is the value of the -o domain option.

Displays a short description of each option available and terminates.

Defines the time in seconds after which RRSIG RRs will be retained;
otherwise they will be renewed. The default is to take one quarter of
the time from the RRSIG start to its expiry. Thus if the default differ-
ence of 30 days is being used, any record having more than 7.5 days
remaining will be retained; else it will be re-signed for another 30 days
or the value defined by the -s and -e options. The -i option may be
used to explicitly change the time at which records are re-signed, thus
-1 3600 will retain (not re-sign) any RRSIG that has more than 1 hour
remaining, and -i 2419200 will only retain RRSIG RRs that have more
than 28 days remaining. All others will be re-signed.

Defines the key to be used as the KSK (ignores the value of the flags
field in its DNSKEY RR) where key-file is the name of the key gen-
erated by the dnssec-keygen utility. This key will be used to sign the
DNSKEY RRset at the zone apex and to generate any required DS RRs
for use in a chain of trust (if the -g option is used). The -k option may
appear more than once if a zone is double-signed (see Chapter 11).
The key-file name is used without either the .key or .private suffix
(see examples that follow). If this option is not present, dnssec-signzone
will attempt to guess the key by inspecting the flags field of the
DNSKEY RRs in the zone, but it is much safer to control the behavior
using this option at the expense of longer command lines.

Generates a DNSSEC Lookaside Validation (DLV) record set in a file
named dlvset-domainname. DLV is an experimental RR type that replaces
the normal DS RR with a DLV RR (similar in every respect), which is
added to a unique zone controlled by use of the dnssec-1lookaside
statement in the named. conf file. The domain value is appended to the
zone name for all KSK keys in the zone file; that is, if the zone name is
example.comand, say, -1 dlv.example.net isused, then the DLV RR name
is example.com.dlv.example.net. (DLVis described in Chapter 11.)

Continued

221

222

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

Table 9-14. Continued

Option Parameter

Meaning and Use

-n threads

-0 origin

- randomdev
keyboard

-s start-time

Y level

zonefile

zsk-key-
file

By default, a single thread is started for each CPU detected. This can
be overridden using the threads value.

Defines the name of the zone apex. If not specified, the name of the
zone file is assumed to be the zone origin.

Uses pseudo random data; while faster, this is significantly less secure
and in general should only be used if a suitable, ample supply of en-
tropy is not available to the server on which the dnssec-signzone is
being executed.

Defines the source of randomness. The default is to use /dev/random,
in which the OS captures randomness (entropy) from various system
events. If this source becomes depleted, the utility will apparently
freeze, waiting for more entropy. If this happens, typing any charac-
ters on the keyboard will allow capturing of randomness from the
typing intervals. Many systems also provide /dev/urandom, which is
faster but significantly less secure. If neither device is present, the
value keyboard may be used to force use of the keyboard technique
described earlier. The default is to use /dev/random if it exists.

Defines the time the RRSIG RRs will become valid. The default is UTC
minus 1 hour for clock skew, but it may be set explicitly using this
option. May take the format YYYYMMDDHHMMSS or +secs (seconds
from current run time).

Prints statistics on completion of the zone signing.
May take the value 1 to 3 for various levels of debugging.

Ignores KSK (SEP) flag on keys found in DNSKEY RRs. Setting this
option allows a KSK to be used as a ZSK, but by ignoring the SEP flag,
it does not perform the KSK signing function even if a -k option is de-
fined. To avoid problems, DNSKEY RRs should always have the correct
flags set, which is controlled by the dnssec-keygen utility options.

The name of the zone file containing the records to be signed. May be
an unsigned or a signed zone file. This file name may be the same as
that used on the -f option if required—if signing a signed zone file, it
may be convenient to retain the same zone file name on the output
file to save changing the named. conf file.

Defines the key-file name (generated by the dnssec-keygen utility)

to be used as the ZSK. The ZSK may be omitted, in which case every
.private file found in the current directory with a corresponding
DNSKEY RR in the zone file that has the ZSK bit set (flags value of 256
or 257) will be used to sign the zone file. At the expense of longer com-
mand lines, it is safer to explicitly define the key to be used in all cases.
Multiple zsk-key-file values may be used to allow signing with mul-
tiple keys.

dnssec-signzone Examples

The following examples illustrate the use of the dnssec-signzone utility. The first example
signs the zone file master.example.com using a separate KSK and ZSK, both of which are in
the current working directory using the default 30-day signature period.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

dnssec-signzone -k Kexample.com.+003+12456 -0 example.com \
-t master.example.com Kexample.com.+005+03556
master.example.com.signed

Signatures generated: 20
Signatures retained: 0
Signatures dropped: 0
Signatures successfully verified: 0
Signatures unsuccessfully verified: 0
Runtime in seconds: 0.357
Signatures per second: 53.079

The \ in the preceding example splits the line for presentation purposes only. The com-
mand should appear as a single line to the operating system. In the preceding example, the
-t option shows the typical statistics output by the utility. The next example shows use of
the end time option to provide a 90-day validity period; separate ZSKs and KSKs are used:

dnssec-signzone -k Kexample.com.+003+12456 -0 example.com \
-e 7776000 -t master.example.com Kexample.com.+005+03555

The \ in the preceding example splits the line for presentation purposes only. The com-
mand should appear as a single line to the operating system. The -e option could have been
specified as, say, 20050614110523 (using the date format) if that is more convenient; however,
assuming the zone signing policy is fixed (that is, it is always 90 days), the time in seconds is
calculated only once rather than adding 90 days to the current date on every run! The following
example shows signing the zone with two KSKs and two ZSKs (the line is split with \ for presen-
tation reasons only). The example also requests a DS keyset (the -g option) for sending to the
parent. The resulting dsset-example. com. file will contain two DS RRs, one for each of the KSKs:

dnssec-signzone -k Kexample.com.+003+12456 -k Kexample.com.+005+33789 \
-g -0 example.com -t master.example.com Kexample.com.+005+03556 \
Kexample.com.+005+44776

The \ in the preceding example splits the line for presentation purposes only. The com-
mand should appear as a single line to the operating system. In this example, the DNSKEY
RRset at the zone apex will be signed four times, and all other RRsets signed twice for use in
double-signing key-rollover strategies, which are described in Chapter 11.

Diagnosing DNS Problems

DNS problems can come in many shapes and sizes—no single method fits all. Instead, this
section approaches DNS diagnosis in two ways:

1. What to do before the problem happens: This covers both fault prevention and having
the necessary tools and information available before a problem occurs.

2. What to do when a problem occurs: Some techniques that may help isolate the prob-
lem will be presented.

223

224

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

Finally, the section looks at a relatively nasty problem that may happen increasingly in the
future—in this case, a secure zone’s signature has expired—and shows how it is also simple to
interpret information incorrectly.

Before the Problem Happens

A number of sensible precautions can be taken before any problem happens that may allow
you to avoid, or at the very least minimize, the headless-chicken act that can occur if you are
told that your domain is unreachable.

Log All Changes

Comment features are available in zone files, named. conf, and all other files that may be used
in DNS configurations. Keep a log in the file of each change made to the file. Using the file
rather than, or as well as, a paper record means the information (usually) cannot be lost or
mislaid! As a minimum, the change should contain the date, the name or initials of the person
who made the change, and what changes, no matter how trivial, were made to the file. Proba-
bly the majority of problems in relatively stable systems arise from a simple change—they are
always simple—that had an unintended side effect. Close examination of the change logs may
be the fastest way to resolve the problem. Dynamic update can present a problem, but there
are strategies available to help here also (see “Logging”).

Back Up Files

While it might sound trivial, regular backup of all the major configuration and zone files is
essential. CVS or a conventional backup program can be used for this process.

Logging

Design and configure your logs to ensure you have enough data to let you diagnose any prob-
lem that may have occurred without—and there will always be exceptions to this—having to
reconfigure your logs, and then try and reproduce the problems. BIND’s logging features are
extremely powerful, particularly the ability to control the number and size of the files produced
if you are short on disk space. As a general rule, keep at least three days of logs and log as much
information as practical (severity info or lower in the channel statement). Stream the logs if
that makes operational sense. Many administrators don't like doing this since they want an
overall picture of what is happening from a single log rather than having to look at multiple logs
and synchronize times. As a minimum, use the print-category yes;, print-severity yes;,
and print-time yes; features of the channel statement. If dynamic updates are being used, it is
seriously worth considering streaming this log using a category update statement as shown in
the following fragment:

logging {

channel example-update {

file "/var/log/named/update.log" versions 3 size 1im;
severity info;

print-time yes;

print-severity yes;

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

print-category yes;
b
category update{
example-update;
b

b

Understand what a normal log looks like. Take some time to review a log file for a normal
operational period. If the first time you look at a log is when a problem has been reported, you
have no real basis for spotting abnormalities.

Tools

Always run named-checkconf after any named. conf changes. It won't find everything, but it will
pick up those trivial errors. The alternative is to let the BIND reload find the single missing
semicolon in your 200-item change and take your name server off-line while you are thrashing
around in the bowels of vi (or whatever your favorite editor is) trying to fix it before anyone
really notices.

Take the time to get thoroughly familiar with either dig or nslookup before you need to
use them. Which one you select is a matter of preference and may be a function of what sys-
tems you have available or may need to work with. nslookup is typically available on Windows
and dig is not. If you only work on Linux, Unix, or BSD and are using DNSSEC, you have no
choice: dig is the only utility that supports DNNSEC.

External Sources

Always keep a list of two or three recursive name servers handy at all times that you can use as
an alternative source for dig commands (for instance, dig @ns2.example.net www.example.com)
to diagnose your own domain. Such recursive servers are usually provided by major ISPs and
other service providers and can help you triangulate where a problem may be coming from or
which users it may be affecting.

Similarly, make sure you keep the names of a couple of whois servers (your favorite domain
registration web site should also provide such a service) so that you verify the domain has not
expired—yes, it does happen, especially where you may not be the responsible authority.

When the Problem Occurs

So the fateful day arrives and you get the call that you dreaded—you are told that your domain
is unreachable. So after the panic attack, what should you do? Unfortunately, there is no single
solution. While there is usually a tendency to jump into action, always resist it. Too many admin-
istrators confuse the words “action” and “progress.” Remember the old doctor’s adage, “Do no
harm.” Unless you know what you are doing and why you are doing it, you may make the prob-
lem worse than it was! Instead, the following sections list in rough priority what you can do to
try and find the cause.

225

226

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

Make No Assumptions

Take nothing for granted and verify immediately before you even talk to anyone that as far as
you are concerned everything is operational—name servers, web sites, mail servers, backbone
links, routers, firewalls, etc.

Describe the Problem

Establish the precise nature of the problem: Does it happen all the time? When did it start to
happen? What software was being used (for instance, a browser)? Can users still access e-mail
or use some other domain-based services? What is their local DNS configuration and addresses?
If they bypass the DNS, can they still access, say, the web site using an explicit URL? All this is
designed to try and get a precise picture of what is happening.

Scope the Problem

Establishing the scope of affected users is a vital step. Is it all users everywhere or just a single
group of users? Is there a common DNS involved (which may be poisoned), or does it affect
everyone? Is it a single zone or all zones on a name server?

Once you know where to start looking, you can decide whether log inspection and/or DNS
inspection are the most appropriate techniques to use next.

Check Your Logs

Assuming that yours is a disciplined operation, check for recent changes in configuration; for
instance, check the change logs in the zone and named. conf files, or whatever process you use
for change control. Now it is time to take a look at the BIND logs.

The first step is to verify your logs for around the best time that you think the problem
started and work forward. In the first instance, this should probably just be a rudimentary
check for any obvious error messages and failures. BIND logs are reasonably good and output
lengthy text messages describing a problem—it may not always describe the actual problem,
but it will at least give you an indication of where to start looking. The following log fragment
may serve to illustrate:

updating zone 'example.com/IN': adding an RR at 'www.example.com' A
updating zone 'example.com/IN': could not get zone keys for secure dynamic update
updating zone 'example.com/IN': RRSIG/NSEC update failed: permission denied

The preceding example (the date and time have been removed for brevity) occurred when
using secure dynamic update with a DNSSEC signed zone. The actual error is described by the
second log entry; the third log entry merely describes the effect of the error. In the preceding
case, the zone key being requested was indeed present and in the correct directory. At first blush,
the log message was incorrect; however, further examination of the file containing the zone key
showed that its permissions were incorrect. The log message was correct in that it described the
effect of the error—BIND could not read the key in this case because it was denied permission.
Sure, it would have been nice if the message had said “Permission denied,” but we cannot have
everything in life.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

Start Digging

Either dig or nslookup are the next tools if nothing obvious has turned up in the log. Start
by using a dig (or nslookup) at all the authoritative name servers for the domain for both
the domain apex and the particular RR that may be having a problem, say www.example.com.
The following commands assume the ubiquitous example.com domain with name servers of
nsi.example.com (IP 192.168.2.3) and ns2.example.com (IP 192.168.54.3). The following two
commands will give you a quick picture:

dig @nsi.example.com example.com any
dig @ns2.example.com example.com any

The first thing to note in the dig output is whether the IP address associated with
nsi.example.comand ns2.example.comresolve to the actual IPs for the two servers, which indi-
cates the local name server is working correctly. If the name format is used, dig will use your
locally configured name server to perform the lookup of ns1.example.comand ns2.example.com.
If your domain has been hijacked or corrupted, these may not resolve correctly, and your first
pointer may be already visible. Check that the SOA serial number, the A RRs for the name servers,
and any other RRs such as MX are all correct and as expected. Finally, check that the aa (Auth-
oritative Answer) flag in the >>HEADER<< section is present. Repeat using the IP address of the
name servers:

dig 0192.168.2.3 example.com any
dig 0192.168.54.3 example.com any

Confirm that the data is the same for the two sets of outputs. If all is correct so far, verify
any failing record such as www.example.com using the following two commands:

dig 0192.168.2.3 www.example.com any
dig 0192.168.54.3 www.example.com any

While it is possible to either omit ANY from the preceding command (it defaults to a) or
use the value a, it is always better to use the value ANY, which will return all RRs with the pre-
ceding name and can occasionally yield very interesting results. Confirm that the values are
the same in both responses and correct and that again the aa flag is set.

The preceding process has essentially eliminated the authoritative name servers from the
problem, and it is time to start looking further afield. Locate one or more name servers that
are being used by any affected users—you can get this information from /etc/resolv.conf on
Linux, Unix, or BSD systems, or through Network Properties or using the ipconfig command
on most Windows systems. Use the following dig commands with the IP address of this partic-
ular name server, assumed in this case to be 192.168.254.1:

dig 0192.168.254.1 example.com any
dig @192.168.254.1 example.com soa
dig 0192.168.254.1 www.example.com any

227

228

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

Confirm that the data is the same as that provided from the authoritative name server.
It should be exactly the same with the exception that the aa flag would not be typically set; if
it is set, immediately repeat the dig command and it should disappear. The reason it may be
set is that when a caching name server supplies any RR that it obtains directly from an author-
itative server, the aa flag is set; if it is supplied from its cache, it will not be set. Thus if set on the
first dig, the cached RR may have timed out and been reread from the authoritative servers,
whereas the second dig must have obtained it from the cache, and therefore the aa flag will
not be set. While authoritative name servers will provide SOA RRs using the ANY query type
when accessing a caching server, they will typically only provide the NS RRs, and all others,
the SOA in this particular case, will have to be explicitly requested.

Diagnosing the Problem

This brief example illustrates diagnosis of a particular problem—in this case, a DNS security-
related problem. While this may seem a little obscure for many users, it does illustrate a number
of points of general interest when diagnosing DNS-related problems, the first one of which is
make no assumptions. The second is that, with the increasing use of DNSSEC, there exists two
separate worlds: a security-aware world and a security-oblivious world. Both coexist and may not
even be aware of each other until it really matters.

The scenario is that a client of ours is having a problem reaching a particular web site,
www. example.com, and the problem started happening about two hours ago. We do not own the
domain example.com and know nothing about it, but since we know something about name
servers, we have been asked to help. The client is using a caching name server with an address
0f 192.168.2.3. We checked the web site from our location and we can get the web site perfectly.
We use dig to check the address as normal:

dig www.example.com

5 <<>> DiG 9.3.0 <<>> www.example.com

;5 global options: printcmd

;5 Got answer:

55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1957

55 Tlags: qr aa rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 2, ADDITIONAL: 2

55 QUESTION SECTION:
swww.example.com. IN A

55 ANSWER SECTION:

www.example.com. 86400 IN A 10.1.2.1
www.example.com. 86400 IN A 172.16.2.1
www.example.com. 86400 IN A 192.168.2.5
www.example.com. 86400 IN A 192.168.254.3

55 AUTHORITY SECTION:
example.com. 86400 IN NS nsi.example.com.
example.com. 86400 IN NS ns2.example.com.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS 229

5, ADDITIONAL SECTION:
nsi.example.com. 86400 IN A 192.168.2.6
ns2.example.com. 86400 IN A 192.168.23.23

55 Query time: 15 msec

55 SERVER: 192.168.254.2#53(ns1.example.net)
553 WHEN: Thu Jun 02 17:20:36 2005

553 MSG SIZE rcvd: 165

Now we just made two mistakes with this command; the first is we did not use the name
server of our client (192.168.2.3)—though in this case it would have made no difference to our
results—and the second was we made the assumption that the A record was the important
one. By simply changing the dig command we issue to use ANY, not the default (a), this is the
output we get:

dig www.example.com any
55 Truncated, retrying in TCP mode.

; <<>> DiG 9.3.0 <<>> www.example.com any

;5 global options: printcmd

;5 Got answer:

55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1725

;5 Tlags: qr aa rd ra; QUERY: 1, ANSWER: 8, AUTHORITY: 2, ADDITIONAL: 2

55 QUESTION SECTION:
swww.example.com. IN ANY

55 ANSWER SECTION:

www.example.com. 86400 IN A 10.1.2.1

www.example.com. 86400 IN A 172.16.2.1

www.example.com. 86400 IN A 192.168.2.5

www.example.com. 86400 IN A 192.168.254.3

www.example.com. 86400 IN RRSIG A 5 3 86400
20050629162118 (Y43c=)

www.example.com. 3600 IN NSEC example.com. A RRSIG NSEC

www.example.com. 3600 IN RRSIG NSEC 5 3 3600 20050629161227 (
20050530151227 3977 example.com.
Snz396ZkmDaB6q4v9PHAMpZuPOKDsh1j71oPXL4=)

www.example.com. 3600 IN RRSIG NSEC 5 3 3600 20050629161227 (
20050530151227 12513 example.com.
S9GMC2I+1LVLOiwWST7yDgD8IC2IzzPEsj+dijE=)

55 AUTHORITY SECTION:
example.com. 86400 IN NS nsi.example.com.
example.com. 86400 IN NS ns2.example.com.

230

CHAPTER 9 " DNS DIAGNOSTICS AND TOOLS

5, ADDITIONAL SECTION:
nsi.example.com. 86400 IN A 192.168.2.6
ns2.example.com. 86400 IN A 192.168.23.23

55 Query time: 31 msec

55 SERVER: 192.168.254.2#53(ns1.example.net)
55 WHEN: Thu Jun 02 17:21:14 2005

53 MSG SIZE rcvd: 711

A considerable amount of material was cut from this output purely for the sake of brevity.
The point, however, is already clear, and we have a significant indication as to the probable error.
The various additional RRs in this output, RRSIG and NSEC, are related to DNSSEC security. The
example.com zone is signed—and further diagnostic work will show us that the signatures have
expired, rendering the domain invisible to security-aware name servers but still available to
security-oblivious name servers and other diagnostic tools. We did not see the additional output
on the first dig because the basic dig command is not security aware. We can get results with no
indication of any security context—that is the way the standards are supposed to work. If we do
not ask for it, we do not get it. Had we set the +dnssec option, we would have received additional
data and an indication of the problem. We were able to reach the web site because our local
name server is also not security aware (it does not have a dnssec-enable yes; statement). This
situation will become increasingly common over the next few years. At the risk of sounding trite,
it will be increasingly necessary to dig below the surface.

Summary

This chapter covered a number of utilities for diagnosing, maintaining, and verifying the DNS
system. The chapter covered the nslookup utility used to diagnose name servers, which is gen-
erally available on Linux, BSD, and Windows platforms. The nslookup utility provides both
command-line and interactive formats and uses a default configuration file to add significant
power to the interactive format. The dig utility provides similar functionality to nslookup but
is typically available only on systems on which BIND is installed. It is the recommended utility
for diagnosing BIND name servers and provides support for the latest DNS features such as
DNSSEC.bis. The dig utility has both a command line and batch mode format, but no inter-
active format. The named-checkconf and named-checkzone utilities are used to verify the
named.conf and zone files, respectively, before being run on a live name server.

The rndc utility may be used to control the name server operation locally or remotely.
Operation of this utility is enabled by use of the controls clause in the named. conf file. rndc
mandates secure authentication (using a shared secret) but provides a default mode where
the minimal required files are provided using the rndc-confgen utility with the -a option. The
rndc utility uses an rndc. conf file to control server access and the keys to be used. An example
is shown that allows remote access to more than one name server, each with a separate key.
The nsupdate utility allows dynamic updates to the Primary master zone file. The nsupdate
utility transactions may be secured using either TSIG or SIG(0) security and are enabled by
the allow-update or update-policy statements in the named. conf file.

CHAPTER 9 © DNS DIAGNOSTICS AND TOOLS

The dnssec-keygen utility is used to generate cryptographic keys used in TSIG, SIG(0),
DNSSEC, or for other purposes. The dnssec-signzone utility is used to cryptographically sign
a zone file for use in DNSSEC operations.

The next chapter introduces the topic of DNS security, with is divided into the categories
of administrative security, zone transfer security, dynamic update (DDNS) security, and, in
Chapter 11, DNSSEC (DNSSEC.bis). Each security category uses different techniques and
has a different level of complexity.

231

PART 3

DNS Security

CHAPTER 10

DNS Secure Configurations

At the macro level, the DNS service is essential to the operation of the Internet. At the micro
or local level, the DNS service could be essential to the operation of an enterprise or a humble
but much-loved family web site. In all cases, the appropriate investment in security must be
made to ensure the effectiveness and safety of the DNS system. The DNS is by its nature a public
system, and acts like a honey pot for the bad bees of the Internet world. This chapter and
Chapter 11 introduce DNS security, with the intent of allowing the reader to select the appro-
priate techniques for the perceived level of threat.

Unfortunately, the term DNSSEChas a bad reputation because of its perceived complex-
ity, and is frequently used to cover the whole topic of DNS security. There are many facets to
DNS security, ranging from relatively simple to implement to brutally complex. This chapter
divides security into four topics:

* Administrative security: This part of the chapter covers the use of file permissions,
server configuration, BIND configuration, and sandboxes (or chroot jails). All of these
techniques are relatively simple to implement, and can (and should) be applied to
stand-alone DNS servers or to servers that run DNS as one of a number of services.
Administrative security is a base-line topic. All the fancy cryptographic techniques in
the world are useless if the base system is unstable or has world read-and-write privi-
leges on all the interesting files.

» Zone transfers: Unless a multimaster configuration system is being used, zone transfers
are essential to normal operation. Limiting and controlling both the source and desti-
nations of zone transfer operations using physical security, BIND parameters, or external
firewalls is always prudent. Secure authentication of the source and destinations of
zone transfer operations may or may not be worth the effort.

* Dynamic updates: Dynamic updates expose a master zone file to possible corruption,
destruction, or poisoning. Not taking sensible precautions to limit access through
either good system design, BIND parameters, firewalls, or authentication probably
constitutes a misplaced reliance on the essential goodness of mankind.

235

236

CHAPTER 10 " DNS SECURE CONFIGURATIONS

» Zone integrity: If it is essential that the zone data used by either another DNS or an end
host be correct (that is, query responses have not been tampered with and the returned
data could only have come from the zone owner), then DNSSEC is required. DNSSEC
has been the subject of considerable experimentation and subsequent change over the
past three or four years. This book describes what is colloquially called DNSSEC.bis—
the second generation of secure DNS—and the object of much work in the IETE the
root-server operators, and the Regional Internet Registries (RIRs). DNSSEC.bis is
described in Chapter 11.

Because it is so critical, the DNS system is the subject of many myths, including the “great
bug myth.” This myth purports that BIND is so full of bugs that we must go to any lengths to
protect our systems from its self-destructive ways. Although this may have been true in the
bad old days of early version 4 and version 8 releases of BIND, it is no longer the case. The last
CERT advisory (www.cert.org) published for BIND was in 2003 and that was for BIND version
8; the last one for BIND 9—a nearly complete rewrite of BIND—was in 2002. When you con-
sider that this software is being accessed many millions of times every second worldwide it is
avery impressive performance. DNS systems need to be protected from external sources and
attacks, but in general not from BIND itself. The emphasis in the following sections is prima-
rily on outward-facing security, not inward-facing security.

Security Overview and Audit

Figure 10-1 was introduced in Chapter 3 and is reproduced here as a reminder of the possible
sources of threat that form the basis of any security audit. Every data path is a potential source
of threat.

Dynamic
Updates Network/

r} Remote Resolver
@) Admin ®)
Queries Queries
>

Primary |«€ Remote

Master |«€ (4) | Caching

Master Transfers Resolver
A AL

M

Slave(s)

Zone

Files

TSIG, SIG(0), TKEY

m) Server-Server DNSSEC

» Server-Client

Figure 10-1. Security overview

CHAPTER 10 " DNS SECURE CONFIGURATIONS 237

The critical point in defining security policies and procedures is to understand what
needs to be secured—or rather what threat levels need to be secured against and what threats
are acceptable. The answers to these two points will be different if the DNS is running as a
root-server versus running as a modest in-house DNS serving a couple of low-volume web
sites. There are no hard and fast rules; defining your policy is a matter of blending paranoia
with judgment.

DNS Normal Data Flow

Every data flow—that is, each numbered line in Figure 10-1—is a potential source of threat.
Table 10-1 defines the potential outcomes of compromise at each point and the possible
solutions.

Table 10-1. DNS Security Threats

Number Area Threat Classification Solutions
1 Zone files File corruption (malicious or Local System
accidental) administration
2 Dynamic Unauthorized updates, IP address ~ Server-to-server ~ Network architecture,
updates spoofing (impersonating update Transaction Signa-
source) tures (TSIG), SIG(0),
or disable
3 Zone IP address spoofing (imperson- Server-to-server Network architecture,
transfers ating update source) TSIG, or disable
4 Remote Cache poisoning by IP spoofing, Server—client DNSSEC
queries data interception, or a subverted
master or slave
5 Resolver Data interception, poisoned cache, Remote client— DNSSEC
queries subverted master or slave, local IP client
spoofing

The first phase of any security review is to audit which threats are applicable and how seri-
ously they are rated in the particular organizational circumstances. As an example, if dynamic
updates are not supported (BIND’s default mode), there will be no dynamic update threat.

It can be easier to disable a process than to secure it. For example, consider zone transfers.
If a classic master—slave configuration is being used, then zone transfers will be inevitable, and
the configuration’s security implications must be evaluated. However, it is possible to replace
such a configuration with a multiple-master one in which each name server obtains its zone
files locally. Thus, zone transfers may be globally disabled. In this environment, synchroniza-
tion of master zone files must be done by some out-of-band process, such as secure FTP or
secure e-mail. However, these out-of-band processes may be simpler to organize or already
exist. Using such alternative procedures is sometimes referred to as security by obscurity. It can
be a useful tactical fix but is not always a strategic solution.

Finally, a note of caution: there is a single master to secure, in zone transfers there may be
one or two slaves to secure, in dynamic updates there may be tens of update sources to secure,
and there may be many hundreds or thousands of remote caches to consider in DNSSEC solu-
tions. In general, the further you go from the master, the more systems you have to consider,
and consequently the solutions are more complicated. Unless there is a good reason for not

238

CHAPTER 10 " DNS SECURE CONFIGURATIONS

doing so, it is always recommended that you start from the zone master and work out. It
would be a tad frustrating to have completed a successful implementation of a complex
DNSSEC solution, only to discover that anyone could dynamically update your zone files.

Security Classification

The security classification is a means to allow selection of the appropriate remedies and
strategies for avoiding the implied risk. Many of the following methods are described in
detail in this chapter and Chapter 11. The following numbering relates to Figure 10-1.

* Local threats (1): Local threats are usually the simplest to prevent, and are typically
implemented simply by maintaining sound system-administration policies. All zone
files and other DNS configuration files should have appropriate read and write access,
and should be securely backed up or maintained in a CVS repository. Stealth (or Split)
DNS servers can be used to minimize public access, and BIND can be run in a sandbox
or a chroot jail (described in the section “BIND in a Chroot Jail” later in the chapter).

e Server-server (2): If an organization runs slave DNS servers, it needs to execute zone
transfers. As noted earlier, it is possible to run multiple-master DNS servers rather
than master—slave servers, and thus avoid any associated problems. If zone transfers
are required, BIND offers multiple configuration parameters that can be used to mini-
mize the inherent risks in the process. TSIG and Transaction KEY (TKEY) also offer
secure methods for authenticating requesting sources and destinations. Both methods
are described in detail in the section “Securing Zone Transfers” later in the chapter.
The physical transfers can be secured using Secure Sockets Layer (SSL) or Transport
Layer Security (TLS).

e Server-server (3): The BIND default is to deny Dynamic DNS (DDNS) from all sources.
If an organization requires this feature, then BIND provides a number of configuration
parameters to minimize the associated risk; these are described in detail later in the
chapter. Network architecture design—that is, all systems involved are within a trusted
perimeter—can further reduce the exposure. TSIG and SIG(0) can be used to secure the
transactions from external sources. Configuration of Stealth (Split) servers was described
in Chapters 4 and 7, and TSIG and SIG(0) security are described in the section “Securing
Dynamic Updates” later in the chapter.

e Server—client (4): The possibility of remote cache poisoning due to IP spoofing, data inter-
ception, and other hacks is likely quite low with modest web sites. However, if the site is
high profile, high volume, open to competitive threat, or is a high revenue earner, then
the costs and complexity of implementing a full-scale DNSSEC solution may be worth-
while. Significant effort is being invested by software developers, Registry Operators, the
RIRs, and root-server operators, among many others, into DNSSEC. We are likely to see
significant trickle-down effects within the near term in the public domain, as well as
within controlled groups such as intranets and extranets. Indeed, Sweden will be the first
country in the world to offer DNSSEC support for the .se domain starting in late 2005.

* Client—client (5): DNSSEC.bis standards define the concept of a security aware
resolver—a currently mythical entity—that can elect to handle all security validation
directly, with the local name server acting as a passive communications gateway.

CHAPTER 10 " DNS SECURE CONFIGURATIONS

Administrative Security

Administrative security in the context of this book is concerned with the selection and configu-
ration of the DNS software and the server or servers on which it runs. The items in the following
section are listed in approximate order of priority, defined in this case as a combination of return
for effort expended and its effect on overall security. Clearly, the order is not rigid, nor is it meant
to suggest that if you only keep software up to date, the DNS installation will be secure. However,
a fully chrooted installation with a known root exploit can still create serious havoc. Judgment
and local circumstance always override any tactical list, such as the one in the following section.
The following sections are presented in the form of checklists, with some limited explanations
where appropriate.

Up-to-Date Software

Although it may seem trite, keeping software up to date is a vital security component. Many
busy administrators who run operational systems dislike upgrading stable software. Upgrad-
ing mature, stable software may be an evil, but it is a necessary—and vital—evil for the health
and security of an installation. The longer the task is postponed, the worse it gets. The follow-
ing is offered as a generic upgrade policy:

1. Known security exploit. Subscribe to one of the advisory services provided by SANS
(www. sans.org) or CERT (www.cert.org), as well as many others, and take action on
BIND and related technology alerts. Depending on the severity of the alert, this can
demand an immediate upgrade followed by a quick test before fast system-wide
replacement. Better in this case to risk a new problem than a known exploit.

2. Required new feature: If a new feature is required, time is not generally of the essence.
Upgrading should be done slowly, with serious testing of limited initial deployment
before a final upgrade of all operational systems.

3. Time: Every 12-18 months, the author upgrades operational systems if neither items 1
nor 2 has required an upgrade, and even if it means some serious work. The reasoning
here is that the longer this task is left, the greater the pain of upgrade. Upgrade is slow,
with limited initial deployment before system-wide replacement.

The following additional points may be useful or just plain sensible:

* Maintain an upgrade checklist. This should include, at a minimum, the order of upgrades,
previous problems, specific items to verify (for example log messages, dig test scripts, and
results), AXFR block tests, and anything else you deem useful. In a busy environment,
your own memory is not a useful planning tool, especially if the frequency of upgrade is
low. Add to the list after each upgrade, and keep it readily available on an intranet, in the
configuration file as comments, or in some other suitable location. It must be a living
document to be useful.

* Block communication of the BIND software version: All the sample named. conf configu-
ration files (see Chapter 7) use the version statement in an options clause to hide the
current version of BIND being run. If the version number is not blocked, it is simple to
use dig to discover what version is being used at any particular location. In the event of
a known exploit, why boast that you are vulnerable?

239

240

CHAPTER 10 " DNS SECURE CONFIGURATIONS

Limit Functionality

The best way to limit vulnerabilities is to avoid using exploitable operations, if practical. As an
example, by using multiple masters it is possible to run an operational system without doing
DNS zone transfers, in which case allow-transfer and notify statements can be set to "none"
in the global options clause. Take some time to ponder alternate strategies and the relative
efforts and returns involved in the operations, rather than just opt to use a BIND feature
because it exists. Hackers love that way of thinking—it gives them plenty of targets.

Defensive Configuration

A defensive configuration is one in which all the major, especially security-related, features are
explicitly identified as enabled or disabled. Such a configuration ignores any default setting
and values. It takes as its starting point the site needs, and defines each requirement, positive
or negative, using the appropriate configuration statements or other parameters. Defaults are
great for us lazy folks, but they can also be dangerous if they change. As an example, the cur-
rent version of BIND disables DDNS by default. However, many DNS administrators like to
add the statement allow-update {"none";}; explicitly in a global options clause, both as clear
indication that the feature is not being used, and as a protection against a future release that
may change the default. A defensive configuration file that identifies all the requirements
explicitly is also self-defining. That is, by inspecting the file—without needing to find the
manual or reference documentation—the functionality is self-evident. At 3 a.m. when pan-
demonium occurs, such self-defining files may be a useful side-effect.

Deny All, Allow Selectively

Even when operations are permitted, for example in NOTIFY or zone transfers, it may be worth
globally denying the operation and selectively enabling it, as in the following fragment:

options {
allow-transfer {none;}; // no transfer by default
1
zone "example.com in{
allow-transfer {10.0.1.2;}; // this host only
1
Although the preceding configuration requires additional typing, it also requires a minor
act of thought—always a good thing—before adding the line in the zone clause.

Remote Access

BIND releases come with an administration tool called rndc (described in Chapter 9) that may
be used locally or remotely. On the one hand, rndc is a useful tool, while on the other hand, if
you can get in, so can someone else. The BIND default is to enable rndc from the loopback

CHAPTER 10 I DNS SECURE CONFIGURATIONS

address only (127.0.0.1). If rndc will not be used, it should be explicitly disabled using a null
controls clause, as shown here:

// named.conf fragment
controls {};

If rndc is used, then it is recommended that an explicit controls clause be used, even if
access is only allowed from localhost, as shown here:

// named.conf fragment
controls {
inet 127.0.0.1 allow {localhost;} keys {"rndc-key"};

b

In the preceding fragment, the default key name of rndc-key is shown (generated by the
command rndc-confgen -a), and should be replaced with whatever name was allocated to
the key being used to control rndc access. The rndc. conf file and files containing keys such
as rndc.key must be protected with limited permissions as described in the following section,
“Limit Permissions.” BIND thoughtfully provides a simple method to create a default key con-
figuration (rndc-confgen -a) for use with rndc, which for loopback-only (127.0.0.1) use may be
adequate to get you started. However, it is neither advisable nor sensible for remote use. Take
the few minutes required and learn how to generate your own rndc keys. Change them every
30 to 90 days without fail.

Note For some reason best known to the Fedora Core developers, the default rndc key name on Fedora
is rndckey, not the BIND default of rndc-key.

Limit Permissions

The theory behind limiting permissions has two distinct parts that must not be confused, and
that may have separate implementation issues and strategies:

* Confidentiality: This involves limiting access to confidential files used by BIND or the
DNS application, to ensure that another application or user cannot read or write to
them.

* Containment: This prevents BIND from reading or writing to other locations if it is
compromised.

As discussed earlier, this book places more emphasis on protecting the name server from
external attack such as cache poisoning, accessing confidential information, and other attempts
to compromise the data content of the zone files than from damage inflicted by BIND itself
being compromised. In this context, the files that BIND uses and their access permissions are
of considerable importance. The following list describes seven files or file groups BIND may use,
and their protection requirements :

241

242

CHAPTER 10 " DNS SECURE CONFIGURATIONS

¢ named.conf: This file should be treated as confidential because it contains information

about the style of configuration that may assist an attacker, and frequently contains
other interesting information, such as IP addresses, that may be used to launch spoof-
ing and other attacks. The named. conf file should never contain key clauses as a matter
of policy, including those used for rndc access. Instead, key clauses should be main-
tained in separate files within a separate directory and included in the named. conf file
(using an include statement). If view clauses are being used, then as a minimum those
containing private information for use by a Stealth configuration (see Chapter 4) should
also be contained within separate files and included in the named. conf file. If the orga-
nizational policy allows zone clauses or parts of the named. conf file to be controlled or
edited by end users, or more than one user, then these parts should be saved as sepa-
rate files in separate directories. In this way, appropriate permissions can be applied
and then included in the final named. conf file. It is worth noting here that trusted-keys
clauses contain only public keys, which are not sensitive information, unlike key clauses,
which contain shared secrets and are extremely sensitive. The requirement for trusted-keys
clauses is to prevent write corruption (the same as named. conf) rather than to prevent
unauthorized reading, as is the case for key clauses.

Included files: Each file included in the named. conf file can have different permissions
applied to it. The policy should be to categorize the type of file and the required access,
and separate the files into directories whereby directory-level permissions can be applied,
rather than fooling around with individual files. Thus, included files containing keys
could be saved in a directory called /var/named/keys, and private views in a directory
called /var/named/views. Any private zone clauses could be saved in, say, /var/named/
zone-private. Generally editable zone clauses could be saved in the home directory

of the user who is allowed to edit it. Each such directory can be assigned appropriate
permissions.

Zone files: Zone files typically contain public information, so there seems little point
in protecting them (other than from global write permission). However, if a view
clause-based Stealth system is being used, then the zone files on the private side of
the configuration will contain sensitive data and require separate treatment. Again,
it is prudent to separate private zone files into a separate directory such as /var/
named/master/private. Zone files that may be edited by users can be placed in the
respective home directories with appropriate user permissions, or you can place
them in a /var/named/master/ddns directory and allow dynamic updates. Finally,
slave zones in /var/named/slave require write permission for BIND.

PID file: This is normally written to /var/run/named.pid or /var/run/named/named.pid.
Although it contains sensitive information (the Process Identifier of the named daemon),
the information can only be used by root. If you're faced with a root exploit, then the
PID files are among the last items to be concerned about. The PID file requires write
access for BIND and read access for scripts (start, stop, restart, and so on) that make
use of it.

CHAPTER 10 " DNS SECURE CONFIGURATIONS

* Log files: This book configures the logs to be written to the /var/log/named directory
mostly for convenience rather than security. In general, the log does not contain sensi-
tive information and does not require special handling. However, if a view clause is
being used in a Stealth configuration, the log—depending on options—may contain
sensitive information relating to private IPs and should be protected.

* rndc files: If using rndc, keep in mind that the rndc. conf file (see Chapter 9), and espe-
cially any files containing keys, including the default rndc.key file, contain extremely
sensitive information and need to be protected.

* Journal files: A zone file is normally a read-only file from BIND’s perspective. If Dynamic
Update (DDNS) is being used, then updates are written to a binary . jnl file for each zone,
and only periodically written to the zone file. For public zone files, such information is
not sensitive, but for private zone files appropriate permissions are required. Once DDNS
is invoked for a zone, special procedures are generally required to edit the zone files man-
ually. Therefore, permissions can be made tight. To reflect these permissions, zone files
that will use DDNS could be placed in a directory such as /var/named/master/ddns.

Before building a permission strategy, we need to look at how BIND is run. BIND can run
in three possible ways:

* Run BIND as root: This is a dangerous thing to do, and normally requires additional
work to override the options defined in most standard BIND installations. This method
of running BIND is not recommended and will not be discussed further.

* Run BIND under a unique (nonroot) UID (Linux, Unix, or BSD) or user account
(Windows): This method uses the -u command line argument of BIND (see Chapter 12),
and is the standard method used by most packaged installations on Linux, BSD, and
Windows. The User ID (UID) is typically named for Linux/UNIX, or bind if you are run-
ning FreeBSD and the user account is named for Windows.

* Run BIND in a sandbox or chroot jail: FreeBSD 5.x and Fedora Core 2 default installa-
tions use this mode of operation. Most Linux distributions, including Fedora Core 2,
provide a bind-chroot RPM that can be applied after BIND has been installed, to add
the necessary directories and scripts to apply the appropriate permissions.

Both the last two methods run BIND with a unique UID (normally named or bind if
FreeBSD) and are described in detail in the section “Running BIND as Nonroot.” Table 10-1
shows the permissions that lock down the various files to their minimum requirements.
Before considering the required file permissions, it is necessary to understand the various
stages BIND adopts during its initialization sequence. When BIND is loaded it runs as user
root because it requires certain privileges—notably the ability to allocate and bind to its nor-
mal, but privileged, port number of 53, and if rndc is permitted, also to port 953. During this
phase BIND reads all its configuration and zone files and logs any failures to syslogd. On
completion of this process, it then issues an suid() call (change user name) to the user name
defined in the -u command line argument. Only then does it proceed to write the PID file, log,
and any other required files. This structure lends itself perfectly to tailoring precise file per-
missions, because read-only files (from BIND’s perspective) can be set to permissions based
on their editing requirements. BIND, because it running as root during its read phase, can
read them in all cases. Table 10-2 illustrates the kind of structure and flexibility that may be

243

244 CHAPTER 10

DNS SECURE CONFIGURATIONS

created. This structure may look complex, but it shows the possibilities, and it has the major
merit that once established, it requires little maintenance.

Note The preceding sequence is slightly different when running in a chroot jail, which is described in the
section “BIND in a Chroot Jail.”

Table 10-2 assumes that BIND runs with a UID of named, editing of secure (but not secret)
files is done under a nonroot user with a user name of dnsadmin and a group of root (to allow
su commands if necessary), and editing of multiuser access files (for example, public zone
files and zone clauses) is done under a group called dnsusers. The files containing secrets can
only be read by BIND and edited by root. Files are placed in the directories named under each
file type described earlier. The home directory of dnsadmin is assumed to be /var/named, and
for dnsusers it is /home/username or similar. In Table 10-2, the Mask column shows the direc-

“w,n

tory permission first, separated from the file permissions with a colon (“:”). A question mark
(“?”) indicates that this value may be determined by other system requirements. The setting of
limited permissions on Windows systems is described in Chapter 6.

Table 10-2. Directory and File Permissions

File/Group Typical Location user:group Mask Notes

named.conf /etc dnsadmin:root 2:0660 Read-only BIND file. dnsadmin
can edit.

Included public username home username: 0770:0660 Read-only BIND files.

named.conf directory dnsusers Permissions allow dnsusers
group to edit.

Included key files /var/named/keys named:named 0400:0400 Read-only BIND file. Only root
can edit or view.

Included private /var/named/views dnsadmin:root 0770:0660 Read-only BIND file. dnsadmin

views can edit.

Private zone /var/named/masters/ dnsadmin:root 0770:0660 Read-only BIND file. dnsadmin

files—no DDNS private can edit.

Private zone /var/named/masters/ named:root 0770:0660 Read/write for BIND. dnsadmin

files—with DDNS ddns can edit.

Slave zone files /var/named/slaves = named:root 0770:0660 Read/write for BIND. dnsadmin
can edit if required.

Public zone files username home username: 0770:0660 Allows dnsusers group to edit.

directory dnsusers These files cannot be

dynamically updated.

named.pid /var/run/named named:named 2:0664 Allows access by BIND tools/
scripts and root.

named. log /var/log/named named:root 0770:0640 Write access for BIND, dnsadmin
can read. If not using views,
wider permissions can be set
depending on local policy.

rndc.conf /var/named/xndc dnsadmin:root 0770:0660 Allows access by dnsadmin group.

rndc.key /var/named/rndc/keys named:named 0400:0400 Only root can edit.

CHAPTER 10 " DNS SECURE CONFIGURATIONS

In the preceding table, FreeBSD users should replace the group root with wheel and named
with bind. If the local policy is to allow only BIND administrators to touch any BIND-related
material, then some of the preceding configuration will be unnecessary.

The named. conf file fragment that would reflect such a strategy could look something like
the following:

// named.conf fragment
include "/var/named/rndc/keys/key.clause"; // single file containing rndc keys
include "/var/named/keys/key.clauses"; // single file containing keys
controls {
inet 127.0.0.1 allow {localhost;} keys {"rndc-key"};
};

options {

};

include "/var/named/views/private-view.clause"; // hidden private view
view "public-view" {
include "/home/firstuser/zone.clause";
zone "example.com” in {
type master;
file "var/named/masters/ddns/example.net";
// key clause referenced below will be in
// /var/named/keys/keys.clause above
allow-update {key "example.net";};
};
1

Running BIND As Nonroot

Most packaged BIND systems, for instance RPMs and FreeBSD ports, install BIND to run with
a unique (nonroot) UID—typically named on Linux and Windows and bind on FreeBSD. This
section describes how to configure your system if BIND is not installed and configured to run
with a unique UID, and to set permissions to lock down the files. Even if your BIND system
has been installed to run under a unique UID, you may still want to look at and set appropri-
ate file permissions, especially on the more sensitive files. If BIND is running on your system,
its status can be interrogated by issuing the following command:

ps aux |grep named

It returns something like the following:

named 36120 0.0 0.9 5372 4376 ?? 1Is 1:02PM 0:00.11 named -u named

The preceding output shows that the daemon named is running under the UID named (the
first named in the line), which is initiated by the -u argument at the end of the line. If the entry
looks like the following, named is running as root indicated by the first root in the line and the
absence of a -u argument:

245

246

CHAPTER 10 " DNS SECURE CONFIGURATIONS

root 36120 0.0 0.9 5372 4376 ?? Is 1:02PM 0:00.11 named

Action should be taken immediately to change this state, as described in the following
section.

Setting the Run Time UID of BIND

To run BIND under its own UID, we need to create a user and group for the named daemon. By
convention this is normally named (or bind under FreeBSD). This book uses named throughout,
but you can change it to any appropriate value (for example, dns) if you wish. First, confirm that
you do not already have an existing account by using the following command:

id named
uid=25(named) guid=25(named) groups=25(named)

The preceding response indicates the UID already exists. If the user account does not
exist, the following response is returned:

id: named: no such user

Try again with id bind, and if there is still no valid user, then create a unique user and
group, as follows:

groupadd -r named

The preceding command adds the group named with the first free system account group
(the -r argument). The presence of the group can be confirmed with the command vigr,
which displays and allows editing of the list of groups in the system (use :q! to exit vigr with-
out making changes).

Now add the system account named using the following command:

useradd -c 'Bind daemon' -d /var/named -s /sbin/nologin -g named -r named

If the -c argument (a comment) contains a space, it must be enclosed in quotes as shown.
The -d /var/named is the default directory at login, and is required but is not used because this
is a system account without a login or password. The -s /sbin/nologin argument is the Linux
default for a no-shell account, The -g named argument defines the initial group to be used by
the account and references the named group we just created. useradd requires that the group
named exists, so always define groups before users. The -r argument defines this to be a system
account (typically with a UID < 500 for Linux and < 1000 for FreeBSD) with an account name
of named.

CHAPTER 10 " DNS SECURE CONFIGURATIONS

Setting Permissions for the UID

We now set up and create the permissions for the various essential files. We assume that the
user account dnsadmin has already been established as a normal login user account using your
favorite tool, and is a member of the root group to allow su commands to be issued if required.

Note Some of the following permissions differ from those defined in Table 10-1, because they are
applied to a directory and are typically intended to allow inspection of file properties. Specific files within
the directory may be set to the values defined in Table 10-1.

To create and set permissions for run time write files (log and PID), use the following
commands:

cd /var/log

mkdir named

touch named/example.log
chown named:dnsadmin named/*
chmod 0660 named/*

cd /var/run

mkdir named

touch named/named.pid

chown named:named/*

chmod 0664 named/*

R

The following commands all assume that the various directories have been created. If this
is not the case, then a preceding mkdir dirname command should be issued, as shown in the
preceding command sequence. Set permissions on any keys directory, as shown in the follow-
ing commands:

cd /var/named
chown named:named keys/*
chmod 04000 keys/*

++

Set permissions on any private zone files:

cd /var/named
chown -R dnsadmin:root master/private/*
chmod -R 0660 master/private/*

++

247

248

CHAPTER 10 " DNS SECURE CONFIGURATIONS

Set permissions on any DDNS zone files:

cd /var/named
chown -R named:root masters/ddns/*
chmod -R 0660 masters/ddns

Set permissions on any private-view include files:

cd /var/named
chown -R dnsadmin:root views/*
chmod -R 0660 views/*

Secure any rndc key files:

cd /var/named
chown -R named:named rndc/*
chown -R 0660 rndc/*

+H

Secure the named. conf and rndc. conf files:

cd /etc

chown dnsadmin:root named.conf
chmod 0660 named.conf

chown dnsadmin:root rndc.conf
chmod 0660 rndc.conf

H* o W W

Finally, to run BIND, use the following command:

/usr/sbin/named -u named

Now verify that BIND is loaded and running using the following command:

ps aux |grep named

Ifitisn’t loaded and running, inspect syslog using the following command:

vi + /var/log/messages

Alternatively, you can use a command such as tail /var/log/messages to display the last
ten lines of the file if there is not much syslog traffic. Then, verify that BIND has loaded the

various zones by inspecting the BIND log file:

CHAPTER 10 " DNS SECURE CONFIGURATIONS

cat /var/log/named/named.log

11-Apr-2005 13:02:42.801 zone 0.0.127.in-addr.arpa/IN: loaded serial 1997022700
11-Apr-2005 13:02:42.806 zone example.com/IN: loaded serial 2005032902

11-Apr-2005 13:02:42.813 zone localhost/IN: loaded serial 2002022401

11-Apr-2005 13:02:42.817 running

11-Apr-2005 13:02:42.818 zone example.com/IN: sending notifies (serial 2005032902)

To ensure that BIND starts at boot time, we need to create a script that we have chosen
to call named in the startup directory (for Linux, normally /etc/rc.d/init.d, or /etc/rc.d for
FreeBSD). Such a script would look like the following code, which is a simplified version of the
current scripts being used on Fedora Core 2. It provides start, stop, and restart services only:

#!/bin/sh

#

named This shell script takes care of starting and stopping
named under its own (non-root) UID.

#

Source function library.
. /etc/rc.d/init.d/functions

Source networking configuration.
. /etc/sysconfig/network

Check that networking is up.
[${NETWORKING} = "no"] && exit 0

[-f /usr/sbin/named] || exit 0

See how we were called.
case "$1" in
start)
Start daemons.
echo -n "Starting named:
daemon /usr/sbin/named -u named
echo

stop)
Stop daemons.
echo -n "Shutting down named:
killproc named
echo

)

249

250 CHAPTER 10 " DNS SECURE CONFIGURATIONS

restart)
$0 stop
$0 start
exit $?
35
)
echo "Usage: named {start|stop|restart}"
exit 1
esac
exit 0

The preceding script must then be linked to the normal run level(s) used, such as run
level 3 (non-X11) and 5 (X11). The default run level is normally defined in /etc/inittab by
a line that looks something like this:

id:3:initdefault:

For the preceding example, we would link the script to the appropriate rc.d run level ini-
tialization sequence, which for run level 3 would be as follows:

In /etc/rc.d/init.d/named /etc/rc.d/rc3.d/S68named
In /etc/rc.d/init.d/named /etc/rc.d/rc3.d/K68named

To test this process, a command such as the following should be executed:

/etc/rc.d/init.d/named restart

The equivalent startup process for FreeBSD users requires adding the following lines to
the /etc/rc.conf file:

named_enable="YES" # Run named, the DNS server (or NO).
named_program="/usr/sbin/named" # assumes a base installation.
named flags="-u bind" # Flags for named

To be absolutely certain that everything is working while it is still fresh in our mind, the
server ideally should be rebooted, and named confirmed to be running successfully with a
command such as this:

ps aux|grep named
named 36120 0.0 0.9 5372 4376 ?? 1Is 1:02PM 0:00.11 named -u named

Although the preceding process may appear to involve a number of steps, it offers the
flexibility of being able to control precisely and flexibly the editing permissions of the various
files and file groups used in the operation of a BIND-based DNS system. Running BIND in a
chroot jail (or sandbox) offers an alternate strategy and is described in the following section.

CHAPTER 10 I DNS SECURE CONFIGURATIONS

BIND in a Chroot Jail

The terms chroot jail or chroot cage (now frequently referred to as a sandbox) are named from
the system call chroot("/base/directory");, which takes a base directory argument and does
not let the application read or write outside the base directory. All referenced files and paths
within the chrooted application are appended to the base directory. Thus, if the chroot base
directory is /var/named/chroot and the application accesses a file called /etc/named. conf,
then the full path is translated to be /var/named/chroot/etc/named.conf. When running BIND,
the -t /base/directory command line argument indicates that BIND should run chrooted
and defines the base directory to be used. In a chroot environment, both the -t and -u (BIND
UID) arguments must be present to provide a secure environment.

Most distributions provide a packaged method of running BIND in a chroot jail. The fol-
lowing sections define using such a package for both Linux Fedora Core 2 and FreeBSD 5.x.
Finally, if such a package is not provided, or master or slave zones are present, manual config-
uration of a chroot jail is described.

Fedora Core 2 bind-chroot Package

DNS may be run in a chroot jail on Fedora Core 2 in one of two ways:

¢ Selecting the DNS software option during the install process causes a chrooted caching
name server installation by default.

e Installing the bind-chroot RPM (specifically bind-chroot-9.3.0-2.1386.rpm, which is
the same release installation described in Chapter 6).

In both the preceding cases, the process is the same because the install process also runs
the bind-chroot RPM. The chroot RPM does the following:

e It creates the chroot base directory as /var/named/chroot.

* The following directories are added under /var/named/chroot: etc, var/named, var/run/
named, and /dev (containing only null and random).

¢ Relevant files are copied from the corresponding directories. For instance, /etc/named. conf
is copied to /var/named/chroot/etc/named. conf, and ownership of the chroot directories is
set to root :named with permissions of 0640.

* The startup script (in /etc/rc.d/init.d/named) is modified to add the argument
-t /var/named/chroot to invoke the chroot feature.

The Fedora default configuration files a log using syslogd. If a log file is required, then an
appropriate directory must be created. For instance, assume you're creating a log file using the
following fragment:

logging{
channel normal log {
file "/var/log/named/normal.log" versions 3 size 2m;
severity error;
print-time yes;
print-severity yes;
print-category yes;

};

251

252

CHAPTER 10 " DNS SECURE CONFIGURATIONS

In this case, a directory /var/named/chroot/var/log/named is required with write permis-
sion for the named UID.

FreeBSD 5.x

The installation of DNS on FreeBSD 5.x creates a chroot installation by default with a chroot
base of /var/named. The installation performs the following tasks:

¢ Creates the directory /var/named/etc/namedb and links it to /etc/namedb (by default,
FreeBSD organizes all its files, including zone files, under this base directory). Thus,
going to the normal location for these files (etc/namedb) follows the link to the chroot
location.

* Additionally, the following directories are created under /var/named: var/dump,
var/stats, var/run/named, and var/log (with a default file name of named. security.
log). Ownership is bind:bind for the directories, and world read permissions are set
on all files.

* The file /etc/defaults/rc.conf contains the defaults, as shown in the following fragment:

#
named. It may be possible to run named in a sandbox, man security for
details.
#
named_enable="YES" # Run named, the DNS server (or NO).
named program="/usr/sbin/named" # path to named, if you want a different one.
named flags="-u bind" # Flags for named
named pidfile="/var/run/named/pid" # Must set this in named.conf as well
named chrootdir="/var/named" # Chroot directory (or "" not to auto-chroot it)
named_chroot autoupdate="YES" # Automatically install/update chrooted
components of named. See /etc/rc.d/named.
named_symlink enable="YES" # Symlink the chrooted pid file

As always, if changes are required to this file, they should be made to /etc/rc.conf,
which overrides the equivalent value in /etc/defaults/rc.conf.

e The script (/etc/rc.d/named) processes the parameters in rc.conf to create or update
the configuration during startup. This startup script creates a default rndc configuration
by running the command rndc-confgen -a (see Chapter 9), which allows rndc access
from localhost only (assuming the default controls clause).

Manual Configuration of Chroot Jail

This section identifies the manual setup of a chroot jail or sandbox. You might want to do so,
perhaps because you enjoy doing this kind of thing, perhaps because there may not be an
available RPM to install the chroot option, and perhaps because things may go wrong. The con-
figuration has been tested on Linux and FreeBSD (both are documented separately). It assumes
a chroot base directory of /chroot/named. The configuration could have used the more normal
location of /var/named/chroot or /var/named/ for FreeBSD, but using /chroot/named means we
can create a clean chroot environment and avoid any partial results from default installations.

CHAPTER 10 " DNS SECURE CONFIGURATIONS

It is further assumed that the user named and group named accounts have been set up (FreeBSD
users would normally use bind:bind). If these accounts are not present, the process is described
in the section “Setting the Run Time UID of BIND” in this chapter. The standard caching name
server named. conf file (from the section “Caching-only DNS Server,” located in Chapter 7) is
used as the target configuration and is reproduced here:

// Caching Name Server for Example.com.
// We recommend that you always maintain a change log in this file as shown below
// CHANGELOG:
// 1. 9 july 2005 INITIALS or NAME
// a. did something
// a. 23 july 2005 INITIALS or NAME
// a. did something more
// b. another change
//
options {
// all relative paths use this directory as a base
directory "/var/named";
// version statement for security to avoid hacking known weaknesses
// if the real version number is published
version "not currently available";
// configuration specific option clause statements
// disables all zone transfer requests
allow-transfer{"none"};
// optional - BIND default behavior is recursion
recursion yes;
1
//
// log to /var/log/example.log all events from info UP in severity (no debug)
// defaults to use 3 files in rotation
// failure messages up to this point are in (syslog) /var/log/messages
//
logging{
channel example log{
file "/var/log/named/example.log" versions 3 size 250k;
severity info;
b
category default{
example log;
1
1
// required zone for recursive queries
zone "." {
type hint;
file "root.servers";

};

253

254

CHAPTER 10 " DNS SECURE CONFIGURATIONS

// required local host domain
zone "localhost" in{
type master;
file "master.localhost";
allow-update{none;};
};
// localhost reverse map
zone "0.0.127.in-addr.arpa" in{
type master;
file "localhost.rev";
allow-update{none;};

};

Finally, it is assumed that a default rndc configuration was established using the com-
mand rndc-confgen -a so that a default /etc/rndc.key file is present.

Linux (Fedora Core 2) Chroot

This configuration builds a chroot environment in a unique location to show the entire pro-
cess involved. The following series of commands creates the required directories and moves
the basic files required. Lines beginning with // are comments and should not be entered:

cd /

mkdir chroot

mkdir chroot/named

mkdir chroot/named/var

mkdir chroot/named/var/named

mkdir chroot/named/var/run

mkdir chroot/named/var/run/named

// create empty default pid file

touch chroot/named/var/run/named/named.pid

mkdir chroot/named/var/log

mkdir chroot/named/var/log/named

// create empty log file

touch chroot/named/var/log/named/example.log

mkdir chroot/named/dev

// create chroot/named/dev/null and /dev/random

mknod chroot/named/dev/null c 1 3

mknod chroot/named/dev/random c 1 8

// copy required files

cp /etc/named.conf chroot/named/etc/named.conf

cp /etc/localtime chroot/named/etc/localtime

cp /var/named/localhost.rev chroot/named/var/named/localhost.rev
cp /var/named/master.localhost chroot/named/var/named/master.localhost
cp /var/named/root.servers chroot/named/var/named/root.servers
// rndc default key file (if not disabled)

cp /etc/rndc.key chroot/named/etc/rndc.key

// set permissions and ownerships

H oH H H B H

CHAPTER 10 I DNS SECURE CONFIGURATIONS

chown -R named:named chroot/named/*

chmod -R 0660 chroot/named/*

chmod 0666 chroot/named/dev/null

chmod 0644 chroot/named/dev/random

chmod 0664 chroot/named/var/run/named/named.pid

H oH F HF R

If the name server has additional zone files (for instance, if it is a zone slave or master),
then additional directories and file copies are required for the relevant files. If a default rndc
configuration has been created (using rndc-confgen -a), then the key file needs to be copied
as shown. If rndc has been disabled with an empty controls clause (control {};), then this file
is not required. If a custom rndc configuration has been built, then /etc/rndc.conf needs to
be copied together with any specific . key file. Although Linux device types tend to remain sta-
ble, it may be worth verifying that the major and minor device numbers are as shown in the
mknod commands by issuing the following command:

1s -1 /dev/null

crw-rTw-Tw- 1 root root 1,3 Feb 23 2004 /dev/null
1s -1 /dev/random

crw-r-r— 1 root root 1,8 Feb 23 2004 /dev/random

Finally, named may be started using the following command:

named -u named -t /chroot/named

Assuming named must be started at system boot time, the startup script (/etc/rc.d/init.d/
named) needs to be edited to add the -t /chroot/named argument.

The preceding configuration is a simplified version using a minimum of commands to
show the process involved. If more complex configurations are required, then the procedures
and techniques described in the section “Limit Permissions” may be applied.

FreeBSD Chroot

FreeBSD users have two options. The first method assumes that all files will use the standard (de-
fault) FreeBSD locations, and simply involves adding the following three lines to /etc/rc.conf:

named_chrootdir="/chroot/named" # Chroot directory (or not to auto-chroot it)
named_chroot_autoupdate="YES" # Automatically install/update chrooted
named_symlink_enable="YES" # Symlink the chrooted pid file

The preceding code overrides any values in /etc/defaults/rc.conf and automatically con-
figures the required values, including directory creation according to the FreeBSD standard (all
files are stored under the etc/namedb directory) at the next system boot.

The second method should be used if non-FreeBSD default locations are being used for
any files. This method uses the same command sequence as defined for Linux in the preceding
section, with the exception that the values on the mknod commands should be verified using the
1s -1 commands as shown for Linux. The current values for FreeBSD 4.x are as follows:

255

256 CHAPTER 10 " DNS SECURE CONFIGURATIONS

mknod chroot/named/dev/null c 2 2
mknod chroot/named/dev/random c 2 3

The values for FreeBSD 5.x are as follows:

mknod chroot/named/dev/null c 2 3
mknod chroot/named/dev/random c 249 0

Finally, the following lines need to be added to /etc/xc.conf if not already present:

named _enable="YES" # Run named, the DNS server (or NO).
named_program="/usr/sbin/named" # path to named, if you want a different one.
named_flags="-u bind -t /chroot/named" # Flags for named

named _chrootdir="" # Chroot directory (or not to auto-chroot it)

The second method bypasses the default chroot initialization process, and allows much
tighter control over configuration—at the expense of the user doing all the work.

Dedicated Server

The ultimate in permission limitation or the ultimate sandbox is a dedicated server either run-
ning as part of a Stealth server configuration (see Chapter 4) or as a stand-alone server. Such a
server relies on minimalism to reduce the possibility of subversion, and would typically look
something like the following:

* No GUI interfaces, to reduce software complexity

* No compilers or other development tools

 Firewall (packet filter) to inhibit access to all ports other than port 53

¢ No remote access to system—Secure Shell (SSH) or BIND (rndc)

* No Network File System (NFS) or Samba connections

* Removal of all unnecessary utilities; for example, Telnet, FTP, and so on

* BIND or NSD software running in a sandbox and typically configured as an authoritative-
only server

Stream the Log

If security is a significant concern, then monitoring for security violations using intrusion-
detection software such as Snort (www. snort.org) is important, but such tools lie outside the
scope of this book. However, BIND’s logging features can assist in this process by streaming
security messages into a separate log file to minimize the work content of scanning logs man-
ually, and hence the likelihood of missing key events. The following named. conf fragment
streams the security events into a separate log:

CHAPTER 10 " DNS SECURE CONFIGURATIONS

// named.conf fragment
logging{
channel normal log {
file "/var/log/named/normal.log" versions 3 size 2m;
severity error;
print-time yes;
print-severity yes;
print-category yes;
1
channel security log { // streamed security log
file "/var/log/named/security.log" versions 3 size 500k;
severity info;
print-time yes;
print-severity yes;
print-category yes;
1
category default{
normal log;
};
category security{
security log;
1
1

The severity setting (see Chapter 12) can be experimented with to find the most
acceptable value to balance volume and information. BIND’s server clause with a bogus
yes; statement or the blackhole statement can be used to inhibit service completely to a
persistent security offender.

Software Diversity

Significant effort has been spent by many of the root-server operators to minimize exploitable
risks by running BIND on multiple host operating systems (for example, Linux, Solaris,
FreeBSD, and so on), to reduce exposure to a single weakness. The theory is that if an exploit is
discovered in one OS, it is unlikely to be present in all OSes at the same time. Therefore, only
the vulnerable systems can be retired immediately while service continues. The NSD package
(www.nlnetlabs.nl/nsd), which is an Open Source authoritative-only name server, has been
running in the RIPE operated root-server (k.root-servers.net) since 2003, and fully supports
DNSSEC.bis features. If the thought of a single BIND exploit taking all your systems off the air
at the same time keeps you awake at night, then the possibly significant additional effort of
maintaining a second version of DNS software may be worthwhile.

A Cryptographic Overview

The next sections and Chapter 11 include techniques that make extensive use of modern
cryptographic processes. This section is designed to give the reader a brief overview of the

257

258

CHAPTER 10 " DNS SECURE CONFIGURATIONS

terminology used, as well as the functionality and limitations associated with each technique.
The mathematical processes used in the cryptography are treated as automagical (“stuff hap-
pens”) and are not described at all. For a cryptanalyst, such a statement is pure heresy. However,
understanding how the math works in the actual algorithmic processes is not necessary to
understand the security concepts. Additional resources are provided at www.netwidget.net/
books/apress/dns for those readers who revel in the gruesome mathematical details. However,
before ignoring the mathematics entirely, it is important to understand a couple of points.
Cryptographic techniques are not provably secure. Instead, they are exposed to attacks by
dedicated researchers and specialists. Only after having weathered such attacks are the tech-
niques made available for operational use. Research is ongoing to keep ahead of the bad guys,
and occasionally results in new weaknesses being discovered. Finally, all cryptographic tech-
niques are based on a concept known as computationally infeasible. This means either it
would cost too much to assemble the computing power necessary to find the key, or that
it would take too long. This concept is relative, not absolute, and changes over time.
Cryptology can be used for three purposes:

 Confidentiality. Only the parties to the communication can understand the messages
sent between the parties.

¢ Authentication: The data could only have come from a known source.

* Data integrity: The data that is received by one party is the data that was sent by the
other party.

In the context of DNS standards, only authentication and data integrity are of interest.
Where confidentiality is required, it is assumed to be provided by a communications process
such as SSL or its successor TLS, and is not defined within the DNS standards. BIND does sup-
port SSL.

Most of us have been cryptographers at some stage in our lives. The secret codes and
methods we invented to send notes to our school friends also reflect, perhaps crudely, the earli-
est cryptographic processes whereby the “secret” was contained in the process. For example,
we could shift the letters two positions in the alphabet and encode the message. The disadvan-
tage with this method was that once the process was discovered, the algorithm was useless; it
had to be discarded and a new one invented. By contrast, modern cryptography assumes that
the algorithm used—the method of encryption—is known to everyone, including the bad guys,
and indeed can only be proven to be secure by repeated attack. The secret part of the process
lies with a unique key or keys. If a key is compromised, it is simply discarded and a new one
created. An attacker must start again with no greater knowledge than before, even though the
basic algorithm or process stays the same. There are two classes of key-based cryptographic
algorithms in modern usage: symmetric and asymmetric.

Symmetric Cryptography

Symmetric encryption algorithms, also called single-key, shared-secret, or even, confusingly,
private-key systems, use a single key to encrypt and decrypt the data. This single key—the shared
secret—must be securely exchanged between the parties that will use it prior to the actual secure
communication. The limitations of shared-secret systems are twofold. First, the key must be
distributed securely using a process called key management, which itself is not trivial. Second,

CHAPTER 10 " DNS SECURE CONFIGURATIONS

the method of securing the key once distributed lies with all the parties to the communica-
tion: “I trust myself but do I trust all the other parties to keep the key secret?” Examples of
common symmetric key algorithms are DES, AES, IDEA, and RC4, and typical key sizes are
64, 128, or 192 bits. Figure 10-2 shows the operational use of a shared secret for classic confi-
dential communications.

Dynamic
Updates N;two:k/ RSl
emote esolver
5
@ Admin ®)
Queries Queries
Primary |«€ »| Remote
Master (4) | Caching
Master ('I‘;)ansfers Resolver

(1)

Slave(s)

TSIG, SIG(0), TKEY

m} Server-Server ~ DNSSEC

Zone
Files

Figure 10-2. Symmetric, or shared-secret, cryptography

Note The term shared secret, which describes a single key used, or shared, by both ends of the com-
munication should not be confused with secret sharing, which describes a process whereby the shared, or
single, secret key is broken up into parts and shared between multiple persons to make it more secure.

Shared-secret algorithms are used in the DNS in TSIG operations. The problem of distribut-
ing the keys (key management) is not defined in the DNS standards, and can be anything that
works for the user; for instance, telephone, fax, secure e-mail, or carrier pigeon. The shared-
secret key(s) used by DNS software must be constantly available (known as on-linein the jargon)
to allow their use when validating transactions. However, the keys require minimum visibility;
thus, it is impossible to store them in the zone file. Instead, such keys are stored in one or more
key clauses within BIND’s named. conf file. Due to their extremely sensitive content (a shared
secret), they are normally stored as separate files with limited read permissions and included
(using the include statement) into the named. conf file.

Asymmetric Cryptography

Asymmetric encryption algorithms use a pair of keys and are generally referred to as public-key
cryptographic systems or sometimes as nonsecret encryption (a slight oxymoron). In these sys-
tems, data (called plain-textin the jargon) that is encrypted with one key can only be decrypted
with the paired key. Given one key, it is computationally infeasible to derive the paired key. The
system works by making one key, called the public key, widely available, while maintaining

259

260

CHAPTER 10 " DNS SECURE CONFIGURATIONS

the other key, surprisingly called the private key, a secret. This process has an interesting side
effect. If a message is encrypted with a private key and can be decrypted with its paired public
key, then only the owner of the private key could have done it. This property is used in digital
signatures and is described further in the section “Digital Signatures.” The most widely used
public-key encryption systems are RSA (after the inventors Rivest, Shamir, and Adelman) and
elliptic curves. Typical key sizes for public-key systems are 512 bits, 1,024 bits, or higher. The
public keys of a private/public key pair can be safely stored in a public service such as DNS,
while the private key must be maintained securely in a private location. Figure 10-3 illustrates
the use of public-key cryptography for classic confidential communications.

1 1 I |
: Host 1 ! Public | Host 2 !
! . ! | Distribution Ii . !
! Private Key ! Public Key !
: ! Method ! !
I l | I l |
1 1 I |
1 1 I |
1 1 I |
1 1 I |
" | Plain 1 Insecure Communications ! Plain !
' et — Encrypt r Channel »| Decrypt —)| Toxt !
1

. I
1 |
1 |

Figure 10-3. Asymmetric or public-key cryptography

Public-key systems have one significant limitation, in that they rely on knowing, or trust-
ing, that the public key that will be used in communications with a person or organization
really is the public key of the person or organization and has not been spoofed by a malicious
third party. The method by which this is usually accomplished is sometimes called a Public
Key Infrastructure (PKI), in which a trusted third party securely manages public keys. If the
third party is requested to provide the public key of X, they are trusted to provide the correct
key. The third party is trusted to have satisfied themselves by some process—attestation,
notarization, and so on—that Xis the one and only, or globally unique, X.

Message Digests

As stated previously, DNS systems require authentication and data integrity, not confidentiality.
To provide data integrity, the message could be simply encrypted. Thus, only the possessor of
the single key (in symmetric systems) or the public key (in asymmetric systems) could decrypt
it. However, encryption systems use complex mathematical functions, and are therefore big
users of CPU resources. To encrypt all messages would incur unacceptably high overheads. For-
tunately, other techniques can be used to reduce this load. The most common is a lightweight
procedure called a one-way hash, or more commonly a message digest. The hash or digest cre-
ates a unique and relatively small fixed-size block of data (irrespective of the original message
length) that cannot be reversed. The messages being sent typically include both the plain text
(unencrypted) and a digest of the message. The hash algorithm is applied to the received plain

CHAPTER 10 " DNS SECURE CONFIGURATIONS 261

text and if the result matches the message digest, this means the received data was not altered.
The message digest is in some senses similar in concept to a checksum but has significantly dif-
ferent mathematical properties. The most common forms of message digest are MD5 and SHA-1
(part of the SHA family). Figure 10-4 shows the message digest in action.

—-—) TX Digest
1

[i | [ety)
1 Host1 ! ' Host 2 !
| 1 1 |
: One-Way : : One-Way :
: 3| Hash ! | »| Hash !
1
i | Prain : + | Plain I
1 1 1
| Text TX Digest | ' Text RX Digest | 1
' - ' Insecure Communications | > - !
: Channel ' = !
1 1 :
1 1
1 1

Figure 10-4. Message digests

Message Authentication Codes

Two possible solutions exist for authenticating the sender as well as ensuring integrity. In the
case of symmetric, shared-secret systems, a Message Authentication Code (MAC) is created
that combines the message digest with a shared key. The key part authenticates the sender,
and the hash part ensures data integrity. The most common forms of MACs are HMAC-MD5
and HMAC-SHA-1. MACs are used for TSIG secure operations in DNS. Figure 10-5 shows how
the MAC is used.

Channel

1 1

! Host 1 ' - ' Host 2 1
1 1

I Private Key __Secure Distribution _, Private Key :

: | Method : \

1 1

! , ! !
1 1

! One-Way : ' One-Way :

! —> Hash ' ! —>| Hash '
1 1

' | Prain I ' | Plain i |

1| Text ! ' Text !

TXMAC 1 RX MAC 1

\ - ! Insecure Communications | ‘ - '

1 [l —_

1

: I :

! 1

! 1

Figure 10-5. Message Authentication Code

262 CHAPTER 10 /" DNS SECURE CONFIGURATIONS

Digital Signatures

In the asymmetric or public-key world, the process of authentication and data integrity uses
what is called a digital signature. The message being sent is again hashed to create a message
digest using, say, MD5 or SHA-1 to ensure data integrity. The resulting message digest is then
encrypted using the private key of the sender. Both the plain-text message and the encrypted
digest are sent to the other party. The receiver decrypts the message digest using the public
key of the sender, applies the hash algorithm to the plain-text data, and if the results match,
then both the authenticity of the sender and the integrity of the data are assured. Typical key
sizes for digital signature systems are 512 bits, 1,024 bits, or higher. The most common digital
signature algorithms are RSA-MDS5, RSA-SHA-1, and Digital Signature Architecture (DSA; a US
Government standard). Digital signatures are used in the DNS for SIG(0) secure transactions
and for all DNSSEC transactions described in Chapter 11. Figure 10-6 shows how the digital
signature is used.

1
| Host 1 ! ' Host 2
1 1
' ! One-Way
One-Way : ! >» Hash
Hash |\ . ' ! .
Plain | : Plain i
! 1 Text K
! Insecure Communications ' > RX Digest
Channel : —
1

—:—}| Decrypt |—)| TX Digest |

1
1
1
|
: Text
' | TX Digest
1
1
1
! —»| Encrypt
' Public i
1 . Distribution K
Private Ke I—-—)-Publlc Ke
:h _____________ {] Channel L A '

Figure 10-6. Digital signatures

Note The MD5 hash algorithm, and by implication any algorithm that uses it, such as RSAMD5, has been
moved to a “not recommended” status in most IETF documents, due to some theoretical weaknesses pub-
lished in early 2005. These weaknesses do not invalidate the use of the algorithm.

DNS Cryptographic Use

The DNS standards that cover security—generically and confusingly referred to as DNSSEC—
use cryptographic security in two distinct ways. Transaction security, such as that used in zone
transfer and dynamic updates, uses a point-to-point security model in which both parties to
the transaction are assumed to trust each other. The parties exchange information, including

CHAPTER 10 " DNS SECURE CONFIGURATIONS

security information, that authenticates the source and data integrity and is relevant only for
that transaction. TSIG (shared-secret) and SIG(0) (public key) methods are used to perform
the validation. Both methods are described, with examples, later in this chapter.

Client-server security, now known as DNSSEC.bis, allows the receiving DNS to validate
the source and integrity of data received in response to any query from a suitably configured
DNS. For such a system to work, it relies critically on an assurance that the source of the data
is what it says it is. This problem, which was described in the preceding section, normally relies
on the presence of a PKI, whereby a trusted third party verifies that some information, normally
a public key, belongs to X, and that Xis truly the one and only X. DNSSEC.bis security does not
rely on a PKI, but instead creates a hierarchy or chain of trust based on the delegation of DNS
names. A trusted party forms the root or the Security Entry Point (SEP) of the chain of trust, in
which certain RRs at the point of delegation are cryptographically signed (using a digital sig-
nature) by the parent zone. This creates a secure link to the next domain in the chain, which
in turn signs the delegation records and so on, until the end point has been reached. The
authenticity of each link in the chain, with the exception of the starting point, is verified by
the previous, or parent, domain. DNSSEC.bis security is described in Chapter 11.

The nature of secure systems is that they must safeguard against many forms of attack. One
attack form is called a replay attack, in which a transaction is captured and replayed at a later
time. To avoid such forms of attack, all systems involved in cryptographic security must be time
synchronized. The protocols typically allow a “fudge” factor of 300 seconds (5 minutes), but the
implementation of Network Time Protocol (NTP) is essential in systems that use cryptographic
techniques. Implementation of NTP lies outside the scope of this book, but Open Source imple-
mentations are available for most major OSes and their distributions. Further information may
be obtained from www.ntp.org, including a list of public time servers.

Caution Time synchronization for all hosts involved in cryptographic exchanges is crucial. BIND failure
messages do not always indicate clearly that time is the source of a failure in authentication, when 90% of
the time that is indeed the problem. NTP uses an incremental approach to synchronizing clocks, and can take
a considerable period to adjust the clocks on any host system. If you are not running NTP software and wish
to experiment with the techniques described throughout this chapter and Chapter 11, then each host that will
participate should synchronize its clocks to Internet time by issuing an ntpdate name.of.time.server
command. In this command, name. of.time.server should be replaced with some accessible time server;
a list of publicly available time servers can be found at www. ntp.org. Note that ntpdate is a one-time update,
and the accuracy of the local clock determines how long its effect will last. Operational systems that partici-
pate in DNSSEC must implement NTP.

Securing Zone Transfers

In most DNS configurations, zone transfers are essential. If you are of a security-conscious
frame of mind, perhaps zone transfers are viewed as a necessary evil. The default option in
BIND is to allow zone transfers to any requesting host. Although on its face this may look like
aremarkably friendly act, it is based on the simple premise that a public DNS contains public
data. Everything that is transferred can be discovered by exhaustive queries, even if zone

263

264

CHAPTER 10 " DNS SECURE CONFIGURATIONS

transfers are completely banned. If data should not be public, it should not be in the zone file
on a public server. Simply securing zone transfers is not a solution to hiding data. Neverthe-
less, there are cases where it is necessary as part of a security-in-depth configuration to restrict
zone transfers—for example, on the private side of a Stealth server configuration (see Chapter
4). The simplest way to secure zone transfers is through the use of IP addresses in BIND’s
named. conf file. The following named. conf fragment limits transfers to named hosts based on
the zone name:

// named.conf fragment

logging{
channel normal_log {
file "/var/log/named/normal.log" versions 3 size 2m;
severity error;
print-time yes;
print-severity yes;
print-category yes;
b
channel security log { // streamed security log
file "/var/log/named/security.log" versions 3 size 2m;
severity info;
print-time yes;
print-severity yes;
print-category yes;
b
category default{
normal log;
1
category security{
security log;

b
b
options {

allow-transfer {none;}; // none by default
b

zone "example.com in{

allow-transfer {10.1.2.5;}; // this zone only
};

The preceding configuration fragment denies all zone transfer requests and selectively
permits the allowable hosts on a per-zone basis. For instance, the single IP address 10.1.2.5
is allowed to perform zone transfers for the zone example.com. The log is streamed for secu-

rity events, because it is assumed that as part of this defensive strategy it is of interest to see
where transfer requests are coming from. If necessary, after log inspection a server clause

CHAPTER 10 " DNS SECURE CONFIGURATIONS

with bogus yes; or a blackhole statement could be used to stop service completely to a per-
sistently inquisitive host.

Given the right circumstances, IP addresses can be spoofed, which can result in man-in-
the-middle attacks such that a third party may pretend to be the zone master. When requested
to transfer a zone, this third party could transfer counterfeit data resulting in, say, a web site
being hijacked by providing alternate IP addresses in the Resource Records (RRs). To prevent
such a possibility, zone transfers can be secured through the use of cryptographic techniques
to ensure both authentication (the master and slave are who they say they are) and data
integrity (the data received by the slave was the same as the data sent by the master).

Authentication and Integrity of Zone Transfers

The bad news is that of the three methods for securing zone transfers, for practical purposes,
there is only one, as may be seen from the following list:

* TSIG: TSIG was defined in RFC 2845 and uses a single shared secret between the master
and slave servers as part of a MAC. The key must be distributed to the slave locations by
some secure process, such as fax, mail, courier, or secure e-mail, and it must be main-
tained securely at all the sites. Shared secrets, because they rely on a single key maintained
at two or more locations, should be changed frequently (perhaps every 30 to 60 days). If
there is more than one slave server, either separate shared secrets may be used for each
master-slave pair, or a single shared secret may be used for all slaves. The latter policy is
significantly riskier, because any subversion or discovery of the key at a single site inval-
idates all slave transfers, whereas if separate secrets are used the subverted slave can be
temporarily disabled until the key is replaced. There is no change to the operational
zone files when using the TSIG method; only the named. cont file is modified.

* SIG(0): SIG(0) was defined in RFC 2931 and uses a public-key system to generate a digital
signature that both authenticates and ensures the integrity of the data involved in each
transaction that includes zone transfers. However, there are no tools available with cur-
rent BIND releases to support SIG(0) for zone transfers. SIG(0) may be used with DDNS;
see the section “Securing Dynamic Updates” later in the chapter.

e TKEY:The TKEY provides a method of securely exchanging shared-secret keys so that
the poor carrier pigeons can have a rest (or whatever other method you use to securely
distribute shared keys). The method is defined to support both the Diffie-Hellman algo-
rithm and the Generic Security Services API (GSSAPI). However, the standard (RFC 2930)
mandates that the exchange must be authenticated with either TSIG or SIG(0) methods.
Consequently, it appears not to be widely implemented, and is not covered further in
this book.

For practical purposes, the only method available to secure zone transfers is TSIG. The
detailed configuration required to support this service is covered in the following section.

TSIG Configuration

Transaction Signatures (TSIG) use a Message Authentication Code (MAC) with a shared secret
both to authenticate and ensure the data integrity of every transaction involved in zone trans-
fers between the nominated slave and its master. It is vital to keep in mind that shared-secret

265

266 CHAPTER 10 " DNS SECURE CONFIGURATIONS

data is never placed in the DNS zone files. Instead, the shared secret is used by the two servers
when exchanging data, such as a zone transfer. Figure 10-7 illustrates how shared secrets are
used in securing transactions.

1 1
1 1
1 1
! Zone Transfer as '
: Plain Text ! TXMAC
1
"""""""""" ' TXMACInTSIGRR Lo A
with Each Block fommmmmmmmmm s !

1 I |

Host 1 1 - ! Host 2 !

' Private Key ! Secure Distribution ! 3| Private Key !

' (Key Clausein| Method ! (Key Clause in !

: named.conf | ! named.conf |

! I I :

| | : |
1

: One-Way : : One-Way :

1 I |

! ! Hash : : — Hash |

i | Plain) ! Plain I

1| Text ! ! Text ﬁ !

TX MAC ! ! RX MAC I

| - ' Insecure Communications ! > - |

\ Channel i = !

: Zone File one File [

I

l |

! I
1

I

I

Figure 10-7. Shared-secret TSIG

The shared secret is generated using the dnssec-keygen utility, which is the general-purpose
cryptographic utility provided with BIND and is described in Chapter 9. The TSIG standard (RFC
2845) allows both HMAC-MD5 and HMAC-SHA-1 algorithms to be used as MACs. However, the
current release of the dnssec-keygen utility only supports the HMAC-MD?5 algorithm. The shared-
secret key is assumed to be generated in a directory called /var/named/keys using a command
similar to the following:

cd /var/named/keys
dnssec-keygen -a hmac-md5 -b 128 -n host example.com

This command generates a 128-bit key (the -b argument) suitable for use with the HMAC-
MD5 MAC algorithm (HMAC-MD)5 allows keys from 1 to 512 bits). The -n host argument indicates
that a host KEY RR is generated with a name of example.com. This KEY RR is not used in TSIG
transactions for reasons explained later in this section. However, the dnssec-keygen program
treats the -n argument as mandatory, so it must be present. The command writes two files to
the current directory, and when complete outputs a short message to identify the created files,
as shown here:

Kexample.com.+157+31313

CHAPTER 10 " DNS SECURE CONFIGURATIONS

The preceding file name consists of the fixed value K, followed by the host name reflected
from the dnssec-keygen command (in this case example.com). 157 identifies the algorithm
(HMAC-MD)5). The 31313 is called the key-tag; it is generated using a variant of the “one’s
complement” checksum algorithm to identify this key set uniquely. Looking in the directory
in which the files were written displays two files:

Kexample.com.+157+31313.private
Kexample.com.+157+31313.key

Viewing the file Kexample.com.+157+31313.private displays something like the following
data:

Private-key-format: vi.2
Algorithm: 157 (HMAC_MD5)
Key: JuxDyYXIJhAia5WQe9oqUA==

The preceding information contains three lines. The line beginning with the text Key: is
the base64 (RFC 3548) encoded version of the shared-secret key. The next step is to edit this
data into a key clause that will be used in the named. conf file, as shown here:

key "example.com" (

alogorithm hmac-mds;

secret JuxDyYXIJhAia5WQe9oqUA==;
1

The key name example.com, which can be a quoted string and contain spaces, or unquoted
if there are no spaces, is normally the name used as the hostname in the dnssec-keygen com-
mand, as in the preceding case. Depending on the application, it can be any useful string, as
long as the same key clause name is used by both parties in the transaction. In the example case,
both parties (master and slave) contain a key clause with the name example.com, as shown in the
example fragments that follow. The name of the key clause could have been “transfer-key” if that
was more meaningful; again, the same key clause name must be used by both parties. For a TSIG
transaction, there is no required relationship between the name used in the -n argument of the
dnssec-keygen utility and the name of the key clause. The name defined in the key clause is sent
in the TSIG meta (or pseudo) RR with each secure transaction to identify the shared secret being
used. If the key clause name is not the same in each party, the transaction will fail with a BADNAME
error. The algorithmline of the key clause identifies the algorithm being used (hmac-mds as
defined in the dnssec-keygen command). The data following secret is a copy of the data from
the Key line of the Kexample.com.+157+31313.private file, terminated with a semicolon. This key
clause should be saved as separate file—we’ll call it example.com.key—and placed in a directory
we'll call /var/named/keys and included in the named. conf file. This file, containing the shared-
secret key clause, must now be made available by some secure process (such as floppy disk,
secure e-mail, or other secure service), to the slave server or servers. Because this file contains
highly sensitive data it should be immediately secured on the master and slaves such that it can
only be read with the UID of BIND. The commands to secure the file look something like this:

267

268

CHAPTER 10 " DNS SECURE CONFIGURATIONS

chown named:named /var/named/keys/example.com.key
chmod 0400 /var/named/keys/example.com.key

The preceding commands assume that BIND is being run with the -u argument (as
described earlier in this chapter) and allow BIND’s UID read access to the file. However, the
root user can both read and write as normal if subsequent modification is required. Alterna-
tively, you can use a chmod setting of 0600 and allow all editing to be done under the BIND UID
if you have a deep-seated objection to using root for anything nonessential.

Note The UID is assumed to be named, as shown in the preceding example. named is the normal value
used with Linux and Windows. However, FreeBSD typically uses a UID of bind.

Viewing the file Kexample.com.+157+31313.key shows the following text:

example.com. IN KEY 512 3 157 JuxDyYXIJhAia5WQe9oqUA==

This is a DNS-ready KEY RR containing the shared-secret key! It is generated as an artifact of
the dnssec-keygen standard processing; unfortunately, there is no way to prevent it. The KEY RR is
never used with any shared-secret algorithms and must not under any circumstances be added to
the zone file. Instead, only the named. conf file key clause contains the shared-secret key that is used
independently by both ends during the communication, as illustrated in Figure 10-7. Once the key
clause is established on both the master and slaves, either secure Kexample.com.+157+31313.key
and Kexample.com.+157+31313.private, or better still, delete these files completely—they will not
be used again and represent an additional security headache.

The named. conf file at the master will look something like the following fragment:

// named.conf example.com master fragment
logging{
channel normal log {
file "/var/log/named/normal.log" versions 3 size 2m;
severity error;
print-time yes;
print-severity yes;
print-category yes;
b
channel dnssec_log { // streamed dnssec log
file "/var/log/named/dnssec.log" versions 3 size 2m;
severity debug 3;
print-time yes;
print-severity yes;
print-category yes;

};

CHAPTER 10 I DNS SECURE CONFIGURATIONS

category default{
normal log;

b

category dnssec{
dnssec_log;

1

1

options {
directory "/var/named";
dnssec-enable yes;

1

// include the key clause for example.com key name
include "keys/example.com.key"; // include the key clause
// server clause references the key clause included above
server 10.1.2.3 {

keys {"example.com";}; // name used in key clause

};

zone "example.com” in{
type master;
file "master.example.com";
// allow transfer only if key (TSIG) present
allow-transfer {key "example.com";};

};

To assist in testing and experimentation, the log has been streamed to log DNSSEC events
separately, as shown in the preceding fragment. The severity debug 3; line generates copious
amounts of logging and should be used during testing only. In a production environment, this
value can be set to severity info; or higher. DNSSEC is not turned on by default in BIND. The
dnssec-enable yes; statement mustbe placed in the global options clause to invoke the feature.
The key clause contained in the file keys/example.com. key must appear before it is referenced in
the server clause, as shown in the preceding fragment. The server clause defines the IPv4
address of the slave server for example.com, and the keys statement in this clause references the
key clause containing the secret key to be used. The allow-transfer statement in the zone clause
for example.comis an address-match-1list construction using the key option (see the section in
Chapter 12, “BIND address_match_list Definition”) and provides the linkage to validate incom-
ing TSIG messages. The corresponding slave server named. cont file looks something like that
shown here:

// named.conf example.com slave fragment

options {

directory "/var/named";
dnssec-enable yes;

269

270

CHAPTER 10 " DNS SECURE CONFIGURATIONS

include "keys/example.com.key"; // include the key clause
server 10.1.2.5 {
keys {"example.com";}; // name used in key clause

};

zone "example.com" in{
type slave;
file "slave.example.com";
masters {10.1.2.5;};

};

The key clause again is included from the file keys/example.com.key (remember both
sides are sharing this key) and must appear before it is referenced in the server clause,
which in this case is the IPv4 address of the zone master for example.com. The masters state-
ment in the zone clause for example.com contains an IPv4 address to link it to the server
clause. This triggers the initiation of the authentication sequence using the defined keys
statement. Although the masters statement can contain a key option in this case, because
the slave initiates the request for zone transfer it must know where to send it, so it uses an
IP address. The corresponding allow-transfer statement in the zone master fragment can
use the key format because it is responding to the request.

For those with insatiable curiosity, it may be worthwhile to look at the resulting zone
transfer with a suitable sniffer application (see Chapter 15). A meta (or pseudo) RR called
TSIG, containing the MAC for each transaction, and with a name of the shared-secret key
clause is placed in the ADDITIONAL SECTION of the query and its response (see Chapter 13 for
an explanation of meta RRs). In this case, the response is the zone transfer (AXFR). These TSIG
RRs are discarded once the message has been verified; that is, they are not saved as part of the
zone transfer data.

Note The KEY RR generated as part of the dnssec-keygen process (contained in the . key file) is used
in public-key systems only. When using shared-secret techniques such as TSIG, the KEY RR is an annoying
and dangerous artifact, and must not be placed in the DNS zone file. Unless there are good reasons not to,
it should be deleted immediately.

Securing Dynamic Updates

Dynamic DNS (DDNS) was defined in RFCs 3007 and 2136, and describes a process whereby
RRs for a zone can be added, deleted, and modified by a third party. However, zones cannot be
deleted or added using this process. To ensure consistency of zone data, the dynamic updates
are only carried out on the primary master server, which is defined as the name server that
appears in the SOA RR for the zone (the MNAME field). The BIND default is to disallow dynamic
updates from all IP addresses. Dynamic updating is a powerful capability, and many sites use
it extensively to enable customers to edit their zone data directly, and in some cases to syn-
chronize Dynamic Host Control Protocol (DHCP) with both forward and reverse mapping files
automatically. As with all positives, there is an accompanying negative: unscrupulous access

CHAPTER 10 " DNS SECURE CONFIGURATIONS

by malicious third parties can corrupt or poison the zone file. As previously stated, not secur-
ing DDNS unless it occurs behind a secure perimeter and between consenting adults constitutes
an over-reliance on the essential goodness of mankind. It is imperative to secure DDNS. The
simplest way to secure DDNS is through the use of IP-based restrictions. The following fragment
uses BIND’s allow-update statement to limit access:

// named.conf fragment

logging{
channel normal_log {
file "/var/log/named/normal.log" versions 3 size 2m;
severity error;
print-time yes;
print-severity yes;
print-category yes;
b
channel security log { // streamed security log
file "/var/log/named/security.log" versions 3 size 2m;
severity info;
print-time yes;
print-severity yes;
print-category yes;
b
category default{
normal_log;
b5
category security{
security log;

};
1
options {
b

zone "example.com in{

allow-update {10.1.2.5;}; // this zone only
b

The preceding configuration fragment denies all dynamic updates and selectively per-
mits the allowable hosts on a per-zone basis. For example, the single IP address 10.1.2.5 is
allowed to perform updates for the zone example.com. The log is streamed for security events
because it is assumed that as part of this defensive strategy, it is of interest to see where
update requests are coming from. If necessary, after inspection of the security.log file, a

server clause with bogus yes; or a blackhole statement could be used to stop service com-
pletely to a persistent host.

27

272

CHAPTER 10 " DNS SECURE CONFIGURATIONS

Given the right circumstances, IP addresses can be spoofed, which can result in the bad
guys doing naughty things to the master zone file. To prevent such a possibility, dynamic up-
dates can be secured through the use of cryptographic techniques to ensure both authentication
(the master and slave are who they say they are), and data integrity (the data received by the
master being updated was the same as the data sent by the client performing the update).

Both TSIG and SIG(0) methods are supported by the nsupdate utility provided with BIND
releases and described in Chapter 9. Implementation of both TSIG and SIG(0) methods is
described in the following sections.

TSIG DDNS Configuration

TSIGs use a Message Authentication Code (MAC) with a shared secret both to authenticate
and ensure the data integrity of every transaction involved in dynamic updates between the
primary master and the update source. The method of generating the shared secret is exactly
the same as that defined for the earlier section “TSIG Configuration,” and is not repeated here.
The shared secret is not shared with another name server in this case, but with the source of
the dynamic updates; for instance, the nsupdate utility. Again, it is vital that the KEY RRs gen-
erated as part of the dnssec-keygen process must notbe added to the zone file. When using a
shared-secret algorithm such as TSIG, the key clause or clauses in the named. conf file—which
is assumed not to be a public file—store the secret keys.

Note Itis possible to use the same shared-secret key to perform both dynamic update and zone transfer
authorization, especially if the same host is being used for both operations. However, in general, a separate
shared secret should be used for every host pair because this minimizes exposure to compromised keys.

The named. conf file fragment to support the dynamic update is shown in the following
code, using both the allow-update and the update-policy statements:

// named.conf example.com master fragment
logging{
channel normal log {
file "/var/log/named/normal.log" versions 3 size 2m;
severity error;
print-time yes;
print-severity yes;
print-category yes;
};
channel dnssec_log { // streamed dnssec log
file "/var/log/named/dnssec.log" versions 3 size 2m;
severity debug 3;
print-time yes;
print-severity yes;
print-category yes;

};

CHAPTER 10 " DNS SECURE CONFIGURATIONS

category default{
normal log;

b

category dnssec{
dnssec_log;

};

};

options {
directory "/var/named";
dnssec-enable yes;

1

include "keys/example.com.key"; // include the key clause
server 10.1.2.3 {
keys {"example.com";}; // name used in key clause

};

zone "example.com" in{
type master;
file "master.example.com";
allow-update {key "example.com";};

};

zone "example.net" in{
type master;
file "master.example.net";
update-policy { grant example.com subdomain example.net ANY;};
update-policy { grant * self * A;};
update-policy { grant fred.example.net name example.net MX;};

};

To assist in testing, the log has been streamed to log dnssec events separately, as shown
in the preceding fragment. The severity debug 3; line generates copious amounts of logging
and should be used during testing only. In a production system, this value can be set to severity
info; or higher. DNSSEC is not turned on by default in BIND, so the dnssec-enable yes; state-
ment must be placed in the global options clause to invoke the feature. The allow-update
statement in the zone clause for example. com uses the key option of the address match list
to permit any updates to the example.com zone file. The zone clause for example.net uses
update-policy statements to provide tight control over what can be done and by whom. The first
update-policy statement allows a TSIG transaction with the name example.com to update any
record in the zone file example.net. The keyword subdomain means that the following parameter,
in this case example.net, is treated as a base name. Any name that includes or terminates with
example.net matches; for example, joe.example.net terminates with example.net and therefore
it matches, as would the MX RR for the domain. The second update-policy statement allows any
TSIG transaction with a name of, say, bill.example.net and for which there is a key clause with

273

274

CHAPTER 10 " DNS SECURE CONFIGURATIONS

the same name (bill.example.net) to update only an A RR with a name of bill.example.net.
The additional key clauses are not shown in the example, but this construct requires a key clause
and a unique shared secret for every possible A RR that could be updated. The final update-policy
statement says that a TSIG transaction with a name of fred.example.net is allowed to update
only the MX RR(s) for the domain example.net.

To reinforce the process of key generation for shared-secret applications, the following
sequence shows creation of the shared secret for fred.example.com. This shared secret is used
in the last update-policy statement in the zone clause for example.net in the preceding frag-
ment. Use the following command to generate the key:

dnssec-keygen -a hmac-md5 -b 128 -n host fred.example.net

When complete, the command responds with a file identifier such as the following:

Kexample.com.+157+32713

Create a new key clause with a name of fred.example.net using the data from the Key:
line of the file called Kexample.com.+157+32713.private, as shown here:

key "fred.example.net" (

alogorithm hmac-mds;

secret 7aBDy3XIJhA775WQ4FoqUA==;
};

Add this key clause to the existing file example.com.key, which contains the original key
clause we created, or create a new file and add a new include statement in named. conf.
Finally, if the data is added to the existing file or a new file is created, remember to check
that the file permissions only allow read, or read and write access only, for the BIND UID.

To illustrate the dynamic update process in action, the example uses the nsupdate utility
supplied with all BIND releases. In this case, we use the example.com key, which can update
both the example.com and example.net zone files. Before invoking the nsupdate utility, the
files Kexample.com.+157+31313.private and Kexample.com.+157+31313.key need to be moved
by a secure process into a suitable working directory on the host that will run the nsupdate
utility. In this case we assume the directory is /var/named/dynamic.

Note Recall from earlier that when using shared secrets, the file containing the KEY RR (in the preceding
case Kexample.com.+157+32713.key), which is generated automatically by the dnssec-keygen utility,
must not be added to the zone file. However, this file is required by the nsupdate utility for operational rea-
sons. Once securely transferred to that host or hosts, it should be deleted from the primary master host.

The following sequence adds a new A RR to the zones example.com and example.net:

cd /var/named/dynamic
nsupdate -k Kexample.com.+157+31313.private

CHAPTER 10 " DNS SECURE CONFIGURATIONS

> server nsi.example.com

> zone example.com

> update add new 36000 IN A 192.168.5.4

> send

> show

Outgoing update query:

55 ->>HEADER<<- opcode: UPDATE, status: NOERR id: 0

;5 Tlags: ; ZONE: 0, PREREQ: 0, UPDATE: 0, ADDITIONAL: 0
> zone example.net

> update add another.example.net. 36000 IN A 192.168.7.15
> send

> quit

The preceding example shows adding an A RR to each of the domains example.com and
example.net. The key file used with the nsupdate utility has a name of example.com, which
has permission to update both example.com (via the allow-update statement in the example
named.conf fragment) and example.net (through the first update-policy statement). A dig
command can be used to verify that the new RRs are available, as shown here:

dig @192.168.5.12 new.example.com A

; <<>> DiG 9.3.0 <<>> ©192.168.5.12 new.example.com A

;5 global options: printcmd

;5 Got answer:

55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1082

;5 Tlags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

55 QUESTION SECTION:
;new.example.com. IN A

55 ANSWER SECTION:
new.example.com. 36000 IN A 192.168.5.4

55 AUTHORITY SECTION:
example.com. 86400 IN NS nsil.example.com.
example.com. 86400 IN NS ns2.example.com.

5, ADDITIONAL SECTION:
nsl.example.com. 86400 IN A 192.168.5.12
ns2.example.com. 86400 IN A 192.168.5.11

55 Query time: 15 msec

;5 SERVER: 192.168.5.12#53(192.168.5.12)
55 WHEN: Thu Apr 07 21:59:48 2005

553 MSG SIZE rcvd: 124

The preceding output confirms that the update to the example.com domain was successful
and is immediately available at the primary master. The update process automatically adds

275

276

CHAPTER 10 /" DNS SECURE CONFIGURATIONS

1 to the sequence number field of the SOA RR. Unless disabled by a named. conf statement,
a NOTIFY is sent to the slave servers for the zone, and the update is cascaded to all the slave
servers within minutes.

Note It is worth reminding readers that once a dynamic update is invoked, the zone file should not be
manually edited because updates are initially written to a journal file (zone.file.name.jnl), and the zone
file is only periodically updated. If manual editing is required, then either stop BIND and perform the edit, or
use the rndc command flush, followed by freeze zone.name; perform the manual edit; and then thaw
zone.name. In either case, the zone’s . jn1 file should be deleted before either restarting BIND or issuing
the rndc thaw command to ensure subsequent consistency.

SIG(0) Configuration

The nsupdate utility also supports SIG(0) authentication and data integrity checking through
the use of digital signatures, which are based on public-key technology. Public-key technology
has the advantage that no special action is required to distribute the public keys. They are sim-
ply placed as KEY RRs in the zone file, and may be read by anyone, because without the matching
private key they are useless. In an update sequence, the zone master uses the public key. The
client performing the update uses the private key to generate the signature, which is verified
by the receiving zone primary master. If an encrypted response is required, the server uses the
public key to sign the response, which in turn is verified using the private key of the updating
client. The downside of public-key technology is that it uses significantly more CPU resources
than shared-secret technology. If any volume of updates is likely on a busy server, then use of
SIG(0) may warrant careful consideration. As long as the key distribution and management
problem associated with shared secrets can be handled, TSIG may be a better option. The term
SIG(0) can be alittle confusing, because there was a SIG RR type that performed a function
similar to the current RRSIG RRs used in DNSSEC configurations. However, the SIG(0) RR used
to secure transactions is a meta (or pseudo) RR type that is dynamically created by the sending
application or server and added to the ADDITIONAL SECTION of the transaction (see Chapter 15).
The SIG(0) RR is discarded immediately after verification. Specifically, it is not cached or added
to the zone file. This form of the SIG RR is uniquely identified by having a type 0 in its label field
(see the section “SIG RR” in Chapter 13), and hence has the name SIG(0).

The private and public keys for the SIG(0) transaction are created using the dnssec-keygen
utility (see Chapter 9). Because the client that updates the zone uses the private key, key gener-
ation should be done on this host. If this is not possible, the generated files have to be moved to
the client machine using a secure process. These commands generate a public/private key pair
in the directory /var/named/keys:

cd /var/named/keys
dnssec-keygen -a rsashal -b 512 -k -n host update.example.com

CHAPTER 10 " DNS SECURE CONFIGURATIONS

In the preceding dnssec-keygen command, -a rsashal generates a digital signature using
the RSA algorithm with the SHA-1 message digest (the dnssec-keygen utility supports the DSA,
RSA-SHA-1, and RSAMDS5 public-key methods). The -b 512 argument indicates the key will
be 512 bits long. An RSA-SHA-1 key may be from 512 to 2,048 bits. The higher the number, the
greater cryptographic strength of the key; however, more CPU is used in encryption/decryption.
The -k argument indicates that a KEY RR type is required (not a DNSKEY RR). The -n host
indicates a host KEY RR will be created with a name of update.example.com. When complete,
the command will output a message similar to this:

Kupdate.example.com.+001+00706

Kis a fixed value, update.example.com. is the name from the dnssec-keygen command, 001
indicates the algorithm (RSA-SHA-1), and 00706 is the key-tag that is algorithmically gener-
ated and uniquely identifies this key pair. Inspection of the directory /var/named/keys shows
two files:

Kupdate.example.com.+001+00706.private
Kupdate.example.com.+001+00706.key

The file Kupdate.example.com.+001+00706.key contains a single KEY RR and looks some-
thing like the following:

update.example.com. IN KEY 512 3 1 (AQPL1jlhf70f911P/h
PFNMxU55IpkMX107EzvDk50rh0eM7xF+YQdQKD
brvR1rf6I80TPFM2MM265K98aj5MASIX)

The preceding data has been edited to enclose the key material in parentheses (allowing
it to be split across several lines for presentation reasons only), but it appears as a single line
in the file. This is the public key associated with the public/private key pair, and it may be sent
via any suitable method for inclusion in the master zone file for example.com, either by cutting
and pasting, or by using the $INCLUDE directive. The Kupdate.example.com.+001+00706.key file
containing the KEY RR is public data and requires no special handling. The following example
shows the use of the $INCLUDE directive in the zone file for example.com. It assumes the .key file
is placed in the directory /var/named/keys on the host of the zone master for example.com:

; example.com zone file fragment
$TTL 2d ; zone TTL default of 2 days
$ORIGIN example.com.

$INCLUDE keys/Kupdate.example.com.+001+00706.key ;DDNS key

The named. conf file on the primary master server must now be modified to allow the zone
to be updated using an update-policy statement (an allow-update statement could also be
used) in the zone clause, as shown in the following example:

277

278

CHAPTER 10 " DNS SECURE CONFIGURATIONS

// named.conf fragment
logging{
channel normal log {
file "/var/log/named/normal.log" versions 3 size 2m;
severity error;
print-time yes;
print-severity yes;
print-category yes;
1
channel dnssec_log { // streamed dnssec log
file "/var/log/named/dnssec.log" versions 3 size 2m;
severity debug 3;
print-time yes;
print-severity yes;
print-category yes;
1
category default{
normal log;
};
category dnssec{
dnssec_log;
1
1

options {

directory "/var/named";
dnssec-enable yes;

};

zone "example.com"” IN{
type master;
file master.example.com;
update-policy {grant update.example.com subdomain example.com ANY};

};

Note To assist in testing, the log has been streamed to provide additional information about DNSSEC
events using severity debug 3;.This value should not be used in a production environment unless you
like large log files. A setting of severity info; or higher should be used. Because DNSSEC is not enabled
automatically, the dnssec-enable yes; statement must be present in the global options clause.

The preceding update-policy allows the KEY RR with the name update.example.comto
update any RR in the domain example.com. The following update-policy statement only allows
update.example.com to modify NS records for the domain:

CHAPTER 10 " DNS SECURE CONFIGURATIONS

update-policy {grant update.example.com subdomain example.com NS};

By careful selection of the host name when generating keys, fine-grained controls can be
created at the cost of multiple key RRs. The following example illustrates how to use this process
to allow individual users to modify only their own host records. The target zone file fragment is
shown here:

; example.com zone file fragment
$TTL 2d ; zone TTL default of 2 days
$ORIGIN example.com.

bill IN A 192.168.2.3
IN TXT "one fine day"
IN RP bill.example.com.
fred IN A 192.168.2.4
IN RP fred.example.com.
IN AAAA 2001:db8::15

To control the process, two public/private key pairs with the preceding host names are
generated, as shown here:

dnssec-keygen -a rsashal -b 512 -k -n host bill.example.com
dnssec-keygen -a rsashal -b 512 -k -n host fred.example.com

It is assumed that these keys are generated on the respective hosts bill.example.com and
fred.example.com. The public KEY RRs are included in the zone file, as shown here:

; example.com zone file fragment
$TTL 2d ; zone TTL default of 2 days
$ORIGIN example.com.

bill IN A 192.168.2.3
IN TXT "one fine day"
IN RP bill.example.com. .
$INCLUDE keys/Kbill.example.com.+001+77325.key ; bill KEY RR
fred IN A 192.168.2.4
IN RP fred.example.com. .
IN AAAA 2001:db8::15
$INCLUDE keys/Kfred.example.com.+001+08634.key ; fred KEY RR

The following named. conf update-policy ensures that the appropriate key can update only
its own A, TXT, AAAA, and RP records:

update-policy {grant * self * A AAAA TXT RP};

The first * says that a reference to any KEY RR with the same name (self) as the host record
(the second *) is allowed (grant) to update the A, AAAA, TXT, and RP RRs only with the same host
name. Thus, an incoming update with the name bill.example.com (references the KEY RR of

279

280

CHAPTER 10 " DNS SECURE CONFIGURATIONS

bill.example.com) is only allowed to update or add any A, AAAA, RP, or TXT RRs with a host
name of bill.example.com. Similarly, if the update uses the name fred.example.com, it can
only update the defined RR types that have a host name of fred.example.com.

Having digressed to cover the use of update-policy, it is time to return to the original
public-key example. The file Kupdate.example.com.+001+00706.private, which is located on
the client that updates the zone file, looks something like this:

Private-key-format: vi.2

Algorithm: 1 (RSA)

Modulus: y9Y5YX+9H/ZdT/4TxTTMVOeSKZDF9TuxM7w50dK4dHjO8RFmEH
UCg2670da3+ifKEzxTNjDNurCvfGo+TALCVw==

PublicExponent: Aw==

PrivateExponent: h+QmQP/TaqQ+NVQNLiMy40UMG7XZTifLd9L
Q0TclovoC0/y4wq30Ng4jNaskb4Y4UQfx/2HcK84HIM/T66fzew==
Prime1: /sRMFcz/OnBnuueuvvQi4SCK1KSCi1loWgPTHsmKLZo=
Prime2: zNLQux9xD8HxzBmiY1671Hk105KbeB+TSTVYaD8p4M=
Exponent1: qdgyuTNUOaBFJOUfKfgXQMBcYxhXB5DwPAKMvzEGyRM=
Exponent2: iIyLJ2pLX9ahMrvBlunSYvtujOxnpWpiMUu4/ImtTGlc=
Coefficient: S5di+sst/DCqT5MSNaiNLPNODIWRjxivgkiifB7DP14=

A number of the preceding lines have been split across more than one line for presenta-
tion reasons only. This file contains the private key of the public/private key pair and is only
used by the nsupdate utility. It should be immediately secured for read-only permission under
the UID of the user who will perform the dynamic update. For the purposes of illustration, it is
assumed that the user name that will perform the update is updater, with a group name of
users. The following commands secure the .private and .key files in /var/named/dynamic:

chown -R updater:users /var/named/dynamic/*
chmod -R 0400 /var/named/dynamic/*

To invoke and test the SIG(0) dynamic update process, the nsupdate utility is invoked and
the following sequence is used to add an MX record and its corresponding A RR for the domain
example.com:

cd /var/named/dynamic

nsupdate -k Kexample.com.+001+00706.private

server nsil.example.com

zone example.com

update add example.com. 36000 IN MX 10 mail2.example.com.
send

show

Outgoing update query:

55 ->>HEADER<<- opcode: UPDATE, status: NOERR id: 0

;5 Tlags: ; ZONE: 0, PREREQ: 0, UPDATE: 0, ADDITIONAL: 0
> update add mail2 36000 IN A 192.168.2.5

> send

> show

vV VvV VvV VvV VvV H R

CHAPTER 10 " DNS SECURE CONFIGURATIONS

Outgoing update query:

55 ->>HEADER<<- opcode: UPDATE, status: NOERR id: 0

;5 fTlags: ; ZONE: 0, PREREQ: 0, UPDATE: 0, ADDITIONAL: 0
> quit

As with the TSIG example, a dig command can be issued to verify that the MX and A RRs
are available at the primary master. By pointing the dig command at the slave servers, the
cascaded update, initiated by a NOTIFY message, can also be verified.

It is possible to mix TSIG and SIG(0) dynamic update clients if that makes operational
sense. It is also possible to support TSIG for zone transfers and SIG(0) for dynamic update
operations, or any such combination.

Summary

This chapter introduced DNS security by categorizing the topic into administrative security,
zone transfers, dynamic updates, and zone integrity. The first three topics are covered in this
chapter; zone integrity using DNSSEC.bis is described in Chapter 11.

The administrative security discussion covered the selection and configuration of DNS
servers and discussed software updating, limiting functionality, limiting permissions (including
sandboxes or chroot jails), log streaming, and the use of multiple sources of both OS and DNS
software to reduce the risks involved in running DNS systems. The packaged installation of a
chroot jail on Linux Fedora Core 2 and FreeBSD was described, as well as the manual installa-
tion of a chroot jail in the absence of an available package.

The chapter described the use of cryptographic techniques to secure various transactions.
The various techniques were described in outline for readers unfamiliar with general crypto-
graphic processes, including symmetric (shared-secret) systems, asymmetric (public-key)
systems, message digests, MACs, and digital signatures.

The use of simple BIND statements to secure zone transfers using IP addresses and the
use of TSIG (shared-secret) transactions to secure zone transfers was described and illustrated
with example files.

The chapter described, with examples, the use of BIND commands to secure dynamic
updates using IP addresses. Both SIG(0), using public-key or asymmetric cryptographic tech-
niques, and TSIG (shared-secret) methods to secure dynamic updates were described and
again illustrated with example files and configurations.

The next chapter describes the design intent and implementation of DNSSEC (colloqui-
ally referred to as DNSSEC.bis) to ensure the source and integrity of zone data during normal
query operations.

281

CHAPTER 11

DNSSEC

When a name server receives the response to a query for, say, the A record of a web site, for
instance, www.example. com, it can only hope that the data is correct. It has no way of proving that
this is the case, and in fact it could have been duped or spoofed in a variety of ways. For instance,
the query response may have been supplied from a poisoned zone file, or the query may have
been intercepted and bad data substituted in the response. Another possibility is the query may
have been redirected to a bogus server for the domain in question, or the response could be
perfectly valid, containing good data from the correct source. In a situation where revenues,
reputation, or security (that is, commercial or national) are at stake, such uncertainty may be
unacceptable. DNSSEC was designed to eliminate the doubt involved in DNS query operations
by providing verifiable certainty to suitably configured name servers and was originally defined
in RFC 2535. Significant efforts have been expended over the last several years by many organi-
zations, notably ISC (www.isc.org), Nlnetlabs (waw.nlnetlabs.nl), some of the root-server
operators (www.root-servers.org), and Regional Internet Registries (www.nro.net), to build and
test secure DNS systems such that they can be scaled and deployed in operational environments.
A significant number of RFCs have been published on the topic of DNSSEC, many clarifying very
specific points of implementation and usage. This Herculean effort has led to what is now collo-
quially called DNSSEC.bis (defined by RFCs 4033, 4034, and 4035) and constitutes a substantial
enhancement to the original specifications. This chapter starts by describing the design of
DNSSEC.bis followed by examples that illustrate the various processes involved in securing and
maintaining DNSSEC systems.

Note The suffix “.bis” is widely used in the standards world and simply means the second version of
a standard. The rest of this chapter will use the term DNSSEC not DNSSEC.bis 1o clarify the point that the
processes and procedures described here represent the current IETF standard—all prior RFCs relating to
DNSSEC were made obsolete by RFCs 4033, 4034, and 4035. Both BIND (release 9.3+—see www.isc.org)
and NSD (release 2.3+—see www.nlnetlabs.nl/nsd) support DNSSEC.bis.

The DNSSEC Environment

DNSSEC defines a process whereby a suitably configured name server can verify the authentic-
ity and integrity of query results from a signed zone. Public key (or asymmetric) cryptography
and a special set of Resource Records (RRs), specifically Resource Record Signatures (RRSIGs),

283

CHAPTER 11 " DNSSEC

DNSKEY, and Next Secure (NSEC) RRs, are used by DNSSEC.bis to enable a security-aware
receiving name server to do the following:

¢ Authenticate that the data received could only have originated from the requested zone.

* Verify the integrity of the data. The data that was received at the querying name server
was the data that was sent from the queried named server. The data content is protected,
not the communication channel.

 Verify that if a negative response (NXDOMAIN) was received to a host query, that the target
record does not exist (called proof of nonexistence and occasionally denial of existence).

The first item to note here is that to support DNSSEC, both the authoritative zone source
(master and slave) and the receiving name server must be configured to support DNSSEC. The
authoritative name server has to cryptographically sign its zone data and becomes in the jar-
gon a Secure Entry Point (SEP), and the receiving name server must be configured to support a
security service and is said in the jargon to be security aware.

Islands of Security

It is unreasonable to suppose that every name server in the world will overnight be configured
to support DNSSEC nor that every zone in the world will be secured. Figure 11-1 shows the
possible configurations that could exist and that the DNSSEC standards have to handle.

Recursive Name Servers

< NS1
- (root) Security Aware
Root-servers , Queries (Security Aware)

' ! ' NS2
.tld-Servers .clom I | .nef I .|arpa | (Security Oblivious)
User Servers example.net in-addr.arpa ipv6.arpa

192.in-addr.arpa

| 168.192.in-addr.arpa |

sub.example.com sub.example.net

Figure 11-1. Isolated islands of security

Figure 11-1 assumes that the colored domains are secure. The security-aware name server
(NS1) must continue to provide query results for all domains including the secure domains of
example.comand 168.192.in-addr.arpa, and this includes passing through the secure domain
of example.com to obtain results for the insecure subdomain of sub.example.com. Equally the
security-oblivious name server (NS2 is a name server not configured for DNSSEC security)
must continue to obtain transparent results for all the domains, both secure and insecure.
NS1 is configured to become security aware by the dnssec-enable yes; statement in a global
options clause, which causes the name server to advertise its security awareness by including

CHAPTER 11 " DNSSEC

an OPT meta (or pseudo) RR in the additional section of any query with the DNSSEC OK (DO)
bit set (see Chapter 15 for details). Conversely, any query without both of these characteristics
is said to be security oblivious. If the authoritative zone source (master or slave) for example.com
receives a query that indicates the sender is security aware (NS1 in the Figure 11-1 scenario),
it responds with additional security information such as RRSIG RRs that enable the requested
RRs to be authenticated. If the name server receives a query from a security-oblivious name
server (NS2 in the Figure 11-1 scenario), it responds without security information. In the latter
case, the query results will be exactly the same as would have been supplied if neither server
were security aware (that is, security is invisible).

Public key cryptography relies on a public and private key pair (see Chapter 10 for a descrip-
tion of public key crytography). The zone at example.com is cryptographically signed using the
zone’s private key. The receiving name server must have access to the zone’s public key in order
to perform the required security verification. This gives rise to the classic asymmetric cryptogra-
phy problem—how to obtain the public key, in the preceding case for example.com, in a manner
that ensures it could only have come from example.com. There are two possible solutions:

1. Publish the public key using a DNSKEY RR in the zone file. This method is vulnerable to
two problems. If we use a secure query to get the key, then the response data requires
the public key, which we are requesting but don't yet have, so the security validation will
fail—a chicken-and-egg situation. If a nonsecure query is used, then the response could
have been spoofed, since it has all the weaknesses of a standard insecure query discussed
earlier.

2. Obtain the key using an out-of-band process such as secure e-mail, telephone, or some
other acceptable process. This is the method adopted by DNSSEC, and in BIND the
public key, called a trusted anchor for reasons that will be clear later, is defined using
the trusted-keys clause of named. conf. Figure 11-2 shows this process with NS1 only
having the trusted-keys clause for example.com.

Recursive Name Servers

NS1
< (Security Aware)
Trusted Anchor
. (root) example.com
Root-servers I L I I Queries
NS2
Ald-Servers - com - net -apa €| (Security Oblivious)

1 [T 1] !
User Servers |example.com| example.net in-addrarpa ipv6.arpa

sub.example.com sub.example.net 192.in-addr.arpa

| 168.192.in-addr.arpa

Figure 11-2. Trusted anchors

285

286

CHAPTER 11 " DNSSEC

In Figure 11-2, NS2 will continue to operate transparently as before, but NS1 has been con-
figured with a trusted anchor for the domain example.com such that all queries for this domain
can be securely authenticated—indicated by setting the Authenticated Data (AD) bit in the mes-
sage header response (see Chapter 15 for details). It does not, however, have a trusted anchor for
the domain 168.192.1in-addr.arpa, and in this case responses from this zone will continue to
behave as if they were not secure. Theoretically, NS1 is able to determine the following states
from the responses from any name server:

e Secure: A trusted anchor is present for the zone and has been used to validate the received
data successfully. In Figure 11-2, only example.com will generate such response states indi-
cated by the Authenticated Data (AD) bit being set.

e Insecure: A trusted anchor is present and information allows the name server to prove that
at a delegation point there is no secure link to the zone. In Figure 11-2, sub.example.comis
the only domain that will generate such a response state.

* Bogus: A trusted anchor exists, but the data failed to authenticate at the receiving name
server using the trusted anchor. An attempt to spoof or corrupt any response from the
domain example.com will generate this state.

* Indeterminate: There is no trusted anchor for the domain. This will be the response state
for all domains in Figure 11-2 (including 168.192.1in-addr.arpa) except example.com and
sub.example.com.

Clearly, it is not practical for every name server to have a trusted anchor for every secure
domain on the Internet. If this were the only part of DNSSEC, it would simply not scale for
Internet-wide deployment. However, before looking at the next set of features, it is worth
noting that communities of interest that have finite membership such as extranets, affinity
groups, and enterprise networks could implement DNSSEC—even with the relatively limited
features described so far—and gain immediate access to secured capabilities within the inter-
est groups while continuing to provide transparent service to the wider security-oblivious
community. The critical point to make here is that the benefits of DNSSEC can be leveraged
immediately given the right circumstances and environment, while users accumulate knowl-
edge and operational experience. As time goes by, the benefits will only increase.

Chains of Trust

Figure 11-3 shows that any single island of security can be joined to another secure (signed)
domain through its delegation point—the NS RRs that point from the parent domain or zone
to the child domain or zone—and can be authenticated using the final RR in the DNSSEC set
called a Delegated Signer (DS) RR.

In Figure 11-3, a chain of trust is shown from example.com to sub.example.com. Three
points flow from this process:

1. The child zone, sub.example.com in Figure 11-3, must be secure before secure delega-
tion can occur. Securing the zone is an essential prerequisite to creating chains of trust.

CHAPTER 11 " DNSSEC

Recursive Name Servers

¢ NS1
(Security Aware)
Trusted Anchor
. (root) example.com
Root-servers L Queries
[[| NS2
Ald-Servers - com - net .arpa € (Security Oblivious)
] | I
User Servers example.net in-addr.arpa ipv6.arpa

Secure Delegation | |
sub.example.net 192.in-addr.arpa

| 168.192.in-addr.arpa |

Figure 11-3. Creating chains of trust

2. The trusted anchor for example.com covers the secure zones that are delegated from it.
In the case of Figure 11-3, the trusted anchor for example.com covers the child zone
sub.example.com. The delegation can be securely tracked from example.com (the parent
that is covered by the trusted anchor) to sub.example.com (the child) using a chain of
trust. Any number of levels can be covered using this chain of trust concept.

3. Delegation chains can be built both upward as well as downward. Thus if the gTLD
domain .com were secured, the existing secure domain example.com can immediately
join the chain, while unsecured domains will continue to operate unchanged (that is,
they will not enjoy the benefits of security until action is taken to secure them). The
NS1 server would require a new trusted anchor to cover the secured .com domain, but
this single trusted anchor would cover the whole .com domain, including example. com,
as shown in Figure 11-4.

While no gTLDs have yet announced plans to secure their domains, a significant number
of tests and trials are underway, as is tool development to mechanize the various processes
involved, which are described later in this chapter. Sweden is the first country in the world to
announce that in late 2005 it will start signing the . se ccTLD domain (dnssec.nic.se) and
offering a public DNSSEC service that will both validate the various technical and business
processes involved and increase the global awareness of the benefits of securing zones. It is
only a matter of time before others follow.

Note In addition to the Swedish announcement mentioned previously, a public DNSSEC trial using what
is called a /ookaside validation process is also underway. This trial, which uses an experimental DLV RR
(supported by BIND), is described later in the “DNSSEC Lookaside Validation” section. The trial service
theoretically covers all TLD domains and the root domain with a single trusted anchor.

287

288

CHAPTER 11 " DNSSEC

Recursive Name Servers

¢ NS1
(Security Aware)
Trusted Anchor
. (root) .com
Root-servers L Queries
| | NS2
ld-Servers . ne} I .|arpa I < (Security Oblivious)
User Servers example.net in-addr.arpa ipv6.arpa

Secure Delegation | |
sub.example.net 192.in-addr.arpa

| 168.192.in-addr.arpa |

Figure 11-4. Joining chains of trust

Having described the DNSSEC process, it is time to start looking at the details of how it all
works starting with securing the zone file—the first step in the implementation sequence.

Securing or Signing the Zone

The first step in implementation of DNSSEC is to cryptographically sign the zone files. This is
done using the dnssec-signzone utility provided with all BIND distributions. However, before
we get anywhere near the details of running this utility, it is necessary to step back and under-
stand what is being done.

Zones are digitally signed using the private key of a public key (asymmetric) encryption
technology. DNSSEC allows for the use of RSA-SHA-1, DSA-SHA-1, and RSA-MD?5 digital sig-
natures. The public key corresponding to the private key used to sign the zone is published
using a DNSKEY RR and will appear at the apex or root of the zone file; for example, if the zone
being signed is example.com, then a DNSKEY RR with a name of example.com will appear in the
zone file.

Note The private key of the signing algorithm is only required to be available during the signing process—
all verification at security-aware name servers is accomplished using the public key only. Thus following
signing, it is common practice to take the public key off-line, which may involve physically removing the key
from the server or moving it to a more secure part of the server. In the case of Dynamic DNS (DDNS), taking the
private key off-line may not be possible—see the section “Dynamic DNS and DNSSEC” later in this chapter.

CHAPTER 11 " DNSSEC

Two types of keys are identified for use in zone signing operations. The first type is called
a Zone Signing Key (ZSK), and the second type is called a Key Signing Key (KSK). The ZSK is
used to sign the RRsets within the zone, and this includes signing the ZSK itself, as you shall
see later. The public key of this ZSK uses a DNSKEY RR at the apex or root of the zone; that is,
if the zone being signed is example.com, the ZSK’s public key will be defined by a DNSKEY RR,
which has a name of example.com. The KSKis used to sign the keys at the apex or root of the
zone, which includes the ZSK and the KSK and may also be used outside the zone either as
the trusted anchor in a security-aware server or as part of the chain of trust by a parent name
server. The KSK is also defined in a DNSKEY RR at the root or apex of the zone, that is, if the
zone is called example. com, then the name of the DNSKEY RR of the KSK will also be example. com.
The difference between the ZSK and the KSK is therefore one of usage not definition, and it is
a matter of local operational choice whether a single DNSKEY RR is used as both the ZSK and
the KSK or whether separate DNSKEY RRs are used as the ZSK and KSK. The RFCs allow both
methods. This book will use separate keys throughout as the ZSF and the KSK to clearly sepa-
rate the functionality. The current draft of a best practice RFC on DNSSEC also recommends
the use of separate keys (www.ietf.org/internet-drafts/draft-ietf-dnsop-dnssec-operaw
tional-practices-05.txt). The difference in definition is that a ZSK DNSKEY RR has a flags
field of 256 (see Chapter 13), whereas a KSK is indicated by a flags field value of 257.

Note The flags field in a DNSKEY RR is a decimal representation of a bit-significant field; thus the
decimal value 256 represents bit 7 of the 16-bit f1ags field (bits numbered from the left starting from 0)
and indicates a ZSK. The decimal value 257 represents both bit 7 (ZSK) and bit 15, the Secure Entry Point
bit. The SEP bit is used to indicate, solely for administrative purposes, that this DNSKEY RR is used as a KSK,
and indeed this bit is becoming increasingly known as the KSK bit. This bit is not required and plays no role
in the secure validation process or the protocol. While all of the following examples use this feature, specifi-
cally trusted anchors and DS RRs point to DNSKEY RRs with the SEP bit set, they could just as easily have
pointed to DNSKEY RRs with only the ZSK bit set (f1ags value of 256). The SEP bit is, in modern jargon,
pure sugar. Its job in life is to make matters more pleasant! All that being said, the current recommended
best practice is to use separate keys, which means the SEP bit will be set on the KSK, and indeed the cur-
rent DLV Pilot trial (see the section “DNSSEC Lookaside Validation”) mandates it.

Figure 11-5 shows the usage of the two key types.

289

290

CHAPTER 11 " DNSSEC

Parent (.com) Zone File

DS RR

(Secure Delegation

A Recursive Name Servers

(Security Aware)

N Trusted Anchor
example.com

Mutually Exclusive

example.com Zone File

|

DNSKEY RR (KSK)

DNSKEY RR (ZSK)

Signs
P _
RRsets Zone RRset

Zone RRset

Signs
Keys

Figure 11-5. Usage of Zone Signing Key and Key Signing Key

When a zone is signed, the ZSK

and the KSK (remember they can be one and the same

key) are generated using the normal dnssec-keygen utility (described in Chapter 9) with the
name of the zone. The detail process including the parameters used will be illustrated later
in the various operational examples. The resulting DNSKEY RRs are either edited into the
zone file directly or by using an $INCLUDE directive (see Chapter 13) as shown in the following

example.com zone file:

$TTL 86400 ; 1 day
$ORIGIN example.com.

@ IN SOA nsi.example.com.
2005032902
10800 5
15 5
604800 5
10800 5

)

NS nsi.example.com.
NS ns2.example.com.

hostmaster.example.com. (
serial
refresh (3 hours)
retry (15 seconds)
expire (1 week)
minimum (3 hours)

MX 10 mail.example.com.

MX 10 maili.example.
_ldap. tcp SRV 5 2 235 www

nsi A 192.168.2.6
ns2 A 192.168.23.23
WIWW A 10.1.2.1

A 172.16.2.1
mail A 192.168.2.3
mail1 A 192.168.2.4

com.

CHAPTER 11 " DNSSEC

example.com. IN DNSKEY 257 3 5 (AQPnvgDqCShrBmFEh5vIW7k
M4DG/kMwa3EBNPSLAGWRbFOTfIWP9ZA2v
cZn5ngUjVZ/11d0ViZBOOFCm63bakNgpQ
4UNH6e4LH8hnTDMyr1w9smNC xLr4ROqL
1cLWDT4ANysDpCZmHUPilvIB1WnVhGKV1
I6To1x+u4uNoel/ uocNOQ==) ;KSK (SEP)

example.com. IN DNSKEY 256 3 5 (AQPmYqOH3zNwuX412+hkh8U
G1P14Gv8dfCSi6MbEXON424EX+EIM14000
OBkep/ZtIRRI4rTIONPGs8+HWIDMQOapZn
VSYOmMSHIV5V32¢+37Gx628y/MyyzwDuT6+
z03cbobUKr1zL/PLEHegqIDpGkF2VBWXWH
LDTCI5nXB sayYeQ==) ; ZSK

The first DNSKEY RR is the KSK indicated by the flags value of 257; the second DNSKEY
RR, the ZSK, has a flags value of 256 (for details see Chapter 13). The zone is now ready for
signing, which is done using the dnssec-signzone utility—details of running this utility are
fully illustrated later in the example. When a zone is signed, the dnssec-signzone utility does

anumber of automagical things:

1. It sorts the RRs into a canonical order (essentially alphabetic based on host name).

2. It adds an NSEC RR after each RR to chain together the valid host names appearing
in the zone file. The last NSEC RR will point back to the zone apex or root.

3. Ituses the ZSK to sign each RRset by creating an RRSIG RR. This includes both the
DNSKEY RRs and the newly added NSEC RRs from step 2.

4, Ttuses the KSK to sign (create an RRSIG RR) for the DNSKEY RRset at the zone apex.

The resulting file—which by default has . signed appended to the name of the master
zone file—after running the dnssec-signzone utility will look like that shown here:

; File written on Thu Apr 14 12:39:03 2005

; dnssec_signzone version 9.3.0

example.com. 86400 IN SOA nsil.example.com. hostmaster.example.com. (

2005032902 ;

10800 ;
15 ;
604800 ;
10800 ;

)

serial

refresh (3 hours)
retry (15 seconds)
expire (1 week)
minimum (3 hours)

86400 RRSIG SOA 5 2 86400 20050514153903 (
20050414153903 38420 example.com.
P8DKXIwN2dmf116sqIqk9eVvoHfDs6tgs9B2
k/J406v1dyxt171Uq60a0VSholzgDZTe3dis
J1/DGNVDfXvx3gUnN26sHjkAqZIpTtzYR/ql
R+dXKfK14Sqevaokl50GqWCmOtuax139h249
w7P3qKtEs4nL1ELYtyEnOLyCX4k=)

86400 NS nsil.example.com.

86400 NS ns2.example.com.

291

292

CHAPTER 11

DNSSEC

86400 RRSIG NS 5 2 86400 20050514153903 (
20050414153903 38420 example.com.
TK9eFTMHpYqtyLZ+L6qWImhsPFAsIIUFVI/Y
Z4P5XBzbEerh85U7SsgrdKCil52978a80zQ1
5cbsGNTQHfrkvpPdE/D3R1IJzVGrGOomRDvkC
kvdywljdadVg+8xsCp2XMGfebG2xzKfeh07G
pFb+TtN2XYFXBV1Fa+ZgGbISkM8=)

86400 MX 10 mail.example.com.

86400 MX 10 mailil.example.com.

86400 RRSIG MX 5 2 86400 20050514153903 (
20050414153903 38420 example.com.
MPFBtkjE12FoNbUFO61gpXA6FCOENqUEE67B
zZH3nT41E9TP89LOETTD13XqKYik27RALOEL2
y1UFvbk78rZKIeyRPRZh4/603gMcMgXq/BCa
ITsCt1FjcPy400Fb/76SN9soK8pcC3w3Nkg5
BSDgbDRImKth+1+PTPiu+iQuUYY=)

10800 NSEC ldap. tcp.example.com. (NS SOA MX

RRSIG NSEC DNSKEY)

10800 RRSIG NSEC 5 2 10800 20050514153903 (
20050414153903 38420 example.com.
NYpwSeq7al6jo2eybm6Lj/T+411yvCYuFLQW
0qtTec38kGHxWtwMdZckSm3V+ColSnjIK8+N
2YuoCJdooEetrwkUWZv/C/68ES3VVoFHHFgk
cCMs+701G3nMcuGB91yuGepwBNgkYvm3hh/P
ZBzj+ikuphPQ7x507F2VP9t1rC4=)

86400 DNSKEY 256 3 5 (
AQPmYqOH3zNwuX412+hkh8UG1P14Gv8dfCSi
6MbEXON424EX+EIM140000Bkep/ZtIRRI4
JONPGs8+HWIDMQOapZnVSYOMSHIV5V32c+j7
Gx628y/MyyzwDuT6+zQ3cbobUKr1zL/PLEHe
g2qIDpGkF2VBWXWHLDTCI5nXBsayYeQ==
) ; key id = 38420

86400 DNSKEY 257 3 5 (
AQPnvgDqCShrBmFEh5vIW7kM4DG/ kMwa3EBNP
SLAQWRbFOFFINP9ZA2vCZn5ngUivz/11dovi
ZBOOFCm63bakNgpQ4UNH6e4LH8hnTDMy1w9
smNCxLr4ROqL1cLWDT4ANysDpCZmHUPilvIB
1WnVhGKV1I6TO1x+u4uNoel/uocNOQ==
) ; key id = 12513

86400 RRSIG DNSKEY 5 2 86400 20050514153903 (

20050414153903 12513 example.com.
1US1/8AXfEcdocB9syYuONk8AeRXSIy13ix0
tbAQaH++DjDa+GZ0ow+eUpSLegMdW7uXdU2Hk
hWdPoZ0Tg7+KnjlyJ6uJ+ZozaxYYCpwZroti
mP9JInot6VU58PurwI8YB2MnOR5Ty1WYZk84L
UNoJq8FohGy3/f+Fj1fp4pZ3chM=)

CHAPTER 11 " DNSSEC 293

86400 RRSIG DNSKEY 5 2 86400 20050514153903 (
20050414153903 38420 example.com.
awjJL2h6NNhTZ/4HX0iDMIbIYPr+blIaaeK/
XEr91vP6my0d2S7dWypZc+gbrm5ew5ven/0V
8UC69u/MZPTBEetRLhi1+D++YIZ7CGXmdtUjL
A+js30Pgb2cR5cIRDK8YCqi5S1xhNxw0713V
kS1/1r1Ky+LS18nQ6XJt8/pkjDM=)

_ldap. tcp.example.com. 86400 IN SRV 5 2 235 www.example.com.

86400 RRSIG SRV 5 4 86400 20050514153903 (
20050414153903 38420 example.com.
CnmMTizzSerS4ePFONANViITRFEdI40KUwaBu
JZiPmX2ZkvQQ2ZWE16VvXxu7NTyhi60YRVQWE
yMKSOL1LgkT61XFN8V7XWsCfZTx8qb6K5qu4
n+3xghHRDPBn6yHCOUOvaC4iZeEZyx0oW04jf
ce+mtaVkBg5p2dhsH3/t+Msw5qk=)

10800 NSEC mail.example.com. SRV RRSIG NSEC

10800 RRSIG NSEC 5 4 10800 20050514153903 (
20050414153903 38420 example.com.
zC3hXQX820T9yYEH/0UtPukyTglTat4MxwQ4
PAVEWP8GPOEKP3hhtjz4rt1ylTdpLWHELNS
NFCE/Mdo16kjspfVXRcsL2MLVARNOKLegjhl
U8Sdut2kjXonBFp4hAcicALzaN7/PpFGgaof
/KnKcD7aM5a/grozZBHjswszGt4=)

mail.example.com. 86400 IN A 192.168.2.3

86400 RRSIG A 5 3 86400 20050514153903 (
20050414153903 38420 example.com.
W7QBEKLgh6v7AK6T30KQ4tgSg04RCTddANGL
cD8MYUrq511W7I10gAxdT8zA1ADiUjaftnnlk
ONM4v3InToS3BxprhZ2mFIwiTWV3DIGBGCnPJ
€62pueOM+DmsCEBKxbVUZOKf2nW5bim+GIgH
Csxfiy0oXqDRgzDF6ZZUo/njMqcA=)

10800 NSEC maill.example.com. A RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20050514153903 (
20050414153903 38420 example.com.
XiHOXLYR7uC9MvIS3m8AMVtY6QtgSdhy6tId
uaylkHjt/EjolKuZdy1F71yP1rICWDdcWgy2
eKSKVZy97RfKMIRKBbWruBspmfBfKHSUvV127
sowehJ3n7H40D5xE0/tzIrHnL1tjHkageVpe
V16vLTVUUbday9HeR1/388HU10k=)

maill.example.com. 86400 IN A 192.168.2.4

86400 RRSIG A 5 3 86400 20050514153903 (
20050414153903 38420 example.com.
1RounAjKet/54jW10YxoF2LX0xw0yjoVfKX8
WNUVKXKv+wi+VoLLjToM8IgI0o+AVbIacRbpx
PmHgr2CVZo1wRT1guaDCgejk1qI5uYuy9bgD
EO2gjaPL2nXYyjTcU3xNOcsWsHLp5PT72Kps
bI1GODAry/xcQSk8mF2scDVjgmec=)

294

CHAPTER 11

DNSSEC

10800 NSEC nsi.example.com. A RRSIG NSEC
10800 RRSIG NSEC 5 3 10800 20050514153903 (

20050414153903 38420 example.com.
VMKPYVtLdiR065QF seMss3Xn56WSPRkeYF/q
WaRLEMbPV5GrsatzQdExKmj2XF00IKmbgz/p
uhyGKSdzmLcZosjg+hFZnr1MI2kBP5pI67dN
AhZynF+S+A1hymxWQ91T2+h4zCgW2zEDhy+]
PkMi4ra9voDWau3COsRmxc038Eg=)

nsil.example.com. 86400 IN A 192.168.2.6
86400 RRSIG A 5 3 86400 20050514153903 (

20050414153903 38420 example.com.
mQioT8nfRq6d0yFvmR7k09dU8wohWUOE35ki
LTKPTQON1ER1/dhI/YhXtqBP4CGDAAbBBOCQU
AUJFJP71nV30P5FP5YuTvL4eHBoSVchpdhFG
bSV10ejH7CN6e/QACksNmMo7jwQ9woSZ6n5y
fp0iPnCUa39awhK+WXegz1UhZfo=)

10800 NSEC ns2.example.com. A RRSIG NSEC
10800 RRSIG NSEC 5 3 10800 20050514153903 (

20050414153903 38420 example.com.
DImXHGjUZCkbMOUkVSCxFe7eouHr2GHjKGh1
7P4etVVkhNMafMBfrsy+17/Nf4vfbYKCzDEa
ARmN1gWBTW/xt8diFk8GKdhsZoiGDkLGOg12
1pNhwSOwIK7fdb1FSoEZyCrwMQYdEUpdfsGY
Xq+7IbdUR9gMFW+ecNcKA9jtpYA=)

ns2.example.com. 86400 IN A 192.168.23.23

86400 RRSIG A 5 3 86400 20050514153903 (

20050414153903 38420 example.com.
tvqos7ZVNO4ZWGWDS+uVqj4juNt+N+uNHem3
bIOaKAmHKamQzE9ecDfX2HFTO2Pr60F 7v61Q
q9yPoVtGvsYrYrzZM7jLTaPdnUhko34KpSThq
55U20CSUgkIgtYVCMxM18QtnZ4tsy98830gC
90JTXOkOHd jgYFXLRDUOLAEZ fw=)

10800 NSEC www.example.com. A RRSIG NSEC
10800 RRSIG NSEC 5 3 10800 20050514153903 (

20050414153903 38420 example.com.
0xKKdDdR19ICISwF9E04vBH7IkF+Khn8K2yC
1TFBpW2CeTAnn67Ngxw3mnNuD8Jh+1k71FW]
dcvI3+5C0ycoLnl2+7nculg+OMv7kSYOiSal
GIMXKHqzh9rZH8NYraCeqFQu4Zmh99w5w6NH
W9IwIOxbQUEhkq8ng82740wj/9M=)

www.example.com. 86400 IN A 10.1.2.1
86400 IN A 172.16.2.1
86400 RRSIG A 5 3 86400 20050514153903 (

20050414153903 38420 example.com.

MQKONxT6+501du5gUc71CRNDY1Hgp4Wddgx
py/m92dIwl1XFMOqcNVcuhz9YmCV+zn59vi6
Hj5pWpvFRVE5VsrDYtPosKkxyUHS0SeVIkfg

CHAPTER 11 " DNSSEC

7jd33Mz7711/jtQdvkr4Ti3DTCNEBBYZVF59
sA+ncD56AWG+8NEgxfKIt59d7wE=)

10800 NSEC example.com. A RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20050514153903 (
20050414153903 38420 example.com.
JsP+03gqJlgopHosuT10K+F9z/uXigSv+2Ntg
Q1GRmBrtUawxdiaX7jCnFOVUKLDIcPDFv2cU
ceBLVxhpfu9KYQZYghXAR8SVIWAXKCOZwWMI1s
HXtvU8Zx/R+S0j1FnfkndP8VXwPn2Z92ai+Q
AUOAWELN837tnnFMHIN67sUId7w=)

Once you get over the initial feelings of relief that the process is automated, you should
note the following points:

* The records have been reordered, specifically the DNSKEY RRs have been moved to the
top or apex of the signed file and the A RRs for ns1, ns2, and www have been sorted into
their expected (canonical) order.

* NSEC RRs have been added (the first one is after the last MX RR for the zone) such that
it is possible to chain using these records through the zone file and thus prove that any
particular host name does not exist (remember NSEC RRs are used as proof of nonexis-
tence as described previously). The last NSEC RRs (there are two of them) for the A RRs
for www.example.com point back to the domain root (example.com), indicating there are
no additional records in the zone file. The reason there are two NSEC RRs both pointing
back to the start of the domain is simply because the waw A RRs are an RRset (they are
equal); had there been only a single A RR, there would have been only one NSEC RR.

* Every RRset has been signed with an RRSIG RR. There are four multiple RRsets (the
DNSKEY RRs, the NS RRs, the MX RRs, and the www.example.com A RRs); all the other
RRsets comprise single RRs—which are still RRsets!

* The DNSKEY RRs have been signed twice (there are two RRSIG RRs). The first signature
uses the KSK and is an artifact of the use of a separate ZSK and KSK. The second signa-
ture uses the ZSK and is an artifact of the rule that says that all RRsets are signed by the
ZSK. If a single DNSKEY RR was used for both the ZSK and KSK functions as allowed by
the standards, there would be only one RRSIG RR.

Finally every RRSIG RR has a start time (the time after which it is regarded as being valid)
that begins at the Universal Coordinated Time (UTC) minus 1 hour (to allow for clock skew) cor-
responding to the local run time of the dnssec-signzone utility and will expire 30 days after its
start time—these are the dnssec-signzone utility defaults. The utility run time is always included
as a comment on the first line of the file; the expiry and start times are respectively the fourth
and fifth parameters after the RRSIG type value (see also Chapter 13). If the zone file is not re-
signed before the value defined by the expiry time is reached (in this case 20050514153903, or
14th May 2005 at 3:39 p.m. UTC) a security-aware name server will discard any data from the
zone as being bogus (insecure); paradoxically, a security oblivious name server will continue to
receive the data successfully. Signing a zone always introduces an element of time that is not
present in an unsigned zone file and requires periodic maintenance of the zone file. The next
section will look at the implications of re-signing as well as other aspects of secure zone mainte-
nance, including the essential topic of changing keys by what is called in the jargon key rollover.

295

296

CHAPTER 11 " DNSSEC

Note Itis worth pointing out that NSEC RRs are the subject of some controversy since, as a side effect
of their purpose, they have the capability of “walking” or enumerating the zone file. By simply following the
NSEC chain for any zone, a user can find all the entries in that zone. Some users find this behavior unaccept-
able, since it speeds up a process that would otherwise require exhaustive search of the zone. This topic is
the subject of ongoing standards work.

Secure Zone Maintenance

Re-signing a zone involves simply rerunning the original dnssec-signzone utility using either
the original zone file or the currently signed version of it. Secure zone files need to be re-signed
for three reasons:

1. When any change is made to a zone record: In the insecure world, changes were simply
a matter of updating the SOA RR serial number; in the world of DNSSEC, whenever a
change is made to the zone file, the SOA serial number needs to be updated and the
zone needs to be re-signed. The issue of dynamic update (DDNS) and re-signing is
discussed later in the chapter.

2. When the signatures expire: As shown in the example signed zone file earlier, each
RRSIG RR will expire by default every 30 days. While this can be controlled by parame-
ters to the dnsssec-signzone utility, nevertheless periodic zone re-signing will always
be required to avoid signature expiry.

3. When one or more of the ZSK or KSK needs to be changed: This process, called key rollover,
may be required either as part of a regular maintenance process or an emergency—the
key is either known to be or suspected of having been compromised.

The first two processes use the existing DNSKEY RRs and have no impact on external name
servers. The last process involving key rollover has significant implications for any external name
server that has a DS RR (the parent) referencing the KSK, a trusted anchor that references the
current KSK (a trusted-keys clause in BIND) or cached DNSKEY RRs for either the KSK or ZSK.

Cryptographic keys must be periodically changed, typically every 30 to 90 days, for three
reasons:

1. Over a period of time it may be possible for an attacker to accumulate enough plain-
text and encrypted material to perform an analysis of the key.

2. Abrute-force attack will take some period of time. If the key is changed prior to that
interval, the attacker will have to start again.

3. If a key is silently compromised (unknown to the user or operator), it is unlikely the
attacker will boast about it but rather elect to continue quietly decrypting the material
or subverting the system. Changing the key will at least limit any damage that may
result from this and force the attacker to start again.

When a key is changed it may, depending on whether it is a ZSK or a KSK, impact one or
more of the following processes, which most likely will be controlled by entities other than the
zone administrator who initiates the change:

CHAPTER 11 " DNSSEC

* Updating of the DS record at the parent (KSK only): If the parent zone at which the DS
RR must be changed is not controlled by the same owner as the child zone, then syn-
chronization of the DS RR change with the KSK change is impossible without a level
of automation that is not currently available. The time difference may be considerable
and involve multiple days.

e Updating of the trusted anchors at security-aware name servers (KSK only): This process
will depend on the method being used, but the worst case may involve users manually
updating name servers, which could easily take many days. If the update is not per-
formed, a likely event if a manual update is involved, then the zone data will be rejected
as bogus at any name server that has not updated the trusted anchor, thus rendering
the zone unavailable.

* RRSIG RR and DNSKEY RR caching in name servers (ZSK and KSK): Since the RRSIG RR
used to sign any RRset and the DNSKEY RRs used to validate them may be acquired at
a different time, they will therefore expire from any cache at different times, even if all
zone TTLs are the same. It is therefore possible if a zone is re-signed with a new ZSK or
KSK for either an old RRSIG RR (an RRSIG RR created with the old ZSK or KSK) and a
new DNSKEY RR or the reverse situation to occur. In both cases, queries for the associ-
ated RRs data will cause a bogus response.

It may be seen from the preceding that there can be no single point in time at which a zone
can change from one key to another key, no matter whether it is a ZSK or a KSK. The standards,
however, allow for multiple keys to exist (in multiple DNSKEY RRs) at the zone apex and man-
date that all available keys should be tried before the zone data is marked as bogus. This feature
allows a signed zone to operate for a period of time with old and new keys until the various pro-
cesses can be guaranteed to have acquired the new key material, at which point old key(s) can
be retired. There are two methods by which a zone may operate with multiple keys—the pre-
publish method and the double-signing method.

The Prepublish Method

The prepublish method allows one or more new keys to be simply introduced into the zone
apex before they are used. Their inclusion in the zone prior to use ensures that the appropri-
ate keys are available in the cache of all security-aware name servers when the key is finally
rolled; that is, the zone is re-signed with the new ZSK and/or KSK while leaving the old key(s)
at the zone apex, even though they are apparently performing no function. To illustrate this
process, it is assumed that all TTLs for a signed zone are for 24 hours (86400 seconds).

1. Atleast two days before the zone signatures expires (it could be any time prior to that
if required), a new ZSK or KSK would be added to the DNSKEY set at the zone apex.
The zone is re-signed using the current, not the new, key(s). The new DNSKEY RR is
not used to sign the zone in any way—it is merely present in the DNSKEY RRset.

2. After 24 hours, it can be guaranteed that all caches in security-aware name servers will
have the new DNSKEY RRset containing both the current and the new keys. The RRSIG
records for any RR types in these caches will have been signed with the current keys.

3. At this point, the zone is re-signed using the new key or keys. The old key is retained in
the DNSKEY RRset.

297

298

CHAPTER 11 " DNSSEC

4. From this point and for the next 24 hours, the RRSIG RRs associated with any
requested RR, say the A RR for www.example.com, may be signed with either the old key,
if the RR is already in the cache, or the new key, if it has expired from the cache or was
not available in the cache and had to be obtained from the authoritative source. Recall
that the standards mandate that all available keys should be tried before rejecting any
data as being bogus. In either case, a DNSKEY RR that will successfully authenticate
the requested RR data will be present in the cache, or if the DNSKEY RRset has expired
or is not present, it can be requested from the authoritative source (master or slave).

5. After 24 hours from re-signing the zone file with the new key(s), the caches can all be
guaranteed to contain only RRSIGs signed with the new key. The old key, sometimes
called the stale key, may be removed at any subsequently convenient time from the
DNSKEY RRset at the zone apex and the zone again re-signed with the new key.

The Double-Signing Method

As its name suggests, the double-signing method involves the use of more than one key to sign
the zone if a ZSK, or the DNSKEY RRset at the zone apex if a KSK. Since RRsets are signed with
all keys, double signing ensures that any key contained in the cache at a security-aware name
server or referenced in a DS RR or a trusted anchor will authenticate any requested RRset. When
all users of the key have migrated to the new key (the DS RRs have been updated at the parent
zone and the trusted anchors have been replaced), the old key can be deleted from the zone
file and the zone re-signed only with the new key.

Key Rollover Summary

Which method is used is largely a matter of operational decision, but to minimize the volume
of records involved, especially in larger zone files, the prepublish method is more suited to
changing Zone Signing Keys and the double-signing method to changing Key Signing Keys.
The reasoning here is that ZSKs sign each RRset in the zone file, of which there will typically
be many. Double signing each RRset will significantly increase the amount of data in the zone
file as well as the volume of data sent on each query response. On the other hand, KSKs only
sign a single RRset, the DNSKEY RRset at the zone apex, and double signing this RRset will
therefore incur a relatively modest overhead.

The process of key rollover involves a number of steps, some of which may involve third
parties, and some of which lend themselves to automation. Each step itself is not complex,
but the totality of the process, coupled with the fact that a zone could become inaccessible
(by being treated as bogus) if any step fails, suggests a number of observations:

¢ The key-rollover process must be thoroughly planned and subject to continuously
evolving refinement. It is clear that Internet Registries and Registry Operators must
and are taking the lead in this area since it is fundamentally, but not exclusively, an
operational problem.

CHAPTER 11 " DNSSEC

* The process must be automated wherever practical. While automated tool develop-
ment is still in its infancy, some high-quality ones have been already been released
under Open Source licenses (see www.netwidget.net/books/apress/dns).

 The key rollover process must be exercised on a frequent and periodic basis. “Practice
makes perfect” to quote the old proverb. While it is possible even now to create keys
that could be valid for many years, such attempts to postpone the agony of creating an
efficient and streamlined key-rollover process by making it an infrequent event proba-
bly exacerbate the problem simply because they ignore the point that, due to a crucial
key compromise any key-rollover process (especially a creaky one), may have to be car-
ried out in short order. The prospect of many thousands of administrators giving great
imitations of headless chickens while desperately trying to figure out what they did
three years ago, coupled with the signature expiry clock inexorably ticking down, does
not leave one with a warm and fuzzy feeling.

* KSKs and ZSKs should be separated and rolled at different intervals. The KSK change is
clearly the most significant and, by using a larger key size, can be rolled perhaps every
90 days or so versus a ZSK interval of perhaps 30 days. The larger the key size, the more
CPU load placed on the server. However, since the KSK is used very infrequently relative
to the ZSK, having a larger key size for the KSK should present only a modest additional
load on the server.

Secure Delegation

Once a zone is secured, it can then to added to an existing chain of trust or can be used to secure
delegation to a subdomain. In both cases, this is accomplished using a Delegated Signer RR. The
DS RR s placed in the parent of the zone that will be securely delegated and acts as a pointer to the
next key in the chain of trust. The DS RR contains a hash (or digest) of the KSK, defined using
a DNSKEY RR, at the apex or the root of the child domain. Thus if the subdomain sub.example.com
is to be securely delegated (joins the chain of trust), then a DS RR containing a digest of the
DNSKEY RR with a name of sub.example.com and having a flags field value of 257 will be added
to the domain example.com at the point of delegation (the NS RRs pointing to the subdomain
sub.example.comin this case). Secure delegation can only occur if the parent and child zones
are secure, that is, they both are signed. Figure 11-6 illustrates this process.

The dnssec-signzone utility can generate a DS RR during the signing process for the child
zone using the -g option. Depending on the policies in place, the DS RR and perhaps a copy of
the KSK (a DNSKEY RR) for the zone may be sent to the owner of the parent domain for inclu-
sion in the zone file, which must then be re-signed. The child zone is said to join the chain of
trust and is authenticated by virtue of the authentication of the parent zone and its secure link
(the DS RR) to the child zone. A security-aware name server receiving RRs from a secure domain
can track the delegation route for sub.example.com back through one or more DS RRs in signed
zones to one for which the name server has a trusted anchor.

299

300

CHAPTER 11 " DNSSEC

Parent Zone

Secure example.com Zone

example.com DNSKEY RR-KSK

Trusted Anchor for
Chain of Trust

A

example.com DNSKEY RR-ZSK

DS RR sub.example.com —|

Secure Delegation

>

Child Zone

Secure sub.example.com Zone

sub.example.com DNSKEY RR-KSK

sub.example.com DNSKEY RR-ZSK

Figure 11-6. Secure delegation in DNSSEC.bis

Dynamic DNS and DNSSEC

Dynamic DNS can be used with signed zones. The server will automatically update any
required NSEC RRs and will re-sign the RRset. The following points, however, apply when

working with dynamic updates and signed zones:

* Either TSIG or SIG(0) security can be used as described in Chapter 10. If SIG(0) (public

key) security is used, it requires a KEY RR (not a DNSKEY RR as used in DNSSEC), and
in any case a unique key should always be used that must be included or added to the
zone file.

The .private file of the ZSK must be available (on-line) in either the directory defined
by the directory statement or uniquely defined using the key-directory statement (in
aglobal, view, or zone clause) of named. conf during any update. If this file is not avail-
able, then any update attempt will fail with the following log message:

"example.com/IN': adding an RR at 'www.example.com' A
"example.com/IN': could not get zone keys for secure dynamic update
"example.com/IN': RRSIG/NSEC update failed: permission denied

If separate KSK and ZSKs are defined and if both .private files are on-line when the
update is executed, the modified RRsets will be signed with both keys. Always make
sure that the .private file of the KSK is taken off-line as soon as the zone is signed.

* When dynamically updated zones are signed, then modified procedures for manual

edit of the zone file must be followed:

4,
5.

CHAPTER 11 " DNSSEC

. Either stop BIND or use rndc freeze zone.

Bring the KSK .private key on-line (the ZSK . private file is assumed to be on-line
as noted previously)

Re-sign the signed zone since it contains the current updates (requires the - f option)
Delete the .jnl file

Take the KSK . private file off-line, and then either start BIND or rndc thaw zone.

In particular, it is vital to delete the . jnl file for the zone before restarting or reloading
the zone file after the re-signing is complete to ensure that there is no playback of stale
values from this file.

If you are currently using secured dynamic updates, adding DNSSEC to the zones is a
transparent process. Care must be taken when signing zones that are dynamically updated to
observe the additional steps required.

Note Some of the processes described previously can be automated and indeed a number of such tools
already exist, some of which are identified at www.netwidget.net/books/apress/dns.

DNSSEC Implementation

In order to illustrate the DNSSEC implementation process, the following procedures will be
described with examples:

* Securing the zone example. com using a separate ZSK and KSK

* Establishing a trusted anchor for example.comin a name server at ns1.example.net

* Securing the zone sub.example.com

* Adding the DS RR for sub.example.com to the zone example. com to create secure delega-
tion within the chain of trust

* Rolling the ZSK and KSK for example.com

The examples are based on Figures 11-1 through 11-3, presented earlier in the chapter.

Securing the example.com Zone

The zone example. com, which will be signed during this process, is an island of security and has
a zone file as shown here:

301

302

CHAPTER 11 " DNSSEC

$TTL 86400 ; 1 day
$ORIGIN example.com.

@ IN SOA nsi.example.com. hostmaster.example.com. (
2005032902 ; serial
10800 ; refresh (3 hours)
15 ; retry (15 seconds)
604800 ; expire (1 week)
10800 ; minimum (3 hours)
)

IN NS nsi.example.com.

IN NS ns2.example.com.

IN MX 10 mail.example.com.

IN MX 10 maili.example.com.
_ldap. tcp IN SRV 5 2 235 www

nsi IN A 192.168.2.6
ns2 IN A 192.168.23.23
WWW IN A 10.1.2.1
IN A 172.16.2.1
mail IN A 192.168.2.3
mailil IN A 192.168.2.4
$ORIGIN sub.example.com.
@ IN NS ns3.sub.example.com.
IN NS ns4.sub.example.com.
ns3 IN A 10.2.3.4 ; glue RR
ns4 IN A 10.2.3.5 ; glue RR

The zone file contains delegation to a subdomain called sub.example.com, which is assumed
at this point to be insecure (as shown in earlier in this chapter in Figure 11-1).

To secure the example.com zone will require a ZSK and a KSK, which again may be a single
key or two separate keys. For the purposes of clarity and because the processes are significantly
different, the examples use the recommended method of using separate keys for each of the ZSK
and KSK functions. Both keys are generated by the dnssec-keygen utility. The examples assume
that these operations will be carried out in the directory /var/named/keys. To generate the ZSK,
the dnssec-keygen utility (see Chapter 9) is run with the following command:

dnssec-keygen -a rsashal -b 1024 -n zone example.com
Kexample.com.+005+03977

This generates a key pair for the RSA-SHA-1 digital signature algorithm, with a key length of
1024 bits and a zone record with the name of the zone apex, which in this case is example.com. The
command response of Kexample.com.+005+03977 indicates that a file Kexample.com.+005+03977 . key
contains the DNSKEY RR with the public key of the key pair, which will be added to the zone file,
and the file Kexample.com.+005+03977.private contains the private key used in subsequent signing
operations. The value 03977 is the key-tag that uniquely identifies this key. Next, the KSK is gener-
ated using the following command:

CHAPTER 11 " DNSSEC

dnssec-keygen -a rsashal -b 1400 -f KSK -n zone example.com
Kexample.com.+005+12513

This generates a key pair for the RSA-SHA-1 digital signature algorithm, with a key
length of 1400 bits and a zone DNSKEY RR with the name of the zone apex, which in this
case is example.com. The -f KSK argument signifies that this will generate a KSK DNSKEY RR,
indicated by the flags field having a value of 257 (the SEP bit is set). Full details of the
DNSKEY RR are defined in Chapter 13.

Note The key size of the KSK is set to the value 1400, whereas the key size of the ZSK is set to 1024.
The KSK is significantly stronger and therefore needs to be changed (rolled over) with a lower frequency
than the ZSK. However, it should be noted that the current RSA recommendation for key size is 1024, and
RSA considers that keys greater than 768 are still immune from brute-force attacks.

The command response of Kexample.com.+005+12513 indicates that a file with the name
Kexample.com.+005+12513.key contains the DNSKEY RR with the public key of the key pair,
which will be added to the zone file, and the file Kexample.com.+005+12513.private contains
the private key used in subsequent signing operations. The value 12513 is the key-tag that
uniquely identifies this key. The DNSKEY RRs generated by the previous operations are con-
tained in the files Kexample.com.+005+12513.key (KSK) and Kexample.com.+005+03977.key.
These may be edited into the zone file (as shown in “Securing or Signing the Zone” earlier
in the chapter) or included as shown here:

$TTL 86400 ; 1 day
$ORIGIN example.com.

@ IN SOA nsi.example.com. hostmaster.example.com. (
2005032902 ; serial
10800 ; refresh (3 hours)
15 ; retry (15 seconds)
604800 ; expire (1 week)
10800 ; minimum (3 hours)
)

IN NS nsi.example.com.

IN NS ns2.example.com.

IN MX 10 mail.example.com.

IN MX 10 maili.example.com.
_ldap. tcp IN SRV 5 2 235 www

nsi IN A 192.168.2.6
ns2 IN A 192.168.23.23
WWW IN A 10.1.2.1

IN A 172.16.2.1
mail IN A 192.168.2.3
maill IN A 192.168.2.4

$ORIGIN sub.example.com.

303

304

CHAPTER 11 " DNSSEC

@ IN NS ns3.sub.example.com.
IN NS ns4.sub.example.com.

ns3 IN A 10.2.3.4 ; glue RR

ns4 IN A 10.2.3.5 ; glue RR

$INCLUDE keys/Kexample.com.+005+12513.key ; KSK
$INCLUDE keys/Kexample.com.+005+03977.key ; ZSK

An alternative way to add the DNSKEY RR directly to the preceding file would be to use
the following commands:

cat keys/Kexample.com.+005+12513.key >> master.example.com
cat keys/Kexample.com.+005+03977.key >> master.example.com

Since the DNSKEY RR is a public key, there are no security requirements—either method
is perfectly acceptable.

The zone is now ready for signing using the dnssec-signzone command (see Chapter 9) as
shown here:

dnssec-signzone -o example.com -t -k Kexample.com.+005+12513 master.example.com \
Kexample.com.+005+03977
master.example.com.signed

Signatures generated: 19
Signatures retained: 0
Signatures dropped: 0
Signatures successfully verified: 0
Signatures unsuccessfully verified: 0
Runtime in seconds: 0.357
Signatures per second: 53.079

Tip When signing a zone with a single ZSK, rather than separate the KSK and the ZSK as shown in the
example, just omit the -k option.

The \ in the preceding example indicates that the line has been split for presentation
reasons only, meaning the first and second lines actually appear as a single line to the
operating system. The -0 example.com arguments indicate the name of the domain being
signed. The -t argument displays some statistics, which are shown on the following lines.
-k Kexample.com.+005+12513 indicates that Kexample.com.+005+12513.private contains the
private key that should be used as the KSK. master.example.comis the name of the zone file
to be signed, and Kexample.com.+005+03977 indicates that Kexample.com.+005+03977.private
contains the private key that will be used as the ZSK. The first line of the resulting output
ismaster.example.com.signed, which is the default file name (input zone file name with
.signed appended) allocated if the -f option is not used.

CHAPTER 11 " DNSSEC

The resulting file looks as shown here:

; File written on Mon Apr 18 10:48:29 2005
; dnssec_signzone version 9.3.0

example.com. 86400

86400

86400
86400
86400

86400
86400
86400

10800

10800

86400

86400

86400

86400

IN SOA nsl.example.com. hostmaster.example.com. (
2005032902 ; serial

10800 ; refresh (3 hours)
15 ; retry (15 seconds)
604800 ; expire (1 week)
10800 5 minimum (3 hours)
)

RRSIG SOA 5 2 86400 20050518134829 (
20050418134829 3977 example.com.
Pcj36/iCbY+9/sq9Dw7+QaeRbs=)

NS nsi.example.com.

NS ns2.example.com.

RRSIG NS 5 2 86400 20050518134829 (
20050418134829 3977 example.com.
6sfpgAuKarGSbhN3elYoz0aBUbc=)

MX 10 mail.example.com.

MX 10 maili.example.com.

RRSIG MX 5 2 86400 20050518134829 (
20050418134829 3977 example.com.
2y4001M7+Rs039wLaxA/I+69d38=)

NSEC ldap._tcp.example.com. (NS SOA MX

RRSIG NSEC DNSKEY)

RSIG NSEC 5 2 10800 20050518134829 (

20050418134829 3977 example.com.
k4T48nVQVZuPBW3aQoBh1QmYP6c=)
DNSKEY 256 3 5 (
t/4w8]geybiVZeHbYXHI1jSOkHt8vw==
) 5 key id = 3977

DNSKEY 257 3 5 (
1WnVhGKV1I6T01x+u4uNoel/uocNOQ==
) ; key id = 12513

RRSIG DNSKEY 5 2 86400 20050518134829 (
20050418134829 3977 example.com.
ihcz6BqjNRBFk4vCSGjS2UNdx7M=)

RRSIG DNSKEY 5 2 86400 20050518134829 (

20050418134829 12513 example.com.
ww2TqynHfZI8I9GA9zpyd+y/54M=)

_ldap._tcp.example.com. 86400 IN SRV 5 2 235 www.example.com.

86400

10800
10800

RRSIG SRV 5 4 86400 20050518134829 (
4hzYqMuD+YfCebCYijkvxaK2AI8=)
NSEC mail.example.com. SRV RRSIG NSEC
RRSIG NSEC 5 4 10800 20050518134829 (
20050418134829 3977 example.com.

890gADARS6IVFVUT7eXtRbXhyQg=)

305

306

CHAPTER 11 " DNSSEC

mail.example.com. 86400 IN A 192.168.2.3

86400 RRSIG A 5 3 86400 20050518134829 (
20050418134829 3977 example.com.
ntx8VinqRDuVGdLv6j1aTZPk26c=)

10800 NSEC mailil.example.com. A RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20050518134829 (
20050418134829 3977 example.com.
bsjUM4szz6k1kIj1eASDVh+PPdc=)

maill.example.com. 86400 IN A 192.168.2.4

nsi.

ns2.

sub.

ns3

ns4.
.example.com. 86400 IN A 10.1.2.1

WWW

86400 RRSIG A 5 3 86400 20050518134829 (
20050418134829 3977 example.com.
$5jnGdHVOzLEN9OooydL500q6Bg=)

10800 NSEC nsi.example.com. A RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20050518134829
20050418134829 3977 example.com.
/Ca0z+gPDCxpgXp9vVBwoCDZyNs=)

example.com. 86400 IN A 192.168.2.6

86400 RRSIG A 5 3 86400 20050518134829 (
20050418134829 3977 example.com.
WLwYOeMj29hoehng608MOgP/Fps=)

10800 NSEC ns2.example.com. A RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20050518134829
20050418134829 3977 example.com.
iUmoZtFd2t1B1kCGdO3TWHAGXLE=)

example.com. 86400 IN A 192.168.23.23

86400 RRSIG A 5 3 86400 20050518134829 (
20050418134829 3977 example.com.
D5g1Bc235ra+kcgdLy0i5ooxyKs=)

10800 NSEC sub.example.com. A RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20050518134829
20050418134829 3977 example.com.
KrYgcGOtK2EZkbMBpedYBFVLVWE=)

example.com. 86400 IN NS ns3.sub.example.com.
86400 IN NS ns4.sub.example.com.
10800 NSEC www.example.com. NS RRSIG NSEC
10800 RRSIG NSEC 5 3 10800 20050518134829 (
20050418134829 3977 example.com.
1wTngtzMsECH+Zs0qza0d8mxORE=)

.sub.example.com. 86400 IN A 10.2.3.4

sub.example.com. 86400 IN A 10.2.3.5

86400 IN A 172.16.2.1

86400 RRSIG A 5 3 86400 20050518134829 (
20050418134829 3977 example.com.
5djR2cK1FB5XUU4UTI2hFWGTSKE=)

10800 NSEC example.com. A RRSIG NSEC

10800 RRSIG NSEC 5 3 10800 20050518134829 (
20050418134829 3977 example.com.
80cJsj06zzkINiR2nqLUh2GEbVI=)

CHAPTER 11 " DNSSEC

In the interest of brevity and because it adds no value to the human reader, most of the
base64 material in the DNSKEY and RRSIG RRs has been removed. The following points
should be noted:

* The included .key files have been expanded and moved into the signed zone file.

¢ The host names have been sorted in host name (canonical) order; specifically, the
DNSKEY RRs from the included files, the ns1, ns2, and www RRs have all been reordered.

* NSEC RRs have been added to all RRs to chain through the zone file with the exception
of the two glue A RRs for ns3.sub.example.com. and ns4.sub.example.com. at the point
of delegation.

 All the RRsets have been signed with RRSIG RRs with the exception of the glue A RRs
for ns3.sub.example.com. and ns4.sub.example.com as well as the two NS RRs for
sub.example.com. It is worth explaining the reason for this omission. The zone
example.com is not authoritative for sub.example.com. The NS RRs (and their corre-
sponding A RRs) for the delegation are deemed to be owned by sub.example.com
(the child) but placed at example.com (the parent). The lack of signature is a conse-
quence of the fact that this zone is not authoritative for these, or any other delegation,
RRs and therefore cannot sign them.

* The DNKEY RRset at the zone apex (example.com) has been signed twice: once with the
ZSK and once with the KSK.

» The RRSIG RRs expire 30 days from the date of the start time (in the preceding case,
20050518134829, which is 1:48:29 p.m. on the 18 May 2005 UTC). The zone will have
to be re-signed prior to this date. Re-signing simply involves running the same
dnssec-signzone command used to originally sign the zone.

The signed zone file is ready to become operational in ns1.example.com, the primary mas-
ter for the zone, using a named. conf fragment such as defined here:

// named.cong fragment for nsi.example.com
logging{
channel normal log {
file "/var/log/named/normal.log" versions 3 size 2m;
severity error;
print-time yes;
print-severity yes;
print-category yes;
};
channel dnssec_log { // streamed dnssec log
file "/var/log/named/dnssec.log" versions 3 size 2m;
severity debug 3;
print-time yes;
print-severity yes;
print-category yes;

};

307

308 CHAPTER 11 " DNSSEC

category default{
normal log;
};
category dnssec{
dnssec_log;
};

};

options {

directory "/var/named";
dnssec-enable yes;
allow-transfer {"none"};

};

zone "example.com" in{
type master;
file "master.example.com.signed";
allow-transfer {192.168.23.23;}; // ns2.example.com
allow-update {"none";};

};

The log has been streamed for dnssec events to assist in any test debugging. A sample log
output is shown later in the section “DNSSEC Logging.” The severity debug 3; statement should
not be used for production, since it will generate huge amounts of log data; instead severity
info; or higher should be used. DNSSEC is not enabled by default, and the dnssec-enable yes;
statement is required in the global options clause. The zone file in the example.com zone clause
references the signed file created by the zone signing process earlier. No special treatment is
required on the slave server (ns2.example.com) whose named. conf would look as defined here:

// named.conf fragment for ns2.example.com
logging{
channel normal log {
file "/var/log/named/normal.log" versions 3 size 2m;
severity error;
print-time yes;
print-severity yes;
print-category yes;
};
channel dnssec_log { // streamed dnssec log
file "/var/log/named/dnssec.log" versions 3 size 2m;
severity debug 3;
print-time yes;
print-severity yes;
print-category yes;

};

CHAPTER 11 " DNSSEC

category default{
normal log;
b
category dnssec{
dnssec_log;
b

b

options {

directory "/var/named";
dnssec-enable yes;
allow-transfer {"none"};

N

zone "example.com" in{
type slave;
file "slave.example.com.signed";
masters {192.168.2.6;}; // nsl.example.com
allow-update {"none";};

};

Verifying the Signed Zone

To confirm the zone is working successfully, use a dig command to verify the results. If a nor-
mal dig command is issued, it will emulate the behavior of a security-oblivious name server,
and therefore no security information will be displayed. If the +dnssec option is added, it will
respond with the security information as shown in the following example, which has been
issued to ns1.example.com, an authoritative name server for the example.com zone:

dig ©192.168.2.6 www.example.com +dnssec +multiline

3 <<>> DiG 9.3.0 <<>> ©192.168.2.6 www.example.com +dnssec

;5 global options: printcmd

;; Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1307

;5 flags: qr aa rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 3, ADDITIONAL: 9

55 OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096
;5 QUESTION SECTION:

;www.example.com. IN A

55 ANSWER SECTION:

www.example.com. 86400 IN A 10.1.2.1

www.example.com. 86400 IN A 172.16.2.1

www.example.com. 86400 IN RRSIG A 5 3 86400 (
20050628180003 20050529180003 46979 example.com.
jitcoTkXbNIOSKbME/EyT1Kyn6QwBQ==)

309

310

CHAPTER 11 " DNSSEC

55 AUTHORITY SECTION:

example.com. 86400 IN NS ns2.example.com.

example.com. 86400 IN NS nsil.example.com.

example.com. 86400 IN RRSIG NS 5 2 86400 (
20050628180003 20050529180003 46979 example.com.
R8Vsb5sjXIwbJOD5rcPZocaf2Rz==)

5, ADDITIONAL SECTION:

nsl.example.com. 86400 IN A 192.168.2.6

ns2.example.com. 86400 IN A 192.168.23.23

nsi.example.com. 86400 IN RRSIG A 5 3 86400 (
20050628180003 20050529180003 46979 example.com.
jHwWcZ18dDvGgmoszU5SMUOBbIA==)

ns2.example.com. 86400 IN RRSIG A 5 3 86400 (
20050628180003 20050529180003 46979 example.com.
jzfYhRBXEC5svDCUwIk7U2EPB8==)

example.com. 86400 IN DNSKEY 256 3 5 (
AQPYSk91cDWan3QTOrI2kTjHz)

example.com. 86400 IN DNSKEY 257 3 5 (
AQ09gVvDKN7WDVeluu3ec)

example.com. 86400 IN RRSIG DNSKEY 5 2 86400(
20050628180003 20050529180003 38070 example.com.
R73FYKx4sjR88smPpEm==)

example.com. 86400 IN RRSIG DNSKEY 5 2 86400 (
20050628180003 20050529180003 46979 example.com.
AoGwgxZxQyvViBmMvyf1k8f==)

55 Query time: 15 msec

55 SERVER: 192.168.2.6#53(192.168.2.6)
55 WHEN: Sun May 29 15:26:24 2005

55 MSG SIZE 1rcvd: 1838

Again, in the interest of brevity, most of the base64 material has been eliminated, since it
is of no interest to the human reader. The following points should be noted:

e The +multiline option simply adds parentheses to each long RR to create a slightly
more readable output format.

* The OPT PSEUDOSECTION shows that EDNSO features are in use and that a UDP block size
of 4096 bytes has been negotiated for use in the much bigger responses from DNSSEC
transactions. The OPT meta (or pseudo) RR is actually placed in the ADDITIONAL SECTION,
but dig chooses to display and format it separately (see Chapter 15).

e The ANSWER SECTION includes the RRSIG to cover the A RRs returned with the query and
can thus be used to authenticate the RRset.

e The AUTHORITY SECTION also includes the RRSIG RR to cover the NS RRs returned and
allow verification of this section as well.

CHAPTER 11 " DNSSEC

e The ADDITIONAL SECTION contains as expected the A RRs for the authoritative name
servers and its covering RRSIG RR. In additional, it also contains the DNSKEY RRs for
the KSK and ZSK for the zone and the two RRSIGs (one signed with the ZSK and the
other using the KSK).

e The HEADER flags do not include the ad (Authenticated Data) flag (see Chapter 15)
because this dig was issued to one of the authoritative name servers for the signed zone.
The authoritative name server’s job is to supply the information, the various RRSIGs and
DNSKEY RRs, by which a receiving name server can perform the authentication. If, how-
ever, the dig had been issued to a security-aware name server that was not authoritative
for the zone example. com, then that name server would have performed the authentica-
tion and, assuming it was successful, the ad flag would have been set. This process is
illustrated later in the chapter.

Observant readers will note that the preceding zone was re-signed at a much later date
than that shown in the original zone signing example earlier, but this has no impact on any
results.

Establishing a Trusted Anchor

The example assumes that a security-aware name server at ns1.example.net wishes to authen-
ticate the data from example. com. This name server needs to establish a trusted anchor for the
domain example.com. The administrator of ns1.example.net obtains by some secure process
the DNSKEY RR for the KSK of the domain example.com. While the DNSKEY RR itself is not
sensitive information (it contains a public key), the administrator must be able to authenti-
cate the source of the key, and therefore a secure distribution process such as secure e-mail or
secure FTP must be used to obtain the trusted anchor. This DNSKEY RR is available from the
signed example.com zone file shown earlier and is identified as having a flags field value of 257
(which includes the SEP or KSK bit):

86400 DNSKEY 257 3 5 (
1WnVhGKV1I6T01x+u4uNoel/uocNOQ==
) ; key id = 12513

The reader should note that much of the base64 material has been eliminated in the
interest of brevity and that a real DNSKEY RR would be considerably larger. The trusted
anchor is created by editing this DNSKEY RR into a trusted-keys clause for the named. conf
file at the server ns1.example.net, as shown in the following fragment:

// named.conf fragment for nsi.example.net
logging{
channel normal log {
file "/var/log/named/normal.log" versions 3 size 2m;
severity error;
print-time yes;
print-severity yes;
print-category yes;

};

311

312

CHAPTER 11 " DNSSEC

channel dnssec_log { // streamed dnssec log
file "/var/log/named/dnssec.log" versions 3 size 2m;
severity debug 3;
print-time yes;
print-severity yes;
print-category yes;
};
category default{
normal log;
1
category dnssec{
dnssec_log;
1
1

options {

directory "/var/named";
dnssec-enable yes;
allow-transfer {"none"};

};
trusted-keys{

"example.com" 257 3 5 "1WnVhGKV1I6TO1x+u4uNoel/uocNOQ==";
};

The trusted-keys clause contains the trusted anchor for example.com and is an edited ver-
sion of the DNSKEY RR created by removing the TTL and DNSKEY, and adding the domain
name in quotes (a quoted string that can be an FQDN, but will work quite happily without the
trailing dot); the flags, proto, and algorithm fields are left intact, and the base64 public key
material (key-data) is enclosed in quotes and terminated with a semicolon. For the full format
and layout of the trusted anchor layout within the trusted-keys clause, see Chapter 12. Since
this a security-aware server, the dnssec-enable yes; statement must be included. The log is
again streamed and the severity debug 3; used to generate information that may be useful
during debugging, but should not be used in production unless the reader likes managing
large logs! Instead, severity info; or a higher value should be used based on comfort and
experience.

Using a Trusted Anchor

The following shows a dig command issued to the recursive server ns1.example.net that is
neither the zone master nor the zone slave for example.com, but that has been configured to be
security aware (using a dnssec-enable yes; statement) and has a trusted anchor for the zone
example.com (in a trusted-keys clause):

CHAPTER 11 " DNSSEC

dig @nsi.example.net www.example.com

; <<>> DiG 9.3.0 <<>> @nsil.example.net www.example.com +dnssec +multiline
;5 global options: printcmd

;; Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60711

;5 flags: qr rd ra ad; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1

55 OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096
55 QUESTION SECTION:

;www.example.com. IN A

55 ANSWER SECTION:

www.example.com. 86061 IN A 172.16.2.1

www.example.com. 86061 IN A 10.1.2.1

www.example.com. 86061 IN RRSIG A 5 3 86400 20050628191945 (
20050529191945 3977 example.com.
tbdelN28tzTudlYyjDhy401UIjXyqQUayzyzAzY=)

55 Query time: 1 msec

;5 SERVER: 192.168.254.23#53(ns1.example.net)
55 WHEN: Sun May 29 23:35:15 2005

53 MSG SIZE rcvd: 247

Again, in the interest of brevity, most of the base64 material has been eliminated, since
it is of no interest to the human reader. In this case, the response is significantly shorter than
that shown when the authoritative server was queried directly (shown in the preceding sec-
tion, “Verifying Signed Zones”). The reason is simply that the name server 192.168.254.23,
because it is security aware, has verified the various signatures on our behalf, and confirmed
this action by setting the ad (Authenticated Data) flag in the HEADER, and therefore only the
query results are supplied to the dig command. The next section shows the security log at
the name server to confirm that it has indeed performed this validation.

DNSSEC Logging

The following shows typical log output using the streamed security logging configured as
shown in the named. conf fragment example; this is the resulting output from the preceding
dig command:

dnssec: validating www.example.com A: starting

dnssec: validating www.example.com A: attempting positive response validation
dnssec: validating example.com DNSKEY: starting

dnssec: validating example.com DNSKEY: attempting positive response validation
dnssec: validating example.com DNSKEY: verify rdataset: success

dnssec: validating example.com DNSKEY: signed by trusted key; marking as secure
dnssec: validator @0x8257800: dns_validator destroy

313

314

CHAPTER 11 " DNSSEC

dnssec: validating www.example.com A: in fetch _callback validator
dnssec: validating www.example.com A: keyset with trust 7

dnssec: validating www.example.com A: resuming validate
validating www.example.com A: verify rdataset: success

dnssec: validating www.example.com A: marking as secure

dnssec: validator @0x81ab000: dns_validator destroy

For the sake of brevity, the date and time have been removed from this log output, which
shows both A RRs being validated and being marked as secure.

Signing the sub.example.com Zone

The process for signing a subdomain is essentially similar to that defined for signing a zone with
one single difference. The zone sub.example.comis the child of the secure zone example. com, or,
if you prefer, example.comis the secure parent of sub.example.com. A Delegated Signer RR can be
added to the example.com zone file to create secure delegation. The zone sub.example. com will
join the chain of trust whose current secure entry point is example.com. For clarity and ease of
key rollover, separate KSK and ZSK RR will be used.

Generate the ZSK for sub.example. com:

dnssec-keygen -a rsashal -b 1024 -n zone sub.example.com
Ksub.example.com.+005+48560

Generate the KSK for sub.example. com:

dnssec-keygen -a rsashal -b 1400 -f KSK -n zone example.com
Ksub.example.com.+005+64536

Include the keys in the sub.example.com zone file:

$TTL 86400 ; 1 day
$ORIGIN sub.example.com.

@ IN SOA nsi.sub.example.com. hostmaster.example.com. (
2005032902 ; serial
10800 ; refresh (3 hours)
15 ; retry (15 seconds)
604800 ; expire (1 week)
10800 5 minimum (3 hours)
)

IN NS ns3.example.com.
IN NS ns4.example.com.
IN MX 10 mail.example.com.

ns3 IN A 10.2.3.4
ns4 IN A 10.2.3.5
fred IN A 10.1.2.1

$INCLUDE Ksub.example.com.+005+48560.key ; ZSK
$INCLUDE Ksub.example.com.+005+64536.key ; KSK

CHAPTER 11 " DNSSEC

Sign the zone sub.example. com:

dnssec-signzone -o sub.example.com -t -g -k Kexample.com.+005+64536 \
master.sub.example.com Kexample.com.+005+48560
master.sub.example.com.signed

Signatures generated: 19
Signatures retained: 0
Signatures dropped: 0
Signatures successfully verified: 0
Signatures unsuccessfully verified: 0
Runtime in seconds: 0.357
Signatures per second: 53.079

The \ indicates that the line has been split for presentation reasons only, meaning the first
and second lines actually appear as a single line to the operating system. This command line is the
same as that for the zone example. com using the revised keys and zone file names, with the excep-
tion that the -g argument is used to generate two special files called dsset-sub.example.com.
(containing the DS RR for the parent) and keyset-sub.example.com. (containing a copy of the pub-
lic key DNSKEY RR of the KSK). One or both of these files may, depending on policy, be sent to the
parent DNS administrator by any suitable, but secure, process to enable secure delegation, the cre-
ation of a chain of trust, which is described in the next section. While neither file contains secure
information (they contain normal RR data), it is vital that the recipient be able to authenticate the
sender and hence create the appropriate level of trust; thus a secure process such as secure e-mail
or secure FTP should always be used when making these files available. The named. conf file for the
master and slave servers for this subdomain are the same as those used for example.com and
require no special treatment. Because sub.example.comis authenticated via the zone example. com,
no action is required at the name server ns1.example.net—its trusted-keys clause with a trusted
anchor for example. comwill cover sub.example.com as well through the chain of trust.

Creating the Chain of Trust

When the parent administrator receives the dsset-sub.example.com. and, optionally, the
keyset-sub.example.com. files, they are placed in the same directory where the example.com
zone is signed. The dsset-sub.example.com. file is included in the original example.com zone
as shown here (the location in the zone file is not important, but note that the file name
always ends with a dot):

$TTL 86400 ; 1 day
$ORIGIN example.com.

@ IN SOA nsi.example.com. hostmaster.example.com. (
2005032902 ; serial
10800 ; refresh (3 hours)
15 ; retry (15 seconds)
604800 ; expire (1 week)
10800 ; minimum (3 hours)

)

315

316

CHAPTER 11 " DNSSEC

IN NS nsi.example.com.

IN NS ns2.example.com.

IN MX 10 mail.example.com.

IN MX 10 maili.example.com.
_ldap. tcp IN SRV 5 2 235 www

nsi IN A 192.168.2.6
ns2 IN A 192.168.23.23
WWW IN A 10.1.2.1
IN A 172.16.2.1
mail IN A 192.168.2.3
mailil IN A 192.168.2.4
$ORIGIN sub.example.com.
@ IN NS ns3.sub.example.com.
IN NS ns4.sub.example.com.
ns3 IN A 10.2.3.4 ; glue RR
ns4 IN A 10.2.3.5 ; glue RR

$INCLUDE keys/Kexample.com.+005+12513.key ; KSK
$INCLUDE keys/Kexample.com.+005+03977.key ; ZSK
$INCLUDE dsset-sub.example.com. ; DS RR

Re-sign the zone by executing the dnssec-signzone command exactly as before:

dnssec-signzone -o example.com -t -k Kexample.com.+005+12513 \
master.example.com Kexample.com.+005+03977
master.example.com.signed

Signatures generated: 20
Signatures retained: 0
Signatures dropped: 0
Signatures successfully verified: 0
Signatures unsuccessfully verified: 0
Runtime in seconds: 0.357
Signatures per second: 53.079

The \ in the preceding example indicates that the line has been split for presentation rea-
sons only, meaning the first and second lines actually appear as a single line to the operating
system. The only thing that has changed is that the Signatures generated line has gone from
19 in the first version to 20 in this version because of the additional DS RR, which has now
been signed. The resulting zone file is exactly the same as the first signed zone but with an
updated signature expiry, and the additional DS RR has been added and signed as shown in
the following fragment:

sub.example.com. 86400 IN NS ns3.sub.example.com.
86400 IN NS ns4.sub.example.com.
86400 DS 64536 5 1 (
CE0711D34D21C069A4C91215C50B4F38E3D5
6501)

CHAPTER 11 " DNSSEC

86400 RRSIG DS 5 3 86400 20050518171727 (
20050418171727 3977 example.com.
RRApmGQ3fKmzbAF7ev4G6eRpWOI=)
10800 NSEC www.example.com. (NS DS RRSIG
NSEC)
10800 RRSIG NSEC 5 3 10800 20050518171727 (
20050418171727 3977 example.com.
gNp5LyMVZ8wcH5INgGpKNISsfes=)
ns3.sub.example.com. 86400 IN A 10.2.3.4
ns4.sub.example.com. 86400 IN A 10.2.3.5
www.example.com. 86400 IN A 10.1.2.1
86400 IN A 172.16.2.1
86400 RRSIG A 5 3 86400 20050518171727 (
20050418171727 3977 example.com.
STHGYT4F2T8IRQTRct1/Zz0a494=)
10800 NSEC example.com. A RRSIG NSEC
10800 RRSIG NSEC 5 3 10800 20050518171727 (
20050418171727 3977 example.com.
5dkPy1jAM2izamSW9Eri/7PdaXI=)

BIND will need to be reloaded or rndc (freeze/thaw) used to pick up the new zone file.
Because sub.example.com gets its authentication through the delegation point in example.com,
the trusted anchor configured at ns1.example.net also covers sub.example.com, and no addi-
tional configuration is required.

Key Rollover

As described earlier, the ZSK and the KSK are required to be periodically changed, or rolled
over, using either a prepublish or double-signing strategy. In general, prepublish is best used
for ZSKs and double signing for KSKs. The process of key rollover is messy but not difficult,
and lends itself to a level of script or other automation, for example, running from cron.

Note When performing any zone re-signing, for key rollover or normal zone signing maintenance proce-
dures, on zones that are dynamically updated, then the additional procedures documented in “Dynamic DNS
and DNSSEC” in this chapter should be followed.

Prepublish ZSK Rollover

The objective in the prepublish strategy is to get the current and new DNSKEY RRs into the
caches of all security-aware name servers. This is done by first adding a new ZSK to the zone
file. This example will assume that the signed zone file for example. com created previously with
a current ZSK key-tag of 03977 and a current KSK key-tag of 12513 will have only the ZSK
(key-tag of 03977) rolled. By looking at the zone file, the longest TTL is 24 hours (86400 sec-
onds). At least two days before the zone signatures expire or before the new ZSK is required,
anew ZSK is created using the following command:

317

318 CHAPTER 11 " DNSSEC

dnssec-keygen -a rsashal -b 1024 -n zone example.com
Kexample.com.+005+39539

The new ZSK is included in the zone file:

$TTL 86400 ; 1 day
$ORIGIN example.com.

@ IN SOA nsi.example.com. hostmaster.example.com. (
2005032902 ; serial
10800 ; refresh (3 hours)
15 ; retry (15 seconds)
604800 ; expire (1 week)
10800 ; minimum (3 hours)
)

IN NS nsi.example.com.

IN NS ns2.example.com.

IN MX 10 mail.example.com.

IN MX 10 maili.example.com.
_ldap._tcp IN SRV 5 2 235 www

nsi IN A 192.168.2.6
ns2 IN A 192.168.23.23
Www IN A 10.1.2.1
IN A 172.16.2.1
mail IN A 192.168.2.3
mailil IN A 192.168.2.4
$ORIGIN sub.example.com.
@ IN NS ns3.sub.example.com.
IN NS ns4.sub.example.com.
ns3 IN A 10.2.3.4 ; glue RR
ns4 IN A 10.2.3.5 ; glue RR

$INCLUDE keys/Kexample.com.+005+12513.key ; KSK
$INCLUDE keys/Kexample.com.+005+03977.key ; current ZSK
$INCLUDE dsset-sub.example.com. ; DS RR

$INCLUDE keys/Kexample.com.+005+39539.key ; new ZSK

The zone is signed using the current ZSK and KSK—there are no changes to the command
used in the previous section:

dnssec-signzone -o example.com -t -k Kexample.com.+005+12513 \
master.example.com Kexample.com.+005+03977
master.example.com.signed

Signatures generated: 20
Signatures retained: 0
Signatures dropped: 0
Signatures successfully verified: 0
Signatures unsuccessfully verified: 0
Runtime in seconds: 0.357

Signatures per second: 53.079

CHAPTER 11 " DNSSEC

The \ indicates that the line has been split for presentation reasons only, meaning the first
and second lines actually appear as a single line to the operating system. When the file is signed,
BIND is either reloaded or rndc (freeze/thaw) commands used to refresh the zone file. The
DNSKEY RRset at the zone apex looks like that shown here:

86400 DNSKEY 256 3 5 (
AQPCF56dKVA+TAZVQVedURNd/twKcbgoz
t/4w8]geybiVZeHbYXHI1jSOkHt8vw==
) ; key id = 3977

86400 DNSKEY 256 3 5 (
AQPCrtJceGC5REQ4khX5VKSvn1WgBxH/ 1
dVoaRDNEebrwNVohBMEVI1j3Nh7UIQ==
) ; key id = 39539

86400 DNSKEY 257 3 5 (
AQPnvgDqCShrBmFEh5VIW7kM4DG/ kMwa3E
1WnVhGKV1I6T01x+u4uNoel1/uocNOQ==
) ; key id = 12513

86400 RRSIG DNSKEY 5 2 86400 20050518182149 (
20050418182149 3977 example.com.
OyWzCmieTtR2bES61+KFXBOosv8=)

86400 RRSIG DNSKEY 5 2 86400 20050518182149 (
20050418182149 12513 example.com.
I00teNohrH50Z1+2EM22LYPFHTk=)

_ldap. tcp.example.com. 86400 IN SRV 5 2 235 www.example.com.

The new DNSKEY RR (the second DNSKEY RR shown previously) is now available in the
DNSKEY RRset at the zone apex where it can be used by security-aware name servers to try
and verify the signatures. At this point, all such attempts will fail because no RRSIG records
use this key. Recall, however, that name servers are mandated to try all available DNSKEY RRs,
so the current ZSK will also be used and the RRSIGs will be validated. After 24 hours from the
zone being reloaded, all security-aware name servers using the example.com zone will be guar-
anteed to either have the new DNSKEY RRset in the cache or have timed out the old version,
which only has the current KSK and current ZSK.

After the 24 hours cache propagation period has passed, the zone is again re-signed using
the KSK as before and the new ZSK (key-tag of 39539) using the following command:

dnssec-signzone -o example.com -t -k Kexample.com.+005+12513 \
master.example.com Kexample.com.+005+39539
master.example.com.signed

Signatures generated: 20
Signatures retained: 0
Signatures dropped: 0
Signatures successfully verified: 0
Signatures unsuccessfully verified: 0
Runtime in seconds: 0.357

Signatures per second: 53.079

319

320

CHAPTER 11 " DNSSEC

The \ indicates that the line has been split for presentation reasons only, meaning the first
and second lines actually appear as a single line to the operating system. All the RRSIG RRs
have now been signed with the new ZSK. Again, BIND is reloaded or rndc used to refresh the
zone. After a further 24-hour period, all security-aware name servers that use the example.com
zone will have the new DNSKEY RRset either cached or have timed out the old DNSKEY RRset.
Any time after this the zone file may be modified to delete the previous ZSK (key-tag is 03977),
the zone re-signed—using the new ZSK (key-tag is 39539) as in the preceding command—and
then reloaded. There is no particular urgency to delete the old key and to minimize re-signing
operations; this can be postponed until either the next scheduled zone re-signing or the next
scheduled key rollover.

Double-signing KSK Rollover

Recall the KSK only signs the DNSKEY RRset at the zone apex. The double-signing strategy
uses two KSKs to sign this RRset. Again, the example file created previously and now signed
with the new ZSK will be used as a starting point for the KSK rollover. Create a new KSK using
the following command:

dnssec-keygen -a rsashal -b 1024 -f KSK 1024 -n zone example.com
Kexample.com.+005+50148

This new DNSKEY is included in the master.example. com zone file:

$TTL 86400 ; 1 day
$ORIGIN example.com.

@ IN SOA nsi.example.com. hostmaster.example.com. (
2005032902 ; serial
10800 ; refresh (3 hours)
15 ; retry (15 seconds)
604800 ; expire (1 week)
10800 ; minimum (3 hours)
)

IN NS nsi.example.com.

IN NS ns2.example.com.

IN MX 10 mail.example.com.

IN MX 10 maill.example.com.
_ldap. tcp IN SRV 5 2 235 www

nsi IN A 192.168.2.6
ns2 IN A 192.168.23.23
WWW IN A 10.1.2.1
IN A 172.16.2.1
mail IN A 192.168.2.3
mail1 IN A 192.168.2.4
$ORIGIN sub.example.com.
@ IN NS ns3.sub.example.com.

IN NS ns4.sub.example.com.
ns3 IN A 10.2.3.4 ; glue RR

CHAPTER 11 " DNSSEC

ns4 IN A 10.2.3.5 ; glue RR

$INCLUDE keys/Kexample.com.+005+12513.key ; current KSK
$INCLUDE keys/Kexample.com.+005+50148.key ; new KSK
$INCLUDE dsset-sub.example.com. ; DS RR

$INCLUDE keys/Kexample.com.+005+39539.key ; new ZSK

The zone is signed with the following command:

dnssec-signzone -o example.com -t -k Kexample.com.+005+12513 \
-k Kexample.com.+005+50148 master.example.com Kexample.com.+005+39539
master.example.com.signed

Signatures generated: 21
Signatures retained: 0
Signatures dropped: 0
Signatures successfully verified: 0
Signatures unsuccessfully verified: 0
Runtime in seconds: 0.357
Signatures per second: 53.079

The \ indicates that the line has been split for presentation reasons only, meaning the first
and second lines actually appear as a single line to the operating system. The command has
two -k arguments, indicating the DNSKEY RRset will be signed three times, once each with the
current and new KSK and once with the ZSK. Note also that the Signatures generatedline has
increased to 21 to confirm this. BIND should now be reloaded or rndc (freeze/thaw) commands
used to refresh the zone. The DNSKEY RRset zone file fragments looks as shown here with
three RRSIG RRs covering the DNSKEY RRset:

86400 DNSKEY 256 3 5 (
AQPCrtJceGC5REQ4khX5VKSVN1WgBXH/ 1xpg
dVOaRDNEebrwNVohBMEVI1j3Nh7UIQ==
) 5 key id = 39539

86400 DNSKEY 257 3 5 (
AQPZjeWTe9g998002XWmaaMYNb9xxMDdwHNH
wa05C06tVQwg5udwmniWTIt5ryBI+DQ==
) 5 key id = 50148

86400 DNSKEY 257 3 5 (
AQPnvgDqCShrBmFEh5VIW7kM4DG/ kMwa3EBNP
1WnVhGKV1I6TO1x+u4uNoel/uocNOQ==
) ; key id = 12513

86400 RRSIG DNSKEY 5 2 86400 20050518190823 (
20050418190823 12513 example.com.
ZI195WgwhViUm7YYe2dwznC5M170=)

86400 RRSIG DNSKEY 5 2 86400 20050518190823 (
20050418190823 39539 example.com.
wLonbgY913DigWolLb6zDZx1nEVQ=)

86400 RRSIG DNSKEY 5 2 86400 20050518190823 (
20050418190823 50148 example.com.
OVU+uuC8LYj85610smDINE9pzVY=)

321

322

CHAPTER 11 " DNSSEC

Again, in the interest of brevity, most of the base64 key material has been omitted. Recall that
the KSK is identified by having a flags field of value 257 (see Chapter 13). The DNSKEY RRset is
signed three times, once each with the current KSK (key-tag is 12513), the new KSK (key-tag is
50148), and the current ZSK (key-tag is 39539). The file Kexample.com.+005+50148. key should be
sent to all security-aware name server administrators that have a trusted anchor configured for
the zone example. com. While this file does not contain sensitive information, it contains a public
key; it is important that the recipient be able to authenticate the sender in order to establish the
right level of trust, and therefore a secure process such as secure e-mail, HTTPS, or secure FTP
should be used.

There are two possible strategies for distribution of a new trusted anchor:

1. Delay 24 hours (or whatever TTL is being used) from the time of re-signing before
distributing or notifying users of the availability of the new anchor. This ensures that
all security-aware name servers will have cached the new DNSKEY RRset or timed
out the old (single KSK) DNSKEY RRset, in which case, they will query and obtain the
new DNSKEY RRset. At this point, the existing trusted anchor may be replaced in the
trusted-keys clause.

2. Distribute or notify immediately users of the zone’s trusted anchor when the zone is
re-signed, in which case the trusted anchor must be added to the server’s trusted-keys
clause to allow for cache delays. The example shown uses this procedure for no very
good reason.

Only when positive confirmation is received that the new trusted anchor has been added
or replaced in the trusted-keys clause, as shown in the following example, can the current
KSK be removed from the zone file and the zone file be re-signed using the new KSK (key-tag
is 50148) and the current ZSK (key-tag is 39539). The new DNSKEY RR for the KSK is as follows:

86400 DNSKEY 257 3 5 (
AQPZjelWTe9g998002XWmaaMYNb9xxMDdwHNH
waQ5CQ6tVQwg5udwmnWTIt5ryBI+DQ==
) ; key id = 50148

It is shown being added as a trusted anchor to the current trusted-keys clause in all
affected name servers such as ns1.example.net as shown here:

trusted-keys{
"example.com." 257 3 5 "1WnVhGKV1I6TO1x+u4uNoel/uocNOQ=="; // old KSK
"example.com." 257 3 5 "AQPZjeWTe9q998002XWmaaMYNb9xxMDdwHNH
waQ5C06tVQowg5udwmnWTIt5ryBI+DQ=="; // new KSK
};

Using the delayed notification process described previously, the new trusted anchor could
also have replaced the previous one. When the old KSK (key-tag is 12513) is removed from the
zone file and the zone re-signed, all users of the stale trusted anchor can be informed so they
can remove the trusted anchor from the trusted-keys clause at some suitable time. There is no
pressing need to do this, so it can be scheduled as part of a regular DNS maintenance session
or even postponed until the next key rollover.

Any security-aware name server that does not upgrade, by adding or replacing, to the new
trusted anchor will suddenly start generating bogus data responses to zone data so it vital that

CHAPTER 11 " DNSSEC

areliable process is in place to get feedback. The consequences of re-signing too early with
only the new KSK are also severe, and again, unless there is a pressing reason such as KSK
compromise with active damage occurring, it is better to wait.

DNSSEC Lookaside Validation

The DNSSEC Lookaside Validation (DLV) service is an alternative method by which a chain
of trust may be created and verified without the need to sign the parent zone file. The serv-
ice makes use of a DLV RR, which is not currently defined by an RFC—its status is therefore
experimental—but which is fully supported by the current (9.3+) versions of BIND. The DLV
RR is functionally identical to the DS RR and may be generated by the dnssec-signzone util-
ity by use of the -1 domain-name option (see Chapter 9). A DLV RR is placed in a special
signed zone called a lookaside zone instead of the DS RR that would normally be added to
the parent zone, thus removing the need to sign the parent zone. The DLV service works by
providing an alternative method to verify a chain of trust as described next.

Assume that the lookaside domain is called d1v.example.net and the name server is trying
to verify the chain of trust for the signed zone example.com. In a normal sequence, when a secu-
rity-aware name server tries to verify the chain of trust for example. com, it will first check for a
trusted anchor in its trusted-keys clause, and if one is not found, it will issue a query to find
a DS RR at the parent . com zone. If neither is found, the zone will be marked as insecure. DLV
adds an additional step by allowing the name server to query a lookaside zone, for which it must
have a trusted anchor, for the DLV RR of the zone being verified. When the verifying name server
detects that the lookaside feature is enabled (by a dnssec-lookaside statement in named. conf),
it will issue a DLV query with the domain name example.com.dlv.example.net, which, if found,
and assuming the trusted anchor for dlv.example.net is present in a trusted-keys clause, the
example.com zone is verified to be secure. Figure 11-7 illustrates the DLV process.

Verifying Chain of Recursive Name Servers
Trust for example.com First DS Query to Parent NS1
Then DLV Query to Lookaside |(Security Aware)
. (root) Trusted Anchor
Root-servers I I : div.example.net
.ld-Servers .com . net NS2

F | ro ¢ (Security Oblivious)
User Servers example.net

div.example.net

Figure 11-7. DLV verification procedure

The initial query will try to find a DS RR for example.com at the parent .com zone and
only if that fails will the DLV query be issued to the lookaside zone. While the lookaside zone

323

324

CHAPTER 11 " DNSSEC

dlv.example.net must be signed, the trusted anchor at NS1 means that its parent, example.net,
does not have to be signed, as is shown in Figure 11-7.

A public pilot of DLV is currently being run by VeriSign Labs, a division of VeriSign, Inc.
(www.verisignlabs.com), which covers all of the TLDs with a single trusted anchor, without
the need for any of the TLD zones to be signed.

DLV Configuration

This section describes the various steps to be taken when joining the zone example.comto a
DLV chain of trust. While the specific example of the VeriSign Pilot is used, the explanations
cover the general case wherever appropriate. The lookaside zone for the VeriSign Pilot is
dlv.verisignlabs.com.

The DLV system, like all other DNSSEC systems, starts with a signed zone. The example. com
zone is signed in the normal way as described earlier using the dnssec-signzone utility with
the addition of a -1 dlv.verisignlabs.comoption to create a DLV RR with the correct name
(example.com.dlv.verisignlabs.com). Creation of this DLV RR is the only reason the zone needs
to be re-signed. This step is actually not required for the current VeriSign Pilot project, which
creates 'the DS' RR automatically when a zone is submitted for addition to the pilot project.
The process is described in full, since other DLV services may, however, require a DLV RR to
be supplied.

Assuming the same configuration as the last example but using only the new KSK from
the rollover (key-tag is 50148), the zone signing would use the following command:

dnssec-signzone -o example.com -t -1 dlv.verisignlabs.com \
-k Kexample.com.+005+50148 master.example.com Kexample.com.+005+39539
master.example.com.signed

Signatures generated: 20
Signatures retained: 0
Signatures dropped: 0
Signatures successfully verified: 0
Signatures unsuccessfully verified: 0
Runtime in seconds: 0.357
Signatures per second: 53.079

As noted previously, joining the VeriSign Pilot does not require a DLV RR, and since this is the
only reason for re-signing the zone, it may be omitted if that is the only objective. The \ indicates
that the line has been split for presentation reasons only, meaning the first and second lines actu-
ally appear as a single line to the operating system. The -1 dlv.verisignlabs.com argument
defines the name of the lookaside zone that will be appended to this zone name (defined by the
-0 example.com argument) when the DLV RR is created. This option causes dnssec-signzone to
create a new file called dlvset-example.com., which contains a formatted DLV RR as shown here:

example.com.dlv.verisign.com. IN DLV 50148 5 1 (0CAE34D
C1BDE4A5D12A777A8DEC3B703E516DC71)

This DLV has been edited to use multiple lines using the normal zone file method of
enclosing in parentheses for presentation reasons only, and from inspection and comparison
with the DS RR from the previous example files, it may be seen to be functionally identical.

CHAPTER 11 " DNSSEC

Depending on the operational or business requirements of the lookaside zone service operator,
the DLV RR may need to be sent by a secure process. While the data itself is not sensitive, secure
transmission allows the recipient to authenticate the sender, not just the data. In the case of the
VeriSign Pilot, the DLV RR is synthesized when the zone is registered on the project’s secure web
site (https://www.dlv.verisignlabs.com). The submitted zone is inspected by VeriSign software
by querying for DNSKEY RRs at the zone apex, and it will automatically create and add to its
database a DLV RR for any DNSKEY RR with a flags field value of 257 (the SEP or KSK bit is set).
This type of procedure may or may not become common practice, but it certainly demonstrates
a level of automation that would also be practical for DS RRs.

Note The VeriSign Pilot requires that the DLV RR points to a KSK; that is, the DNSKEY RR has a flags
value of 257 as described earlier (the SEP bit is set)—therefore a separate KSK and ZSK are required per
the recommended practice.

To configure the name server to use the DLV service requires two changes to the named. conf
file. The first involves definition of the lookaside zone name (in a dnssec-lookaside statement),
and the second requires the inclusion of a trusted anchor for the DLV zone. The trusted anchor
for the pilot project (at the time of writing there were two such anchors) may be obtained
from https://www.dlv.verisignlabs.com/trusted.html. This is a secure web page, and users
are recommended by text on the page to verify the security certificate—a simple but effective
authentication process—before using the public keys defined, which may be simply cut and
pasted into the named. conf file as shown in the following fragment:

// named.conf DLV fragment
options {

non

dnssec-lookaside "." trusted-anchor "dlv.verisignlabs.com";

b

trusted-keys{

dlv.verisignlabs.com. 257 3 5
"AwWEAAbw2HZETA6PpTSVdEbdVY1I11y3gTFAhIPASC70a
tIr/P3hDgz7sUjDy4rVHOPNjKvQMv2vOAqTyTykry021
9WGmbKZjsXyK219A1AHvSC44TsiskINSIP28KkM1CWg+
108FbPJIGVbZ30H11eRapnCCi2Z5q0dhecgFQOWag/FupH
ogN7snieYsUdby/9709dLDdQel9xIn1CVtiMcxfB5/ju
K3/V9bF7WIsdLKlootqniS42c]jsyGGwxsTZxHQ3mH/GO
df1KnGs8ENBnpxSytJk4qogYP5SAKNAPTGOj1Kdma2f9v
16wZAIYVkcQPKusBTYbUCIFrIXnKGtPHH3Cny1s=";

dlv.verisignlabs.com. 257 3 5
"AQPAQR5KGN12Q/IPhkGMv6Z1ATI571w44/7cSvZuOviD
bFuOGOCwwiRVa7FTh2MOIkCgUjql2ZTKTAyBMSadqgFoV
Cc/CI6CFUQN+inmNNkGZsn51E8qIoJkMIyl+/v0/0whl
0CurFhobuyNJKouKqo09wi3poKrWQRkbnLWlcgeqgfsAN

325

326

CHAPTER 11 " DNSSEC

Gpxi27TveSm3x3pS8T9ZXHOvz5yFethXitHDQuY1+apF
0DsZ/TfXE9d17+0R+5hzbzIMbPBByugna4/ZFCcwIL2W
hEATHFQSpkzUaVX2ugBZ48HOMIXqG8aUCKE1RAkxrawf
5x3bm6y3UmoQPvTQL8T71BZ6Cku84FyDGUoh";

};

The VeriSign DLV Pilot provides support to cover the whole hierarchy of the domain
name to the root and therefore recommends a dnssec-lookaside statement with a . (root)
domain as shown in the preceding example. The effect of this definition is that every secure
zone for which there is no parent DS RR and no trusted anchor will incur a DLV query to the
domain dlv.verisignlabs.com, which may be an unacceptable overhead. If the user wants to
limit this process to only the .com domain, the following alternative statement could be used:

[l

dnssec-lookaside ".com" trusted-anchor "dlv.verisignlabs.com";

In this case, only domain names ending with . com will incur a DLV lookup. Similarly, this
could have been limited to .at or .org domains or multiple dnsssec-lookaside statements
used to select only the .de and .org domains, depending on requirement. The trusted anchor
name of dlv.verisignlabs.comis unique to the current VeriSign Pilot project and references
entries (in the preceding case two) in the trusted-keys clause with the same name.

DLV Service

There is nothing magical about a DLV service. A DLV service uses a standard name server with a
standard signed zone file and could be created for use by any affinity group as an alternative to
multiple trusted anchors for each member of the group. To illustrate creation of a DLV service,
assume an affinity group comprised of the domains example.org, example.com, and example.net
decide to set up a DLV service that will hosted by dlv.example.com. In the absence of any spe-
cial software as used by the VeriSign Labs Pilot, each member domain will create a DLV RR by
the zone signing process described using a -1 dlv.example.com argument. The DLV RRs are
sent to the domain administrator for dlv.example.com by a process that will authenticate the
sender, such as secure e-mail. A zone file comprising the supplied DLV RRs will be created as
shown here:

; zone fragment for dlv.example.com
$TTL 1d ; zone default
$ORIGIN dlv.example.com.

Q IN SOA nsi.dlv.example.com. hostmaster.dlv.example.com. (
2005032902 ; serial
10800 ; refresh (3 hours)
15 ; retry (15 seconds)
604800 ; expire (1 week)
10800 ; minimum (3 hours)
)

NS nsi.dlv.example.com.
NS ns2.dlv.example.com.
nsi A 192.168.254.2
ns2 A 192.168.254.3
; DLV RRs for affinity group

CHAPTER 11 " DNSSEC

example.com.dlv.example.com. IN DLV 37558 5 1 (CCCCCCCCCCCC)
example.org.dlv.example.com. IN DLV 42134 5 1 (DDDDDDDDDDD)
example.net.dlv.example.com. IN DLV 02557 5 1 (EEEEEEEEEEEEE)

A ZSK and KSK for the dlv.example.com zone will be created using the dnssec-keygen
utility and added to the zone file as described earlier, and the zone will be signed with the
dnssec-signzone utility using both KSK and ZSK as normal. The public key of the KSK for
dlv.example.comis distributed to be used as a trusted anchor by all the members of the
affinity group; thus a single trusted anchor is used to replace the alternative of three
trusted anchors, which would otherwise be required.

The zone dlv.example.com would be delegated from example.com and an authoritative-
only name server (see Chapter 7) created to support the service. Finally, each member would
add the trusted anchor for d1v.example.comin a trusted-keys clause in their named.conf file,
and to invoke the service each member would further add the following three lines to the options
clause in the same named. conf file:

dnssec-lookaside "example.com" trusted-anchor "dlv.example.com";
dnssec-lookaside "example.net" trusted-anchor "dlv.example.com";
dnssec-lookaside "example.net" trusted-anchor "dlv.example.com";

The specification of dnssec-lookaside says that any domain at or below the defined domain
name will use the lookaside zone defined in the trusted-anchor option, which means that only
domain names ending with example.com, example.org, or example.net will incur a DLV lookup.
However, the specification also says that the deepest domain name (which actually means the
one with the most labels) defined in a dnssec-lookaside will be used for the lookaside query. So
if a name server that included the previous three lines also wished to use, say, the VeriSign DLV
Pilot service, it would add the following statement to invoke that DLV service:

non

dnsssec-lookaside "." trusted-anchor "dlv.verisignlabs.com";

The effect of this statement would be that any secure domain that does not end with
example.com, example.org, or example.net would incur a DLV lookup to the dlv.verisignlabs.com
lookaside domain, whereas only our three target domains, example.com, example.net, and
example.org, would query the dlv.example.comlookaside domain. It is therefore possible to sup-
port a number of concurrent DLV services, each of which may target specific markets or affinity
groups prior to the widespread availability of signed TLDs.

Summary

This chapter describes the theory and implementation of DNSSEC (colloquially known as
DNSSEC.bis), which represents the second generation of standards used to ensure the authen-
ticity and integrity of data supplied from a suitably configured authoritative name server to a
security-aware requesting name server. DNSSEC standards use public key (asymmetric) cryp-
tography to ensure that the data supplied in response to a query for, say, www.example.com,
could only have come from the domain example.com (authenticity), that data received by the
querying name server is the same as the data sent by the queried name server (data integrity),
and that in the event www.example. com does not exist, it can be proven that such is the case

327

328

CHAPTER 11 " DNSSEC

(proof of nonexistence or denial of existence). Transaction security, used to secure operations
such as DDNS or zone transfer, is covered in Chapter 10.

The chapter described the establishment of islands of security whereby single, uncon-
nected zones may be secured, or a group of such isolated islands that are part of an affinity
or common interest group, such as an enterprise network, may be secured. In this case, to get
security coverage the zone requires a trusted anchor—the public key used to sign the secured
zone—which is obtained by a secure process that authenticates the source and is then config-
ured into all security-aware name servers that wish to validate responses for the zone using a
trusted-keys clause. Securing the zone involves the use of a private key to digitally sign all the
RRsets in the zone using an RRSIG RR type. Once established, secure zones can be linked
together into chains of trust using their delegation points; thus if example. comis secured, it may
be linked to the .com gTLD or it may be securely delegated to sub.example.com. This process is
accomplished using the Delegated Signer RR, which is added to the parent domain and secures
the delegation to the child domain. The public keys used in signing are defined in the zone file
using DNSKEY RRs and are categorized as either a Zone Signing Key, which is used to sign the
records within the zone file and a Key Signing Key, which is used to sign only the DNSKEY RRs
used in the signing process and may be used externally as either a trusted anchor or referenced
by a DS RR. While the standards allow a single DNSKEY RR to be used for both ZSK and KSK
purposes, this not a recommended practice. Proof of nonexistence is provided by the NSEC
RRs, which chain together all the RRs within the zone file. Cryptographic keys need to be
changed either periodically to minimize risk or immediately in the case where a key is known
to be compromised. This process, called key rollover, may use either a prepublish or double-
signing strategy, both of which were described. Finally, examples illustrating the implementation
of DNSSEC and covering all the preceding points were presented.

DNSSEC provides very positive benefits but does introduce new levels of discipline, par-
ticularly with regard to time—signatures (RRSIG RRs) in secured zone file have a finite validity
period and thus require to be re-signed at periodic intervals. If the signatures are allowed to
expire, the data from the zone will be marked as bogus by receiving security-aware servers.

The next chapter describes, with examples where appropriate, the statements and clauses
used in named. conf, the configuration file that controls BIND’s operational behavior.

PART 4

Reference

CHAPTER 12

BIND Configuration Reference

This chapter contains reference information about the daunting list of parameters that con-
trol the BIND 9 series of applications. The reference is split into two parts:

1. The BIND command-line arguments that control the operational environment at load
time and signals that are accepted by a running daemon

2. The BIND configuration parameters defined in the named. conf file that control opera-
tional functionality

While the very number of configuration options may seem initially confusing, only a small
subset is required for a typical BIND configuration. The normal set of parameters is illustrated in
the examples in Chapter 7. This reference chapter is useful when control over a specific behavior
is required, when checking the different forms of certain statements or clauses, and when con-
sidering a new design or implementation. The first section deals with command-line arguments
and signals, and run-time control, and is then followed by the section on the named. conf param-
eter, which this book has separated into clauses (listed in Table 12-3) and statements (listed
in Table 12-5) to provide a more logical access to the large number of configuration options
available.

BIND Command Line

Table 12-1 describes the various command-line options used to control BIND.

Table 12-1. BIND Command-Line Arguments

Argument Parameter Description

-C /path/to/config-file Absolute path to the BIND configuration file (normally
named.conf). This argument allows change of both the
location and the name of the configuration file. The
default depends on OS (typically Linux = /etc/
named.conf, BSD = either /etc/namedb/named. conf or
/etc/local/etc/named. conf, Windows = c:\winnt\
system32\dns\etc\named.conf) and is defined by the
--sysconfdir parameter to configure.

-d #debug See Table 12-2.

-f Run in foreground, that is, do not run as daemon.
Normally only used for debugging purposes.

Continued 331

332

CHAPTER 12

BIND CONFIGURATION REFERENCE

Table 12-1. Continued

Argument

Parameter Description

-8

Run in foreground, that is, do not run as daemon and log to stderr
(console). Normally only used for debugging purposes.

#cpus Create #cpus threads to take advantage of multiple CPUs. If not

specified, named will try to determine the number of CPUs present
and create one thread per CPU. If it is unable to determine the
number of CPUs, a single thread will be created.

port-no Listen on defined port-no. The default is 53. Normally only used

for debugging purposes.

chroot/path Use of this argument indicates that named will be run in a chroot

jail (or sandbox). chroot/path defines the directory path of the
chroot base and is conventionally set to /var/named/chroot (Linux)
or /var/named (FreeBSD) but can be set to anything required. Must
be used in conjunction with the -u argument to provide any
meaningful security.

UID Cause BIND to suid() (change user name) to the defined UID after

creating sockets on port 53 (which is in the privileged range of

< 1024). If not present, runs as user root. Must be used with chroot
options (see the -t entry), but many startup scripts now use a

-u named or -u bind argument even if not chrooted, which means
that log and PID files will have to have appropriate permissions set.

Display the BIND version number to stdout (console) and exit.

There are two additional arguments (-s and -x) that should only be used by developers
and therefore have been omitted.

BIND Debug Levels

Table 12-2 defines an incomplete list of the various debug levels that may be set using the
-d command-line option or the rndc trace log level option (see Chapter 9). For maximum
logging, use 100.

Table 12-2. BIND Debug Log Levels

Debug Level

Coverage

0
1

No debugging—can also be set using rndc notrace (see Chapter 9).

Logs the basic name server operations: zone loading, maintenance (including SOA
queries, zone transfers and zone expiration, and cache cleaning), NOTIFY
messages, queries received, and high-level tasks dispatched.

Logs multicast requests.

Logs the low-level task creation, operation, and journal activity, such as when the
name server writes a record of a zone change to the zone’s journal file (. jnl) or
when the name server applies a journal to a zone at startup. This level also logs the
operation of the DNSSEC validator and checking of TSIG and SIG(0) signatures.

Logs when a master name server uses AXFR because the transferred zone’s journal
is not available.

Logs the view used while servicing a particular request.

Logs outbound zone transfer messages, including checks of the query that

CHAPTER 12 I BIND CONFIGURATION REFERENCE

Debug Level Coverage

7 Logs the journals added and deleted, and a count of the number of bytes returned
by a zone transfer.

8 Logs the following dynamic update messages: prerequisite checks, journal entries,
and rollbacks. This level also logs low-level zone transfer messages and the
resource records sent in a zone transfer.

10 Logs zone timer activity messages and client errors.

50 Logs internal event tracing.

90 Logs low-level operation of the BIND 9 task dispatcher.
BIND Signals

In general, BIND should be controlled using the rndc utility or the various startup scripts such
as /etc/rc.d/init.d/named (for Linux) or /etc/rc.d/named for BSD. The following signals may
be used:

* SIGHUP (1): This signal is documented to reload the server but does not; it just termi-
nates the server. To perform a reload or restart, see the upcoming text.

e SIGINT (2): Terminate BIND.
e SIGTERM (15): Terminate BIND.

To terminate BIND from the command line, the following command can be used:

killall named

or obtain the named PID using

ps ax|grep named

Then issue this command:

kill -2 named-pid

To perform areload, either stop and start the server using an rc.d script, for instance, on
Linux use /etc/rc.d/init.d/named restart, or issue the following command:

named.reload

The server will reload the named. conf file. The command rndc reload will perform the
same operation if issued from the control channel (see the section “BIND controls Clause”
later in this chapter).

333

334

CHAPTER 12 I BIND CONFIGURATION REFERENCE

BIND Configuration Overview

BIND uses a single configuration file called named.conf, which can contain a brutally long list
of parameters to control its operation. The named. conf file can reside in a variety of places
depending on your OS, for instance, for Linux (Fedora Core 2), in /etc/named. conf; for Win-
dows (NT 4.0 and Windows 2000 only), %SystemRoot%\system32\dns\etc\named. conf (normally
c:\winnt\system32\dns\etc\named.conf); and for FreeBSD, in /etc/namedb/named.conf or
/usr/local/etc/named/conf. If BIND is being run in a sandbox (or chroot jail), the typical
locations are as defined in Chapter 10.

Note Older versions of BIND (the 4.x series) used a configuration file called boot . conf, which this book
does not describe or mention other than in this note. Unless you are running a 4.x version of BIND version,
ignore any references to this file in any documentation.

The named. conf file can contain three types of entries:

1. Comments: Comments can take one of three formats: C++ style, Unix shell style, or
C style. Comments in the C++ style start with // and occupy a single line. This comment
style can appear on its own on a line or can terminate any line. Comments in the Unix
shell style start with # (hash or pound) and have the same single-line or line-terminat-
ing properties as the C++ style. Comments in the C style use /* to open a comment and
*/ to close the comment. C-style comments can occupy a single line or more than one
line or even be used within a line. Examples:

/* C-style comment format needs opening and closing markers
** but allows multiple lines or */
/* single lines or */
zones /* in-line comment does not terminate line */ in {some zone statements};
// C++-style comments have single line format, no closing required
some statement; // comment ends this line
SHELL/PERL-style comments have single lines, no closing required
some statement; # comment ends this line

2. Clauses: Clauses are used to group sets of statements. Clauses in some documentation
are called statements or options and even sections, but this book uses the term clause
throughout. Table 12-3 later in this chapter lists all the available clauses and their gen-
eral content and scope.

3. Statements: Statements appear within clauses and control specific behaviors.
Statements may have one or more parameters. Statements are called in some docu-
mentation statements, clauses, phrases, and even options, but this book uses the term
statement throughout. Certain statements may appear in multiple clauses or clause
types. The scope of the behavior depends on the clause in which the statement appears.
Thus a statement that appears inside a zone clause has a scope for that zone—it
affects behavior only for that zone. If the same statement appears inside an options

CHAPTER 12 I BIND CONFIGURATION REFERENCE

clause, it has global scope across all zones unless explicitly overridden by a state-
ment in a zone clause. Table 12-6, shown later in this chapter, lists the statements
and the clauses to which they apply. Table 12-5, also later in this chapter, lists each
available statement with a brief description of its function. BIND releases include
alist of the latest statements and clauses supported, which is available in /usr/share/
docs/bind-version/misc/options (Fedora Core 2) or /usr/src/contrib/bind/doc/
(FreeBSD). Windows users are not so lucky, as their distribution does not include
such a file.

BIND provides a serious list of configuration statements, but only a small subset is neces-
sary to create an operational configuration. Chapter 7 includes a number of sample files that
use the minimum required statements and clauses.

Note on Terminology One of many reasons that users get confused is when documentation refers
to the same entity by more than one term. This book has sought to use common and consistent terminology
throughout. Accordingly, this book uses the term clause to define a grouping of statements, since Merriam-
Webster (www.m-w. com) defines clause to be “a separate section of a discourse or writing; specifically:

a distinct article in a formal document,” which is good enough for us. Statement has an atomic meaning
and is defined by Webster to be “a single declaration or remark.”

Layout Styles

BIND is very picky about opening and closing brackets/braces, semicolons, and all the other
separators defined in the formal syntaxes in later sections. There are many layout styles that
can assist in minimizing errors as shown in the following examples:

// dense single-line style
zone "example.com" in{type slave; file "slave.example.com"; masters {10.0.0.1;};};
// single-statement-per-line style
zone "example.com" in{
type slave;
file "slave.example.com";
masters {10.0.0.1;};
};
// spot the difference
zone "example.com" in{
type slave;
file "sec.slave.com";
masters {10.0.0.1;}; };

The variations are simply attempts to minimize the chance of errors—they have no other
significance. Experiment, then use the method you feel most comfortable with.

335

336

CHAPTER 12 ©" BIND CONFIGURATION REFERENCE

named-checkconf Is Your Friend

BIND releases contain a utility called named-checkconf that will do nothing except check your
named. cont file and tell you what is wrong. To check any named. conf file for syntax errors, just
issue the following command:

named-checkconf

This command will verify the named. conf file in the normal location for the distribution. If
you are building a new file in another location or with a test file name, then issue a command
something like the following:

named-checkconf /path/to/file.name

To check any master zone files referenced in the named. conf file, just add the -z argument:

named-checkconf /path/to/file.name -z

For a full list of named-checkconf arguments, see Chapter 9.

Note In the normal sparse BIND style, if your test named. conf file is correct, named- checkcon will out-
put nothing. Not even a courtesy “OK.” Silence is indeed golden.

BIND Clauses

The named. conf file can contain a number of clauses. Clauses are used to group together sets
of related statements. Table 12-3 defines the clauses available in named. conf with a brief
description of their purpose and scope.

Table 12-3. BIND Clause Summary

Clause Description

acl Defines one or more access control lists, groups of hosts, or users identified by
keys that may be referenced in view and other clauses or statements.

controls Describes and manages access to the control channel used by the remote
administrator when using the rndc utility.

include This statement is unique and is documented here solely because it can be used to
include clauses, parts of clauses, individual statements, or groups of statements.
It obeys none of the normal rules and can appear anywhere in the named. conf file
inside and outside of a clause. The include statement allows subsidiary files
containing configuration clauses or statements to be included in-line. It is
typically used for security or maintenance purposes.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

Clause Description

key Defines shared-secret keys used to control and authenticate TSIG operations
such as zone transfer, Dynamic DNS (DDNS), and the remote control channel
(the controls clause).

logging Defines the behavior and formatting of BIND’s extensive logging feature.

lwres Groups statements defining the behavior of BIND in lightweight resolver (Iwres)
mode.

masters Defines a named set of masters for use by slave or stub zones to simplify

maintenance in cases where multiple Zones use common master servers.

options Groups statements that control generic or global behavior and that have scope
for all zones and views unless overridden within a zone, view, or other clause.

server Defines the properties or behavior this name server will use when accessing or
responding to a defined remote name server.

trusted-keys Used to contain trusted anchors (an authenticated public key) used in
DNSSEC.bis operations (see Chapter 11).

view The view clause allows BIND to respond differently to different hosts, inter-
faces on the same server, or users. The view clause is unique in that each
required zone must be defined within the view, thus allowing the defined zone
to have completely different characteristics within any view. Any number of
view clauses may be included.

zone Contains statements defining the behavior for a specific zone. The scope of
statements in a zone clause is limited to that zone only.

The whole named. conf file is parsed for completeness and correctness before use—this is a
major change from previous releases of BIND. Prior to the availability of, or in the absence of, a
valid logging clause, failure messages use syslogd and are, depending on your syslog.conf file,
typically written to /var/log/messages; thereafter failures are written according to the logging
clause definition. In the case of Windows, pre-logging clause failures are written to the Event
Log. There are some modest rules defined for the order of clauses in BIND 9, and these are
illustrated next. The general statement layout of a named. conf file is usually as follows:

// change log
// 1. changed by M.E. on 24th January
//a. added something

acl "name"
// acl clauses if present generally come first
// to avoid forward references
1
key "name"
// key clauses if present must appear
// before being referenced
1
logging {

// requires at least a file
// statement unless using syslog
// order not important with BIND 9

};

337

338 CHAPTER 12 I BIND CONFIGURATION REFERENCE

options {

// other statements (as required)
};
// zones clauses including 'required' zones
zone {

};
zone {
1
If the view clause is being used, the order changes significantly as shown here:

// change log
// 1. changed by M.E. on 24th January
// a. added something

acl "name"
// acl clauses if present come first
// to avoid forward references
1
key "name"
// key clauses if present must appear
// before being referenced
1
logging {.
// usually requires at least a file statement
// unless using the syslog
// order not important with BIND 9
1
options {

// global options
// other statements as required
};
view "first" {
// view specific statements
// view specific zone clauses
// including required zones such as hint or localhost
zone {
1

}; // end of view "first"
view "second" {
// view specific statements
// view specific zone clauses
// including required zones such as hint or localhost
zone {

CHAPTER 12 I BIND CONFIGURATION REFERENCE

}; // end of view "second"

BIND address_match_list Definition

Many statements and some clauses use the address match _list construct as a basic and
consistent building block from which complex matching conditions may be constructed. It is
described here, somewhat out of order, simply because it is referenced and used so frequently.
Rather than try and understand it now, you may be better advised to skim this section and get
a general feel for what it contains, and then continue reviewing the clauses and statements
until the need to understand this structure in detail becomes inevitable. The full syntax allows
multiple variations:

address_match list = element ; [element; ...]

An address match_list is comprised of one or more elements, each of which has the fol-
lowing syntax:

element = [!] (ip [/prefix] | key key-name | "acl name" | { address match list })
The following are elements that make up an address _match _list:
e Optional negation (!) of an element
* AnIP address (IPv4 or IPv6)
¢ An optional IP prefix (in the slash notation), for instance, 10.0.0.0/16 (or 10.0/16)
* Akey-name, as defined in a key clause

e The name of an address match list previously defined with an acl clause or one of
four predefined names (see Table 12-4)

* Anested address_match_list enclosed in braces

Table 12-4 shows the four predefined address _match _list names.

Table 12-4. Predefined address_match_list Names

Name Description

any Matches all hosts.

none Matches no hosts.

localhost Matches the IPv4 and IPv6 addresses of all network interfaces on the server. For

instance, if the server has a single interface with an IP address of 192.168.2.3, then
localhost will match 192.168.2.3 and 127.0.0.1 (the loopback address is always present).

localnets Matches any host on an IPv4 or IPv6 network for which the server has an interface.
That is, if the server has a single interface with an IP address of 192.168.2.3 and a net-
mask of 255.255.255.0 (or 192.168.2.3/24), then localnets will match 192.168.2.0 to
192.168.2.255 and 127.0.0.1 (the loopback is always assumed to be a single address).

339

340

CHAPTER 12 I BIND CONFIGURATION REFERENCE

One of the major uses for the address match_list structure is with IP addresses for access
control. When a given IP address is compared to an address_match_list, the list is traversed in
order until an element matches, at which point processing stops. The action taken will depend
on the context of the statement to which it is being applied as shown in the following example:

options {
allow-transfer { 1192.168.2.7;192.168.2.3/24;};
1

If the IP address 192.168.2.47 requests a transfer, it does not match the first element but
matches the second element and the transfer is permitted. If, however, the IP 192.168.2.7 requests
a transfer, it matches the first element that is negated, resulting in the transfer being denied.
Because a match stops processing, the match order is significant. If the preceding were rewritten
to reverse the order as shown in the following fragment, then 192.168.2.7 would always be permit-
ted to transfer because the first item always matches:

options {
allow-transfer {192.168.2.3/24; 1192.168.2.7;};
b

The general rule may be expressed as follows: a nonnegated match permits the operation
and a negated match denies the operation; if there is no match, the operation is denied.

An address_match_list can contain an acl-name. The following example shows the use of
an acl clause to standardize an address_ match_list. By simply changing the contents of the
acl, these changes are available to all users of the referenced acl clause:

acl "good-guys" {
1192.169.2.5/28; // denies first 16 IPs
192.168.2.5/24; // allows rest of subnet
localnets; // allows our network
2001:db8:0:1::/64; // allows this subnet only

b
options {

allow-transfer {"good-guys";};
b

The key-name parameter allows the address_match_list to reference a key clause—the
match in this case will occur if the incoming key-name in, say, a secure dynamic update trans-
action matches the key-name in a key clause.

Nesting is generally only used with the topology (not currently implemented in BIND 9),
and the sortlist statement and the address_match_list behavior is slightly changed. Its use is
described in the context of the sortlist statement.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

Note Wwhen using names in the named. conf file such as the address_match_list predefined name
"none" shown previously or any user-defined name, they can be written with or without the quotation marks.
However, if the name contains a space character, it must be enclosed in quotes. In general, and to avoid errors,
this book uses quotes to enclose all names and will typically refer to them as quoted strings. While not always
necessary, as just explained it is designed solely to prevent errors of omission.

BIND acl Clause

The acl (Access Control List) clause allows fine-grained control over which hosts may perform
what operations on the name server. The acl clause can be used to hide complexity throughout
the named. conf configuration. One or more acl clauses can contain complex sets of conditions,
the address_match_list, just once in the named. conf file; thereafter, whenever the same condi-
tions apply, the acl clause is simply referenced by name. The most common use of the acl
clause is in conjunction with the view clause, but using it solely for this purpose undervalues
the utility of this clause.

acl Clause Syntax

acl "acl-name" {
address_match list

};

The acl clause defines a named structure (acl-name) containing an address_match_list that
may then be referenced from one or more statements and view clauses. The acl clause must
be defined before it is referenced in any other statement or clause. For this reason, acls are
usually defined first in the named. conf file. ac1-name is an arbitrary, but unique, quoted string
defining the specific name by which the address _match_list may be subsequently referenced.
Any number of acl clauses may be defined. The following predefined or special acl-name val-
ues are built into BIND:

e none: Matches no hosts
* any: Matches all hosts
* localhost: Matches all the IP address(es) of the server on which BIND is running

¢ localnets: Matches all the IP address(es) and subnet masks of the server on which
BIND is running

The special acl-name values and the full address_match_list structure are described in
further detail in the section “BIND address_match_list Definition” earlier. The following
examples show acl clauses being created and used including use of the special or predefined
acl-names:

34

342

CHAPTER 12 I BIND CONFIGURATION REFERENCE

//defining acls
// simple ip address acl
acl "someips" {
10.0.0.1; 192.168.23.1; 192.168.23.15;
};
// ip address acl with '/' format
acl "moreips" {
10.0.0.2;
192.168.23.128/25; // 128 IPs
};
// nested acl
acl "allips" {
"someips";
"moreips";
};
// messy acl
acl "complex" {
"someips";
10.0.15.0/24;
110.0.16.1/24; // negated
{10.0.17.1;10.0.18.2;}; // nested
};
view "my stuff" {
match-clients {"someips";};

};
// using acls
zone "example.com" in{
type master;
file "master.example.com";
also-notify {"allips";};
1
zone "example.net" in{
type slave;
masters {192.168.2.3;192.168.2.4;};
file "slave.example.net;

allow-transfer {"none";}; // this is a special acl

};

BIND controls Clause

The controls clause is used to define access information when using remote administration
services, specifically the rndc utility. The controls clause takes a single inet statement type,
though more than one inet statement may be defined in a controls clause. The inet state-
ment is defined in the later section “BIND controls Statements.”

controls {
inet inet spec [inet spec] ;

};

CHAPTER 12 I BIND CONFIGURATION REFERENCE

A controls clause is always defaulted and generates a TCP listen operation on port 953 (the
default control port) of the loopback address for either or both IPv4 and IPv6 (127.0.0.1 and/or
::1). If remote administration will not be used (that is, the rndc utility will not be used), this con-
trol interface can be explicitly disabled by defining an empty controls clause as shown here:

controls {};

The primary access control method for remote administration, rndc in BIND 9, is via the
use of keys defined within the inet statement (see the following example). To retain compati-
bility with previous versions of BIND or to run without a user-generated key, a default key may
be generated using the following command:

rndc-confgen -a

This command will create a file called rndc.key containing a default key clause with the
name "rndc-key" (rndckey in Fedora) in the same directory as the named. conf file for the ver-
sion of BIND being used; this file is used for subsequent access to the control channel. If this
command is not executed before BIND is loaded, the following message will appear:

named [39248] none:0: open: /path/to/default/rndc.key: file not found

BIND will continue to run in this state, but the control channel will not be operable. For
full configuration of the inet statement and examples of its use in the controls clause, see the
section “BIND controls Statements” later in this chapter.

BIND include Statement

The include statement is unique in that it can appear anywhere in the named. cont file, either
inside or outside a clause. It causes the specified file to be read at the point it is encountered
and takes the following form:

include "file-name";

file-name is a quoted string and can be an absolute path, for instance, /var/named/file.name,
or relative, for instance, file.name, in which case it will be assumed to be in the directory pre-
viously defined by a directory statement. In the absence of a directory statement, this will be
the directory in which named. conf is located (defined by the --sysconfdir configure argument—
see Chapter 6), which is normally /etc (or /etc/namedb for FreeBSD).

Note The include statement is BIND specific and should not be confused with the RFC 1035 standard
$INCLUDE directive used in zone files, though it has a similar function.

The include statement is typically used for three purposes:

1. To simplify or distribute administration of named. conf file maintenance: For example,
zones may be administered independently by divisions of a company.

343

344

CHAPTER 12 I BIND CONFIGURATION REFERENCE

2. Toisolate and partition changes and updates: For example, if acl clauses change fre-
quently, it may be desirable to separate them into files that can be included, thus
minimizing the need to edit the primary named. conf file.

3. To control permissions: It may be desirable to limit access using restricted permissions
to files containing, for example, key clauses. Conversely, it may be used to loosen per-
missions on widely edited parts of the file.

The following example shows use of the include statement:

// include two acl clauses
include "/var/named/acl/private.acl”
include "/var/named/acl/public.acl”
options {
// relative to named.conf directory
include "some.options";
directory "/var/named";
// relative to 'directory'
include "other.options"
};

// using include for zones

// zones for chemical division - absolute path
include "/var/named/chemical/zone.files";
// zones for engineering division
include "/var/named/engineering/zone.files";
// these load from the path specified by 'directory' option
include "more-zone.files";
// housekeeping zones explicitly included
zone "64/27.23.168.192.in-addr.arpa" in{
type master;
file "192.168.23.rev";

};

The included files are simply the clauses or statements that would have been present in the
named. conf were the include statement not present. To illustrate this principle, the included file
/var/named/acl/private.acl referenced previously could look as shown here:

// included acl
acl "private-acl" {
10.0.0.1;
192.168.23.128/25; // 128 IPs

};
Similarly, the other.options file could contain one or more statements as follows:

recursion yes;
allow-transfer {"none";};

CHAPTER 12 I BIND CONFIGURATION REFERENCE

BIND key Clause

The key clause is only used to contain a shared secret (symmetric) Message Authentication
Code (MAC) algorithm used in a TSIG transaction (see Chapter 10) or with the rndc utility (see
Chapter 9). Any keys used with a public key (asymmetric) algorithm are either stored in the
zone file as KEY or DNSKEY RRs or, when used as a trusted anchor (DNSSEC), in a trusted-keys
clause (see Chapter 11).

key Clause Syntax

key key-name {
algorithm algorithm-name;
secret "key-data";

};

The algorithm and secret statements are described later in the section “DNS BIND Security
Statements.” The data for the key clause may be generated by using the dnsssec-keygen or the
rndc-confgen utilities (see Chapter 9).

The material contained in a key clause is a shared secret and therefore represents
extremely sensitive information. By convention, the key clause or clauses are always placed
in a separate file and the include statement used to embed them into the named. conf file.
The included file can therefore have specific permissions applied to ensure limited visibility.
The key clause must always appear in the named. conf file before it is referenced. The key-name
field may be any suitable name that is used by both ends of the communication transaction,
and consequentially the same key clause must be used by the peer application. For example,
when used for TSIG operations during zone transfer, a key clause with the same key-name
must be present in the corresponding slave name server, or if it is being used with the rndc
application, a key clause with the same key-name must be present in the rndc. conf file. The
key clause used in rndc.conf and named. conf is exactly the same (see Chapter 9 for informa-
tion on rndc.conf). The examples in Chapter 10 in the section “Securing Zone Transfers”
describe how a key clause is constructed from the output of the dnssec-keygen utility.

BIND logging Clause

The logging clause defines the extensive logging services available in BIND. Prior to BIND 9,
the logging clause had to appear first in the named. conf file. This is no longer the case, and the
logging clause may be placed anywhere convenient. BIND uses syslogd before a valid logging
clause is available, so named. conf parse errors and other information will appear in /var/log/
messages (depending on syslog.conf) prior to, or in the absence of, a valid logging clause. In
the case of Windows, parse errors are written to the Event Log. Only one logging clause can be
defined, but multiple channels may be defined to stream logs. The logging clause can be omit-
ted, in which case a default one is assumed—this default is described in the later section “BIND
logging Statements,” since its functionality requires some understanding of the various state-
ments used in a logging clause.

345

346

CHAPTER 12 " BIND CONFIGURATION REFERENCE

logging Clause Syntax

logging {

[channel channel name { channel spec };]

[category category name { channel name ; [channel name ; ...] };
};

The example shows a minimal logging configuration that will work and generate modest log
volumes.

// named.conf fragment
logging{
channel single log {
file "/var/log/named/bind.log" versions 3 size 2m;
severity info;
print-time yes;
print-severity yes;
print-category yes;
1
category default{
single log;

};
};

Further examples are shown in the section “category Statement” later in this chapter.
BIND lwres Clause

BIND provides two methods of running a resolver (called a lightweight resolver in the BIND jar-
gon) that uses a simplified and nonstandard (BIND-only) UDP-based protocol. The first method
uses a separate daemon called Iwresd, which is described in Chapter 14, and the second uses the
lwres clause within a normal BIND named. conf file. Using this latter method means that a single
instance of BIND can provide both normal DNS processing and lightweight resolver support.

lwres Clause Syntax

lwres {
// lwres clause statements

};

By default, the lightweight resolver provides service on port 921. The lwres clause can include
the listen-on, view, search, and ndots statements, which are described in the section, “BIND
Resolver Statements.”

BIND masters Clause

The masters clause is a named list of zone masters that may be referenced from a masters
statement in a zone clause. It is provided to simplify maintenance of situations in which
common master servers are used for a number of zones.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

masters Clause Syntax

masters "masters name" [port pg num] { ("masters list" | ip [port p_num] w=»
[key key-name]) ; [...] };

The masters _name parameter (a quoted string) is the unique name by which this clause will

be referenced. The pg_num parameter changes the port number used for zone transfers for

all the listed servers (the default is port 53). The p_num parameter changes the port number

for the specific IP address only. If present, masters list references another list of masters
defined in another masters clause. The optional key-name parameter defines the key to be used
to authenticate the zone transfer and references a key clause with the same name. Any masters
clause must be defined before it is referenced in a masters statement. The following example
shows three masters for the zone, one of which will use port 1127 for zone transfers and one

of which is an IPv6 address:

// defining masters
masters "common masters" {
masters {192.168.2.7; 10.2.3.15 port 1127; 2001:db8:0:1::15;};
};
// using masters
zone "example.com" in{
type slave;
file "slave.example.com";
masters {"common masters";};
b
zone "example.net" in{
type slave;
file "slave.example.net;
masters {"common masters";};

};

BIND options Clause

The options clause is used to group statements that have global scope. The options clause may
take a ferocious number of statements—see the list found in Table 12-6 later in this chapter.

options Clause Syntax

options {
// options statements

};

The options clause has global scope, but many of the statements that can be used within an
options clause can also appear within a view or zone clause, in which case they will override
the statement in the options clause for the scope in which they appear (that is, for the whole
view or the specific zone). The following example shows an also-notify statement (used to
cause NOTIFY messages to be sent to servers other than the servers defined with NS RRs for the
zone) being used globally but being overridden for a single zone.

347

348

CHAPTER 12 I BIND CONFIGURATION REFERENCE

// defining options clause
options {

also-notify {192.168.2.3;192.168.2.4;};

};
// zones
zone "example.com" {
// NOTIFY messages for this domain sent to global
// also-notify list
type master;
file "master.example.com";
1
zone "example.net" {
// NOTIFY messages NOT sent to global
// also-notify list
type master;
file "master.example.net;
also-notify {"none";};

};

BIND server Clause

The server clause defines the behavior BIND will use when accessing (incoming or outgoing)
a remote server. It is typically used when the remote server has specific characteristics or pro-
tocol behavior, when it provides secure DNS (DNSSEC) services, or to stop handling requests
from a specific server. The server clause can take a modest number of statements as defined

in Table 12-6, which appears later in this chapter.

server Clause Syntax

server ip address {
// server statements

};

The ip_address parameter can be either IPv4 or IPv6. The ip_address will only accept a single
address—it cannot take an IP prefix value (slash notation). If a group of servers have common
behaviors, each one will require a separate server clause. If the remote server is a dual-stacked
server (IPv4/IPv6), both addresses will be need to be defined using separate server clauses.
server clauses can appear independently (a global server clause) or within a view clause. If
they appear within a view clause, the defined behavior is limited to that view clause only. Out-
side the view clause, they will either use the behavior of the global server clause if it exists, or
if none exists, they will take the default for any statements that can appear inside the server
clause. The following example shows a dual-stacked server that will only accept single mes-
sages in each TCP block during transfers and that cannot support EDNS:

CHAPTER 12 I BIND CONFIGURATION REFERENCE

// named.conf fragment

// IPv4 server

server 10.2.3.15 {
transfer-format one-answer;
edns no;

b

// IPv6 addresses of same server

server 2001:db8:0:27::17 {
transfer-format one-answer;
edns no;

};

BIND trusted-keys Clause

The trusted-keys clause contains one or more public keys that have been obtained by a secure
process for use as trusted anchors in DNSSEC.bis operations (see Chapter 11). The data defined
in this clause will be the same as that of a DNSKEY RR defined at the apex or root of the domain
or zone for which this is the trusted anchor and that has been used to sign the zone, most typi-
cally as a Key Signing Key (KSK). Thus, if the domain for which a trusted anchor is defined is
example.com, then there mustbe a corresponding DNSKEY RR with a name of example.com. The
public keys that appear in a trusted-keys clause must be obtained by a secure (non-DNS) pro-
cedure. While the key data contained in a trusted-key clause is public (and unlike a key clause
requires no special protection), the reason it is obtained by a secure process lies with the need
to authenticate the source of the data, not the data itself. If the DNSKEY RR was simply read
from the DNS by an insecure query, it could have been spoofed in some way. Its presence in a
trusted-keys clause indicates that it was received from a trusted (authenticated) source. Secure
domains delegated from the domain for which this trusted anchor is defined, say sub.example.com
(a child zone), will be authenticated by the presence of a DS RR at the delegation point in the
domain example.com (the parent zone) and thus do not require a corresponding trusted anchor.
The format of each trusted anchor in a trusted-keys clause is shown here:

"domain-name" flags proto algorithm "key-data"

The meaning and value of the flags, proto, and algorithm fields are as defined for the cor-
responding DNSKEY RR (see Chapter 13). The "domain-name" field is the name value from the
DNSKEY RR, optionally enclosed in quotation marks (a quoted string), and must be the name of
the domain that it will be used to verify. The key-data field is copied from the key-data field of the
corresponding DNSKEY RR and is the base64 (RFC 3548) representation of the public key enclosed
in quotation marks and terminated with the ubiquitous semicolon. The following example shows
a DNSKEY RR with the zone signing and SEP (a.k.a. KSK) bits set, using the RSA-SHA-1 algorithm
and the corresponding trusted-keys clause that would be derived from it:

349

350

CHAPTER 12 I BIND CONFIGURATION REFERENCE

example.com. IN DNSKEY 257 3 5 (

AQPSKmynfzW4kyBv0o15MUG2DeI03
Cb1+BBZH4b/0PY1kxkmvHjcZc8no
kfzj31GajIQKY+5CptLr3buXA10h
WqTkF7H6RfoRgXQeogmMHfpftf6z
MvilyBUgia7za6ZEz0JBOztyvhjL
7421U/TpPSEDhm2SNKL1jfUppnau
aNvvaw==)

The trusted-keys clause using the preceding DNSKEY RR would be as shown here:

trusted-keys {

"example.com" 257 3 5 "AQPSKmynfzW4kyBv015MUG2DeIQ3
Cb1+BBZH4b/0PY1kxkmvHjcZc8no
kfzj31GajIQKY+5CptLr3buXA10h
WqTkF7H6RfoRgXQeogmMHfpftfoz
MvilyBUgia7za6ZEz0JBOztyvhjL
7421U/TpPSEDhm2SNKL1jfUppniU
aNvv4qw=="}

};

Any number of trusted anchors for different domains may be added to a trusted-keys
clause. To allow for key-rollover procedures (see Chapter 11), it is permissible to have more
than one trusted anchor with the same domain-name, thus in the preceding fragment it is per-
missible to have a second (third, fourth, etc.) entry with the name "example.com", each of
which will contain a different public key (key-data).

BIND view Clause

The view clause allows the behavior of BIND to be based on any combination of the source
IP address of the request, the destination address of the request, the recursive behavior of the
request, or the keys used by the user. The view clause can take a vast number of statements as
defined in Table 12-6, which appears later in this chapter.

view Clause Syntax

view "view_name"
// view statements

};

The view_name (optionally a quoted string) is an arbitrary name that uniquely identifies the
view. A view clause matches when either or both of its match-clients and match-destinations
statements match and when the match-recursive-only condition is met. If either or both of
match-clients and match-destinations are missing, they default to any (all hosts match). The
match-clients statement defines the address _match_1ist for the source IP address(es) of the
incoming messages. The match-destination statement defines the address match_list for the
destination IP address of the incoming messages and may be used with multihomed servers
or to differentiate, for example, localhost behavior from all other IP address sources. The
match-recursive-only statement may be further used to qualify the view clause based on

CHAPTER 12 I BIND CONFIGURATION REFERENCE

its query type (recursive or iterative). Both the match-clients and match-destinations state-
ments can take an optional key parameter, which means that view selection can be based on

a user rather than a physical IP address, or they can point to an acl clause, which defines the
address_match_list. The view clause is unique in that all required zone clauses must be defined
within each view clause such that a zone’s behavior can be significantly different in each view.
Any number of view clauses can be used. The following example shows a view clause being
used based on the source addresses of the DNS transactions and the presence of recursive
queries:

// named.conf fragment

view "recursive-external" {
match-clients {!10.2.3.4/24;};
match-recursive-only yes;
// other view statements
zone "example.com" in {

b

b

view "internal" {
match-clients {10.2.3.4/24;};
// other view statements
zone "example.com" in {

};
};

In the preceding example, the second view clause is not strictly necessary since all condi-
tions not satisfied by the first view will be defaulted to a zone definition outside the view clause.
Many users, however, like to add the second view clause to avoid confusion. For further exam-

ples of the use of the view clause when used with Split or Stealth server configurations, see
Chapter 7.

BIND zone Clause

The zone clause defines the characteristics of the zone. The zone clause may take a significant
number of statements—see Table 12-6 later in this chapter for the full list.

zone Clause Syntax

zone "zone name" [class] {
// zone statements

};

The zone_name (optionally a quoted string) defines the name of the zone or domain being
defined. The class parameter is optional, and, if not present, the default class IN (Internet)
will be used. This book always defines the class parameter in examples to avoid confusion at
the cost of two characters of typing per zone. zone clauses may be defined inside a view clause,
in which case the scope of the zone definition is limited to the view clause. If the zone is to be
supported in another view clause or outside any view clause, the zone clause must be repeated

351

352 CHAPTER 12 I BIND CONFIGURATION REFERENCE

even if its operational characteristics remain the same. The following example shows a zone
clause being used inside two view clauses and outside the view clause:

// named.conf fragment

view "recursive-external" {
match-clients {10.2.4.4/24;};
match-recursive-only yes;
// other view statements
zone "example.com" in {

};

};

view "internal" {
match-clients {10.2.3.4/24;};
match-recursive-only yes;
// other view statements
zone "example.com" in {

b
b
// definition of zone behavior outside the views
zone "example.com" in {

};

BIND Statements

BIND provides a daunting list of statements to control its behavior. For convenience, they are
provided in alphabetic order in Table 12-5. Each statement is categorized into a generic category
(for example, Transfers) that loosely describes its functionality and is then described in detail in
each category section. It is hoped that you may find this more useful when browsing to find state-
ments to control specific behaviors. Many statements can appear within more than one clause,
and Table 12-6 lists each statement in alphabetic order and the clauses within which it may be
used. A number of the statements use a generic structure called an address_match_list that was
previously described. The general format of each statement’s description is a brief summary of
the statement’s functionality followed by the syntax of each statement with an accompanying
example. The syntax is then described in detail with additional examples as appropriate.

Table 12-5. BIND Statement Summary

Statement Category Summary

additional-from-auth Queries Used in conjunction with additional-from-cache to control
whether BIND will follow CNAME (and DNAME) out-of-zone
references. The default is to follow references.

additional-from-cache Queries Used in conjunction with additional-from-auth to control
whether BIND will follow CNAME (and DNAME) out-of-zone
references. The default is to follow references.

algorithm Security Defines the algorithm to be used in a key clause.

CHAPTER 12 I BIND CONFIGURATION REFERENCE 353

Statement

Category

Summary

allow-notify

allow-query

allow-recursion

allow-transfer

allow-update

allow-update-forwarding

allow-v6-synthesis

also-notify

alt-transfer-source

alt-transfer-source-vé

auth-nxdomain

avoid-v4-udp-ports
avoid-v6-udp-ports

blackhole

bogus

cache-file
category
channel

check-names

Transfers

Queries

Queries

Transfers

Transfers

Transfers

Transfers

Transfers

Transfers

Queries

Operations
Operations

Queries

Server

Logging
Logging

Zones/
Operations

Applies to slave zones only and defines an address_match list
that is allowed to send NOTIFY messages for the zone in addition
to those defined in the masters option for the zone. The default
behavior is to allow NOTIFY messages only from the zone masters.

An address_match_list defining which hosts are allowed to issue
queries to the server. If not specified, all hosts are allowed to
make queries.

Defines an address_match_list that will be allowed to perform
recursive queries.

Defines an address_match_list that is allowed to transfer the
zone information from this server. The default behavior is to
allow zone transfers to any host.

Defines an address_match_list that is allowed to submit dynamic
updates for master zones. The default in BIND 9 is to disallow
dynamic updates from all hosts.

Defines an address_match_list that is allowed to submit dynamic
updates to a slave server for onward transmission to a master. The
default is to disallow update forwarding.

Obsolete statement.

Applies to zone masters only. Defines one or more hosts that will
be sent NOTIFY messages when zone changes occur.

Applies to slave zones only. Defines an alternative local IPv4
address(es) to be used for inbound zone transfers by the server if
that defined by transfer-source fails and use-alt-transfer-source
is enabled.

Applies to slave zones only. Defines an alternative local IPv6
address(es) to be used for inbound zone transfers by the
server if that defined by transfer-source-vé6 fails and
use-alt-transfer-source is enabled.

Controls whether the server will answer authoritatively on
returning NXDOMAIN (domain does not exist) answers. Default
behavior is not to answer authoritatively.

Defines a list of IPv4 ports that BIND will not use when initiating
queries. Used to avoid ports blocked by firewalls.

Defines a list of IPv6 ports that BIND will not use when initiating
queries. Used to avoid ports blocked by firewalls.

Defines an address_match_list that the server will not respond
to, or answer queries for. The default is none—all hosts are
responded to.

Defined in a server clause and allows a remote server to be ignored.
The default is not to ignore.

Developer-only option.
Controls the type of data logged to a particular channel.
Defines a stream of data that may be independently logged.

Restricts the character set of host names to those defined by RFC
952 and 1123. Has different syntax in the view and options clause
from that used in the zone clause and is described separately.

Continued

354 CHAPTER 12

Table 12-5. Continued

BIND CONFIGURATION REFERENCE

Statement Category Summary

cleaning-interval Operations The time in minutes when the server will remove expired resource
records from the cache. The default is 60.

coresize Operations Defines the maximum size of a core dump.

database Operations Only used with BIND Simple Database (sdb) API and specifies
the driver name and any initial parameters.

datasize Operations Defines the maximum memory size the server may use.

deallocate-on-exit Obsolete statement.

delegation-only Queries Applies to hint and stub zones only. Controls whether queries
will always return a referral.

dialup Operations Optimizes the behavior of certain operations to minimize con-
nect time for dial-up links.

directory Operations A quoted string defining the base directory used for zone and
other files.

disable-algorithms Security Disables DNSSEC algorithms from a specific zone.

dnssec-enable Security Enables DNSSEC support in BIND. The default is not to support
DNSSEC.

dnssec-lookaside Security Used with DNSSEC Lookaside Validation (DLV). Controls the
method of validating DNSKEY RRs at the apex of a zone.

dnssec-must-be-secure Security Defines hierarchies that must/may not be secure (signed and
validated).

dual-stack-servers Operations Only valid on dual-stacked (IPv4/IPv6) servers and defines a
method of reaching a server using one of the stacks.

dump-file Operations A quoted string defining the absolute path where BIND dumps
the cache in response to an rndc dumpdb command. If not
specified, the default is named_dump.db in the location specified
by a directory statement.

edns Server Controls use of the EDNSO (RFC 2671) feature. The default is to
support EDNSO0.

edns-udp-size Operations Defines the size of the UDP packet advertised by the server
when using EDNSO0. The default is 4096.

fake-iquery Obsolete statement.

fetch-glue Obsolete statement.

file Zone Generic file name definition—used by master or slave zone files
and in logging clauses.

files Operations Defines the maximum number of files the server may have open
concurrently. The default is unlimited.

forward Queries Defines the order in which forwarding is to be performed.
Always used in conjunction with the forwarders statement.

forwarders Queries Defines one or more hosts to which queries will be forwarded.
Always used in conjunction with the forward statement.

has-old-clients Obsolete—replaced with auth-nxdomain and rfc2308-type1.

heartbeat-interval Operations Only valid with the dialup statement. The server will perform

zone maintenance tasks for all zones marked as dialup
whenever this interval expires.

CHAPTER 12 " BIND CONFIGURATION REFERENCE 355

Statement Category Summary

host-statistics Not implemented.

hostname Operations Only used with CHAOS (CH) class. The host name the server
should report via a TXT query.

inet Operations Defines the control channel to be used for remote
administration (rndc) of the server.

interface-interval Operations Defines when periodic checks and update of server interfaces is
performed.

ixfr-from-differences Transfers Controls how IXFR transfers are calculated.

ixfr-tmp-file Obsolete statement.

key-directory Security A quoted string defining the absolute path where the keys used
in the dynamic update of secure zones may be found. Only
required if this directory is different from that defined by a
directory statement.

keys Server Specifies one or more key-names, defined within a key clause, to
be used with a remote server.

lame-ttl Operations Defines the number of seconds to cache a lame server indication.

listen-on Operations Defines the port and IPv4 address(es) on which BIND will listen
for incoming queries. The default is port 53 on all server
interfaces. Multiple listen-on statements are allowed.

listen-on-v6 Operations Defines the port and IPv6 address(es) on which BIND will listen
for incoming queries. The default is port 53 on all server
interfaces. Multiple 1isten-on-v6 statements are allowed.

maintain-ixfr-base Obsolete statement.

masters Zone Slave only. Defines one or more zone masters.

match-clients Views Controls the hosts that satisfy a view clause.

match-destinations Views Controls the hosts that satisfy a view clause.

match-mapped-addresses Operations Controls whether an IPv4 mapped address within an IPv6
address is used in an address_match_list.

match-recursive-only Views Controls the hosts that satisfy a view clause.

max-cache-size Operations Defines the maximum amount of memory to use for the server’s
cache in bytes.

max-cache-ttl Operations Defines the maximum time in seconds for which the server will
cache positive answers.

max-ixfr-log-size Obsolete statement.

max-ncache-ttl Operations Defines the maximum time in seconds for which the server will
cache negative (NXDOMAIN) answers.

max-ixfr-log-size Obsolete statement.

max-journal-size Transfers Controls the size of the journal files used in Dynamic DNS.

max-refresh-time Transfers Only valid for slave zones. The zone refresh time is normally
defined by the SOA record refresh parameter. This statement
will override the SOA and substitute the values defined.

max-retry-time Transfers Only valid for slave zones. The retry time is normally defined by

the SOA record retry parameter. This statement will override the
SOA and substitute the values defined.

Continued

356 CHAPTER 12

Table 12-5. Continued

BIND CONFIGURATION REFERENCE

Statement Category Summary

max-transfer-idle-in Transfers Only valid for slave zones. Inbound zone transfers making no
progress in the defined minutes will be terminated. The default
is 60 (1 hour).

max-transfer-idle-out Transfers Only valid for master zones. Outbound zone transfers making no
progress in the defined minutes will be terminated. The default
is 120 (2 hours).

max-transfer-time-in Transfers Only valid for slave zones. Inbound zone transfers running
longer than the defined minutes will be terminated. The default
is 120 (2 hours).

max-transfer-time-out Transfers Only valid for master zones. Outbound zone transfers running
longer than the defined minutes will be terminated. The default
is 120 (2 hours).

memstatistics-file Operations The name of the file to which the server writes memory usage
statistics on exit. If not specified, the default is named.memstats.

min-refresh-time Transfers Only valid for slave zones. The zone refresh time is normally
defined by the SOA record refresh parameter. This statement
will override the definition and substitute the values defined.

min-retry-time Transfers Only valid for slave zones. The retry time is normally defined by
the SOA record retry parameter. This statement will override the
definition and substitute the values defined.

min-roots Not implemented.

minimal-responses Queries Controls whether the server will only add records to the
authority and additional data sections when they are required
(for instance, delegations, negative responses). This may
improve the performance of the server.

multi-master Transfers Applies to slave servers only. Controls how multiple masters
serial number errors are logged.

multiple-cnames Obsolete statement.

named-xfer Obsolete statement.

ndots Resolver Controls how queries are constructed in the lightweight resolver.

notify Transfers Controls whether NOTIFY messages are sent from a zone master
on zone changes.

notify-source Transfers Only valid for master zones. Defines the IPv4 address (and
optional port) to be used for outgoing NOTIFY messages.

notify-source-v6 Transfers Only valid for master zones. Defines the IPv6 address (and
optional port) to be used for outgoing NOTIFY messages.

pid-file Operations A quoted string defining where the Process Identifier (PID) used
by BIND is written. If not present, it is distribution or OS
specific, typically /var/run/named/named.pid.

port Operations Controls the port BIND will use to provide UDP or TCP services.
The default is 53. This statement is intended primarily for testing.

preferred-glue Operations Controls the order of glue records in a response (A or AAAA).

provide-ixfr Transfers Controls whether a master will respond to an incremental (IXFR)

pubkey

zone request or will only respond with a full zone transfer (AXFR).
The BIND 9 default is to use IXFR if possible.

Obsolete statement.

CHAPTER 12 " BIND CONFIGURATION REFERENCE 357

Statement Category Summary

query-source Queries Controls the IPv4 address and port on which recursive queries
are issued.

query-source-v6 Queries Controls the IPv6 address and port on which recursive queries
are issued.

querylog Operations Controls whether logging of queries is performed—overrides the
logging clause category definition.

recursing-file Operations The file name used when the remote command rndc recursing
is issued.

random-device Security The source of entropy to be used by the server for DNSSEC
operations. If not specified, the default value is /dev/random
(or equivalent) when present and none otherwise.

recursion Queries Defines whether recursion (caching) is allowed or not. The
default is to provide recursive support.

recursive-clients Queries The maximum number of concurrent recursive queries the
server may perform. The default is 1000.

request-ixfr Transfers Controls whether a server (acting as a slave or on behalf of a
slave zone) will request an incremental (IXFR) zone transfer or
will request a full zone transfer (AXFR). The BIND 9 default is to
request IXFR.

rfc2308-typel Queries Not Implemented.

root-delegation-only Queries Used for root domains (gTLD and ccTLD) to indicate that all
responses will be referrals (delegations).

rrset-order Queries Defines the order in which equal RRs (RRsets) are returned.
Applies to all RR types.

search Resolver Controls the operation of the lightweight resolver.

secret Security A base64-encoded string containing a shared secret in a key clause.

serial-queries Obsolete statement.

serial-query-rate Transfers Defines the number of queries per second that will be issued by
the server on behalf of slave zones when querying the SOA RRs.
The default is 20 per second.

server-id Operations The ID supplied by a server when interrogated under the CHAOS
(CH) class.

sortlist Queries Controls the order in which equal RRs (RRsets) are returned to
the client resolver. This is the client-side equivalent of the
rrset-order statement.

stacksize Operations Controls the stack size used by the server.

statistics-file Operations The name of the file the server appends statistics to when
instructed to do so using rndc stats. If not specified, the default
is named.stats.

statistics-interval Not implemented.

support-ixfr Obsolete statement.

suppress-initial-notify Not implemented.

sig-validity-interval Security Controls the time in days when Dynamic DNS signatures will

expire. The default is 30 days.

Continued

358 CHAPTER 12

Table 12-5. Continued

BIND CONFIGURATION REFERENCE

Statement Category Summary

tcp-clients Operations By default, DNS uses UDP port 53 for queries but allows both
TCP and UDP. tcp-clients allows the user to define the maxi-
mum number of TCP connections that may be supported. The
default is 100.

tcp-listen-queue Operations Controls the number of outstanding TCP listen operations. The
minimum value is 3.

tkey-dhkey Security The Diffie-Hellman key used by the server to generate shared keys.

tkey-domain Security The domain appended to the names of all shared keys generated
with TKEY.

tkey-gssapi-credential Security Used with TKEY operations. The GSSAPI and the credentials required
are defined by RFC 2743 and its Kerberos form is defined in RFC 1964.

topology Not implemented.

transfer-format Transfers Only used by master zones. Controls how many records are
packed into a message during zone transfers.

transfer-source Transfers Only valid for slave zones. Defines which local IPv4 address(es)
will be bound to TCP connections used to fetch zones
transferred inbound by the server.

transfer-source-v6 Transfers Only valid for slave zones. Defines which local IPv6 address(es)
will be bound to TCP connections used to fetch zones
transferred inbound by the server.

transfers Server Limits the number of concurrent zone transfers from any given
server. If not present, the default for transfers-per-ns is used.

transfers-in Transfers Only used by slave zones. Controls the number of concurrent
inbound zone transfers. The default is 10.

transfers-out Transfers Only used by master zones. Controls the number of concurrent
outbound zone transfers. The default is 10.

transfers-per-ns Transfers Only used by slave zones. Defines the number of concurrent in-
bound zone transfers from any single name server. The default is 2.

treat-cr-as-space Obsolete statement.

type Zone Defines the characteristic of a zone for example master or hint.

unix Not implemented.

update-policy Transfers Applies to master zones only. Controls the rules by which dynamic
updates (DDNS) may be carried out. Mutually exclusive with
allow-update.

use-alt-transfer-source Transfers Indicates whether alt-transfer-source and
alt-transfer-source-vé6 can be used or not.

use-id-pool Obsolete statement.

use-ixfr Obsolete—use provide-ixfr.

view Resolver Used to define resolver characteristics.

version Operations Specifies the string that will be returned to a version.bind query
when using the CHAOS (CH) class only. If not defined, the real
BIND version number is returned.

zone-statistics Operations Controls whether the server will collect statistical data on all

zones (unless specifically turned off on a per-zone basis by spec-
ifying zone-statistics no; in the zone clause). These statistics
rndc stats.

CHAPTER 12

BIND CONFIGURATION REFERENCE 359

Table 12-6 lists all statements and identifies in which clauses they may be used.

Table 12-6. BIND Statements by Clause

Statement A C

additional-from-auth
additional-from-cache
algorithm
allow-notify
allow-query
allow-recursion
allow-transfer
allow-update
allow-update-forwarding
allow-v6-synthesis
also-notify
alt-transfer-source
alt-transfer-source-v6
auth-nxdomain
avoid-v4-udp-ports
avoid-v6-udp-ports
blackhole

bogus

cache-file

category

channel

check-names
cleaning-interval
coresize

database

datasize
deallocate-on-exit
delegation-only
dialup

directory

Key:
A = acl clause L = logging clause
C = controls clause 0 = options clause

K = keys clause R = lwres clause

Lo < T T >

>

ST T B B B I

S = server clause
T = trusted-keys clause

V = view clause

i o < B >
=

oo X X

Continued

Z = zone clause

X = Obsolete (O) or not

implemented (NI)

360 CHAPTER 12

Table 12-6. Continued

BIND CONFIGURATION REFERENCE

Statement

disable-algorithms
dnssec-enable
dnssec-lookaside
dnssec-must-be-secure
dual-stack-servers
dump-file

edns

edns-udp-size
fake-iquery
fetch-glue

file

files

forward

forwarders
has-old-clients
heartbeat-interval
host-statistics
hostname

inet
interface-interval
ixfr-from-differences
ixfr-tmp-file
key-directory

keys

lame-ttl

listen-on
listen-on-v6
maintain-ixfr-base
masters
match-clients
match-destinations
match-mapped-addresses

match-recursive-only

Key:
A = acl clause
G = controls clause

K = keys clause

L = logging clause
0 = options clause

R = lwres clause

o T B H i =]

ol

LT T = I

>

S = server clause
T = trusted-keys clause

V = view clause

[T T

NI

Z = zone clause

X = Obsolete (O) or not
implemented (NI)

CHAPTER 12

BIND CONFIGURATION REFERENCE 361

Statement

max-cache-size
max-cache-ttl
max-ixfr-log-size
max-ncache-ttl
max-ixfr-log-size
max-journal-size
max-refresh-time

max-retry-time

max-transfer-idle-in
max-transfer-idle-out
max-transfer-time-in

max-transfer-time-out

memstatistics-file
min-refresh-time
min-retry-time
min-roots
minimal-responses
multi-master
multiple-cnames
named-xfer

ndots

notify
notify-source
notify-source-vé
pid-file

port
preferred-glue
provide-ixfr
pubkey
query-source
query-source-vé
querylog
recursing-file
random-device
recursion
recursive-clients

request-ixfr

[T < T T T T T T T B B B B B B B B A Y =]

oI B N S S

XXX X X X X X

KooX X X X X X

LT T B B

>

Lo TR < T B B

»

NI

Continued

362 CHAPTER 12 I BIND CONFIGURATION REFERENCE

Table 12-6. Continued

Statement

rfc2308-typel
root-delegation-only
rrset-order

search

secret
serial-queries
serial-query-rate
server-id

sortlist

stacksize
statistics-file
statistics-interval
support-ixfr
suppress-initial-notify
sig-validity-interval
tcp-clients
tcp-listen-queue
tkey-dhkey
tkey-domain
tkey-gssapi-credential
topology
transfer-format
transfer-source
transfer-source-v6
transfers
transfers-in
transfers-out
transfers-per-ns
treat-cr-as-space
type

unix

update-policy

use-alt-transfer-source

Key:
A = acl clause
G = controls clause

K = keys clause

L = logging clause
0 = options clause

R = lwres clause

MKooX XK X X X X ST T =]

ST T R T B

>
>

i

[T T B

S = server clause
T = trusted-keys clause

V = view clause

NI

NI

NI

NI

Z = zone clause

X = Obsolete (O) or not
implemented (NI)

CHAPTER 12 @ BIND CONFIGURATION REFERENCE 363
Statement A C K L 0 R S T) Z X
use-id-pool X 0
use-ixfr X
view X
version X
zone-statistics X X X

BIND controls Statements

The controls clause permits only the inet statement type, though multiple such statements
can appear inside the clause. A default controls clause is always assumed in the absence of
any definition, which causes a TCP listen operation to be placed on port 953 of the loopback
address for IPv4 and/or IPv6 (127.0.0.1 and ::1 respectively). If the rndc utility will not be used,
the controls interface can be disabled by using an empty controls clause as shown here:

controls {};

inet Statement

The inet statement defines a method to control access to the rndc (remote administration)
utility. More than one inet statement may be included in a controls clause.

inet Statement Syntax

inet inet_spec [inet_spec] ..;
inet * allow {192.168.254.2;} keys {"rndc-key";};

Each inet_spec parameter has the following format:

inet _spec = (ip_addr | *) [port ip port] allow { address match list }
keys { key list };

The ip_address parameter defines the IP address of the local server interface on which
rndc connections will be accepted. The wildcard value (*) will allow connection on any of the
server’s IPv4 addresses including the loopback address. The equivalent wildcard for IPv6 is : :.
The optional ip_port parameter allows a specific port to be nominated for use by rndc con-
nections; if not present, the default port of 953 will be used. The address_match_list defines
the permitted hosts that can connect to the rndc channel. The key 1ist parameter contains
one or more key-names (defined in a key clause) containing the list of permitted users who are
allowed access. While address_match_lists can include a key parameter, if one is present in
the referenced address _match_list, itis ignored; only keys defined in the key 1ist of the inet
statement are permitted access. The key 1list can be omitted, in which case the file rndc. key
in the same directory as named. conf that contains a default key clause with the name "rndc-key"
(xndckey for Fedora) will be used to provide default access. The rndc.key file is created by run-
ning the following command:

364

CHAPTER 12 ©" BIND CONFIGURATION REFERENCE

rndc-confgen -a

The following example shows that a user on the loopback address can use the default key
for access, while all other users must use the "rndc-remote" key. In all cases localhost will use
port 953 (the default) and external connections will use port 7766. An acl clause is used as the
source of the address match 1ist:

// named.conf fragment

acl "rndc-users" {
10.0.15.0/24;
110.0.16.1/24; // negated
2001:db8:0:27::/64; // any address in subnet

};

key "rndc-remote" {
algorithm hmac-mds;
secret "OmItW1lOyLVUEuvv+Fme+Q==";

};
controls {

// local host - default key

inet 127.0.0.1 allow {localhost;};

inet * port 7766 allow {"rndc-users";} keys {"rndc-remote";};
};

Further examples of the inet statement are illustrated in the “rndc” section located in
Chapter 9.

Caution For security reasons, the key clause earlier would normally be placed in a separate file,
secured with read and write access only for the UID of BIND (the named daemon), which is typically either
named or bind, and then included in the named. conf using an include statement.

BIND logging Statements

The logging clause takes two statements: the first defines the channel, one or more physical
paths to the output stream, and the second defines the category or type of data that will be
output to the channels. Multiple channel and category statements can exist in a logging clause.
If no logging clause is defined in the named. conf file, then the following default definition is
assumed:

CHAPTER 12 I BIND CONFIGURATION REFERENCE

logging {
category default { default syslog; default debug; };
category unmatched { null; };

};

The default means all categories (defined later in Table 12-9), with the exception of queries
and lame-servers, will be written to syslog (default syslog) and, if the debuglevel is nonzero,
to afile called named.run (default_debug) in the location defined by a directory statement and
that this file will grow to unlimited size unless manually deleted. The values in the preceding
logging clause will only make complete sense after having read the channel and category
descriptions that follow.

channel Statement

The channel statement is optional, and if not present, the four predefined channel name values
described later in Table 12-8 are always available. One or more channel statements define the
output streams to which logging data will be written. channel statements can only be used in
a logging clause.

channel Statement Syntax

channel channel name { channel spec };
channel secure_log {file "/var/log/named/dnssec.log" version 3 size im;
severity info;};

The channel name is a unique name that is used to identify a channel definition and is used by
the category statement as the destination for a particular type or category of log information. It
is traditionally written as a nonspace string without quotes, but can be written as a quoted string.
channel_spec defines the characteristics of the output stream and has the following format:

channel spec = (file "path-to-file"
[versions (number | unlimited)]
[size size in bytes]
| syslog syslog facility | stderr | null);
[severity (critical | error | warning | notice |
info | debug [level] | dynamic);]
[print-category yes | no;]
[print-severity yes | no;]
[print-time yes | no;]

};

Table 12-7 describes the value of each parameter in the channel spec.

365

366 CHAPTER 12

BIND CONFIGURATION REFERENCE

Table 12-7. Channel Statement Parameters

Parameter

Values

Description

file

versions

size

syslog

stderr

null

severity

path-to-file

number |unlimited

size _in bytes

syslog facility

level

A quoted string defining the absolute or relative (to directory state-
ment) path to the logging file, for instance, /var/log/named/named. log.
From the preceding syntax, file, syslog, stderr, and null are mutually
exclusive for a channel.

May take a number in the range 0 to 99 or unlimited (defaults to 99).
This defines the number of file versions that should be kept by BIND.
Versioned files are created by appending .0, .1, etc to the file name in
the file parameter. Files are rolled (renamed or overwritten) so the
base file name will contain the current log and .0 will contain the last
log information prior to commencing the new log, .1 the next, and
so on up to the limit defined by number or unlimited. Unless a size
parameter is used, new log versions will only be rolled (or swapped)
when BIND is restarted. If no versions statement is defined, a single
log file of unlimited size is used and on restart new data is appended
to the defined file. This can get to be a very big file, very quickly, and
is not recommended.

Defines a size limit to the log file. May take the case-insensitive short
forms K, M, or G, for example, 25m = 25000000 (25 megabytes). size and
versions are related as shown:

size value and no versions parameter: When the size limit is
reached, BIND will stop logging until the file size is reduced to
below the threshold defined, that is, by manually deleting or
truncating the file.

size and a versions parameter: The log files will be rolled
(renamed and overwritten as defined in the preceding versions
description) when the size limit is reached.

No size, only a versions parameter: The log files will be rolled
(renamed and overwritten as defined in the versions description
above) only when BIND is restarted.

Uses syslogd to write output. The syslog facility parameter is the
facility definition to be used when writing to syslog and may take
any valid value defined for syslog (see man 3 syslog) and its handing
will be defined in /etc/syslog.conf. The default syslog_facilityis
user. When running under Windows, this setting will use the Event
Log, Applications category. From the preceding syntax, file, syslog,
stderr, and null are mutually exclusive for a channel.

Writes to the current standard error location (normally the console)
and would typically only be used for debug purposes. From the
preceding syntax, file, syslog, stderr, and null are mutually exclusive
for a channel.

Writes to /dev/null—the bit bucket—such that all data is discarded.
From the preceding syntax file, syslog, stderr, and null are mutually
exclusive for a channel.

Controls the logging level and may take one of the values defined in
the preceding section “channel Statement Syntax.” Logging will occur
for any message equal to or higher than the level specified (=>); lower
levels will not be logged. Various debug levels can be defined (see -d
argument in Table 12-1 in the section “BIND Command Line” early in
the chapter) and where level 0 is no debug information. The value
dynamic means the value defined by either the -d command-line
argument or by an rndc trace debug level command.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

Parameter Values Description

print-time yes|no Controls whether the date and time are written to the output channel

(yes) or not (no). The default is no.

print-severity yes|no Controls whether the severity level is written to the output channel

(yes) or not (no). The default is no.

print-category yes|no Controls whether the category value is written to the output channel

(yes) or not (no). The default is no.

BIND provides four predefined channel name definitions. If these are used in a category
statement, they do not need to be defined using a channel statement—they just exist. Table
12-8 shows the predefined channels and their implicit definition.

Table 12-8. Predefined Channels

channel name Implicit Definition

default_syslog channel default syslog {
syslog daemon;
severity info
};
default_debug channel default_debug {
file "named.run";
severity dynamic;
};
default stderr channel default stderr {
stderr;
severity info;
}s
null channel null {
null;
};

If no channel statement is defined, the four predefined channels in Table 12-8 are avail-
able by default. The default_debug channel has the unique property that data is written to it
onlyif the debug level (defined by a category statement, the -d command-line argument, or
anrndc trace debug_level) is nonzero. This channel and the default_syslog channel are
used in the default logging clause described at the beginning of this section.

category Statement

The category statement defines the type of log messages to be sent to a particular channel.
More than one category statement may be included.

category Statement Syntax

category category name { channel name ; [channel name ; ...] };
category dnssec {secure log;};

368

CHAPTER 12

BIND CONFIGURATION REFERENCE

The channel name may refer to either one of the predefined channel name values (default_syslog,
default debug, default stderr, or null) or one defined in a channel statement. More than one
channel name may be defined for any given category statement, and in that case the category
is written to all the defined channel name values. The category name parameter defines the
type of output to be sent to the defined channel name. This may take one of the values defined

in Table 12-9.

Table 12-9. Logging Category Types

Value Description

client Logs processing of client requests.

config Logs configuration file parsing and processing.

database Logs messages relating to the databases used internally by the name server to
store zone and cache data.

default Logs all values that are not explicitly defined in category statements. If this is

delegation-only
dispatch

dnssec
general

lame-servers

network
notify

queries

resolver

security

unmatched

update
update-security
xfer-in

xfer-out

the only category defined, it will log all categories listed in this table with the
exception of queries, which are not turned on by default and unmatched.

Logs queries that have returned NXDOMAIN as the result of a delegation-only
zone type or a delegation-only statement in a hint or stub zone clause.

Logs dispatches of incoming packets to the server modules where they are to
be processed.

Logs all DNSSEC, SIG(0), TKEY, and TSIG protocol processing.
Logs anything that is not classified in this table—catch-all category.

Logs all instances of lame servers (misconfiguration in the delegation of
domains) discovered by BIND 9 when trying to obtain authoritative answers.
If the volume of these messages is high, many users elect to send them to the
null channel using, for instance, a category lame-servers {null;};
statement.

Logs all network operations.
Logs all NOTIFY operations.

Logs all query transactions. The querylog statement may be used to override
this category statement. This entry can generate a substantial volume of data
very quickly. This category is not turned on by default and hence the default
type earlier will not log this information. This entry now logs whether a
recursive query is requested (+ is recursive, - is iterative), whether it is EDNSO
(E), or whether it is signed (S).

Logs name resolution information including recursive lookups performed on
behalf of clients by a caching name server.

Logs approval and denial of requests.

Logs no matching view clause or unrecognized class value. A one-line
summary is also logged to the client category. By default, this category is
sent to the null channel.

Logs all DDNS transactions.
Logs approval and denial of update requests used with DDNS.
Logs details of zone transfers the server is receiving.

Logs details of zone transfers the server is sending.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

The category statement is optional and if not present BIND will assume the following
default:

category default { default syslog; default debug; };

This means that all categories except queries and unmatched will be logged to syslog (or
Windows Event Manager, under the Applications category) and to the file named. run in the
directory statement location (or its default), but only if the debug level is nonzero. The follow-
ing example shows a simple logging clause using a single file:

// named.conf fragment
logging{
channel single log {
file "/var/log/named/bind.log" versions 3 size 2m;
severity info;
print-time yes;
print-severity yes;
print-category yes;
};
category default{
single_log;
};
category lame-servers{
null; // discard
};
};

The following example shows streaming of NOTIFY and Dynamic DNS messages to sepa-
rate log files. Assuming the view clause is being used, the unmatched category is also sent to
stderr so the file can be quickly debugged.

// named.conf fragment
logging{
channel main log {
file "/var/log/named/main.log" versions 3 size 2m;
severity info;
print-time yes;
print-severity yes;
print-category yes;
};
channel notify log {
file "/var/log/named/notify.log" versions 3 size im;
severity info;
print-time yes;
print-severity yes;
print-category yes;
};
channel ddns_log {
file "/var/log/named/ddns.log" versions 3 size 1im;

369

370 CHAPTER 12 I BIND CONFIGURATION REFERENCE

severity info;
print-time yes;
print-severity yes;
print-category yes;
b
category default{
main_log;
b
category lame-servers{
null; // discard
5
category notify{
notify log;
b
category update{
ddns_log;
b
category update-security{
ddns_log;
b
category unmatched {
main_log; default stderr;
b

b

BIND Resolver Statements

This section describes the statements that may be included in the lwres (lightweight resolver)

clause. The listen-on statement, which may also be included in the lwres clause, is described
in the section “DNS BIND Operations” later in this chapter. If the 1isten-on statement is omit-
ted in the lwres clause, it defaults to port 921 on localhost (127.0.0.1).

.
V1iew
view "view-name";

view "good guys";

The view statement allows the resolver to use the characteristics defined by a view clause. If
the statement is not present and no view clauses are defined, it uses a default (hard-coded)
view within BIND. This statement can only appear in an lwres clause.

search

search {domain-name; [domain-name; ...]};
search {example.com; example.org;};

This statement has the same meaning as the equivalent named parameter in the /etc/
resolv.conf file and defines the domain-name that will be added to any name supplied to the

CHAPTER 12 I BIND CONFIGURATION REFERENCE

resolver. The ndots statement that follows can be used to control when this process is invoked.
If more than one domain-name is present, they will be tried one after the other in the order they
were defined. In the preceding example statement, if a name of joe.example.net was supplied
and no ndots statement was present, the resolver will try joe.example.net, and if that fails,
joe.example.net.example.com, and then joe.example.net.example.org. If the name joe was
supplied, then the resolver would try first with joe, and if that fails, joe.example.com, and if
that fails, joe.example.org. This statement can only appear in an lwres clause.

ndots

ndots number;
ndots 2;

This statement has the same meaning as the equivalent named parameter in the /etc/
resolv.cont file and defines the minimum number of dots that must be present in a name before
it used as an absolute name (it is assumed to be an FDQN). If there are fewer dots in the supplied
name than number, each domain-name defined in a search statement will be added to the name.
To illustrate the process, the ndots 2; from the example will be used together with the example
defined in the search parameter earlier. If the resolver received the name joe.example.net, this
has two dots in the name, and hence will be used in a query—only if this fails will the values
defined in the search statement be appended to give joe.example.net.example.com, etc. If the
name joe was supplied to the resolver, then it has no dots and hence will not be used directly in
a query; but each value in the search statement will be appended to give joe.example.com, and if
that fails, joe.example.org. This statement can only appear in an lwres clause.

BIND Transfer Statements

This section describes all the statements, in alphabetic order, that control or affect the behav-
ior of zone transfers and Dynamic DNS updates.

allow-notify

allow-notify { address match list };
allow-notify { 10.2.3.2;10.2.3.7;192.168.2.0/24;};

allow-notify applies to slave zones only and defines an address_1ist match for hosts that are
allowed to send NOTIFY messages to this slave in addition to those hosts defined in the masters
statement for the zone. The default behavior is to allow zone NOTIFY messages only from the
hosts defined in the masters statement. This statement may be defined in zone or view clauses
or in a global options clause. Example:

// named.conf fragment

zone "example.com" in{
type slave;
masters {192.168.254.2;};
file "slave.example.com";

3N

372

CHAPTER 12 I BIND CONFIGURATION REFERENCE

// allows NOTIFY message from the defined IPs

allow-notify (192.168.0.15; 192.168.0.16; 10.0.0.1;);
};
zone "example.net" in{

type slave;

file "slave.example.net";

masters {192.168.254.3;};

// allows no NOTIFY messages

allow-notify (none;);

};

The zone example. com can receive NOTIFY messages from 192.168.254.2 and the listed IPs;
example.net can only accept NOTIFY messages from 192.168.254.3.

allow-transfer

allow-transfer { address match list };
allow-transfer { 192.168.2.7;};

allow-transfer defines an address_match_list of hosts that are allowed to transfer the zone
information from the server, master or slave, for the zone. The default behavior is to allow
zone transfers to any host, which means that any host anywhere in the world can copy your
zone file. While this may look excessively friendly, the assumption is that all zone data is pub-
lic. If this is not the required behavior, it must be disabled explicitly as shown in the following
example fragment. This statement may be specified in zone or view clauses or in a global
options clause. The example shows zone transfers disabled for all zones by default, but the
zone example.com has decided to allow transfers to any host for reasons best known to the
domain owner.

options {

“allow-transfer {none;}; // none by default
b
zone "example.com" in{

“allow-transfer {any;}; // this zone only
b

allow-update

allow-update { address match list };
allow-update { !172.22.0.0/16;};

allow-update defines an address_match_list of hosts that are allowed to submit dynamic
updates for master zones, and thus this statement enables Dynamic DNS. The default in BIND 9
is to disallow updates from all hosts, that is, DDNS is disabled by default. This statement may be

CHAPTER 12 I BIND CONFIGURATION REFERENCE

specified in zone clauses only. This statement is mutually exclusive with update-policy and
applies to master zones only. The example shows DDNS for three zones: the first disables
DDNS explicitly, the second uses an IP-based list, and the third references a key clause. The
allow-update in the first zone clause could have been omitted since it is the default behavior.
Many people like to be cautious in case the default mode changes.

// named.conf fragment

// key clause is shown only for illustration and would
// normally be included in the named.conf file

key "update-key" {

};
zone "example.net" in{
type master;
allow-update {none;}; // no DDNS by default

};

zone "example.com" in{
....type master;
allow-update {10.0.1.2;}; // DDNS this host only

1
zone "example.org"” in{
type master;
allow-update {keys "update-key";};

};

In the example.org zone, the reference to the key clause "update-key" implies that the
application that performs the update, say nsupdate, is using TSIG and must also have the same
shared secret with the same key-name. This process is described in Chapter 10.

allow-update-forwarding

allow-update-forwarding { address match list };
allow-update-forwarding { none;};

allow-update-forwarding defines an address match_list of hosts that are allowed to submit
dynamic updates to a slave server for onward transmission to a master. By default, this behav-
ior is not allowed, that is, “none” is assumed as an address_match 1ist. This backdoor route to
DDNS should be used with extreme caution, since if the allow-update on the master enables
the zone slave to perform a DDNS update, this statement could expose the master to indirect
attack. This statement applies to slave zones only and may be specified in zone or view clauses
or in a global options clause.

373

374

CHAPTER 12 " BIND CONFIGURATION REFERENCE

also-notify

also-notify { ip addr [port ip port] ; [ip_addr [port ip port] ; ...] };
also-notify { 10.0.3.7 port 1177;};

also-notify is applicable to master zones only and defines a list of IP address(es) and optional
port numbers that will be sent a NOTIFY message when a zone changes, or a specific zone changes
if the statement is specified in a zone clause. Any IP addresses are in addition to those listed in the
NS RRs for the zone that will also be sent NOTIFY messages. The also-notify in a zone is not
cumulative with any global also-notify statements. In addition, if a global notify no; statement
is defined, this option may be used to override it for a specific zone, and conversely if the global
options clause contains an also-notify list, setting notify no; in the zone will override the global
option. This statement may be specified in a zone or view clause or in a global options clause.

options {

“.also-notify {10.1.0.15; 172.28.32.7;}; // all zones

b

zone "example.com" in{

“.also-notify {10.0.1.2;}; // only this host + those in NS RRs for zone

};

zone "example.net in{

notify no; // no NOTIFY for zone
1

alt-transfer-source, alt-transfer-source-vé

alt-transfer-source (ipv4 address | *) [port (integer | *)I;
alt-transfer-source-v6 (ipv6 address | *) [port (integer | *) 1;
alt-transfer-source 172.22.3.15; // assumed multihomed
alt-transfer-source-v6 2001:db8::2; // assumed multihomed

alt-transfer-source and alt-transfer-source-v6 apply to slave zones only. They define an
alternative local IP address (on this server) to be used for inbound zone transfers by the server
if that defined by transfer-source (transfer-source-ve6) fails and use-alt-transfer-source is
enabled. This address (and port) must also appear in the remote end’s allow-transfer state-
ment for the zone being transferred. This statement may be specified in zone or view clauses
or in a global options clause.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

ixfr-from-differences

ixfr-from-differences (yes | no);
ixfr-from-differences yes;

ixfr-from-differences defines how the name server calculates incremental zone changes.
Normally, incremental zone transfers are only possible when used in conjunction with DDNS.
ixfr-from-differences allows a zone master or slave to create incremental zone transfers for
nondynamic zones. If set to yes, when the server receives (if a slave) or loads (if a master) a
new version of a zone file, it will compare the new version to the previous one and calculate a
set of differences. The differences are then logged in the zone’s journal file (. jnl appended to
zone file name) such that the changes can be transmitted to downstream slaves as an incre-
mental zone transfer. This statement saves bandwidth at the expense of increased CPU and
memory consumption. This statement may be used in a zone, view, or global options clause.

max-journal-size

max-journal-size size in bytes;
max-journal-size 50k;

max-journal-size sets a maximum size in bytes (may take the case-insensitive K, M, or G short
forms) for each journal file. When the journal file approaches the specified size, some of the
oldest transactions in the journal will be automatically removed. The default is unlimited size.
Journal files are used by DDNS when modifying the Primary master zone file and when receiv-
ing IXFR changes on slave zones. The journal file uses a binary format, and its name is formed
by appending the extension . jnl to the name of the corresponding zone file.

All changes made to a zone using dynamic update are written to the zone’s journal file.
The server will periodically flush the complete contents of the updated zone to its zone file;
this happens approximately every 15 minutes. When a server is restarted after a shutdown or
crash, it will replay the journal file to incorporate into the zone any updates that took place
after the last zone file update.

If changes have to be made manually to a dynamic zone, then use the following sequence:

1. Disable dynamic updates to the zone using rndc freeze zone, which causes the zone
file to be updated.

2. Edit the zone file.
3. Delete the . jnl file for the zone.

4. Run rndc thaw (unfreeze) zone to reload the changed zone and reenable dynamic
updates. The current versions of BIND (9.3+) use the command rndc thaw zone; older
versions use rndc unfreeze zone.

This statement may be used in a zone, view, or global options clause.

375

376

CHAPTER 12 I BIND CONFIGURATION REFERENCE

max-refresh-time, min-refresh-time

max-refresh-time seconds ;
min-refresh-time seconds ;
max-refresh-time 2w;
min-refresh-time 12h ;

max-refresh-time and min-refresh-time are only valid for slave or stub zones. The refresh
time is normally defined by the SOA RR refresh parameter (defined in seconds). These state-
ments allow the slave server administrator to override the definition and substitute the values
defined, which are in seconds. The values may take the normal time shortcuts, for example,
35m or 2d55m. These statements may be specified in zone or view clauses or in a global options
clause.

max-retry-time, min-retry-time

max-retry-time seconds ;
min-retry-time seconds ;
max-retry-time 3600 ;
min-retry-time 1800 ;

max-retry-time and min-retry-time are only valid for slave or stub zones. The retry time

is normally defined by the SOA RR retry parameter. These statements allow the slave server
administrator to override the definition and substitute the values defined. The values may
take the normal time shortcuts, for example, 35m or 2d55m. These statements may be specified
in zone or view clauses or in a global options clause.

max-transfer-idle-in

max-transfer-idle-in minutes ;
max-transfer-idle-in 10 ;

max-transfer-idle-in is only valid for slave zones. Inbound zone transfers making no
progress in this many minutes will be terminated. The default is 60 (1 hour). The maximum
value is 40320 (28 days). This statement may be specified in zone or view clauses or in a global
options clause.

max-transfer-idle-out

max-transfer-idle-out minutes ;
max-transfer-idle-out 20;

max-transfer-idle-out is only valid for master zones. Outbound zone transfers running longer
than this many minutes will be terminated. The default is 120 (2 hours). The maximum value is
40320 (28 days). This statement may be specified in zone or view clauses or in a global options
clause.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

max-transfer-time-in

max-transfer-time-in minutes ;
max-transfer-time-in 120;

max-transfer-time-in is only valid for slave zones. Inbound zone transfers running longer than
this many minutes will be terminated. The default is 120 (2 hours). The maximum value is 40320
(28 days). This statement may be specified in zone or view clauses or in a global options clause.

max-transfer-time-out

max-transfer-time-out minutes ;
max-transfer-time-out 120;

max-transfter-time-out is only valid for master zones. Outbound zone transfers running longer
than this many minutes will be terminated. The default is 120 (2 hours). The maximum value is
40320 (28 days). This statement may be specified in zone or view clauses or in a global options
clause.

multi-master

multi-master (yes | no) ;
multi-master yes ;

multi-master is relevant only when multiple masters are defined for a slave zone. It controls
whether a log entry will be generated each time the serial number is /ess than that currently
maintained by the slave (no) or not (yes). This situation can occur when the zone masters are
out of sync with each other. The default is no. This statement may be specified in zone or view
clauses or in a global options clause.

notify

notify (yes | no | explicit);
notify explicit;

notify behavior is only applicable to master zones. If set to yes (BIND default), when zone
information changes, NOTIFY messages are sent from zone masters to the slaves defined in the
NS RRs for the zone (with the exception of the Primary master name server defined in the SOA
RR) and to any IPs listed in also-notify options. If set to no, NOTIFY messages are not sent to
any name server. If set to explicit, NOTIFY is only sent to those IP(s) listed in an also-notify
statement.

If a global notify option is no, an also-notify statement may be used to override it for a
specific zone, and conversely if the global options contain an also-notify list, setting notify
to no in the zone will override the global option. This statement may be specified in zone or
view clauses or in a global options clause. The following example illustrates that the zone
example.net will notsend NOTIFY messages to the name servers defined in its NS RRs but only
those defined in the global also-notify statement.

377

378

CHAPTER 12 I BIND CONFIGURATION REFERENCE

options {

“.also-notify {10.1.0.15; 172.28.32.7;}; // all zones
b

zone "example.com in{

// NS RRs and global also-notify
// default behavior so could have been omitted
notify yes;
1
zone "example.net in{
// no NOTIFY to NS RRs

// NOTIFY to global also-notify IPs
notify explicit;

b
notify-source, notify-source-vé

notify-source (ip4 addr | *) [port ip port] ;
notify-source-vé6 (ip6 addr | *) [port ip port] ;
notify-source 192.168.254.3 ;

notify-source-vé6 2001:db8:0:1::3 port 1178;

notify-source and notify-source-v6 are only valid for master zones. notify-source defines the
IP address and optionally UDP port to be used for outgoing NOTIFY messages. The value * means
the IP of this server (default). This IP address must appear in the masters or allow-notify state-
ment of the receiving slave name servers. Since neither the masters nor allow-notify statements
take a port parameter, if an optional UDP port value other than 53 is used, a transfer-source,
transfer-source-v6, listen-on, or listen-on-v6 statement would be required on the slave.
These statements are typically only used on a multihomed server and may be specified in zone
or view clauses or in a global options clause. The example that follows shows an IPv6 address
being used to send NOTIFY messages to a Global Unicast address.

options {
notify-source-v6 {2001:db8:0:1::3;}; // all zones

};

CHAPTER 12 I BIND CONFIGURATION REFERENCE

provide-ixfr

provide-ixfr (yes| no) ;
provide-ixfr no ;

provide-ixfr only applies to master zones. The provide-ixfr option controls whether a mas-
ter will respond to an incremental zone transfer request (IXFR)—parameter = yes—or will
respond with a full zone transfer (AXFR)—parameter = no. The default is yes. This statement
may be specified in server or view clauses or in a global options clause.

request-ixfr

request-ixfr (yes| no) ;
request-ixfr no;

request-ixfr applies only to slave zones. The request-ixfr option defines whether a server
will request an incremental zone transfer (IXFR)—parameter = yes—or will request a full zone
transfer (AXFR)—parameter = no. The default is yes. This statement may be specified in server
or view clauses or in a global options clause.

serial-query-rate

serial-query-rate number;
serial-query-rate 5;

serial-query-rate applies to slave zones only and limits the number of simultaneous SOA
queries to the number per second. The default is 20. This statement may only be used in a
global options clause.

transfer-format

transfer-format (one-answer | many-answers);
transfer-format one-answer;

transfer-format is only used by master zones. This controls the format the server uses to
transfer zones: one-answer places a single record in each message, and many-answers packs

as many records as possible into a maximum-sized TCP message. The default is many-answers,
which is only known to be supported by BIND, and if transferring zones to others servers, a
transfer-format one-answer; statement may be required. This statement may be specified
in server, zone, or view clauses or in a global options clause.

transfer-source, transfer-source-vé

transfer-source (ip4 addr | *) [port ip port] ;
transfer-source-vé6 (ip6 addr | *) [port ip port] ;
transfer-source 172.15.2.3 port 1178;
transfer-source-v6 2001:db8::1;

transfer-source and transfer-source-vé6 are only valid for slave zones on multihomed hosts
(hosts with more than one IP address or interface). transfer-source defines which local IP

379

380

CHAPTER 12 I BIND CONFIGURATION REFERENCE

address (on this server) will be bound to TCP connections used to fetch zones transferred
inbound by this server. These statements also determine the source IP address, and optionally
the UDP port, used for refresh queries and forwarded dynamic updates. If not set, it defaults
to a value that will usually be the address of the interface “closest to” the remote end—generally
the IP address on which the request arrived. This address must appear in the remote end’s
allow-transfer option for the zone being transferred. These statements may be used in zone
or view clauses or in a global options clause. The following example shows a multihomed
server with IP addresses of 192.168.254.2 and 192.168.254.4 on which traffic normally arrives
on 192.168.254.2:

// named.conf fragment
zone "example.com" in {
type slave;

// force transfers onto one interface
transfer-source 192.168.254.4;

};
The master server for the zone must permit the transfer as shown here:

// named.conf fragment
zone "example.com” in {
type master;

// permit transfer
allow-transfer 192.168.254.4;

};

transfers-in

transfers-in number ;
transfers-in 5 ;

transfers-in is only used by slave zones. This statement defines the number of concurrent
inbound zone transfers. The default is 10. This option may only be used in a global options
clause.

transfers-per-ns

transfers-per-ns number
transfers-per-ns 5

transfers-per-ns is only used by slave zones. This statement determines the number of con-
current inbound zone transfers from any remote name server. The default is 2. This option
may only be specified in a global options clause.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

transfers-out

transfers-out number ;
transfers-out 20 ;

transfers-out is only used by master zones. transfers-out defines the number of concurrent
outbound zone transfers. The default is 10. Zone transfer requests in excess of this limit will be
refused. This option may only be specified in a global options clause.

update-policy
update-policy { update policy rule; [...] };
update-policy { grant fred.example.net name example.net MX;};

update-policy only applies to master zones. This statement defines the rules by which DDNS
updates may be carried out. This statement may only be used with a key (TSIG or SIG(0)) and
may be specified only in a zone statement. It is mutually exclusive with allow-update.
update_policy rule takes the following format:

permission identity matchtype tname [rr]

Table 12-10 describes the various fields used in the update policy rule.

Table 12-10. Update Policy Rules

Parameter Description

permission May be either grant or deny.

identity AFQDN (ends with a dot) that refers to a RR in the zone file. This will typically be
a KEY RR. Can also take a DNS wildcard value (*).

matchtype Can take any of the following values:

name, which matches the tname field exactly (that is, if tname is joe.example.com.,
then it can only update the record joe.example.com.);

subdomain, which matches anything containing the tname field (that is, if the tname
is example.com., it will match bill.example.comand sheila.example.com etc.);

self, in which case the record being updated matches the identity field exactly—
in this instance, identity will typically be set to the wildcard (*);

wildcard, which indicates that the record being updated can be a valid DNS RR
wildcard expansion.

name An FQDN (ends with a dot) of the target or part of the target record (depending on
the value of matchtype). Can take a DNS wildcard value (*).

[rr] Optional. Defines the Resource Record types that may be updated including ANY
(all RR types except NSEC). If omitted, the default allows all RR types except RRSIG,
NSEC, SOA, and NS. Multiple entries may be defined using space-separated entries,
for instance, A MX PTR.

381

382

CHAPTER 12 I BIND CONFIGURATION REFERENCE

The following example shows the use of update-policy whereby each host can update its
own A RR but no others:

zone "example.com" in {
type master;

update-policy { grant * self * A;};
b

The policy says that any KEY RR (the first *) with the same name (self) as the ARR
it is trying to update (the second *) will be allowed to do so (grant). Further examples of
update-policy are described in “Securing Dynamic Updates” located in Chapter 10, includ-
ing the necessary zone file entries.

use-alt-transfer-source

use-alt-transfer-source (yes | no);
use-alt-transfer-source yes;

use-alt-transfer-source specifies whether the alt-transfer-source statements are allowed
(yes) or not (no). The statement is typically defined in a zone clause to control specific behavior
over a globally defined alt-transfer-source statement. If view clauses are used, this statement
defaults to no; otherwise it defaults to yes (for BIND 8 compatibility). This statement may be
specified in normal zone or view clauses or in a global options clause.

DNS BIND Operations

This section describes the statements that affect operation of the server.

avoid-v4-udp-ports, avoid-v6-udp-ports
avoid-v4-udp-ports { port; ... };

avoid-v6-udp-ports { port; ... };

avoid-v4-udp-ports { 1178; 1183;1188 };
avoid-v6-udp-ports { 7734; };

avoid-v4-udp-ports and avoid-v6-udp-ports define a list of port numbers that will notbe
used by BIND when initiating queries or zone transfers. This list may be used to avoid ports
that are blocked by a firewall. This option can only be defined in the global options clause.

check-names

check-names (master | slave | response) (fail | warn | ignore);
check-names response warn;

The check-names statement will check any host (owner) name in A, AAAA, or MX RRs and the
domain names in SOA, NS, MX, and PTR RRs for the defined type (master, slave, or response)
for compliance with RFC 821, 952, and 1123 and result in the defined action (fail, warn, or
ignore). Care should be taken when using this statement because RFC 2181 greatly liberalized

CHAPTER 12 I BIND CONFIGURATION REFERENCE

the rules for names (see the section “Resource Record Common Format” located in Chapter 13
for full details). The type of host name to be checked may be master, in which case the check
only applies to master zones, slave applies only to slave zones, and response applies to names
that arrive in response to a query from this server. The default is not to perform host name
checks. check-names may be used in a view or options clause with the preceding syntax and

in a zone clause, where it has a different syntax, shown here:

check-names (fail | warn | ignore);
check-names warn;

cleaning-interval

cleaning-interval minutes;
cleaning-interval 12h;

cleaning-interval defines the time in minutes when all expired records will be deleted from
the cache. The default is 60 (1 hour); if specified as 0, no cleaning will be performed. The max-
imum value is 40320 (28 days). This statement does not affect the TTL interval but merely
controls the size the cache may occupy on disk. This statement may be used in a view or global
options clause.

coresize

coresize size in bytes;
coresize 2m;

The maximum size in bytes (may take the case-insensitive short forms K, M, or G) of a core
dump if BIND crashes. This statement can only be used in a global options clause.

database

database "driver-name [param] [param] ..";
database "mysql parami param2";

database defines information to be supplied to a database driver including using the Simple
Database API. The data is enclosed in a quoted string and driver-name defines the name of the
driver defined by the dns_sdb_register() function call (see Chapter 14). The optional param field
may be any number of space-separated values that are passed as arguments (via argc/argv) to
the included driver’s create() callback to be interpreted in a way specific to the driver. This
statement can only be used in a zone clause.

datasize

datasize size in bytes;
datasize 250m;

datasize specifies the maximum size in bytes (may take the case-insensitive short forms K

or M) of memory used by the server. This is a hard limit and may stop the server from working.
The statements max-cache-size and recursive-clients may also be used to limit memory
usage. This statement can only be used in a global options clause.

383

384

CHAPTER 12 I BIND CONFIGURATION REFERENCE

dialup

dialup dialup options;
dialup passive;

dialup optimizes behavior to minimize use of connect time on dial-up links. The default is no.
This option can be defined in the view, zone, and options clauses.

The dialup statement’s behavior concentrates activity into the heartbeat-interval and
triggers NOTIFY and zone refresh operations based on the value of the dialup _option as
defined in Table 12-11.

Table 12-11. Dialup Statement Parameters

dialup option Normal Refresh Heartbeat Refresh Heartbeat Notify
no Yes No No

yes No Yes Yes

notify Yes No Yes

refresh No Yes No

passive No No No
notify-passive No No Yes
directory

directory "path name";
directory "/usr/local/var";

directory is a quoted string defining an absolute path, for instance, /var/named. All subsequent
relative paths use this base directory. If no directory statement is specified, the directory from
which the named. conf file was loaded is used (defined by —sysconfdir when BIND is configured).
This option may only be used in a global options clause.

dual-stack-server

dual-stack-servers [port pg num] { ("host" [port p num] |
ipv4 [port p num] | ipvé [port p_num]); ... };
dual-stack-servers port 1177 {192.168.2.3; "bill.example.net"};

dual-stack-server defines the IP address of one or more dual-stacked (IPv4/IPv6) servers that
can be used by this server to resolve a query using a stack it does not support. In the preceding
example, if only an AAAA (IPv6) RR is returned to a query, then this server, which is assumed
to support only IPv4, can use the defined server or servers to resolve the query, since they sup-
port both stacks. On dual-stack servers, it is only effective if one of the stacks has been disabled
on the command line. Using pg_num will act as a global port number for all subsequent server
definitions, or they can be defined individually with the p_num field. The host field is a quoted
string and is the FQDN of the host, which must be resolvable using the default protocol that is
IPv4 in the preceding example. The ipv4 and ipvé6 fields are the explicit IPv4 or IPv6 addresses
that may be used as an alternative to the host format. This statement may be used in a view or
global options clause.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

dump-file

dump-file path_name;
dump-file "/var/cache/bind.cache";

dump-file is a quoted string defining the absolute path where BIND dumps the database (cache)
in response to a rndc dumpdb (see Chapter 10). If not specified, the default is named_dump.db in the
location specified by a directory option. This statement may only be used in a global options
clause.

edns-udp-size

edns-udp-size size in_bytes ;
edns-udp-size 1460;

edns-udp-size defines the size_in_bytes that the server will advertise for an EDNS UDP buffer.
Valid values are 512 to 4096; values outside this range will be silently adjusted. The default value
is 4096. EDNS is normally only used with DNSSEC transactions. This statement may be used in
aview or global options clause.

files

files max_files ;
files 200 ;

files specifies the maximum number of files the server may have open concurrently. The
default is unlimited. This statement may be used in a view or global options clause.

heartbeat-interval

heartbeat-interval minutes;
heartbeat-interval 2h;

heartbeat-interval defines the time in minutes when zones marked as dialup are updated.
The default is 60 (1 hour); if specified as 0, no updating will be performed. The maximum
value is 40320 (28 days). This statement may be used in a view or global options clause.

hostname

hostname ("host-name" | none);
hostname "myhost";

The host-name (a quoted string) the server should report when it receives a query of the
name hostname.bind with type TXT and class CHAOS (CH). This defaults to the name found
by gethostname() (the current host’s name). While it may appear this statement is not rele-
vant for normal non-CHAOS systems, however, using dig this information may be easily
discovered; so if such information is sensitive, specifying none disables processing of the
queries. This statement may be used in a view or global options clause.

385

386

CHAPTER 12 I BIND CONFIGURATION REFERENCE

interface-interval

interface-interval minutes;
interface-interval 0;

interface-interval controls the time in minutes when BIND scans alls interfaces on the
server and will begin to listen on new interfaces (assuming they are not prevented by a
listen-on option) and stops listening on interfaces that no longer exist. This statement is
only required in a dynamic environment where IP addresses may be changing. The default
is 60 (1 hour); if specified as 0, no interface scan will be performed. The maximum value is
40320 (28 days). This option may only be specified in a global options statement.

lame-ttl

lame-ttl seconds;
lame-ttl 15m;

lame-ttl defines the number of seconds to cache lame delegations or lame servers, that is,
servers that are defined as authoritative (appear in an NS RR) but do not respond as authorita-
tive. The value 0 disables such caching and is not recommended. The default is 600 (10 minutes)
and the maximum value is 1800 (30 minutes). This statement may be used in a view or global
options clause.

listen-on

listen-on [port ip port] { address match list };
listen-on { 192.168.254.2; };

listen-on defines the optional port and IP address(es) on which BIND will listen for incoming
queries. The default is port 53 on all server interfaces. Multiple 1isten-on statements are allowed.
This option may be used in a global options clause and an lwres clause, where if omitted it
defaults to port 921 on localhost (127.0.0.1).

listen-on-v6

listen-on-v6 [port ip port] { address_match_list };
listen-on-v6 port 1234 { any; };

listen-on-v6 turns on BIND to listen for IPv6 queries. If this statement is not specified, the
server will not listen for any IPv6 traffic—the default behavior. If the OS supports RFC 3493—
and RFC 3542—compliant IPv6 sockets and the address _match_list uses the special any name,
then a single listen is issued to the wildcard address. If the OS does not support this feature,
a socket is opened for every required address and port. The port default is 53. Multiple
listen-on-vé6 statements are allowed. This option may only be used in a global options
clause. The following examples show a number of definitions:

CHAPTER 12 I BIND CONFIGURATION REFERENCE

options {

// turns on IPv6 for port 53
listen-on-v6 {any;};

};
options {
// turns off IPv6
listen-on-v6 {none;};
1
options {
// turns on IPv6 for port 53 for 16 IP range
listen-on-v6 {2001:db8::/124;};
1

match-mapped-addresses

match-mapped-addresses (yes | no) ;
match-mapped-addresses yes ;

If yes, match-mapped-addresses indicates that an address_match_1list containing an IPv4
address will be checked against an IPv4-mapped IPv6 address (described in Chapter 5). This
feature can incur significant CPU overheads and should be used as a workaround only where
the OS software accepts such connections. This statement may only be used in a global
options clause.

max-cache-size

max-cache-size size in _bytes;
max-cache-size 50m;

max-cache-size defines the maximum amount of memory in bytes to use for the server’s cache
(case-insensitive short forms of K, M, or G are allowed). When the amount of data in the cache
reaches this limit, the server will cause records to expire prematurely so that the limit is not
exceeded. In a server with multiple views, the limit applies separately to the cache of each view.
The default is unlimited, meaning that records are purged from the cache only when their
TTLs expire. This statement may be used in a view or global options clause.

max-cache-ttl

max-cache-ttl seconds;
max-cache-ttl 3d2hs5m;

max-cache-ttl sets the maximum time (in seconds) for which the server will cache positive
answers and may be used to override (reduce) the actual TTL values on received RRs. Negative
answer caching—NXDOMAIN—is defined by max-ncache-ttl. The default is one week (604800
seconds). Standard BIND time short forms may be used. This statement may be used in a view

387

388

CHAPTER 12 " BIND CONFIGURATION REFERENCE

max-ncache-ttl

max-ncache-ttl seconds
max-cache-ttl 3h;

max-ncache-ttl sets the maximum time (in seconds) for which the server will cache negative
(NXDOMAIN) answers (positive answers are defined by max-cache-ttl). The default max-ncache-
ttl is 10800 (3 hours). max-ncache-ttl cannot exceed 7 days and will be silently truncated to

7 days if set to a greater value. This statement may be used in a view or global options clause.

memstatistics-file

memstatistics-file "file-name";
memstatistics-file "/var/stats/named/bind.mem";

memstatistics-file defines the file-name (a quoted string) to which BIND memory usage
statistics will be written when it exits. This may be an absolute or relative (to directory) path.
If the parameter is not present, the stats are written to named.memstats in the path defined by
directory or its default. This statement may only be used in a global options clause.

pid-file
pid-file "path_name" ;
pid-file "bind.pid";

pid-file is a quoted string and defines where the Process Identifier used by BIND is written.
It may be defined using an absolute path or path relative to the directory statement. If not
present, it is distribution or OS specific, typically /var/run/named/named.pid. The appropriate
permissions may be required to allow this file to be written. This option can only be defined
in the global options clause.

port

port ip port ;
port 1137;

ip_port defines on which port BIND will provide UDP and TCP services. The default is 53. This
option is intended primarily for testing, and setting it to a nonstandard value will not allow the
server to communicate with normal DNS systems. It can also be used in stealth configuration
between and internal and external name servers to further disguise traffic that passes through
a firewall (see Chapter 7). The option can only appear in the global options clause and must
come before any other option that defines ports or IP addresses.

preferred-glue

preferred-glue A | AAAA;
preferrred-glue AAAA;

preferred-glue defines the order of preference in which glue records will be listed in the addi-
tional section of the response (see Chapter 15). If no order is specified, they will be listed in the
order they appear in the zone file. This statement may be used in a view or global options clause.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

querylog

querylog (yes | no) ;
querylog yes;

querylog may override the setting of the category statement of the logging clause and controls
whether query logging should be started when named (BIND) starts. If querylog is not specified,
then query logging is controlled by the rndc querylog command or the logging category queries.
This statement may only be used in a global options clause.

recursing-file

recursing-file "file-name";
recursing-file "bind.stats";

recursing-file defines the file-name to which data will be written when the command rndc
recursing is issued. May be an absolute or relative (to directory) path. If the parameter is not
present, the information is written to the file named.recursing in the path defined by directory
or its default. This statement may only be used in a global options clause.

server-id

server-id ("id-string" | none |;
server-id "123";

server-id specifies the ID the server will return in response to a query for ID.SERVER with type
TXT, under class CHAOS (CH). Specifying none disables processing of the queries; otherwise it
will return id-string. The default is none. This statement may only be used in a global options
clause.

stacksize

stacksize size_in_bytes;
stacksize 20k;

stacksize defines the maximum size in bytes (may take the case-insensitive short forms K, M,
or () of the stack memory used by the server. The default is no limit on stacksize. This state-
ment may only be used in a global options clause.

statistics-file

statistics-file "file-name";
statistics-file "/var/stats/names/bind.stats";

statistics-file defines the file-name to which data will be written when the command rndc
stats is issued. This may be an absolute or relative (to directory) path. If the parameter is not
present, the information is written to the file named. stats in the path defined by directory or

its default. This statement may only be used in a global options clause.

389

390

CHAPTER 12 I BIND CONFIGURATION REFERENCE

tcp-clients

tcp-clients number ;
tcp-clients 77;

By default, DNS uses UDP port 53 for queries, but allows both TCP and UDP. The tcp-clients
statement allows the user to define the maximum number of TCP connections that may be
supported. The BIND 9 default is 100. The option can only appear in the global options clause.

tcp-listen-queue

tcp-listen-queue number;
tcp-listen-queue 7;

tcp-listen-queue defines how many TCP listen operations are queued for incoming zone
transfers. The default and minimum is 3, and any value lower than this will be silently raised
to 3. Depending on OS features, this also controls how many TCP connections will be queued
in kernel space waiting for some data before being passed to TCP accept. This statement may
only be used in a global options clause.

version

version version_string ;
version "No Way";

The version statement defines the text that will be returned to a version.bind query for the
CHAQOS (CH) class only. The default is for BIND to return its real version number. This infor-
mation, however, is easily discovered using the dig utility, so by adding version_string and
a quoted string such as "get lost", it may be possible to avoid exploitation of known weak-
nesses of specific software versions. This option can only be defined in the global options
clause.

zone-statistics

zone-statistics (yes | no) ;
zone-statistics no;

zone-statistics defines whether zone statistics will be maintained. The default is no. The
zone statistics may be accessed using rndc stats. This statement may be used in a view, zone,
or global options clause.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

DNS BIND Query Statements

This section describes all the statements available that relate to or control queries.

additional-from-auth, additional-from-cache

additional-from-auth (yes | no) ;
additional-from-cache (yes | no) ;
additional-from-auth yes ;
additional-from-cache no ;

additional-from-auth and additional-from-cache control the behavior when zones have
additional (out-of-zone, sometimes called out-of-bailiwick) data or when following CNAME
(or experimental DNAME) RRs. These options are used when configuring authoritative-only
(noncaching) servers and are only effective if recursion no is specified in a global options or
view clause. The default for both statements is yes. The statements may be defined in a view
or global options clause. The behavior is defined by Table 12-12.

Table 12-12. additional-from Statement Behavior

auth cache BIND Behavior

yes yes BIND will follow out-of-zone records; for example, it will follow the MX record
specifying mail.example.net in zone example.com for which it is authoritative
(master or slave). This is the default behavior.

no no Cache disabled. BIND will not follow out-of-zone records even if it is in the
cache; that is, it will not follow the MX record specifying mail.example.net for
zone example. com for which it is authoritative (master or slave). It will return
REFUSED for the out-of-zone record.

yes no Cache disabled. BIND will follow out-of-zone records, but since this requires
the cache (which is disabled), the net result is the same—BIND will return
REFUSED for the out-of-zone record.

no yes BIND will not follow out-of-zone records, but if they are available in the cache,
they will be returned, else it will return REFUSED for the out-of-zone record.

allow-query
allow-query { address match list };
allow-query {!10.0.3.2/24;};

allow-query defines an address_match_list of hosts that are allowed to issue queries to this
server. If not specified, all hosts are allowed to make queries. This statement may be used in a
view, zone, or global options clause.

allow-recursion

allow-recursion { address match list };
allow-recursion { 192.168.2.3; 1192.168.2.7; };

allow-recursion defines an address_match_list of hosts that are allowed to issue recursive
queries to this server. If the answer to the query already exists in the cache, it will be returned

391

392

CHAPTER 12 I BIND CONFIGURATION REFERENCE

irrespective of this statement. If not specified, all hosts are allowed to make recursive queries.
This statement may be used in a view or global options clause.

auth-nxdomain

auth-nxdomain (yes | no);
auth-nxdomain yes;]

If auth-nxdomain is yes, it allows the server to answer authoritatively (the AA bit is set) on
returning NXDOMAIN (domain does not exist) answers. If no (the default), the server will not
answer authoritatively. The current setting reverses the BIND 8 default. This statement may
only be used in a global options clause.

blackhole

blackhole { address match list };
blackhole { none; };

blackhole defines an address_match_list of hosts that the server will not respond to nor
answer queries for. This statement has the same effect as a series of server clauses with a
bogus yes; statement but is significantly shorter! The default is none (all hosts are responded
to). This statement may only be used in a global options clause.

delegation-only

delegation-only (yes | no) ;
delegation no;

delegation-only applies to hint and stub zones only, and if set to yes, indicates the zone will
only respond with delegations (or referrals). (See the type statement for more information.)
The default is no. This statement may only be used in a global zone clause.

forward

forward (only | first);
forward only;

forward is only relevant in conjunction with a valid forwarders statement. If set to only,

the server will only forward queries; if set to first (the default), it will send the queries to the
forwarder (defined by the forwarders statement); and if not answered, it will issue queries
directly. This statement may be used in a zone, view, or global zone clause.

forwarders

forwarders { ip addr [port ip port] ; [ip_addr [port ip port] ; ...] };
forwarders { 10.2.3.4; 192.168.2.5;};

forwarders defines a list of IP address(es) (and optional port numbers) to which queries will
be forwarded. It is only relevant if used with the forward statement. This statement may be
used in a zone, view, or global zone clause. See also “Forwarding (a.k.a. Proxy, Client, Remote)
DNS Server” in Chapter 7.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

minimal-responses

minimal-responses (yes | no) ;
minimal-responses yes ;

Ifminimal-responses is set to yes, the server will only add records to the authority and addi-
tional data sections (see Chapter 15) when they are required by the protocol, specifically
delegations and negative responses. Since the effect of this is to reduce the data volumes sent,
it may improve the performance of the server. The BIND default is no. This statement may be
used in a view or global zone clause.

query-source, query-source-vé6

query-source [address (ip addr | *)] [port (ip port | *)];
query-source address 192.168.2.3 ;

query-source-v6 [address (ip addr | *)] [port (ip_port | *) 1;
query-source-v6 address * port 1188;

query-source and query-source-v6 define the IP address (IPv4 or IPv6) and optional port to

be used as the source for outgoing queries from the server and are normally relevant only on
multihomed servers (servers with multiple IP addresses or interfaces). The BIND default is any
server interface IP address and a random unprivileged port. The optional port is only used to
control UDP operations. avoid-v4-udp-ports and avoid-v6-udp-ports can be used to prevent
selection of certain ports. This statement may be used in a view or global options clause.

recursion

recursion (yes | no);
recursion no;

If recursion is set to yes (the default), the server will always provide recursive query behavior if
requested by the client (resolver). If recursion is set to no, the server will only provide iterative
query behavior. If the answer to the query already exists in the cache, it will be returned irre-
spective of the value of this statement. This statement essentially controls caching behavior in
the server. The allow-recursion statement and the view clause provide fine-grained control
over recursion services. This statement may be used in a view or global options clause.

recursive-clients

recursive-clients number;
recursive-clients 20;

Defines the number of simultaneous recursive lookups the server will perform on behalf of its
clients. The default is 1000, that is, it will support 1000 simultaneous recursive lookup requests,
which should be enough for most purposes! This statement may only be used in a global options
clause.

393

394

CHAPTER 12 I BIND CONFIGURATION REFERENCE

root-delegation-only

root-delegation-only [exclude { "domain_name"; ... }];
root-delegation-only exclude { "com"; "net" };

If present, root-delegation-only indicates that all responses will be referrals or delegations.
The optional exclude list consists of one or more domain_name (a quoted string) parameters.
This statement is intended to be used for root and TLD domains (gTLDs and ccTLDs), but the
delegation-only statement may be used to create the same effect for specific zones. This
statement may be used in a view or global options clause.

rrset-order

rrset-order { order spec ; [order spec ; ...]
rrset-order { type A order cyclic; };

rrset-order defines the order in which RRsets—multiple records of the same type—are
returned. This statement applies to any RR type in which the records are similar (their name,
class, and type are the same). rrset-order is fully implemented from BIND 9.2.3. The default
is defined to be a random-cyclic order, that is, the starting address is randomly chosen and
thereafter cyclic order is followed, but experimentation shows the default to be purely cyclic.
The rrset-order defines the order in which similar RRs are returned from the name server.
The sortlist statement controls the order in which the RRs are returned to a client, for in-
stance, a resolver. An order_spec is defined as follows:

[class class name][type type name][name "domain name"]
order ordering

where class_name is the record class, for instance, IN (default is any); type name is the RR type
(defaults to any); and domain_name limits the statement to a specific domain suffix and defaults
to root (all domains). ordering may take one of the following values: fixed—records are returned
in the order they are defined in the zone file; random—records are returned in a random order;
cyclic—records are returned in a round-robin fashion. Only one such statement may appear
in any clause—the last defined will be used in the case of multiple statements. This statement
may be used in a view or global options clause.

The following example shows that MX RRs for example. com only will be returned in random
order; all others responses will use the default cyclic order.

rrset-order { type MX name "example.com" order random; order cyclic;};

sortlist

The sortlist statement is used to order RRsets (groups of RRs whose name, class, and type
values are the same) for use by a resolver (a client). It is the client-side equivalent of the
rrset-order statement and can work against the rrset-order statement when being used
as part of a load-balancing configuration: rrset-order carefully delivers RRsets in its order
of preference to a remote server that may then proceed to reorder them with a sortlist
statement when responding to its client resolver. The sortlist statement attempts to order
returned records based on the IP address of the client that initiated the request.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

sortlist Statement Syntax

sortlist { address match list };
sortlist { {10.2/16; } ;};

The address _match_list is used very differently from the way it is used in all other statements
and assumes that each element of the address_match_list isitself an address_match_list, that
is, itis a nested address_match_list and is enclosed in braces. Processing depends on whether
there is one or more than one element in the nested address_match_list. In the simple case of
one element, as in the preceding example, if the client’s IP address matches 10.2/16 (that is,
lies in the range 10.2.0.0 to 10.2.255.255) and there are any IP addresses in the response in the
same range, they will be the first records supplied in the response. Any remaining records will
be sorted according to the rrset-order (default is cyclic). If no match is found, the records are
returned in the order defined by the rrset-order or its default value (cyclic). If two elements
are provided in the address _match_list, then the second element is assumed to be an ordered
list of preferences. This is best illustrated by an example. Assume the zone example.comhas a
zone file with multiple A RRs for lots.example.com:

// zone file example.com
$ORIGIN example.com.
lots IN A 192.168.3.6

IN A 192.168.4.5
IN A 192.168.5.5
IN A 10.2.4.5

IN A 172.17.4.5

The client-side server has a sortlist statement, as shown here:

options {
sortlist {
192.168.4/24; // 1st client IP selection
{10.2/16; // 1st preference
172.17.4/24; // 2nd preference
};
192.168.5/24; // 2nd client IP selection
{192.168.4/24; // 1st preference
172.18/24; // 2nd preference
10.2/16; // 3rd preference
1
};
};

If the client, say a resolver, with an IP address of 192.168.5.33 issues an A query for
lots.example.com, then the RRs will be returned in the following order:

192.168.4.5
10.2.4.5
192.168.3.6
192.168.5.5
172.17.4.5

395

396

CHAPTER 12 I BIND CONFIGURATION REFERENCE

The preceding order is computed using the following process: The top level of the
address_match list is searched against the client IP (192.168.5.33) address and matches the
IP address in the sortlist statement with a comment of “2nd client IP selection”; the nested
address_match list is then treated as an ordered list for the A query result IPs (not the client
IPs). The IP address in the sortlist statement with a comment of “1st preference” matches,
s0 192.168.4.5 becomes first in the returned list. The IP address in the sortlist statement with
a comment of “2nd preference” does not match any of the returned IPs. The IP address in the
sortlist statement with a comment of “3rd preference” matches, so 10.2.4.5 becomes second
in the returned list. The remaining three RRs do not match, so they are returned according to
the rrset-order statement or its default (cyclic) if not defined. The sortlist statement may
be used in a view or global options clause.

DNS BIND Security Statements

This section describes all the statements that relate to or control security.

algorithm

algorithm algorithm-name;
algorithm hmac-mds;

The algorithm statement defines the shared secret algorithm being used and may only take
the value hmac-md5. The algorithm statement is only used in a key clause.

disable-algorithms

disable-algorithms domain {alg; [alg;]};
disable-algorithms example.net {hmac-md5; rsamds;};

The disable-algorithms statement may be used to disable specific cryptographic algorithms
used with the defined domain. The alg field (one or more is allowed in each statement) may take
the case-insensitive values hmac-md5, rsamds, rsashai, dsa, or dh. Multiple disable-algorithm
statements may appear in a global options or view clause.

dnssec-enable

dnssec-enable (yes | no);
dnssec-enable yes;

BIND does not automatically enable secure DNS (DNSSEC) operations. The dnssec-enable
statement is used to enable or disable (the default) any security feature. dnssec-enable yes;
must be used if any secure (cryptographic) operation is being performed such as TSIG, TKEY,
SIG(0), or DNSSEC.bis. Any name server with dnssec-enable yes; advertises its ability to sup-
port secure operations by include an OPT meta-RR (or pseudo-RR) in the additional section
of any query and implicitly enables EDNSO (RFC 2671) features. This statement may be used
in a view or global options clause.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

dnssec-lookaside

dnssec-lookaside domain trust-anchor dlv-domain
dnssec-lookaside .com trust-anchor dlv.verisignlabs.com;

The dnssec-lookaside statement is used with the experimental DNSSEC Lookaside Validation
service and provides an alternative method for verifying a chain of trust using experimental
DLV RRs. The objective of the DLV is to provide equivalent capabilities to a signed TLD zone
without the registry operator having to sign the TLD zone. Any secure zone that lies at or below
domain and that does not have a local trusted-keys clause may interrogate the d1v-domain to
search for a DLV RR (which is similar in every respect to a DS RR). To verify the d1v-domain, a
trusted anchor must be present (in a trusted-keys clause) for this d1v-domain. A pilot DLV serv-
ice is currently being run by VeriSign, Inc. and the trusted anchor is available from the VeriSign
DLV Registry Pilot experimental web site (https://www.dlv.verisignlabs.com/trusted.html).
The d1lv-domain may also be specified using the -1 option to the dnssec-signzone command
(see Chapter 9) to generate DLV RRs when the zone is signed. In the preceding example state-
ment, any .com domain that does not have a configured trusted anchor will interrogate the
domain dlv.verisignlabs.com. This statement may be used in a view or global options clause.
The DIV system is explained in Chapter 11.

dnssec-must-be-secure

dnssec-must-be-secure domain (yes | no);
dnssec-must-be-secure example.com yes;

The dnssec-must-be-secure statement indicates whether domain must be secure or not. If
the yes option is defined, then domain must be signed and must have a trusted anchor (in a
local trusted-keys clause) or a verifiable chain of trust (through a DS RR at the parent), or
dnssec-lookaside must be active at or above domain. The default is no. This statement may
be used in a view or global options clause.

key-directory

key-directory "path _name";
key-directory "/var/named/keys";

key-directory is a quoted string defining the absolute path where the private keys used in the
dynamic update (DDNS) of secure (signed) zones may be found. It is only required if this
directory is different from that defined by a directory statement. This statement may be used
in a zone, view, or global options statement.

random-device

random-device "path_to device";
random-device "/dev/random";

random-device defines a source of randomness (or entropy) within the system and defaults
to /dev/random. This device is needed for DNSSEC operations such as TKEY transactions and
dynamic update of signed zones. Operations requiring entropy will fail when the specified

397

398

CHAPTER 12 I BIND CONFIGURATION REFERENCE

source has been exhausted. The random-device option takes effect during the initial configura-
tion load at server startup time and is ignored on subsequent reloads. This statement may only
be used in a global options clause.

secret

secret key-data;
secret BLAHBLAHBLAH;

The secret statement can only appear in a key clause. The key-data field contains base64-encoded
(RFC 3548) data, frequently referred to as keying material, which constitutes the shared secret.
It is typically produced by the dnssec-keygen or rndc-confgen utilities (see Chapter 9). Chapter 10
shows how this statement is constructed from the .private file created when the dnssec-keygen
utility is run. This statement contains extremely sensitive data, and for that reason the secret
statement and its enclosing key clause is normally placed in a separate file (which has limited
read and write permission), and the include statement is used to embed it into the named. conf
file at run time.

sig-validity-interval
sig-validity-interval days ;
sig-validity-interval 30 ;

sig-validity-interval specifies the number of days into the future when DNSSEC signatures
(using RRSIG RRs) automatically generated as a result of dynamic updates to signed zones will
expire. The default is 30. The maximum value is 3660 (10 years). The signature inception time is
unconditionally set to one hour before Universal Coordinated Time (UTC) to allow for a limited
amount of clock skew. All DNSSEC operations rely on a correct time zone value and network
clock synchronization using ntpd. This statement may be used in a zone, view, or global options
statement.

tkey-dhkey

tkey-dhkey "host-name" key-tag;
tkey-dhkey "fred.example.com" 45312;

The tkey-dhkey statement defines the file containing the Diffie-Hellman private key to be
used in TKEY operations and must be located in the directory defined using a directory state-
ment. In the preceding example, the key would be generated using the command shown here:

dnssec-keygen -a dh -b 1024 -n host fred.example.com
Kfred.example.com.+002+45312

The dnssec-keygen utility outputs a single line identifying the files containing informa-
tion—Kfred.example.com.+002+4531 in the preceding example. The value K is a fixed identifier;
fred.example.com. is the name of the host KEY RR reflected from the dnssec-keygen arguments
(see Chapter 9); the number 002 indicates the Diffie-Hellman algorithm, and the number 45312

CHAPTER 12 I BIND CONFIGURATION REFERENCE

in the preceding example is known as the key-tag or fingerprint and is algorithmically gener-
ated to uniquely identify this key when the dnssec-keygen utility is run. The TKEY feature is
not widely used. This statement may only be used in a global options clause.

tkey-domain

tkey-domain domain-name;
tkey-domain "example.com";

The tkey-domain statement defines the domain name that will be added to the names of all
keys generated by a TKEY sequence. When a name server requests a TKEY exchange, it can
optionally indicate the required name for the key. If present, the name of the shared key will
be the client’s supplied name with the domain-name appended to it; thus, if the client supplied
aname of fred in the preceding example, the name server will return fred.example.com. If the
client does not supply a name, a random series of hex digits will be used as the client part of
the name. TKEY is not widely implemented. This statement can only be used in a global
options clause.

tkey-gssapi-credential

tkey-gssapi-credential "credential";

tkey-gssapi-credential defines the credential associated with a Generic Security Services API
(GSSAPI). The GSSAPI and the credentials required are defined by RFC 2743 and its Kerberos
form is defined in RFC 1964. TKEY is not widely implemented at this time since the standards
for TKEY mandate the preexistence of a shared secret (TSIG) or a public key (SIG(0)) to authen-
ticate the initial exchange, which somewhat defeats the object of the Diffie-Hellman exchange
used by TKEY. This statement may only appear in a global options clause and is not docu-
mented in the current (BIND 9.3.0) options list, but is still present in the source code.

DNS BIND server Statements

This section describes statements that may only be used in the server clause. The server
clause can take more statements, and you should consult Table 12-6 for a complete list.

bogus

bogus (yes | no);
bogus (yes | no);

bogus indicates that traffic from this server should be ignored (yes), for instance, if known to
be giving bad data, suffering a DoS attack, or some other reason. The same effect may be
obtained using the blackhole statement. The default is no. This option can only be defined in
the server clause.

399

400

CHAPTER 12 I BIND CONFIGURATION REFERENCE

edns
edns (yes | no) ;
edns no ;

edns defines whether to use EDNSO (RFC 2671) with a specific server (yes) or not (no). The
default is yes. This statement may only be used in a server clause.

keys
keys "key-name";["key-name"; ...;];
keys "servi-zone-transfer-key";

The key-name field of the keys statement references a key clause with the same key-name and
mandates that transactions secured by TSIG (zone transfer or dynamic update) will use this
key. In the case of zone transfers, the peer host must have an equivalent key clause with the
same key-name. When used with nsupdate, key-name appears in the -k argument (see Chapter
9). This statement can only appear in a server clause and while the formal syntax allows for
more than one key-name as of the current releases of BIND, only one key-name is supported per
server. The section “Securing Zone Transfers” located in Chapter 10 shows the use of the keys
statement in a server clause.

transfers

transfers number ;
transfers 5;

transfers limits the number of concurrent zone transfers from any given server. If not pres-
ent, the default for transfers-per-ns is used (the default is 2). This option may be used only
in a server clause.

DNS BIND view Statements

This section describes statements that may only be used in the view clause. The view clause
can take many more statements, and you should consult Table 12-6 for a complete list.

match-clients

match-clients { address match_element; ... };
match-clients { 10.2.3.0/8;172.16.30.0/16;!192.168.0.0/16; };

A view clause matches when either or both of its match-clients and match-destinations state-
ments match and when the match-recursive-only condition is met. If either match-clients or
match-destinations or both are missing, they default to any (all hosts match). The match-clients
statement defines the address_match_list for the source IP address of the incoming messages.
Any IP address that matches will use the defined view clause. This statement may only be used
in a view clause. An example showing the use of all three statements is described in the section
“BIND view Clause” located earlier in this chapter.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

match-destinations

match-destinations { address match element; ... };
match-destinations { 192.168.0.3; };

The match-destination statement defines the address_match_list for the destination address
of the incoming message. It is one of three statements that can be used to match a view clause.
The relationship between the statements is described under match-clients. This statement
may only be used in a view clause.

match-recursive-only

match-recursive-only (yes | no);
match-recursive-only yes;

If an incoming query requests recursion and match-recursive-only is yes, then the condition
is met. It is one of three statements that can be used to match a view clause. The relationship
between the statements is described under the match-clients entry. This statement may only
be used in a view clause.

DNS BIND zone Statements

This section describes the zone-only statements. The zone clause can take many more state-
ments than described here, and you should consult Table 12-6 for a complete list.

check-names

check-names (warn|fail|ignore) ;
check-names fail;

The check-names statement may also appear in a view or global options clause where its syn-
tax is different. The behavior controlled by this statement, which allows certain names to be
limited to compliance with the name format defined in RFCs 821, 952, and 1123, is described
under check-names in the “DNS BIND Operations” section located earlier in this chapter.

file
file "file name";
file "slave.example.com";

file defines the file used by the zone in quoted string format, for example, "slave.example.com"—
or whatever convention you use. The file entry is mandatory for master and hint and
optional—but highly recommended—for slave and not required for forward zones. The file
may be an absolute path or relative to the directory statement. The following example shows
the use of the file statement:

401

402

CHAPTER 12 " BIND CONFIGURATION REFERENCE

// named.conf fragment

zone "example.com” in {
type slave;
// defines an optional file used to save slave zone data
file "slave.example.com";

1

zone "example.net" in {
type master;
// defines a master zone file
file "master.example.net";

};

masters

masters [port pg num] { (masters list | ipv4
[port p num] | ipv6 [port p num]) [key "key-name"]; ... };
masters {192.168.3.5;};

The masters statement is valid only with slave zones and defines one or more IP addresses and
optional port numbers of servers that hold the master zone file. The slave will use the defined
IP address(es) to update the zone file when the SOA RR refresh parameter is reached. The pg_num
parameter changes the port number used for zone transfers for all the listed servers (the default
is port 53). The p_num parameter changes the port number for the specific IP address only.
masters_list may be used to reference a list of masters defined in amasters clause. The key-name
field defines the key to be used to authenticate the zone transfers when using TSIG and refer-
ences the name of the key clause; a corresponding key clause with the same key-name must be
present in the master server for the zone. The following example shows three masters for the
zone, one of which will use port 1127 for zone transfers and one of which is an IPv6 address:

// named.conf fragment
zone "example.com” in {

type slave;

file "slave.example.com";

masters {192.168.2.7; 10.2.3.15 port 1127; 2001:db8:0:1::15;};
1

type
type zone_type;
type delegation-only;

The type statement defines the characteristics of the zone and may take one of the values
defined in Table 12-13.

CHAPTER 12 I BIND CONFIGURATION REFERENCE

Table 12-13. Type Statement Values

Value

Description

master

slave

forward

hint

stub

delegation-only

The server has a master copy of the zone data (which is loaded from a local
filestore) and provides authoritative answers for the zone.

A slave zone is a replica of the master zone and obtains its zone data by zone
transfer operations. The slave will respond authoritatively for the zone as long
as it has valid (not timed out) zone data. The masters statement specifies one or
more IP addresses of master servers that the slave contacts to refresh or update
its copy of the zone data. When the TTL specified by the refresh parameter of
the zone’s SOA RR is reached or a NOTIFY message is received, the slave will
query the SOA RR from the zone master. If the sn parameter (serial number)

is greater than the current value, a zone transfer is initiated. If the slave cannot
obtain a new copy of the zone data when the SOA expiry value is reached, then
it will stop responding for the zone. Authentication of the master can also be
done with per-server TSIG keys (see the entry for the masters statement earlier).
By default, zone transfers are made using TCP on port 53, but this can be changed
using the masters statement. If a file statement is defined, then the zone data
will be written to this file whenever the zone is changed and reloaded from this
file on a server restart. If no file statement is defined, then the slave will require
a zone transfer from the zone master before it can start responding to queries
for the zone.

A zone of type forward is simply a way to configure forwarding, perhaps to a
unique name server, on a per-domain or per-zone basis. To be effective, both
a forward and forwarders statement should be included. If no forwarders
statement is present or an empty list is provided, then no forwarding will be
done for the domain, canceling the effects of any forwarders in the global
options clause.

The initial set of root-servers is defined using a hint zone. When the server
starts up, it uses the hints zone file to find a root name server and get the most
recent list of root name servers. If no hint zone is specified for class IN, the server
uses a compiled-in default set of root servers. Classes other than IN have no
built-in default hints. The hint zone is only required for a name server that pro-
vides recursive services.

A stub zone is similar to a slave zone except that it replicates only the NS records
of a master zone instead of the entire zone. Stub zones are not a standard part of
the DNS—they are a feature specific to the BIND implementation and should
not in general be used.

This indicates only referrals (or delegations) will be made for the zone and is
recommended only for use with TLDs, notleaf (non-TLD) zones. The genera-
tion of referrals in leaf zones is determined by the use of the delegation-only
statement and the RRs contained in the zone file, that is, a zone consisting of
an SOA RR, NS RRs, and glue records will only be able to generate referrals (see
also Chapter 9).

Summary

This chapter is a reference for the command-line options used when BIND is loaded and for
all the entities used in a named. conf file—the file that controls the detailed behavior of BIND.
The named. conf file statements were defined to be of three types—comments, clauses, or
statements. This book rigorously uses the term clause to refer to a collection or group of state-
ments in the interest of clarity and consistency. Much BIND documentation uses a variety of

403

404

CHAPTER 12 I BIND CONFIGURATION REFERENCE

terms such as sections, clauses, statements, options, and phrases to define the two entity types
(apart from comments) contained in the named. conf file. Advanced readers may well be com-
fortable with different terms being applied to the same type of entity or, even worse (but
depressingly frequent), the same term being applied to completely different entities. Such an
environment, however, is neither edifying nor conducive to creating safe, error-free BIND
configurations—the ultimate objective of this book. The terms were selected after consulting
Merriam-Webster OnLine and BIND’s source code.

The available clauses are listed alphabetically in Table 12-3. Statements are listed alphabeti-
cally in Table 12-5, together with very short descriptions and categorization. The individual
statements are then described in detail in alphabetic order within each category, with a simple
example in every case and some more complex examples where appropriate. It is hoped that
such categorization will allow you to dip into the specific section required and also allow brows-
ing of statements when looking to control or affect the behavior of similar types of operations,
for instance, queries. Many statements can be used in more than one clause, and Table 12-6 lists
each statement alphabetically and the clauses in which it can be used.

The next chapter contains reference material on zone files and the directives and Resource
Records (RRs) that may be used in them.

CHAPTER 13

Zone File Reference

This chapter is intended to be a reference for zone file directives and Resource Records.

Table 13-1 later in this chapter contains a list of all current RRs defined by IANA (www. iana.org/
assignments/dns-parameters), their support status within BIND and Windows DNS software,
the RFCs that define them, and a very brief description of the RR type. This provides you with

a quick overview of the formidable list of RRs available and will enable you to browse them
more effectively. This chapter features descriptions of the syntax for each directive and
Resource Record, and in most cases their use is illustrated with one or more examples.

RRs have two representations: a textual form, in which they appear in a zone file as described
in this chapter, and a binary format, also called the wire format, used when one or more RRs are
transmitted in a query, query response, or similar network operation. The binary format of RRs
is defined in Chapter 15. The following section reviews the zone file format rules and is then fol-
lowed by material on the zone file directives and finally the Resource Records descriptions.

DNS Zone File Structure

Zone files describe a domain’s characteristics, the hosts and services supported, in a form that
may be used by DNS software. The files are textual and may be read or edited using any stan-
dard text editor. They can contain three types of entries:

1. Comments: All comments start with ; (semicolon) and continue to the end of the line.
Comments can occupy a single line or be added to any of the following record types.

2. Directives: All directives start with $ and are used to control processing of the zone files.

3. Resource Records: RRs are used to define the characteristics, properties, or entities con-
tained within the domain or zone. RRs are contained on a single line with the exception
that entries enclosed in parentheses can spread across multiple lines.

The following is a zone file fragment that illustrates the preceding points and record types:

; this is a full-line comment

$TTL 12h ; directive - comment terminates the line
$ORIGIN example.com.

; Start of Authority (SOA) record defining the zone (domain)
; illustrates an RR record spread over more than one line

; using the enclosing parentheses

405

406

CHAPTER 13 ' ZONE FILE REFERENCE

@ IN SOA nsi.example.com. hostmaster.example.com. (
2003080800 ; se = serial number

3h ; ref = refresh

15m ; ret = update retry
3w ; ex = expiry

3h 5 min = minimum

)

; single line RR
IN NS nsi.example.com. ;with a comment

The preceding SOA RR could have been written on a single line, in which case there is no
need for the parentheses:

@ IN SOA nsi.example.com. hostmaster.example.com. 2003080800 3h 15m 3w 3h

If parentheses are used, the ((open parenthesis) must appear on the first line.

DNS Directives

Zone file directives control the processing of zone files. There are three standardized direc-
tives: $TTL, $ORIGIN, $INCLUDE (RFC 1035). A fourth directive, $GENERATE, is supported by BIND
but is not standardized.

The $0RIGIN Directive

The $ORIGIN directive was standardized in RFC 1035 and defines the domain name that will
be appended to any name that appears in an RR and does not end with a dot—frequently
called a relative or an unqualified name—to create a Fully Qualified Domain Name (FQDN).
This process is called the “$ORIGIN substitution rule” throughout this book.

The $ORIGIN Substitution Rule

If a name appears in a Resource Record and does not end with a dot, then the value of the last,
or only, $ORIGIN value will be appended to the name. If the name does end with a dot, then it is
a Fully Qualified Domain Name, and nothing will be appended to the name. The terminating
dot in an FQDN is interpreted as the root of the domain tree or hierarchy. An FQDN unam-
biguously defines a name to the root.

$ORIGIN Syntax
$ORIGIN domain-name
domain-name is always an FQDN—it always ends with a dot. $ORIGIN directives can appear any-

where in a zone file and will be used from the point they are defined onwards until replaced
with another $ORIGIN.

CHAPTER 13 " ZONE FILE REFERENCE

$ORIGIN example.com.

; unqualified names from here will append example.com.
WIWW IN A 192.168.2.2 ; unqualified

5 www expands to www.example.com.

ftp.example.com. IN A 192.168.2.3 ; FQDN

$ORIGIN us.example.com.

; unqualified names from here will append us.example.com.
WiWW IN A 192.168.254.2 ; unqualified

5 www expands to www.us.example.com.

The $ORIGIN directive is not mandatory. If an $ORIGIN directive is not present, BIND will
assume that the $ORIGIN value is the name of the zone clause that defines the zone file in
named.conf (described in Chapter 12). This book always uses $0RIGIN directives in zone files
for three reasons:

1. With the $ORIGIN directive present, a zone file is self-descriptive and self-contained—it
requires no reference to any external information.

2. The $ORIGIN substitution rule (defined previously) is much less confusing. The value to
be substituted is immediately apparent—the last $ORIGIN directive.

3. Not all software may use the same default assumptions about the $ORIGIN directive as
does BIND. Zone files are more portable when the $0RIGIN directive is included.

Tip For a further insight into the use of the $ORIGIN directive, have a look at a zone file on a slave server
after the zone file has been transferred. There you will see that BIND constructs its zone files with an $ORIGIN
directive at every level of the hierarchy.

The $INCLUDE Directive

The $INCLUDE directive allows inclusion in situ of an external file containing additional direc-
tives or RRs. It is typically used in maintenance of larger zone files; that is, individual parts of

a single zone file can be modified by clients without exposing the global parameters or other
client parts to either inspection or corruption. Alternatively, it can be used to add RRs to a zone
file that were created externally such as KEY or DNSKEY RRs generated by the dnssec-keygen
utility for use in secure DNS operations. Unlike the include statement used in the named. conf
file, which is typically used to secure sensitive (private) keys, there is no corresponding need for
the $INCLUDE in the zone file—any keys appearing in a zone file will always be public. This direc-
tive is standardized in RFC 1035. The RFC is silent on the topic of embedded $INCLUDE directives
in the included files, and to err on the side of safety they should not be used.

407

408

CHAPTER 13 ' ZONE FILE REFERENCE

$INCLUDE Syntax
$INCLUDE filename [domain-name]

The filename parameter may be an absolute path (for example, /path/to/file) or a relative
path (for example, relative/path/to/file). If the relative path format is used, then the base
directory is assumed to be the same location as the zone file. The optional domain-name param-
eter may be used to set an explicit $ORIGIN to be used in the included file; however, an included
file can also contain one or more $0RIGIN directives as shown in the fragments that follow. The
scope of $ORIGIN directives when used with an included file is limited to the included file only.
On termination of the include operation, the value of $0RIGIN is restored to the value before the
$INCLUDE directive.

The first zone file fragment shows an included file with no $ORIGIN directives, which will
use the current $0RIGIN directive in operation at the point of inclusion:

$ORIGIN us.example.com.

mail IN A 192.168.35.12

; expands to mail.us.example.com.

$INCLUDE /var/named/zones/sub.example.com ; absolute path no $ORIGIN
ftp IN A 192.168.35.16

; expands to ftp.us.example.com.

The following fragment shows expansion of the /var/named/zones/sub.example.com
include file:

; INCLUDE file statements
WwW IN A 192.168.23.15
; expands to www.us.example.com

; end of included file
The following fragments show the use of an explicit $ORIGIN on the $INCLUDE directive:

$ORIGIN us.example.com.

mail IN A 192.168.35.15

; expands to mail.us.example.com.

$INCLUDE sub.example.com uk.example.com. ; overrides current $ORIGIN
; $ORIGIN reverts to value before the $INCLUDE directive

ftp IN A 192.168.35.16

; expands to ftp.us.example.com

The included fragment in sub.example.com uses the explicit $ORIGIN on the $INCLUDE
directive.

; INCLUDE file statements
WWW IN A 192.168.23.15
; expands to www.uk.example.com

; end of included file

CHAPTER 13 " ZONE FILE REFERENCE

The following fragments achieve the same result as the previous ones but may be less
confusing because of the explicit use of an $0RIGIN directive in the included file:

$ORIGIN us.example.com.

mail IN A 192.168.35.15

; expands to mail.us.example.com.

$INCLUDE sub.example.com ; no $ORIGIN

; $ORIGIN reverts to value before the $INCLUDE directive
ftp IN A 192.168.35.16

; expands to ftp.us.example.com

The included fragment uses an explicit $ORIGIN directive:

; INCLUDE file statements

$ORIGIN uk.example.com.

WWW IN A 192.168.23.15
; expands to www.uk.example.com

; end of included file

The preceding fragment is self-contained and self-descriptive.

The $TTL Directive

Every Resource Record may take an optional Time to Live (TTL) value specified in seconds.
The $TTL directive was standardized in RFC 2038 and defines the default TTL value applied to
any RR that does not have an explicit TTL defined. TTL in the context of DNS means the time
in seconds that a record may be cached (stored) by another name server or in some cases a
resolver. (Caching is explained in Chapter 4.)

$TTL Syntax

$TTL time-in-seconds
The following shows a typical $TTL directive:
$TTL 172800 ; 2 days

BIND provides a short format to allow the time value to be written without resorting to
a calculator or some strenuous mental arithmetic. The case-insensitive values are m = minutes,
h = hours, d = days, w = weeks. This book uses the standard BIND short format throughout simply
to make the time values used more quickly understood. If zone files are to be ported between
BIND and other DNS software, the short forms should not be used. The preceding $TTL could
be written in any of the following forms when using the BIND short format:

$TTL 2d
$TTL 48h
$TTL 2880m
$TTL 1d24h

409

410

CHAPTER 13 ' ZONE FILE REFERENCE

The time-in-seconds value may be in the range 0, which indicates the record should
never be cached, to a maximum of 2147483647 (roughly 68 years). The current best practice
recommendation (RFC 1912) suggests a value greater than one day, and on RRs that rarely
change, longer values should be considered. This book typically uses a $TTL value of 172800
(2 days), which represents a reasonable balance between name server load and speed of
change. In an attempt to reduce the possibly negative effects of caching on DNS-based load-
balancing techniques (discussed in Chapter 8), there is an increasing trend toward very low
(120 seconds or less) TTL values at the expense of DNS load.

The TTL determines two DNS operational parameters:

1. Access load: The lower the TTL, the more frequently queries occur and the higher the
operational load on the zone DNS.

2. Change propagation: The TTL value represents the maximum time that any change will
take to propagate from the zone master or slave to all name server caches.

The $TTL directive must appear before any RR to which it will be applied. BIND 9 will
refuse to load a zone that does not have a valid $TTL directive.

Note In older versions of BIND (prior to BIND 9), the default $TTL was defined in the min field of the
SOA RR (described later in this chapter), which reflected the standards then in force. RFC 2308 defines
both implementation of the $TTL directive and the revised use of the min field in the SOA RR.

The $GENERATE Directive

The $GENERATE directive is BIND specific and should not be used if zone files will be ported
between BIND and other RFC-compliant DNS software.

$GENERATE is provided to ease generation of repetitive sequences of RRs. Only NS, PTR, A,
AAAA, DNAME, and CNAME RRs are supported. The most obvious use for $GENERATE is when
creating zone files used in delegation of reverse subnet maps. The reverse-map zone files involve
a series of RRs that increment by a single value. The following fragment shows an extract from
the reverse delegation zone file described in Chapter 8:

$ORIGIN 199.168.192.IN-ADDR.ARPA.

65 IN CNAME 65.64/26
66 IN CNAME 66.64/26
67 IN CNAME 67.64/26
125 IN CNAME 125.64/26
126 IN CNAME 126.64/26

The following $GENERATE directive would create the preceding full sequence.

$GENERATE 65-126 $ CNAME $.64/26

CHAPTER 13 " ZONE FILE REFERENCE 411

$GENERATE Syntax
$GENERATE start-stop[step] lhs type rhs

In the $GENERATE syntax, start is the starting value of the generated sequence and stop is the
ending value. step is optional and indicates the value to be added on each iteration; if omit-
ted, 1 is assumed. lhs indicates the value of the left-hand name. An 1hs value of $ indicates
the current iteration value will be substituted as shown in the example. The type field is the
RR type, and only CNAME, NS, A, AAAA, DNAME, and PTR are supported. rhs is the left-hand
expression; again, $ indicates the current iteration value will be substituted. The rhs and lhs
values will have normal $ORIGIN substitution rules applied.

The corresponding PTR records used in normal reverse-map zone files will typically have
unique host names that cannot be used with the $GENERATE directives; for example, bill, fred,
www, etc. do not have an iterator relationship, but if host names were sequentially numbered,
such as PC65 to PC126, the $GENERATE directive could be applied to them. Occasionally one
wishes life was that simple!

DNS Resource Records

Alarge number of Resource Records have been defined over the 25 years of the DNS specifica-
tion. These RRs are of two types: real RRs (for want of any better terminology) that appear in a
zone file, and meta (or pseudo) RRs that only appear in the QUESTION SECTION or ADDITIONAL
SECTION of queries (see Chapter 15). Table 13-2 later in this chapter describes the meta (or
pseudo) RRs. Table 13-1 shows the currently assigned real Resource Records (they appear in
zone files) from IANA (www. iana.org/assignments/dns-parameters) and their current support
status in BIND and Windows DNS (Windows Server 2003). The Code column identifies the RR
type, which is used only in the binary format when the RR is transmitted and does not appear
in the text version of the RR—it is provided for information and cross-referencing purposes
only. This table also shows the documentation status in this book (Reference column). The RRs
are shown in alphabetic order for convenience.

Table 13-1. Resource Record Status

RR Name Code Reference BIND Windows Specification Notes

A 1 Yes Yes Yes RFC 1035 Forward map. Host to IPv4
address.

A6 38 Yes Yes No RFC 2874 Experimental. Forward map.
Host to IPv6 address.

AAAA 28 Yes Yes Yes RFC 3596 Forward map. Host to IPv6
address.

AFSDB 18 Yes Yes Yes RFC 1183 Andrew File System Database
location.

APL 42 Yes Yes No RFC 3123 Experimental. Stands for Ad-

dress Prefix Lists—supplies
lists of IP addresses for any
required purpose.

Continued

412 CHAPTER 13

Table 13-1. Continued

ZONE FILE REFERENCE

RR Name

Code

Reference

BIND

Windows

Specification

Notes

ATMA

CERT

CNAME

DNAME

DNSKEY

DS

EID

GPOS

HINFO

IPSECKEY

ISDN

KEY

34

37

39

48

43

31

27

13

45

20

25

36

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

Yes

Yes

No

None

RFC 2538

RFC 1035

RFC 2672

RFC 4034

RFC 4034

None

RFC 1712

RFC 1035

RFC 4025

RFC 1183

RFC 3445

RFC 2230

Private. Stands for ATM Ad-
dress. Defined by the ATM
forum (document reference
af-saa-0069.000.pdf).

CERT RRs define various
security certificate formats,
such as X.509, for storage in
the DNS.

Stands for Canonical Name
(Alias). Maps an alias name
to another name.

Experimental. Used for
reverse-map delegation—
especially IPv6.

DNSKEY RRs define the
public key used in DNSSEC
(DNSSEC.bis) operations
only. The KEY RR is used for
all other public keys.

Delegation Signer RRs are
only used in DNSSEC
(DNSSEC.bis) operations and
are placed in parent zones at
the point of delegation to a
child zone to create chains of
trust.

Private RR. Stands for
Endpoint Identifier.

Stands for Geographical
Position—made obsolete by
LOCRR.

Textual host OS and
hardware description.

IPSECKEY RRs are used to
define keys and other prop-
erties used in IPSec
operations.

Maps a host to an ISDN E.164
address.

KEY RRs define public keys
for use in cryptographic
security operation, such

as SIG(0). The exception:
DNSSEC (DNSSEC.bis),
which uses the DNSKEY RR
exclusively.

Stands for Key Exchanger.
Returns an alternative host
name.

CHAPTER 13 " ZONE FILE REFERENCE 413

RR Name Code Reference BIND Windows Specification Notes

LOC 29 Yes Yes No RFC 1876 Experimental but widely
used. Provides longitude,
latitude, and altitude infor-
mation for a name.

MB 7 Yes Yes Yes RFC 1035 Experimental. Stands for
Mailbox Name. Not widely
used.

MD 3 No No No RFC 1035 Mail Destination. Obsolete—
replaced by MX.

MF 4 No No No RFC 1035 Stands for Mail Forwarder.
Obsolete—replaced by MX.

MG 8 Yes Yes Yes RFC 1035 Experimental. Stands for
Mail Group Member. Not
widely used.

MINFO 14 Yes No Yes RFC 1035 Experimental. Stands for
Mail list information. Not
widely used.

MR 9 Yes Yes Yes RFC 1035 Experimental. Stands for
Mail Rename. Not widely
used.

MX 15 Yes Yes Yes RFC 1035 Stands for Mail Exchanger.
Defines the domain’s
incoming mail servers.

NAPTR 35 Yes Yes No RFC 3403 Stands for Naming Authority
Pointer. This is a general-
purpose RR that defines rules
to be applied to application

data.

NIMLOC 32 No No No None Private. Stands for NIMROD
Locator.

NS 2 Yes Yes Yes RFC 1035 Name Server RRs define the
name servers for the domain.

NSAP 22 Yes Yes No RFC 1706 Maps a host to an NSAP (OSI
address).

NSAP-PTR 23 No No No RFC 1348 NSAP reverse map. Made
obsolete in RFC 1706.

NSEC 47 Yes Yes No RFC 4034 NSEC RRs are used in

DNSSEC (DNSSEC.bis)
operations to provide proof
of nonexistence of names.

NULL 10 No Yes No RFC 1035 Experimental. Cannot be
defined in a master zone file.

NXT 30 No Yes Yes RFC 3755 Stands for Next Domain.
Made obsolete by RFC 3755.

PTR 12 Yes Yes Yes RFC 1035 IP to host (reverse mapping)
used by IPv4 and IPv6.

Continued

414

Table 13-1. Continued

CHAPTER 13

ZONE FILE REFERENCE

RR Name Code

Reference

BIND

Windows

Specification

Notes

PX

RP

RRSIG

RT

SIG

SINK
SOA

SRV

SSHFP

TXT

WKS

26

17

46

21

25

40

33

44

16

11

19

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

No
Yes

Yes

Yes

Yes

Yes

RFC 2163

RFC 1183

RFC 4034

RFC 1183

RFC 2931

None
RFC 1035/2308

RFC 2782

None

RFC 1035

RFC 1035

RFC 1183

X.400 to RFC 822 mail
mapping.

Experimental. Stands for
Responsible Person. Supplies
textual information about a
host or name.

RRSIG RRs are used in
DNSSEC (DNSSEC.bis)
operations to contain the
digital signatures of RRsets.

Experimental. Stands for
Route Through. Defines the
route to one host via another
host.

Stands for Security Signature.
This RR is now limited to use
as ameta (or pseudo) RR
when securing public key
transactions (SIG(0)) used in
Dynamic DNS (DDNS).

Private RR.

Stands for Start of Authority.
Defines global information
about the domain.

Stands for Services Record.
Allows discovery of services
provided by hosts.

Draft RFC (draft-ietf-
secsh-dns-05.txt). Keys for
use with Secure Shell (SSH).

Arbitrary text associated with
a domain. Also used for SPF
antispam record.

Deprecated. SRV provides
more powerful features.

Maps a host to an X.25
address.

Table 13-2 lists meta (or pseudo) RRs and describes their use. Meta RRs do not appear in
zone files but may appear in the QUESTION SECTION, ANSWER SECTION, or ADDITIONAL SECTION of
a query (see Chapter 15). Meta RRs are defined in the IANA list (www.iana.org/assignments/
dns-parameters).

Table 13-2. Meta RRs

CHAPTER 13 " ZONE FILE REFERENCE

RR Name Code

Description

ANY

AXFR

MAILB

OPT

SIG
TKEY

TSIG

255

252

251

253

41

25
249

250

Appears in the QUESTION SECTION of a query and requests all records asso-
ciated with the query name. If the associated name is the zone or domain
name, then only those records having that name are supplied; for example,
SOA, MX, NS RRs, not the entire zone file.

Appears in the QUESTION SECTION of a query and requests a transfer of the
entire zone.

Appears in the QUESTION SECTION of a query and requests an incremental
zone transfer, that is, only changed records.

Appears in the QUESTION SECTION of a query and requests all MB, MG, and
MR RRs for the associated name.

Appears in the ADDITIONAL SECTION of a query and response. Used to indicate
EDNSO (RFC 2671) is in use when either dnssec-enable yes; is set in the
options clause or edns yes; is defined in a server clause of named. conf. The
OPT meta RR format is described in the section “EDNS0 Transactions” lo-
cated in Chapter 15 and is used among other things to negotiate a larger UDP
block size.

Appears in the ADDITIONAL SECTION. See notes in Table 13-1.

Appears only in the ADDITIONAL SECTION of a query or response. The Transfer
KEY RR contains the computed Diffie-Hellman key exchange material.

Appears only in the ADDITIONAL SECTION of a query or response. The Transfer
SIG RR contains the Message Authentication Code (MAC) for use with either
zone transfers or Dynamic DNS updates in shared secret transactions.

Resource Record Common Format

The first part of textual RRs is common to all types and the various fields are described in
detail here to avoid repetition within the individual RR descriptions:

name

ttl class

The name Field

type type-specific-data

The name field, frequently called the owner name to differentiate it from names that can
appear on the type-specific-data side of the RR, may take any of the following values:

¢ A Fully Qualified Domain Name—ends with a dot

* Anunqualified name (does not end with a dot), in which case the $0RIGIN substitution
rule is applied as described previously for the $ORIGIN directive

* Ablank (tab) or space, in which case the name from the previous RR or $ORIGIN is

substituted

* Asingle @ character, in which case the current value of $0RIGIN is substituted

The name field may use a very liberal set of characters; the original specifications, RFCs
821, 952, and 1123, limited the character set to the following:

415

416

CHAPTER 13 ' ZONE FILE REFERENCE

* Any upper- or lowercase alpha character—a to zand Ato Z
e Any numeric value from the range 0 to 9
¢ The - (dash or minus sign)

The preceding list is the safest set to use under all conditions (and can be enforced by
using the check-name statement in BIND’s named. conf file if required). The rule for the permis-
sible character set was liberalized by RFC 2181, which essentially says any character, in context,
is permissible, and it is up to the client application to validate the name format before using it.
The justification for this change is that the DNS can be used for the storage of many types of
data, not just domain names, each of which may need to use a unique character set. The biggest
single effect of this RFC was to formally allow _ (underscore), which is used in the SRV RR and
the / (forward slash), which is used in the delegation of reverse subnet maps (see Chapter 8).
There appears to be only two remaining hard limitations on names. First is the use of the ter-
minating . (dot) in a name, the absence of which will invoke the $ORIGIN substitution rule.
Second, a single @ (commercial at sign) will explicitly substitute the $0RIGIN name.

Each dot-separated value in a name can be up to 63 characters in length and is called
a label. In practice, to avoid reaching the 512-byte limit of UDP transactions in cases where
multiple records are returned, smaller is better! A practical limit could be 10 to 20 characters
per label and indeed, certain libraries limit host names to 32 characters, but as noted, up to
63 characters can be used where necessary. If the host name part is also used as a NETBIOS
name, it should be limited to 15 characters or less. The sum of all labels in a name, including
the separating dots, must not exceed 255 characters. RFC 3490 (clarified by RFC 3743) defines
the rules for the use of Internationalized Domain Names (IDNs) in the DNS.

The tt1 Field

The ttl field defines the time in seconds that the RR to which it applies may be cached. The
field is optional, and if not present, the zone default (defined by the $TTL directive) is used.
If the field is present, it will be used whether it is lower or higher than the zone default. The
ttl field is an unsigned 32-bit integer and may take a value in the range 0 (do not cache)

to 2147483647. BIND allows its standard short format to be used in any ttl field. The case-
insensitive values are m (minutes), h (hours), d (days), and w (weeks); for example, 3w2d1h5m5
is equivalent to 1991705 seconds. This book uses the BIND short format throughout because
it is clearer, but if zone files are to be ported between BIND and other DNS applications, the
short format should not be used. The value of the TTL field was clarified in RFC 2181.

The class Field

The class field may take the case-insensitive values of IN = Internet class, CH = CHAOS (an MIT
LAN protocol), HS = Hesiod (an information service used at MIT). The latter two seem mostly of
historic interest, but the use of the CHAOS class in a dig command (see Chapter 9) is the only
way in which the BIND version number may be interrogated remotely (the version statement
in named. conf may be used to reply with arbitrary information to disguise the version number).

CHAPTER 13 " ZONE FILE REFERENCE

The type Field

The type field designates the RR type, for example, AAAA. Each type is described in alphabetic
order under its RR name in the “Resource Record Descriptions” section later in this chapter.

The type-specific-data Field

The type-specific-data field may consist of one or more parameters and is unique to the
RR. The type-specific-data textual representations for each RR are described in the following
sections. Chapter 15 defines the binary, or wire format, representation.

Bit Labels

RFC 2673 introduced a new bit label, or bit-string label field, that is optimized for the definition
of IPv6 addresses when used in reverse-map delegation where the volume of textual data can
be brutal. This bit label, which has currently EXPERIMENTAL status (its status was changed by
RFC 3363), is described here for completeness, but is otherwise not used throughout this book.
The bit-label field is designed to be used as a left-hand name field only. It cannot appear in a
right-hand name expression.

Bit Label Syntax
\[string]

In the bit-label syntax, \ is a literal to indicate the beginning of a bit label. The characters [and]
are used to enclose the bit-string label definition. The string field may be used to define a binary,
octal, hexadecimal, or IPv4 format address field as shown here:

type-string[/length]

The type-string field begins with a literal that defines the string format and takes one of
the following values:

¢ x indicates hexadecimal format and is followed by as many hexadecimal characters as
required to enclose that part of the address being defined by the bit label. The /1length
field is mandatory and indicates the number of bits contained within the hexadecimal
field. Any unused bits must be set to 0. The first hexadecimal character is assumed to
begin the field, thus the hexadecimal format can only be used on 4-bit boundaries.

 oindicates octal format and is followed by as many octal characters as required to
enclose that part of the address being defined by the bit label. The /length field is
mandatory and indicates the number of bits contained within the octal field. Any
unused bits must be set to zero. The first octal character is assumed to begin the field,
thus the octal format can only be used on 3-bit boundaries.

* bindicates binary format and is followed by as many binary characters as required to
enclose that part of the address being defined by the bit label. The /length field is not
required with the binary format. The binary format can be used on any bit boundary.

417

418

CHAPTER 13 ' ZONE FILE REFERENCE

* The absence of any literal defines that the field is in dotted-quad format (IPv4 address
format) and must contain all four parts of the address. The /1length field is mandatory
and indicates the number of bits contained within the dotted-quad field. The dotted-
quad format can only be used on 32-bit boundaries.

The following fragments show a Global Unicast IPv6 address, 2001:db8:3d::1, being fully
delegated according to the hierarchy defined in Chapter 5. Each $0RIGIN directive is assumed
to start a separate zone file; the DNAME RR used in the fragments also has EXPERIMENTAL
status.

$ORIGIN IPV6.ARPA.
; first 16 bits

\[x2001/16] IN DNAME tla.example.org.

$ORIGIN tla.example.org.
; next 13 bits

\[x0db8/13] IN DNAME nla.example.net.

$ORIGIN nla.example.net.
; next 19 bits only possible with binary format

\[b0010000000000111101] IN DNAME ip6.example.com.

$ORIGIN ip6.example.com.
; last 80 bits

\[x000100000001/80] IN PTR bill.example.com.

Whether the preceding is more or less comprehensible than the normal IPv6 reverse
mapping defined in Chapter 5 is for you to decide. Bit labels are fully supported by BIND
(9.34), but if used with DNS software that does not support them (including previous versions
of BIND), such software will reject queries containing bit labels as invalid.

RRsets

RRs with the same name, class, and type are collectively called an RRset. By extension of this
definition, a singleton RR is also an RRset! The following is an example of an RRset using MX
RRs:

CHAPTER 13 " ZONE FILE REFERENCE

; zone file fragment
$TTL 2d ;172800 seconds
$ORIGIN example.com.

3w IN MX 10 mail.example.com.
4h IN MX 10 mail.example.com.
IN MX 20 mail.example.net.

The type-specific-data and ttl fields are explicitly excluded from the definition of an
RRset. However, RFC 2181 does not allow RRsets to have different TTL values. If they are differ-
ent, only one TTL, typically the lowest, will be used to cover the RRset. In the preceding example,
the TTL values are not all the same, and the lowest (4h or 14400 seconds) would typically be used
for the RRset.

Resource Record Descriptions

The following sections describe each RR type defined in Table 13-2. Examples are used where
appropriate to illustrate the RR usage.

IPv4 Address (A) Record

The Address RR forward maps a host name to an IPv4 address. The IPv6 equivalent is an AAAA
RR. The A RR is defined in RFC 1035. The only parameter is an IPv4 address in dotted decimal
format.

A RR Syntax
name ttl class rr ipva
joe IN A 192.168.254.3

If multiple addresses are defined with the same name, then BIND will respond to queries with all the
addresses defined (an RRset), but the order may change depending on the value of the rrset-order
statement in BIND’s named. conf file. The default order is cyclic or round-robin. The same IP
address may be defined with different names. IP addresses do not have to be in the same IP address
class or range. The order in which A RRs are defined is not significant, but it may be easier to
define them in either an ascending or descending order of IP address, as this can prevent uninten-
tional duplicate definition of IP addresses. Since the ipv4 field is an address, not a name, there is no
terminating dot. The following zone file fragment illustrates various uses of the A RR:

; zone fragment for example.com
$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

joe IN A 192.168.0.3 ; joe & www = same ip
WWW IN A 192.168.0.3

; could be rewritten as

; www.example.com. A 192.168.0.3

419

420

CHAPTER 13 ' ZONE FILE REFERENCE

fred 3600 IN A 192.168.0.4 ; ttl overrides $TTL default
ftp IN A 192.168.0.5 ; round-robin with next
IN A 192.168.0.6
mail IN A 192.168.0.15 ; mail = round-robin
mail IN A 192.168.0.32
mail IN A 192.168.0.33
squat IN A 10.0.14.13 ; address in another range & class

In the preceding example, BIND will respond to queries for mail.example.com as follows—
assume use of the rrset-order {order cyclic;}; statement or no rrset-order statement, in
which case it defaults to cyclic:

1st query 192.168.0.15, 192.168.0.32, 192.168.0.33
2nd query 192.168.0.33, 192.168.0.15, 192.168.0.32
3rd query 192.168.0.32, 192.168.0.33, 192.168.0.15
4th query 192.168.0.15, 192.168.0.32, 192.168.0.33

Multiple names may be used to define the same IP address as shown in the preceding
example for joe and www. Many people prefer to use a CNAME RR (defined later in this chap-
ter) to achieve the same result. There is no functional difference between the two definitions
except that multiple A RRs are slightly faster since they involve less work when processing a

query.

Note This book uses both FQDN and unqualified name formats when defining left-hand and right-hand
names to expose you to a variety of styles. It is recommended that a single style be used throughout zone
files to avoid confusion; for example, FQDN in right-hand names, unqualified in left-hand names, or whatever
style you find less confusing. Do not be tempted to adopt a style solely because it is shorter. If the style is
short and less confusing—bliss.

Experimental IPv6 Address (A6) Record

The A6 RR is an experimental RR used to forward map host names to IPv6 addresses. RFC
3363 changed the status of the A6 RR, defined in RFC 2874, from a PROPOSED STANDARD to
EXPERIMENTAL due primarily to performance and operational concerns. The current IETF
recommendation is to use AAAA RRs to forward map IPv6 addresses. It is not clear at this time
when (or if) the A6 RR will ever be restored to recommended usage by the IETE even though it
is fully supported by BIND. It is described here because it does significantly reduce the effort
required to define an IPv6 address by recognizing the hierarchical nature of IPv6 addresses
and allowing various parts of addresses to be defined in separate zone files or as separate parts
of the same zone file. The default behavior of current BIND versions is to issue AAAA RR
queries for IPv6 or A RR and AAAA RR queries when using dual-stack implementations. The
only way to force use of A6 RRs at this time is to use BIND 9.2.1 or lower. IPv6 addresses are
described in Chapter 5.

CHAPTER 13 " ZONE FILE REFERENCE

A6 RR Syntax
name ttl class A6 prefix ipv6 [next-name]
joe IN A6 64 ::1 subneti.example.com.

The prefix field defines the number of bits (0 to 128) that are not defined by the A6 RR. In the
preceding example, 64 bits are defined by this A6 RR, and 64 bits will be defined by another
A6 RR. If the prefix is 0, then no additional A6 RRs are required, the complete IPv6 address

is defined in this RR, and the A6 RR has the same functionality as an AAAA RR.

The ipvé6 field contains that part of the IPv6 address that is defined by this A6 RR, which
in the preceding example is 64 bits (128 — prefix). A full 128 bits must be defined in each A6
RR; bits that are not defined within any A6 RR should by convention be set to 0 as in the pre-
ceding example.

The optional next-name field defines the name of another A6 RR, which will define the
remaining bits, 64 in the preceding example, of the IPv6 address. This field is mandatory if
the prefix field is not 0; that is, the IPv6 address in this A6 RR is not completely defined.

A6 RRs may be chained such that an A6 record pointed to by one A6 RR may itself point to
another A6 RR that describes the next part of the address. This process is illustrated in the follow-
ing fragment, where the zone file separates the subnet definition (bits 48 to 63) from the interface
ID and in turn defines an additional A6 pointer for a target IPv6 address of 2001:dba:ddef:1::1:

; zone fragment for example.com
$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

joe IN A6 64 ::1 subneti.example.com.

; the next A6 RR defines the subnet ID only (16 bits) and
; references a further A6 RR for the remaining 48 bits
subnet1 IN A6 48 0:0:0:1:: example-com.example.net.

In the preceding fragment, the second A6 RR contains only 16 valid bits (128 — 64 — 48 = 16)
and leaves a further 48 bits to be defined at the A6 RR with the name example-com.example.net.,
which is contained in an external domain (example.net). The second A6 RR defines a full
128-bit address (0:0:0:1: :) with the relevant part (the subnet ID of 1) in the correct position
(bits 48 to 63); all other bits in the address are 0.

The A6 RR at example-com.example.net could define the remaining 48 bits or further chain
to the Internet Registry that assigned the address blocks. In the following fragment, the remaining
A6 RRs are shown in a series of zone files reflecting the IPv6 hierarchy—each $0RIGIN directive is
assumed to be a separate zone file.

$ORIGIN example.net.
; NLA assigns 19 bits
example-com IN A6 29 0:2:ddef:: ipv6.example.org.

$ORIGIN example.org.
; SLA assigns remaining 29 bits
ipvé IN A6 0 2001:db8::

421

422

CHAPTER 13 ' ZONE FILE REFERENCE

The resulting address of joe.example.comis 2001:dba:ddef:1::1. Once established, the A6
RR chains should be stable, but the address values contained within them can be easily and
readily changed, allowing network renumbering to be a fairly painless process.

The concern expressed by the IETE which led to the A6 RR being relegated to EXPERI-
MENTAL status, is that a single address lookup can result in a significant number of DNS
transactions, any one of which could fail; the chains can take some time to debug and are
potentially error-prone; it is also possible to create A6 RR loops.

IPv6 Address (AAAA) Record

The AAAA RR is used to forward map hosts to IPv6 addresses and is the current IETF recom-
mendation for this purpose. IPv6 is described in Chapter 5. The AAAA (colloquially referred to
as Quad A) RR is functionally similar to the A RR used for IPv4 addresses and is defined in RFC
3596.

AAAA RR Syntax
name ttl class rr ipv6
Jjoe IN A 2001:db8::1

If multiple addresses are defined with the same name, then BIND will respond to queries with
alist of the addresses, but the order may change on successive queries depending on the value
of the rrset-order statement in BIND’s named. conf file. The default order is cyclic or round-
robin. The same IP may be defined with different names. IP addresses do not have to be in the
same subnet or use the same global routing prefix. The order in which AAAA RRs are defined is
not significant, but it may be easier to define them in either an ascending or descending order
of IP address since this can prevent unintentional duplicate definition of IP addresses. Since
the ipvé field is an address and not a name, there is no terminating dot. The following zone file
fragment illustrates various uses of the AAAA RR:

; zone fragment for example.com
$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

joe IN AAAA 2001:db8::3 ; joe & www = same ip

WiWW IN AAAA 2001:db8::3
; functionally the same as the preceding record
www.example.com. AAAA 2001:db8::3
fred 3600 IN AAAA 2001:db8::4 ; ttl =3600 overrides $TTL default
ftp IN AAAA 2001:db8::5 ; round robin with next
IN AAAA 2001:db8::6
mail IN AAAA 2001:db8::7 ; mail = round robin
mail IN AAAA 2001:db8::32
mail IN AAAA 2001:db8::33
squat IN AAAA 2001:db8:0:0:1::13 ; address in another subnet

IPv6 and IPv4 RRs can be freely mixed in the zone file as shown the following fragment:

CHAPTER 13 " ZONE FILE REFERENCE

; zone fragment for example.com
$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

WWW IN A 192.168.0.3
mail IN A 192.168.0.32
WWW IN AAAA 2001:db8::3
mail IN AAAA 2001:db8::32

Blank name substitution can also be used in mixed configurations if this is more conven-
ient or understandable:

; zone fragment for example.com
$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

WIWW IN A 192.168.0.3

IN AAAA 2001:db8::3
mail IN A 192.168.0.32
IN AAAA 2001:db8::32

In both preceding fragments, it is assumed that the hosts, www.example.com and
mail.example.com, are running dual (IPv4/IPv6) IP stacks.

AFS Database (AFSDB) Record

The AFS Database RR defines a host that provides an AFS Database service (AFS was originally
the Andrew File System). The purpose of this RR is to allow hosts within the domain to discover
the host or hosts that provide both the AFS service and the type of service. The RR is not widely
used, and its functionality could now be provided by the generic SRV RR. The AFSDB RR is
experimental and is defined in RFC 1183.

AFSDB RR Syntax
name ttl class AFSDB sub-type host
joe IN RP 2 joe.people.example.com.

The sub-type field may be either 1 = the AFS version 3.0 of the service or 2 = the OSF DCE/NCA
version of the AFS service. The host field defines the host name that provides the sub-type serv-
ice. The following fragment shows the use of the AFSDB RR:

; zone file fragment for example.com
$TTL 2d ; zone TTL default = 2 days or 172800 seconds
$ORIGIN example.com.

@ IN AFSDB 1 joe.example.com.

IN AFSDB 1 bill.example.com.
joe IN A 192.168.254.3

bill IN A 192.168.254.4

423

424

CHAPTER 13 ' ZONE FILE REFERENCE

In the preceding fragment, multiple hosts providing the same sub-type are shown—the
order of use is not defined in the RFC.

Note While it may appear that the AFSDB RR type is only relevant if the AFS file system is being used, this
need not be the case. As long as the RR syntax is satisfied, the RR could be used for any purpose, as indeed
is true for many other existing RR types. As an example, the AFSDB RR could be used to differentiate between
two types of MySQL servers. The client application would clearly need to issue the appropriate AFSDB DNS
query to obtain the required results from the name server. An alternative strategy would be to define a specific
user-defined MySQL RR type. This process is described in the “User-defined RRs” section later in the chapter.

Address Prefix List (APL) Record

The Address Prefix List RR is an RR that may be used to define one or more IP addresses or IP
address ranges for any required purpose. The APL RR is experimental and is defined in RFC 3132.

APL RR Syntax
name class ttl rr [!]af:address/prefix
routerl1 1IN APL 1:192.168.38.0/24 11:192.168.38.0/26

The ! field is optional and, if present, indicates negation; that is, the following address or address
range is explicitly excluded. The negation feature can greatly reduce the number of entries
required to define a given address range. To illustrate this point, in the preceding example, the
first value (192.168.38.0/24) defines an IPv4 address range from 192.168.38.0 to 192.168.38.255.
The negated part (1192.168.38.0/26) excludes 64 IPv4 addresses (192.168.38.0 to 192.168.38.63)
that lie in this range. If the negation value was not used, then this definition would require all the
positive ranges to be defined, which in the preceding case would result in 192.168.38.64/26,
192.168.38.128/26, and 192.168.38.192/26. The af field defines the address family as defined by
TANA (www.iana.org/assignments/address-family-numbers); from this list, IPv4 = 1 and IPv6 = 2.
The address/prefix value is the IP address, whose format is defined by af value, written in the
IP prefix (or slash) notation.

The following fragment shows the use of the APL RR to indicate the range of private
addresses IPv4 used by a NAT-PT (IPv4 to IPv6) gateway and the corresponding public (Global
Unicast) IPv6 addresses:

; zone file fragment for example.com
$TTL 2d ; zone TTL default = 2 days or 172800 seconds
$ORIGIN example.com.

nat-pt IN A 192.168.254.3

IN AAMA 2001:db8::17
IN APL (

1:192.168.254.0/27 ; IPv4 = 32
2:2001:db8::0/122 ; IPv6 = 64
12:2001:db8::37/128 ; excluding 1 IPv6

)

CHAPTER 13 " ZONE FILE REFERENCE

The APL RR does not define any specific application or requirement for the address lists.
The preceding example, which is entirely fictitious, shows a possible use of the APL RR.

ATM Address (ATMA) Record

The Asynchronous Transfer Mode Address RR is the equivalent of an A RR for ATM endpoints.
It associates an ATM address in either E.164 format or the AESA (ATM End System Address,
defined in ISO8348/AD 2). The ATMA RR is a private RR type. It has been allocated an ID
value by IANA, though it is not defined by an RFC, but by the ATM Forum (www.atmforum.com/
standards/approved.html), document reference af-saa-0069.000.pdf, which is available at

no charge. This specification defines both forward and reverse mapping. The ATMA RR is sup-
ported by the Windows Server 2003 DNS but is not supported by the current BIND release.

Certificate (CERT) Record

The Certificate RR may be used to store either public key certificates or Certificate Revocation
Lists (CRL) in the zone file. The CERT RR is defined in RFC 2538.

CERT RR Syntax
name ttl class rr type key-tag algorithm cert-crl
joe N CERT 1 12179 3 (

AQPSKmynfzW4kyBv0o15MUG2DeI03
Cb1+BBZH4b/0PY1kxkmvHjcZc8no
kfzj31GajIQKY+5CptLr3buXA10h
WqTkF7H6RfoRgXQeogmMHfpftf6z
MvilyBUgia7za6ZEz0JBOztyvhjL
7421U/TpPSEDhm2SNKL1jfUppnau
aNvvaw==)

For the CERT RR, the type field defines the certificate format and may take one of the follow-
ing values:

0 = Reserved

1=X.509 (RFC 3280)

2 = SKPI (RFC 2693)

3 = OpenPGP (RFC 2440)

4-252 = Currently unassigned

253 = Private URI (see the text that follows)
254 = Private OID (see the text that follows)
255 = Reserved

The value 253 specifies that the format of the cert-crl field will commence with a URI
that defines the address, for instance, a host name of the location that may be interpreted by
the recipient to define the format of the certificate. The URI must be followed by a single space
and then a certificate whose representation format is defined by the URI.

425

426

CHAPTER 13 ' ZONE FILE REFERENCE

The value 254 specifies that the format of the cert-crl field will commence with an Object
Identifier (OID) that defines an object that may be interpreted by the recipient to define the for-
mat of the certificate. The OID must be followed by one or more spaces and then the certificate
whose representation format is defined by the OID.

The key-tag field is generated by the dnssec-keygen utility to identify the key embedded
in the certificate. The algorithm field defines the cryptographic algorithm being used and may
take one of the following values:

0 = Reserved

1 = RSA-MD5—not recommended

2 = Diffie-Hellman—optional

3 = DSA—mandatory (RFC 2536)

4 = Reserved for elliptic curve cryptography

5 = RSA-SHA-1—mandatory (RFC 3110)

6—251 = Currently unassigned

252 = Indirect (see the section “Alternative Cryptographic Algorithms” later in this chapter)

253 = Private URI (see the section “Alternative Cryptographic Algorithms” later in this
chapter)

254 = Private OID (see the section “Alternative Cryptographic Algorithms” later in this
chapter)

255 = Reserved

The cert-crl field contains the certificate or a Certificate Revocation List entry (see also
text preceding this list if the type field is either 253 or 254) in the format defined by the relevant
RFEC associated with the type field. The CERT RR X.509 cert-crl field data may be generated
using tools such as OpenSSL and GnuTLS and then edited into the RR.

Canonical Name (CNAME) Record

A Canonical Name record maps an alias to the real or canonical name that may lie inside or
outside the current zone. Canonical simply means the expected or real name. The CNAME RR
is defined in RFC 1035.

CNAME RR Syntax
name ttl class rr canonical-name
WwW IN CNAME serverl.example.com.

The most common use of CNAME RRs is where a host has more than one possible name;
for example, assume a server has a real name of server1.example.com but also hosts a web
and an FTP service, then both www.example.com and ftp.example.com must be resolvable
(must translate) to the same IP address as serveri.example.com. This can be done using

CHAPTER 13 " ZONE FILE REFERENCE

multiple A records as shown previously, but many people elect to use an A RR for the real
name, serveri.example.com, and use CNAME RRs for www.example.com and ftp.example.com,
both of which alias server1.example.com as shown in the following fragment:

; zone fragment for example.com
$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

serverl IN A 192.168.0.3

W IN CNAME serveri
ftp IN CNAME server1

A name defined with a CNAME RR is only allowed to have a NSEC, KEY, DNSKEY, and
RRSIG RR (used in DNSSEC only) using the same name, thus it is not permissible, for example,
to define a TXT RR or an RP RR using the name assigned to the CNAME RR.

CNAME RRs incur performance overheads. The most common DNS query is for an A RR, or
an AAAA RR if IPv6—the end system typically needs an address that is only defined with these
RR types. In the preceding example, if a query for the address of www. example.com is received (an
A or AAAA query), two lookup operations are performed on the master or slave server. The first
lookup finds www, which is a CNAME,; this is followed by a lookup for server1 to obtain the IP
address, that is, the CNAME chain is followed to attempt to resolve the original request for an
IP address. On low-volume name servers, the additional resources used are probably not signi-
ficant, but on high-volume servers, the additional load can become nontrivial. The user must
make a choice to balance what many see as the convenience of using CNAME RRs against the
possible performance degradation involved.

While use of CNAME RRs with NS and MX records is widely implemented and normally
generates a working configuration, it is theoretically not permitted (RFC 1034 section 3.6.2)
since it can result in lost names. The fragment that follows illustrates a widely used but tech-
nically invalid configuration:

; zone fragment for example.com
$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

IN MX 10 mail.example.com.
mail IN CNAME serveril
serverl IN A 192.168.0.3

In the preceding configuration, when a query is issued for the A RR of mail.example.com,
the result will return both the mail.example.com CNAME RR and the serveri.example.com A RR.
When the A RR is used by a mail application, the name associated with the CNAME can be lost;
for instance, there may be a valid MX record referencing the host mail.example.comand else-
where an A RR referencing server1.example.com, but nothing joining the two records. The
following fragment, by reordering the RRs, will achieve the same result and allow a valid map-
ping of the MX name to the A RR name.

427

428

CHAPTER 13 ' ZONE FILE REFERENCE

; zone fragment for example.com
$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

IN MX 10 mail.example.com.
serverl IN CNAME mail
mail IN A 192.168.0.3

For many users, the preceding simply feels uncomfortable because the real host name is
serverl.example.com, notmail.example.com but it is a perfectly legitimate definition that will
cause no problems.

It is permitted for one CNAME RR to alias another CNAME RR, but this considered bad
practice due to the additional lookup loads involved and because it can lead to CNAME loops
(that is, a CNAME RR references a CNAME RR, which references a CNAME RR, and so on ad
infinitum).

CNAME RRs are the only way to handle references to RRs that lie in another domain,
sometimes referred to as an out-of-bailiwick reference. The following fragment shows that
ftp.example.comis actually provided by ftp.example.net:

; zone fragment for example.com
$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

ftp IN CNAME ~ ftp.example.net.

The following fragment allows URLs of the form www.example.com and example.com to both
access a web service, in this case one that also uses DNS load-balancing services:

; www.example.com and example.com access
$TTL 2d ; zone default = 2 days

$ORIGIN example.com.

; resolves example.com to an IP

@ IN A 192.168.254.8
IN A 192.168.254.9
IN A 192.168.254.10

WIWW IN CNAME example.com.

Delegation of Reverse Names (DNAME) Record

The Delegation of Reverse Name RR is designed to assist the delegation of reverse mapping by
reducing the size of the data that must be entered. The DNAME RR is designed to be used in
conjunction with a bit label (described in the section “Bit Labels” earlier in the chapter) but
does not strictly require a bit label. The DNAME without a bit label is equivalent to a CNAME
when used in a reverse-map (or delegation) zone file, an example of which is provided in the
section “Delegate Reverse Subnet Maps” located in Chapter 8. RFC 3363 changed the status of
the bit label and the A6 RR from PROPOSED STANDARD to EXPERIMENTAL due to concerns
over performance and that the new bit labels would require a change to all DNS software in
the root and gTLD servers before the bit label could become active. Because the DNAME RR
without bit labels is functionally equivalent to CNAME, its use is deprecated. The current IETF

CHAPTER 13 " ZONE FILE REFERENCE

recommendation is to use text labels (names) with PTR records under the IP6.ARPA domain
for the reverse mapping of IPv6 addresses. It not clear at this time when (or if) the DNAME RR
and the bit label will ever be restored to recommended usage by the IETE even though it is
fully supported by BIND. The DNAME RR is defined in RFC 2672 and its syntax is shown next
for completeness only.

DNAME RR Syntax
name ttl class rr next-name
1.0.0.0 IN DNAME ipv6.example.org.

An example of the use of DNAME RRs to delegate reverse mapping of IPv6 addresses is illus-
trated in the section “Bit Labels” earlier in the chapter.

DNSKEY Record

The DNSKEY RR describes the public key of a public key (asymmetric) cryptographic algo-
rithm used with DNSSEC.bis (see Chapter 11). It is typically used to authenticate signed keys
(if a Key Signing Key [KSK]) or zones (if a Zone Signing Key [ZSK]). The DNSKEY RR is typically
generated by the dnssec-keygen utility (see Chapter 9) and is defined in RFC 4034.

DNSKEY RR Syntax
name ttl class rr flags proto algorithm key-data
example.com. IN DNSKEY 256 3 5 (

AQPSKmynfzW4kyBvo15MUG2De1Q3
Cb1+BBZH4b/0PY1kxkmvHjcZc8no
kfz331GajIQKY+5CptLr3buXA10h
WqTkF7H6R foRgXQeogmMHfpftf6z
MvilyBUgia7za6ZEz0JBOztyvhjL
7421U/TpPSEDhm2SNKLijfUppniU
aNvvaw==)

The flags field is the decimal representation of a 16-bit field that has the following bit-significant
values:

* Bits 0 to 6: Currently unused and must be zero.

* Bit 7: If set, this indicates a Zone Signing Key, and the name field must be that of the apex
or root of the zone being signed as shown in the preceding example. If not set, the key
may not be used to sign zones, and the name field will typically reference a host record
to which the DNSKEY applies.

* Bits 8 to 14: Currently unused and must be set to zero.

* Bit 15: If set, this is a Secure Entry Point key, and in this case, bit 7 must also be set to 1.
This indicates for administrative purposes only that the key is a Key Signing Key, and as
a consequence this bit is frequently referred to as the KSK bit.

The only valid hexadecimal combinations of the flags field are 0000, 0100, and 0101,
which yield decimal values used in the RR of, respectively 0, 256, and 257.

429

430

CHAPTER 13 ' ZONE FILE REFERENCE

The proto field can only take the value of 3 at this time; all other values are invalid.
The algorithm field may take one of the following values:

0 = Reserved

1 =RSA-MD5—not recommended (RFC 2537)

2 = Diffie-Hellman (RFC 2539)

3 = DSA-SHA-1—optional (RFC 2536)

4 = Elliptic curve—not currently standardized

5 = RSA-SHA-1—mandatory (RFC 3110)

6 = 251 = Currently unassigned

252 = Indirect (see the section “Alternative Cryptographic Algorithms” later in this chapter)

253 = Private URI (see the section “Alternative Cryptographic Algorithms” later in this
chapter)

254 = Private OID (see the section “Alternative Cryptographic Algorithms” later in this
chapter)

255 = Reserved

The key-data field is the base64 (RFC 3548) representation of the public key data. As shown
in the example, if enclosed in the parentheses, whitespace is allowed for layout purposes.

Note RSA-MD5 is no longer recommended due to a number of discovered weaknesses published in Feb-
ruary 2005. The weaknesses do not invalidate use of the algorithm.

Delegation Signer (DS) Record

The Delegation Signer RR is used in DNSSSEC (DNSSEC.bis—see Chapter 11) to create the
chain of trust or authority from a signed parent zone to a signed child zone. The DS RR con-
tains a hash (or digest) of a DNSKEY RR at the apex of the child zone. By convention, this
DNSKEY RR has the SEP bit set (it has a flags field value of 257), but this is not a require-
ment of the DNSSEC protocol. If a chain of trust is required for the zone sub.example.com
(the child), the DS RR is added to the zone example.com (the parent) at the point of delega-
tion—the NS RRs that point to sub.example.com. Both the parent and child zones must be
signed. The DS RR is optionally generated by the dnssec-signzone utility (described in
Chapter 9) and is defined in RFC 4034.

CHAPTER 13 " ZONE FILE REFERENCE

DS RR Syntax
name ttl class rr key-tag algorithm digest-type digest
joe IN DS 13245 5 1 (EOB4B11DOFCEOOE3F

FA89FA873F40DC51281BF34)

The key-tag field is generated algorithmically by the dnssec-keygen utility and identifies the par-
ticular DNSKEY RR at the child zone—this is required because more than one DNSKEY RR may
be present at the child zone apex either because separate KSK and ZSKs are used or due to key-
rollover operations. The algorithm field defines the algorithm used by the key-tag-identified
DNSKEY RR at the child zone, which is recommended to be a KSK, and may take one of the fol-
lowing values:

0 =Reserved

1 = RSA-MD5—not recommended (RFC 2537)

2 = Diffie-Hellman (RFC 2539)

3 = DSA-SHA-1—optional (RFC 2536)

4 = Elliptic curve—not currently standardized

5 = RSA-SHA-1—mandatory (RFC 3110)

6-251 = Currently unassigned

252 = Indirect (see the section “Alternative Cryptographic Algorithms” later in this chapter)

253 = Private URI (see the section “Alternative Cryptographic Algorithms” later in this
chapter)

254 = Private OID (see the section “Alternative Cryptographic Algorithms” later in this
chapter)

255 = Reserved

The digest-type field defines the digest algorithm being used and may take one of the
following values:

0 = Reserved
1 = SHA-1—mandatory
2-255 = Currently unassigned

The digest field is the base64 encoding of the digest of the KSK DNSKEY RR at the child
zone.

The dnssec-signzone utility will optionally generate the DS RR with a file name of
dsset-zonename; for example, if the zone being signed is sub.example. com, the resulting
file is called dsset-sub.example.com.

As previously stated, the DS RR is included in the parent (signed) zone, which must then
be re-signed following its addition. The experimental DNSSEC Lookaside Validation (DLV)
system provides an alternative method of creating chains of trust using a DLV RR, which is
functionally identical to the DS RR with the exception of the RR type code. DLV is described
in Chapter 11.

431

432

CHAPTER 13 ' ZONE FILE REFERENCE

System Information (HINFO) Record

The System Information RR allows the user to define the hardware type and operating system
(OS) in use at a host. The HINFO RR was defined in RFC 1035. For security reasons, these
records are rarely used on public servers.

HINFO RR Syntax
name ttl class 1r hardware 0S
IN HINFO PC-Intel-700mhz "Redhat Fedora Core 3"

If a space exists in either the hardware or 0S field, that field must be enclosed in quotes. There
must be at least one space between the hardware and 0S fields. The preceding example illus-
trates that quotes are not required with the hardware field—the spaces have been replaced
with - (hyphen)—but are required with the 0S field, since it contains spaces within the field.
No validation is performed on the field contents other than the space rules defined previously,
which means this record can be used for any purpose; for instance, the fields could contain
the name and phone number of technical support for the system. The following example
shows the use of the HINFO RR:

; zone file fragment for example.com
$TTL 2d ; zone default = 2 days
$ORIGIN example.com.

WIWW IN A 192.168.254.8
IN HINFO "AMD 64 4.8GHZ 10TB" "FreeBSD 5.3"

The preceding HINFO record is associated with www.example.com.

Integrated Services Digital Network (ISDN) Record

The Integrated Services Digital Network RR is the equivalent of an A RR for ISDN Customer
Premise Equipment (CPE). It associates the telephone number of the ISDN CPE to a host
name. The ISDN RR has EXPERIMENTAL status and is defined in RFC 1183.

ISDN RR Syntax

name ttl class RP isdn-number sa
joe IN ISDN 1441115551212 001

The isdn-number is in E.164 format (a telephone number). The telephone number is assumed
to begin with the E.164 international dial sequence. There must be no spaces within the field.
The sa field defines an optional subaddress used with ISDN multidrop configurations
and, if present, is separated from the isdn-number field by one or more spaces. If not used, it is
omitted. Since the isdn-number is an address, not a name, there is no terminating dot.

IPSEC Key (IPSECKEY) Record

The IPSEC Key RR is used for storage of keys used specifically for IPSec operations. Originally,
the KEY RR was designed to store such keys generically using an application subtype value.

CHAPTER 13 " ZONE FILE REFERENCE

RFC 3445 limited the KEY RR to DNS security uses only. Using this new RR type means that an
application that wishes to establish a VPN (an IPSec service) to a specific host name can query
the DNS for an IPSECKEY RR with the host name it wishes to connect to and obtain the rele-
vant details such as the optional gateway and the cryptographic algorithm being used. The
IPSECKEY RR is defined by RFC 4025.

IPSECKEY RR Syntax
name ttl class rr prec gwt algorithm gw key-data
joe IN IPSECKEY 256 1 2 192.168.2.1 (

AQPSKmynfzW4kyBv015MUG2DeIQ3
Cb1+BBZH4b/0PY1kxkmvHjcZc8no
kf2331GajIQKY+5CptLr3buXA10h
WqTkF7H6R foRgXQeogmMHfpftf6z
MvilyBUgia7za6ZEz0JBOztyvhjL
7421U/TpPSEDhm2SNKLijfUppniU
aNvvaw==)

The prec (precedence) field is used the same way as the preference field of an MX RR to
define the order of priority. Lower numbers take the highest precedence. Values may lie in the
range O to 255 only.

The gwt field defines the type of gateway and may take one of the following values:

0 = No gateway (the host supports the IPSec service directly).

1 = An IPv4 gateway is defined that should be used to access this host.
2 = An IPv6 gateway is defined that should be used to access this host.
3 =Anamed host is present that should be used to access this host.
The algorithm field may take one of the values defined here:

0 = No key is present.

1 =DSA (RFC 2536).

2 =RSA (RFC 3110).

3-255 = Not assigned.

The gw field defines the gateway and may be either a single . (dot) if the quwt field =0, an
IPv4 address if qwt = 1, an IPv6 address if qwt = 2, or a host name if qwt = 3.

The key-data field contains the base64-encoded public key of the algorithm defined in
the algorithm field.

Public Key (KEY) Record

The Public Key RR was originally defined in RFC 2535 to be used for the storage of public keys
for use by multiple applications such as IPSec, SSH, etc., as well as for use by DNS security
methods including the original DNSSEC protocol. RFC 3445 limits this RR to use in DNS secu-
rity operations such as DDNS and zone transfer due to the difficulty of querying for specific

433

434 CHAPTER 13 ' ZONE FILE REFERENCE

uses—DNS queries operate on the RR type field, whereas the application functionality was
defined in the proto field (described in the upcoming text) and was therefore not directly
obtained by a query operation. IPSec (IPSECKEY) and SSH (SSHFP) both have new RR types
that allow applications to directly query for the relevant RR.

KEY RR Syntax
name ttl class rr flags proto algorithm key-data
joe IN KEY 256 3 5 (

AQPSKmynfzW4kyBv015MUG2DeIQ3
Cb1+BBZH4b/0PY1kxkmvHjcZc8no
kf2331GajIQKY+5CptLr3buXA10h
WqTkF7H6R foRgXQeogmMHfpftf6z
MvilyBUgia7za6ZEz0JBOztyvhjL
7421U/TpPSEDhm2SNKLijfUppniU
aNvvaw==)

The original definition of this RR was significantly reduced by RFC 3445 as noted previously.
The definitions that follow reflect the current RFC 3445 status, and previous values where
appropriate are also shown but noted as deprecated. The flags field consists of 16 bits in
which only bit 7 is now used. In the textual format, this field is represented as a decimal value
of either 0 (no flag bits set), in which case the key is used with the SIG(0) or TKEY meta RR to
secure DDNS or zone transfer operations, or 256 (bit 7 = 1), which allows it to still be used in
zone signing or verification operations (see Chapter 11) though functionally replaced with the
DNSKEY RR in DNSSEC.bis. All other values will be ignored by DNS systems. The proto field
may only take the value 3, all other values being deprecated. For historical reasons, previous
versions may still exist and are defined here for completeness:

0 = Reserved

1 =TLS (deprecated by RFC 3445)

2 = E-mail (deprecated by RFC 3445)

3 = DNSSEC (only value allowed by RFC 3445)

4 = TPSEC (deprecated—replaced by IPSECKEY RR)
5-255 = Reserved

The algorithm field may take one of the following values:
0 = Reserved

1 = RSA-MD5—not recommended (RFC 2537)

2 = Diffie-Hellman—optional, key only (RFC 2539)
3 = DSA—mandatory (RFC 2536)

4 = Elliptic curve—not currently standardized

5 = RSA-SHA-1—mandatory (RFC 3110)

CHAPTER 13 " ZONE FILE REFERENCE

6—-251 = Available for IANA allocation

252 = Reserved for indirect keys (see the section “Alternative Cryptographic Algorithms”
later in this chapter)

253 = Private URI (see the section “Alternative Cryptographic Algorithms” later in this
chapter)

254 = Private OID (see the section “Alternative Cryptographic Algorithms” later in this
chapter)

255 = Reserved

Note The original specification of the KEY RR (RFC 2535) only allowed algorithm types 1 to 4 defined
previously and was not apparently revised; however, the dnssec-keygen utility allows algorithm 5 to be
specified, and indeed this algorithm can be used in SIG(0) operations that use the KEY RR. It is therefore
shown in the preceding supported list.

KEY RRs are typically generated by the dnssec-keygen utility (see Chapter 9), which cre-
ates an RR that may be included if appropriate (see Chapters 10 and 11), either directly in the
zone file or through the $INCLUDE directive.

While various RFCs limit the use of this RR type in a variety of ways, there is in principle
nothing to stop the user from using it, and the dnssec-keygen utility that creates it, as a general-
purpose public key RR for specialized applications such as secure e-mail where the functionality
is known to the application and the presence of a KEY RR with the same name as, say, an RP RR
could provide some unique functionality.

Key Exchanger (KX) Record

The Key Exchanger RR is provided to allow a client to query a destination host and be provided
with one or more alternative hosts. It is primarily intended for use in secure operations such as
creation of an IPSec VPN or similar service, though its applicability is much wider. The destina-
tion host may not be capable of providing the particular service, but in its corresponding KX RR
it can nominate another host that will support the service such as a secure gateway or router,
which can be used to route packets to the target host. The IPSECKEY RR replaces many of the
functions of this RR type for the particular example described in the defining RFC. The KX RR

is defined in RFC 2230.

KX RR Syntax
name ttl class rr preference alt-host
joe IN KX 2 rti.example.com.

The preference field has exactly the same meaning and use as in the MX RR. It may take a value
in the range 0 to 65535, with lower values being the most preferred. The alt-host field defines
the host name where a VPN or some other service may be obtained for the current host.

435

436

CHAPTER 13 ' ZONE FILE REFERENCE

Location (LOC) Record

The Location RR allows the definition of geographic positioning information associated
with a host or service name. The LOC RR allows longitude, latitude, and altitude to be
defined using the WGS-1984 (NAD-83) coordinate system—a US DoD standard for the defi-
nition of geographic coordinates. The LOC RR, which is experimental, was defined in RFC
1876 and is widely deployed, for instance, to allow geographic analysis of Internet back-
bones. The LOC RR can take a large number of parameters and most often uses the standard
parentheses framing to allow them to be written on more than one line for clarity as shown
in the following text. Location data may be acquired using GPS equipment or to varying
degrees of accuracy from a number of websites such as for GEOnet Names Server (GNS—
http://earth-info.nga.mil/gns/html/index.html), US Geological Survey’s Geographic
Names Information System (GNIS—http://geonames.usgs.gov), or the Getty Thesaurus of
Geographic Names Online (www.getty.edu/research/conducting_research/vocabularies/
tgn/).

LOC RR Syntax

name ttl class rr (
lat-d
[lat-m [lat-s]]
n-s
long-d
[long-m [long-s]]
e-w
alt["m"]
[size["n"] [hp["n"] [vp["n"]]1]
)

yahoo.com. IN LOC 37 23 30.900 N 121 59 19.000 W 7.00m 100m 100m 2m

The lat-d field defines the location latitude in degrees. 1at-m and lat-s are optional fields
defining the minutes (1at-m) and seconds (lat-s) and, if omitted, default to zero. The field n-s
is mandatory and can take the value N (north) or S (south).

The long-d field defines the location longitude in degrees. long-m and long-s are optional
fields defining the minutes (long-m) and seconds (long-s) and, if omitted, default to zero. The
field e-w is mandatory and can take the value E (east) or W (west).

The alt field defines the location altitude and can be either positive or negative in the
range -100000.00 to 42849672.95 meters.

The size field is optional and is the diameter of the circle that encompasses the location,
that is, it represents the positional accuracy. If omitted, 1m is assumed.

The hp field is the optional horizontal accuracy and defaults to 10,000m (meters). The vp
field is the vertical accuracy and, if omitted, defaults to 10m (meters). The defaults selected in
these two parameters represent the typical size of zip/postal code data.

CHAPTER 13 " ZONE FILE REFERENCE

Note The datum (base reference) used by the LOC record is WSG-1984 or NAD-83 (North American
Datum) used by the GPS system. In some cases, geographic data uses NAD-27 as the datum, which is not
the same—always verify the datum being used. Geographic data can be presented in decimal degrees. To
convert decimal degrees to minutes and seconds, multiply the fractional part by 60 to get minutes and frac-
tional minutes, and then multiply the fractional minutes by 60 to get seconds and fractional seconds.

The LOC record can be associated with any host or the domain. The following shows indi-
vidual LOC RR examples using published records or publicly available data from the
preceding sources and including a number of formats:

; yahoo.com LOC RR
yahoo.com. IN LOC 37 23 30.900 N 121 59 19.000 W 7.00m 100m 100m 2m
; Stamford, CT, US - Harbor Lighthouse
IN LOC 41 00 48 N 73 32 21 W 10m
; Kilmarnock, Scotland UK
IN LoC (
55 ;latitude
38 ; seconds omitted
N
4 32 W ; longitude
100m ; altitude - pure guess

)

The first example is a published RR. Since it is associated with the domain, it presumably ref-
erences corporate headquarters, but each subdomain or host—possibly representing a separate
geographic location—could publish LOC records. The second and third RRs were created using
random locations from the databases referenced previously. There are, as far as the author knows,
no registered domains for either the Stamford Harbor Lighthouse or the town of Kilmarnock in
Scotland. Neither does either entity publish a LOC RR! The preceding databases typically do not
provide altitude data, and while it is reasonable to suppose a lighthouse is close to sea level, the
height of the town of Kilmarnock is entirely fictitious. The required accuracy of the data will
depend on the reason for publishing an LOC RR, and in many cases the longitude and latitude
may suffice to give location data.

Mailbox (MB) Record

The Mailbox RR defines the location of a given domain e-mail address. The MB RR has EXPER-
IMENTAL status and is defined in RFC 1035. The MB record is not widely deployed—the MX
RR is the dominant mail record.

437

438 CHAPTER 13 ' ZONE FILE REFERENCE

MB RR Syntax
name ttl class rr mailbox-host
joe IN MB fred.example.com.

The mailbox-host field defines the host where the mailbox is located. The mailbox-host must
have a valid A RR. The name field is the mailbox name written in the standard DNS format for
mailboxes, that is, the first . (dot) is replaced with an @ (commercial at sign) when construct-
ing the e-mail address. The example fragment that follows illustrates that the mailbox for the
domain administrator, hostmaster.example.com. (defined in the SOA record), is located on the
host bill.example.com, whereas the normal mail host is mail.example.com. The mail address,
when constructed, is the normal RFC 822 format, which is hostmaster@example.com in the fol-
lowing example:

; zone file fragment for example.com
$TTL 2d ; zone TTL default = 2 days or 172800 seconds
$ORIGIN example.com.

example.com. IN SOA nsil.example.com. hostmaster.example.com. (
2003080800 ; serial number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes
)
IN MX 10 mail.example.com.
hostmaster IN MB bill.example.com.
bill IN A 192.168.254.2
mail IN A 192.168.254.3

The preceding example requires the mail system to look for an appropriate MB record—
almost none do. Most mail software looks for the presence of an MX RR and delivers mail to
this specified host—mail.example.comin the preceding fragment. To achieve the same result
in the preceding case, the mail system at mail.example.com would be configured to forward
mail to the mailbox hostmaster on the host bill.example.com.

Mail Group (MG) Record

The Mail Group RR defines a group name and the mail boxes that are members of that group.
The MG RR has EXPERIMENTAL status and is defined in RFC 1035.The MG record is not
widely deployed—the MX RR is the dominant mail record.

MG RR Syntax
name ttl class rr mailbox-name
admins IN MG fred.example.com.

The mailbox-name field defines the mailbox names that are part of the mail group. Mail sent
to the group will be sent to each mailbox in the group. Each member of the mail group must
be defined using an MB RR. The mailbox-name field is written in the standard DNS format for

CHAPTER 13 " ZONE FILE REFERENCE

mailboxes, that is, the first . (dot) is replaced with an @ (commercial at sign) when construct-
ing the e-mail address. The example fragment that follows illustrates that the mailbox for the
domain administrator, hostmaster.example.com. (defined in the SOA record), is a mail group
and will cause mail to be sent to phil.example.com (phil@example.com) and sheila.example.com
(sheila@example.com), both of whose MB RRs define the final destination for the mail:

; zone file fragment for example.com
$TTL 2d ; zone TTL default = 2 days or 172800 seconds
$ORIGIN example.com.

example.com. IN SOA nsl.example.com. hostmaster.example.com. (
2003080800 ; serial number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes
)
IN MX 10 mail.example.com.
hostmaster IN MG phil.example.com.
IN MG sheila.example.com.
phil IN MB bill.example.com.
sheila IN MB pc.example.com.
pc IN A 192.168.254.4
bill IN A 192.168.254.2

mail IN A 192.168.254.3

The preceding example needs the mail system to look for appropriate MG and MB RRs—
almost none do. Most mail software looks for the presence of an MX RR and delivers mail to
this specified host—mail.example.comin the preceding fragment. To achieve the same result
in this case, the mail system at mail.example.com would have to be configured to forward mail
for the mailbox hostmaster to both phil@example.com and sheila@example.com.

Mailbox Renamed (MR) Record

The Mailbox Renamed RR allows a mailbox name to be aliased (or forwarded) to another mail-
box name. The MR RR has EXPERIMENTAL status and is defined in RFC 1035.The MB record
is not widely deployed—the MX RR is the dominant mail record.

MR RR Syntax
name ttl class rr real-mailbox
joe IN MR fred.example.com.

The real-mailbox field defines the aliased, or real, mailbox that must be defined with an MB

RR. Mail sent to name will be forwarded to real-mailbox. The name and real-mailbox fields are
the mailbox names written in the standard DNS format for mailboxes, that is, the first . (dot)
is replaced with an @ (commercial at sign) when constructing the e-mail address. The exam-
ple fragment that follows illustrates that the mailbox for the domain administrator,

439

440

CHAPTER 13 ' ZONE FILE REFERENCE

hostmaster.example.com. (defined in the SOA record), is forwarded to phil.example.com,
located on the host bill.example.com, whereas the normal mail host is mail.example.com. The
mail address when constructed is the normal format, which is hostmaster@example.comin
the following example:

; zone file fragment for example.com
$TTL 2d ; zone TTL default = 2 days or 172800 seconds
$ORIGIN example.com.

example.com. IN SOA nsl.example.com. hostmaster.example.com. (
2003080800 ; serial number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes
)
IN MX 10 mail.example.com.
hostmaster IN MR phil.example.com.
phil IN MB bill.example.com.
bill IN A 192.168.254.2
mail IN A 192.168.254.3

The preceding example needs the mail system to look for both MR and MB RRs—almost
none do. Most mail software looks for the presence of an MX RR and delivers mail to this spec-
ified host—mail.example.comin the preceding fragment. To achieve the same result in this
case, the mail system at mail.example.com will be configured to forward mail for the mailbox
hostmaster@example.com to phil@example.com on the host bill.example.com.

Mailbox Mail List Information (MINFO) Record

The Mailbox Mail List Information RR defines the mailbox administrator for a mail list and
optionally a mailbox to receive error messages relating to the mail list. The MINFO RR is
experimental and is defined in RFC 1035.The MINFO RR is not widely deployed—the MX RR
is the dominant mail record.

MINFO RR Syntax
name ttl class rr admin-mailbox [error-mailbox]
users IN MINFO fred.example.com. joe.example.com.

The admin-mailbox field defines the mailbox to which mail related to the mail list name will
be sent. The optional error-mailbox will receive mail concerning errors relating to the mail
list name. Both admin-mailbox and error-mail-box must be defined with an MB RR. The name,
admin-mailbox, and error-mailbox fields are mailbox names written in the standard DNS
format for mailboxes, that is, the first . (dot) is replaced with an @ (commercial at sign) when
constructing the e-mail address.

CHAPTER 13 " ZONE FILE REFERENCE

; zone file fragment for example.com
$TTL 2d ; zone TTL default = 2 days or 172800 seconds
$ORIGIN example.com.

example.com. IN SOA nsil.example.com. hostmaster.example.com. (

2003080800 ; serial number

3h ; refresh = 3 hours

15M ; update retry = 15 minutes

3W12h ; expiry = 3 weeks + 12 hours

2h20M ; minimum = 2 hours + 20 minutes

)

IN MX 10 mail.example.com.
people IN MINFO admin.example.com. broken.example.com.
admin IN MB bill.example.com.
broken IN MB bill.example.com.
bill IN A 192.168.254.2
mail IN A 192.168.254.3

The preceding example needs the mail system to look for both MINFO and MB RRs—
almost none do. Most mail software looks for the presence of an MX RR and delivers mail to
this specified host—mail.example.com in the preceding fragment. Mail software typically treats
mail list management as a separate or loosely coupled function.

Mail Exchange (MX) Record

The Mail Exchanger RR specifies the name and relative preference of mail servers (mail
exchangers in the DNS jargon) for the zone. The MX record was defined in RFC 1035.

MX RR Syntax
name ttl class 1r preference name
example.com. IN MX 10 mail.example.com.

The preference field is relative to any other MX record for the zone and may take the value in
the range 0 to 65535. Low values are more preferred. The common preferred value of 10 is just
a convention and allows more preferred servers to be added without changing any other
records; that is, if the most preferred server was set to 0 (again a common practice), then if an
even more preferred server was introduced, two records would have to be changed! Any num-
ber of MX records may be defined with either different or equal preference values. The effect
of using multiple MX RRs with an equal preference is described in the section “DNS Load Bal-
ancing” located in Chapter 8. If the mail host lies in the same zone, it requires an A RR. The
right-hand name used in an MX RR should not point to a CNAME record (see the discussion
of this point in the section “Canonical Name (CNAME) Record” earlier). MX records frequently
use the wildcard * (asterisk) in the name field, which is described in Chapter 8. The example
that follows shows a domain using three mail servers, two of which are hosted within the
domain. The third and least preferred is hosted externally.

441

442

CHAPTER 13 ' ZONE FILE REFERENCE

; zone fragment for example.com

; mail servers in the same zone

$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

example.com. IN SOA nsil.example.com. hostmaster.example.com. (

2003080800 ; serial number

3h ; refresh = 3 hours

15M ; update retry = 15 minutes

3W12h ; expiry = 3 weeks + 12 hours

2h20M ; minimum = 2 hours + 20 minutes

)

IN MX 10 mail ; unqualified name
; the line above is functionally the same as the line that follows
; example.com. IN MX 10 mail.example.com.
; any number of mail servers may be defined

IN MX 20 mail2.example.com.
; an external back-up

IN MX 30 mail.example.net.
; the local mail servers need an A record
mail IN A 192.168.0.3
mail2 IN A 192.168.0.3

The following fragment shows two mail servers, neither of which is located in the domain
and hence do not require A RRs:

; zone fragment for example.com

; mail servers not in the zone

$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

example.com. IN SOA nsil.example.com. root.example.com. (
2003080800 ; serial number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes
)
; mail servers not in zone - no A records required
IN MX 10 mail.example.net.
IN MX 20 mail.example.org.

Subdomain MX Records

Subdomains can be fully delegated, in which case the mail servers are defined in the subdo-
main zone files. This process is described in Chapter 8. This book uses the term virtual (or
pseudo) subdomains, which use a single zone file to provide subdomain style addressing. The
following example shows a virtual subdomain—the domain and all subdomain definitions
are contained in a single zone file:

CHAPTER 13

; zone fragment for example.com

; subdomain name servers

$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

example.com. IN SOA nsil.example.com. hostmaster.example.com.

2003080800 ; serial number

2h ; refresh = 2 hours

15M ; update retry = 15 minutes

3W12h ; expiry = 3 weeks + 12 hours

2h20M ; minimum = 2 hours + 20 minutes

)
; mail server for main domain

IN MX 10 mail.example.com.
; A record for mail server earlier
mail IN A 192.168.0.5

; other domain level hosts and services

; subdomain definitions
$ORIGIN us.example.com.
IN MX 10 mail
; preceding record could have been written as
; us.example.com. IN MX 10 mail.us.example.com.
; optional - define the main mail server as backup

IN MX 20 mail.example.com.
; A record for subdomain mail server
mail IN A 10.10.0.29

; the preceding record could have been written as
; mail.us.example.com. A 10.10.0.29 if it is less confusing

; other subdomain definitions as required

ZONE FILE REFERENCE

(

An alternative way of defining the preceding that groups the MX records together is

shown here:

; zone fragment for example.com

; subdomain mail servers

$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

example.com. IN SOA nsl.example.com. hostmaster.example.com.
2003080800 ; serial number
2h ; refresh = 2 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes

)

(

443

444

CHAPTER 13 ' ZONE FILE REFERENCE

; mail server for main domain

IN MX 10 mail.example.com.
; mail server for subdomain 'us'
us IN MX 10 mail.us.example.com.
us IN MX 20 mail.example.com.
; A record for main mail server earlier
mail IN A 192.168.0.5

; other domain level hosts and services

; subdomain definitions

$ORIGIN us.example.com.

; A record for subdomain mail server

mail IN A 10.10.0.29

; the record above could have been written as

; mail.us.example.com. A 10.10.0.28 if it is less confusing

; other subdomain definitions as required

Naming Authority Pointer (NAPTR) Record

The Naming Authority Pointer Record RR is part of the Dynamic Delegation Discovery System
(DDDS), which is defined in RFCs 3401, 3402, 3403, and 3404. The NAPTR RR is a generic
record that defines a rule that may be applied to private data owned by a client application, for
example, the ENUM telephony application, to yield a result that is meaningful to that applica-
tion. The private client data is referred to as the Application Unique String (AUS). Multiple
NAPTR RRs may be present to create a rule set. NAPTR RRs are meaningful only in the context
of the application that uses them. The example that follows illustrates the use of the rules in
the context of a client application, ENUM telephony, to illustrate one use of the NAPTR RR.
You are, however, cautioned that other client applications can and do exist and that appro-
priate documentation for the target application will describe how the result of applying the
NAPTR rule will be used. It is further possible that the target application may redefine the use
of certain fields within the NAPTR RR. The NAPTR RR is defined in RFC 3403.

NAPTR RR Syntax
name ttl class rr order pref flag svc regexp replace
users IN NAPTR (

10 ; order

10 ; preference

"u" ; flag

"E2U+sip" ; service

"IN *$1sip:1234@sip.example.com!” ; regexp
; no replacement

)

The order field defines the order in which NAPTR RRs should be processed. It is a 16-bit
unsigned value and may take the range 0 to 65565, with low values having the highest priority.
If two NAPTR RRs have the same order, then the pref field is used to select the first NAPTR RR
to be processed.

CHAPTER 13 " ZONE FILE REFERENCE

The pref field defines the preference within order to select the NAPTR RR to process first.
Itis a 16-bit field and may take the values 0 to 65535, the lowest value being the most preferred.
The sense in which pref and order are used is that NAPTR RRs of higher order are not used
until the client has examined all those of the lower order, and only if none is acceptable (for
example, the protocol is not supported) should it use the higher order values, whereas pref
indicates a user preference that the client is free to ignore if it wishes.

The optional flag field may be used to indicate an action to be taken by the application.
The flag is a quoted string (it is enclosed in quotes) and may take any case-insensitive value
from the set Ato Z or 0 to 9; if no flag is present, an empty string ("") is used. The flag field’s
values are defined by the application and not by the NAPTR RR specification. The following
values are conventions used by the ENUM (RFC 3761), SIP (RFC 3263), and URN (RFC 3404)
applications and illustrate the functionality that may be provided by the flag field. The flag
"a" defines a terminal condition—this NAPTR RR generates a complete result—and indicates
that the result of the processing of this NAPTR rule will yield a name that can be used in a

n_n

query for an address record (either A or AAAA RRs). The flag "s" defines a terminal condition

non

where the result is a name that may be used to query for an SRV RR. The flag "u" defines a ter-
minal condition where the result will be a URI. The flag "p" indicates that this is the last rule
that obeys the NAPTR RR specification. On the surface this might imply a terminal condition,
but the client application is free to continue processing using any private rules that lie outside
the definition of the NAPTR RR, so it is terminal only as far as the NAPTR record is concerned,
not necessarily the client application.

The optional svc field defines the service parameters used by the application. The parame-
ters are contained within a quoted string, and their meaning is defined by the client application,
not the NAPTR RR. If not present, an empty string ("") must be defined. As an example of the use
of this field, the ENUM telephony application (RFC 3761) defines the svc field to be of the fol-
lowing format:

rs+protocol[+protocol]

where the rs field defines a resolution service, usually a mnemonic that indicates a transfor-
mation rule known to the client application and that is applied to the client data (the AUS).
In the ENUM example that follows, the rs value is E2U (which defines the rules for ENUM-to-
URI transformation). This field may be 1 to 32 alphanumeric characters and must start with
an alphabetical character. The + (plus sign) is a separator and must be present. The protocol
field may be any protocol known to the client application, for example, SIP, H323, or goobledey-
gook. This field may be a maximum of 32 alphanumeric characters and must start with an
alphabetical character. More than one such protocol field may be present, each separated by
a + (plus sign). To illustrate the point that this field is application defined, the URN application
(RFC 3404) and SIP (RFC 3263) use the same format but currently reverse the order of the rs
and protocol element!

The optional regexp field is a quoted string enclosing a POSIX Extended Regular Expression
(ERE—defined in IEEE POSIX 1003.2 Section 2.8), augmented with a substitution expression
defined in RFC 3402 (and loosely based on that used in the sed Unix utility), which is used to
transform the client data (AUS). If the field is not present, an empty string ("") must be present.
The formal grammar of the regexp field is shown here:

delim ere delim repl delim flag

445

446

CHAPTER 13 ' ZONE FILE REFERENCE

where delimis a delimiting character (it may be / or !) used to separate parts of the field. The
same delimiting character must be used throughout any single regexp field. The ere field is a
valid Extended Regular Expression. repl is the replacement string. flag is optional and may
take the value i to indicate a case-insensitive ere is to be used. The resulting repl field may
also be normalized to lowercase as a consequence of using this flag. The regexp supports a
back-reference feature whereby strings found within enclosing parentheses in the ere field
may be substituted in the repl field by a numeric reference (1 to 9) indicating the order in
which they were found. The following example illustrates this process. Assume the ere field
contains the following:

(A(B(C)DE)(F)G)

The following back references in the repl field may be used to access the values:

\1 = ABCDEFG
\2 = BCDE

\3 =C

\4 =F

\5..\9 = error - no matching subexpression

The optional replace field is a domain name that will replace the client data. If the field
is not used, a single . (dot) must be present.

The replace and regexp fields are mutually exclusive. It is an error for both to be present
in the same NAPTR RR.

The NAPTR RR is a complex and powerful RR providing generic capability to any client
application. Its functionality can only be understood in the context of the application that
uses it. To illustrate how the NAPTR RR can be used, the following summarizes the order of
processing of an NAPTR RR by the ENUM application:

1. The client application, say a VoIP SIP User Agent (UA), receives an E.164 telephone
number (the client data or AUS—in this example, we assume +44-111-555-1212). The
ENUM application within the SIP UA applies what is known as its Well-Known First
Rule (a private rule known by the ENUM application), which in this case creates a
domain name by stripping all nonnumeric values, reversing the number, and append-
ing E164.ARPA to the end of it to create 2.1.2.1.5.5.5.4.4.E164.ARPA.

2. The client ENUM application issues a DNS query for NAPTR RRs with this domain
name.

3. Zero or more NAPTR RRs may be returned.

4. Assuming at least one NAPTR RR is returned, the order and pref fields defined earlier
are inspected to determine which NAPTR will be processed first.

5. If a regexp file is present, it will be applied to the private client data (the AUS).

6. The svc field will then be inspected and the E2U transformation algorithm applied to
the results of the regexp output to create a URI. The resulting URI will then be used
to find the target.

7. The protocol field within svc is used to indicate the protocol to be used to communi-
cate with the target.

CHAPTER 13 " ZONE FILE REFERENCE

The zone fragment shown here illustrates the use of the NAPTR with the ENUM service
(RFC 3761) and defines an NAPTR RR for the number +44-111-555-1212 (an E.164 format
number) within a zone file describing the NXX (exchange code) 555, within area code (111),
within the country code (44). As noted previously, the ENUM application transforms the num-
ber +44-111-555-1212 into a DNS query for2.1.2.1.5.5.5.1.1.1.4.4.E164.ARPA. The various
fields are further described following the fragment.

; zone file fragment for example.com
$TTL 2d ; zone TTL default = 2 days or 172800 seconds
$ORIGIN 5.5.5.1.1.1.4.4.E164.ARPA.

2.1.2.1 NAPTR (

10 ;order

100 ; preference

"u" ; flag - only one allowed by ENUM
"E2U+sip" ;svc
"1"M\\+44111555(.#)$!sip:7\\1@sip.example.com!"
. ; no replace field

)

NAPTR 10 101 "u" "E2U+pres" "!”.*$Imailto:sheila@example.com!™ .

In the preceding example, all the order fields are the same, so the pref field will be used to
determine which record is used first—in the preceding case, the NAPTR with a pref of 100. The
regexp field ! "\\+44111555(.#)$!sip:7\\1@sip.example.com!, when applied to 441115551212
(the AUS), will result in sip:71212@sip.example.com—in this case, a 7 is appended to the last
four digits of the supplied phone number (using the extracted back-reference of \1), but it
could be any appropriate algorithm. The application will then inspect the svc field (E2U+sip in
the preceding example) and initiate a SIP session using the URI sip:71212@sip.example.com to
contact the user. If this fails, it may decide to process the NAPTR RR with a pref of 101, which
will result in a contact to sheila@example.com using a presence service of some kind.

Note RFC 3403, which defines the NAPTR, describes an ENUM telephony example that has been updated
by RFC 3761. The ENUM example shown is compatible with RFC 3761, whereby the order of resolution serv-
ices (rs and protocol) have been reversed.

Name Server (NS) Record

Name Server RRs are used to list all the name servers that will respond authoritatively for the
domain. NS RRs for a given zone are defined in two places: the child zone (where they are
authoritative) and the parent zone (where they are not authoritative). Thus the zone example.com
(the child zone) contains NS RRs defining the authoritative name servers for the zone, and the
.com zone (the parent) has corresponding NS RRs, called the delegation point, that are used to
create a referral to the authoritative name servers for the domain or zone. The requirement is

447

448

CHAPTER 13 ' ZONE FILE REFERENCE

that there are a minimum of two authoritative name servers and hence a minimum of two NS
RRs for every zone. The NS RR was defined in RFC 1035.

NS RR Syntax
name ttl class 11 name
example.com. IN NS nsi.example.com.

NS RRs for the zone are defined at the zone apex or root, that is, they have the same name
as the domain or zone as shown in the preceding example. By convention, name servers are
defined immediately after the SOA record, but they can be defined anywhere convenient in
the zone file. The name server defined in the SOA record, the so-called Primary Master, must
have a corresponding NS RR. There is no requirement that any name servers, including the
name server defined in the SOA RR for the zone, are contained within the domain for which
they are authoritative. NS RRs define name servers that respond authoritatively for the zone;
since both master (Primary) and slave (Secondary) servers perform this function, they are not
differentiated in any way in NS RRs. The designation of master and slave is a purely opera-
tional decision. The NS RRs defined in the zone file (and in its parent) are publicly visible
name servers. There is no need or requirement to define all the name servers in NS RRs for
a specific zone file—it is possible to hide, say, a zone master name server while making only
the slaves publicly visible as long as the requirement for two visible name servers is satisfied.
If the name server lies within the domain, it should have a corresponding A (or AAAA)
record as would be defined for any host in the domain. The A RRs that define name servers
that lie within the domain are frequently called glue records. Glue records are essential only
for referrals from a parent zone. In practice, glue records are used for two purposes:

1. To speed up queries—and reduce DNS load—by providing the name and IP addresses
(the glue) for all authoritative name servers, both within and external to the domain.
The root and TLD servers, for example, provide this information in all referrals to remove
the need for a subsequent query for an IP address of the name server. In the case of the
TLD servers, the glue data is not obtained from the domain’s zone file but from the
Registrar when the domain name is registered.

2. To break the query deadlock for referrals that return name servers within the domain
being queried. Assume a query for a domain, say the A RR for www.example.com,
returns a referral containing the name but not the IP address of a name server, say
ns1.example.com, which lies within the domain example.com. Since the IP address
of the name server is not known, this will naturally result in a query for the A RR of
ns1.example.com, which will return, again, a referral with the name but not the IP
of ns1.example.com! When the glue record (an A or AAAA RR) is provided, both the
name and the IP address are returned.

When dealing with any zone file, the A (or AAAA) RRs for the name servers that lie within
the domain are not strictly glue records, they are conventional A RRs; but if a subdomain is
being delegated from the zone file, the A (or AAAA) RRs for the subdomain name servers that
lie inside the subdomain are glue records and are absolutely essential. This point is illustrated
in the example fragments that follow.

CHAPTER 13 " ZONE FILE REFERENCE

Note Itis worth stressing what may be to most readers an obvious point. The name servers referenced
in NS records must all be zone masters or slaves. That is, they must respond authoritatively for the domain.
They must have been positively configured to perform this function (for BIND this means type slave or
type master in the zone clause) and must have a full copy of the zone file obtained from the local file-
system (master or Primary) or via zone transfer (slave or Secondary). A caching server cannot perform this
function. Name servers defined in NS RRs that do not respond authoritatively are said to be lame servers or
the zone is said to have lame delegation and will generate lots of nasty log entries on DNS servers across
the world—this configuration error is very visible to the DNS community.

The following zone file fragment shows two name servers, both of which lie within the
domain:

; zone fragment for example.com
; name servers in the same zone
$TTL 2d ; default TTL is 2 days
$ORIGIN example.com.

example.com. IN SOA nsl.example.com. hostmaster.example.com. (
2003080800 ; serial number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M 5 minimum = 2 hours + 20 minutes
)
IN NS nsl ; unqualified name
; the preceding line is functionally the same as the line that follows
; example.com. IN NS nsil.example.com.
; at least two name servers must be defined
IN NS ns2.example.com. ;FQDN
; the in-zone name server(s) should have an A record
nsi IN A 192.168.0.3
ns2 IN A 192.168.0.3

The next fragment shows two name servers, both of which lie outside the zone:

; zone fragment for example.com
; name servers not in the zone
$TTL 2d ; default TTL is 2 days
$ORIGIN example.com.

example.com. IN SOA nsi.example.net. hostmaster.example.com. (
2003080800 ; serial number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes

)

449

450

CHAPTER 13 ' ZONE FILE REFERENCE

; name servers not in zone - no A records required
IN NS nsl.example.net.
IN NS ns2.example.net.

The following zone file delegates a subdomain us.example.com and shows the use of glue
records:

; zone fragment for example.com
; name servers in the same zone
$TTL 2d ; default TTL is 2 days
$ORIGIN example.com.

@ IN SOA nsi.example.com. hostmaster.example.com. (
2003080800 ; serial number
2h ; refresh = 2 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes
)
; main domain name servers
IN NS nsi.example.com.
IN NS ns2.example.com.
; A records for name servers above - not glue records
nsi IN A 192.168.0.3
ns2 IN A 192.168.0.4

; subdomain definitions
$ORIGIN us.example.com.
; two name servers for the subdomain
@ IN NS ns3.us.example.com.
; the record above could have been written as
; us.example.com. IN NS ns3.us.example.com.
; OR as simply
; IN NS ns3
; the next name server points to nsi above
IN NS nsl.example.com.
; address record for subdomain name server - essential glue record
ns3 IN A 10.10.0.24 ; glue record
; the record above could have been written as
; ns3.us.example.com. A 10.10.0.24 if it is less confusing

In the preceding fragment, the NS RRs at the zone apex (the first two NS RRs) are part of
the authoritative data for the zone example.com. The NS RRs for the subdomain us.example.com
(the last two NS RRs shown) and the corresponding A RR is not part of the authoritative data for
the zone example.com.

Network Service Access Point (NSAP) Record

The Network Service Access Point RR is the equivalent of an A RR for ISO’s Open Systems
Interconnect (OSI) system in that it maps a host name to an endpoint address. The NSAP is

CHAPTER 13 " ZONE FILE REFERENCE

the OSI equivalent of the IP address and is hierarchically structured. The NSAP RR has infor-
mational status and is defined in RFC 1706. The NSAP address format is defined in ISO/IEC
8348 (www.iso.org). NSAP addresses are vaguely similar to IPv6 addresses in that they have a
hierarchical organization, use a hexadecimal representation format, and are 128 bits long.

NSAP RR Syntax
name ttl class rr nsap-address
joe IN NSAP 0x47.0005.80.005a00.0000.0001.e133.Ffffff000161.00

The nsap-address is the NSAP address of the end system. The NSAP address field begins with
the literal string "0x", which will be familiar to C/C++ programmers and indicates the following
field is hexadecimal. The dots within the nsap-address field are used for readability reasons
only and do not appear in the binary representation. Since the nsap-address is an address, not
aname, there is no terminating dot.

The following fragment shows a dual-stack (OSI/IP) host, fred.example.com, which is
reachable by an IPv4 address and an NSAP address:

; zone file fragment for example.com
$TTL 2d ; zone TTL default = 2 days or 172800 seconds
$ORIGIN example.com.

example.com. IN SOA nsi.example.com. hostmaster.example.com. (
2003080800 ; serial number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M 5 minimum = 2 hours + 20 minutes
)

IN MX 10 mail.example.com.

fred IN A 192.168.254.2
IN NSAP 0x47.0005.80.005a00.0000.0001.e133.ffffff000161.00

mail IN A 192/168.254.3

NSAPs may be reverse mapped using the domain NSAP. INT and normal PTR RRs. The
reverse map is constructed in a similar manner to that defined for IPv6 (see Chapter 5 for full
explanation) using a nibble format in which each character of the address is reversed, sepa-
rated with a . (dot), and placed under the NSAP.INT domain. The example that follows shows
areverse-map fragment for the NSAP defined in the previous fragment:

; reverse zone file fragment for example.com
$TTL 2d ; zone TTL default = 2 days or 172800 seconds
$ORIGIN 3.3.1.e.1.0.0.0.0.0.0.0.0.0.3.5.0.0.0.8.5.0.0.0.7.4.NSAP.INT.

451

452

CHAPTER 13 ' ZONE FILE REFERENCE

example.com. IN SOA nsil.example.com. hostmaster.example.com. (
2003080800 ; serial number
3h ; refresh = 3 hours
15M ; update retry = 15 minutes
3W12h ; expiry = 3 weeks + 12 hours
2h20M ; minimum = 2 hours + 20 minutes
)

0.0.1.6.1.0.0.0.f.f.f.f.f.f 1IN PTR fred.example.com.

In the example forward-mapping zone file, the host fred.example.com was shown as sup-
porting a dual OSI/IP stack. The reverse maps for the IPv4 address and the NSAPs are constructed
as separate zone files.

Next Secure (NSEC) Record

The Next Secure RR is part of the DNSSEC.bis revision (see Chapter 11) and is designed to pro-
vide two forms of what is called in quaint jargon proof of nonexistence or denial of existence.
The first form allows a query to verify that a host name does not exist. Each host name has a
corresponding NSEC RR that points to the next valid host name in the zone. The NSEC RRs
provide a chain of valid host names—by implication anything not in this chain does not exist.
In the second form, the NSEC RR contains a list of RR types that have the same name as the
NSEC RR—again by implication, any RR type not in the list does not exist. NSEC RRs are gen-
erated automatically by the dnssec-signzone utility (described in Chapter 9). The NSEC RR is
defined in RFC 4034.

NSEC RR Syntax
name ttl class rr next-name (rr-list)
joe IN NSEC joes (A TXT RRSIG NSEC)

The next-name field defines the next host name in the zone file. NSEC RRs are added during
the dnssec-signzone process to each RR with a particular name to form a continuous chain
through the zone file. If the RR to which the NSEC is added is the last in the file, the next-name
points back to the SOA RR, thus creating a loop. Once the zone file is signed (see Chapter 11),
it is possible to verify that any name does or does not exist in the zone file. The rr-1ist field
defines all the RR types that exist with the same name as the NSEC RR. Since the NSEC RR is
used only in DNSSEC.bis signed zones (see Chapter 11), the rr-1ist will always contain as a
minimum the NSEC RR and its accompanying RRSIG RR. The rr-1ist makes it possible to
verify that there is, say, an A RR for a host name but not, say, a KEY RR. The example that fol-
lows shows how the NSEC RR is used, including the loopback to the beginning of the zone file:
if a user-defined RR exists at a particular host name (see “User-Defined RRs” later in the chap-
ter), then it will be included in the list of RR types using the normal syntax, for example,
TYPE6235.

CHAPTER 13 " ZONE FILE REFERENCE

; zone fragment for example.com
$TTL 2d ; zone default = 2 days or 172800 seconds
$ORIGIN example.com.

mail IN A 192,168.2.3

IN AAAA 2001:db8::3

IN TXT "one upon a time"

IN KX 10 bill.example.com.

IN RRSIG

IN NSEC www (A TXT KX AAAA NSEC RRSIG)
WWW IN AAAA 2001:db8::4

IN A 192.168.2.4

IN NSEC @ (A AAAA) ; loops back to SOA

The NSEC RR is typically generated as part of a zone signing process using the utility
dnssec-signzone (see Chapter 9). The NSEC RR is the subject of ongoing work in the stan-
dards committees, since by following the NSEC chain for a particular domain the entire
domain may be enumerated fairly quickly. Without the NSEC RR, the domain can still be
enumerated by exhaustive search, which can take some time and is more likely to be caught
by intrusion detection systems. It is worth emphasizing, however, that data cannot be hidden
in a publicly visible name server—after all, the point of it being in the DNS is that it can and
will be made visible. If records need to be protected, then techniques such as Stealth servers
must be used (see Chapter 4).

Pointer (PTR) Record

The Pointer RR is used to reverse map an IP address to a host name. PTR RRs are used for both
IPv4 and IPv6 addresses, as well as others such as NSAP. Pointer records are the opposite of A
RRs (or AAAA RRs for IPv6), which are used to forward map hosts to IP addresses. The PTR RR
was defined in RFC 1035.

PTR RR Syntax
name ttl class rr host-name
15 IN PTR www . example.com.

The left-hand name field in a PTR RR typically looks like a number but is treated as a name; that
is, if it is not terminated with a dot, it is an unqualified name, and then $0RIGIN substitution
takes place. The right-hand host-name field mustbe an FQDN; otherwise very bizarre results will
occur—this is illustrated in the examples that follow. The $ORIGIN directive in a reverse-map zone
file is essential if you wish to remain sane. The following fragment defines a reverse-map zone file
for the IPv4 address range 192.168.23.0 to 192.168.23.255:

453

454

CHAPTER 13 ' ZONE FILE REFERENCE

; Reverse map for 192.168.23.0
$TTL 12h
$ORIGIN 23.168.192.IN-ADDR.ARPA.

@ IN SOA nsil.example.com. hostmaster.example.com. (
2003080800 ; serial number
3h ; refresh
15m ; update retry
3w ; expiry
3h 5 minimum
)
IN NS nsil.example.com.
IN NS ns2.example.com.
2 IN PTR joe.example.com. ; right-hand FQDN names

5 2 is an unqualified name and could have been written as
5 2.23.168.192.IN-ADDR.ARPA. IN PTR joe.example.com.

15 IN PTR www . example.com.

17 IN PTR bill.example.com.
254 IN PTR fred.mydomain.com.

In the preceding fragment, the IP address 192.168.23.2 will return the host name
joe.example.comto a PTR query. As noted earlier, the right-hand name must be an FQDN
(it must end with a dot) because of the $ORIGIN. If the dot were erroneously omitted, then
joe.example.com would become joe.example.com.23.168.192.IN-ADDR.ARPA.—not the desired
result. While it is good practice, is it not essential to define all IP addresses in the reverse-map
zone file. The addresses 0 and 255 in the preceding example file (it is based on a Class C private
address range) are designated the multicast (0) and broadcast (255) addresses for the class and

are not defined in the reverse map.

IPv6 and IPv4 addresses cannot be mixed in the same file as they can for forward-map
zone files. IPv6 addresses are mapped under the domain IP6.ARPA, whereas IPv4 addresses are
mapped under the IN-ADDR.ARPA domain. IPv6 reverse maps use a nibble domain name for-
mat defined in Chapter 5. The following fragment illustrates the use of the PTR RR to reverse
map the IPv6 addresses 2001:db8:0:1::1, 2001:db8:0:1::2, 2001:db8:0:2::1, and 2001:db8:0:2::1:

; reverse IPV6 zone file for example.com

$TTL 2d ; default TTL for zone

$ORIGIN 0.0.0.0.8.b.d.0.1.0.0.2.IP6.ARPA.

@ IN SOA nsil.example.com. hostmaster.example.com. (
2003080800 ; sn = serial number

; refresh = refresh

; retry = update retry

; expiry = expiry

5 min = minimum

12h
15m
3w
2h
)

CHAPTER 13 " ZONE FILE REFERENCE

; name servers Resource Recordsfor the domain
IN NS nsil.example.com.

; the second name server is

; external to this zone (domain).
IN NS ns2.example.net.

5 PTR RR maps a IPv6 address to a host name

; hosts in subnet ID 1

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0 IN PTR nsil.example.com.
2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0 IN PTR mail.example.com.
; hosts in subnet ID 2

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.0.0.0 IN PTR joe.example.com.
2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.0.0.0 IN PTR www . example.com.

Chapter 5 defines alternative methods by which the IPv6 reverse maps may be organized
to reduce the sheer size of the host addresses required.

X.400 to RFC 822 E-mail (PX) Record

The X.400 to RFC 822 E-mail RR allows mapping of ITU X.400 format e-mail addresses to
RFC 822 format e-mail addresses using a MIXER-conformant gateway. The PX RR is defined
in RFC 3163. The X.400 mail address format is defined by X.400 and X.402 (www.itu.int).
X.400 uses an addressing scheme that ends with a country code and has no equivalent of a
generic noncountry code entity such as .com or.org; the address mappings defined within
the RFC are thus limited to country code-based domains (ccTLDs) or require an explicit
mapping of the gTLD to a country code.

PX RR Syntax

name ttl class rr pref 822-domain x.400-name
*.example.com. IN PX 10 example.com. PRMD-example.ADMD-p400.C-nl.

The pref field is the same as used by the MX RR in that it takes the value 0 to 65535 and indicates
the relative preference of an X.400 name. Lower values are the most preferred, that is, 10 is more
preferred than 20. The 822-domain field is the domain name to which this PX RR applies. The
X.400-name field defines the X.400 address to which mail will be sent by the MIXER gateway.

The following fragment sends all of example. com’s incoming mail to an X.400 mail system
in Holland.

; zone file fragment for example.com
$TTL 2d ; zone TTL default = 2 days or 172800 seconds
$ORIGIN example.com.

example.com. IN SOA nsi.example.com. hostmaster.example.com. (
2003080800 ; serial number
3h