

Open Source Software

This page intentionally left blank

Open Source Software:
Implementation and

Management

 Paul Kavanagh

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO•

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Elsevier Digital Press
200 Wheeler Road, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2004, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support”
and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Application submitted.

ISBN: 1-55558-320-2

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

For information on all Digital Press publications
visit our Web site at www.digitalpress.com and www.bh.com/digitalpress

04 05 06 07 08 09 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

To John, Jessica, Danny, and Allison.

This page intentionally left blank

vii

Contents

Preface xvii

Intended Audience for This Book xviii
How This Book Is Structured xix

Acknowledgements xxi

1 Open Source Software:
Definitions and History 1

1.1 Definition of Terms 1
1.1.1 What Is Free Software? 2
1.1.2 What Are Good Examples of Open Source? 3
1.1.3 Is It Necessary to Adopt Open Source Wholesale? 3
1.1.4 Does “Open Source” Mean Linux? 4
1.1.5 Does Open Source Require Different

Business Methods? 4
1.1.6 Will All Systems Be Open Source One Day? 5
1.1.7 Is Open Source a Fad That Will Go Away? 5

1.2 A Brief History of Software 6
1.2.1 Early Years 6
1.2.2 Software Companies 6
1.2.3 UNIX 7
1.2.4 BSD 8
1.2.5 GNU and FSF 9
1.2.6 Linux 10
1.2.7 The Personal Computer 11
1.2.8 The Internet 12
1.2.9 The World Wide Web 13

1.3 Summary 14

viii Contents

2 Where Open Source Is Successful 19

2.1 Analytical Framework 19
2.1.1 Disruptive Innovations 19
2.1.2 The Technology Adoption Curve 23
2.1.3 The Open Source Stack 25
2.1.4 Adoption of Specific Open Source Technologies 26

2.2 Open Source Is in Widespread Successful Use 29
2.2.1 Open Source Is the Heart of the Internet 29
2.2.2 Linux Is Shipping a Lot 30
2.2.3 Open Source Appliances Are Everywhere 31
2.2.4 New Companies and New Businesses Use

Open Source 32
2.2.5 Open Source Is Broadly Adopted 34

2.3 Examples of Open Source Systems 36
2.4 Summary 39

3 Open Source: The Good, the Bad,
and the Ugly 41

3.1 What Is Good about Open Source 41
3.1.1 Why Your Right to View Code Matters 41
3.1.2 Why Your Right to Change and Redistribute Code Matters 43
3.1.3 You Can Buy from Different Vendors and Adopt

New Platforms 44
3.1.4 Open Source Avoids Proprietary

Information Formats 46
3.1.5 Open Source Allows Integration

between Products 46
3.1.6 Open Source Licensing Is Simpler and

Less Expensive 48
3.1.7 Open Source is a Good Solution for

International Companies 50
3.1.8 There Is a Large Pool of Skilled Open

Source Professionals 51
3.2 Open Source Is Not Enough by Itself 52

3.2.1 Deployment Platform 52
3.2.2 Database Platform 53
3.2.3 Software Language, Architecture,

and Implementation 53
3.2.4 Data Architecture 54

3.3 How Choosing Open Source Is More Difficult for You 56

Contents ix

Contents

3.3.1 Open Source Has a Less Complete Level of
Sales Support 56

3.3.2 Specific Product Reviews Will Not Favor
Open Source 58

3.3.3 Open Source Products Are Not Bundled, Branded,
or Integrated 60

3.4 What Others Say about Open Source 63
3.5 Summary 64

4 Five Immediate Open Source Opportunities 67

4.1 Create an Open Source Lab 68
4.1.1 Review Existing Work 69
4.1.2 Train Developers to Program in
Open Source Languages 70

4.2 Migrate Infrastructure to Samba
and OpenLDAP 71

4.2.1 File and Print Servers 71
4.2.2 Manage Use of Windows Proprietary Features 75
4.2.3 Train Administrators in Linux and Samba 76

4.3 Build Some LAMP Applications 76
4.4 Bring New Desktop Systems to

the Underserved 79
4.4.1 New and Small Businesses 80
4.4.2 Franchises 81
4.4.3 Call Centers 82
4.4.4 Retail, Food Service, and Hospitality 83
4.4.5 Government, Healthcare, and Education 85
4.4.6 Unlicensed Software 88
4.4.7 International Opportunities 89

4.5 Migrate Applications and Databases to Open Source 90
4.5.1 Evaluate Open Source Databases 92
4.5.2 Replace Small and Old Database Applications with

Open Source 92
4.5.3 Migrate UNIX to Linux 93
4.5.4 Evaluate and Purchase Packages on Linux 94
4.5.5 Enterprise Application Software 95

4.6 Summary 96

5 Five More Open Source Opportunities 99

5.1 Introduction 99

x Contents

5.1.1 Customization and Integration 100
5.1.2 Organization Size 101

5.2 Directory Services 102
5.2.1 Migration and Interoperability 103

5.3 Email 103
5.3.1 UNIX Mail Systems 103
5.3.2 Migration 104
5.3.3 PC-Based Mail Systems 104
5.3.4 Replacing Exchange 105
5.3.5 Integrated Exchange Replacements 107

5.4 Groupware and Collaboration 107
5.4.1 Wiki 107
5.4.2 Other Community Software 109
5.4.3 Weblogs 111
5.4.4 Instant Messaging 111

5.5 Complex Web Publishing 112
5.5.1 Portal Components 114
5.5.2 Open Source Content Portals 116

5.6 Manage User Desktops 117
5.6.1 Analyze Desktop Use and Licensing 120

5.7 Other Possibilities 121
5.8 Summary 123

6 Operating Systems 125

6.1 Contents of the Operating System 125
6.1.1 FreeBSD 128
6.1.2 The Value of Alternative Operating Systems? 129
6.1.3 Using the Shell . . . 129
6.1.4 Recent Linux Improvements 131
6.1.5 Scaling Linux up and Down 132
6.1.6 Security 134

6.2 Linux Distribution Vendors 134
6.2.1 The Many Versions of Linux 134

6.3 Enterprise Distribution Vendors 138
6.4 Community-Supported Distribution Vendors 138

6.4.1 Debian 138
6.4.2 Fedora 139

6.5 International Alternatives 139
6.5.1 Consumer Linux Choices 140
6.5.2 Booting from a CD 140

6.6 Summary 142

Contents xi

Contents

7 Open Source Server Applications 145

7.1 Infrastructure Services 145
7.1.1 File and Print Services 146
7.1.2 Directory Services 147

7.2 Web Servers 148
7.2.1 Apache 148
7.2.2 Other Web Servers 149

7.3 Database Servers 150
7.3.1 Classes of Database Servers 151
7.3.2 Analysis of Database System Sizes 151
7.3.3 Open Source Database Choices 162
7.3.4 Database Performance Is Good Enough 164
7.3.5 Competing with Closed Code Databases 166

7.4 Mail Servers 167
7.5 Systems Management 168
7.6 Summary 170

8 Open Source Desktop Applications 173

8.1 Introduction 173
8.1.1 The Open Source Desktop 173
8.1.2 Linux Desktop Share 174
8.1.3 Limitations to Desktop Linux Adoption 174

8.2 Graphical Desktops 175
8.3 Web Browsers 180

8.3.1 Deploying Browsers 180
8.4 The Office Suite 182

8.4.1 OpenOffice.org 183
8.4.2 Competition in the Office Suite Market 185
8.4.3 Comparison of Microsoft Office to OpenOffice 188
8.4.4 Migration from Microsoft Office to OpenOffice 189
8.4.5 Lock-in and Complexity 191
8.4.6 When You Don’t Need an Office Suite 194

8.5 Mail and Calendar Clients 195
8.5.1 Professional Applications 196
8.5.2 Drawing and Image Management 197

8.6 Personal Software 198
8.6.1 Running Windows Applications 199

8.7 Summary 201

xii Contents

9 How Open Source Software Is Developed 203

9.1 Methodology 203
9.1.1 Open Source Compared with Closed Code 204
9.1.2 Open Source Compared with Corporate Development 207
9.1.3 Open Source Development Tools 207
9.1.4 Managing People 208

9.2 Languages Used to Develop Open Source Products 209
9.2.1 C and C++ 210
9.2.2 Perl 213
9.2.3 PHP 213
9.2.4 Python 214
9.2.5 Java 214
9.2.6 Other Languages 215

9.3 Cross-Platform Code 215
9.4 Summary 218

10 Managing System Implementation 221

10.1 Implementation Roles 221
10.1.1 Customer Management 223
10.1.2 Program Management 223
10.1.3 Development 223
10.1.4 Testing 223
10.1.5 Communication 223
10.1.6 Deployment 224

10.2 Open Source Impact on Team Issues 224
10.3 Implementation Process 226

10.3.1 Releases 226
10.3.2 Team Roles during the Process 227

10.4 Implementation Principles 228
10.4.1 Resource Trade-offs 228
10.4.2 Frequent Releases 229
10.4.3 Support Elements 230
10.4.4 Watching for Problems 230

10.5 Key Documents 231
10.5.1 Project Definition 231
10.5.2 Risk Management 231
10.5.3 Example of a Risk Assessment 233
10.5.4 Functional Specification 235
10.5.5 Technical Specification 236

10.6 Migration 236

Contents xiii

Contents

10.6.1 Migration Approaches 237
10.6.2 Assessing the Current System 237

10.7 Interacting with the Open Source Community 239
10.7.1 Hiring from the Community 239
10.7.2 Employee Agreements 240
10.7.3 Repaying the Community 240

10.8 Support 241
10.9 Summary 243

11 Application Architecture 245

11.1 Types of Systems 245
11.1.1 Extreme Systems 246
11.1.2 Transactional Systems 248
11.1.3 Knowledge Management 248

11.2 Tiered Design 249
11.3 Managing Performance and Scalability 251

11.3.1 State Management 251
11.3.2 Queuing 254
11.3.3 Database Design 256
11.3.4 Application Servers 259

11.4 Interoperability 260
11.4.1 Shared Data 261
11.4.2 Process Communication 262
11.4.3 Application Integration Engines 262
11.4.4 Web Services 263
11.4.5 Data Formats 265

11.5 Development Platform Choices 266
11.5.1 Java 266
11.5.2 .Net 268
11.5.3 LAMP 269

11.6 Summary 272

12 The Cost of Open Source Systems 275

12.1 Total Cost of Ownership 276
12.1.1 Staffing Costs 277
12.1.2 Hardware Costs 279
12.1.3 Software Costs 279
12.1.4 Using Third-Party Application and Database Servers 281
12.1.5 Pricing Open Source Software 282
12.1.6 Pricing Closed Code Software 283

xiv Contents

12.1.7 Pricing Windows Software 284
12.2 Types of Costs 285

12.2.1 Fixed Costs 286
12.2.2 Off-Budget Costs 286
12.2.3 Sunk Costs 286
12.2.4 Switching Costs 287

12.3 Scenarios 289
12.3.1 Small Organization: Web Site 289
12.3.2 Large Organization: Internal Use 293

12.4 Summary 295

13 Licensing 297

13.1 Types of Licenses 297
13.1.1 Relicensing Only Matters If You Distribute 298
13.1.2 Reciprocal Licenses Are Similar to Commercial Licenses 298

13.2 Licenses in Use 298
13.2.1 Reciprocal Licenses 299
13.2.2 Nonreciprocal Licenses 299
13.2.3 Which License to Use 300

13.3 Mixing Open and Closed Code 300
13.4 Dual Licensing 302
13.5 Other Intellectual Property Issues 303

13.5.1 Provenance 304
13.6 Summary 305

A Resources 307

A.1 Managing an Open Source Lab 307
A.2 Installing an Evaluation Linux System 309

A.2.1 Setting up Interoperability 312
A.2.2 Dual Boot 312
A.2.3 Running Linux on Windows 313
A.2.4 Running Windows on Linux 314

A.3 Next Steps 315
A.4 Top Ten Reasons to Use Open Source Software 315
A.5 Web Links 316

Contents xv

Contents

B The Open Source Definition 321

C Examples of Open Source Licenses 323

C.1 GPL 323
C.2 Mozilla Public License 332
C.3 The BSD License 343

Bibliography 345

About the Author 351

Writing Environment 352

Index 353

This page intentionally left blank

xvii

Preface

Open source software is now under serious consideration in many organiza-
tions. The success of several open source products, particularly Apache and
Linux, in the enterprise has come surprisingly quickly, given that they were
not commercially available ten years ago. It is important for managers
responsible for adopting technology to be fully aware of the issues that open
source represents to their organizations.

A set of new technologies is nothing new to the information technology
professional, of course. There are always new technologies and business
structures, and the steps that we take to evaluate and adopt them are not so
different. But each new set of innovations can also bring new kinds of chal-
lenges. Open source offers, in addition to a very rich set of technologies
with long histories, a set of new ways to look at certain problems. Issues
that are new now include:

�

A variety of new licensing options, and claims from some quarters
that some of these introduce new business risks

�

Opportunities to deal with the loosely structured community that
creates open source, from selecting distributions and buying products
to hiring and retaining staff

�

The possibility that open source software is built and maintained in a
different way, and the implications this has for our organizations

The biggest challenge we all face at this time is the difficult climate our
industry is in. This is a very tight time for spending, and every technology
decision needs to be justified by carefully analyzing costs and risks. Fortu-
nately, open source may be able to help us here, and this book will stick

xviii Intended Audience for This Book

closely to the areas where we can achieve a clear and reasonably rapid return
on investment.

Intended Audience for This Book

This book is written for professional managers and implementers of infor-
mation technology, who are not currently experts in open source software,
but who will, over the next year or so, evaluate it and then, in many cases,
adopt the technologies, tools, and practices for themselves and their teams.

The book is aimed, in a sense, at generalists. That is partly because most
open source software is a set of disruptive technologies rather than in direct
line with what is in place. When a set of technologies is mature, we often
react to these technologies in specialized, rigid ways. As a new set of tech-
nologies is introduced, they can often combine differently. The Web, for
instance, changed the boundaries of what many people do. Also, with new
ideas, it is often necessary to do everything from building the business case
to doing hands-on experimentation. With each component, we will look at
the business case, at the technology from an overview, and at the way it
works in practice to install and use.

This is a self-teaching guide to the issues faced in transitioning to this
new set of technologies. The issues range from business and social concerns
through technology and architecture to cookbook-style details. The book
should:

�

Convince you that there are roles for open source software in your
organization

�

Place open source development in the context of software history

�

Enumerate the various scenarios involving open source that are more
(or less) appropriate for most organizations over the next couple of
years

�

Give you enough examples and successful references for the constitu-
ent parts so you feel comfortable entering a process of selecting and
using them

�

Contrast and compare open source products among themselves and
with products for the Windows systems and others that are most
widely used today so you know what they are for and which ones
you’ll need

How This Book Is Structured xix

Preface

�

Guide the process of getting an open source lab off the ground
quickly and without errors and wasted time to the point where you
can run it yourself.

This book is aimed at the group known to technology marketers as the
“early majority.” These are not the very first people to adopt technology,
who often do it for its own sake. It is the group of people who, in their pro-
fessional life, take new ideas in technology and practice and have the vision
and practical leadership to put them in widespread business use in their
organizations.

The emphasis of the book is on developing new uses for systems using
open source software rather than just considering the migration of existing
systems. In my experience, it is difficult to cost justify migrations and to
achieve customer satisfaction. Migration and interoperability always play a
part in system introduction and are thoroughly covered, but only as a tacti-
cal element.

How This Book Is Structured

First, given the independent history of the open source community, it is
useful to deal with the people, organizations, and programs that have
brought us to this point; however, we will do that briefly, because there are
many good sources of this information available.

Next, we cover the question of whether open source systems are ready
for use in any circumstance, particularly in large conventional organizations
(including commercial businesses and government organizations). We will
look at the advantages open source has offered to others and can offer to
you, as well as the challenges you will likely face in attempting to adopt it
and introduce it in your organization.

After this, the book looks at the systems that can be implemented now
from the perspective of a business decision maker. My emphasis is the sys-
tems that will work and deliver value quickly, the measures used to deter-
mine that, and the road maps for deployment. We separate the systems,
where open source is already a preferred choice that will work in almost
every organization, from those where a careful evaluation must be made or
where there is more work to be done before a pragmatic decision would
select open source.

xx How This Book Is Structured

The next major part of the book reviews the technology components of
open source software, including strengths, weaknesses, and migration and
interoperability issues, including:

�

The Linux operating system, the BSD alternative, and their varia-
tions and distributions

�

How open source systems have actually been developed; the methods
and languages used, and lessons we can learn from them

�

Server applications, including infrastructure, Web, database, and
communication servers

�

Desktop applications, including desktops, browsers, office suites, and
a variety of professional and personal applications

Next, we cover the methods for managing open source in the organiza-
tion, including best practices for management of infrastructure, develop-
ment, costs, risks, and licensing. There are sections on how to introduce
open source to the organization, the specific hands-on details of setting up
an open source lab, pitfalls to avoid as a new user of these technologies, and
best practices and tricks for interoperability. The business scenarios are
reviewed using simple spreadsheet models to assess costs, benefits, and risks,
so you can use them as a basis for analyzing your own situation.

Finally, there are chapters on licensing and on essential resources for fol-
low-up, including books and Web sites. In the open source community, the
information is always out there; the trick is to navigate to it efficiently.

I’ve attempted to keep the style and language used in this book simple.
Each chapter is quite long and contains complete treatment of a subject,
but is structured into segments so that useful information can be gained in
a short sitting. There is some theory, but every theoretical point is illus-
trated with real-life examples.

xxi

Acknowledgements

I would like to thank the Florida Linux Users Group, for inspiring me ini-
tially and then providing the support of a diverse group of users and experts
working together. In particular, thanks to Adam Glass who put the group
together and keeps it happening.

Kwan Lowe was technical reviewer. He reviewed this patiently and with
humor and intelligence. Alan Rose patiently kept this on track, as he’s done
before. Tim Donar typeset the book, quietly fixing all kinds of errors.

Several people, notably Eduardo Dardet and Carolina Oria, contributed
ideas in discussion on the content and approach of this book. I use ideas
here that I learned from the three great managers I had at Microsoft; Joe
Menchaca, Howard Kilman, and Marty Paradise. Much material has
sprung from conversations with a variety of technical colleagues at
Microsoft, but I’ll not list their names; hopefully, they know who I mean.

Of course, I am solely responsible for all of the errors, omissions, and
biases in this. Let me know of any, and I’ll post them on my web site.

This page intentionally left blank

1

1

Open Source Software:
Definitions and History

If you are going to become an advocate for open source software, there are
some definitions, frequently asked questions, and historic issues that will be
raised repeatedly. We will cover them in this chapter.

1.1 Definition of Terms

Open source software is software that must be distributed with source code
included or easily available, such as by free download from the Internet.
The source code should be in the same form that a programmer would
actually use to maintain it—not, for instance, a generated, obfuscated, or
intermediate code form. The license of this software will not restrict others
from distributing the code or modifications and derived works under the
same terms. It will not discriminate against people or fields of endeavor.
Sample licenses are included in an appendix.

The Open Source Definition is included in Appendix B. The Open
Source Definition (OSD) was originally written by Bruce Perens for Debian
Linux and was completed in 1997. It is an established definition of open
source that is simple without being too simple, and it includes several
licenses that are acceptable.

Some people call software like this, distributed under licenses such as the
GPL, Apache, or Mozilla licenses, “Open Source Software.” Others call it
“Free Software.” Yet others, particularly in Europe, call it “Free/Libre or
Open Source Software” (FLOSS). Capitalization of these terms varies.
There are other expressions in use also, but the most widely used term
seems to be open source. In this book, we will refer to software that meets
the Open Source Definition as “open source.” This is a simple expression
that avoids capitalization and acronyms such as “OSS,” both of which are
annoying to read repeatedly.

2

1.1

Definition of Terms

The alternatives to open source can be called proprietary software, com-
mercial software, or, alternatively, nonopen, nonfree, or closed software.
These may have slightly different meanings, since there can be different
ways of failing to meet the tests of open source. Some of these terms may
strike a reader as derogatory, although that is not intended, probably
because in our society “freedom” and “openness” sound more attractive than
their opposites. For our purposes, it will be helpful to have a term for these
alternatives. We will refer to software that does not completely meet the
OSD as “closed code.” In this use we are following Lawrence Lessig in his
book,

The Future of Ideas

. If a piece of software (a product) combines open
and closed elements, such as Apple OS X, it will be defined as closed. So any
software product, as licensed, will be defined as either open or closed.

There is a third term that we will use in two special cases. Some software
is offered under different licenses. It may be offered to some groups as open
source and to others as closed. Note that to meet the terms of the OSD (to
be considered open source), this must be at the user’s discretion. This is a
hybrid licensing model.

We can also apply the term

hybrid

 when looking at a group of products.
If a group of products is purchased or installed together, some of which are
open source and some closed code, we will call the result a hybrid system.
An example would be IBM WebSphere, which includes Apache (open
source) and some other products that are closed code.

First, we will deal with a few frequently asked questions.

1.1.1 What Is Free Software?

Many people prefer the term

free software

 to

open source software

. The term

free
software

 dates from 1984, when the idea and arguments for it were first pub-
lished by Richard Stallman. The idea is not that software should be free “as in
beer,” or available at no charge, but that it should be free “as in speech,” so
you can review it and change it as you need to. The position of the Free Soft-
ware Foundation is simply and well stated, including criticism of the open
source position, at the Free Software Web site, http://www.gnu.org/.

The term

open source

 dates from 1997, when a group of people, includ-
ing Eric Raymond, Tim O’Reilly, and Bruce Perens, decided that the term

free software

 and some of the arguments employed in support of it were
making the idea less attractive to many businesses. They decided, as a mar-
keting decision, to emphasize technical and practical advantages of open
source software rather than arguments from principle. Those positions are

1.1

Definition of Terms 3

Chapter 1

stated by Eric Raymond and others at the open source Web site http://
www.opensource.org.

Everyone should probably read these documents at some point. While
they refer, with a few minor exceptions, to the same licenses and the same
software products, some people are more motivated by the “free software”
aspect and others less so. This book is intended for the pragmatic manager,
who will establish the value of a particular open source product by compar-
ing it with competitive products on a case-by-case basis using traditional
measures, including price, functionality, reliability, support, and documen-
tation. Open source code may in fact improve certain measures of quality,
such as the ability to freely customize a product, to review the code to deter-
mine how some function is implemented, or to support custom extensions.
Open source products also appear to have lower prices in many cases. If so,
these products will do well in our evaluation on those measures.

1.1.2 What Are Good Examples of Open Source?

Flagship products of open source software include:

�

The Apache Web server, with a share of 65 percent of installed world-
wide Web servers and still growing

�

The Linux operating system, used on millions of servers, which dem-
onstrates that no system is too large and complex to be developed as
open source

�

The GNU C/C++ language suite, used to build Linux and Apache
and thousands of programs on almost every operating system

These programs are huge, have been used by millions of people over many
years, and have developed a reputation for reliability and customer satisfac-
tion. There are thousands of other examples. Some are less well known than
Apache and Linux and have even more users, such as the ubiquitous Internet
BIND and Sendmail programs. Others are not so big or well known and may
have a few thousand or a few hundred users. A good place to see a sample of
open source projects is SourceForge (http://sourceforge.net).

1.1.3 Is It Necessary to Adopt Open Source Wholesale?

It is possible to assemble a complete “platform” from open source software,
and many of the most popular open source programs work well together.

4

1.1

Definition of Terms

Some small startup companies have done this. For most people, open
source solutions will be adopted one product at a time. Most adopters will
not be able to, or desire to, discard all closed code software at this time, and
there is no reason they should need to. Many new solutions, such as IBM
WebSphere, contain a mixture of open software and closed code.

It is possible to run open source products on existing Windows installa-
tions, or to migrate closed code programs you already have to run on Linux.

1.1.4 Does “Open Source” Mean Linux?

It is possible to adopt open source without using Linux at all. Many devel-
opers, for example, may use open source on Windows. On servers, for
example, Apache is an open source Web server that runs on Windows and
UNIX servers and IBM mainframes as well as Linux.

On workstations, OpenOffice rivals Microsoft Office in functionality
and can be installed from CD or the Internet in less than five minutes for
no cost on Windows desktops. The Mozilla open source browser can be
chosen, for instance, to standardize on a single browser for Windows and
the Mac.

We will look at some scenarios for Linux and some for other open
source products.

1.1.5 Does Open Source Require Different
Business Methods?

It is not necessary to adopt an open source approach to development or dis-
tribution in order to use open source software, and most organizations do
not. Many companies develop closed code software products that run on
open source software and sell them for a profit; this includes almost every
large software company today—IBM, HP, Oracle, SAP, and Apple. Other
companies develop applications that run on open source for their own busi-
ness purposes—for instance, Google, Amazon, or eBay—without feeling in
any way restricted by open source licensing or development models.

It is never a problem to develop an application for your own use in an
organization, to sell or distribute an application written in an open source
language, or to run on an open source platform. Nor is it a problem to dis-
tribute the open source software alongside yours.

If you change or extend the open source software and redistribute it,
you may have responsibilities under the license. In that situation, it is nec-

1.1

Definition of Terms 5

Chapter 1

essary to look carefully at the license and choose one that works for your
business model.

1.1.6 Will All Systems Be Open Source One Day?

Given current installed systems and sales trends, we can be certain that over
the next few years open source and closed code software will coexist. In the
long run, there is reason to expect some balance. There are advantages to
open source but also limits.

First, both commercial and government organizations have legitimate
reasons for secrets. Organizations such as the CIA and Merrill Lynch, both
of which have deployed open source quite widely, are never going to open
up all their code for public scrutiny.

Second, some classes of applications appear to be more likely to fit the
open source model than others. There is very little market share for open
source in commercial ERP and CRM systems or in large commercial data-
bases. This may change, and the development of open source for these
enterprise systems may be a matter of time, but it would certainly take
many years for that to happen. Alternatively, we may discover rules of
thumb that limit the open source model to certain areas only and find that
some complex business areas never really become open source.

Third, there could be a trend back toward closed code applications.
Some people argue that a new wave of innovation might demonstrate the
added value that closed code companies can offer. Others say that changes
in the legal climate, such as patent law, might be introduced that would tilt
the balance in favor of closed code systems again.

1.1.7 Is Open Source a Fad That Will Go Away?

The information technology business has seen its share of fads. But this
seems more like a trend of the kind we see in other industries as they mature.
Mature products such as office suites often become commodities. Mature
services often become organized to more closely reflect where the real costs
lie—in this case, in service and support rather than the original code.

Already, the majority of organizations have some role for programs such
as Linux, Apache, and Perl. It is likely that at some point most organiza-
tions will have some open source widely deployed. So far, we are seeing
open source software improve, if anything, more rapidly than closed code
software. The open source cost advantage may narrow if closed code prices
come down, but it is going to continue to exist.

6

1.2

A Brief History of Software

1.2 A Brief History of Software

In this section, we will look at the closely entwined histories of open source
software, UNIX-like operating systems, Linux, the Internet, and the World
Wide Web.

1.2.1 Early Years

In the 1950s, the first modern business computers were introduced, based on
work done during World War II. These were practically one-of-a-kind
machines, running custom programs written in binary code, later assembler
language. They were extremely expensive and it was thought by some (such
as a famous IBM market estimate) that only a few might ever exist.

In the 1960s, commercial mainframes were introduced by several com-
panies. These were custom programmed for applications, usually in
COBOL or FORTRAN. System software (e.g., the important programs
such as CICS, IMS, programming languages, sort, and other utilities) was
developed in assembler language. A major success of the System/360, intro-
duced by IBM in 1964, was that for the first time, the same assembly lan-
guage ran on all the related systems, so that system software could run on a
family of computers.

Prior to the 1970s, software was, essentially by default, “open” or “free.”
It had grown out of the scientific research community, where information
was generally shared, and nobody had thought of an alternative. Software
was developed by vendors, or by user companies, to meet a particular user
problem, and was then freely distributed by user groups or computer ven-
dors to other users who might have the same problem. Since software only
ran on systems from a single vendor, a good software product could help to
sell the platform.

1.2.2 Software Companies

The first software companies had started in the late 1960s, enabled by the
System/360 platform, an ongoing legal action against IBM for “bundling”
products, and by the falling prices of the systems. In 1970, IBM unbun-
dled its software, except for operating systems, and settled a lawsuit with
ADR, one of the first independent software vendors. At this time, several
independent software companies became successful businesses following a
closed code model. Some provided development tools and databases such
as SyncSort, Mark IV, Cullinet, and Total. Others developed application

1.2

A Brief History of Software 7

Chapter 1

software for automation of accounting and manufacturing and to support
some vertical industries, such as banking and insurance.

Software companies originally focused on mainframes, but by the
1970s minicomputers such as the DEC PDP-11 and then the VAX were in
general use. Because smaller mainframes and minicomputers were less
expensive, there were more of them and more of their customers were
likely to acquire software packages rather than perform expensive custom
development. Relational databases such as Oracle, Ingres, and Informix
were big sellers on minicomputers.

In the 1970s, the new idea of closed source software companies was
heavily proselytized. In 1976 the “Open Letter to Hobbyists” written by
Microsoft’s Bill Gates stated that “software is not a public good . . . but pri-
vate property.” In the late 1970s, men like Gates, Larry Ellison of Oracle,
John Cullinane of Cullinet, and Martin Goetz of ADR were arguing for the
importance of a strong software industry with closed code products, sepa-
rate from the hardware industry. Cullinet and ADR were later acquired by
Computer Associates. It is not a coincidence that Microsoft, Oracle, and
Computer Associates were able to build on this early start to become and
remain the largest companies in the software business.

1.2.3 UNIX

At the beginning of the minicomputer period, the C programming lan-
guage and UNIX operating system were developed together at AT&T and
distributed through noncommercial channels.

The history of UNIX code dates back to 1969, when it was first devel-
oped. It is a long history and an involved one, since the code has had several
corporate owners and has forked and even been reunited on more than one
occasion. Fortunately, most of the people who have been involved with
UNIX throughout that history, including the original authors, Ken
Thompson and Dennie Ritchie, are still available. So the history and the
code are well documented and understood. Those of us who do not under-
stand every line and its derivation can be confident that there are people
who do and can prove it. Unfortunately, this has been necessary from time
to time. UNIX and its derivatives are too valuable not to be fought over,
and there have been several legal actions conducted on the subject of own-
ership of UNIX trademarks and copyrights.

UNIX was written in C and constructed as a set of small programs that
worked well together. By 1974, the UNIX system, including the C lan-
guage and tools, had been ported to several platforms. AT&T was not at

8

1.2

A Brief History of Software

the time in the computer business, and versions of UNIX were distributed
freely, particularly thoughout the academic and scientific communities,
until Version 7 in 1978. AT&T stopped publishing UNIX source code in
1976, and after 1978 the distributions of UNIX from Bell Labs ceased.

In the 1980s, AT&T began to sell UNIX itself, first System III and then
System V, both directly and by licensing it to different vendors. The cost of
source licenses, which had been nominal, started to go up, so that by 1982,
for example, an AT&T source license was $100,000. This fee would be
spread across that vendor’s customers, which numbered a few hundred or
less, so UNIX was typically several hundred dollars for an end user. UNIX
did begin to be adopted in business, first on smaller systems but ultimately
on midrange and the very largest systems.

By the end of the 1980s, every hardware vendor in the world was offer-
ing a UNIX version. Unfortunately, different manufacturers competed by
attempting to “embrace and extend” the code base, so it was fragmented
and incompatible, and “porting” of an application between UNIX variants
usually turned out to be too expensive to be worth undertaking.

Earlier versions of UNIX have been placed in the public domain and are
often used in teaching operating system principles.

1.2.4 BSD

The University of California at Berkeley had the UNIX Version 4 code in
1974. By 1975, Berkeley engineers, including Bill Joy, were adding tools
and kernel improvements, and in 1977 a “Berkeley Software Distribution”
(BSD) was put together. This was to be the first of a series of distributions
issued at approximately annual intervals and licensed to about 500
machines by 1980.

From 1980 through 1995, BSD releases numbered 4.x were handled by
the Computer Systems Research Group of UC Berkeley (CSRG). In a
sense, responsibility for distribution of the UNIX operating system passed
to Berkeley at this time, funded by the Defense Advanced Research
Projects Agency (DARPA), but each recipient had to get its own source
license from AT&T.

In 1989, the networking code was released separately as Networking
Release 1 under the very unrestricted Berkeley license. It was now clear that
the original Bell Labs code could be replaced and BSD “freed” from the need
for an AT&T license. A large volunteer development effort replaced most of
the utilities, and in June 1991, Networking Release 2 shipped—only six ker-

1.2

A Brief History of Software 9

Chapter 1

nel files short. Later that year, William and Lynne Jolitz replaced the last six
files. 386/BSD was released for the Intel 386, replacing the Bell Labs code
and eliminating the need for a UNIX source license. In 1992, 386/BSD was
offered for sale by BSDI for $995 under a license that allowed onward distri-
bution. Three versions of BSD forked from this original code base: NetBSD,
OpenBSD, and FreeBSD. FreeBSD is the largest BSD distribution, aimed at
PC hardware and a mass market user base similar to Linux.

During 1992, UNIX System Labs (USL), an AT&T organization cre-
ated to hold the UNIX copyrights, sued Berkeley over its use of UNIX
code. After USL was transferred from AT&T to Novell in 1993, a settle-
ment was reached leaving an unencumbered BSD system, which was
released as 4.4BSD-Lite in 1994 and reincorporated into the three BSD
forks. So BSD had been available as a complete free operating system since
1991, but this was clouded by a lawsuit until 1994.

Berkeley licensing allows others to use the code freely as long as copyright
is attributed, and the code has been freely used. BSD networking code,
including the TCP/IP stack, was incorporated into almost every modern sys-
tem, including Microsoft Windows, and is the practical basis for the Internet
as it exists today. BSD was the basis for SunOS (later Solaris), although later
Sun merged in System V. BSD code is also extensively used in other UNIX
variants, such as AIX. Mac OS X is based on Darwin, which in turn is based
on FreeBSD, with the Apple GUI Aqua and applications on top. Approxi-
mately half the utilities in Linux are derived from the BSD effort.

1.2.5 GNU and FSF

In 1984, an important chapter in free software began with GNU. GNU is
derived from the acronym “GNU’s Not UNIX,” which is recursive (on the
G). GNU was begun by Richard Stallman as a project to develop a com-
plete operating system that was modeled on UNIX functionality and phi-
losophy but that used no code from UNIX in order not to be encumbered
by the corporate ownership of UNIX. GNU was modeled on UNIX for
several reasons:

�

UNIX was arguably the best available operating system to emulate in
some respects (for an amusing discussion of this, see Richard Gab-
riel’s paper, “The Rise of ‘Worse Is Better’”).

�

UNIX tool implementation was well known to Stallman and the
GNU community, so similar tools could be developed more rapidly.

10

1.2

A Brief History of Software

�

By modeling the OS APIs and binary formats on UNIX, parts of
GNU that were developed could be used on UNIX before the whole
thing was complete.

This project developed the essential utilities (including editor, compil-
ers, debugger, make, source control) of the UNIX system as a completely
independent code base. These tools turned out to be reliable and high per-
formance and were available on many systems, including basically all ver-
sions of UNIX. The GNU project produced many useful tools over the
years, but was less successful in producing a kernel.

By 1990, GNU was essentially a complete and very useful operating
system without a production-ready kernel. This is more useful than it
sounds, because the GNU design philosophy was successful, so that the
GNU tools could be run on any UNIX system, and every computer com-
pany sold UNIX systems.

The GNU Public License was released in 1989. In a more philosophical
vein, the GNU project is also the Free Software Foundation (FSF), whose
goal is a world where programmers can share their work freely without
commercial interference. GNU and FSF clearly began as the work of one
man, Richard Stallman. They have developed in several directions and
come to include a community with a shared vision, a large suite of pro-
grams and projects, a very specific and original licensing idea, and a founda-
tion to keep this all together.

Work continues today on the GNU kernel, Hurd, which is available for
testing purposes, and on many essential pieces of software. GNU, with the
Free Software Foundation, is at the very least two things: a founding spirit
and, together with BSD and the Linux kernel, one of three essential pieces
that together have created Linux.

1.2.6 Linux

In 1991, a Helsinki University student named Linus Torvalds began devel-
oping a free UNIX kernel for Intel-based PC systems. It was initially based
on Andrew Tanenbaum’s Minix system, which was a teaching system based
on early UNIX source code and published as a book.

From early on, Linus began using the “hacker” model of software devel-
opment, at this time unchristened, and this was surprisingly successful. The
Linux kernel was built with GCC and GNU utilities and relies on GCC for

1.2

A Brief History of Software 11

Chapter 1

its portability. As early as 1992, by combining Linux with GNU, a com-
plete operating system was available.

By 1993, Linux was functionally competitive for some purposes with
some of the available commercial UNIX systems, which cost hundreds of
dollars, and it was being commercially distributed on CD-ROM by Red
Hat among others.

Figure 1.1 shows the relationship between Linux and other systems that
have contributed. The dotted line represents inspiration. The UNIX system
inspired the development of GNU and BSD, which are both obviously
UNIX like, although for different reasons ultimately neither has any UNIX
code. The solid line represents code contribution. Both GNU and BSD
have contributed code to the system we now know as Linux.

1.2.7 The Personal Computer

In the 1980s, the personal computer (PC) was introduced to business. Intel
had introduced the first microprocessor in 1971, and personal computers
such as the Apple II and various CP/M models were available in the late
1970s, but the IBM introduction in September 1981 of a PC powered by
Microsoft’s operating system MS-DOS opened the floodgates in corporate
systems. The applications that drove heavy adoption (“killer apps”) were, in
order of importance:

Figure 1.1

Linux family tree.

12

1.2

A Brief History of Software

�

Spreadsheets (VisiCalc, then Lotus 1-2-3)

�

Other office programs, including word processors, presentation, pub-
lishing, and small database programs such as WordStar, PFS, and
dBASE II

�

End-user programming using BASIC

Client/Server Systems

What PCs originally lacked was access to data. Users would put mainframe
reports on their desks and retype the numbers into spreadsheets. By the late
1980s, networks were used to couple the user interface and scalable process-
ing benefits of the PC with centralized data, usually managed in a relational
database. Office tools allowed end-user access to browse these databases,
but more complex applications had to be custom developed.

There was a proliferation of graphical user interface (GUI) tools for
application development, the leaders being Visual BASIC and Power-
Builder. These promised an easy-to-use interface and the ability to scale
through applying lots of front-end hardware.

Unfortunately, client/server development tools had several problems.
They were a big step back in development productivity from the simplicity
of the terminal-based “4GLs” on mainframes and minicomputers. The man-
agement of these systems, with logic distributed across all the participating
computers, was difficult. Neither the ease of use nor scalability worked out
as promised. They were also all proprietary and platform specific.

What was needed was a new development paradigm that would simplify
the creation and distribution of forms-based graphical networked applica-
tions. This had to wait for the invention of the World Wide Web.

1.2.8 The Internet

The Internet is surprisingly old. The first ARPANET paper was published
at an ACM conference in 1967. By 1969, there were Internet nodes at
UCLA and Stanford. By 1972, the file transfer protocol (FTP) and Internet
mail addressing had been invented and the system was publicly demon-
strated in Paris.

The open source mail routing program Sendmail was originally written
by Eric Allman at Berkeley in 1975. It is probably the oldest open source
product still in widespread use, since it predates BSD and GNU efforts by
years. I believe it is still today the most widely used program for transport
of mail.

1.2

A Brief History of Software 13

Chapter 1

The Internet switched to the full TCP/IP protocol in 1981. At that
time, Berkeley Internet Name Domain (BIND), the open source program
that implements DNS and maps names such as “news.google.com” to Inter-
net addresses such as “10.1.203.45,” was written. This program runs on 95
percent of Internet name servers and all the root DNS servers. Those servers
have been accessed by every transaction between machines on the Internet
from 1981 through today, so it is probably the most widely used program
on the Internet.

From 1981 through the 1990s, the Internet, as measured by connected
systems, users, and information transfer, was approximately doubling every
year. That rate of growth would only be sustainable if almost everyone in
the Western world started to use it. It looked like the limit on growth would
be the difficulty of use, since the main applications were mail, file transfer,
and remote terminal use (Telnet), and they all required technical skills and
needs. Then the World Wide Web was invented.

1.2.9 The World Wide Web

Around 1991, HTML and the World Wide Web were invented at CERN,
the European Center for Nuclear Research, and at the time the largest
Internet site in Europe, by Tim Berners-Lee. It spread very quickly. In
1993, the Mosaic browser was developed at the National Center for Super-
computing Applications (NCSA) in Illinois. Work on the Apache server
began in 1995, based on prior work on the NCSA Web server.

The Web server and browser solved the problem of ease of use for Inter-
net users, as well as the problem of a simple model for GUI network devel-
opment and deployment. It has turned out to be the most important new
development in the history of computer software. We may not yet under-
stand all of its implications.

Berners-Lee might have licensed the Web idea using the GPL, which
would have ensured it was open source, but he put it in the public domain.
This meant that open source and closed code developers are free to use the
ideas and code. For a while, it was not clear whether the Web would take a
closed code direction. Netscape had acquired much of the NCSA develop-
ment team and planned to sell closed code browsers and servers. Microsoft
licensed the original Web code and planned to distribute closed code Web
browsers and servers with custom extensions with Windows. If the proto-
cols were extended by competing closed code companies, there might in
effect be not one but several competing proprietary Webs by now, as there
are competing incompatible versions of instant messenger software.

14

1.3

Summary

In the mid-1990s, the question of whether the Web would be open
source or closed code was effectively decided by the votes of companies and
individuals who chose Apache or competing Web servers; Netscape,
Mosaic, or competing Web browsers; by the tools and standards that were
supported; and by the World Wide Web Consortium (W3C). If server
administrators had supported Netscape or Microsoft proprietary extensions
(as some did), and if browser users had been content to load different
browsers to get to those sites, the Web could have become proprietary. The
direction that was taken was open, and this was effectively sealed in 1998
when IBM announced support for the Apache Web server, and the Mozilla
(formerly Netscape) browser was open sourced.

1.3 Summary

The Internet is clearly the “killer application” of open source, as the spread-
sheet had been for the personal computer. The Internet has projected open
source software into widespread use.

While most of the important Internet software is open source, this “vir-
tuous cycle” extends both ways. Open source development has been
enabled from the beginning by the cooperative technologies of the Internet.
Initially, developers at Berkeley used the Berkeley campus TCP/IP network
to build and the new Internet to distribute BSD. Later, Usenet was used to
support collaborative development of GNU tools and put developers in
touch with Linus Torvalds through the comp.os.minix newsgroup. Today,
the Internet supports collaborative development such as CVS, continuous
update of packages using tools such as Debian apt-get, social software such
as Slashdot, and collaborative instruments like SourceForge.

The economist Bradford DeLong has a framework for the economic
analysis of technological revolutions. The four key questions to monitor for
a revolution are:

1. What goods and services become extraordinarily cheap as a result?

2. What jobs and skills become key bottlenecks and thus become
remarkably valuable and well paid?

3. What risks blindside the society as the technology spreads?

4. What risks do people guard against that turn out not to be risks
at all?

1.3

Summary 15

Chapter 1

This immediately reveals a couple of important points. First, the frame-
work is all questions. It is very difficult to determine the answers to ques-
tions such as these posed for several years in the future. Second, half the
questions are about how we are likely to get the predictions that we do
make wrong.

It appears that certain essential code is becoming extraordinarily cheap.
It seems that this will include operating systems, Web and database servers,
office tools, Web browsers, and much personal and professional workstation
software.

At this stage, it seems that the development and pricing of large-scale
complex applications such as ERP and CRM will not be affected much, at
least on the same timescale.

Jobs and skills involving integration, custom extension, deployment,
and training of these systems do not appear likely to become more efficient
or markedly less well paid. There may be some pressure on the pricing and
packaging of these services from some of the new customers that the low
prices have made possible. On the other hand, some of these skills will be
bottlenecks to the introduction of systems with large payoffs and will
become valuable, at least for a time. Perhaps one group of winners will be
companies that figure out how to support larger numbers of users with
tools that scale and are appropriately priced using some combination of
technology and community organization. That still has to be decided.

It is possible that the lower prices of core software will lead to an explo-
sion in demand for other, more specialized software and services based on
top of this layer. This has been the pattern of the computer industry for
many years, particularly in hardware, where falling prices have driven
expanded markets. It is also the pattern in system assembly businesses such
as automobiles and aircraft. Over time, the value of the airframe in an air-
craft or the body in a car declines relative to the value of other systems, and
to the total.

Figure 1.2, based on a comment by venture capitalist and former Oracle
CEO Ray Lane, illustrates this. The software product industry was about a
$200B business in 2001, and the diagram shows the approximate composi-
tion of the business. At that time, people thought it would grow to $400B
by 2010. The collapse of the “Internet bubble,” the rise of open source soft-
ware, and movement of some production offshore mean the business may
be about $200B in 2010. But components lower in the stack, such as oper-
ating systems, will get a smaller share of the revenue. This can be seen as
caused by or as causing the adoption of open source in these components.

16

1.3

Summary

As some of the basic components become less expensive, more of the value
will be higher up the stack and the revenue will reflect that.

One set of risks we probably do not need to be concerned about is the
various claims that open source is somehow a parasite on the innovation of
private enterprise—so that if closed code companies were to fail, eventually
there would be no more software research and we’d all be worse off. This
worry begins by misunderstanding where research has been done. Large-
scale R&D has been funded mostly by two groups. Large private labs have
done basic research without plans for direct return. Examples include Bell
Labs developing the transistor and UNIX; Xerox developing the GUI,
Ethernet, and laser printing; and IBM developing SQL. The government
has funded much work, looking for a direct return but also making the
results public. Examples include the Internet, Berkeley developing BSD,
and NASA developing databases and project management. Small-scale
work, such as developing programs and algorithms, has been done by aca-
demics and small companies hoping to profit from their investments. There
is no reason any of this should change. Nobody is advocating that ALL
research and ALL programs should be placed in the public domain.

Claims that closed code companies are essential to the software econ-
omy generally come from these very companies and are self-serving. This is
not a realistic concern for customers; if open source developers can produce
sufficient innovative new applications without needing to be paid a lot of

Figure 1.2

Value moves up the
stack.

1.3

Summary 17

Chapter 1

licensing fees, we should be very happy. Where they cannot, the closed code
industry would be happy to fill the gap.

Some worry that without software companies to pay programmers,
there would not be many open source programmers around to work for
free. But most software companies are in areas where open source has no
great presence. The great majority of programmers, including open source
contributors, work in organizations on custom software or integration used
in house, not at software product companies on product development. So
whatever happens to software product companies will not have much of a
general effect on programmer employment or open source production.

This page intentionally left blank

19

2

Where Open Source Is Successful

This is a game of picking winners, so we begin this chapter with a defini-
tion of the playing field. Then we will look at the areas where open source is
succeeding and then the areas where open source has advantages and disad-
vantages, real or apparent.

2.1 Analytical Framework

This section looks at how technology is adopted, when, and by which orga-
nizations. Important issues are disruptive innovation, lock-in, and the type
of adoptions.

2.1.1 Disruptive Innovations

In Clayton Christiansen’s book,

The Innovator’s Dilemma

, the argument is
made that businesses are threatened by “disruptive innovations,” which are
new approaches that come up from under their radar. Ironically, the busi-
nesses that pay the closest attention to the needs of their best customers and
sales channels are the most vulnerable to such threats, because the needs of
those customers and channels are not well satisfied by the innovation in its
early stages.

Familiar examples of disruptive technologies include the personal com-
puter, which is an obvious success, and the electric vehicle, which has great
potential but has not yet really broken out. A large part of Christiansen’s
book focuses on the history of specific products, such as steam shovels and
disk drives, that offer detailed examples of successive cycles of disruption.
The disk drive story, for instance, is mostly one of smaller and less capable
drives finding new functions, solving new sorts of problems, and then
growing up to replace the larger, previous generation.

20

2.1

Analytical Framework

Disruptive innovations often take the form of being “good enough” as
opposed to “better,” at least as the incumbents see it. When a disruptive
product is compared with existing choices, there may be severe current lim-
itations in some uses, but the new product is much simpler and cheaper in a
way that is important to some customers. This type of activity happens in
industries where products are improving faster than customer needs. This is
very common in technology.

In Figure 2.1, we see three technologies, A, B, and C, whose perform-
ance (on the Y axis) is compared over time (on the X axis). For the sake of
argument, let them be three sizes of disk drive, such as 3.5, 2.5, and 1.8
inches. The performance measure is capacity (GB). The newer products will
be smaller in size and price.

At any point of measurement, such as Time 1, 2, or 3, A is always bet-
ter in performance than B and B is better than C. A possible customer
requirement is drawn with the dashed line. The customer need grows, but
more slowly than the competing technologies improve. As a result, while
initially only A will satisfy this customer, by Time 2 A or B will suffice, and
by Time 3 C will also be sufficient for this customer. Although A and B
have continued to improve in performance through the period, this does
not help them. The customer may switch to B and then to C if circum-
stances are right.

Figure 2.1

Successive
disruptive

technologies.

2.1

Analytical Framework 21

Chapter 2

If certain assumptions hold, we can expect that the customer will switch
when the newer technology crosses the dotted line representing the cus-
tomer’s need. The two important assumptions in this model are:

�

The new technologies must have some advantage in another dimen-
sion, often that they are significantly less expensive or less difficult to
use than the old.

�

The switching costs must be fairly low, as they are when substituting
a part in product design.

With disk drives, the new drive is lighter and cheaper and switching costs
are low. In this case, Figure 2.1 suggests that the customer represented by the
dotted line will switch from A to B at T2 and from B to C at T3.

There are simplifications in this graph. The technology lines are parallel,
meaning that the technologies are improving at the same rate. Often, the
new technology starts to improve at a better rate than the old. Also, the cus-
tomer requirement is generally not a single line but a distribution.

Also, note that today’s disruptive innovation becomes tomorrow’s
incumbent, where it may be attacked later.

Open Source as Disruptive Innovation

Much open source software qualifies as this sort of “disruptive innovation”
at this stage. Open source systems are usually less expensive than the alter-
native and often easier to use. In some cases, open source systems are a little
more difficult to use, but this appears to be related to their immaturity and
novelty rather than anything fundamental.

Often today, although not always, open source is following a closed code
technology, catching up in performance or scale while offering lower price
and other advantages. Performance and price/performance in the computer
industry are always improving faster than the typical customer can absorb,
but this is particularly true in the recessionary atmosphere of today. In other
words, the customer is prepared to see many systems as “good enough.”

Lock-In

From the customer’s view, Figure 2.1 represents “commodification.” The
customer has limited new needs and is ready to substitute less expensive
products as they improve. Improvements above the line are incorrect
attempts by vendors to avoid this commodity trap.

22

2.1

Analytical Framework

In a commodity explanation, as a solution becomes mature it becomes
more difficult to differentiate by innovation, and eventually all suppliers
tend to the same low margins over cost of goods. In software, with distribu-
tion costs close to zero, the product price will tend to zero and the only
money to be made will be in service and training.

We have seen software become better and less expensive over time, but
we have certainly not seen it tending toward zero in margin or price. This
possibility has been resisted up to now by something variously called “net-
work effects” or “increasing returns,” but which we will call “lock-in.” If
there is an advantage to using the same product as other people, a market
may go “winner takes all”; the winning product can then charge a substantial
premium because possible switching to new technology can be made more
difficult by locking in customers to existing patterns of use or interfaces.

The desktop operating system and office suite markets are cases where
vendors control and network effects predominate; another clear case of
this is instant messaging. It is very difficult to switch off these systems.
The Web browser market is largely a commodity/standards market, and
the Web server market even more so. Although vendors such as Netscape
and Microsoft resisted this, you can change browsers or even Web servers
easily. Mail by itself is a commodity market, but typical vendor extensions
such as calendaring and forms management are not. Database is a com-
modity at the API level, such as using ODBC or JDBC, but the vendors
have done as much as possible to resist this by introducing attractive pro-
prietary extensions.

Vendors will be looking to increase differentiation and encourage most
customers to become locked in to a single product. Customers will be well
advised to look for standards, either legislated or de facto, allowing them to
“pick and choose” and switch easily.

The effect of switching costs in Figure 2.1 is to lower the line of the new
technology by the amount of the costs. This makes it harder to adopt the
new technology against the old, as it appears effectively worse when those
costs are considered. If switching costs are high, the new technology will
have to be deployed into new uses until it is much better than the old,
which could take years. The switching costs, although one time, create a sit-
uation where the vendor can earn a premium indefinitely. In Figure 2.2, the
switching cost lowers the line of the new product, delaying its adoption.

In the open source case, switching costs are low when the technology is
deployed in the background and high when deployed in the foreground,
particularly on existing desktops. The difference in switching costs is the

2.1

Analytical Framework 23

Chapter 2

main reason why open source share is as high as 70 percent in many server
and appliance functions, and only about 3 percent in desktops.

Many customers will look on avoiding vendor lock-in as a legitimate
goal that may be worth putting a price on. The city of Munich, Germany,
for instance, did not plan to save money in its much publicized migration
to open source within the time frame of the migration. It expects to gain
financially when it escapes vendor lock-in later.

2.1.2 The Technology Adoption Curve

In Geoffrey Moore’s book,

Crossing the Chasm

 (Harper 1991; re-released
2002), he showed the established Technology Adoption Life Cycle, which
highlights transitions between classes of purchasers. A version of this is
shown in Figure 2.3. Moore commented on the most difficult transition to
make, which is the one from “early adopters” to “early majority.” Briefly, the
early adopters are lovers of the technology and are often easily sold, accept-
ing all kinds of problems and possibly buying without adequate cost justifi-
cation—for instance, for evaluations. The early majority can also be
visionary, but in a pragmatic way. They are people who see the benefits they
and their organizations can derive by employing the technology early.

The challenge of technology sales is “crossing the chasm” from the early
adopters to the early majority, since this involves something very different

Figure 2.2

Effect of switching
costs on adoption.

24

2.1

Analytical Framework

from increasing the volume of sales. It is a qualitative difference between
two very different types of customers. The histories in this chapter contain a
mixture of early adopters and the beginning of the early majority. The open
source community has more than its share of early adopters: people who
love the idea of free software and a community sharing code, and people
who love the particular quirks of these technologies, such as the UNIX-like
operating system, little languages, command-line interfaces, and so on.

Some open source technology, such as Apache and Linux servers, has
moved beyond the early adopter group now. Others, such as the Linux
desktop, are still there. The purpose of this book is to look at the technolo-
gies that are in a position to be deployed by the early majority. In this area,
the important questions are on the value the deployment will bring to the
business: money saved, opportunities created.

Systems integrators such as IBM, HP, and Sun are important early
adopters. They have chosen to deploy open source widely in their own
organizations. All of these have announced a complete switch to Linux
desktops. When looking at this group, there is little to be gained by asking
why they did it. These companies know that by planting early successes
they will create the references that early majority customers look for. The
important questions are: How successful have they been, and what lessons
have they learned? They may have faced challenges we would have preferred
to avoid.

When a technology “crosses the chasm” and becomes a success, the rate
of adoption increases and then remains high until the market is saturated.
This often takes the shape of the S-curve in Figure 2.4, which plots percent-
age of adoption against time. This shows the impact of the early adopter to
late majority transition as the opportunity it represents. Between T1 and T2
in Figure 2.4, a product that has taken years to reach 25 percent market

Figure 2.3

Technology
adoption curve.

2.1

Analytical Framework 25

Chapter 2

share can suddenly go to 50 percent or 75 percent in a short time. We have
seen this with TVs, PCs, VCRs, and cell phones, for example.

Because people have a tendency to assume linear change, the shape of
this curve continually catches us by surprise. One popular saying that cap-
tures this curve is: Things change much less in two years than you expect,
but much more in ten. In Figure 2.4, Linux desktops are on the left, Linux
servers in the center, and Apache on the right. Linux servers would appear
to be on the rising segment of the curve now.

2.1.3 The Open Source Stack

It is possible to get open source products for all the elements of an organiza-
tion’s computer network. Most people will be using a mixture of open
source and closed code, of course. Figure 2.5 is an abstract diagram that
shows the layers of typical software on a server and a desktop system. Not
all systems have all of these functions, of course, but most business systems
will support these functions across the organization in a similar manner.

Typically, of course, there will be many of these, and there will be a more
heterogeneous set of systems than this shows. Later, we will elaborate on
this diagram, where appropriate, to include other functions such as systems
management.

The intent of Figure 2.5 is to show at a glance how an open source
architecture might look if deployed fully. Packaged and custom applications

Figure 2.4

Classic technology
S-curve.

26

2.1

Analytical Framework

might include ERP or CRM, line of business applications such as POS or
call center, or more specific applications.

Open source software usually offers more choices than closed code, so
there are alternatives available for most of the boxes shown. We will discuss
these in more detail later.

On the server, you could use FreeBSD, UNIX, and/or Windows in
addition to Linux. You could use PostgreSQL or Oracle instead of MySQL.
Mail servers include Postfix and Sendmail, with other servers providing spe-
cialized functions such as Web mail access.

On the client, you could support Windows and/or Mac OS X in addi-
tion to Linux. You could use other browsers in addition to or instead of
Mozilla, such as Internet Explorer, Konqueror/Safari, Epiphany, or Opera.
Most organizations would add some more professional tools, and individu-
als might add preferred applications.

The development tool choices are just suggestions from many available
choices. PHP and Perl are the most common choices on Linux servers.
Python and JavaScript are common on Linux and Apple clients, as well as
for Web applications, because they are supported by Mozilla. Of course,
you could certainly choose C++ in either case or develop applications in
Java rather than an open source language.

2.1.4 Adoption of Specific Open Source Technologies

We can now apply the previous disruptive innovation diagram to some spe-
cific examples, which are:

�

Database servers

�

Web servers

�

Operating systems

�

Office suites

Figure 2.5

Typical open code
stack.

2.1

Analytical Framework 27

Chapter 2

Database Servers

Figure 2.6 shows the market for the database servers Oracle, SQL Server,
and MySQL from 1994 through 2004. This is, of course, a conceptual dia-
gram to illustrate the trend. Actual numbers depend first on the customer
requirement, which would have to be calculated for a specific customer, and
then on database benchmarks, which would have to be derived from the
requirement. MySQL follows the classic disruptive curve in this situation.
While Oracle continues to improve over time and to outperform the com-
petition, it can be replaced for this customer requirement by SQL Server in
1999 and SQL Server can be replaced by MySQL in 2004.

Web Servers

The World Wide Web is an astonishing case of disruptive technology, and
Apache is the leading instance. Apache grew out of the first Web server
(since it is based on the original NCSA server), so unlike many other open
source products it never had to compete with closed code from a position of
weakness. It began as, and has remained, the market leader.

This is not simply a case of a new technology being cheaper and simpler,
although it is. In addition to making it easier and less expensive to develop
applications, the Web server went further and made a new class of applica-
tion possible that reached orders of magnitude more people than prior sys-
tems ever had.

Even though the Web is one of the most successful new paradigms in
history, there were still migration difficulties in early deployment. Applica-

Figure 2.6

Successive business
databases,

1994–2004.

28

2.1

Analytical Framework

tions that had been deployed on client/server systems or dedicated termi-
nals could not be migrated to the Web without dumping existing
investments, and had to be either kept or discarded wholesale. For the class
of users who were attracted to client/server applications and therefore had
control of their desktops in house, the Web interface was weak (slow and
difficult to control precisely) and a poor use of their existing investments in
powerful standardized client systems.

Operating Systems

Linux was clearly a case of “good enough” but simpler and cheaper when
introduced to commercial businesses around 1994. Most early Linux custom-
ers were looking for a UNIX-like system that was inexpensive and ran on
inexpensive Intel-based hardware. At that time, it was not likely to be adopted
by existing UNIX customers as an upgrade to their existing systems.

By 2000, Linux had overtaken the largest-selling, lowest-functionality
UNIX system, Santa Crux Operation. Large SCO customers were ripping
and replacing their systems with Linux, and the company abandoned the
UNIX server business to pursue other businesses as Tarantella.

In 2004, it seems that large Linux servers can compete for new business
installations with large UNIX servers for everything but a few specialized
niches. Linux is a serious competitor to UNIX even in supercomputers and
other high-performance niches. Although there will be several years of coex-
istence, IBM and HP agree that within a few years Linux will entirely
replace their proprietary UNIX systems.

In Figure 2.7 there are a couple of new wrinkles compared with the pre-
vious figures. First, the business needs vary more than for the database
model and are expressed by a pair of lines. Second, the technology lines are
not parallel but converge in three or four years from now. Operating sys-
tems can adopt each other’s improvements in leveraging hardware using
SMP and clusters. As a result, Windows has been catching up to UNIX,
and Linux to Windows and UNIX. In this area, Linux is well beyond “good
enough” and is simply the best choice at any price.

Office Suites

OpenOffice is a great example of a product that is “good enough.” It is not
much different in functionality or look and feel from Microsoft Office. If
you have used neither before, you will most likely find them similar to learn
and use, with more features than you need. Most of us don’t use all of any
office suite, so it has more than we need.

2.2

Open Source Is in Widespread Successful Use 29

Chapter 2

The “disruptive innovation” diagram for Office Suites looks attractive
for OpenOffice. It meets most customer needs and is certainly very much
less expensive than Microsoft Office. If you have 10,000 users, you will pay
millions of dollars for Microsoft Office and almost nothing for OpenOffice.
Unfortunately for Open Office, the switching costs are so high that it is
usually difficult to justify migration for existing Office users. This is why
computer vendors are targeting new deployments, such as the Asian mar-
ket, for Open Office.

2.2 Open Source Is in Widespread Successful Use

The Linux and FreeBSD operating systems, the GNU compiler suite, and
the Apache Web server are massive software systems used all over the world.
They are large and sophisticated and compete with the largest closed code
systems, such as Windows. Here are some of the key “bullet points” on
open source use.

2.2.1 Open Source Is the Heart of the Internet

There would be no Internet without open source. Open source software
has been in use on critical parts of the Internet, including mail routing,
domain name assignment, and key components of the TCP/IP network
stack, for well over 20 years, exhibiting great reliability and capacity for

Figure 2.7

Server operating
systems,

1990–2005.

30

2.2

Open Source Is in Widespread Successful Use

growth and change. All of this code at the heart of the Internet is open
source software:

�

TCP/IP, the core protocol code of the Internet, is distributed under a
Berkeley open source license and included in Windows and IBM
mainframes as well as UNIX and Linux.

�

BSD, the original free UNIX distribution, includes many Internet
utilities, such as implementations of remote terminal, file copy, and
the Internet programming API (Berkeley sockets).

�

Sendmail was written as open source in 1975 and is still the most
used mail server program.

�

BIND, the program that maps server names to IP addresses, has been
an essential component of the Internet since 1981.

�

Apache is the most used Web server, with 67 percent share (Netcraft).

�

Linux is the operating system used by most Apache servers.

�

Mozilla, the browser that was formerly Netscape, is the #2 browser in
use (after Internet Explorer).

2.2.2 Linux Is Shipping a Lot

Linux is the #2 shipping server worldwide (after Windows). In 2002,
Windows shipped 2,533,671 servers and Linux 485,679 (IDC), so Linux
shipped at about 20 percent of the Windows rate. The server growth rate
was 35 percent for Linux and 14 percent for Windows (also IDC). In 4Q
2003, Linux server unit shipments were 250,000, which is a 63 percent
growth over 4Q 2002 (IDC).

In 2003, Linux overtook the Mac for client operating system sales to
become the #2 desktop operating system after Windows (IDC).

In 2004, the following events are expected:

�

The majority of CIOs expect to deploy Linux in 2004–2005 (

CIO
Magazine

 2003).

�

There will be approximately 25 million Linux systems in use (IDC).

�

IDC projects Linux as 25 percent of new OS for servers, with Win-
dows as 50 percent.

2.2

Open Source Is in Widespread Successful Use 31

Chapter 2

�

Linux is projected (from IDC 2002/2003 numbers and CAGR) to be
at 1 million annual run rate going into 2004.

�

Linux will outship all UNIX systems combined, and the Mac in unit
sales, to become the #2 OS (also projection from IDC).

By 2005/2006 Giga predicts “with high probability” that Linux will
overtake Windows to become the leading operating system on new server
shipments.

Linux will rapidly mature and gain momentum as an ISV reference
platform, moving beyond high-volume Web, technical computing,
and appliance server environments into mainstream application and
DBMS server roles by 2004/2005. (Meta Group 2003.)

One warning: Most of the numbers given previously are unit shipments.
Linux sales percentages in dollar numbers are always much lower than unit
shipments, because Linux costs less. UNIX server sales for 2003 by dollar
volume were still larger than Windows and Linux combined, although
2003 is probably the last year where this will be the case.

2.2.3 Open Source Appliances Are Everywhere

Appliances based on Linux and open source tools have been widely
deployed in corporate networks, small businesses, and homes for several
years with proven reliability. Corporate appliances for caching, proxy, fire-
wall, and security running on Linux are sold by IBM, HP, Dell, and Sun.

There are a variety of small appliances making their way into the home
today. They typically include a small computer and disk drive, often with
an LCD display or TV output, sometimes controlled from another system
over a network using a Web browser. These systems can cost from under
$50 for a simple firewall/router to a few hundred dollars for a fairly full
business system such as the Sun Cobalt Web and file servers. These systems
need a very reliable OS that can be configured to do only what they need,
and at a low price. The operating system used is not usually advertised,
since the buyer does not care, although it is generally not a secret that it uses
Linux. Examples of these consumer, home office, and small business devices
include the following, all based on Linux:

32

2.2

Open Source Is in Widespread Successful Use

�

TiVo television recorders

�

Mirra network-attached disk drives

�

Linksys (Cisco) and Netgear home router, firewall, and wi-fi appli-
ances

�

Cobalt (Sun) Web and mail server appliances

�

Pogo database (MySQL) appliances

�

Zaurus (Sharp) PDAs

Other Linux appliances include Snapgear and Guardian. There are
numerous Linux-based MP3 players, video players, PDAs, and cell phones.
It is difficult to get accurate statistics, but it does appear that Linux is the
main player in this category of new appliances, aside from the established
markets of PDAs and cell phones.

In the case of the more mature category of devices making up the PDA,
PalmOS and Windows CE are the leaders. However, the Sharp Zaurus
series is a strong Linux-based contender, and recent moves among con-
sumer electronic manufacturers suggest that there will be movement toward
Linux in the future.

Microsoft offers both Embedded Windows 2000 and Windows CE,
both evangelizing vendors and making its own systems, but does not appear
to have much share except in PDAs and when selling its own brands. For
example, the Linux-based TiVo device has greater than 80 percent share,
with Microsoft selling very few of its “Ultimate TV” appliance.

2.2.4 New Companies and New Businesses Use
Open Source

When a new technology becomes available, there are many obstacles to its
rapid deployment. For most existing businesses, the “better” is the enemy of
the “good enough.” First, if we have done the intellectual and physical work
to build a satisfactory networking solution for our organization based on
Windows 2000, then a better or cheaper solution, whether based on Win-
dows 2003 or Linux, is an annoyance since we may have to do the work
again. Second, any savings are probably negated by our sunk costs, at least
until some major upgrade comes along.

Thus, the first places we could reasonably expect to see new technology
deployed early are companies and businesses that are new in the last few

2.2

Open Source Is in Widespread Successful Use 33

Chapter 2

years, or have grown so explosively that they are practically new. And we do
see that these types of organizations have adopted open source software
widely and quickly.

Dot-Coms

One obvious case is the dot-com industry. For all the disappointment
around the “boom and bust” of this phenomenon, a number of powerful
companies have come from the Internet industry. These companies have
been disproportionately users of open source, starting obviously with
Apache, as already discussed, but including open source operating systems,
tools, and databases.

Amazon.com is an extensive Linux user, having converted from UNIX.
The main online Amazon system is developed in C++. Amazon also uses
Perl heavily for data integration.

Yahoo! is a heavy FreeBSD user. It also uses PHP and Perl languages,
moving more to PHP, and the MySQL database. The high-volume Yahoo!
Mail is all open source.

Google uses thousands of small commodity servers running Linux.
Their home-grown systems management is written using the C++ and Perl
development tools. They also use Python extensively.

The thousands of servers that Akamai has placed around the world to
cache and accelerate content all run on Linux.

Hotmail became the largest free email service in the world while run-
ning on FreeBSD, although much, possibly all, of it now understandably
runs on Windows 2000.

Slashdot, the news service, runs on Linux and is written in Perl. Slashdot
is so heavily used that it regularly “slashdots” or swamps other high-volume
sites when it points its readers to them. The Slashdot code is also available
as an open source product (slash).

Bioinformatics

Bioinformatics is a rapidly growing industry characterized by scientists
using powerful computers to perform gene sequencing, cladistics, com-
puter-driven ecology, modeling of dynamic systems, and other computer-
intensive processing. The power needed would have been the province of
supercomputers and powerful UNIX workstations a few years ago; today it
is all done with commodity systems, linked into grids if necessary. Profes-
sionals in this area will use a variety of programs written recently. Essen-

34

2.2

Open Source Is in Widespread Successful Use

tially all of these programs require Linux or UNIX. For example, the book

Developing Bioinformatics Computer Skills

 (Gibas and Jambeck, O’Reilly)
covers the industry widely and is confined to Linux/UNIX, including Perl
for data manipulation and MySQL for database management.

Grid and High-Performance Computing

High-performance technical computing (“rocket science”) has traditionally
been a UNIX domain, although techniques leak over to the business world
from academia, to Wall Street in the 1980s, and later to energy companies
and large-scale retail analytics. This includes many systems with dozens of
Linux servers running the “Beowolf” clusters, as well as some very large
custom supercomputer systems.

Grid computing, which has evolved from this, is the growing use of
loosely organized “grids” of computers, which can be accessed to solve diffi-
cult computational problems. Unlike a cluster, a grid can be joined and
exited voluntarily, so capacity is dynamic. This is mostly done on Linux and
UNIX systems today.

The brokerage company Reech Capital uses an inexpensive grid of 144
Xeon processor systems running Linux and Sungard software to calculate
complex derivatives 100 times faster than a single machine. BP Americas uses
Red Hat Linux systems on HP to perform seismic analysis for oil drilling.

Massive Multiplayer Games

The massive multiplayer game industry is a new business that needs high
scalable performance and is very cost driven. These systems are built today
using Linux clusters. Back-end databases are often Oracle on UNIX, but
these are moving to clusters also. Electronic Arts, for example, has deployed
Oracle RAC on Linux.

2.2.5 Open Source Is Broadly Adopted

Most top computer companies are strong advocates of open source software
for significant elements of their products. This includes all of the top inte-
grated systems companies, such as IBM, Hewlett-Packard, Apple, and Sun.
IBM and HP make billions from Linux sales. Sun has several product lines
based on Linux. The Apple Macintosh OS X operating system is based on
the open source FreeBSD operating system.

All of the leading software companies, with the single exception of
Microsoft, offer products based on open source. This includes Oracle, SAP,
Computer Associates, PeopleSoft, Veritas, SAS, and Siebel.

2.2 Open Source Is in Widespread Successful Use 35

Chapter 2

There are many big corporate open source success stories, including
Amazon, Google, eBay, and Industrial Light & Magic. These include some
of the newest and largest applications, such as new scientific supercomput-
ers based on Linux clusters, commercial Web megaservers, most bioinfor-
matics, and all grid computing systems.

Many government organizations from Munich to Massachusetts, Brazil
to China, NASA to the National Security Agency are making significant
moves toward wholesale adoption of open source.

As of October 2003, according to the Financial Times, there had been
20 million downloads of OpenOffice.

In January 2004, the top database performance benchmark (TPC-C)
was performed with the Oracle database on a 64-way Red Hat Enterprise
Linux cluster. It achieved over a million tpmC at 5.50 per tpmC.

There are over 2,000 SAP installations on Linux. Oracle has over 500
customers on Linux.

PHP is the most used development language on the Web, having over-
taken Microsoft Active Server Pages.

IBM has announced that it is moving all internal desktops to Red Hat
Linux. It is using a mixed strategy, combining Notes, Office viewers, and Cit-
rix. This is in progress in 2004, aiming for completion in 2005. IBM plans to
transition all of its customers from the AIX operating system to Linux.

Sabre is replacing front-facing components of Travelocity, its Web-
based booking system, with applications developed using Linux and
MySQL. Sabre, the reservation system of American Airlines, was a pioneer
of OLTP technology and runs the world’s largest mainframe OLTP travel
booking system.

Sherwin-Williams, the paint manufacturer, moved 10,000 systems
from Windows to Turbolinux. AutoZone moved over 3,000 systems from
SCO UNIX to Red Hat Linux. The U.S. Postal Service has 6,000 Linux
systems installed in 250 mail distribution centers. McKesson serves bil-
lions of prescriptions annually at thousands of locations through a Linux-
based application.

The Pentagon announced in February 2004 that the Army Research Lab
(MSRC) is installing a Linux supercomputer system based on 1,066 dual
Xeon processors (2,132 processors total).

Other large corporate adopters of open systems include:

36 2.3 Examples of Open Source Systems

� Ford

� L.L. Bean

� Delta Airlines

� DaimlerChrysler

� Dresdner Kleinwort Benson

� Hughes Network Services

� Merrill Lynch

� Deutsche Bank

� Telstra

� Cisco

� UBS Warburg

� Federal Aviation Authority

2.3 Examples of Open Source Systems

Four examples of high-volume open source sites that can be seen on the
Web are Amazon, FedStats, Travelocity, and Slashdot.

Amazon

Originally, Amazon was mostly based on proprietary UNIX but many sys-
tems have migrated to Linux and important new systems are built with all
open source software. This includes the customer management and recom-
mendations sections. See Figure 2.8 for the Amazon recommendations page.

FedStats

The U.S. Census site, http://www.fedstats.gov/, is an excellent demonstra-
tion of what can be achieved using all open source software (Linux, Apache,
MySQL, PHP, Perl) operating with large amounts of data. See Figure 2.9
for FedStats and Figure 2.10 for the related site MapStats.

Travelocity

Travelocity is a high-volume air and travel reservation site run by Sabre.
The original reservation system run on NonStop equipment. The new
ecommerce pricing system, which handles much higher processing require-
ments and customer volumes, uses all open source software including Linux
and MySQL. See Figure 2.11.

2.3 Examples of Open Source Systems 37

Chapter 2

Figure 2.8
Amazon

recommendations
page.

Figure 2.9
FedStats.

38 2.3 Examples of Open Source Systems

Figure 2.10
MapStats.

Figure 2.11
Trevelocity.

2.4 Summary 39

Chapter 2

Slashdot

Slashdot is one of the highest-volume database-driven news sites on the
Web. It is totally open source, built in Linux, Apache, MySQL, and Perl.
See Figure 2.12.

2.4 Summary

Open source software is here today. It is extensively used on the Internet
backbone, by IBM, the U.S. government, Ford, Wal-Mart, Exxon, GM,
Amazon.com, and Merrill Lynch, among others, in the United States, and
by large enterprises and government organizations around the world. The
products that are in widespread use (by millions of people every day)
include:

� Linux and FreeBSD operating systems

� Apache Web server

� MySQL and PostgreSQL databases

� BIND and Sendmail, the primary systems used for Internet domain
names and mail forwarding

Figure 2.12
Slashdot.

40 2.4 Summary

� Samba and other tools for file and print sharing broadly across sys-
tems

� OpenOffice and other office suites

� GIMP and other professional tools

� OpenLDAP and other open tools for directory and security manage-
ment

� GNU C++, Perl, PHP, Python, and other development languages

� Appliances for corporate and consumer use, such as TiVo, Linksys,
Netgear, Sharp Zaurus, and SunCobalt and SunFire systems.

In some areas, such as embedded devices, Web servers, and engineering
workstations, the open source choices are already the leading installed sys-
tems. In others, including infrastructure servers, application servers, and
large academic clusters, open source is gaining the majority of the new
install decisions. Not everyone can necessarily benefit by adopting these
products today. Some may have sunk costs in existing solutions, and there
can be large transitional costs in other cases. But open source solutions are
sufficiently compelling that every organization should be looking at them as
possibilities now.

41

3

Open Source: The Good, the Bad,
and the Ugly

In this chapter, we will review arguments for and against open source soft-
ware, and some other issues that are relevant.

3.1 What Is Good about Open Source

Advantages of using open source software include our ability to:

�

View source code

�

Change and redistribute source code

�

Buy from different vendors and adopt new platforms

�

Avoid proprietary information formats

�

Allow integration between products

�

Reduce software licensing cost and effort

�

Develop and deploy effectively internationally

�

Draw from a large pool of skilled professionals

3.1.1 Why Your Right to View Code Matters

There are reasons why you should have the ability to review source code,
even though you don’t expect to do it, don’t want to do it, and may not
even be able to (if you don’t know C++ or Perl). If there is a problem with a
system you are maintaining, you may not read the code but you will do the
following:

�

Check the documentation that describes how the system should
work, including FAQs, to see if you are using the system correctly.

42

3.1

What Is Good about Open Source

�

Check support base or bug reports for the system for similar prob-
lems and solutions.

�

Use search engines such as Google to search for similar problems and
solutions.

These methods are all improved by source code availability.

The documentation is more likely to be specific and accurate since the
author is not attempting to hide the implementation (or the fact he or she
hasn’t seen it). Write-ups of bug reports are more likely to describe the bug
in terms of the code (and may include the proposed fix). Problems that
appear similar on the surface will be correctly classified as identical or differ-
ent once compared with the actual code error.

If these instantaneous methods fail, you will probably:

�

Use mail lists or user groups to find people who’ve already solved the
problem (but haven’t reported it) or who have more advanced prob-
lem-solving skills.

�

Use the support mechanism of your organization or your vendor to
find people to do that.

At this point, even though you still don’t plan to read the source code,
the people you will be relying on will need to see it, and if you don’t have
the right to see it they very likely will not either.

In closed code organizations, it is quite common for employees in sup-
port and consulting positions not to have access to source code, because of
concerns about theft. That is, employees of the same company may not
have access to their own closed code. They often won’t tell you this.

Support and consulting work is commonly contracted these days to
third-party companies on a variety of terms. Since they are not employees,
they are quite unlikely to have access to the closed code. Again, they may
not tell you this.

The closed code that needs to be reviewed may not belong to the com-
pany you think. Oracle and IBM state that they prefer Linux to Windows
(or Solaris), because their development and support staff then has access to
the entire software stack. This is better, according to them, than having to
go through Microsoft (or Sun) support for the bugs that may originate

3.1

What Is Good about Open Source 43

Chapter 3

there. But this is the same objection, simply at the next level. And no doubt
SAP says the same thing about the Sun and IBM database support. So we
all want everyone else to be open to us, at the very least.

Let’s emphasize that this is in no sense a theoretical issue. It is about get-
ting work done day to day, under pressure, and with some guarantee of
results. In most cases that work will be done by someone you hired. Here is
an analogy: You probably don’t sign contracts without an attorney’s review
or send tax forms without an accountant’s review. It is your right to read
these documents that allows your accountant or attorney to read them. In
some other legal system, you might not have that right.

If you can read the source code yourself, it becomes more personal. The
Free Software Movement originated in a printer driver that Richard Stall-
man was unable to fix because the printer manufacturer refused to let him
have the source code. I have been personally frustrated on many occasions
by problems caused by bugs in code I was not allowed to see by the software
vendor, or by insufficient understanding of how the code is expected to
work, such as what the meaning is of various parameters passed in. If you
have been reduced a couple of times to hanging on a telephone waiting for
someone who is often not a programmer to basically read bits of the code to
you in a sort of guessing game, you would want to work with open source
software too.

3.1.2 Why Your Right to Change and Redistribute
Code Matters

There are reasons why you want to be able not only to view the source code,
but to change it and possibly redistribute it.

First, code has to be kept up-to-date to be worth seeing, and that mech-
anism must be public. While only a small percentage of a large code base
will have changed after a few months, it will be precisely those few percent
that will have had the reported and fixed bugs. Your bug is probably in
there as a fix or caused by a fix, and if not it is statistically likely to be close
by because bugs are known to cluster. It is a waste of time looking through
old code for current problems. There is other value in old code, such as to
see general architecture or coding style or to learn the application. But for
purposes of finding and correcting problems, only current code is satisfac-
tory. As a practical matter, this means that some sort of code repository,
such as CVS, which supports concurrent source code updates, is needed to
make source code sufficiently current.

44

3.1

What Is Good about Open Source

Second, as a practical matter, we have found that the ability for serious
users to contribute is a real source of strength for the large open source
projects such as Linux and Apache. It has allowed them to improve more
rapidly than the largest and best closed code competitors, and much more
than the average closed code product, which is usually very resource con-
strained. Although it may not be necessary for every open source product to
allow broad contribution from users, and many closed code products have
been successful over the years without it, it is wasteful to lose this when it is
available.

Third, and most importantly, the ability to “fork” or spin off a com-
pletely new competing line of code is the guarantee that the code is open
and available. The possibility of the “fork” means that if in the future some
open source project falls into incompetent or malicious hands, or that the
original authors don’t want to maintain it or upgrade it, there is a choice. It
will always be possible for another group to set up a rival program that can
support the same existing customers and interfaces but start to develop in a
new direction.

The “fork” is the last line of defense option of the open source world—
an expensive choice, rarely used, with strong social pressure against it. But it
is the mechanism that ensures that ownership of the product resides with
the users, not the author. It means that if, for example, Red Hat Linux were
to go out of business, another company or even your organization could
pick it up and maintain it.

3.1.3 You Can Buy from Different Vendors and Adopt
New Platforms

You do have to plan and build for a capability to buy from multiple ven-
dors; if you do, your investment in software and business practices is safer
than if you rely on one closed code platform. This has been proven repeat-
edly in the past.

In particular, systems based on “PC” commodity hardware have proven
much less expensive than closed code single-vendor systems. Linux, of
course, benefits from this because it runs on those commodity platforms.
Hardware parts, training, support, and software such as drivers all generally
cost more when you are restricted to a single vendor.

Freedom to choose can reduce costs through commoditization, but that
is not all. It allows competition on function or style as well as price. There is
also a considerable danger of obsolescence of computer platforms over time.

3.1

What Is Good about Open Source 45

Chapter 3

History has shown that it is a good idea to be prepared to move systems to
new platforms and architectures, hardware, and software.

Open source is portable theoretically and practically. Theoretically, it is
portable because the source code is available and the tools to build from the
code (notably the GNU C/C++ compiler but much more) are available on
many platforms and are also portable, so it can be done. Practically, we find
that open source products are generally available on multiple platforms
where this makes sense, so it actually is done.

Today, there are two major operating systems that are widely installed
and still growing in installations on server and desktop computers: Win-
dows and Linux. There are also three other types of systems that are impor-
tant, although less widely installed:

�

UNIX, mostly Mac OS X on desktops, and Solaris, HP-UX, and AIX
on servers. Other UNIX systems sell in smaller volumes.

�

IBM operating systems sold on IBM and compatible mainframes and
AS/400s.

�

Embedded and other tiny systems, including Palm Pilots, tablet PCs,
appliances, and electronic items.

Windows is only available for Intel (previously Intel and Alpha); there is
a version of Windows available for embedded systems on a variety of proc-
essors but it is a different code base, just branded Windows. Microsoft serv-
ers and tools such as SQL Server, Visual BASIC, and Internet Information
Server are generally available only on Windows, with a few rare exceptions.

UNIX systems are only available for their respective vendor hardware.
OS X is available only for Apple systems. Solaris is really only available for
Sparc systems, since the Intel-based Solaris is a different code base with
many missing high-end features. Other IBM operating systems are for spe-
cific IBM or plug-compatible hardware.

Only Linux is available on a wide range of hardware platforms from dif-
ferent vendors, using various processors, in many configurations. This
includes all of those previously mentioned, as well as Intel, PowerPC, Sparc,
IBM servers, and embedded systems. Open code servers and languages such
as Apache, MySQL, Python, and Perl are available on Linux, but are also
available on Windows, Mac OS X, Solaris, and other systems.

46

3.1

What Is Good about Open Source

3.1.4 Open Source Avoids Proprietary
Information Formats

It is unusual for open source to implement proprietary data formats, but it
is not impossible. Open code could use proprietary keys to make data inac-
cessible even though the algorithms are public, as is done routinely for secu-
rity reasons. Open code could also use legal means to protect data storage
even though the algorithms are known, in the same way that Unisys did
with the GIF format for years.

But the most common method used by closed code companies to imple-
ment proprietary formats is simply not to publish them, combined with
changing the formats periodically and reserving the right to do so. Because
open source code can be read (and copied), this method is not available to
open source products. Generally, open source as a matter of principle avoids
proprietary control also.

Unfortunately, it has been the general practice for vendors to develop
proprietary formats that are not fully documented, and to reserve the right
to change those formats. This is not usually defended as a right; it is most
often argued that it is technically too difficult to publish the formats and
maintain them over time in a consistent manner.

Information created by individuals and corporations belongs to them, or
in some cases to broader bodies, so legal constraints on data access are
unlikely to apply to individuals publishing their own information. Govern-
ment information may belong to all people, for instance. This is not usually
bounded by time and place.

Examples of proprietary data formats include Microsoft Office (Word/
Excel/PowerPoint), and also enterprise server software such as SAP, People-
Soft, and so on. Documents you create may last for years. It is not unusual
to have to convert the formats several times. For example, at some time, you
may want to show them on the Web or on a Palm Pilot. You should never
pay a license fee to access your own data as many vendors require, and you
should be sure that you can always access it.

3.1.5 Open Source Allows Integration
between Products

With open source, because data and code specs and source code are avail-
able, you can always make things work together by examining these docu-
ments. With proprietary systems, you are dependent on the code owner to
make changes (or not).

3.1

What Is Good about Open Source 47

Chapter 3

Proprietary systems are more likely than open source to offer canned
and integrated “solutions.” Unfortunately, these are rarely more than mar-
keting fluff. They are unlikely to involve multiple vendors, except by using
special and expensive integration engines. They are unlikely to work with
older products from the same vendor, or if they do they may require special
adapters at extra cost. And quite often, even current products from a single
vendor will not work together as you would expect. In real life, you do have
to put together your own system from many pieces to solve your issues. If
the code is closed, you will probably be stymied.

If you purchase all of your systems from a single vendor, you may elimi-
nate some integration problems, but most likely not all, unless you are some-
how able to make a single purchase of everything you need at one time.
Integration at any time may be limited and ad hoc. Over time, the formats
and preferred integration methods change and integration is very limited.

Large companies such as IBM and Microsoft have their own integration
issues, since they purchase technologies from outside software developers
and bundle them together. Even when products are built in house, their in
house groups may not use the same technology.

I will use Microsoft as an example here, but I could have used IBM, not
that these two are worse than anyone else, but they have more products.
Various Microsoft products use the following data stores:

�

Jet database engine, which has at least two internal variants, based on,
but not the same as, the database engine within Access.

�

SQL Server, sometimes using the database in transparent ways, on
other occasions obscuring the format to prevent user access (as in
Commerce Server) or accessing only through unpublished stored
procedures (Great Plains products).

�

IIS uses a poorly documented “metabase,” which has its own propri-
etary format.

�

Windows registry (now deprecated but still used by many products
and supported for compatibility).

�

XML files with a variety of application-specific formats, not all pub-
lished, and at least three different schema standards over time.

This is uncountable, but can easily be ten different formats in one
organization.

48

3.1

What Is Good about Open Source

In the real world, we buy products over time from different companies
and keep them operating for years. Integration is a hard problem that we
must deal with. Open standards and source code are essential parts from
which the solutions to integration can be constructed. The alternatives
using closed source are vendor-managed product integration and general-
purpose integration engines. These are expensive, often disappointing in
reach, can restrict our ability to choose products, and often do not work for
the specific situations we need in a particular organization.

3.1.6 Open Source Licensing Is Simpler and
Less Expensive

Open Source Is Less Expensive

Open source saves money over closed code software in almost all cases. The
logic is simple. The software costs much less, while all other costs can be
expected to be approximately the same or less unless some special circum-
stances apply. I’ll use Linux in the following examples, but the same would
apply to other products, such as MySQL.

Hardware costs are about the same between Windows and Linux. Some-
times, particular products outperform others. One reason many people are
adopting Linux for file and print serving now is that in most cases, current
Linux versions will serve more users than Windows on the same hardware,
whereas two years ago they supported less.

Support and training costs vary greatly among organizations, but will be
similar between open and closed code. Most often, you can expect to pay
more for support or training around closed code, which is visible only to
one vendor, since it has an effective monopoly. This is very common with
smaller closed code software companies, which typically have very high
margins on training and consulting.

It is possible to find a few cases where open source is not less expensive;
although this is not easy, it is apparently a challenge that closed code ven-
dors are always willing to step up to. The trick here is to use an expensive
Linux or open source distribution and compare it to an inexpensive way of
procuring the closed code alternative in a very precise way.

Perhaps an easier thing to do is to prepare “total cost of ownership” num-
bers, where the real advantage of open source in licensing costs is swamped
by some other large numbers. This can be done in a variety of ways:

3.1

What Is Good about Open Source 49

Chapter 3

�

Use expensive hardware (e.g., putting Linux on a mainframe).

�

Use expensive development, management tools, or services in the
Linux comparison.

�

Use large numbers for development, training, support, or downtime;
then estimate Linux as a little (or a lot) worse than the closed code
solution in this area.

All of these things have been done in published reports.

The “best and final” method for demonstrating that open source is not
less expensive is the incumbency trick. Some costs favor the incumbent over
the newcomer. These costs will systematically favor Windows over Linux
and Oracle over MySQL, and they can be large. Two of these are training
and staffing.

Training is a big one-time cost for the newcomer product but a sunk
cost for the incumbent. It is also easy to make training an arbitrarily large
cost, particularly since it can apply to all users and can be combined with
other soft numbers such as error rates or user satisfaction during transition.

Over the longer term, training is always with us and the more stable
progress of open source software and availability of quality materials will
tend to lower that cost over closed code. In the short run, imputing higher
costs of training to open source is commonly “the last refuge of a scoundrel”
attempting to prop up an expensive closed code software deal.

Staff costs for developers and administrators are another big cost for the
newcomer. The incumbent product must already have trained people on
staff supporting it. In general, Linux developers and administrators are
widely available with good experience at reasonable rates. The skills to man-
age and develop for Apache, Linux, Perl, and MySQL are not greater than
similar Microsoft or other systems, and they are more stable over time.
These skills are what young people are learning, so if in a few places
Microsoft skills are more common or less expensive, the trend is toward
open source within the next few years. However, it is very possible that in a
time of transition, some of these open source skills will be bid up in the
short run, leading to apparently higher costs.

Open Source Licensing Is Simpler

Whatever the dollar cost of closed source software may be, another cost is
licensing. Companies have to put staff and tracking programs in place to
manage purchased licenses. The costs of noncompliance can be embarrass-

50

3.1

What Is Good about Open Source

ing and arbitrarily high, and will certainly involve dismissal for some sys-
tems administrators.

Furthermore, many people overbuy licenses because it is difficult to
manage concurrent use. One reason so many companies choose the
Microsoft licensing programs is that they are designed to be easy to admin-
ister by licensing all desktops, including many where the software is proba-
bly never used. This is very possibly by design; Microsoft has certainly never
favored concurrent licensing, since at any time only a small percentage of
most licensed software users are using the software..

You Control Software Upgrades

Using open source, there is no need to accept “upgrades” that break every-
thing, such as those we have endured with Office, Exchange (with Active
Directory), SQL Server, and Commerce Server. The need to upgrade on a
vendor schedule leads to expensive unplanned migrations, getting locked
into old versions (and losing the new features and bug fixes), or high and
unpredictable licensing fees.

Another benefit from this lack of churn with open source is experienced
developers; there are plenty of Perl, shell, and C programmers with five or
ten years practical experience, but there are few five-year C#, VB.Net, or
Java developers. And that five-year-old Perl code still works today alongside
new code, unlike most five-year-old applications using Java application
servers or COM components.

3.1.7 Open Source is a Good Solution for
International Companies

Everyone in the world is not going to license closed code software at today’s
prices. Today, that has led to heavy use of unlicensed software in many
countries.

If an organization is operating overseas, the cost of software may already
be an issue. So what looks like overwhelming market share in the United
States looks different in Germany or Japan, not to mention Brazil, India, or
China. Many newer global competitors will not be paying the high fees to
closed code companies that so many large U.S. companies pay.

The decision to make software available in a particular language and cul-
ture is a difficult one for a closed code company. It appears that we are
beginning to see internationalization of open source products in marginal
countries, where the resources are available to work in the local language.

3.1

What Is Good about Open Source 51

Chapter 3

Microsoft, for example, supports about fifty languages but there are many
hundreds in use including a dozen each in India and China. Open source
software can be translated into these languages by local resources even if it is
not economically worthwhile from a central perspective.

Where an impact could be felt is in some specific locations, since closed
source companies from areas such as California, Washington, and Massa-
chusetts have tended to centralize consulting and support jobs there. If
open source opens up opportunities, other U.S. areas and countries such as
India, Brazil, China, and Germany hope to see open source as improving
their local employment opportunities, although they may underestimate
the power of existing clusters to maintain an edge in the complex sets of
skills and relationships that underpin succesful software production.

3.1.8 There Is a Large Pool of Skilled Open
Source Professionals

At the present time, with the majority of servers and an overwhelming
majority of desktops running Windows, there is an approximate parity in
cost and availability of skills between Linux and Windows. Some surveys or
studies find one or the other is easier to staff, and there are substantial
regional variations.

For other open source software, the situation varies. It is easier to find
Apache than IIS experienced personnel. However, it is harder to find MySQL
or Perl professionals than SQL Server or Visual BASIC professionals.

It is common today for an enterprise that is considering switching to
using more open source to find that there will be additional costs associated
with training or acquiring the new skills. In a particular U.S. commercial
center, there may be a shortage of MySQL or Python developers, particu-
larly if a large organization is actively seeking them. But these issues should
be transitional. We went through similar disruptions when the market
switched from Novell to Microsoft networking, or from network to rela-
tional databases. After a couple of years, the balance is restored.

In the case of Linux, the skills and training issue is helped immensely
because Linux is really the same as UNIX from a skills perspective. Older
UNIX professionals may have a little to learn about the new Linux GUIs
and PC technologies such as wireless networking, but their core skills in C
or shell programming survive. Large numbers of recent college graduates
and professionals in the developing world are now exposed directly to
Linux and open source as their primary computer skills, and these people
are entering the workforce in great numbers.

52

3.2

Open Source Is Not Enough by Itself

The nature of open source makes it easier for a large motivated group to
learn. Anyone who chooses has access to the code and can run it on inex-
pensive and widely available equipment. This is not true, for instance, of
Oracle, WebLogic, or Solaris. In addition to source and executable code
being freely available, it is also the nature of open source that documenta-
tion, books, and training are available very competitively and in many cases
at no cost.

While there is approximate parity now, open source is likely to gain
advantages over closed code internationally and over time.

3.2 Open Source Is Not Enough by Itself

It may be a good thing that a system is open source, but it is not sufficient.
It is commonly argued that open source generally has certain good features
by virtue of its construction—for example, that it is secure, virus free, reli-
able, or at least more so than closed code software. This certainly seems to
be true of most of the well-known open source products discussed in this
book, such as Apache and Linux. However, it is not necessarily true that all
open source products are well written, let alone that any particular product
is best suited to the purpose you have in mind. In fact, to make a point, you
or I could take a lousy piece of undocumented and poorly tested code
today, donate it to the community, and it would be on the Internet server
Freshmeat tomorrow as “open source software” ready for download.

We will want to review any open source product for openness of each
component and standard employed. Once we have an open source product
we want to use, we will want to review at least the following elements:

�

Platform portability (hardware, OS)

�

Database portability (stored procedures, APIs)

�

Language

�

Data architecture

�

Software quality (modular, documented)

3.2.1 Deployment Platform

We would prefer to see applications that can be deployed on standard, scal-
able computer hardware available from several different vendors and

3.2

Open Source Is Not Enough by Itself 53

Chapter 3

employing internal standard components obtainable in an open market
process.

We would prefer applications that can support a range of operating sys-
tems, since this will provide the most choices. Ideally, this would include at
least Linux, Windows, and other UNIX. Alternatively, we would prefer
applications that run on an operating system available on a range of hard-
ware and from multiple sources—in practice, this is Linux.

An acceptable alternative might be a widely deployed operating system
from a single very strong vendor (e.g., Microsoft Windows, IBM zOS). In
conventional practice, purchasers look for multiple sources for a key prod-
uct, not a single strong supplier. But we need to recognize reality; there are
products that run only on Windows or IBM zOS today.

As a general rule, if an application is not now available for multiple
platforms it is probably not going to be in the future. However, in some
cases, we might want to review an application for future portability. This
would depend on the language chosen and avoiding specific ties to plat-
form features.

3.2.2 Database Platform

If the application uses a database, we would like it at a minimum to use a
standards-based (SQL) database and a consistent, well-designed current
interface to that database’s APIs and stored procedures.

It would be preferable to have a choice of databases, particularly because
some databases require particular platforms for the underlying hardware
and OS. This is not always going to be possible, since the extra work of sup-
porting multiple databases is not always justified for an application.

Unfortunately, the SQL standard is not sufficient to ensure that an
application does not have dependencies on a particular database. We will
generally need to recognize the limits of SQL portability and review data-
base design and access strategy to maximize it.

3.2.3 Software Language, Architecture,
and Implementation

We want the application to be written in an open source language, prefera-
bly one that is portable between platforms. This set of languages generally
includes C/C++, Perl, Python, PHP, and UNIX shell. Java is not an open
source language. The Java specification is not open, although there are com-

54

3.2

Open Source Is Not Enough by Itself

peting implementations of the language that are open source software. How-
ever, it is cross-platform, and much open source software is written in Java.

It is particularly important to review the software architecture to iden-
tify dependencies on code libraries, platform APIs, and so on. Most lan-
guages are portable until those issues are considered. For that reason,
applications that are actually available today on multiple platforms are to be
preferred over those that could theoretically be available. For example, an
application written in Java for WebSphere is likely to be difficult to move to
other platforms even though Java is portable.

It is also necessary that application software is modular, documented,
and free of restrictions on use so that it can be revised if necessary. The well-
known open source licenses will be free of such restrictions. Products need
to be specifically reviewed for modularity, since we are looking to see if the
system can be adapted to our anticipated needs, and for quality of docu-
mentation in the context of our expected users and scenarios of use.

3.2.4 Data Architecture

The important issues with application data architecture are that it allows
external access to all data through well-understood standards—for example,
SQL or XML—and that this access is documented with examples and is
free of restrictions on use.

If the data is stored in SQL or XML but needs special programming or
reverse engineering to get, or is not documented, that’s a problem. There
might be some efficiency and security considerations, and this could be a
question of timing, but if the closed code vendor can get to this and you
can’t, then the vendor is hiding a code library that you need and calling it a
trade secret, and that’s not right.

In some cases, applications may impose per customer fees or license-
based restrictions on access to data. So in these cases, you know where your
data is, you have figured out how to get it and display it, and you still owe a
fee or have to ask permission to use it. I would not want to explain this to
my management.

Other questions to ask to test the openness of a system include:

�

For each vendor, what do I do if it goes bankrupt, tries to overcharge
me, or ceases to support the product?

3.2

Open Source Is Not Enough by Itself 55

Chapter 3

�

What will it take to move the system to a platform an order of magni-
tude larger or smaller?

�

How easily can I obtain a package or build a new application to add
or replace functionality?

I first wrote this list in another book in 1994. At that time, systems
could only approach these ideals to a limited extent, because significant sys-
tems were almost always built on closed code and open source was not then
a serious option for business systems, or I hadn’t realized it was.

An interesting question arises. Is open source necessary to achieve this?
How can we determine these good qualities for a closed code product? For
open source, we will review the product code and documentation to what-
ever level of detail we wish. For closed source products, it is not clear how
we will do this.

Generally, for a closed source product, we will see documentation on
use but only colored diagrams for the architecture. If we see the architec-
ture in detail, it may not be correct. There have been incidents in the past
of closed code vendors showing mock-ups and claiming they were com-
pleted code, announcing that a product is XML-based when it is not, or
that a product is based on a new technology such as Java when it just uses
thin wrappers to access older code. It is actually very common for security
companies to claim closed code algorithms and so on, but actually have
nothing to back these up. Consider the controversy over Windows “hidden
APIs,” which Microsoft allegedly used to obtain an edge for Office.
Although I don’t believe this, it was never really resolved. Open source has
no hidden APIs by definition.

Further, how do you know that a particular database or operating sys-
tem will be supported in the future, since that is a business decision by the
vendor to be made at that time? A case in point is the history of Windows
NT platform support. It was announced for Intel, Alpha, and MIPS, and
then added PowerPC, but it wound up being Intel only after decisions by
Microsoft (MIPS), Motorola (PowerPC), and Compaq (Alpha). With open
source, you can make your own choices; of course, the economic drivers
may push you to the same decision.

56

3.3

How Choosing Open Source Is More Difficult for You

3.3 How Choosing Open Source Is More Difficult
for You

There are some ways the computer business is structured that will make it
more difficult for you to choose open source software and advocate it in
your organization.

The business has traditionally consisted of large companies with a direct
sales force and substantial marketing budgets. These are able to provide
direct sales people in support of a corporate evaluation, and to feed a stream
of independent reviews and trade journalism that generates demand for the
products. The shape of the business also influences the structure of applica-
tions into “suites” or other forms of bundle.

Open source software does not have the direct sales force, the marketing
budgets, or the incentive to bundle product. As a consequence, it can seem
“weird,” unless you are expecting this.

3.3.1 Open Source Has a Less Complete Level of
Sales Support

No Direct Sales Model

There are not many products, particularly in the early stages of adoption,
that sell themselves. Without a direct sales force, many products are
unlikely to be adopted. Indeed, otherwise good products may not even be
considered. Microsoft Test, for example, was a product as good as the com-
petition, but it never sold since it was too inexpensive and had no direct
sales force; eventually it was given away to Rational.

It is difficult to sell products that cost less than a threshold value
through a direct sales force. This value is driven by simple arithmetic as
applied to a sales pipeline. A single sales rep may be able to track a dozen
realistic opportunities and close one or two a month. In this business, a rep
may receive 5 percent to 8 percent of the sale. To make a good living on
these numbers, each sale has to average around $100,000. This value has
not changed substantially in a generation, although it fluctuates depending
on whether times are bad or good.

The problem of funding a direct sales force makes it hard for open
source products if they are sufficiently complex to require a direct sale. It
is a particular problem if they must compete against a direct sales force, as
do JBoss and MySQL. Databases and application servers are almost
always sold directly. These two companies also follow dual licensing (they

3.3 How Choosing Open Source Is More Difficult for You 57

Chapter 3

charge corporations), but they need to develop a set of training, consult-
ing, systems integration, and support to get their overall package to a sus-
tainable price.

This situation is a major reason why complete open source software
solutions are rarely sold by themselves. What is most often sold is a hybrid
involving a closed code or some other proprietary solution on top of or
alongside open source, and this can pay for the expense of the sale. Exam-
ples of hybrids with closed code on top include WebSphere on Apache,
Oracle on Linux, or SAP on Linux and MySQL. Examples with closed code
or proprietary hardware alongside include IBM sponsorship of mainframe
Linux, or Hewlett-Packard offering all new computers running Linux for
file and print consolidation.

Selling from Inside

It can also be hard to be the direct sales force in this situation. The internal
opponent has some advantages. It can always be present for meetings or
presentations. It can usually provide examples relevant to the business, and
it may have existing relationships and reputation that work in its favor.

With almost any large complex product, but particularly with integra-
tion products, such as Microsoft BizTalk, WebMethods, or Web service
integration, it is usually necessary to write some custom code to solve one
or more specific situations. The internal person has real advantages here,
and has often developed a specific solution already if he or she can get the
tools. Database and development tools such as SQL Server and Visual
BASIC have often been successful against direct sales in these internal situa-
tions, and development tools often do well here also.

The sales support that a large vendor can offer (for or against) can
include executive-level pressures. In some organizations, it is difficult to
counter these from technical positions. A good vendor:

� Puts on sales demonstrations, provides references, and prepares infor-
mation on costs and competitors

� Meets or bypasses objections from IT traditionalists

� Helps manage senior management buy-in

� Provides technical demonstrations and may help set up a tech lab

� Offers installation support and advice to evaluators

� May offer consulting or other help to make the first case successful

58 3.3 How Choosing Open Source Is More Difficult for You

An important objective of this book is to provide this kind of ammuni-
tion for the internal change agent to use when competing against a direct
sales force, both directly in the content of various chapters and indirectly by
suggesting resources where this kind of information can be obtained and is
always kept current.

3.3.2 Specific Product Reviews Will Not Favor
Open Source

Product reviews are generally conducted fairly and in a reproducible manner
by an independent company, and in that sense are fair. There is no shortage
of general information from reviewers and vendors indicating that open
source in general and Linux in particular are important upcoming trends.
This book has already quoted several of these statements, and they continue
to be published regularly. The views of companies such as Gartner and IDC
have been very helpful in spreading the word in these areas to organizations
that might otherwise have been uncertain or unnecessarily conservative.

However, specific reviews comparing an open source product to a closed
code competitor are another matter. This type of review is generally com-
missioned by one party, and that party gets to select aspects of the review
that are not explicitly stated but bear heavily on the results. This is the stan-
dard practice in the industry, and generally leads to a “rough justice” over
time as different vendors sponsor reviews and comparisons at times and
over issues of their choosing.

In the case of open source, the same process leads to a systematic bias
against the open source product, because that product invariably has less
money (and spends less on marketing). To look at this in more detail, there
are four ways that specific product reviews can be misleading. The control-
ling party selects:

� The package of products under consideration

� The timing of the review against release dates

� The competitors to compare against and the versions of the product
to compare

� The behavior being evaluated (e.g., performance, stability, ease of
use)

3.3 How Choosing Open Source Is More Difficult for You 59

Chapter 3

Package of Products

The differences in the way open source and closed systems are packaged and
sold can lead to misleading comparisons. Open source distributions gener-
ally include office suites, various personal tools, databases and other servers,
and development tools, often several of each kind. These are generally auto-
matically installed for you if you select a profile such as “professional” or
“developer,” and at no additional charge. Because the closed code vendors
fund the reviews, they may choose to essentially define the functions to
review as what they have included themselves and ignore the others.

Timing Reviews against Release Dates

There are differences in the timing of releases and the reviews. This one
ought to balance out but it systematically favors the closed code vendors,
because they fund the reviews and thus pick the timing. So the review will
compare a late beta product with its new features against an older product
from open source.

In one example, a study that focused on ease of installation did not com-
pare the currently available versions of Windows Small Business Server
(SBS) and Red Hat. At the time, Red Hat Enterprise Linux 2.1 was in pro-
duction and SBS (based on Windows 2003 Server) was in beta. The study
did not wait for a beta of RHEL 3, which is much easier to install.

Competitors and Product Versions

Another issue is product versioning. The same review which compared Red
Hat Enterprise Linux 2.1 (RHEL) with Microsoft Small Business Server
did not compare similar products. Small Business Server is a low-end ver-
sion of Windows Server with restrictions on number of users and through-
put, bundled with a limited-use version of the SQL Server database and
some other products, such as a fax server and a wizard-based front end,
which were included specifically to improve ease of installation for small
businesses. RHEL is the version of Red Hat Linux designed and priced for
use by large (“Enterprise”) businesses, having, for instance, clustering and a
choice of full-function database packages. RHEL should be compared with
the more expensive Microsoft Windows Advanced Server. More relevantly,
Small Business Server should have been compared with Red Hat Linux 9,
which was a production release at the time. Red Hat Linux 9 was posi-
tioned for smaller and home businesses and was much easier to install.

60 3.3 How Choosing Open Source Is More Difficult for You

Evaluation Criteria

Criteria being evaluated are selected by the reviewer to favor the compari-
son. This includes what is measured and which products are selected for
competition. For example, Microsoft prefers to evaluate application devel-
opment as .Net versus Java, because Java tools are more expensive and
harder to develop with with than, say, PHP. When Oracle and IBM review
application servers, they go against each other. They don’t want to count the
Microsoft product, because it is “free” (bundled into the OS), so they usu-
ally arrange for a review of “Java servers” or they don’t count the Microsoft
product as an application server.

When Microsoft reviews Web servers, it finds that it is the “commercial
market leader.” In this case, Microsoft, which has less than a 20 percent
share, is choosing not to count Apache, which has a 65 percent share but is
“free.” Actually, Internet Information Server (IIS) is “free,” according to
Microsoft, since it is bundled into the operating system.

3.3.3 Open Source Products Are Not Bundled,
Branded, or Integrated

Bundling is when several products come packaged together. There is gener-
ally some, often limited, integration. Branding is when several products are
named similarly so that all can benefit from the reputation of some.

Bundling

Closed source products have several incentives to pursue bundled software
(that is, to put together several solutions with incentives to buy them
together), branding strategies (associate products with each other), or to
create direct tie-ins between products. These incentives are as follows:

� Often, this is needed to bring the direct sales force sufficient revenue
to keep operating.

� It is an advantage for a sales force to have more products to sell to the
same customer they are calling on anyway.

� If individual product revenues rise and fall over time, a portfolio of
products can smooth the results.

� People may need products to work together. If the products are closed
source, the most likely way for them to work together efficiently is if
one vendor, with access to the source, makes it happen.

3.3 How Choosing Open Source Is More Difficult for You 61

Chapter 3

This applies to almost every enhancement made over the years to Win-
dows Server, such as the recent introduction of Active Directory or Share-
point Team Services. Product suites such as Microsoft Office and Visual
Studio have been very successful in bundling several products together.
There is actually little reason for individual customers to choose these
suites. Most developers work in a single language, and nobody uses all the
tools in Visual Studio. Most serious professional users work mostly in only
one of the Office products. Most people don’t use all the products, but by
making the bundle attractive all are sold to everyone. This is particularly
attractive to a purchasing agent, who does not have to worry about what
individual users are doing.

Other suites and studios from testing, network management, and data-
base companies often make even less sense to customers. But the suites
serve two purposes. The suite commands a good price by including enough
function to cost many hundreds of dollars, and it reaches more people at a
target organization by grouping together spreadsheet developers with pre-
senters, for instance, or developers with testers.

Microsoft Exchange Server and SQL Server are both cases of single-
function products, mail and database servers, that have both chosen to bun-
dle several functions together to increase overall sales. In the case of
Exchange, this has extended beyond mail to include instant messaging, col-
laboration, forms, and so on. With SQL Server, the product expanded
beyond database to include analysis and data transformation services.

Branding

Microsoft has historically sold three different operating systems under the
Windows brand: Windows 98/ME (now obsolete), Windows NT/2000/
XP, and Windows CE. This is a branding strategy. There are some common
characteristics, such as a similar look, and an attempt to make tools such as
SQL and VB run across the platforms, but these are in fact three totally dif-
ferent code bases.

This can also be seen in branding strategies such as IBM WebSphere and
Tivoli, or the Sun Java Desktop. The result can be, in some cases, an
appearance of integration, similarity, or “synergy” from the brand, but this
is not very useful in reality. There are completely incompatible competing
transaction manager products packaged together in WebSphere, and there
is very little Java in the Java Desktop, whose important elements are
Gnome, Mozilla, Evolution, and OpenOffice.

62 3.3 How Choosing Open Source Is More Difficult for You

In contrast, the Linux that runs across platforms from large clustered
servers to desktops to small appliances is the same code base, with the same
kernel and tools.

Different open source software products often work well together
because they tend to use the same standards, but that is not always commu-
nicated by product naming or by any sort of marketing effort. So we must
look past brands to the components, standards, and integration methods
that we need.

Integration

The level of integration offered by closed code platforms is often disappoint-
ing, particularly if you assume it. In particular, if what you want is not avail-
able you may have no way to proceed at all. Closed code platforms often
offer the integration they do because they are closed; you need integration
and you can’t do it without access to the code, but they won’t let you access
it, so they have to do it for you. And, of course, integration between closed
code products from two vendors is very difficult. It is best to approach any
two products with a needs analysis and a review of what is available.

Open source can appear harder for customers to integrate, because it is
more likely to achieve “working together” by making separate parts work
using open standards. Such a solution is often a little more difficult to
understand and set up, but it is robust enough to support a variety of deci-
sions over time. Integration between databases and development tools is
generally high. Open source products generally offer UNIX philosophy-
style integration methods; recent products will have XML-based informa-
tion exchange. Because source code is available, you should be able to make
things work at some effort level.

If you feel comfortable and able to go entirely with a single closed code
platform vendor, you may be able to get the integration you need. If you
acquire all systems from one large vendor such as SAP, Microsoft, Oracle, or
IBM, particularly if you acquire them all at the same time, then chances are
you will be able to achieve some level of integration. It does need to be spe-
cifically checked for. Single sign-on is a clear case where vendors have an
incentive to make their products work together within a family, and the
result has often not been good for the customer but just another way to be
locked in to a single vendor. The single-vendor approach is likely to fail the
first time you need to select another product on functional grounds, and the
failure puts you right back to the beginning, doing your own integration.

3.4 What Others Say about Open Source 63

Chapter 3

3.4 What Others Say about Open Source

These are some questions we hear repeatedly, often asked by vendors who
compete with open source software. Those questions include whether open
source is financially viable, if it will fall apart or fade away, and if it is really
less expensive.

Can Vendors Make Money from Open Source?

This question is most often asked by vendors that are competing with open
source products. Customers are usually untroubled by lower prices in prod-
ucts they buy, if arrived at legally.

It turns out that many vendors are making significant revenues from
Linux today. Hardware and systems integration companies are content.
IBM and HP are reporting record revenues from profitable hardware and
services related to Linux. In 2002, HP reported $2B in “Linux-related reve-
nue.” IBM reported $1.5B from Linux in 2002 and expects to report over
$3.5B in 2004.

Among software-only companies, Red Hat is profitable selling only
Linux-related products and services, and MySQL is profitable selling only
SQL-related products and services. While there are many ways to run a
software-related business, the most common is to offer a mix of consulting,
training, integration, and support services in addition to license or distribu-
tion fees. This is the model of open source companies MySQL and Red
Hat. It is also the model of primarily closed code IBM and Oracle, which
make more money from services than from software licensing. It is also why
IBM and Oracle, and almost every other closed code company, are not
afraid of the open source model.

Among service companies, little will change. Although Microsoft makes
its money mostly from licensing fees, the typical Microsoft Solution Provider
today makes no money from licensing fees and actually does not sell the
product in the United States. All revenue for these companies, of which
there are thousands around the world, comes from charging fees for services.
This is a common computer industry model, also true of many IBM busi-
ness partners and others. It makes no difference to this type of company if it
is working with Office and Windows or OpenOffice and FreeBSD.

What If Linux “Fractures” Like UNIX?

The specific reasons for the fracturing of UNIX are complicated and do not
appear to be present with Linux.

64 3.5 Summary

One problem with UNIX was the trademark issue. Linux can be freely
used without trademark acknowledgment to another company so there is
not the name fragmentation around Linux that occurred with UNIX,
which was marketed variously as Solaris, HP-UX, Xenix, Irix, AIX, Tru64,
and SCO Xenix, among others.

Companies competed to enhance UNIX with proprietary improvements
that were only available on their systems. Linux licensing requires enhance-
ments to be made available to put back into the (core) code base, so the tech-
nical divergences that happened in UNIX cannot occur. It also appears that
UNIX vendors discovered that their efforts to create proprietary enhance-
ments at the operating system level were very expensive and did not give
them a good return, at least according to IBM and Hewlett-Packard.

Is Open Source Really Cheaper When You Consider All the Costs?

Vendors may point out that if you price a system including middleware,
such as IBM WebSphere or BEA WebLogic; database software, such as
Oracle; or hardware, such as a mainframe, a solution involving open
source may not always be cheaper (or much cheaper) than a system with-
out open source.

Maybe it is not always cheaper in those cases. Customers don’t always
want cheaper. Maybe they like the solutions involving WebSphere,
WebLogic, Oracle, or Linux on a mainframe and think they are worth the
money.

On the other hand, you can certainly build systems using open source
products without expensive middleware and do a great many things with
them, and this book will cover many of these. Further, in the expensive
hybrid systems mentioned previously, the open source is always providing
inexpensive and flexible elements to the solution and is never specifically
the cause of the high cost.

3.5 Summary

There are some differences in buying open source, because it is marketed
and sold in a different way. But there are very real advantages to these
products. Considered separately, several are simply the best price/perfor-
mance available in their category. Considered together, open source soft-
ware offers a group of integrated solutions to many common problems
faced by large enterprises.

3.5 Summary 65

Chapter 3

In areas such as embedded devices, Web servers, engineering worksta-
tions, and large clusters, open source systems are already the market-leading
choices. In other areas, such as simple application development, transac-
tional databases, and corporate infrastructure servers, it appears that open
source will be the market leader or pressing for it within the next two years.
In other areas, such as enterprise applications, open source is at an earlier
stage and only companies wanting to show technology leadership will be
deploying it today.

At its best, the open source process has demonstrated an ability to catch
and overtake closed code enhancements while exposing code to massive
testing, leading to a great combination of customer value and reliability.

This page intentionally left blank

67

4

Five Immediate Open Source Opportunities

At this point, we have looked at the history and composition of open
source, the extent to which open source is already deployed, the successes
others have had, and the issues to consider in using it. Now it is time to ask
questions in more detail:

�

What business opportunities does open source software offer to a typ-
ical organization?

�

Are there some opportunities that are “low-hanging fruit,” that is,
easier to take advantage of immediately?

�

Which of these opportunities are lowest in risk and biggest in poten-
tial payoff?

�

Which of these opportunities might be best to avoid and in what
circumstances?

The following sections look at a group of the best open source deploy-
ment ideas that can be implemented in an organization today. These, in
rough order of relevance, consist of:

�

Create an open source lab.

�

Migrate file, print, and network infrastructure to open source.

�

Build one or more Web applications using Apache and related tools.

�

Bring new open source desktop and Web systems to the underserved.

�

Migrate applications and databases from other systems to Linux.

68

4.1

Create an Open Source Lab

These opportunities should be relevant to most organizations. The less
immediate or more problematic opportunities are in the next chapter.

4.1 Create an Open Source Lab

The first step to take is to set up an open source lab. This supports all the
activities that follow, in this book and in the organization, so it is a critical
beginning. From experience with other migrations, such as in the personal
computer and network eras, we know that using a lab is a pivotal move. It is
a first step to take for an organization that is considering open source.

The lab is really a communication tool to discover useful information,
activity, and resources and bring it to the attention of decision makers and
professionals who can act on it. Figure 4.1 shows the various open source
elements on display that are used for communicating with key decision
makers, including end users, IT professionals, and executives. It can be a
good place to conduct training in relevant open source skills for developers,
administrators, users, and executives.

The lab will contain and demonstrate the basic elements of open source
software. This should be dedicated space, but does not need to be large and
won’t need much equipment, at least not unless you get into training on a
serious scale. You can use this lab to test the possibilities and limitations of
open source, and compare management, use, and running costs to the alter-

Figure 4.1

Open source lab.

4.1

Create an Open Source Lab 69

Chapter 4

natives that your organization has used. It is a place to test configurations
and migrations, including such things as printers and device drivers, and
publish papers on how to do that.

This makes future decisions simpler, since they can be tested and dem-
onstrated in the lab. It is also a vehicle for training professionals and end
users. Specific issues and problems of your organization can be tackled,
resolved, and the solutions demonstrated. This creates a track record of suc-
cess to build on.

If cost is a concern, the lab can be kept very small and use only used
equipment. If there is an existing lab, it may well become a corner of that. It
is generally useful to have some space available nearby that you can control,
so there should be a lab of some sort, but if space is tight, alternative ways
to execute some of the work recommended for the lab include using exter-
nal expertise, such as a consultant or help from a user group, to achieve
some of the goals. Training and other tasks that involve large amounts of
space and equipment can be subcontracted to organizations that have such
space and equipment.

4.1.1 Review Existing Work

Review existing work to see where open source is already in use in the
organization. Identify and involve evangelists and early adopters from
within the organization. This begins with identifying areas where open
source has already been adopted and finding out who was responsible.

Among the lessons we have learned from the adoption of personal com-
puters and local area networks are the possibilities of bottom-up, or guer-
rilla, techniques of persuasion. Mainframes and big database servers are
expensive, so they always have to be sold from the top down, with board-
room meetings and budget requisitions. With less expensive assets, some-
times things just happen. If you can identify early adopters, who just went
ahead and introduced solutions without asking for permission, you may
have found useful assets for future deployment.

Look for existing use of open source products in your own organization,
such as:

�

Outsourced services such as Web sites or Web services that may use
open source

�

Software packages that have been installed on open source or are
under consideration and could be so installed

70

4.1

Create an Open Source Lab

�

Departments or divisions that have made or are considering unilat-
eral moves

�

Individual evangelists or developers who are considering or using
open source

If there are guerrilla departments or individuals who have already
deployed open source, the likeliest candidates are:

�

Small Web sites using Apache and PHP

�

Small databases using MySQL

�

Scripting using Perl or UNIX shell scripts on Windows

�

Use of Samba for Windows file sharing

�

Individual Linux desktops

�

Appliance servers for Web, caching, network, storage, and firewall/
security

At the least, this research will provide a baseline against which to mea-
sure future activity. For example, it will be interesting to see the percentage
of the budget being spent on open source software and whether that per-
centage is growing, as well as the percentage of people with experience
developing, deploying, and using open source.

Many organizations turn up references that are particularly relevant to
them because they are internal. Further, where successful open source
implementations are found, you have probably also found internal techni-
cal resources or evangelists who can help in the future.

Getting this research started can be a reasonably quick activity. For some-
one who is enthusiastic about this, it will take no more than a few telephone
calls until an interesting case is found and then maybe some interviews.

4.1.2 Train Developers to Program in
Open Source Languages

We can train Microsoft Visual BASIC developers to develop in the open
source programming languages PHP or Python. These languages are easy to
learn and productive to use, and there is no charge for their installation or

4.2

Migrate Infrastructure to Samba and OpenLDAP 71

Chapter 4

use by developers or end users. They can be learned and used on Windows,
since they run as well on Windows as any other language.

ASP developers should look at PHP for Web development. PHP is
more widely used than ASP, is cross-platform (works on Windows), and is
powerful and easy to learn. VB developers should look at Python for inter-
active development. Python is similar to Visual BASIC in many respects. It
is easy to install on Windows, and its Windows implementation is stable,
well documented, and well integrated with Windows. Python is installed
by default on Linux and Mac OS X. Developers using Python can be as
productive in a week or two as they were in Visual BASIC and are capable
of producing applications that can run equally well on Windows, Linux,
Mac, and other platforms.

The first developers to be trained should be those who can do some new
development soon. So they should be in areas calling for rapid application
development, where introduction of open source or heterogeneous systems
is possible in the next one to two years. A particularly good reason to con-
sider this is if older applications are being phased out and training is being
considered in .Net or Java/JSP.

As an alternative, Perl is a good language to choose if the applications
involve administrative scripting—for instance, if they would have been
done in Windows Scripting Host, data management, or using SQL Data
Transformation Services on Windows. Perl is easy to install, runs well, and
is frequently used on Windows, but it is less VB-like than Python, more
resembling shell scripts or the DOS batch language. Shell scripting is also a
possibility here.

4.2 Migrate Infrastructure to Samba
and OpenLDAP

4.2.1 File and Print Servers

According to the Gartner report “Fear the Penguin” (January 2003), by
2004 most organizations will, as a standard practice, be deploying file and
print servers based on Linux. Essentially, this means using Samba for file
and print sharing. See Figure 4.2.

Linux servers can use Samba combined with print management such as
CUPS to serve Windows clients without change to the clients. This system
supports other desktops also, since Samba clients (and servers) ship with
current Linux and Mac systems. In fact, this does not have to be a Linux

72

4.2

Migrate Infrastructure to Samba and OpenLDAP

server. It could be any UNIX system, including Mac OS X or FreeBSD, or
it could be network-attached storage appliances. But Linux is probably
going to offer the best price/performance.

The big payoff for this move is that there are no client access licenses
(CALs) to pay for and keep track of. Windows CALs for file, print, and
directory services can be significant for large organizations.

This will work for many organizations with only trivial effort, but not
for all. The big problem that has to be analyzed with this idea is the prob-
lem of user authentication—of how much you need to rely on a centralized
directory for security. Briefly, we’ll just note for now that Samba 2 supports
NT4 authentication, and Samba 3 supports Active Directory. We will dis-
cuss the details in a following section.

Most organizations now have many smaller servers doing these func-
tions. They may have successfully standardized on Windows NT4 or Win-
dows 2000, while others have standardized on Novell 3.2 or 4.1, a version
of UNIX, or even OS/2. Most organizations are not using all of these, of
course, but some are and most are using more than one.

All of these situations are coming toward end of life in the next couple
of years, with costs amortized and functionality up for review. These older
systems will usually have many small servers and can be candidates for con-
solidation, in addition to being perceived by their users as plainly obsolete.

Table 4.1, which is based on some private information gained in 2003,
shows the approximate composition of the installed base in thousands of
servers in January 2003, as well as those that are file/print servers exclusively.

Hypothetical Analysis

The current Linux run rate is higher than UNIX and Novell combined, and
is forecast to match Windows during 2004. As UNIX systems used for file
and print age, the natural migration path for these systems is Linux. This is
also true for Novell systems now that Novell is clearly a Linux company fol-

Figure 4.2

File and print
infrastructure.

4.2

Migrate Infrastructure to Samba and OpenLDAP 73

Chapter 4

lowing the recent acquisitions of Ximian and SuSE. Organizations with sig-
nificant current Novell use are likely to adopt Linux going forward.

If the existing Novell and UNIX file/print systems were all migrated to
Linux over the next two years, and if forecasts that Linux server shipments
will match Windows this year are correct, then by the end of 2005 the
majority of file/print servers would be on Linux even if all Windows sys-
tems are unchanged.

But there is reason to think many Windows systems could be migrated
to Linux. In 2002, approximately half of the Windows servers were Win-
dows 2000 or later, the other half being Windows NT. Most Windows
2000 systems, which will have been deployed in volume in 2001 at the ear-
liest, are probably too new for wholesale replacement. We will talk later
about what can be done to prepare now to ensure that future migration is
not impeded by decisions taken today.

Because Windows allows systems on NT4 to authenticate against Active
Directory, it is difficult to determine what percentage of the NT systems is
included in Active Directory. We know that many Windows 2000 sites
don’t use most AD features. If most of the Windows NT systems were
installed at the time of NT authentication and then left alone, then less
than half the installed systems are probably using Active Directory.

So approximately half of the Windows systems, over 3 million servers,
are simple Windows NT4 systems serving file and print services with NT4
authentication, which provides easy migration targets to Linux and Samba.

Figure 4.3 is based on Table 4.1 but splits the Windows systems between
NT and 2000. All but the Windows 2000 segment in this diagram can be
easily migrated to Linux.

Table 4.1

Installed Server Systems 2003

Server OS # Installed (millions) # File/Print (millions)

Windows 9.5 6.3

Novell 3.3 3.3

UNIX 3 1.35

Linux 2.3 N/A

74

4.2

Migrate Infrastructure to Samba and OpenLDAP

In replacing infrastructure servers, we can choose to:

�

Continue to use a distributed design but use Linux servers.

�

Consolidate onto fewer larger platforms.

�

Replace servers with network-attached storage.

�

Combine all three strategies.

Many Small Linux Boxes

The problems of managing many small computer servers for file and print
serving are well understood, which is what generates interest in the alterna-
tives. The advantage of this is that we can do a piecemeal upgrade in place,
as opposed to trying to buy all new systems. Since Linux systems cost little
and will probably outperform the software they are replacing, we get better
performance at almost no cost.

Consolidation

Server consolidation is very likely to be a piece of the solution, because it
puts configuration and updates under better control. The arithmetic of
consolidation can be attractive, but unfortunately organizational bound-

Figure 4.3

File/print installed
systems.

4.2

Migrate Infrastructure to Samba and OpenLDAP 75

Chapter 4

aries and geography often prevent us from getting the full benefits because
some small servers just need to be in remote locations or outlying divisions.
Also, vendors price consolidation to reap much of the benefit for them-
selves; for example, a Microsoft enterprise-class operating system that can
replace three servers costs about three times as much as the standard server,
and larger hardware is often more costly than smaller. Finally, consolidation
is popular with vendors because it generally means buying all new hard-
ware, when much of the older equipment is a sunk cost and may be quite
serviceable. Typical organizations should see fairly constant file and print
use unless they are expanding employment.

Network-Attached Storage

Network-attached storage (NAS) offers management and cost advantages,
although once again actual geography and the need to replace hardware that
is a sunk cost can eat up the advantages.

4.2.2 Manage Use of Windows Proprietary Features

The goal here is for those organizations that are not able to make a large-
scale move from Windows today to prepare the ground for a move away
from Windows to open source when the time is right. This could be in
response to a business change, license upgrade, or just when systems are
ready for replacement.

We will postpone new licensing as far as possible. We will postpone fur-
ther use of Active Directory, and look at open alternatives for directory and
security. This has the benefit of potentially reducing licensing fees while
making integration with non-Windows systems simpler.

We will avoid upgrades in general, as they are only justified by new
features. We will stay on NT4 rather than Win2K, and on Exchange 5.5
rather than 2000. We will prepare the ground for open source types of
support by looking at community support options over, for example, MS
Premier Support.

Systems management tools should be built using open source develop-
ment tools such as Python, not platform-specific APIs, and tools that are pur-
chased should be open source or cross-platform if possible, or else inexpensive
if platform specific. Systems management in particular is an area where good
people inside good companies often make large and well-designed invest-
ments, only to find themselves trapped within proprietary code.

76

4.3

Build Some LAMP Applications

4.2.3 Train Administrators in Linux and Samba

We should train MCSEs in Linux, including Samba and CUPS (file and
print sharing), and, if appropriate, OpenLDAP and mail administration.

There are about a half million MCSEs and 1.5M MCPs. These people
are often advocates for the technology skills they have now, particularly
since it may have taken significant time and money to acquire them. It will
be helpful to teach them the open source equivalents.

Microsoft administrators spend a great deal of time setting up file and
print services, working with Active Directory and Exchange. Linux and
Samba are the open source equivalents.

Any personnel involved in any new or updated deployment of file/print
servers should be considered for this.

4.3 Build Some LAMP Applications

The Gartner report “Fear the Penguin” (January 2003) forecasts that by
2004, most organizations will be deploying simple applications and four-
way clusters on Linux. The single largest reason companies deploy Linux
today is for Web development.

An excellent first step is to build one or two simple applications using
Linux and Apache with MySQL or PostgreSQL as a database and PHP, Perl,
or Python as a development language. This combination, known as LAMP,
allows you to build a pure open source system quickly. You are then free to
compare the ease of construction and maintenance and the running costs to
alternatives that your organization has used. Hopefully this will demon-
strate that an open source system is reliable to run, simple to build, and
inexpensive to buy and operate. See Figure 4.4.

According to reports on module installation published by the Web site
Security Space (www.securityspace.com, March 2004), the Web develop-
ment language PHP is used at over 50 percent of Apache sites, Perl at 16
percent, and Python at about 1 percent. The PHP number is growing
steadily, the Perl number shrinking from a high of about 35 percent, and
the Python number is stable. So most people use PHP as the development
language with Apache.

MySQL is a powerful database that is easy to install and learn to use, and
the LAMP combination makes a nice clean story in terms of licensing and
costs, particularly for distribution outside your organization. An alternative
open source database is PostgreSQL.

4.3

Build Some LAMP Applications 77

Chapter 4

Some organizations have database standards that are difficult to change.
If you work in one of those, I would not hesitate to use Oracle, DB2, or
SQL Server as the database. Connecting PHP, Perl, or Python to any of
these is an easy technical task.

Web Applications

For most people, these will be Web applications using PHP with Apache.
They could equally well be external-facing sites, such as Web presence or
ecommerce; business to business; or internal-facing sites, such as an
employee portal.

Client/Server Applications

Client/server applications can be built also, if that’s what you need. Every-
body builds Web applications these days, but there is still a type of applica-
tion that can be less suitable to the Web and more appropriate for client/
server. Such an application will have rich information presentation and/or
heavy data entry and editing and be aimed at an in-house group whose
equipment we control, for example:

�

Authors

�

Call center

�

Customer relationship management

�

Decision support or spreadsheets

�

Engineering workstations and CAD

�

Analysis (financial, mathematical, economic, etc.)

�

Medical

Figure 4.4

LAMP.

78

4.3

Build Some LAMP Applications

Generally, LAMP client/server applications use Python or Perl as the
development language. Python is a good choice for rich interactive applica-
tions such as these.

Selecting the First System

At this time, you are not likely to be building the first Web application for a
company of any size. Likely opportunities to try the new approach may
include:

�

Building a new Web site or application

�

Adding significant new functionality to an existing site or application

�

Migrating an application developed with obsolete tools

�

Migrating Web development, such as ASP to ASP.Net or JSP

� Development or management of the site is being moved, such as out-
sourced or brought back in house

We will be using the first systems to prove something about open source.
We should, therefore, avoid toy systems so simple and small that they could
have been built in any technology, as well as pilots in the sense of systems
that will not be deployed, since neither proves anything and we don’t want
to throw any work away.

The system should be a good fit to the technology. When completed, it
should demonstrate aspects of the technology that are compelling, but this
is often impractical. For a LAMP system, this probably just implies that it
should be a reasonably interesting and attractive Web site.

The system introduction should not be time critical, because a first-time
system needs to allow extra time for training, migration, and mistakes that
will not occur on a second or subsequent deployment. It should have a
good return on investment for the same reason—so that even if the cost
goes over, the ROI is still good enough to justify the system. Preferably, the
system should be deployable in phases. A first system may learn valuable
lessons early on that will influence later deployment.

Since there is always controversy around the new technology, it is best to
ensure early success. It is usually best to avoid attacking the most complex,
unmaintainable, innovative, obsolete, or mission-critical problem for the
first system. Instead, it is better to pick something that has an excellent
chance of succeeding if merely reasonable professional work is done. If you

4.4 Bring New Desktop Systems to the Underserved 79

Chapter 4

do tackle one of these, you will have to split it into pieces, as discussed pre-
viously, so you can start delivering successes early.

Having said all of this, there is no general need to avoid complex, tech-
nically advanced systems. Some of the greatest successes of open source sys-
tems have been on the leading edge. Sometimes the opportunity that is
available calls for heroic effort and risk, and someone has to answer it.
Linux, Apache, Amazon, and Google were those types of opportunities.
There will be others.

4.4 Bring New Desktop Systems to
the Underserved

Simply make open source software available to users who currently don’t
have and cannot afford a current licensed set of desktop software, including
Office, Visio, Photoshop, SQL Server, and Visual Studio. There are no
migration costs. The systems will exceed expectations. The software costs
are in line with the likely vehicles (cheaper, older, or shared systems) instead
of dwarfing them as the closed code software prices would. The hardware
needs can typically be met by an older computer. See Figure 4.5.

Users who do not have desktop software today include many in these
categories:

� New and small businesses

� Franchised businesses or dealerships, and other business partners

� Customers and others accessing our Web site

� Our home, family, and neighbors

� Community organizations, such as schools and healthcare

� Retail, distribution, and manufacturing workers

Unlike “educational” (e.g., MS Office Student & Teacher Edition) or
“charitable” or “donated” closed code software, with open source there are
no licensing restrictions or other provisions that will lead to higher expenses
down the line. For example, if a student at a college or community center
uses Office or Visual Studio to develop an application that is distributed to
other schools, he or she may have to pay licensing fees, or the other schools
may have to license Office. Or, when you go back next year to get more
copies, with closed code the discount or donation may be used up; the open
source will still be free. Other groups that have typically been underserved
with licensed software include:

80 4.4 Bring New Desktop Systems to the Underserved

� Call centers

� Manufacturing and distribution

� Retail and hospitality

� Government

� Education

� Healthcare

In the United States alone, these are very large groups, including mil-
lions of workers we may be able to empower with better tools at reasonable
costs using open source.

We will also consider the special cases of opportunities in developing
countries, as well as piracy. These somewhat overlapping groups (because
few people in developing countries are paying for software) must be conser-
vatively estimated as constituting tens to hundreds of millions of potential
customers for open source software.

4.4.1 New and Small Businesses

New, small, and home office businesses have the opportunity to set up
without migration costs, and without the difficulty of communicating

Figure 4.5 New systems.

4.4 Bring New Desktop Systems to the Underserved 81

Chapter 4

change to a large workforce. Some will choose to go directly to an open
source stack. This is particularly the case with professional workers who can
choose their tools.

The major obstacle to open source adoption for small businesses is their
business partners. Often, small businesses do much of their transactions
with a few companies, which may be the head office, franchiser, or pub-
lisher, and may control the environment.

4.4.2 Franchises

With many retail operations, most of the stores are not wholly owned sub-
sidiaries but instead are franchised. In fast food and hospitality, there are
often regional large franchisees that operate dozens or hundreds of stores for
one or several franchisers. A restaurant operating company might operate
200 Burger Kings in the Midwest, for instance. A hotel operator might run
a collection of Quality hotels for one franchiser and Marriott hotels for
another. Franchising is also very common among automobile dealers.

In the franchise situation, it can be difficult to specify particular systems
consistently, since the organization buying the systems is not the one speci-
fying. This can lead to several problems:

� Similar systems in different stores implemented with different plat-
forms, so they don’t work with central systems that must support
them

� Different systems in a store implemented with different platforms, so
they don’t work together in the store

� Lack of ability to get volume discounts or other leverage, because
hundreds or thousands of purchases are split into many small pur-
chases across many organizations

Open source software may offer a way through in the franchise area, by
allowing acquisition of software at a reasonable price—for instance, Open-
Office—and software that can be customized as needed by differing partici-
pating organizations.

82 4.4 Bring New Desktop Systems to the Underserved

4.4.3 Call Centers

Approximately 2 percent of the U.S. workforce works in call center or data
entry functions. Call centers generally have hundreds of workers on a few
dedicated applications. They have these issues:

� Applications are sometimes on legacy boxes

� Need to keep cost low

� Management of workstations should be centralized and simplified,
with no unnecessary extra applications or customization

Call center applications often need multiple screens to access legacy sys-
tems. This is common in telephone company applications, banking, and
insurance, for example. If legacy applications are involved, then screen-
scraping, or putting a pretty front end on a “green screen” application, is
common. This can become quite sophisticated, so a smart workstation can
drive around a bunch of older applications. Because of the need to show
several systems concurrently on a screen, some call center systems have used
very large displays to show multiple windows, often including the out-
bound Web site, when talking to customers. Some bought UNIX worksta-
tions in the past just to support the large displays.

Often, call center applications are custom developed per campaign—for
instance, tied to a particular run of television commercials or telemarketing
calls. So the quick development and deployment of the rapid scripting lan-
guages PHP and Python can work well here. PHP will be good if the appli-
cation is Web based. Some call centers want very tight control over the
GUI, in which case we would use Python.

Call center applications are generally database intensive. But the data-
base need is most often not monolithic, since most likely a large center will
access many related databases for different campaigns and products. If new
custom applications are developed, then data propagation out of legacy sys-
tems to relational databases is likely. Typically the front system will main-
tain copies of customer records and catalogs and then push orders or status
changes through to the back end.

In some cases there is a requirement for knowledge worker support
using email, office software, or image display—but mostly not for creation,
just for reading. Most call centers don’t choose to license office suites
because of the expense.

4.4 Bring New Desktop Systems to the Underserved 83

Chapter 4

For call centers, which operate on slender margins, open source has the
right licensing model and costs. It is also an advantage in this environment
to be able to control the build, so as to keep games and other undesirable
software off and even possibly to manage activity in detail.

Turnover is very high, in general, for this industry, because when taking
on a new contract, very often an entire new workforce is hired and trained.
So training is a constant and not a switching cost. It is as easy for an incom-
ing group that is new to the situation to learn the application, scripts, and
products using OpenOffice and Linux as anything else. In any case, the call
center employee generally lives inside the application.

4.4.4 Retail, Food Service, and Hospitality

Retail includes companies such as Office Depot, PetsMart, and Wal-Mart,
which operate many hundreds or thousands of stores, as well as individual
stores and smaller chains, which may have one or a few sites. Automobile
dealers are a large retail category in themselves, and one that has often not
had very effective computer systems.

Food service includes less expensive eat-in restaurant chains, such as Red
Lobster, and fast-food companies, such as Burger King, as well as high-end
restaurants. The hospitality sector includes hotels, casinos, cruise lines, and
other places where people stay. I will call the location of the point-of-sale
system (POS) in all of these cases a “store” in the following text, although it
might be a restaurant, hotel, or other location.

These systems typically have many very inexpensive systems placed
across a larger number of sites with a few systems per site. For example, a
mid-sized retail organization may have tens to hundreds of locations, and
hundreds to thousands of systems. The cost of the system must be low,
because there are so very many of them and because per store margins are
usually low in these businesses.

A typical retailer would like to be stable over many years, as it is very dif-
ficult and undesirable to visit a location to upgrade a system in place. There
should be, as far as possible, no on-site maintenance. Instead, systems
should be managed remotely as much as possible, the rest by publishing
simple daily and periodic procedures or talking staff through a simple proc-
ess in an emergency. Every location needs to be built the same, or according
to a few basic blueprints, since there is neither the money nor the time to
conduct separate training or installation at different locations.

84 4.4 Bring New Desktop Systems to the Underserved

There is often a need to maintain the organization’s own custom build.
The most important reason for this is for stability, because systems need to
work reliably at remote locations without maintenance. Footprint also mat-
ters; since the systems need to be inexpensive and are often old, they may
have small amounts of memory and disk storage.

Applications in retail are primarily dedicated and customized for the
particular retailer, purchased from specialized vendors that develop point-
of-sale and store systems. Those systems are generally “locked down,” for
the ease of maintenance reasons already cited and also for fraud prevention.

Applications need to be easy to learn to use, since retail locations have
very large numbers of staff and turn them over very quickly. On the other
hand, these organizations do expect to conduct training from scratch for
every hire, so the systems do not need to be particularly standard.

There is value in office software for retail managers, although most of
these organizations have not wanted to license Microsoft Office broadly at
the store level. Retail stores will have several managers per location, often
sharing systems. There could be value in Web-based and multimedia appli-
cations for training, since these organizations employ thousands of new
staff every year. There could also possibly be a use for mail and other social
software to build a stronger community internally or to enable interaction
with customer communities—for example, customers generated by applica-
tions such as Meetup.com.

A specific problem in retail that comes up repeatedly is the packaging
of operating system and server products by closed code vendors. This
packaging is designed to get the best price for servers, particularly from
large organizations, while allowing certain small businesses to get some use
from inexpensive Web and database servers running on workstations based
on the same code base. That is done by specifying limited numbers of con-
nections, database size, and so on. The result can be a retail organization
that falls “between the cracks,” behaving like a small business (which the
store may or may not legally be), but wanting to standardize on “corpo-
rate” products like the large company that the parent legally is.

Most retail systems are transactional and anonymous, but in hospitality
there is a move toward personalization that is still not completed. Hotels,
for example, generally may know your credit card number and bed or
smoking preference, but will not know the type of food and drink you like.
Cruise lines will usually lose all personal information between voyages,
although repeat customers are important to them; casinos, on the other
hand, will not.

4.4 Bring New Desktop Systems to the Underserved 85

Chapter 4

Retail systems are a good market for a low-cost, manageable front-end
system that integrates well. They usually have an understood set of applica-
tions. They are very good Linux and open source opportunities.

4.4.5 Government, Healthcare, and Education

Government, healthcare, and educational systems all share similar problems
across geographies and have no good reason not to cooperate. Closed code
software companies perform a service by developing a solution at consider-
able investment cost in one locale, and then selling it in others. By cooper-
ating, these organizations can smooth and sponsor that process.

Government

It is not common to think of governments as technology leaders, particu-
larly in modern American discourse, but government is often the only vehi-
cle for funding early technologies. Much of the early development of
computers, PCs, and the Internet was government funded, often related to
aerospace (e.g., NASA) or defense (e.g., DARPA). In aerospace and defense,
government can often have a leadership role and be very generous at fund-
ing research. This can also happen in healthcare and education in some
political environments.

Government is a very good fit in some ways to open source at later
stages. Government customers outside of favored programs in defense and
aerospace are often acutely concerned about cost. Governments have special
motivation to employ open source, including the massive scale of the sys-
tems, and often legislation that may require access from “legacy systems.”
They are likely to have a very large number of users, typically orders of
magnitude higher than businesses. Government acquisition cycles often
emphasize cost predictability, perhaps from a variety of suppliers over years,
over immediate cost savings, so multiple suppliers and consistent pricing
may be especially important. Governments often have some unusual
requirements, also. They combine some extreme needs for freedom of infor-
mation with extreme issues of security and privacy. Voting is a special case
of these extreme requirements; almost everyone in a territory is processed
on the same day, with requirements of privacy and likelihood of fraud that
are higher than a commercial credit card or gambling system, and with
severe cost constraints.

Of course, not all government issues are on such large scales. There are
opportunities for open source at all levels: national government, state/prov-
ince, city, even subdevelopment (local calendaring and newsletters). Several

86 4.4 Bring New Desktop Systems to the Underserved

of the previous points still apply; since government often offers mandatory
services to all citizens, price/performance and scalability are always an issue.
Others become more important; a lot could be spent on a national voting
system if necessary, but reasonable development costs and times are particu-
larly important at smaller scales of government.

Governments deal with issues of fairness. These often suggest use of
open standards, nonuse of closed code viewing software, and some require-
ments that information can be accessed without special software or hard-
ware. There are some special opportunities for government in building
communities using social software and groupware.

Government systems have varying reasons to conduct these migrations.
First, they may simply be cases of issues discussed elsewhere in this book.
Some government agencies may not have been license compliant, for exam-
ple. Perhaps all of these are foreign governments, but possibly not. Other
governments may have fallen somewhat behind in versions—for instance,
running Windows NT4 or old versions of Office—so that they are now in a
situation to make a sweeping migration to open source to catch up.

Governments often have a funding cycle that is out of phase with soft-
ware changes, so that it can be difficult to justify annual maintenance fees
or unexpected licensing increases. So, government agencies sometimes
make large moves after several years of waiting. Also, government agencies
often make very large purchases, so they may be very motivated by the cost
savings that can occur.

Some government functions seem well suited to open source software.
For example, governments may be mandated to allow everyone access to
files, a mailbox, voting, and so on, usually without requiring technology
restrictions or expenses on the part of the users. And these may extend eas-
ily to millions of users. Also, because of the way government funds much
research activity, it may be appropriate to demand that it be placed in the
public domain or open sourced.

Government agencies are important and influential information pub-
lishers. The U.S. government is the world’s largest publisher, for example.
This subject is a massive tracking job in itself.

In the following text, some governments and agencies are mentioned
that are known to be conducting open source deployments, evaluations,
and migrations. Any one of us, whether an open source advocate or oppo-
nent, needs to be especially wary of these reports. Any fact could be out-of-
date or inaccurate, but reports about government evaluations are doubly
cursed. Some of these may turn out to be only evaluations that fail and are

4.4 Bring New Desktop Systems to the Underserved 87

Chapter 4

not adopted; some deployments will fail; some will take a long time to suc-
ceed or will succeed only partially; and those that succeed will eventually be
superseded by something else. Any reports will probably be tainted by the
bias of the observer; biased reporting is even more common when dealing
with governments, particularly foreign governments, than with companies.
These reports should be compared with the reports we often read about
governments defeating crime or disease, or being overwhelmed by it.

China has announced plans to deploy millions of copies of Sun’s Java
Desktop System, which is based on Linux, OpenOffice, and Gnome.
Although this plan is in early stages, more than a million systems already
shipped in China with Linux installed in 2002. Brazil, Mexico, Denmark,
Peru, France, and Italy have national plans involving many government
agencies.

Germany has published migration standards to open source, and many
agencies are migrating to open source, with some complete and some in
early stages. The city of Munich migration from Office is well publicized.

In Austria, the IT & Communication Board, Census Board, and Minis-
try of Finance have migrated and others are under way.

The United Kingdom has been investigating open source since October
2003, and has several agencies under way, including the Department for
Work & Pensions and the water industry regulator.

South Korea has plans to replace Windows OS and software (20 percent
server, 30 percent desktop) with open source replacements, saving $300M/
year by 2007.

Among U.S. agencies, the NSA uses its own version of the Linux kernel.
The U.S. Census Bureau has developed new systems using Linux, Apache,
MySQL, Perl, and PHP.

In the United States, there is now an organization where government
entities can exchange information on open source software.

Healthcare and Education

In many countries, healthcare and education are wholly or partially part of
the government. In any case, many of the issues, such as very large scale and
irregular and inadequate funding, are the same. Cost is the largest issue in
healthcare; it has been growing at such a high rate over the last 20 or 30
years that early attempts at managing the problem have stalled. Healthcare
also has a very particular problem of allowing many parties cooperating

88 4.4 Bring New Desktop Systems to the Underserved

around an individual set of records, while managing privacy. The various
parties do not have a high level of trust in each other.

There is an open source healthcare vertical solution called OpenVista,
from a company called Medsphere. Medsphere offers integration and serv-
ices around the highly scalable MUMPS-based VA-developed software for
hospital management.

Education systems typically have very large numbers. Giving a mailbox
to every child in a school district, for example, can lead to very large volumes
of mail traffic far above corporate levels. There is a bug training and ease-of-
use problem, since training is often not commensurate with the systems
deployed. There is a fairness issue. Private schools and universities may man-
date computer and software, but this is often difficult for public schools. If
we are going to give computers to high school children, we want to know
that they can all use the same office suite. If we require them for design stu-
dents, we want to know that they all have equal access to PhotoShop or
Visual C++. This has been typically handled by educational discounts, but
these have been partial and sporadic and cause problems if, for instance,
design students moonlight, or if the educational versions have limitations.
Open source software is a good response to some of these issues.

4.4.6 Unlicensed Software

Open Source Is a Legitimate Alternative to Piracy

An important case for open source is organizations that have not currently
purchased a satisfactory system based on Windows.

There is a large group of organizations that never licensed the software
they are using. According to the industry group Business Software Alliance
(BSA), 40 percent of the world’s software is not legitimately licensed. This
rises to higher than 90 percent in some countries. Even in the United
States, the BSA reports unlicensed software use of 25 percent nationwide
and over 40 percent in some southern states.

All these systems are an immediate candidate for open source. Open
source provides immediate legitimacy, allowing use of proven channels of
support (including payment). It also offers fair competition, unlike piracy,
since businesses in the United States or elsewhere have the same opportu-
nity to lower costs using legitimate licenses.

The implication is that forty percent of the software in the world and 25
percent in the United States should be replaced now by open source in
order to reach legal compliance at a reasonable cost.

4.4 Bring New Desktop Systems to the Underserved 89

Chapter 4

Piracy Touches Most People

While software piracy is unusual in larger U.S. organizations, and many
professionals may not have experienced it there, it is common in smaller
businesses, in situations such as franchise operations, among students, and
in the home in general. I think we have all seen this going on at a small
business or a neighbor’s house. There are large flea markets outside every
U.S. city every summer weekend selling this stuff.

In some cases an organization may not actually have been using unli-
censed software. It may simply be unable to prove that it was not. One well-
known instance is Ernie Ball, the California manufacturer of guitar strings
and guitars. A raid by armed U.S. marshals in 2000 found six unlicensed
copies of Microsoft Office. The company had a $65,000 fine imposed on it,
incurred $35,000 in legal fees, and received unwelcome publicity. Subse-
quently, Ernie Ball switched from Microsoft Windows and Office to Red
Hat Linux and OpenOffice. The company says that it never used the illegal
software; six old computers, out of 72 in the company, had simply been
handed down to engineering with the software still on them. Understand-
ably, Ernie Ball admits that the decision to switch was an emotional one
originally, but the company is now saving $80K to $100K a year. So you
don’t necessarily have to think of yourself as a “software pirate” to be found
guilty as one.

A personal case to consider might be donating an old computer to a local
community center, or helping a neighbor’s child with his or her homework.
Either of these activities could easily involve you in “software piracy”—for
instance, if you did not provably wipe the hard drive clean, or if the neighbor
has installed Microsoft Office without a valid license and you help to set it
up. If you use open source software, you are defended against this. When
you donate the system, you can load it with Linux, OpenOffice, and other
open source software and make sure it is a fully functional system. When
you help with the homework, you can bring a CD with OpenOffice and
install it, then open any Word or Excel files with that.

4.4.7 International Opportunities

Consider the new systems that will be deployed internationally over the
next few years. The computer industry continues to develop systems faster
than the old ones go obsolete, and the price continues to drop.

In developing countries, large growth in systems used and shared and
telecommunications advances will allow many more people access to com-
puters and the Internet. Iraq, for instance, has gone from 5,000 to 50,000

90 4.5 Migrate Applications and Databases to Open Source

in a year with a potential to reach 5 million in a few years. The numbers for
Brazil are much larger. Many systems in these parts of the world will be can-
didates for open source on economic grounds, and they know it, which is
why China and Brazil are taking a lead.

In line with the precept “teach a man to fish,” open source may
empower some of these groups to come up with their own solutions. In
developing countries, people have learned to make wheelchairs and other
useful items for a fraction of the cost of those made in a developed country.
These products are also better suited to the conditions. Why should the
same not be true of Web sites and spreadsheets?

Open source allows countries to create their own versions of software in
their own language and culture, even where there may not be an economic
market by traditional standards. Large software may be localized into 50 to
100 languages, but there are many more languages than that. If Kurds or
Basque people want their software in their own language, open source is the
way they will get it.

Thinking More Broadly

We can take the idea of the underserved much further. We know that when
a new technology is introduced, we tend to use it initially to replace previ-
ous technologies in similar uses. Only later are breakthrough uses con-
ceived. It is not usual for this process to take a generation or two. The Web
is only ten years old, and widespread use of open source is younger than
that. This sounds crazy, but we probably have not yet thought of most of
the important things that can be done with open source.

4.5 Migrate Applications and Databases to
Open Source

There are many applications and databases on older and smaller servers that
have been rendered obsolete by the Web.

We discussed the statistics of installed servers previously. The same anal-
ysis of the server installed base reveals that 25 percent of Windows servers
and 40 percent of UNIX servers are application and database servers. This
is approximately 2.4M Windows servers and 1.2M UNIX servers. There are
also a smaller number of mainframe servers with a lot of big applications
and databases on them that will need to get moved to new technology at
some point. Most of these applications were written before the Web with
databases and tools that are now obsolete. They will need to be migrated.

4.5 Migrate Applications and Databases to Open Source 91

Chapter 4

The obvious target for most of them is LAMP. Because of their age and size,
they should be an easy fit for the technologies. In some cases, database sche-
mata or code logic may be saved, but generally the simplest way to go is a
new application. See Figure 4.6.

If a system is just old and a sunk cost, it is not likely to be migrated until
something happens to make it suddenly expensive or needing to change.
Specific reasons to migrate include:

� The old system is obsolete and the manufacturer is cutting off support.

� The old system needs an expensive upgrade by some date or will cease
to work.

� The company is merging, splitting, or downsizing and would pay dis-
proportionate costs to stay on system.

� The system is essential but particularly difficult to maintain or inef-
fective in supporting customer needs.

This opportunity is large, but it is riskier than the opportunities of infra-
structure or new development. Everything said earlier about the risks of
migration applies here. However ugly the system may look, it has appar-

Figure 4.6
LAMP

redeveloped.

92 4.5 Migrate Applications and Databases to Open Source

ently been working up to now. Unlike file and print servers, which can be
approached piecemeal, database and application servers are often critical to
the business and very difficult to tackle. The path to incrementally improve
that system without risk may be difficult or impossible to follow. Some-
times the reason a big system has been left behind on an older database and
platform is that smarter or luckier people than us recognized the risk and
avoided it until we got here.

4.5.1 Evaluate Open Source Databases

While most companies will continue to use a nonopen source database,
usually one or more of DB2, Oracle, and SQL Server, there are situations
for almost every organization where an open source database will be ade-
quate to the task, less expensive, have a smaller installed footprint, and be
easier to manage. Some organizations may have the opportunity to move
entirely to open source databases.

Accordingly, organizations should evaluate MySQL and PostgreSQL
and determine the performance and risk criteria they will be comfortable
with when deploying them.

Although there are obvious advantages to standardizing on one database,
Web server, and application server in order to simplify intercommunica-
tion, training, remote offices, and so on, many companies will have more
than one because of legacy, outsourcing, or packaging (some Apache/JBoss,
some IIS/.Net). Others may use different systems at different scales, such as
Oracle/Sun for larger systems and MySQL/Linux for smaller systems.

4.5.2 Replace Small and Old Database Applications
with Open Source

Because open source databases are not expensive, they can replace the cate-
gory of systems that could not be built with Oracle or SQL Server for price
reasons in the past, but were built with Access, Paradox, Progress, Borland
Interbase, xBase databases (such as FoxPro), and other personal databases.
Many of these were shared-file systems, which were never very satisfactory
as database servers, tending to corruption with multiple users and with gen-
erally poor performance and weak SQL standards support. Several of the
products are no longer sold or supported.

Another class of database is the older minicomputer database, whether
relational or more limited. If this is several years old, it is certainly within
reach of an open source product such as MySQL to outperform it. This

4.5 Migrate Applications and Databases to Open Source 93

Chapter 4

group includes older versions of Informix, Ingres, Btrieve, and SQL Server
6.x (possibly 7.x).

Generally, the front-end code on an older database system such as this
has to be redone. The front-end tools sold a few years ago have almost all dis-
appeared, and you would not want to use them anyway. Most were propri-
etary and eccentric and had all the limitations of client/server tools of their
era. The best possible find might be VB3 or VC++ with MFC, early ASP/
HTML, or Access, all of which need a big rewrite to bring them up-to-date.

So, the general plan will be to migrate the database schema to the new
database—for instance, MySQL—and redevelop it as a new LAMP appli-
cation.

4.5.3 Migrate UNIX to Linux

Another migration to consider is the UNIX workstation. Millions of these
were installed from the 1980s on for engineering workstations, including
mechanical CAD, software development, and so on. Manufacturers
included Apollo, Sun, HP, IBM, Silicon Graphics, and others. Early on,
these systems may have cost $50,000 to $100,000 apiece. A five-year-old
system that cost $20K to $30K can be replaced now for $2,000. Ultimately,
as they repeatedly fell in price in competition with commodity hardware,
and their advanced 3D graphics systems were licensed for game systems
such as the Gamecube and Playstation, these systems became replaceable
with commodity personal computers.

Linux brings the power of the PC commodity model to UNIX worksta-
tions. The personal computer platform now has 3D graphics accelerators.
All of these systems can be replaced with Linux when the time is right.
They can also be replaced with Windows systems, and Microsoft goes after
these opportunities hard, but the migration is obviously more difficult than
to Linux. Microsoft sells into this market with UNIX services for batch
utilities and software that runs all the UNIX APIs. But, of course, it’s easier
to migrate to Linux than to Windows, and the system will work better, too.
UNIX emulation products on Windows are quite serviceable, but they
hardly match Linux and lead to hard-to-administer systems that are neither
properly UNIX nor Windows. The API emulation product has perform-
ance issues, too.

Much of Wall Street is doing this move, including Merrill Lynch. Another
example of UNIX migration is Industrial Light & Magic, which has hun-
dreds of Linux workstations. Dreamworks produced the movie Sinbad on all
Linux workstations and rendering machines (over 1,000 systems).

94 4.5 Migrate Applications and Databases to Open Source

Let’s not forget that most UNIX workstation environments had a lot of
servers installed in support, performing file/print, mail, and database services.
If you get the front end, these are going to go over to Linux very nicely.

SCO Xenix (later UNIX) was the low-end (mass-market, inexpensive)
system and is already largely replaced. This was the old Santa Cruz Opera-
tion (SCO) company in California that reinvented itself as Tarantella.
Autozone is a case of a large company that successfully converted from
SCO UNIX to Linux in 1999.

If we have a package that is running on an old UNIX system, then, if
that system is still actively maintained, it is probably available on Linux
now, and we have an opportunity to migrate from UNIX to Linux with no
other changes. One option is to move to Linux on the proprietary UNIX
server, and then migrate to commodity hardware later as appropriate. This
may be worth considering, since that server will be an expensive sunk cost
and may have valuable peripherals attached.

Database Migration

One important special case of packages that can be moved from UNIX to
Linux is database servers, of course. Most people will not migrate their
databases between database products, since it is far too much work. Differ-
ences in large issues, such as stored procedures, and even small issues of syn-
tax trip you up without extensive retesting. However, it is certainly possible
to migrate Oracle and DB2 systems already on UNIX to Linux. This is not
likely to cause major problems of conversion. Given the economics, in the
mid-market area it seems unlikely that many existing systems will be
migrated to Linux, but systems that need to purchase new hardware and
systems that must scale down (perhaps for distribution) would be fits.

4.5.4 Evaluate and Purchase Packages on Linux

Looking at the major software vendors, we see that most of them support
Linux fully on their core products, while the portfolio-type companies sup-
port it on some products. The four leading software companies other than
Microsoft are IBM, SAP, Oracle, and Computer Associates, and they are all
enthusiastic supporters of Linux and other open source products:

� IBM: most core products run on Linux

� SAP: core products, including the mySAP Business Suite, support
SuSE and Red Hat Linux

4.5 Migrate Applications and Databases to Open Source 95

Chapter 4

� Oracle: core products run on Linux

� Computer Associates: offers a full range of enterprise management,
data management, change management portal, security, and storage
solutions for Linux, including Unicenter and the Ingres database

� Cadence: electronic design systems run on Linux, including clusters

� PeopleSoft: enterprise business logic and background servers run on
Linux

� BMC: core products, including MAINVIEW, Patrol, and Deploy-
ment Manager, support Linux

� SAS: products run on Linux, among many platforms

� Verisign: products fully support Linux

� Symantec, Compuware, Sungard: support Linux in some product
lines

If our organization is looking at these packages, we can consider select-
ing Linux to run them. The availability of these packages helps to legiti-
mize Linux and may help organizations trying to simplify to a few standard
operating systems. Of course, it is unlikely that deploying these kinds of
packages on Linux rather than any other operating system will save very
much money.

4.5.5 Enterprise Application Software

From 1970 onward, there were substantial sales of enterprise packaged soft-
ware, originally on mainframes. In the 1990s, there was a surge of growth
in sales of a new generation of packaged software. This was built using cli-
ent/server technologies and focused around suites of software for enterprise
requirements planning (ERP) and customer relationship management
(CRM). Sales of these products have stalled or, in some cases, collapsed
since the year 2000. Sales of major CRM companies have fallen by half, and
large but less catastrophic drops in sales of ERP and other large software
products have occurred.

Initially, there were many companies in this area—but the field has con-
solidated, with the leaders now being SAP, PeopleSoft, and Oracle in ERP
and Siebel in CRM. Apparently Microsoft intends to be a player in this area
after acquiring the ERP suite vendors Great Plains, Solomon, and Navision
and introducing a CRM product.

96 4.6 Summary

Acquisition of an ERP or CRM product typically drives technology
choices right through the business, since the package is so large and influ-
ential that application server, database, and infrastructure platforms cho-
sen for it usually will become the standards for other developments at the
same time.

SAP, PeopleSoft, and Oracle all offer their entire product lines on Linux.
So it is possible to install ERP (and CRM) systems on a Linux platform.
SAP also offers support for the open source database Max DB from
MySQL, formerly the SAP database.

There do not appear to be any large open source ERP or CRM prod-
ucts—that is, products that would be comparable to SAP, PeopleSoft, Ora-
cle, or Siebel. There are some smaller systems, such as Compiere and Open
For Business (OFB). Compiere is based on Java and Oracle, with an open
source database in the planning stages. Neither of these products has an
enterprise-level customer, or a very complete set of modules.

Do You Need Integrated ERP or CRM?

You may not need all of the features of an ERP package. Most customers
buy only a few components (if only because of the cost). Perhaps the bun-
dling was an artifact of commercial software.

All commercial companies have tended to grow by acquiring products
that are related. Further, in a closed code software model, integration tends
to happen because the software firm has the only access to data. In an open
source model, customers or third parties can access data and create comple-
mentary modules. A similar situation can arise with the up-sell of an ERP
or CRM vendor adding portal, data warehouse, or other products. This
might leverage economies of scale, but more likely exploits the direct sales
relationship and the closed code data formats of these types of products.

So, customers who just need something like Quickbooks for account-
ing, or on a larger scale Great Plains, might have some open source choices.
Similarly, customers who need just call center, customer service manage-
ment, or sales force automation might find single products, particularly for
smaller businesses. Two products to consider are Tutos and SQL-Ledger.

4.6 Summary

Open source offers several business opportunities. The following is a sum-
mary of this chapter, with the ideas that will work for most people simply
stated.

4.6 Summary 97

Chapter 4

For most people, the first thing we can do is to set up an open source
lab, and use the lab as a base to review and publicize open source activity,
evaluate or create and test solutions, and train technical and user personnel.
The lab should deploy the Linux distributions and other software on which
you would like to standardize. This prepares the path for the other steps.
We can train developers in one or two open source languages, probably
Python and PHP, and train administrators in Linux, Samba, OpenLDAP,
and Perl or Python scripting.

We can migrate infrastructure servers to open source using a combina-
tion of Samba on Linux servers and network-attached storage appliances.
This saves money on client licensing and simplifies management. We can
start with simple file/print sharing without strong security concerns. If we
have directory-based security needs, we need to choose between using
Samba 3 to support Active Directory or consider deploying OpenLDAP as
a replacement for or alongside the closed source directory.

We can build one or more LAMP applications. This tool set speeds and
simplifies development and can save money over alternatives. The most
likely simple success will be to build some PHP Web applications using
Apache and either MySQL or whichever database you currently use. These
could be new applications or rewrites of old code trapped on obsolete plat-
forms or databases.

We can investigate and begin bringing new open source systems to the
underserved. We may be able to open up opportunities for solutions that
were not possible before. Likely groups to consider include franchisees;
business partners; customers; employees in factories, warehouses, and
stores; and the local community. In such groups we may have influence but
cannot control the operating environment or software purchasing. Offering
office suites, image manipulation, or email and messaging without expen-
sive licensing fees may allow us to offer systems or exchange information
without great expense.

We can migrate applications and databases from other operating sys-
tems, such as UNIX and Novell, to Linux and one or two standardized
databases. This can simplify system and application management and take
out some old recurring costs. If it is a database that we are planning on con-
tinuing to use, such as Oracle, we can migrate to Oracle on Linux. If it is an
obsolete or deprecated database system, such as Progress, Btrieve, or Access,
we can move it to MySQL or PostgreSQL. For applications we wish to
replace, we can look at new packages running on Linux or develop new
Web applications using LAMP.

98 4.6 Summary

When making evaluation decisions, we should look at Linux for even
the largest and most complex choices, such as SAP. There are not open
source alternatives in all industries and for all applications, but there are in
many. Because of the differing sales channels of open source, they may not
be the most obvious, and a specific search should be conducted to identify
open source solutions that may be available.

99

5

Five More Open Source Opportunities

5.1 Introduction

The opportunities discussed in the previous chapter were:

�

Create an open source lab and use it to evaluate and evangelize open
source systems.

�

Migrate file, print, and network infrastructure to open source sys-
tems.

�

Build one or more dynamic Web applications using Apache and open
source languages.

�

Bring new open source desktop and Web systems to the underserved.

�

Migrate applications and databases from other systems to Linux.

These are activities that are technically possible today, well suited to the
open source technologies, can be approached in stages, and have low or no
switching costs. The categories are pretty well defined and the opportunities
will work for different sizes of organizations.

The next group consists of opportunities that have more difficulties or
restrictions than the ones in the previous chapter and may be more appro-
priate to some groups of customers than others. They are:

�

Set up and administer an open directory to centrally manage the
authentication of various systems.

�

Migrate email servers to standards-based open source platforms.

100

5.1

Introduction

�

Evaluate and select open source groupware and collaboration tools.

�

Develop and manage complex Web sites with open source content
management portals.

�

Evaluate and manage office and desktop software with a plan to
migrate to open source as appropriate.

An open directory is an enabling technology for many of the other activ-
ities, including email, identity-driven portals, and most ecommerce and
complex applications, but it does require integration skills. Email migration
is simple in some cases, and Linux does it well, but if some Exchange or
Notes features are used, there may be high switching costs. Groupware, par-
ticularly software for building communities, is an interesting candidate.
The category is not clearly defined, customer requirements vary, and the
different products differ in features and approach, so requirements need to
be carefully studied. Complex Web site development, such as content man-
agement and portals, is an interesting case, since it is on the border between
build and buy, which is a good place for open source.

For some, there may be a chance to begin open source initiatives in your
industry or area of special interest. Every open source product began with
someone satisfying an unmet need. While most open source products today
are system software, future products will probably come increasingly from
the business application area as well.

5.1.1 Customization and Integration

In many situations, we find ourselves purchasing a product or products that
will involve us in some custom development or integration. If we are buy-
ing a product or group of products as the basis of an architecture that we
will extend and integrate, then we are actually buying two things: the prod-
ucts and an architecture for development. Portals, application servers, and
integration engines are clear examples of this; any large piece of application
software, such as ERP or CRM, is also in practice. It is becoming increas-
ingly clear that SAP and Oracle, for example, are as much development
environments as sets of application products.

This type of decision, on the boundary between “build” and “buy,” is a
logically attractive spot for open source. When we are buying packages not
for installation as a black box, but to customize and integrate into a solu-
tion, it is very useful to have access to the source, as we would if we had

5.1

Introduction 101

Chapter 5

developed it. The code can serve as a model for our own development and
also allow integration and extension under our control.

Open source software is very suitable to customization. First, since we
have the source code, we can change it or extend it with no questions asked.
Second, there is an opportunity for us to work with the developers to
request improvements from them, including sponsoring changes.

5.1.2 Organization Size

As Figure 5.1 illustrates, companies vary tremendously in size, and their
integration needs and capacity for custom development vary accordingly.
The numbers are, of course, estimates. In particular, businesses such as dot-
coms, or financial or technology companies, spend higher percentages on
IT, so they behave like a conventional company that is much larger.

Larger companies are used to managing multiple environments, often
with mainframes, and performing custom development and integration.
Smaller organizations often do not have the staff and budget to do that
effectively except in critical parts of the business, and they will emphasize
more package acquisition and outsourcing.

Open source software, as a new and disruptive technology, fits in some
of these organization sizes better than others. The largest companies can
adopt new technologies and build custom systems, such as the clustered
Linux analytical systems used at brokerage houses and for oil discovery, or

Figure 5.1

Company size.

102

5.2

Directory Services

Google and Amazon. Most large organizations can perform all of the
actions in the previous chapter, and many of those in this one.

For very small organizations, open source systems may be installed
where they had nothing in place before. For organizations in between, the
situation may be more difficult. For mid-sized companies, the option of
allowing one supplier to do the integration can be an attractive business
proposition. For companies of $100M or so, this may mean purchasing all
systems from one supplier, such as Microsoft, and allowing that integration
to simplify their operations. For companies in the billions, where IT is not a
core asset, this may mean hiring companies such as IBM Global Services or
EDS and outsourcing operations.

5.2 Directory Services

The biggest cost benefit from infrastructure migration often comes from
eliminating the directory element from Windows, since the client access
license (CAL) for directory access is the most expensive software element of
file storage. This also has a benefit in reduction of lock-in, as an open direc-
tory will support many different products from many vendors. The best
argument for OpenLDAP is that the directory, touching so many systems
and containing your proprietary information, is a very logical place to
maintain open standards.

The choices for directory services are the open source OpenLDAP and
closed code products, including:

�

Novell eDirectory

�

Sun ONE Directory Server

�

IBM Directory Server

�

Microsoft Active Directory

All of these are expensive compared with OpenLDAP. Microsoft Active
Directory will not run on Linux, but it can support other servers and clients
as an LDAP directory, so it deserves to be included. In some strategies, we
will continue to use Active Directory and another directory server in a
mixed infrastructure environment, and we will want them to work together.

We will need to survey the organization to find out what aspects of the
directory people really use. This is certainly the case if Active Directory or

5.3

Email 103

Chapter 5

any other modern directory software is being used, because they can
optionally support many different activities. Fortunately, from a migration
perspective, most organizations seem to do only what they need to.

5.2.1 Migration and Interoperability

Unfortunately, for many organizations interoperability will be the hardest
part of the problem, as usual. There are tools to migrate directory content on
a one-shot basis, and it is not especially difficult to get or build a tool to repli-
cate directory information from a master directory to a copy, as you may do
in some cases when introducing Samba to a Windows environment.

In some cases, it may be necessary to have two or more directories,
which are both masters (e.g., Active Directory and Open LDAP), and a
process for synchronizing them. This is unattractive, since whatever you call
it, this really means adding a third directory to the mix, but there are several
products that support this if it must be done. Many large organizations
have to do this as a consequence of acquisitions or legacy systems.

5.3 Email

Email is the third most common use of Linux servers, after security (firewall
and intrusion detection) and Web serving. A new Linux installation with
email is easy to set up. This is not surprising, since email has been a part of
UNIX since the earliest distributions. Every Linux system can be config-
ured as an email server and/or client, with several options available for each.
These Linux mail choices are the same in concept, but are also actually the
same programs as the mail choices on other UNIX systems.

5.3.1 UNIX Mail Systems

Open source servers, such as Sendmail, Postfix, and Exim, and clients, such
as Oak, Pine, and Eudora, have long been available on Solaris, AIX, and
other UNIX systems. Commercial UNIX mail servers, such as HP Open-
Mail, now sold through licensees such as Samsung Contact, also run on
Linux.

That is not to say that there have not been recent improvements on
Linux, such as Evolution, a new mail client unique to Linux, and Horde, a
Web-based mail server.

104

5.3

Email

5.3.2 Migration

Email can have all of the migration problems of a desktop application,
including end-user reliance and familiarity, with the migration problems of
a complex data center application that has integration and third-party tools
issues. It is high risk, because in modern organizations email is a mission-
critical application. Whether migration is possible depends on the organiza-
tion, the pattern of use and expectations of users, and the willingness of
administrators to adopt new tools.

Since email has client and server components, migration can involve
replacing either or both. Replacing clients is discused in section 5.6.
Replacing servers involves careful procedures to retain messages and mail-
boxes; there are some tools available to help with this. Servers can be
replaced while leaving the clients in place, or clients can be changed concur-
rently. Client settings will need to be changed, and some client behavior
may change, depending on the migration.

The most common email servers on the Internet, according to an analy-
sis by the email vendor Qmail, are:

�

Sendmail, 42%

�

Other UNIX mail servers, 22%

�

Microsoft Exchange, 18%

�

Other servers, 18%

It is reasonably simple if you need to migrate mail from UNIX to Linux
systems. You almost certainly have the option of directly using the same
mail server and client and just setting up the server platform on Linux and
supporting the clients unchanged. Of course, as with any migration, you
would need to back up the mail store, test the whole plan, and so on. In
addition, you can look into alternative server and client software.

5.3.3 PC-Based Mail Systems

The tradition of mail in PC networks is different from UNIX. In the
1980s, when local area networks (LANs) were being installed, mail servers
were supplied by the LAN suppliers Microsoft, Novell, and IBM. The
products were originally built around LANs with weaker standards and
Internet support and less scalability than UNIX systems, but they were gen-

5.3

Email 105

Chapter 5

erally easier to administer and use. These products, now Microsoft
Exchange, IBM/Lotus Notes, and Novell Groupwise, have now incorpo-
rated Internet and mail standards such as IMAP and are capable of large
scale. They have also extended the services they provide beyond mail to
include other related activities, and there lies a problem for migration.
These extended activities are useful, but they are different in each mail sys-
tem and there are no standards for them. In a word, these extensions are
proprietary, but many organizations rely on them.

If an organization uses one of these mail servers to provide a basic set of
mail functions, it should not be a large challenge to migrate it. However, if
it uses the proprietary groupware functions of Notes, Groupwise, or
Exchange, there will be issues that could make the effort difficult or impos-
sible. As with Microsoft Office, a full open source mail implementation
that will meet most needs is not difficult to do. However, setting up the
exact look and feel of an existing Microsoft Exchange and Outlook system
is difficult in detail.

Exchange and Notes are problematic to replace because they bundle sev-
eral functions together in their own unique ways. Lotus Notes, for instance,
combines forms, small databases, replication, and user application develop-
ment in a unique way. There are generally no direct equivalents in group-
ware functions. Lotus Notes databases and forms and Microsoft Exchange
public folders and forms will need to be replaced, either by custom Web
applications or by open source groupware.

Groupwise also differs in detail and is always linked to the Novell
directory. Novell is now a major Linux vendor, and Novell users may
want to look at a migration to Novell directory and Groupwise on Linux
as an alternative.

5.3.4 Replacing Exchange

It is possible to replace Exchange with all open source products. Exchange
itself is an integration of several different functions, and to replace it fully it
is necessary to do similar integration. These functions are:

�

Message send and receive

�

Message store and index

�

Global directory (Active Directory) integration for authentication
and employee lookups

106

5.3

Email

�

Centralized store for personal information (contacts, calendar, tasks)

�

Public folders (simple document management, discussions)

Exchange also supports optional browser-based mail access (Outlook
Web Access). In addition, Exchange sites must generally make decisions on
tools for spam filtering and message management, such as aging, quotas,
and so on.

If it is possible to separate these functions and approach them with
appropriate tools, then we are not locked into Exchange and can do this. If
we must make everything appear as a single program with the same behav-
ior, then we may do a fairly good job but will probably be perceived as fall-
ing short of expectations.

Table 5.1 shows the Exchange functions and some choices for open
source programs that map to them.

As the table indicates, it is possible to provide functionality equivalent to
all of the functions in Exchange, including the additional products that are
normally used with Exchange. It should be apparent immediately that
although this migration can be done, it will involve an integration effort
that many organizations may not be ready for.

Table 5.1

Mapping Microsoft to Open Source Mail

Function/Service Microsoft Open Source

Message Send Exchange Postfix

Message Retrieve, Store Exchange Courier-IMAP, Cyrus
IMAPD

User Lookup Active Directory/Exchange OpenLDAP

Web-based mail Outlook Web Access Horde

Groupware Exchange forms, public
folders

LAMP with
OpenLDAP

Spam filtering Third-party product SpamAssassin

Message management func-
tions

Third party, VB scripting
to Exchange API

Python scripting, Proc-
mail

5.4

Groupware and Collaboration 107

Chapter 5

5.3.5 Integrated Exchange Replacements

If you are on Exchange now and want to find a comprehensive product to
move to, as opposed to the custom integration solution, there are at least
two good choices. There is an open source product, Exchange4Linux,
which is probably a replacement for Exchange in smaller organizations with
a few hundred email users.

Organizations with many thousands of users that want to move from
Exchange to a Linux platform may want to look at the closed code product
Scalix. Scalix has licensed HP OpenMail, integrates the other functions dis-
cussed previously, and offers services such as migration from Exchange. An
alternative is Samsung Contact, also based on HP OpenMail.

5.4 Groupware and Collaboration

The open source community has been effective at building tools that sup-
port the community. A promising possibility is to look at these community
tools to perform a currently unserved function in your organization. In
addition to looking at equivalents to commercial categories, such as content
management, portals, and ecommerce software, this is an area where there
are opportunities to look at open source software that may approach prob-
lems of collaboration and social interaction in a fresh way. This includes
wikis, Weblogs, Real Simple Syndication (RSS), and other software for
building and connecting communities.

5.4.1 Wiki

The wiki (see http://wiki.org/wiki.cgi?WelcomeVisitors), first created in
1995 by Ward Cunningham, allows users to read, create, and edit Web pages
on a site using any browser. This includes not only content, but also organi-
zation such as new pages and links. This is one of the simplest forms of con-
tent publishing. Any user can usually participate. There are now thousands
of wikis, built using dozens of different software packages (wiki engines). A
master list of wiki engines is at http://c2.com/cgi/wiki?WikiEngines.

Good implementations among many available in different languages
include Qwiki and the powerful Twiki, aimed at corporate intranets (Perl);
TikiWiki and MediaWiki (PHP); Zwiki (Python); SnipSnap; and Very-
QuickWiki (Java). Originally, security and workflow were simple or nonex-
istent, but many systems now support these needs quite well, so this

108

5.4

Groupware and Collaboration

category now somewhat overlaps with the content management products
discussed in the next section.

Figures 5.2 and 5.3 show examples of wiki sites based on TikiWiki and
SnipSnap.

In Microsoft terms, the wiki is functionally similar to Sharepoint Team
Services, which was probably influenced by it, and also to shared folders in
Exchange and WebDAV publishing features, which are in a few Microsoft
products. A wiki has some similarity to simple Notes/Domino databases,
but it is easier to administer.

Different implementations differ in storage formats, so migration will
usually need to be arranged semimanually by writing scripts. Interoperabil-
ity is usually impractical, since these tools differ and it is always easier to
start over.

Everyone has the problem of interoperability between mail and wiki
posting. This problem exists in Exchange and Notes as well. Some informa-
tion gets in mail threads and some information gets on the Web pages,
without any strong distinction. People wind up copying mail threads to
public folders, making FAQ documents, writing scripts to collect mail

Figure 5.2

TikiWiki.

5.4

Groupware and Collaboration 109

Chapter 5

threads, and so on. Fortunately, as long as the software allows people to
copy stuff freely, this seems to work out.

5.4.2 Other Community Software

The bulletin board package phpBB is a discussion forum, which has been
around for several years and is very popular. It is written in PHP and uses
MySQL, PostgreSQL, or SQL Server.

Scoop was written to support the discussion site Kuro5hin (http://
www.kuro5hin.org). Scoop is written with Perl, Apache, and MySQL. This
is used mostly for discussion sites, sometimes for simple content manage-
ment. See Figure 5.4.

The heavily used discussion site Slashdot (http://slashdot.org) also
makes the software that underlies the site available as the open source prod-
uct Slash. Slash is written in Perl, and is apparently fairly complex, but it
certainly has excellent performance. If you are looking for that functionality
and look and have Perl maintenance skills available, it is a possibility. See
Figure 5.5.

Figure 5.3

SnipSnap.

110

5.4

Groupware and Collaboration

Figure 5.4

Scoop.

Figure 5.5

Slashdot.

5.4

Groupware and Collaboration 111

Chapter 5

5.4.3 Weblogs

Weblogs (“blogs”) are a common method for building community; they
went increasingly mainstream this year as the political community
adopted them. There are several choices of software for creating Weblogs.
Movable Type, probably the leader, is dual licensed, written in Perl with
BDB or MySQL. Movable Type offers a Web service version, TypePad.
Another Weblog product is b2, which is open source software written in
PHP with MySQL.

Real Simple Syndication (RSS) is a standard for consolidating data from
many feeds into a single viewer. Good Weblog software supports RSS.

Figures 5.6 and 5.7 are sample pages of blogs developed with Movable
Type and b2, respectively.

5.4.4 Instant Messaging

Instant messaging (IM) is an application with high growth. In some places
it is supplanting email, since it is faster and works well with cell phones.
Consumer IM has been damaged by competition between proprietary for-
mats. Possibly open source software can resolve this eventually. The GAIM
instant messaging client works with many server formats, while the open

Figure 5.6

Movable Type.

112

5.5

Complex Web Publishing

source Jabber format is an excellent choice for corporate servers. GAIM
works with Jabber, so we can set up a corporate server and allow clients to
access it, AOL, and so on from the same clients.

5.5 Complex Web Publishing

Complex Web publishing includes content management and portal servers.
Portals consolidate information and tools from a variety of sources and
present them in a single user interface. A portal is a collection of applica-
tions and infrastructure, not a distinct application in itself. These are then
targeted at a set of customers, internal or external. Portals include some
content management as a core function, but this is often offered as a sepa-
rate product.

Content management servers are often derived from professional organ-
izations, such as newsrooms or magazine publishing systems, with syndica-
tion as a core competence. They offer powerful control over document
management, workflow such as approval processes, and content distribu-
tion. Unlike portals, they are often sold to nontechnical management, who
like the control features.

Figure 5.7

b2.

5.5

Complex Web Publishing 113

Chapter 5

This category is on the borderline between build and buy. In any organi-
zation, but especially in a large one, information is stored on a variety of
devices or software. So portal selection is really the process of selecting a
vendor, or vendors, for a set of infrastructure and development tools and
components.

The ready-made portal software is most useful to smaller companies and
those that are new; others will have too many existing assets and processes
for these offerings to fit, and will do more custom development over time.
In either case, the portal is a sample that serves as a jump-start.

The following are examples of portal offerings:

�

Plumtree Studio Server

�

IBM WebSphere Portal Server

�

Sun iPlanet Portal Server

�

Red Hat Portal Server

�

Microsoft Sharepoint Portal Server

�

PHP-Nuke

� eGroupWare

The following are content management servers:

� Vignette

� Red Hat Content Management Server

� Microsoft Content Management Server

� Plone

� Bricolage

These are overlapping categories, since a substantial portal includes con-
tent management. They will be treated as one requirement here. The goal of
a content management solution is to allow business users to be able to easily
create, retrieve, and share content for intranets, extranets, and ebusiness/
egovernment. The organization and structure of the content must be deter-
mined by and be relevant to the people who create and use it.

114 5.5 Complex Web Publishing

5.5.1 Portal Components

Any content management portal is going to need all or most of these
technologies, either included or integrated: a directory, Web server, appli-
cation development tools for creating additional custom components,
indexing and search, and mail and calendaring. Usually a product will use
the vendor (or its partners) strategic technology for most of these.
Microsoft and IBM products use their own directory, database, Web
server, development tools, and mail. The Plumtree portal uses the BEA
WebLogic application server.

In most cases, the product can be configured to use at least some exter-
nal products. A commitment to interoperability is really needed, so that
other ways of developing are not locked out in the future. In the case of an
open source portal, we will expect to be able to use open source compo-
nents, such as OpenLDAP, Apache, MySQL, and an open source develop-
ment language. We would also want access to legacy databases, other
systems through Web services, and shared authentication.

There is no clear line between the simple Web publishing discussed in
the previous section and the more powerful products discussed here. A
requirements process is going to be needed to determine the right product.

Authentication and Personalization

Almost all customers will need an authentication system, or a system to
determine who can perform which functions with which content. Gener-
ally, this will need to work with existing infrastructure, whether LDAP
(including Active Directory), a proprietary or embedded directory (such as
NT or Exchange 5.5), or one that is database based.

Forms-based login uses an authentication system to personalize content
display and to control access to all functions. Role-based display of compo-
nents supports multiple roles for an identity.

Content Management

Composition and presentation of files in various formats, including Office,
PDF, HTML, XML, links (both internal and external), and composed arti-
cles with dynamic content, are needed. This includes information delivered
in consistent user-defined hierarchies and other easy-to-navigate structures
appropriate to the business. The system specifies how new content gets in.
A process must be defined for each type of content to ensure that content
can be captured and entered correctly.

5.5 Complex Web Publishing 115

Chapter 5

Authors must be able to compose and edit content with any browser,
without special technical knowledge, and tag it or profile it. They should
also be able to use their preferred tools for content development, and the
portal product for markup only. Content should be templatable, so new
material can be quickly incorporated in defined styles.

Managers must be able to edit and delete content, and define and edit
page and template layout, quickly and on a per role basis. Expired and
deleted content should be handled correctly.

The product may need to allow comparison and reversion, so a user can
view all versions of some page(s) and can revert back to those if needed.
Some canned reports on content state and use would be helpful.

Some content management users need extensive workflow features. This
includes delegation of content management to users with appropriate roles,
and a process for review of content before display if appropriate. One of the
critical process tasks is to determine not just what content will be captured,
but what format it needs to be in to meet business needs.

Web sites with fresh content provide a compelling reason for return vis-
its. Designing a content management solution should also incorporate the
design of business processes to ensure that the content is current, fresh, and
reliable. Some content may need to be updated hourly, others annually.
Processes need to be established for each type of content cycle.

Indexing and Search

Search can be free-text or structured (based on a classification schema), but
it should probably be both. For most organizations, a specific search
should be offered for internal people and locations, and often for products
and services.

It is important to define the right classification schema for content.
Defining this metadata is very user and content specific. Some users may
be willing to define an unlimited number of “tags” on content as they
enter it. Other users may only have patience or time for a small number
of tags. This must be analyzed and determined for each type of content
and content source.

All documents available from the portal need to be indexed for search-
ing, including content internal and external to the product in several for-
mats. Ideally, an internal search should work like well-known engines, such
as Google. Unlike Web engines, there may be authentication issues with
documents you are allowed to see.

116 5.5 Complex Web Publishing

Component Integration

As with a daily newspaper, a portal needs both headlines and a rich set of
content. The headline item is often some kind of balanced scorecard, pref-
erably personalized, such as an analysis report comparing personal and dis-
trict sales with others. The content often includes a variety of legacy
applications. The portal product needs to allow development and integra-
tion of this type of material, whether internal or third party, in a rapid and
flexible way.

Internationalization

Many organizations will need support for multiple portals with different
languages from one or several servers, so that all content is displayed in the
appropriate language while using a common database/server configuration.

Migration

Direct migration is not usually viable because of the differences between
product features and architectures. Of course, most data and applications
should be accessible using purpose-built migration scripts with appropriate
planning.

5.5.2 Open Source Content Portals

There are a number of products in this area, depending on definition, and
in another year it may have changed. I will select three open source prod-
ucts, which I know to have many users, significant growth and buzz, and
architectures that allow rapid deployment of functional applications but
scale to support complex custom development when needed. These are:

� Plone

� PHP-Nuke

� eGroupWare

Plone is developed in Python, using the Content Management Frame-
work and the Zope engine. Python can be used to extend the application.
PHP-Nuke and eGroupWare are both developed in PHP and can be
extended with that language.

5.6 Manage User Desktops 117

Chapter 5

Both Plone and PHP-Nuke can be used internationally, and their case
studies include many examples of this. Figures 5.8 through 5.10 show the
Plone and PHP-Nuke home pages (written in their respective software).

5.6 Manage User Desktops

Linux desktop deployment to a new group of users without existing systems
is as simple as any such activity could be. The problem, as usual, is migra-
tion. The only situation that is considered here is that an organization has
Windows desktops. UNIX migration is mentioned elsewhere. The very
small group that has anything else at this stage must have its own special
circumstances.

Migration of user desktops is a hard thing to do successfully. First, it
involves touching every system, and possibly completely rebuilding it, and
this will incur great cost. Second, users have some say in configuring their
systems and have strong likes and dislikes. There is a high risk of user dis-
satisfaction with this type of change.

For most of us, an early large-scale migration of user desktops is not
something to contemplate. However, we do want to plan, since we know
this will happen eventually one way or another, whether it involves an

Figure 5.8
Plone home page.

118 5.6 Manage User Desktops

Figure 5.9
Plone example.

Figure 5.10
PHP-Nuke.

5.6 Manage User Desktops 119

Chapter 5

upgrade to a newer version of Windows or a change. There is a potential
return of hundreds of dollars per desktop in licensing fees from this migra-
tion, so if we could remove the licensing costs of Windows and Office from
thousands of desktops we could save millions. The first step is to analyze
and control desktop use with eventual migration in mind. See Figure 5.11.

Windows desktops could include any combination of Windows 95, 98,
ME, Windows NT, Windows 2000, or Windows XP. They may have
Office, again any of several versions, and a great variety of other software.
Migration choices from Windows include:

� Introduction of some open source programs on Windows

� Total replacement of Windows with Linux and open source

� Use of software to make Windows programs available on Linux

� Any combination of these

If we want to move in an open source direction, the simplest first step is
to run some open source programs on the existing Windows desktops. A
good example is the Mozilla browser. This should work in almost all cases
except for a few Microsoft Web sites, which are worth shaking out anyway,
and can run side by side with Internet Explorer. Mozilla is standards based,
open source, and cross-platform. It is not necessary to achieve complete
adoption of Mozilla, or any browser. An organization can run more than
one browser without interoperability problems, although there could be a
support cost. Migration from another browser to Mozilla is not difficult.
Users can typically switch browsers in a few minutes, the biggest issue being
making their favorites/bookmarks available.

Figure 5.11
Desktop use.

120 5.6 Manage User Desktops

It is also possible to run OpenOffice and many open source mail pro-
grams on Windows. Switching mail can get us off Exchange CALs and also
helps to manage the persistent virus and worm problems with Outlook.

We should analyze our office suite use to determine how many users
could be switched to OpenOffice without disruption, and what the cost
savings could be. There may be some users who can start using OpenOffice
now—for instance, call centers, those using one or two dedicated applica-
tions, or browser-only users. Many others will be not be able to migrate
now, but we can prepare for a possible move in the future. If appropriate
policies are put in place now to simplify a future move, we will be prepared
if licensing changes or other events encourage us to move later.

Depending on the status of license agreements and the feasibility, this is
potentially a significant saving. Over 3,000 users at $300 per user is $1 mil-
lion. This can be done across an entire organization if it is highly integrated.
In many organizations, smaller business units may have different patterns of
use, and this may be the right level to approach it.

At this time, we can consider other office suites or portal-based thin cli-
ents in the mix, since the analysis is the same. Desktop application manage-
ment is regarded as expensive by many IT organizations. So although
portal-based (browser-only) plans seem unattractive when you can give
OpenOffice to everyone who doesn’t have a suite and has a 10G drive, for
some organizations the cost of maintaining software at those clients will
make the portal attractive.

Any plan for a two-tier system with open source (or portal) and legacy
users is going to face interoperability costs as a serious issue. So while all
these ideas can save money, they will need careful analysis of the organiza-
tion and its patterns of use.

5.6.1 Analyze Desktop Use and Licensing

We should review software use on the desktop with eventual migration in
mind. This certainly includes Microsoft Office (Word, Excel, and Power-
Point). Use should be measured for each product separately even if Office is
licensed as one. Mail, whether Outlook or another, is also an important
function to consider. We can also look at use of Access, Project, or Visio if it
is significant, and, of course, third-party applications. The essential data to
collect on product use—for instance, for the Office products—varies by
organization but includes:

5.7 Other Possibilities 121

Chapter 5

� What is the number of licensed users of the product?

� Which version(s) is in use (95, 97, 2000, 2002/XP, 2003)?

� How many users are complex authors, simple authors, primarily
readers, or nonusers?

� Are Office documents circulated as part of essential business flows?

� Are documents authored with VBA macros, complex charts, Smart-
Tags, or AutoShapes?

� How have prior migrations of desktop software played out in the
organization?

This data should be enough to support some preliminary estimates of
potential cost saving and migration feasibility. Given this, some organiza-
tions may be able to go further and make some decisions discouraging
Microsoft Office use. For example, we could mandate OpenOffice use as a
default unless MS Office features are required, and create a simple form
that allows users to specify those features.

We can enforce standards on use—for instance, to prevent new propri-
etary features or to make later migration simpler. If possible, we can iden-
tify some groups whose use allows them to adopt open source products,
such as OpenOffice, Gnumeric, Evolution, Dia, or GIMP, early.

5.7 Other Possibilities

We can review complex applications for their fitness for open source soft-
ware over the long haul. In many cases, we can plan now for systems that
will be installed on open source platforms in one or two years from now.
These could be packages, such as an enterprise requirements planning
(ERP) or customer requirements management (CRM) system, or a custom-
developed system.

In other cases, we may be looking at opportunities that are farther afield,
which could pay back in huge financial savings in the long run and establish
a leadership position within your industry. This might involve beginning
industry discussions on open source collaboration opportunities or working
with startup companies to establish potential products for the future.

One possibility is takeover of a moribund commercial application. One
way a new open source package could come about is the conversion of a
commercial operation that succeeded as software but failed as a business.

122 5.7 Other Possibilities

OpenOffice is an example of a system that was not a particularly successful
business on a global scale until adopted by Sun. There could be similar
opportunities in other commercial businesses that could be revitalized
through an open source strategy. For example, global standardization has
reduced the field of ERP and CRM systems. They may be candidates for
release to open source. Initiatives such as this could be:

� Horizontal (e.g., ERP, CRM)

� Industry (e.g., education, electronics)

� Niche (e.g., telecommunications billing, cruise ship reservations)

Many years ago, I did some work with a company out of Stanford that
sold a financial package specifically for foreign exchange trading. The com-
pany had started by conducting a survey on needs in this industry for a
number of the major financial institutions that were leaders in international
currency trading; it then transformed over a period of years into a company
selling software that supported this activity, while retaining most of the
original customers. A similar transition from research project on needs to
software product could work in many industries, where cooperation has
rewards, in order to create an open source product.

The Open Software Application Foundation (OSAF) is building a hori-
zontal product for personal information management, while also receiving
sponsorship from educational organizations, that will ensure that an early
delivery is an education-vertical variant of the product. Another possibility
is that something like a pharmaceutical model can work, with code going to
open source after a certain period.

Industries that can most easily sponsor new applications include finance,
telecommunications, energy, and defense/aerospace.

Financial organizations can easily fund new developments; they have a
tradition of custom development and are interested in maintaining a com-
petitive advantage rather than sharing intellectual property with vendors.
There is a long UNIX tradition on Wall Street that makes it potentially very
friendly to open systems.

Many banks operate thousands of retail stores and call centers, as well as
a vast network of automated kiosks (automated teller machines). They have
very large numbers of tightly controlled desktops with long acquisition

5.8 Summary 123

Chapter 5

cycles. Banks do not have to run Windows; they were the last customers to
run OS/2, years after it was unavailable as a retail product.

Telecommunications operates on an extremely large scale. The billing,
rating, and provisioning systems of telecom companies are the largest sys-
tems in operation. Much of the work occurs in near real time, while others
are some of the largest batch and paper printing operations around. The
wire-line business is generally conservative, with systems that are 30 years
old, but the new mobile businesses have been created more recently and
grown at astonishing rates. Many of these systems are mainframe based,
because that was the only way they could be built when designed. There is
also a heavy UNIX influence, since most of these companies used to be part
of AT&T.

In the energy business, electric/gas utilities are very mainframe focused
at the center, and there is also a great deal of Oracle installed. The SCADA
systems are all UNIX and generally need replacement. Costs historically are
not as important, but may become so with more open markets. These busi-
nesses are major employers. Many employees in utility companies have
Office and Windows systems with high licensing costs. Others have no sys-
tems, or systems with limited software available, and may represent oppor-
tunities for OpenOffice where there is nothing now.

5.8 Summary

Open source software offers several business opportunities. One thing to
decide is whether we want to implement open source applications or appli-
cations on an open source platform, since the costs and benefits are very
different in the two cases. The following is a summary of this chapter, with
the ideas that will work for most people simply stated. Some ideas are of
each type.

A directory is a very good candidate to be a vendor-independent, stan-
dards-based product, since it must integrate with everything else you have
or acquire later. The open source directory choice is OpenLDAP. It is stan-
dards based, reliable, scalable, and very inexpensive compared with closed
code products.

Migrate email if you can do it easily. Review your current use of tradi-
tional mail and calendar systems to see if open source products can fit.
This is either easy, such as migration from UNIX or Groupwise, or diffi-
cult if there are high switching costs caused by existing users who will not
accept change.

124 5.8 Summary

Start using open source groupware and collaboration tools such as a
wiki. This can produce some quick benefits, and prepare for a big reduction
of license fees in the future. Also look at the new open source products for
information sharing, social software, and blogs.

Look at adopting an open source content management portal, such as
Plone or PHP-Nuke, for complex Web site development and management.
This can eliminate potential big costs such as proprietary content manage-
ment software. These products have fast payback and easy management,
and over time can be extended as necessary into large applications using
standard development tools.

Analyze and control desktops to see what products people are using,
which level of complexity they are employing, and how that matches to the
licensing in place. This puts you in place for big license savings later on.

Finally, there are areas where open source applications are missing.
There may be opportunities to sponsor such products, to discover closed
code applications that could be converted, or at least to take part in initia-
tives to search for and sponsor such solutions.

125

6

Operating Systems

This chapter looks at what is in the operating system, open source alterna-
tive to Linux, how Linux is being enhanced, and the various distributions
from which we can choose.

6.1 Contents of the Operating System

In this section, we will look at Linux and other open source operating sys-
tems, and then examine what goes into an operating system distribution
and how to choose one.

An operating system (OS) contains a kernel, a base operating system,
and a considerable number of other packages, where a package is like a
product but not sold separately. Whether these additional packages are
“included in the operating system” is a commercial and to some extent a
political question. In the Linux community, the question of what is
included is answered by the distribution and the installer. A distribution
packages a Linux kernel, patches, other components, and other packages
that are clearly applications. The installer generally has some control over
the packages included, as well as other issues such as default Windows man-
ager and look and feel.

The Linux kernel is managed by a single project team. Other packages
are run by other project teams with no or little formal connection to the
kernel or each other. Several core packages are part of the GNU overall
project. Linux distributions generally perform integration testing and
incorporate a means for online updating of packages.

In a closed code system, this resolves into a kernel, a base operating sys-
tem, and a platform and ecosystem. Closed code systems include Microsoft
Windows and Apple Mac OS X, and also server systems such as Sun Solaris
and Novell NetWare.

126

6.1

Contents of the Operating System

In closed code systems, the vendor decides what is included in the oper-
ating system. The vendor performs integration testing and provides a means
for online update. Further, the packages in the operating system are distrib-
uted and supported by the vendor. They may have been licensed or pur-
chased from third parties originally, such as DoubleSpace or Internet
Explorer in Windows, but they are from the vendor now. There is an incen-
tive for this set of packages to grow, since this encourages users of the closed
code system to purchase upgrades from time to time. The vendor generally
provides indemnification (against the code not being theirs to license) and
any other warranties, which are usually disclaimers of warranty.

In closed code systems, there are two additional categories. First, there
are applications sold by the vendor for an additional fee, such as Office
and SQL Server on Windows, iLife and Keynote on the Mac, or Zen on
NetWare. Microsoft calls this “the platform,” and I’ll use that term. These
can be very important sources of profit. Office is the major engine of profit
for Microsoft.

Second, there are applications sold or distributed by third parties. Novell
calls this the “ecosystem,” and I’ll use that term also. It is usually the exist-
ence of this ecosystem that makes the operating system attractive. Over
time, the closed code vendors will attempt to expand their “platform” at the
expense of their “ecosystem.” The launch of a new version of Windows or
the Mac is an opportunity to showcase a set of packages that was previously
part of the ecosystem and is now part of the platform. Although this is usu-
ally presented as “innovation,” as something new that was not included pre-
viously, it is really incorporation. The selling of Windows Media Player by
Microsoft, or iTunes by Apple, is an example of this. Hopefully, in a healthy
economy, the ecosystem can grow outward through innovation, by solving
new problems.

The distinctions between operating system, platform, and ecosystem
arguably do not exist with open source, at least not as strongly. There are
some cases where the distribution vendor develops additional code (plat-
form). This may be distributed exclusively, as SuSE Yast2 has been until
now, or nonexclusively, such as Red Hat RPM or Tux. They may also be
sold, probably not exclusively, such as Ximian Desktop 2 (XD2). Linux dis-
tributors do not earn significant revenue from such enhancements now, but
that may change. Both Novell and Red Hat have plans to do more of this.

The expectation in open source is that packages come from third par-
ties. There is a distinction maintained by Debian, and perhaps others,
between “free” and “nonfree”—that is, between packages whose licensing

6.1

Contents of the Operating System 127

Chapter 6

terms are similar to those of Debian and packages that have licensing
restrictions or fees.

In Linux, the kernel is quite small and common to all distributions. It is
upgraded continuously. Major kernel upgrades are happening every year or
so, with minor updates flowing regularly, every few days. In the Linux num-
bering scheme, even-numbered kernels are stable; odd numbers are for
developers and testers only. Last year, 2.4 was stable and 2.5 was the devel-
opment code. Now, the 2.5 development code has become the 2.6 stable
kernel. Users can upgrade the kernel without waiting for the distribution.
In March 2004, over 20 percent of users reporting were running 2.6. In
May 2004, SuSE 9.1 and Fedora Core 2 will be the first major distributions
to ship with the 2.6 kernel. Red Hat Enterprise Linux is operating on a
slower upgrade cycle, but has the major enhancements (threading and
scheduler) in a custom 2.4 kernel. The threading improvements in the ker-
nel are very significant. Because of them, Linux performs many common
tasks much more efficiently. Testing shows that the 2.6 kernel brings
improvements in performance of as much as 50 percent in common tasks,
including Web serving, file serving, and database.

Offering more packages is one way that Linux distributions compete
with each other (and with Windows), so there is an incentive for Linux dis-
tributions to grow. In fact, Linux distributions can be quite large. Linux
distributions range from one CD (e.g., Knoppix) to four (e.g., Fedora Core
2 and RHEL3 WS), five (e.g., SuSE Professional 9), or seven (e.g., Debian
Woody 3r1) and are tending to get larger.

There is a potential trade-off in the more enterprise-focused distribu-
tions, since they are expected to offer support and more packages will
increase support costs. It seems that this loses out to user desire for a wide
variety of packages to choose from. The result is that the major distribu-
tions generally offer both KDE and Gnome, MySQL and PostgreSQL,
OpenOffice and its competitors, all the scripting languages, and all the util-
ities and games.

All the vendors bundle versions for home, professional, smaller busi-
nesses, and larger businesses but in a different way. Open source vendors
provide all the same features but vary the support. Closed code vendors
limit the functionality of less expensive versions (and typically charge extra
for enterprise support). Generally in Linux and other open source software
there are no limited or “crippled” versions. Someone could put the missing
functions back in, after all. Differences between Linux versions are usually
in the support contracts. Because of this, smaller businesses that need rich
products typically get a better deal with open source.

128

6.1

Contents of the Operating System

Linux in practice ships with a great deal of usable software, which is
included in added-cost “platform” code in other systems. This is often
ignored in reviews and comparisons. Every version of Red Hat ships with
the Gnome tools Evolution and Gnumeric, an Outlook clone and Excel
clone, respectively. Each of these includes sophisticated tools for managing
tasks. Calendaring and spreadsheets are both valuable business functions
that most small (and larger) businesses want to use. But because they match
components of Microsoft Office and not Windows, you typically won’t see
them brought up in reviews of the operating system.

6.1.1 FreeBSD

The FreeBSD operating system, whose history was covered previously, is
certainly not in widespread use compared with Linux, but it is a stable and
powerful operating system. Although there are less software products avail-
able for FreeBSD than for Linux, the most important server products,
including Apache and database servers, are available for it. So FreeBSD is a
good basis for a server, particularly a dedicated one. It is used by Yahoo! and
by many organizations that need a platform for custom development or
manageable Web or database servers.

As a client system, FreeBSD is most used today as a component of Mac
OS X. The Mac OS X operating system is now the #3 desktop operating
system by current sales, after Windows and now Linux (which just overtook
it). Over the last few years, the Macintosh operating system has been rewrit-
ten and is now based on UNIX, specifically FreeBSD.

The Apple base operating system is available as the free system Dar-
win, which is a solid free operating system but with no GUI. By running
X11 and applications obtained from Fink on OS X, you have a solid oper-
ating system that supports the Mac hardware well and can run most
Linux software.

So Mac OS X is a hybrid. It has some of the benefits of an open source
system. It is a robust, solid system and has enjoyed the open source testing
process up to a point. Of course, it is not open source. You cannot see the
API implementation, and you are at the mercy of Apple, as with any closed
code system, if it should go broke, decide to raise the price, or make other
changes in licensing. The elegant Mac GUI, and most of the applications
that run on it, is closed code.

6.1

Contents of the Operating System 129

Chapter 6

6.1.2 The Value of Alternative Operating Systems?

It may not be clear why it is valuable to have other operating systems that
are not based on Linux. Linux is stable and successful, is improving rapidly,
and is widely used, and I am not advocating that you even consider the
open source alternatives. Consider it disaster insurance. There has already
been one disaster in the open source community: GNU Hurd. Hurd was
supposed to be the kernel of the GNU operating system. It is about 15
years late and still not ready. Fortunately, the Linux kernel was developed. If
the Linux kernel had not been developed, then a BSD kernel would proba-
bly have been adopted instead, and life would have gone on.

Suppose you are concerned about a lawsuit against Linux. You probably
should not be, since any claim that some lines of Linux code are lifted from
someone’s copyrighted code would be simply remedied by replacing that
code (once it had been identified). The previous major lawsuit, between
Novell and UC Berkeley, was settled like this in 1994. But take the worst
imaginable result: that the Linux kernel was somehow removed from open
source and either unavailable or only available with unreasonably high
license fees. The entire Linux kernel could be replaced if necessary by
FreeBSD, or even Hurd. This would be unpleasant, but less disruptive than
some of the remedies that were proposed during the Windows monopoly
case would have been to Windows.

This possibility, of wholesale substitution of any major component, is
part of the value of open source software. FreeBSD, or another system, can
run Linux software, because the developers have access to the code that
implements the interfaces, and they are entitled to use it. So if there is a
market need for a better package, and if there are developers willing to pro-
vide one, nobody can prevent it from being made available in a way you can
easily use.

6.1.3 Using the Shell . . .

. . . or why does Linux have so many files to configure?

The latest Enterprise Linux versions have a GUI interface for almost every-
thing, and it often looks very much like the Windows Control Panel. If all
goes well, you can get a lot done on the system without opening a terminal
these days, certainly more than a couple of years ago. But you very quickly
find that it is not the way of the Linux community to use these GUIs much.
Old habits die hard, of course, but there is more to it than that. One practi-

130

6.1

Contents of the Operating System

cal reason is that the GUIs are different, while the underlying files are not,
so it can be easier to describe an edit to the file /etc/hosts, which has not
changed in 20 years and will work on any version of Linux, than to explain
the different ways to enter an IP address in SuSE’s Yast2 or Red Hat’s Net-
work Device Control and whatever GUI you are running on Debian. That
reason alone could explain why discussions on mailing lists and user groups
that cover multiple distributions are usually in terms of the configuration
files. Actually, even vendor-specific support databases and mail responses
(e.g., Red Hat) are very often couched in file editing terms. The Red Hat
GUIs have changed too, and the support people may use other systems out-
side work. This is only partly a Linux issue; every Windows release has
changed the system interfaces for network configuration.

Many GUI interfaces abstract the simpler aspects of configuration but
cannot cope with all possibilities. This is not a Linux issue but a conse-
quence of designing the GUI to simplify choices. The result can be a great
“demo” of an interface that can support, say, the top available wireless PC
cards on release date but then is defeated by a new manufacturer or an
enhancement such as WEP. If you are going to need to drop through to the
underlying system sometimes, the Linux user argues, you may want to do it
all the time and stay in practice.

Finally, because everything in Linux can be done on the command line,
everything can be scripted. This can be very powerful, since most things
need to be done repetitively, often unattended. It is a simple transition from
entering commands on the command line or into a file to creating scripts
that can be moved around the network and executed automatically at the
right time. The equivalent for a GUI is quite awkward. There are utilities in
the Windows OS, platform (Systems Management Server), and ecosystem
(ScriptIT) that allow you to force GUI conversations in unattended scripts,
but none is generally satisfactory. This argument, in particular, is so impor-
tant that it is a major goal for the next Windows version, Longhorn, to be
completely scriptable from the command line.

Why are they flat files? UNIX flat files go back to the original UNIX
philosophy. There are many good tools for working with flat files, so it
becomes easy to access them from scripts, analyze them, and so on. As on
other platforms, there has never been a single SQL database that you can
rely on being present.

6.1

Contents of the Operating System 131

Chapter 6

6.1.4 Recent Linux Improvements

If you’ve used any version of UNIX, Linux will be similar enough to be
familiar. However, if your UNIX experience was a while ago, Linux is prob-
ably more up-to-date than you expect. Compared with Windows, it is func-
tionally similar. Many things are done differently, but you should be able to
do anything you could do on Windows. A week will get most people over
the hump using a GUI, but modifying config files, writing scripts, and so
on, if necessary, will take longer.

In Figure 6.1 we see a Fedora desktop on a 1,600

×

 1,200 display with
four windows visible. The windows are chosen to illustrate Windows and
Office compatibility. They show (clockwise from top left):

�

OpenOffice with a PowerPoint file

�

OpenOffice with an OpenOffice document file, which I will convert
to a Word .doc before sending to the publisher

�

Evolution with a three-pane view similar to Microsoft Outlook

�

Gnumeric with an Excel file

Figure 6.1

Fedora and Office
files.

132

6.1

Contents of the Operating System

You can also see clickable icons on the desktop and the Red Hat symbol,
which works like the Windows “Start” button.

The quality of available applications is very good. Not everything avail-
able on Windows is available on Linux, but, of course, this cuts both ways.

Most people run Linux on Intel-based systems, because they offer the
best price/performance and broad support. It is available on other hardware
too, such as PowerPC (e.g., Apple, IBM RISC systems), and most recent
UNIX hardware (as used by HP-UX, AIX, Solaris). Linux currently sup-
ports 64-way multiprocessing and 64-bit processors.

The speed of development in Linux can be quite surprising. In the last
half of 2003 there have been improvements in at least these three important
areas:

�

Ease of installation

�

Quality of graphical desktop

�

Performance and scalability improvements in the kernel

In ease of installation, both Red Hat 9 and SuSE 9 have reduced the
amount of manual effort by adding wizard-like GUI programs. They are
more likely to correctly set up graphics, find file and printer shares, and to
configure network cards, without manual intervention, than previous ver-
sions. Red Hat Enterprise Linux 3 is a large improvement over its forerun-
ner, 2.1, which was more like Red Hat 7.

Graphical desktops have been improved by closer attention to fonts and
integration and by newer versions of OpenOffice and Evolution.

6.1.5 Scaling Linux up and Down

Figure 6.2 illustrates the scaling dimensions that open source software, and
particularly Linux, faces and handles. Systems can scale up or out from the
“classic” PC form, or they can scale down. Some of these systems represent
breakthroughs as the first or largest of their kind.

Some of the open source systems in place are very large by any measure.
There are systems that have very high transaction rates, data volumes, and
numbers of users. Some of these systems scale out by using many small sys-
tems, in many cases providing reliability through redundancy. These may
use new hardware of “blades” and other small form factors. Some scale up

6.1

Contents of the Operating System 133

Chapter 6

by using “big iron” symmetric multiprocessor systems, which were formerly
running single-vendor UNIX systems. There are systems that use thousands
of processors and many terabytes of data, as well as systems that are distrib-
uted around the world. Some of these are world famous, such as Google,
eBay, and Amazon. Others may be more discreet, such as National Security
Agency use or the new army supercomputer.

Systems also scale down. Some are consumer appliances, which test
extremes at the other end—of cost, small footprint, and time between fail-
ures. There are over a million TiVo systems in consumer use, for example.
Other systems run in cellular phones, PDAs, and are embedded in automo-
biles. Some of these systems can be very inexpensive; Linksys and Netgear
systems for routing are sold profitably for a few dollars each. The reliability
requirement for these systems is extreme; there is no reasonable possibility
of manual repair.

As a server, Linux can scale very high. Versions of Linux are commonly
deployed with sixteen or thirty two processors and support up to 1,024-way
symmetric multiprocessing. Clustering using Beowolf is common and has
been done for years. High-performance clusters have reached very high per-
formance in research labs such as Lawrence Livermore and Las Alamos.

Having a common operating system between client and server is not
necessary but has advantages—for instance, in the common API, which
means code can be developed with one set of skills and also moved between
platforms, and the common GUI. Servers that are not also desktops will
not generally invest in as good an interface (e.g., Novell NetWare).

Figure 6.2

Scaling the
operating system.

134

6.2

Linux Distribution Vendors

6.1.6 Security

Here I will make a few brief comments, and then leave security as a topic
for another book—for instance, the Becker book

Linux Security for Large-
Scale Enterprise Networks

.

The general feeling in the open source community is that open source is
simply going to prove over time to be a more secure development method
than closed code. This is derived from the beliefs of the security community
as articulated by experts such as Bruce Schneier.

Recent attacks on Microsoft systems have not been replicated as widely
on Linux and BSD-based systems. The reason for that is not clear. Some
claim it is just that Microsoft is the dominant system, so more likely to be
attacked, or that it is a “monoculture” with the risk that entails (Linux sys-
tems vary more among themselves in configuration and programs installed
more than Windows systems).

Viruses and worms can be written to run on Linux systems, as any other,
and the CERN reporting shows that Linux gets its share of attacks. Some
specific Microsoft decisions for ease of use over security have caused prob-
lems, such as running executables from Office and the mail client, but I
believe those are mostly fixed now.

6.2 Linux Distribution Vendors

A distribution vendor does several things, such as:

�

Select the kernel version and apply (and perhaps create) patches.

�

Select a collection of packages with its own versions and patches.

�

Coordinate bug reports and feed them back to package maintainers.

�

Select (and perhaps create) installation and deployment tools.

�

Test and certify the collection and combine onto media for distribu-
tion (e.g., physical CDs, ISO CD images, DVD).

�

Market the distribution, and provide other services such as training.

6.2.1 The Many Versions of Linux

In adopting Linux, one key decision is the distribution to use. As so often
in open source, there are many choices, perhaps more than you would like
to deal with. Several of the distributions offer different editions, such as

6.2

Linux Distribution Vendors 135

Chapter 6

Professional or Server. Also, of course, there are different versions over time.
In a general sense, the differences are not large, but it can be difficult to
make specific statements about exactly how anything works. For example,
take Red Hat. In the last couple of years it has offered Red Hat Linux ver-
sions 7.0, 7.1, 7.2, 7.3, 8.0, and 9 plus Red Hat Enterprise Linux 2.1 and 3
and Fedora Core 1 and 2. All of these are in use and you could, for instance,
find books on any of these in a bookstore today. Most of these were avail-
able in multiple editions.

Red Hat is undergoing a big one-time transition, and this will resolve to
RHEL3 and Fedora. There are similar issues with SuSE, which moved in a
few months from 8.2 to 9 and now 9.1 while being acquired by Novell,
whose Ximian acquisition offers some overlapping functions. Among
smaller distributions, different forms of instability may occur, since there
has been a continuing shakeout in distributions in the last couple of years.

It is a good thing to have choices available if they are significant to you.
You may want, for example, to make a small stable core OS for your retail
stores without consumer applications, or adopt a new window manager,
windowing system, or even kernel as soon as it is available, rather than wait-
ing for a vendor to integrate it.

These same choices may be meaningless noise, or frightening, to other
users. Other choices, such as between KDE and Gnome, or the various util-
ities for configuring networks and printers, just lead into a frustrating
rehash of historical details not interesting to most users.

There are many versions of Windows also. The following versions of
Windows were all sold during the last four years, are in widespread use, and
are officially supported by Microsoft:

�

Windows 98 and 98SE

�

Windows ME

�

Windows NT4

�

Windows CE (several versions, including SmartPhone, Pocket PC)

�

Windows 2000 (various editions)

�

Windows XP (Professional, Home, Tablet)

�

Windows 2003 Server (various editions)

136

6.2

Linux Distribution Vendors

This actually represents three wholly different operating systems: Win-
dows 98SE/ME, the mobile system Windows CE, and the others, which are
all based on Windows NT. A task such as installing a network card is done
differently in each of these systems. This proliferation of versions is some-
thing most people commonly complain about with Windows. It is reason-
able to think they will like this aspect of Linux even less.

Most-Used Distribution Vendors

As we do elsewhere in the book, we will survey the field and then attempt
to focus on a few most likely choices.

D. H. Brown, in

Linux Function Review 2003

, selected Red Hat, SuSE,
and Debian as the three leading distributions of Linux, in that order. The D.
H. Brown review compares functionality and vendor support mostly, with
functionality strong for all three and vendor support being strongest for Red
Hat and SuSE.

The most important single use of Linux is for Web servers. There is a
Netscape report on the most-identified Linux under Apache. See Table 6.1.
Unfortunately, this report needs careful interpretation. Distribution is
known in only 25 percent of Apache Linux sites, and there may be system-
atic reasons why it is missing. Cobalt seems to be reporting itself dispropor-
tionately and thus getting overcounted relative to the others. Cobalt
appliances are no longer sold, having been replaced by Sunfire systems run-
ning Red Hat or SuSE, so they will be quickly overtaken. Leaving aside
Cobalt, the top three distributions in this table are Red Hat, Debian, and
SuSE, in that order. Debian and SuSE are faster growing, but at these rates
will not together match Red Hat in the next few years.

Table 6.1

Linux Most Often Identified under Apache (Netcraft)

Distribution
January 2004
(in thousands)

Six-month
Growth (%) January 2005?

Red Hat 1,232 18 1,430

Cobalt 549 2 400

Debian 443 25 550

SuSE 296 23 400

Mandrake 53 2 55

Gentoo 24 20 30

6.2

Linux Distribution Vendors 137

Chapter 6

At my local users group, Florida Linux Users Exchange (FLUX), a sur-
vey is maintained of “favorite” distributions. Among 233 responses were
seven distributions, with five over 10 percent, as follows:

�

Red Hat 28%

�

Debian 21%

�

Slackware 15%

�

SuSE 14%

�

Gentoo 10%

This group favors the smaller “free” distributions, Debian and Slack-
ware, preferred by many enthusiasts. People may report Slackware or
Debian as a “favorite” but use Red Hat when working at their place of
employment.

Managing Distributions and Packages

The first choice for an organization to make is whether to purchase an
“enterprise distribution” with support or to “roll their own” with a system.
Many organizations may do both, depending on the environment. You can
choose among:

�

Outsourcing distribution (Red Hat, Ximian Red Carpet)

�

Roll your own but use a package distribution mechanism (Debian)

�

Outsource your custom package creation (Progeny Platform Services)

�

Modifying a distribution to suit, and then distribute it as you wish

Today, whether you run a Linux distribution, Mac OS X, or Windows,
you can (and should) choose a software update system from the vendor that
will distribute updates and patches automatically. Package formats include
RPM, used by Red Hat and SuSE, and DEB, used by Debian (and deriva-
tives) and also optionally by Red Hat Fedora. The package formats are used
with front-end commands for application. RPM is used with the front ends
up2date and YUM, while DEB is usually used with APT.

138

6.4

Community-Supported Distribution Vendors

Unlike Windows, you do not have to license every desktop. Of course, if
you are buying support for some desktops and not others, there will be
measures to prevent abuse.

6.3 Enterprise Distribution Vendors

The two enterprise distributions that are likely to be the choices of larger
organizations, particularly those moving to Linux from elsewhere, and par-
ticularly in the United States, are Red Hat Enterprise Linux and SuSE
Linux (Enterprise and Standard). These are the premier offerings of the two
largest corporations offering Linux distributions to the enterprise. Red Hat
has been the leading Linux distributor for years, has a high reputation, and
has been profitable and growing for several years. SuSE has long been the
second major distribution, as well as the leader in some European countries,
including Germany. It was recently acquired by Novell, and the new finan-
cial strength and combination with Linux development powerhouse Xim-
ian, also acquired by Novell, can only strengthen it.

These two are the likely choice of the organization that is willing to pay
for a supported distribution and does not want to build its own.

6.4 Community-Supported Distribution Vendors

Debian and Fedora are two major community-supported distribution
vendors.

6.4.1 Debian

There are more choices for organizations that want to “roll their own.” The
third major distribution is Debian GNU/Linux. It has a very different style:
community supported and always free. Debian is a large distribution that
offers a wider set of software choices than any other.

Unfortunately, the timing of this book does not work well with Debian
releases. The version that will be available (“stable”) by publication will be
Sarge. The software mix will be more up-to-date, and the new installer
should bring that aspect of Debian up to (or close to) the standard of Red
Hat and SuSE. The current “stable” (Woody 3.0r2) is known to be a diffi-
cult Linux to “cut your teeth on.” It is difficult to install and contains old
versions of much important software.

6.5

International Alternatives 139

Chapter 6

Debian is often chosen by other distributions as a basis, because it is
solid and has in APT a powerful distribution mechanism. The consumer
products Lindows, Xandros, and Knoppix, for instance, are all Debian
based. Two Debian-based projects of interest to business are Progeny and
UserLinux. Progeny, a new company founded by Debian cofounder Ian
Murdock, supports companies that want to develop their own custom
Linux installations. UserLinux is a new initiative that plans to appeal to the
business community by simplifying the choices and allowing business users
to move to a standardized user desktop based on Gnome and OpenOffice.
For an explanation in detail, see http://userlinux.com/white_paper.html.

6.4.2 Fedora

Another alternative to the enterprise-branded distributions is the new com-
munity-supported version of Red Hat: Fedora Core. Using Fedora, you will
pay essentially nothing to get the distribution but may have to make deci-
sions about support more explicitly than with Red Hat and SuSE. Fedora is
the follow-up to Red Hat 9, and looks similar, but can be set up to use
either the YUM or Debian APT distribution management system. It is
available not directly from Red Hat but through a new channel of users and
inexpensive distributors. Fedora is more “cutting edge” than Red Hat
Enterprise Linux, on a faster development cycle. Over time, Fedora may
diverge from its origins, but now it is clearly administratively affiliated with
Red Hat and technically not very different from Red Hat 9 and Red Hat
Enterprise 3.

Where this book specifically references a distribution, as with screen-
shots, it uses Red Hat (Fedora and Enterprise) and SuSE. Selecting these
choices enables me to get the book written in a reasonably explicit style and
hopefully helps you to read it, without limiting choices unduly.

6.5 International Alternatives

Outside the United States there are alternatives in certain areas, notably:

�

Mandrake Europe

� TurboLinux Asia

� Conectiva Latin America

� Red Flag China

140 6.5 International Alternatives

These have strengths for particular languages and cultures. SuSE, which
is based in Germany, is also strong in Europe.

6.5.1 Consumer Linux Choices

For consumers, Linux distributions to consider, in addition to versions of
Red Hat and SuSE, include Lindows and Xandros. Xandros, formerly Corel
Linux, is based on Debian with the KDE desktop. It installs easily and
offers an automatic dual-boot version on a machine with Windows
installed. Lindows, also Debian based, is available preinstalled on some sys-
tems. Mandrake is another strong choice.

6.5.2 Booting from a CD

One more very useful Linux distribution to mention is Knoppix. Knoppix
is based on Debian and the KDE desktop with OpenOffice and a powerful
set of programs. It comes on a single bootable CD, so you have nothing to
install. It recognizes devices, including the network.

Knoppix is great for evaluations or loaner machines, because it just
works. It is also a good base from which to fix up Windows or nonbooting
boxes. This is very useful for system repair or to provide Linux tools to work
with on non-Linux systems. For example, you could use the Linux “parted”
utility to alter partitions on a system that boots in Windows.

Knoppix is easy and attractive to use. You can get a good look at a work-
ing Linux system and get some work done on it. Knoppix is at 3.3 and is
well tested and popular. Figure 6.3 shows Knoppix in the process of boot-
ing from a CD. Figure 6.4 shows the Knoppix screen after booting with the
KDE desktop visible, Konqueror open, and Mozilla and OpenOffice avail-
able on the menu bar.

There are alternative “live” (bootable) CDs, including some on business-
card-sized CDs or that can boot from USB devices. SuSE Linux 9.1 Profes-
sional is self-booting, so eventually I expect all distributions will be. Until
then, Knoppix is the best known and most mature, so for most people it is
the one to try first. For those who prefer Gnome, there is a similar product
called Gnoppix, but this is in beta and I would advise waiting for it to reach
1.0 and sticking with Knoppix for now.

6.5 International Alternatives 141

Chapter 6

Figure 6.3
Knoppix booting.

Figure 6.4
Knoppix desktop.

142 6.6 Summary

6.6 Summary

The ecosystem around the Linux operating system is dynamic, with many
companies and rapidly changing versions, but stable in important ways.
Applications developed for Linux run on all the distributions and versions
without change. A Linux vendor could discontinue distribution, but sys-
tems it distributed could be migrated to other Linux versions without a
large disruption. This issue is actually more of a concern for closed code
products. Many times, closed code vendors have gone bankrupt, been
acquired, or just discontinued a product, and their customers were into
migration to a replacement at an inopportune time. This happened with
the DEC TOPS-20 and OS/2 operating systems, for example.

Unlike closed code systems, Linux does not rely on having a single suc-
cessful vendor. The open source model means that another company can
always pick up the code base and continue. Some Linux distributors, as with
some closed source companies, have gone into bankruptcy organization or
out of business, but this has not had a serious impact on their customers.
Other Linux distributors, such as Red Hat, have been consistently successful.

It may be that in the future, Linux will consolidate around one or two
major vendors. Perhaps, in the worst case, we’ll be back where we’ve been in
the past, with those vendors calling the shots, as in the 1980s with IBM or,
more recently, with Microsoft. But open source is different in that you will
always have choices. Any company can set up to distribute, support, or sell
training in Red Hat Linux. You may make a decision to consolidate buying
from IBM Global Services, but you are still going to be able to get other
components that you need (hardware, other software, support, consulting)
from other vendors.

Linux distributions are sufficiently similar that a customer can always
select another distributor. Applications and custom solutions developed for
one distribution will work with another. There might be some dislocation,
but less than involved in a closed source situation of the same type.

The Linux operating system has developed over the past ten years at an
extraordinarily fast rate and is now the operating system of choice for new
systems—from the very largest supercomputer clusters to the very smallest
appliances and hand-held systems, as well as for typical uses of business
server computers of all sizes.

In this book, we repeatedly make the point that open source systems are
good enough for many purposes. Linux is more than that. It is simply the
best operating system in many respects and for most purposes. It is more

6.6 Summary 143

Chapter 6

secure than other general-purpose operating systems, has the fastest net-
working stack of any system, scales to the smallest appliances and the largest
clusters, and is constantly improving.

This page intentionally left blank

145

7

Open Source Server Applications

The important open source server applications, which will be discussed in
the following sections include:

�

Infrastructure services

�

Web servers

�

Database servers

�

Mail servers

�

Systems management services

7.1 Infrastructure Services

Infrastructure services consist of basic network services, security services,
and file, print, and directory services.

Basic network services include DHCP, DNS, and WINS plus caching
services, and routing where that is not done by an appliance. It is typically
very inexpensive to provide these services, on the order of $100 per user
per year, and this is a commodity activity that any server should be able to
perform.

Security services include firewalls, virtual private networking, intrusion
detection, antivirus services, authentication, and authorization. These serv-
ices are difficult to distinguish at times from basic network services and
directory services, which support them, or even mail services, such as the
case of antivirus and antispam services. Active Directory, for example, pro-
vides directory and security services through the same product and the same
interface. Sometimes, indeed increasingly often, these are provided by
appliances.

146

7.1

Infrastructure Services

A major difference between open source and Windows in this area is
that Linux is usually the operating system of dedicated appliances. Security
is actually the most common single use of Linux in the enterprise, and this
is mostly in appliances. Appliance vendors prefer Linux (or FreeBSD) for
two reasons:

�

They pay no licensing fees.

�

They can tune the system precisely for their needs.

As a result, these appliances are inexpensive because of the custom foot-
print and low license fee. Linux networking appliances are also generally
very fast. Linux (along with FreeBSD) is generally recognized to have the
fastest networking stack, and the code can be further tuned for particular
dedicated purposes. Microsoft offers support for appliances also but usu-
ally prefers a more integrated approach, where Windows systems run a mix
of services on a larger server.

7.1.1 File and Print Services

In a mixed environment, we will generally use Samba for file and print ser-
vices. Linux systems also support file sharing very efficiently and easily using
NFS and FTP, and this is a good choice in existing UNIX environments.
Another choice is the Novell iFolders technology, which was recently open
sourced. Given the current distribution of servers and clients, most organiza-
tions are currently using Windows networking, and adopting Samba will be
the simplest choice.

Samba allows non-Windows systems to share file and print services
with Windows systems. Samba clients function like Windows clients, but
for Linux, Mac, or other operating systems, so they see file shares and
printers published by Windows or Samba servers. Samba servers function
like Windows servers, but on Linux or other systems, so they can publish
file and printer shares and also authenticate users in a way similar to a
Windows server. The current version of Samba can authenticate by acting
as a Windows NT primary or backup domain controller, by accessing
Windows NT domain controllers, or by accessing the Windows 2000
Active Directory.

Samba is an efficient program and scales well. Companies such as Bank
of America and Hewlett-Packard use Samba to support many thousands of
clients. The program, written by Andrew Trumbull while at SGI, is an

7.1

Infrastructure Services 147

Chapter 7

implementation of the Windows Networking facility called Server Message
Block (SMB). The name Samba is a play on SMB. The protocol traces
back to the period when IBM, 3Com, and Microsoft were working
together; is also used in OS/2; and is also known as the Common Internet
File System (CIFS).

We may be able to arrange file sharing within an organization (inside a
firewall) by implementing one of a few simple approaches. If information is
usually either private or enterprise wide (public), then we don’t need a
directory system. We can create and share public shares on file sharing sys-
tems and teach users to move information for sharing to those shares. On
Novell systems, these were usually set up as virtual drives. Once we get
beyond public/private into allowing groups or individuals access to specific
information, we will probably need a directory of some sort, although not
necessarily LDAP. Using Samba, at least since version 3, the choices are:

�

Use Samba to manage users. Samba can act as a client to an NT
server for authentication or work like an NT primary domain server
for NT4 replacement, in which case users are migrated from the NT4
server to Samba.

�

Use Active Directory. Samba can act as a client for authentication to a
Windows 2000/2003 Server running Active Directory (but not as a
server).

�

Set up OpenLDAP or another LDAP server and use that as the direc-
tory for managing file sharing.

There are several dependent components for Samba. Samba shares
printers by using the local printing facility (generally CUPS today on
Linux). It also relies on WINS for naming services by default. Originally,
SMB was based on NetBIOS, later on NetBIOS over TCP/IP (with the
NetBEUI stack removed). It can now run without NetBIOS, which many
organizations require. To see and work with Samba files—for instance, to
create file shares or access them—you will need a GUI tool such as Nautilus
or Konqueror that supports SMB.

7.1.2 Directory Services

OpenLDAP is based on the original LDAP server, written at the University
of Michigan. It takes a little more work to set up than the commercial alter-

148

7.2

Web Servers

natives, but it is open source, solid, scalable, and provides authentication
that is configurable for many of the services we will want to use:

�

Samba file and print sharing

�

Apache Web server

�

Courier and Postfix mail servers

The Mozilla browser and other client programs can read user informa-
tion from OpenLDAP. In addition, we can program access to OpenLDAP
from the command line or from our own applications.

7.2 Web Servers

There are really no other general-purpose open source Web servers to con-
sider than Apache. It has a high share and is the reference standard for a
Web server. It is easy to administer and has low overhead, so it works for
small sites and systems. The largest Web sites in the world use it. It can be
tuned to perform extremely well, and for specific needs. Support for Apache
is the gold standard for open source support. The Apache organization is so
successful that it has spawned a family of related projects.

7.2.1 Apache

Apache is by most measures the most successful single open source software
project. It is the most commonly used Web server in the world, constituting
about two-thirds of all Web servers. A recent Netcraft survey (November
2003) shows Apache with 67 percent of top Web servers and 69 percent of
active, against Microsoft’s 21 percent and 24 percent, respectively. See
www.netcraft.com. Active Web servers are usually regarded as the most use-
ful measure of Web server activity, since names reserved but not used are
eliminated. Apache has similar shares worldwide across large and small serv-
ers including those used for ecommerce.

Apache is based on the original Web server written at the National Cen-
ter for Supercomputing Applications (NCSA) at the University of Illinois
in 1993. The first Apache beta was released in 1995. The name originally
stood for “a patchy Web server.”

Apache runs on many operating systems, including Linux, most versions
of UNIX, Windows, and Novell NetWare. Apache is currently available in

7.2

Web Servers 149

Chapter 7

two series: 2.0.x, which has been available as a production release for two
years since early 2002, and 1.3.x. At the time of writing, the 1.3 series is still
significantly more used than 2.0, reflecting apparently a conservatism
among Apache users. The Apache license allows its inclusion in commercial
products, and it is included in IBM WebSphere among others.

Apache is structured into a kernel and a number of modules, which
includes both statically and dynamically loaded modules supporting exten-
sion tools such as Front Page and WebDAV; languages such as PHP, Perl,
Python, and Java servlets; and authentication against Samba/NT, LDAP,
and various databases.

If you are migrating from the Microsoft Web server Internet Informa-
tion Server (IIS), CGI programs can be migrated without change because
Apache and IIS support the same CGI standard. If your Windows pro-
grams were developed with ISAPI, ASP, or Cold Fusion, your simplest
option is to run Apache on Windows. Programs that use ISAPI require
Windows to function, but if you have Cold Fusion or ASP programs and
you really want to migrate off IIS, you can purchase modules, from Allaire
and Sun, respectively, that allow these products to run on Apache on Linux.
For ASP, you can also consider a product called ASP-to-PHP, which does
the one-time conversion implied by its name.

Web servers are inexpensive to buy and maintain. Another option is to
let Windows and Linux Web servers work side by side for a period.

Apache sites install modules to communicate with development lan-
guages, typically called mod_X for language X. Over half of Apache sites
run mod_php, a little under 20 percent run mod_perl, and a little over 1
percent run mod_python. Further sites may run programs with CGI.
Plainly, PHP is the most common development tool for Apache Web sites.
In fact, PHP is the most commonly used language on the Web (Microsoft
ASP is second) and its use is growing.

7.2.2 Other Web Servers

Alternative general Web servers are the commercial products iPlanet (for-
merly Netscape) server on various operating systems and, of course,
Microsoft IIS, on Windows only.

There are some niche products in special markets, such as the Red Hat
Stronghold Secure Web Server. Some tools or applications—for instance,
Plone and Tomcat—come bundled with a Web server, but this is usually as
a convenience. They generally allow you to use Apache.

150

7.3

Database Servers

Tux is a kernel-based Web server developed by Red Hat. It is combined
with Apache to improve the performance for straight HTTP display. It can
improve performance of such pages a lot; in the right circumstances by an
order of magnitude or more. This is similar to the caching products offered
by IBM and Microsoft.

Other Web servers include Zeus and servers included with development
products such as Jetty, which is included with Tomcat, but the share of
these products is not over 1 percent.

As far as which operating system the Web server runs on, approximately
50 percent of sites run on Windows, 30 percent on Linux, 6 percent on
BSD, and 9 percent on UNIX, mostly Solaris, with other or unknown 5
percent, according to Netscape data in 2001. Quite a lot of Apache servers
run on Windows.

7.3 Database Servers

Most major databases are available on Linux, and have been for years—
Oracle since 1998, for instance. The only major modern database that is
not sold to run on Linux is SQL Server. The benchmarks and references are
there, and the vendors are quite enthusiastic. Running Oracle, DB2,
Sybase, CA-Ingres, or Informix on Linux is clearly a safe conservative
choice, and any issues or limitations specific to the platform can be dis-
cussed with the vendors. This is essentially migration from UNIX to Linux
in almost all cases, since the version of DB2 on Linux is the UNIX version.
As with any UNIX to Linux migration, switching costs are reasonably low,
as access to these databases from other systems is the same.

You can choose to run an open source database, such as MySQL. The
open source choice is more likely to deliver significant savings. It is a more
adventurous choice than closed code on open source, but there are many
organizations already doing this.

Many organizations will be able to use a mixed strategy, combining
MySQL and Oracle, for instance, depending on the scale and risk of the
application. While open source databases can be used anywhere, they are a
particularly good fit where many small databases run, as in a distributed or
embedded situation. So, an organization might use a few large Oracle data-
base systems combined with many smaller open source databases.

7.3

Database Servers 151

Chapter 7

7.3.1 Classes of Database Servers

We are going to cover all databases here, even desktop ones. We will treat
desktop servers as a small class of database server, and some elements of
desktop systems as client tools. For example, Microsoft Access can be
regarded as a desktop application that administers and updates a database
server. The server for Access can be an Access database, which can be local
or remote, or it can be a SQL Server, upgraded using the wizard provided
by Microsoft, built directly using Access tools, or another database accessed
with ODBC.

So these types of database products need to be looked at separately:

�

Online transaction processing (OLTP) servers

�

Data warehouse servers

�

Embedded databases

�

Client access tools including decision support systems

There are open source choices in all of these areas, but some are stronger
than others.

7.3.2 Analysis of Database System Sizes

Research into large transaction processing systems published by Microsoft
in 1999 found that, at that time, the following were numbers of transac-
tions per day at the largest commercial organizations processing transac-
tions (not necessarily automated in all cases):

NYSE: 1M

All card and check processing: 20M

Citibank, Bank of America, Wal-Mart: 10–40M

All airline reservations: 220M

AT&T calls worldwide: 200M

Visa did 30M transactions for 400M customers at 250,000 automated
teller machines worldwide. That is about as big as it gets. There are a few

152

7.3

Database Servers

new technology and ecommerce applications on the Amazon and Google
scale that may run higher volumes than these, but most business systems are
orders of magnitude smaller.

The TPC Benchmark

TPC stems from a debit-credit benchmark for banking transactions that
originated at Bank of America in 1972. The Transaction Processing Council
(TPC) was set up to manage an evolving series of benchmarks starting from
TP1 in an independent manner. TPC-C, which was introduced in 1992, is
the major published transactional benchmark and has evolved to respond to
limitations discovered in earlier such benchmarks. The benchmark supports
a mix of five transaction types and requires all elements of the database,
such as numbers of customers, to scale along with transaction measure-
ments. TPC numbers are published with the relevant cost data so price/per-
formance can be considered, and there are clear rules on how cost is
calculated. The benchmark is only for hardware and software that can be
ordered by customers and is shipping now or will be available within a few
months. In reviewing the actions of various competitors, the TPC has
learned many methods of enhancing the results by bending the rules. It has
met this continual challenge by developing methods to control and eventu-
ally prevent this. The TPC is as good an organization for publishing bench-
marks measuring business database transaction performance as we have or
are likely to have.

Limitations of the TPC-C Benchmark

The TPC-C benchmark is expensive to run. Because of the way it scales,
and the precision needed to meet the standards correctly, it takes signifi-
cant time and money to run a benchmark (some say $1M). So only a lim-
ited number of these are run, depending on the vendors that choose to
spend this money. We can only use the data to approximate a solution we
are considering, usually by interpolation. Our chosen hardware and soft-
ware are not likely to have been specifically tested, and we will look for
something similar.

The cost also means that running our own TPC-C benchmark is almost
certainly prohibitive, but it is generally desirable to do this. Another
method is needed to allow us to get really specific in addressing our needs.

TPC cannot enforce that the methods used for the benchmark are the
methods actually used in the real world. One reason the benchmark is
expensive is that the skills to set it up are unusual, because it is now usually

7.3

Database Servers 153

Chapter 7

run on quite specialized software that ordinary organizations would not
use, as follows:

�

Most vendors use custom C++ code and the Tuxedo application
server, while recommending Java application servers.

�

Big database measurements use tricks such as distributed partitioned
views, which customers don’t like to maintain, and materialized
views, which customers do not benefit from.

�

TPC-C prohibits methods such as queuing that allow smaller data-
bases to manage high-peak workloads.

The highest-performance TPC-C numbers are now so big that they
dwarf normal business needs by orders of magnitude. Compared with what
most people are doing, this is like comparing a jet fighter to a crop-sprayer.
Most customer database needs are nothing like the top end of the TPC-C
performance table, and most customers would probably be better off with
something much less expensive and fast, but easier to use.

What we can say about TPC-C is that if a database/platform combina-
tion appears high in the performance table, that combination is capable of
tremendous potential performance beyond almost all practical customer
database needs. If a system is in there, it can do the job.

The TPC-C price/performance table shows a very different set of plat-
forms. The very largest systems (compared with a jet fighter) turn out to be
much more expensive per transaction than mid-sized and mid-priced sys-
tems, so the price/performance table is dominated by these mid-sized sys-
tems. Given the difficulty of building large high-performance databases,
this suggests that a good choice for most businesses is to avoid these larger,
more complex, and more expensive systems where possible and go with sys-
tems in the better price/performance range. And these are the systems that
are the volume sellers. Organizations typically do not like too many small
databases, because they are hard to administer and plan for, so they gener-
ally consolidate to a smaller number of larger systems, but not the exotic
types that win the TPC-C performance table.

The Winter Top Ten Lists

Winter Corporation publishes Top Ten lists of large production databases,
both OLTP and DSS. The statistics are self-reported by customers, spon-
sored by database vendors, so it is a little bit of a “bragging contest.” There

154

7.3

Database Servers

may be larger systems that choose to remain anonymous. However, the data
reported appears to be accurate and includes some of the largest systems, so
it is very useful for my purposes here, which is to get a sense of how big
databases really are and what platforms people really use.

Table 7.1 shows the size by various measurements of the databases in the
annual Winter Top Ten tables published at the end of 2003. These are the
very largest systems.

These are large databases. However, the workloads are not all particularly
high. In particular, the real-world Winter measurements, like the real-world
research numbers, are much lower transaction rates than the TPC-C high
performers. So this confirms that the best (and most expensive) systems
being measured today are substantially outperforming the requirement.

So we have a theoretical measurement and some practical measure-
ments. Table 7.2 combines these two measurements and shows leading
databases, whether they run Linux, the status of their TPC-C benchmark (a
measurement of high potential performance), and their status in the Winter
Top Ten (a measurement of largest deployed transactional systems in the
real world) at the beginning of 2004.

From Table 7.2, we see that Linux is not in the Winter tables yet, but
that is not surprising. Winter is, by its nature, a very conservative data
source, since it takes years to get such big systems built, and it is unusual to
migrate them once created. Winter has several IBM mainframes in it, for
example. In the largest production systems, we actually see only three plat-
form combinations: IBM mainframes, SQL Server on Windows 2000, and
Oracle on UNIX.

In the TPC data, we see Oracle on Linux with a couple of very high
numbers. This is an important breakthrough for Linux, which is in the
TPC measurement for the first time, and on top. The Oracle measure-

Table 7.1

Big Production Databases (Source: Winter)

Measurement Range

OLTP Database Size 2.9–18 terabytes

OLTP Number of Rows 8–42 billion

OLTP Peak Workload 155–450 (UNIX), 113–3,630 (Windows)

DSS Database Size 9–29 terabytes

DSS Number of Rows 65–496 billion

7.3

Database Servers 155

Chapter 7

ments, done on HP systems, show that with vendor support Linux can
match proprietary UNIX on the same hardware. We already know that
Oracle on UNIX systems can run very large production systems, and so we
are confident that we can build the largest systems with Oracle on Linux.
Only Oracle has demonstrated this today. However, we are probably confi-
dent given the vendor commitment that DB2 and Sybase, which have dem-
onstrated high performance on UNIX versions (IBM for DB2, Sun and HP
for Sybase), can run with high performance on Linux also. Ingres and Infor-
mix are not in these measurements. This is probably mostly a matter of not
having money to spend or a corporate parent who is very bothered about
them, but that is something for customers to take into account, after all. So,
I resolve Table 7.2 as follows when considering very large databases.

Mainframe systems, including DB2, CA-IDMS, and CA-Datacom, can
support very large, high-transaction databases, but they are legacy systems,
too expensive and complex to consider for new applications—except that
for organizations that already have DB2 deployed on a mainframe, it repre-
sents a practical choice.

Oracle on UNIX supports very large fast databases on several hardware
platforms and has many reference cases including the majority of large
Internet systems. This specifically includes Linux.

SQL Server on Windows 2000 works with some large reference cases
and has the best price/performance by a substantial margin in the size range
most customers deploy.

Table 7.2

Leading Databases, January 2004 (Source: Winter)

Database Linux OS for TPC OS for OLTP OS for DSS

Oracle Yes Linux, HP-UX, AIX HP-UX and other
UNIX

HP-UX

DB2 Yes AIX, OS/400 Z/OS AIX

SQL Server No Windows 2000/3 Windows 2K Windows 2K

CA-IDMS No None Z/OS None

CA-Datacom No None Z/OS None

Sybase Yes HP-UX, Solaris,
Compaq Tru64

None HP-UX

Informix Yes None None None

CA-Ingres Yes None None None

156

7.3

Database Servers

Sybase and DB2 on UNIX work and clearly should work on Linux.
Informix and Ingres work on UNIX and presumably on Linux but are basi-
cally in maintenance mode.

With this information about large databases, and some common-sense
knowledge about the needs of typical businesses, we can create Table 7.3 to
use for categorizing database servers by performance category. We can use
the categories defined in this table to look at the various choices, and select
the two or three best in each category.

We will do that in the following pages. Note that no single database is
the right choice across all categories. SQL Server comes closest, since there
is a small royalty-free version available. Unfortunately, there is a big licens-
ing restriction. The versions of SQL Server (MSDE) for small and embed-
ded systems are only available if we use Visual Studio or Office as
development tools or use SQL Server as a centralized database.

Berkeley DB is a special case. It is not a general-purpose SQL database,
and it is broadly distributed, since it is embedded in many essential open
source tools.

Table 7.3 assumes conventional database development. With enough
custom development, anything can be made to work on any platform.
Later, we will discuss design choices that will allow us to push past these
limits under the right circumstances with custom development. These
would tend to allow smaller and less expensive choices to do the job.

Table 7.3

Database Categories

Category GB Typical Hardware Rows
Development
Method

DB
Requests/
Second Cost

Very big 1,000s Big (e.g., 8x) SMP box,
cluster, or mainframe

10B Custom complex 100K+ $5M +

Big 100s? One big 4-way SMP 1B Often complex 10–100K $500K

Medium 10s? Commodity 4-way 100M Simple to moder-
ate

1–10K $50K

Small Fractional Small 2-way server Few mil-
lion

Simple 100s $5K

Tiny,
embedded

0.01 Desktop, notebook, server Small Embedded Few Fractional

7.3

Database Servers 157

Chapter 7

Very Big Databases

The very big systems discussed here are custom developed and cost many mil-
lions. Only a few dozen are built in a typical year. The practical choices in this
area are DB2 on a mainframe, Oracle on UNIX, or SQL Server on Win2K.

Oracle is the only database with a Linux TPC-C published benchmark;
it is the highest ever database performance as I write, achieved in December
2003 with a 16-box cluster of 4-way Intel systems. See www.tpc.org for the
latest. The very high cluster scores on this benchmark are quite different
from most normal commercial practices. Who uses Tuxedo? The numbers
do show something about vendor commitment to the platform and about
theoretical feasibility. For instance, it is remarkable that the 64-processor
Linux result on a 16-way Beowulf cluster beats the 64-processor HP-UX
result with the same number of processors on more integrated machines.

There is no Linux database in the Winter Top Ten data. Winter pub-
lishes a general and a UNIX Top Ten. Databases in the top ten included five
on mainframes, three on Windows, and two on UNIX; DB2, CA-IDMS,
and CA-Datacom, all on zOS; SQL Server on Windows; and Oracle on
UNIX. Oracle had the entire Top Ten Winter UNIX list, with none on
Linux. The DB2 code base for zOS and AS/400 are different from UNIX
(and each other) and cannot be usefully compared; DB2 has an AIX bench-
mark, which is the same code base as Linux, but the hardware is probably
not the same as you would run DB2 for Linux on so it is still hard to com-
pare. Sybase has some UNIX benchmarks, although not too impressive.
Sybase and DB2 have had Linux products for several years, and they use the
same code base and should have similar characteristics to the UNIX prod-
ucts. Informix is a legacy product at this stage.

When looking at database on Linux case studies, they do not yet appear
to be very large systems. The large database business is, reasonably enough,
very conservative. It takes years to deploy most large systems, then they stay
on the deployed architecture forever after. My conclusion is that if you plan
to run very large databases on Linux, you are in the area of “technically feasi-
ble but bleeding edge” and will need good-quality support from the database
vendor. If you do this, you should probably look first to Oracle as the vendor
committed to Linux and the leader on UNIX. Second would be DB2, and
then Sybase in special circumstances such as the financial industry.

Best choices for very big databases:

�

Oracle/Linux

�

SQL/Win2K

158

7.3

Database Servers

�

DB2/zOS

Big Databases

The choice of database servers in this category comes down to DB2, Ora-
cle, Sybase, and SQL Server on UNIX or Windows. This is a stable cate-
gory. It was true in 1994 and is still true today.

What has changed in ten years is that SQL Server can now scale larger
and has more share, and open source databases are beginning to be a possi-
ble choice. Because database pricing is per processor, buyers tend to go for
big machines with fast processors in this range. A cheaper, say $150K, box
would cost as much as the big one for the database, so price/performance
goes off.

The obvious choice in this category is Oracle, with most share and most
references. IT is also usually the most expensive. SQL Server will often have
better price/performance, as will DB2. Of course, MySQL has the best
price/performance. It is often helpful when negotiating with a database ven-
dor to have other choices, particularly less expensive ones, so these should
be considered.

Systems in this class may have a large batch component, or tight integra-
tion with legacy systems, and are often mission critical, such as line of busi-
ness, ecommerce, or enterprise application, all of which can make them
more complex and expensive.

Here is a revealing irony. What I call a big database here, Oracle calls
“entry level” in its marketing. In a Linux TPC-C benchmark performed in
September 2003, Oracle achieved over 136,000 tpmC at a cost of under
$4/tpmC. This was being publicized by Oracle in early 2004, as the system
became commercially available. Compared with a Microsoft benchmark
done a couple of months earlier on the same hardware, an HP Integrity
rx5670, Oracle was faster and cheaper. The Oracle headline was: “Oracle
Database 10

g

 on Linux Faster and Cheaper than Microsoft SQL Server
2000 on Windows.” The Microsoft result was 121,000 tpmC at $4.49/
tpmC. Oracle refers to these systems in the article as entry level. These are
half-million-dollar systems at the high end of my “big database” category,
and far bigger than most customers need. Oracle wants to see this as entry
level because in the smaller categories they are not as competitive, and they
want customers to look here and upward.

Best choices for big databases:

�

Oracle/Linux

�

SQL/Win2K

7.3

Database Servers 159

Chapter 7

�

MySQL or PostgreSQL

Medium Databases

The medium database category is typically run on a good four-way Intel
system with RAID. This is the commodity database server at this time, or
the “meat and potatoes” of databases installed in organizations.

It is a practical fact that this category is dominated by SQL Server in a
price range from $30K to $60K.

For most reasonable-sized databases, Oracle or DB2 on Linux should
be a reasonable choice over the next year or two, something to evaluate.
The challenge, where performance is not the overriding challenge, is
expressed by examination of the TPC-C results by price/performance.
This category is dominated by Microsoft SQL Server at about $2/tpmC.
Oracle has one moderate benchmark with 10

g

 on RHEL on an HP, with
136K tpmC at $4.09.

This is not an area in which to use proprietary UNIX systems or less
usual databases such as Sybase, unless you already have them in house. So
the set of choices here comes down to SQL Server on Windows, Oracle or
DB2 on Linux, and MySQL or another open source database.

You could, of course, run Oracle on Windows, but that’s not recom-
mended anymore, and we are looking at Linux here. The issue in this space
is that SQL Server is only available on Windows and offers better price/per-
formance than the alternatives. Fortunately, MySQL is available and has the
best price/performance.

If you are looking at new systems in this area and for some reason are
not considering open source databases, you should evaluate Oracle and
DB2 on Linux against Microsoft SQL on Windows for price/performance.
There is not much lock-in if you run SQL on Windows and avoid inte-
grated login. I suppose you could consider porting SQL Server systems to
Sybase, which is very similar, and Sybase offers this service, but given the
higher price of Sybase and its legacy status, I should not think anyone
would want to do that.

The Meta Group (March 2003) considers MySQL able to handle com-
fortably 300–2,000 database requests/second and 2–12 GB of data, which
puts it squarely in the competition for the medium-sized databases. Meta
also states that MySQL is “comparable to Oracle 9i on a well-known book-
store benchmark.” The well-known bookstore test would be Nile, loosely
based on Amazon.com. (Amazon.com runs Oracle and is not, of course, in

160

7.3

Database Servers

any way medium sized.) There are many production MySQL databases in
the 40-50GB range.

Many organizations will find that this is the perfect space to introduce
MySQL to an organization. It is well inside the database’s performance
envelope and offers a big payoff in price.

Best choices for medium databases:

�

SQL/Win2K

�

MySQL or PostgreSQL

� Oracle/Linux

Small Databases

The category of database being considered here is a two-way processor, two-
disk box or rack server typically costing from $2K to $20K. However small
the database, if it is managed with separate tools it is in this category.

These small databases are an excellent fit for open source at this time.
While the platform is inexpensive, the relative prices of the databases come
to the forefront. Small open source databases also remain full-function,
while the big closed code vendors have a tendency to remove functionality
and add restrictions to their inexpensive versions. In an extreme case, there
is a royalty-free version of SQL Server, but it has no management tools,
only supports about five users, and has other restrictions.

A two-way system with five users costs $1,000 for Oracle and $1,500 for
Microsoft SQL Server; PostgreSQL and MySQL are free. Yet these small
systems can often service up to 100 users quite easily. An unlimited user
license for a two-processor system is $10,000 for Oracle and SQL Server.
Under a commercial license, MySQL Pro (which has row-level locking and
transactions) is $500 for unlimited processors and users.

Best choices for small databases:

� MySQL or PostgreSQL

Embedded Databases

This category includes databases for desktop systems, appliances, and appli-
cation-specific systems that may run on servers or desktops. The perform-
ance that matters here is usually fast loading and small memory and disk
use rather than transaction rate.

Simple and fast is more important than high functionality, so many of
these systems may not use SQL. However, there is a case for small databases

7.3 Database Servers 161

Chapter 7

that support SQL, because that allows larger applications, which always use
SQL, to scale down without rewrite.

The Microsoft version of this is Microsoft Database Engine (MSDE),
which replaced Jet (the Access database engine). This is SQL Server without
the tools, but unfortunately it is seriously restricted. The performance
restriction (a thread limiter preventing more than a few concurrent
accesses) is not a concern in this application, but the licensing restriction is.

MySQL offers an embedded version, and if SQL is needed, MySQL is
the database of choice here. If SQL is not needed, this category totally
belongs to Berkeley DB.

Best choices for embedded databases:

� MySQL

� Berkeley DB

Figure 7.1 plots the database products against size and cost to summa-
rize these choices.

Figure 7.1
Database size

and cost.

162 7.3 Database Servers

7.3.3 Open Source Database Choices

There are three open source databases to consider seriously for general use,
in my view. These are Berkeley DB, PostgreSQL, and MySQL. They are all
widely used.

Two more systems play in niches. MaxDB was formerly known as SAP
DB and before that Adabas-G or Supra. It has some major clients, mostly in
Europe, but has never caught on in the United States even with the pull of
its integration with SAP. Its role will probably be to bring technologies for
incorporation into future large-scale versions of MySQL. Despite being a
solid product that has been around for some time, Firebird, formerly Bor-
land Interbase, has not grown beyond a small niche.

Berkeley DB

Berkeley DB is a core tool under several important open source products,
and apparently has 200 million deployments. Berkeley DB (BDB) is a high-
performance derivative of the old “DBM” databases, which have been part
of UNIX and UNIX-like operating systems from the beginning.

As an embedded, or application-specific, database, BDB is included
with products, often without the user being aware. This is like Btrieve or
Microsoft Jet and MSDE engines. It is a flat-file database, not SQL.

BDB has a dual licensing model. It is open source (GPL license) when
used in open source products or at a single site. When distributed with a
commercial product, there is a commercial license.

Berkeley DB is used by Sendmail, Apache, and OpenLDAP servers, the
Netscape and Mozilla browsers, and the Python and Perl programming lan-
guages. Commercial customers include Sun, Google, Veritas, TIBCO,
Cisco, Amazon, and HP.

PostgreSQL

PostgreSQL is an open source database, available under the BSD license/
copyright regime. It is based on the Postgres product designed at Berkeley
in the 1980s, and before that on work performed on the Ingres database by
Michael Stonebraker since 1974. It was not a SQL-based product until
1995. Ingres and Postgres were developed on BSD UNIX. It is available
now on Linux and UNIX, including the Mac, but is not native on Win-
dows, running in the Cygwin emulation.

Postgres has historically offered better support than MySQL for stan-
dard SQL behavior, although MySQL seems to be catching up. Currently,

7.3 Database Servers 163

Chapter 7

Postgres supports stored procedures, triggers, and views, which MySQL 4.1
does not. This is a strong argument for Postgres with experienced database
developers, who are used to having these functions.

Postgres is a good database server with a strong following in the open
source community, but in business use it is perceived as lagging MySQL in
adoption, marketing, and support arrangements. Support arrangements
offered by Great Bridge and Red Hat (the Red Hat database was based on
Postgres) did not make much headway.

MySQL

The MySQL database server is robust, fast, and a very good cross-platform
product on clients, including Windows and the Mac and a variety of UNIX
servers. It has a small footprint and good management tools. The product is
distributed by the Swedish company, MySQL AB. MySQL is used much
more than PostgreSQL; the company estimates about 4M users worldwide.
The product has momentum, with considerable enhancement happening,
and last year’s acquisition of MaxDB will likely lead to more enterprise-
scale features later.

MySQL is dual-licensed, meaning it is available under a commercial
license or the GPL. Because linking with the GPL-based libraries requires
your code to go GPL, commercial developers who are not open source will
want to pay for the commercial license. Also, the MySQL company asks
commercial users to buy an unlimited commercial license. That commercial
license is $500 for the product, including InnoDB, which is transac-
tional—that is, unlimited processors and users. With this licensing model,
MySQL is powerful and inexpensive for commercial users and it is open
source for government, education, and personal users.

Historically, MySQL has missed some SQL standard features that
many users regard as essential. This was originally a set of design decisions,
as the product was intended to be fast above all. There is now a published
plan to catch up on these, which is in progress. Transactions (ACID) were
released in Version 4.0, when the previously distinct InnoDB engine was
incorporated in the main product. Subqueries are in Version 4.1, which is
close to production as I write. Stored procedures will be in Version 5.0 and
triggers in 5.1.

MySQL is powerful enough for most purposes and easy to install and
use. It is widely used in business organizations, including large systems such
as Sabre. It powers the OSDN sites, including Slashdot, Freshmeat, and
SourceForge, and is used by Google and Yahoo!.

164 7.3 Database Servers

7.3.4 Database Performance Is Good Enough

Table 7.4 shows some Microsoft SQL Server results on the TPC-C bench-
mark since 1996. The data was taken from TPC (www.tpc.org) in July
1999 and later.

In mid-1999, an eight-way Microsoft SQL Server 7.0 reached 40,000
tpmC on one server with a then five-year cost of $.75 million. Because of
the way the TPC-C benchmark is scaled, the 40,000 transactions in August
1999 represent 90M customers, 300M stock items, 120M transactions per
day, 32,000 simultaneous users, and 5 terabytes of storage. At that time,
SQL Server was good enough by transactional measures for almost all
actual business database uses.

Improvement has continued at this pace. By 2002, the fastest SQL
Server benchmark was ten times quicker than that. Price/performance on
many typical systems is now below $2/tpmC, which is ten times better. Put
another way, the tenfold improvement of the last two and a half years can
be taken as better performance or lower price.

Databases are used as a component in a complex system. Most databases
in organizations sit behind Web sites. Others are behind client/server appli-
cations or distributed. Their performance is constrained by the front-end
systems and the end-user needs. Most are in the medium or large categories,
but not very large like the TPC-C record breakers.

During these years, Oracle has usually held the highest performance
benchmark, with SQL Server catching up periodically. So over this period,
approaching ten years, we have the “disruptive technologies” situation
shown in Figure 7.2, with first Oracle and then SQL Server outperforming
most customer needs. Just as SQL Server was ready for most customer
needs by 1999, MySQL is good enough in 2004 for most applications.

The publication Eweek published a benchmark in February 2002 com-
paring Oracle and MySQL. This is available on the Web at

Table 7.4 Selected SQL Server TPC-C Results

Date tpmC $/tpmC

December 1996 5,000 70

August 1999 40,000 20

January 2002 500,000 2.2

7.3 Database Servers 165

Chapter 7

www.eweek.com/article2/0,3939,293,00.asp. The SQL Server testing is
flawed by a poor JDBC driver, since fixed, but the numbers show that at the
time MySQL was quite comparable to Oracle in this test.

We should, of course, do our own benchmarking. However, this is a
potentially very complex subject. A good treatment in depth is Jim Gray’s
Benchmark Handbook, which is out of print but can be purchased used on
Amazon or read online at http://www.benchmarkresources.com/handbook.

It can be expensive and time consuming to run the big and heavily
defined industry-standard benchmark, and get it audited. Just getting the
hardware is a big deal for a large system.

OSDB Benchmark

There is an open source implementation of Gray’s, AS3AP Benchmark
available on Freshmeat as the Open Source Database Benchmark (OSDB).
AS3AP is the ANSI SQL standard scalable and portable benchmark for
relational systems. According to the Benchmark Handbook (Chapter 5, p.
2), it is designed to:

Figure 7.2
Database

performance
over time.

166 7.3 Database Servers

� Provide a comprehensive but tractable set of tests for database proc-
essing power

� Have built-in scalability and portability, so that it can be used to test
a broad range of systems

� Minimize human effort in implementing and running the bench-
marks

� Provide a uniform metric, the equivalent database ratio, for a
straightforward and unambiguous interpretation of the benchmark
results

AS3AP determines a performance metric, the equivalent database size,
and a price/performance metric, which is the cost per megabyte over the
equivalent database size. OSDB provides more metrics than this bench-
mark requires. It has also been relaxed to better support databases with less
than complete ANSI SQL capabilities. This is already set up to run against
MySQL and/or PostgreSQL. It will take work to get it to run against, say,
Oracle, but the Oracle code should be in the repository by the time you
read this.

Benchmark code should be open source. We want to know what is being
measured, and it is often useful to customize a benchmark to make it simu-
late some concern of our own. This benchmark is written in C++, so knowl-
edge of C++ is needed to maintain or extend the benchmark, but this does
lead to good performance. If a “back of the envelope” OSDB run looks
good, I would recommend following up by running the test on the hard-
ware you plan to use, or similar, tuned in the way you plan to deploy it and
with data volumes close to your predictions.

7.3.5 Competing with Closed Code Databases

You cannot install a large database in any organization without having to
compete with sales pitches from Oracle, Microsoft, and IBM. Salespeople
from any of these companies will try to treat open source databases as toys.
If they are forced to admit that the open source database could do the job
under discussion, they know they will lose on price, so they will move the
debate elsewhere. They will talk about theoretical large databases and grid
computing, their results at the TPC-C racetrack, or the idea of consolidat-
ing all your databases into one big system.

Oracle will emphasize its market leadership, making it seem like the
only safe choice and emphasizing the risk of anything else. Oracle will also

7.4 Mail Servers 167

Chapter 7

talk about grids. Microsoft will emphasize price/performance and ease of
management. Microsoft also pushes its extensions, such as DTS and Anal-
ysis Services, Web-based access, and XML everything. IBM in particular
goes for integration; DB2 is usually sold on IBM platforms along with
WebSphere.

Oracle and IBM run their UNIX database benchmarks on the Tuxedo
application server. They use this platform because it is much faster and less
expensive than their standard application servers. However, Tuxedo is an
old system that is difficult to develop for, and it is almost never used for real
business databases. When IBM and Oracle are selling systems to business
customers, they recommend IBM WebSphere and Oracle Application
Server, respectively.

When benchmarking, Oracle always looks at large databases and com-
pares performance. Microsoft has some large performance numbers, but
prefers to look at small to medium databases and compare price/perform-
ance. Oracle runs its mid-market benchmark on the same box as Microsoft
and gets a slightly better result. It is not going to do that on the smaller
boxes, where the cost of the database dominates the numbers.

7.4 Mail Servers

In the UNIX and open source world, mail servers are split between message
transfer agents (MTA), which are senders, and receivers/message stores.

Mail is usually sent with the SMTP protocol and accessed with the
POP3 or IMAP protocol. This works about the same with closed code mail
servers such as Exchange, but both sending and receiving programs are
called Exchange (or Groupwise or Notes).

We have already mentioned Sendmail, the venerable program that may
be the oldest open source program in widespread use. After paying it due
respect, it is time to admit that Sendmail is an old program and may not be
the best mail server to choose today. It has a reputation for being difficult to
configure and a history of security problems. The consensus these days is
that you should choose Postfix instead to avoid these issues. There are other
alternatives, such as Exim and Qmail, but we will look at Postfix here.

Postfix is fast, scales well, and is reasonably self-evident to configure. It
can use different formats for the message store (Maildir or Mbox). We usu-
ally prefer the Maildir format, which stores each message in a single file.
This makes message processing with external tools much simpler.

168 7.5 Systems Management

The alternatives for message receivers and stores are POP3 and IMAP.
IMAP is richer and generally preferable. Exchange supports either protocol.
The native Exchange store appears to be IMAP-like but differs slightly, so
that Outlook IMAP support can be quirky. Sometimes we may choose to
use POP3 with Outlook for that reason. Choices for IMAP servers include
Courier-IMAP and Cyrus IMAPD.

For a directory server, we prefer OpenLDAP for this. Postfix and Courier-
IMAP or Cyrus IMAPD can access OpenLDAP for authentication.

Many organizations like to have a browser-based mail client option.
Horde is an example of a server that supports browser-based email. Horde
looks similar to Outlook Web Access and provides similar functions. It can
access OpenLDAP for authentication, address lookups, and contacts.

7.5 Systems Management

The basic choice for open source systems management, as in other areas
such as database, is whether to adopt open source tools and methods com-
pletely, which will involve getting or developing administrators with UNIX
administration skill sets, or whether to adopt closed code system manage-
ment tools, which are generally cross-platform and may already be in place
in the organization. Both approaches will probably be needed. However
attractive the graphical tools, system administrators usually need a thor-
ough understanding of the platforms they are using.

The next level, if needed, of systems administration is programming
using a cross-platform scripting language. This will allow us to develop
more flexible and automated approaches to, for instance, backing up or
managing the size of user files. The good news is that there is a long tradi-
tion of scripting in UNIX, and the work to do this is well understood and
available. The bad news is that although it is compatible with Windows sys-
tems, it is not compatible with the approaches that have generally been used
in Windows.

The closed code tools are comprehensive and graphical, so they look
wonderful in use. The open source tools are generally targeted to a more
experienced administrator, and lean more to the UNIX philosophy of
“doing one thing well.” There is no reason not to use tools of both types.
Many organizations that use Tivoli or Unicenter also employ open source
tools such as Snort for intrusion detection and write shell or Perl scripts to
manage their own applications.

Closed code tools available for Linux include:

7.5 Systems Management 169

Chapter 7

� BMC Patrol

� CA Unicenter

� HP OpenView

� IBM Tivoli

� Novell ZENworks

The leading integrated graphical open source system monitoring tool is
Nagios. This is being used in production by organizations with up to 5,000
hosts. As Figures 7.3 and 7.4 illustrate, it is comprehensive and graphical.
An online demonstration of Nagios is available at http://nagios.square-
box.com.

Open source administration tools include a huge selection of specific
tools for particular purposes. Most existing larger organizations will have a
multiplatform administration solution in place and will simply extend it to
include the open source systems.

Figure 7.3
Nagios status

overview.

170 7.6 Summary

Systems need to be monitored at all levels. Open source applications are
easier to instrument to support event logging into system management tools.
Other great open source tools include TCPdump, Snort, and Ethereal.

7.6 Summary

Open source choices for these important server applications include Samba
and OpenLDAP for infrastructure services, Apache for Web servers,
MySQL and PostgreSQL for database servers, and a variety of programs for
mail servers.

There are also good closed code programs with commercial support
available on Linux in most of these categories, such as iPlanet for directory
services, Oracle and DB2 for database servers, Scalix and Contact for mail
servers, CA-Unicenter and HP OpenView for systems management, and
many people will choose to employ them.

If your organization is not ready for the different sales models of open
source, and not prepared for the integration of components that is usually
needed, then selection of some closed products and support services from
major vendors may be the best way to go.

Figure 7.4
Nagios status map.

7.6 Summary 171

Chapter 7

If your organization is prepared for the open source sales model and for
some integration, then a selection of open source software is available for
infrastructure, Web, mail, and database services at almost any scale. By run-
ning open source servers, you can reduce licensing and hardware costs while
increasing flexibility.

This page intentionally left blank

173

8

Open Source Desktop Applications

8.1 Introduction

8.1.1 The Open Source Desktop

A complete open source desktop with applications can be easily installed
and demonstrated on a typical personal computer using Linux. Most peo-
ple would agree that such desktops are attractive, powerful, and as easy to
learn from scratch as Windows. Such desktops can be significantly less
expensive than closed code systems, since they can save the operating sys-
tem cost plus the cost of applications such as Microsoft Office.

It is also possible to build a desktop on Windows, where all the applica-
tions are open source. Again, this can be attractive, powerful, and easy to
learn. In many situations where the operating system is already installed,
such as on home computers, there is no savings to replace it with Linux, but
there are huge cost savings from replacing applications such as Office with
open source.

The important open source desktop applications, which will be dis-
cussed in turn, are:

�

Graphical desktops

�

Web browsers

�

Office programs (word processing, spreadsheet, presentation soft-
ware)

�

Professional applications (graphics, database front ends, Web designers)

�

Personal applications (media players, games)

174

8.1

Introduction

8.1.2 Linux Desktop Share

Linux has come a long way in power and ease of use, but it is still not
widely used on the desktop. Linux has now overtaken since 1994 the Mac
in sales to become the #2 operating system on the desktop. IDC reports
that Linux grew from 2.8 percent in 2002 to 3.2 percent in 2003, while the
Mac remained at 3 percent. This is significant, but is still has only a small
share. Windows has a 94 percent share. IDC forecasts growth to 6 percent
for Linux in 2007, but Windows would still be over 90 percent by then.

These figures probably undercount Linux presence on desktops now and
in the future. Linux is underreported, because it is very often not purchased.
Windows ships on essentially every new PC, and where users are replacing
Windows with Linux they are probably not getting measured effectively. It is
also used in concentrated niches, some of which are very high growth, such
as some new Asian installations involving millions of desktops. The major
computer companies—IBM, HP, and Sun—all have programs to encourage
Linux desktop adoption now, and some major corporate announcements
have been made. Linux has exceeded expectations in the past, and may grow
on the desktop much faster than currently predicted.

8.1.3 Limitations to Desktop Linux Adoption

Whatever Linux growth may be, in the next three or four years we know
that there will continue to be an order of magnitude more Windows users
than Linux users. This has an effect on the availability of hardware, applica-
tions, and support services. Each of these limits the possibilities of Linux
desktop deployment significantly.

Hardware

Approximately half of corporate personal computers are now notebooks
rather than desktops. It is this group that is least likely to adopt Linux
quickly. Setting up Linux on a notebook system is still likely to need some
custom work, and there are hardware limitations, including wireless sup-
port, such as Intel Centrino wireless and most 802.11g cards; some graphics
cards; and advanced power management. Notebook users may have to
accept some loss of functionality to run Linux. Notebook users are typically
professional users, and are not likely to accept compromises like this unless
they are developers or are committed to open source for some other reason.

8.2

Graphical Desktops 175

Chapter 8

Applications

Given the disparity in installation share, it is perhaps surprising that there
are many applications available for Linux desktops, and there are generally
several good choices in the major categories. Smaller niche applications are
more of a problem. There are many thousands of applications in the Win-
dows “ecosystem,” usually written to the Windows tools and interfaces,
often addressing specific vertical industries.

In a migration situation, any specific application may be a “must-have”
for a group of users Microsoft Office is just the biggest, best-known exam-
ple of this. Section 8.6.1 has some tactics for this situation, such as emula-
tion, but often this will necessitate Windows on some systems.

Support Services

There are thousands of corporate employees, and many more people in out-
sourced services, working with users of Windows desktops in support and
training roles. Some of these have qualifications such as MCSEs, others do
not; but most have a significant investment in the skills needed to support
Windows systems and the common applications deployed on them. There is
little incentive for these people to relearn their jobs using a new technology,
and in some areas the skills to support activities such as solving issues with
Linux systems that won’t boot or training users in OpenOffice may not be
available yet. It will be several years until this situation is resolved entirely.

8.2 Graphical Desktops

It is possible to start and run Linux in a character mode, but this is reserved
for installation and debugging situations nowadays. Linux is usually
installed to start in a graphical mode, running a windowing system, and a
desktop system will usually run a desktop manager with a set of integrated
utilities. If you want to work in the shell using a command line and typing
commands, as you probably did sometimes in Windows, you can open a
terminal. Linux users tend to use the command line more than Windows
users, partly because it is more powerful.

Essentially all Linux systems use the X Windows system (X11) as the
graphical user interface (GUI)—generally XFree86, which is the most used
port of X11 on Intel. This is the underlying code of Linux graphical user
interface systems. Exceptions include some servers that may not need a
GUI and run in character mode, and some embedded systems that use
other GUI systems not based on X11 to get better performance, such as
Qtopia, which is used on the Sharp Zaurus.

176

8.2

Graphical Desktops

X11 was written at MIT in the early 1980s and made available under an
open source license similar to Berkeley. There had been several previous X
versions but X11 became widely adopted and the numbering stopped there.
There were alternative windowing systems, such as Sun’s Network-extensi-
ble Windowing System (NeWS), but X11 won out and became the de facto
standard for windowing on UNIX and similar systems. X11 was innovative
in important ways. Unlike its rivals, the Windows and Mac GUI, it is por-
table across many systems and is not hooked to a particular operating sys-
tem. It separates the display component (or X server) from the client
application, so that applications can be operated across a network. It sup-
ports virtual desktops, so you can scroll across a much larger space than the
physical display. And it is much more customizable than other systems.

X11 by design was not prescriptive on window management or look and
feel. The intention was that different organizations could innovate and
enhance these areas, rather than enforcing a standard. For some time,
UNIX vendors attempted to distinguish themselves from each other, so it
became customary to develop different window managers and style guides.
Eventually, there was a movement toward adoption of a set of standards for
the UNIX desktop. This became the Common Desktop Environment
(CDE), which adopted standards based around Motif, which was Win-
dows-like. Unfortunately, Motif/CDE was not open source at that time,
which slowed the effort.

The X11 toolkit is written in the C language and accessed at quite a low
level, so it is not easy to program for. “Widget sets” were developed to make
this development more consistent and less low level; these evolved into
object-oriented APIs, and there are several of these. From time to time there
are proposals to replace this layer with new code, but it is not likely to hap-
pen soon.

So Linux systems have a common graphical code base, but alternative
sets of window managers, look and feel, and development toolkits. As with
other areas, we get the double-edged benefits and costs of choice here.
There are some really interesting customization opportunities. For unusual
systems, such as very large or small or some custom areas, this separation of
interface from technology allows great flexibility. Any application can create
its own look. So embedded systems can have a simple proprietary look like
a TiVo or a high-performance interface like the Sharp Zaurus. We can use
this to make a retail or call center application look exactly the way we want.
Also, power users can configure their systems as they wish. There are a vari-
ety of windowing managers for specialized uses, such as for system adminis-
trators or developers.

8.2

Graphical Desktops 177

Chapter 8

For general business systems, we will usually prefer a standard desktop,
such as we get with Windows or the Mac, since this can reduce costs of
training and support. Standard desktops provide a combination of useful
components:

�

Window manager, which organizes windows, menus, and scroll bars
in a coherent manner

�

Desktop arrangement, or a place to launch programs, organize and
find things

�

File manager, similar to Windows Explorer or Mac Finder, which
may be integrated with a Web browser

�

Standard look and feel, including a consistent set of menus and dia-
logs, and choice of fonts, themes, effects and general “eye candy”

�

Set of applets for utility functions such as printer setup or appearance
control, similar to Windows Control Panel or Mac System Preferences

�

Useful applications

�

Games

This is the type of package of components that is offered by Windows or
the Macintosh. Of the many desktops available for Linux, two are of major
importance. They are the Gnome and KDE projects, which both started
around 1997, with the goal of introducing a richly featured desktop, and
have released new versions regularly since. These systems now compete with
Windows for consistency and ease of use and learning, but they are perhaps
not so close to OS X yet.

The Gnome and KDE interfaces can run on the same computer, even
both together on a user desktop, and applications can run within each
other’s desktops. But they look different and are built using competing
development platforms; KDE is built with the Qt toolkit, while Gnome is
built with the GTK+ toolkit. While each has strengths, they are largely
redundant, duplicating most of each other’s functions. So they are really
competitors. As a developer, you would have to choose which toolkit to
develop an application with. As a user, you will probably lean toward one or
the other most of the time.

This issue leaves Linux desktops free to be more innovative than Win-
dows, but also often a little harder to learn. Everyone in the Linux commu-
nity understands that it would be simpler in many ways if there were a

178

8.2

Graphical Desktops

single desktop standard, but this is not going to happen in the near future.
A recent proposal to standardize UserLinux on Gnome rather than KDE
revealed the depth of feeling around this. These two projects are powerful,
ongoing, and both have strong support.

In the long run, there may be a form of convergence driven by the major
distributions. Red Hat has worked to make the differences between KDE
and Gnome largely hidden in their newer “Bluecurve” versions. Novell,
which owns both Ximian, a major Gnome driver, and SuSE, a large KDE
sponsor, has announced a plan to converge the desktops over time.

Figures 8.1 and 8.2 show screenshots from Gnome and KDE desktops.
These are both very configurable, so your desktop could vary.

The Gnome desktop shows:

�

A graphic saved as background

�

The Home folder at the top left

�

Trash at the bottom right

�

Other folders and links on the desktop

�

The Nautilus file manager looking at some network file shares

�

The Gnome menu at the bottom, including the following from left
to right:

�

The main menu (Red Hat) button

�

Application launchers for several applications

�

A screenshot utility

�

Wireless and battery information

�

The virtual desktop manager

�

System manager utilities

�

Clock

The KDE desktop is similar, but has a different graphic background and
is running the Konqueror file manager, not Nautilus. The menu bar is sim-
ilar. It happens to be configured a little larger and with some items placed
differently. Again, the Red Hat button and launchers are to the left, and
other utilities to the right. The screenshot, battery life, and clock utilities
are programs different from those in Gnome but serve a similar purpose.

8.2

Graphical Desktops 179

Chapter 8

Figure 8.1

Gnome screenshot.

Figure 8.2

KDE screenshot.

180

8.3

Web Browsers

8.3 Web Browsers

When developing applications, we do not usually want to require a particu-
lar Web browser and operating system. In many cases, we cannot know
which browser an application user will be using. Even if we can determine
this, as in a customer or business partner situation, it is probably an unrea-
sonable restriction to impose. So when developing, we will usually plan to
support a choice of browsers.

In principle, we know that if too many people write to a specific browser,
that could destroy one of the best features of the Web, its independence from
particular hardware and software platforms. Generally, the best plan is to
write for several browsers. Of course, we do not want too much of a testing
burden. Table 8.1 has some good choices for browsers available on different
platforms. We should probably plan to test on Mozilla, IE, and one other,
probably Konqueror or Opera.

8.3.1 Deploying Browsers

Although we may want to support several browsers when developing, when
deploying desktops we will probably want to use a single standard to lower

Table 8.1

Choosing a Browser

Browser Platform Status Comment

Mozilla,
Navigator

Windows,
Linux, Mac

Open source Navigator is based on Mozilla 1.6;
Mozilla Firefox is new code, much
smaller.

Internet
Explorer

Windows Included
with OS

On older Macs but now discontin-
ued. AOL uses IE.

Konqueror Linux Open source Uses Qt libraries, works well with
KDE.

Epiphany,
Galeon

Linux Open source Both these browsers use the Gnome
toolkit and the Mozilla rendering
engine.

Safari Mac Included
with OS

Based on the Konqueror rendering
engine (Qt runs native on the Mac).

Opera Windows,
Linux, Mac

Free with
advertising,
or fee

Small, fast, but not open source.

8.3

Web Browsers 181

Chapter 8

the support and training burden. Most Windows shops use Internet
Explorer (IE) for obvious reasons: It is good enough and is already installed.
The limitations of IE, such as its lack of control over pop-ups, can be
addressed with third-party add-ins or managed from the firewall.

Organizations that would like a single browser across multiple platforms
can select the open source Mozilla, either Firefox or the older integrated
versions, Netscape or Opera. The other browsers are specific to their plat-
forms: Safari on the Mac, Konqueror on KDE, and Epiphany and Galeon
on Gnome.

Figure 8.3 is a screenshot of Mozilla Firefox pointed at the Mozilla home
page.

Once a browser is installed, the common plug-ins need to be installed.
The four most commonly used are Adobe Reader, the Real Audio Media
Player, Macromedia Flash, and the Java 2 run time. On Linux systems,
Flash is available but there is no Macromedia Director plug-in, so Cartoon
Network games, for example, don’t work. If Windows plug-ins are needed,
we can look at the CodeWeavers product Crossover, which supports these
on Linux.

Figure 8.3

Mozilla Firefox.

182

8.4

The Office Suite

8.4 The Office Suite

In considering the office suite, we will consider the word processing,
spreadsheet, and presentation programs, although the open source suites,
such as Microsoft, include other programs, such as drawing and image
management. In terms of Microsoft Office, then, we are looking at replace-
ments for Word, Excel, and PowerPoint. We will discuss database front-end
programs and mail front-end programs such as Access and Outlook else-
where under separate headings. There are excellent open source equivalents
of these and of other Office programs, such as drawing, organizational
charts, spell checking, and so on, but the core components are usually seen
as these three.

There are several alternative open source office suites:

�

OpenOffice

�

KOffice

�

Gnome Office

KOffice and Gnome Office contain some good products, and many
individuals may find them to be exactly what they need, particularly when
working with other programs from those desktops (KDE and Gnome). But
OpenOffice is clearly the strongest. It has three very powerful constituent
programs, and is the best office suite for working with Microsoft formats.
OpenOffice has a great deal of momentum, with millions of users, far more
than the others. OpenOffice has been adopted as part of the standard desk-
tops of Red Hat, SuSE, Ximian, Sun, and UserLinux. OpenOffice works
well on Windows and Linux. Anyone recommending an office suite as a
standard to an organization really has to recommend OpenOffice. An alter-
native might be not using a suite, but allowing individual programs to be
selected. So in my view there are three practical methods that can be com-
bined within a population to approach the office issue:

�

Install OpenOffice as the default standard desktop on Linux and/or
Windows.

�

Leave Microsoft Office on desktops of satisfied users, and allow users
to specify Microsoft Office on new installs if they need it for a reason.

8.4

The Office Suite 183

Chapter 8

�

Allow users to use individual programs such as Gnumeric or Abi
Word if they choose instead of a suite.

8.4.1 OpenOffice.org

OpenOffice.org (abbreviated here to OpenOffice) is the leading open
source office suite. Sun purchased StarDivision, the German developers of
StarOffice, in 1999, then established OpenOffice.org to manage the open
source process and distribution while continuing to offer StarOffice on a
commercial basis. StarOffice and OpenOffice share the same code base and
file formats; OpenOffice is open source while StarOffice is sold commer-
cially and contains additional features.

At the time of writing, OpenOffice is at Version 1.1 and StarOffice is at
7.0. The main programs are identical, but StarOffice includes additional
products in the distribution, including TrueType fonts, spell checking and
thesaurus utilities, additional templates and pictures, and a desktop version
of the Adabas database, called Base. Sun also offers commercial support for
StarOffice. In this book, we will from now on refer to OpenOffice to
include StarOffice as a possible choice.

Fonts and spell checking are weak in OpenOffice as shipped. An organi-
zation adopting OpenOffice should look at options for these functions.
Another example of OpenOffice integration is Ximian. The Ximian edition
of OpenOffice makes changes to ease Office migration, using Microsoft file
formats by default and shipping Microsoft-compatible fonts. It also makes
changes to improve integration with the Gnome programs Galeon and Evo-
lution and to recognize Gnome desktop theme and font settings.

File formats are identical between OpenOffice and StarOffice and with
the previous versions (1.0 and 6.0). OpenOffice 1.1 is available for Linux
and Windows. These versions are essentially identical. The Mac OS X ver-
sion of OpenOffice is 1.0 as I write. File sharing is still possible, but some
functions of the program are a level back. The Mac version is not native but
based on X11. Between the back level and the nonnative issues, I have
found the Mac version of OpenOffice to be too slow and with a poor on-
screen format. This will be fixed in a few months. At the moment, there is a
version called NeoOffice/J, using a Java front end, that is fast and presents
very well.

Figures 8.4 through 8.6 are three screenshots of OpenOffice on Linux: a
document, a spreadsheet, and a presentation.

184

8.4

The Office Suite

Figure 8.4

OpenOffice write.

Figure 8.5

OpenOffice calc.

8.4

The Office Suite 185

Chapter 8

8.4.2 Competition in the Office Suite Market

Microsoft Office appears absolutely dominant in its market, with market
share over 90 percent among office suite customers. This may seem impos-
sible to tackle, but there are other ways to look at this.

Since there is over a 40 percent piracy rate claimed for Microsoft Office,
for every three licensed users there are two more who did not buy it. There
are also millions of people who got free copies of the Lotus suite with their
IBM systems, a few million OpenOffice users, and the 10 percent who
bought some other suite.

Finally, there are also many people who do not use an office suite, but
use individual programs or simpler packages such as Microsoft Works, or
use text editors and Acrobat. Many of these might like to use an office suite
but cannot afford Microsoft Office.

So, there are three groups of roughly equal size—those who:

�

Use an office suite and buy it from Microsoft

�

Use an office suite and don’t buy it from Microsoft

�

Don’t use an office suite

Figure 8.6

OpenOffice
presentation.

186

8.4

The Office Suite

The second and third groups are immediate candidates for OpenOffice,
as are some of the first.

There Have Been Past Changes of Leadership

Microsoft’s dominance of office suites was no foregone conclusion. It was
not the leader in any office category originally, or for many years. The first
personal computers in business were the CP/M-based machines of the
1970s. Top-selling programs were WordStar, VisiCalc, and dBASE II, offer-
ing word processing, spreadsheet, and database functions, respectively. On
MS-DOS, WordStar and VisiCalc were replaced by WordPerfect and Lotus
1-2-3, respectively. They were better products.

Microsoft’s products, Word and Multiplan, were mediocre sellers.
Microsoft products did better on the Apple. With the introduction of Win-
dows 3.1, the Microsoft products (now Excel, Word, and the purchased
PowerPoint) proved technically superior and pulled into the lead. Office
rose to its high share on the basis of steadily improving performance and
falling prices over a period of years, from the mid-1980s to the mid-1990s.

So the standard office programs have changed a couple of times in the
past. When there were clear technical differences, new programs gained
dominance. These changes have been very painful, in use and in file for-
mats, even inside Microsoft Office. Spreadsheet moves from VisiCalc to
Lotus 1-2-3 to Excel involved reimplementation of most of the program-
ming. The move from Microsoft Office 95 to Office 97 replaced all the
macro languages (WordBASIC, Excel VBA, AccessBASIC) with VBA 5 and
changed all the file storage formats, as had the previous move from Office
4.2 to Office 95. But the products had more room for improvement then,
and many of the early users were more technology-oriented early adopters,
often single-product users. Expectations for support were lower, and there
was a base of new users to spread to. It is going to be more difficult today to
find a large group of office suite users with any desire to switch products.

There Are Other Formats Now

The leading format for exchanging precisely formatted documents is not
Word but Adobe Portable Document Format (PDF). PDF retains all for-
matting so it can perfectly match the look of paper documents. PDF read-
ers, such as Acrobat Reader, are widely available and are free.

The leading format for exchanging presentations (persuasive material
presented on computer screens) is HTML, with Acrobat again or Flash if
certain precise effects are desired. PowerPoint and its competitors originally

8.4 The Office Suite 187

Chapter 8

date back to a time before the Web, when presentations were done with
slides accompanied by paper handouts.

In contrast, I do not believe there is a good alternative to the spread-
sheet, and so there is no effective competition to the Excel .xls format.
XML is good for data representation, but interesting spreadsheets are much
more than the data they contain.

If the need is not the precision of Acrobat or the reach of the Web, but
the exchange of editable information, then XML formats hold the most
promise, as everyone recognizes, and those formats need to be public and
open to all to access.

It Is Hard for Microsoft to Improve Office

One problem faced by Office today is the difficulty of making any useful
improvement. It is not that Microsoft does not innovate, but users regularly
report that they don’t use many features of the product, and are happy with
the ones they do use. Microsoft considers its biggest competitor to be its
own installed base; people don’t upgrade because they are satisfied. This is
perhaps not surprising, since products originally aimed at professional writ-
ers, accountants, and presenters are now sold to a much less demanding
audience, who don’t need the features. One survey found that half of Excel
users did nothing but manage data lists, so Microsoft added the “autofill”
feature to simplify this task. It is as if a camera user had a professional SLR
with a full kit of lenses but wanted an autofocus point-and-shoot. Office is
open to replacement by a less expensive competitor and Microsoft cannot
offer functional improvement as a solution to this.

The direction Microsoft has taken includes innovation—offering new
and extended features such as SmartTags, new wizards, new XML formats,
and so on. Some of this is a genuine attempt to improve the product. But
most innovation is an attempt to increase:

� Reliance on proprietary features that are specific to Microsoft Office

� Related sales by tying Office use more closely with other Microsoft
products such as Exchange and Sharepoint Servers

Some of the innovation is an attempt to encourage custom develop-
ment, which will lock users into the macro and form languages or propri-
etary XML features, making it more difficult to replace Office later. But the
largest move strategically is to attempt to tie in Office with other Microsoft

188 8.4 The Office Suite

products in order to increase sales of those products. That is also why Office
is sold as a suite. Because people pass editable documents around networks
to share them, they rely on the format being interchangeable. Microsoft
Office formats are unpublished and have been changed several times, so it
was not easy to interoperate with Office programs.

Microsoft will lower effective prices when it needs to, but will do it qui-
etly. It is reluctant to publicize that prices may be coming down, partly
because many users have signed long-term license deals and it is attempting
to sign more. Recently, Microsoft began selling a low-priced “Student and
Teacher” edition. It can also choose to make changes to international pric-
ing, volume discounts, or tighten or loosen licensing and upgrade restric-
tions. One benefit all users of office suites may see from increased
competition will be a lowering of prices for all products, including
Microsoft Office.

Problems with Licensing

Concurrent licensing is a scheme where use is tracked and the organization
pays for use, generally for the “high-water mark” of use. The idea is theoret-
ically attractive to a customer organization; after all, of a few thousand
Excel users, how many are actually using it at any one time, particularly if
you make readers available? It is very unattractive to the selling company. As
the cost of a concurrent license is pushed higher, some users balk at pur-
chases, since the price seems excessive, although even at 10 or 50 times, it
still brings less revenue to the vendor than licensing everyone. The informa-
tion on use that is essential to a concurrent scheme provides feedback that
can be used to lower use further—for instance, by spreading out a period of
peak use. But that issue cuts through to the problem at the heart of
Microsoft Office. Most people don’t use most of it.

8.4.3 Comparison of Microsoft Office to OpenOffice

Bundling

OpenOffice does not include an email client like Outlook, but most peo-
ple will use Evolution, which is powerful, similar to Outlook, integrates
well with OpenOffice, and is open source. Similarly, OpenOffice does not
include a database program, but most people will consider MySQL if they
need a SQL database program. MySQL is more powerful and scalable as a
database than Access, but has no equivalent integrated front end. Possible
front ends include Mergeant, the Gnome database front end, OpenOffice,
and database tools such as MySQL administrator and Quest. Star Office

8.4 The Office Suite 189

Chapter 8

includes a database. OpenOffice does include a drawing program, but for
most purposes I would recommend the more powerful GIMP instead.

Integration

OpenOffice can connect to databases using the access methods ADO,
JDBC, or ODBC. It can for instance connect to Access using ADO,
MySQL using JDBC, and SQL Server using ODBC.

OpenOffice formats are XML based and published, so integration with
other systems is simpler than for Microsoft Office. It is not necessary with
OpenOffice to buy more expensive editions to manage XML formatting.
There is a software development kit for extending OpenOffice using Java.

Formats

There are some serious problems with using the Microsoft office formats.
They are proprietary, subject to change, and not documented. It is quite
difficult for third parties to access them, although some good programs are
available. Using these formats in correspondence, for instance, is implicitly
requiring others to acquire the Office programs when they may not own
them or need them.

OpenOffice uses a zipped set of XML files. In practical use, the Open-
Office format is generally no more than half the size of the MS Office files
(unless bit maps or other uncompressible attachments dominate the size).
The OpenOffice format is also simple to read using standard tools, because
the XML format is published.

It has often been pointed out that Microsoft Office documents keep ear-
lier versions of documents and author information history in the file in
ways their owners do not expect. Authors have been caught by data discov-
ered in their Microsoft Office files that they did not know was there. New
digital rights formats in Microsoft Office 2003 are likely to cause more
problems in accessing data from older or less expensive versions of Office.

Microsoft Office cannot read OpenOffice formats at all, while
OpenOffice reads Microsoft formats quite well. OpenOffice can create
PDF files directly, while Microsoft Office has to use a third-party tool.

8.4.4 Migration from Microsoft Office to OpenOffice

The Microsoft installed base is Office 97 and Office 2000. There is very
little Office XP or Office 2003 yet. This immediately highlights the main
problem with Office migration today, which is that nobody wants to do it.

190 8.4 The Office Suite

Microsoft is having difficulty achieving upgrades, even though it now
makes these very easy and attractive. People will not change without a rea-
son, which is usually significant improvement. It is extremely difficult to
deliver significant improvement in office suites as perceived by the users.
Microsoft has trouble moving Office 97 users to a new version because
they are fairly satisfied with what they have. They are not prepared to learn
and adopt the new features. The problem with changing for cost saving is
that the people who have to change don’t recover the saving, so they are
not motivated.

If integration of Access or Outlook with other office products is regarded
as particularly important, migration to open source is probably not practical.
There are many small applications included with Microsoft Office, such as
Chart, Query, and so on. Most of these have some match in open source;
Math and Draw are included in OpenOffice. But again, if these are regarded
as particularly important, migration is probably not practical.

Importing/Exporting between MS Office and OpenOffice

First off, Microsoft Office cannot read OpenOffice files at all. Any Open-
Office files must be converted to Microsoft formats in OpenOffice.
OpenOffice-specific features will be lost in these formats.

OpenOffice is very good at reading Microsoft Office formats, but not
perfect. There are several formats to consider, such as Office 95, 97, XP
(2002), or 2003. Microsoft Office since Office 97 uses an OLE format of
structured storage, typically containing several “streams” of information.
Office 97, 2000, and XP use the same formats (for these three programs).
The earlier Office versions, 4.2 and 95, used different incompatible for-
mats, but are unlikely to be met in corporate environments today, partly for
that reason. Every version has a different macro language—for example,
WordBASIC, VBA 5, VBA 6, and VBA 6.3.

OpenOffice can read and write Office documents and templates in the
97/2000/XP format. Last year, I translated all the documents I had in my
possession, which had been developed over several years, from Microsoft
Office into OpenOffice as a one-time operation. There were a lot of these
documents, but I was able to convert them in a batch process. There were
no problems in Word or Excel, by my criterion, which was no loss of data. I
did relink attached documents, and it was necessary to do some minor for-
matting of presentations and some Word documents. Font size differences
and some line and spacing had pushed a few words off their pages.

8.4 The Office Suite 191

Chapter 8

But there were some reasons for this success. I already knew that the
documents worked in different versions of Office, including the limited
Pocket PC version. While the spreadsheets used many formulas and multi-
ple worksheets and simple charts, I had never used macros (VBA) or
forms. The documents I used had no pivot tables. The Word documents
were large and used tables, styles, headers, and tables of contents, but did
not use them in especially complex ways and did not use many other pop-
ular features. Again, there were no macros or forms. I did not use multime-
dia in PowerPoint.

8.4.5 Lock-in and Complexity

Not all organizations will be able to migrate away from Office now. It
depends on the way they use it. Users will be slower to change if they are
locked in, because they use Microsoft Office features that do not migrate.
How seriously your organization is locked in needs to be evaluated for each
group of users in the organization. It is a function of:

� Advanced or professional users authoring documents

� Use of technical features (macros, shared components, etc.)

� The overall pattern of collaboration over documents

Table 8.2 lists some features in Microsoft Office that can cause migra-
tion issues.

Macros cannot work because they address the Microsoft Office object
model and are written in VBA. OpenOffice has macros but a different lan-
guage and object model. All macros must be translated by hand if needed.
The macro information is retained in the document so it can be used again
in MS Office in a pass-through situation.

Documents will change in many small ways during conversion, and
need to be fixed up. Document pagination will almost certainly differ.
Fonts may differ and character spacing is calculated in a different manner.
Fonts are a particular problem to be aware of. Linux systems often have
fonts different from those in Windows, and OpenOffice seems to handle
some font sizing a little differently, so pagination may vary. Tables and mul-
ticolumn formatting may differ, and while data is not lost, it may disappear
off the page and fail to print. Documents that are not simple and contain
many of these issues will need to be hand-converted. If there are many of
these, a migration will be very difficult.

192 8.4 The Office Suite

Whether you can migrate from Office depends greatly on whether your
users have developed custom programming that has dependencies on Office.
If you have users who program extensively in VBA, developing custom forms,
you will find moving to another product expensive or even impossible.

If some of your office suite users are professional creators of documents
as opposed to primarily consumers, they will be unwilling to switch to a
product that is in any way inferior, or even different: It is just too impor-
tant to them. If there is a shared library of common documents, it is
harder. The last hold-outs against Microsoft Office, for example, were legal
offices, because they had custom libraries of WordPerfect documents. In
that situation, more sophisticated features get developed by skilled authors
and then used by others, which locks the organization into the implemen-
tation of those features.

These sophisticated users could be a single department, such as financial
analysts using Excel or legal secretaries using word processing macros. In
some situations, those groups can be left alone and the rest of the company
migrated. This works, depending on the pattern of collaboration. If you are
currently using Office for collaborative document production with other
groups, in or out of the organization, that are not in the open source transi-
tion, you may not have the option of migration.

Table 8.2 Office Features with Migration Issues

Feature Program

AutoShapes All programs

Macros All programs

OLE objects All programs

Revision marks Word

Tables and multicolumn formats Word

Form fields Word, Excel

Pivot charts and tables Excel

Some charts Excel

Some formulas, functions, control fields Excel

Background master PowerPoint

Grouped objects PowerPoint

8.4 The Office Suite 193

Chapter 8

One-Time Migration

If you plan a one-time migration versus continuing interoperability, you
can handle most of the problems in a reasonable way. If your intention is to
stop using Office and migrate all documents to OpenOffice, you will find
that most documents will transfer with minor format changes that will not
bother users on a one-time basis. Hundreds of documents may be trans-
ferred with a few hours clean-up work. For example, page numbering may
be slightly off, some fonts may be replaced in a way you don’t like, and
some complex references to external files may need to be checked. In this
situation you can test as many documents as you need, and also arrange for
some expertise to be available to support the migration.

Two-Way Interoperability

If you intend to continue transferring documents back and forth on a daily
basis, the hours spent “fixing up” documents will add up indefinitely and
become an impossible burden. That is why patterns of use need to be ana-
lyzed. Any plan that involves a regular exchange of complex documents
back and forth between the different office products will need to be
reviewed carefully, and preferably altered to eliminate this.

The Effect of Switching Costs

OpenOffice is a good product that meets the needs of most poeple in most
organizations for an office suite. It is good enough. Most people can install
OpenOffice and gain a system that does everything they need. However,
most organizations already have Microsoft Office in place, and that changes
everything. Unlike server products where switching is easy or even unde-
tectable, changing the desktop is a big deal.

As discussed, migration of documents is not a small task. For some very
productive people, this is going to represent months of work having to be
revisited and possibly lost. For the average person, it means some inconve-
nience without compensation. Retraining is also an issue, as OpenOffice is
similar but certainly not identical to Microsoft Office. Depending on the
organization, this can cause high costs and some dissatisfaction.

The effect of switching costs such as migration of documents and
retraining of users makes this unattractive for many organizations. Figure
8.7 shows the effect of these switching costs using the disruptive innova-
tion diagram reviewed previously. These costs can delay economic adop-
tion for years or indefinitely. If, for example, each user needs a day or two
of training, that could wipe out the saving in licensing costs. This is why
we will first see OpenOffice adopted where users have not already invested

194 8.4 The Office Suite

time in learning to use Microsoft Office and built up stores of documents
using those formats.

8.4.6 When You Don’t Need an Office Suite

Individuals and organizations that don’t need to pick a suite can look at
individual products such as the AbiWord word processor and the Gnumeric
spreadsheet as possible “best of breed” choices. The idea of an office suite
for everyone is a relatively new idea and not particularly natural. Originally,
PowerPoint was used by marketing and sales departments, and spreadsheets
were used by accounting. Many corporate writers only need an email pro-
gram. In a company that licenses thousands of copies of Office, it could be
that there are only a few hundred (or a few dozen) who create original
Word, Excel, or PowerPoint documents. Many of these use only a fraction
of the available functions.

There are free readers available for these documents. In a Windows
environment, you could use Word or Excel for creation where appropri-
ate. Finished documents would either be rendered as PDF files, or Word/
Excel viewers would be made available. So for many people, it is possible

Figure 8.7
Switching costs and

OpenOffice
adoption.

8.5 Mail and Calendar Clients 195

Chapter 8

to consider not using an Office suite at all—perhaps for most people at
most companies.

In an open source environment, you could make OpenOffice your stan-
dard suite but perhaps an elective rather than part of your standard install.
Finished documents would be rendered as PDF files and spreadsheet data as
CSV files.

A real-world example of a successful system that is generally used effec-
tively without an office suite is the Apple Mac. The Mac as sold includes
TextEdit (which can read/write Word documents), AppleWorks (which can
read/write Excel documents), and Mail/iCal/Address Book, which work
together, similar to Outlook or Evolution, and serve as a client to Microsoft
Exchange. Keynote, which can read and write PowerPoint documents, is
sold separately. Apple applications are well integrated and consistent with-
out being a “suite.” Apple users can choose to buy Microsoft Office, or can
install OpenOffice, but most do neither.

Before GUIs, horizontal integration (which is really look and feel, such
as Word to Excel) was not seen as a necessity. Most users selected “best of
breed” applications such as Lotus 1-2-3 and WordPerfect. Horizontal inte-
gration is surely not needed if the GUI toolkit and Windows management
style are consistent, so that functions such as cut and paste work correctly.
That is in fact what the GUI provides and why we have style guides. If total
consistency needed applications from the same vendor, there could only be
one vendor for all applications.

8.5 Mail and Calendar Clients

There are several good email open source clients available. This includes
browsers that also do mail, such as Mozilla and Opera, and dedicated email
clients, such as Eudora.

A big question with mail programs is the extent to which you want to
replicate Outlook. If you want the Outlook features, including the bun-
dling of calendar, email, and small-scale personal databases, you will proba-
bly want to use Evolution, which matches the look of Outlook very well.
Evolution includes mail, calendar, task list, and contacts and offers screens
that combine all these. You can use Evolution as a front end to Microsoft
Exchange, using a connector available (for a fee) from Novell/Ximian, or
use Evolution with other mail servers that support POP, IMAP, or MAPI.

Figure 8.8 has a screenshot of Evolution with several open panes. Clock-
wise from top left, it shows the start panel, mail summary, an open mail

196 8.5 Mail and Calendar Clients

item, and the calendar pane. The appearance is customizable and can cer-
tainly be made very similar to Outlook if you wish.

Another option is to use a pure browser-based email, options to support
this include Outlook Web Access, the open source program Horde, or ser-
vices such as Hotmail and Yahoo!.

A big reason why many organizations move away from Outlook is to
control problems with attachments. Mail programs that do not allow exe-
cutable attachments will not automatically run viruses.

8.5.1 Professional Applications

This includes applications for project management, drawing and image
management, and other professional work. In some ways the situation is
similar to that with Office. There are good open source programs avail-
able, but they may not match feature for feature, and migration raises
problems of data formats and user training. An application inventory is
going to be necessary.

Figure 8.8
Evolution.

8.5 Mail and Calendar Clients 197

Chapter 8

8.5.2 Drawing and Image Management

The open source programs GIMP, Dia, and Sodipodi compare favorably for
general users with PhotoShop, Visio, and Illustrator. As with Office, the
most demanding professional users will not switch because of their time
invested and high-end neeeds. Most people will find these programs more
than sufficient. GIMP is available on Windows also and is a very good
image program for professional and home use on that platform as well as
Linux. Dia is similar to Microsoft Visio. It does not have a comparable array
of stencils available, but it is good enough immediately for simple work, and
for custom work the format for creating shapes is open and reasonably easy
to use. Most of the diagrams in this book are created with Dia.

Figures 8.9 and 8.10 are screenshots of GIMP (GNU Image Manipula-
tion Program) and Dia. These two programs make extensive use of floating
panels. The image is one panel, and the various tools are in separate floating
windows, which can be moved or closed. This style, which originated with
GIMP, is unusual when first met but very powerful. Fortunately, GIMP has
an excellent tutorial available.

Figure 8.9
GIMP.

198 8.6 Personal Software

8.6 Personal Software

This area is one where Linux is catching up quickly. I still think that today
if you simply want to choose the best machine for performing multimedia
functions or games, no other considerations, you should look at the Macin-
tosh or Windows XP. Mac OS X is the leader in graphical user interface and
multimedia tools, particularly tools that are integrated and easy to use,
while Windows XP is the leader in PC gaming, with far more games avail-
able and specialized hardware, which is easy to install and support. The
Sony Playstation is another good gaming choice. Linux cannot match the
PC or Playstation for variety and currency of games.

That said, many of us choose a machine primarily for work or commu-
nications and then play games or media as secondary activities, so we want
to know that these functions are possible. If you need to play a few games
or watch a movie when you take a break while traveling, you’ll be fine with
the choices available on Linux. There are several instant messaging pro-
grams. GAIM, which is the best known, can support AIM, Yahoo!, MSN,
and ICQ. There are many media players. Xine can play Windows Media
formats. There is software for making movies and burning CDs, such as

Figure 8.10
Dia.

8.6 Personal Software 199

Chapter 8

GnomeToaster, and DVDs. The Ogg Vorbis, Mplayer, and Xmms media
players are powerful and support several formats.

Figure 8.11 is a screenshot of some personal applications, including a
media player, GAIM instant messaging, and two games.

There are several programs to connect to Palm-based PDAs and allow
synchronization, such as Gnome-pilot. Another option is to consider a
Linux PDA, such as the Sharp Zaurus. This runs a full standard Linux
system, has a Qtopia-based GUI, connects to the PC using Samba, and
includes emulation software that can read and write Office formats. Fig-
ure 8.12 shows a Sharp Zaurus C700, close to actual size, open to its
main menu. The tiny Zaurus C700/800 series systems measure 4" × 3"
when closed.

8.6.1 Running Windows Applications

Sometimes we have to run an application that is not available on Linux.
Most needs can be met in a general way, but there are quite often particular
programs that are not available. If it is necessary to run a particular program
that is not available on Linux, this can be met with a variety of techniques.
First, we can check against a Web site such as the table of Windows equiva-
lents at http://linuxshop.ru/linuxbegin/win-lin-soft-en/table.shtml to see if

Figure 8.11
Some personal

applications.

200 8.6 Personal Software

there is a Linux equivalent. If there is not, and we cannot match it or
migrate it, we can host Windows programs on Linux using the emulation
program Wine. This program is also packaged with additional material as
CrossoverOffice to run Microsoft Office. Using Conexant drivers, we can
access hardware that requires Windows drivers. With VMware, we can even
run a complete Windows operating system on Linux. Of course, these
options are not inexpensive, since they involve the emulator and the
licensed Windows programs.

Another choice to consider in some cases is a “thin client” running a
browser combined with a portal that offers remote programs, either Web
based or using Citrix. The experience is not a complete match for desktop
software, but this can reduce licensing costs and make desktops easier to
manage operationally.

Finally, some people will run “dual boot” systems so they can run an
essential Windows program when they need it.

Figure 8.12
Sharp Zaurus, a
very small Linux

computer.

8.7 Summary 201

Chapter 8

8.7 Summary

You can run Linux on the desktop or Windows or a mix (Windows, Linux,
Mac) and still use open source desktop software.

If you choose to run Linux, you should be able to deploy a powerful and
manageable desktop to new users. Hardware will need to be tested, since
not all components in PCs that support Windows will support Linux.
Notebook computers need particular care. Software needs have to be evalu-
ated and planned.

Users of mail, the Web, and dedicated applications can be very satisfied
with new desktops. The most difficult thing to do is to migrate Office and
Windows users. This is being done successfully, and the barriers are mostly
not technical. There is no motivation among the users to switch, and while
the programs are functionally equivalent they are not identical in use. The
extra work that users will have to do to get over the differences will not be
recognized or rewarded.

Users who could not afford programs such as Office, Visio, and Photo-
Shop should be delighted with OpenOffice, Dia, and GIMP. Many profes-
sionals will find them suitable also. In some areas, such as video editing and
high-end publishing, where UNIX programs are being brought to Linux,
the professional programs are better on Linux. In other cases, they are not
competitive with Windows. This has to be evaluated.

There is a variety of personal software available that will meet many
needs, but of course there are some areas where Windows offers more
choices or better hardware support.

This page intentionally left blank

203

9

How Open Source Software Is Developed

The methods of development used for open source software are often dis-
cussed. From the famous essay by Eric Raymond, “The Cathedral and the
Bazaar,” to recent press articles, anecdotes suggest that there is something
new, different, and better about the open source model. But usually we
have no consistent picture of how open source is generally developed or of
the alternative development models to which it should be compared.

9.1 Methodology

As far as open source is concerned, there appear to be several models that
are in use. These include:

�

An individual working largely alone

�

A “bazaar,” or large loosely knit dispersed group

�

A conventional collocated product team

Commonly, products transition between these structures over time, and
they also merge these ideas. Most often, a product starts with an individual
or a product team and later moves toward the bazaar, often retaining strong
central ownership.

Some open source software has been built on the bazaar model, where a
loosely structured, large network of people with little formal organization
cooperates. To be clear, there has to be a seed product first, that can be run,
distributed, and tested to get the process going, and that is generally cre-
ated by an individual. Also, all accounts suggest that Apache, Linux, and
BSD were all tightly structured around a small central leadership team.
The first example of the bazaar could be the Berkeley effort to get AT&T

204

9.1

Methodology

files out of BSD, which was led by Eric Bostic in 1990. Others could
include Linux, starting from around 1992 and Apache, starting around
1995, led by Brian Behrendorf.

Some open source software is built by tightly structured teams that are
modeled in a way similar to conventional software development organiza-
tions. Examples include Gnome and MySQL. Some open source software
was built by conventional software companies, which have then converted
the product to open source. Examples include OpenOffice, Mozilla,
Eclipse, and Firebird SQL. These organizations have changed more or less
gradually but have retained elements of their original structure.

Some open source was built by individuals working alone, but is now
maintained by a loose team. Examples, which date back to the earliest
open source still in use, include Sendmail, GNU Emacs and C, Samba,
and Perl. Since the open source model requires some code that works and
some belief that a solution has potential, it generally begins this way.
Apache and BSD started from an existing code base rather than an individ-
ual’s work, but Linux and GNU clearly began with an individual, as most
new ideas do.

9.1.1 Open Source Compared with Closed Code

If we compare successful open source development to the successful develop-
ment of similar closed code software packages—for example, at Microsoft—
the similarities appear to be larger than the differences. There are some rea-
sons this is not surprising. Estimates on the number of open source develop-
ers vary, but cluster around a million. Most of them work some (usually
most) of the time in closed code development. So we are talking about the
same people.

Perhaps this is partly because what they have in common is success. For
example, great open source and great open source projects usually have
great developers in charge, and other projects generally do not. Certainly in
closed code software companies, these three methods (giant group, product
team, individual) all have their counterparts.

In general, individuals stay longer with open source projects, often
transitioning to some sort of consulting or honerary role but not leaving
completely. Individuals do not seem to last as long in closed code software,
tending to move on to other projects. Anders Heljberg has done Delphi, C#,
and moved on again, while Guido Van Rossum is still working on Python
(among other things) and Larry Wall on Perl. Dave Cutler left the Windows

9.1

Methodology 205

Chapter 9

NT team before Linus left his operating system. From the name alone,
surely Linux is more individualistic than other operating systems, not less.

Comparing similar product development efforts such as Linux to Win-
dows NT, MySQL to SQL Server, PHP to ASP, or Python to Delphi/C# we
usually see similar project structures, time frames, and leadership. Operating
system development, for example, has always been a massive effort, and an
evolutionary one, that has drawn in large teams for testing and related devel-
opment. This was true of OS/2 and Windows NT, and of MVS and VMS
before that, and is true of Linux. Database and development tool projects are
tighter and generally led by one or a few. SQL Server had a small core team.
MySQL database code is checked in by one of two individuals.

There is a question sometimes raised of open source “following tail
lights”—that is, copying existing designs rather than creating new ideas.
This does not seem historically accurate. Most early programs, some of
which were highly innovative, were open source. Open source programs
with no obvious precursor include Apache, Sendmail, BIND, and the BSD
networking code. These have been copied in closed code but not improved.

This point does apply to some open source programs, in particular
GNU, where it was an explicit goal, and the later BSD file replacement
work, but not the earlier code including networking. It could also be
applied up to a point to Linux, following UNIX and Windows, and Open-
Office, following Microsoft Office. However, as these products catch up
they begin to branch out in their own directions. Linux window managers
offer features such as tabbed browsing, multiple desktops, and extensive UI
customization that are not available in Microsoft products. OpenOffice cre-
ates PDF and Flash files directly and has a more powerful and flexible devel-
opment kit than Microsoft Office.

Newer open source products such as Plone and Twisted can be hard to
grasp at first, because they are blazing a new trail and do not have equiva-
lents on other platforms. The database product MySQL has clearly made its
own choices in the past, emphasizing performance instead of following fea-
tures in the standard, and has often been criticized for that.

The “following tail lights” accusation is also commonly leveled at
Microsoft and others and probably can be applied to most commercial
activity, since complex working systems always have simpler research prede-
cessors. It certainly applies equally to many closed code products. Examples
include Windows NT following VAX/VMS and UNIX, the Windows user
interface following the Mac and Xerox Star, and Microsoft Excel and Word

206

9.1

Methodology

following Lotus 1-2-3 and WordPerfect, which themselves followed Visi-
Calc and WordStar.

To refer ahead to a methodology framework, the earlier vision and plan-
ning phases are not exposed in open source, which only speaks to the devel-
opment and testing activity. This resolves much of the tension. Vision and
planning are done by an individual or small team, development and testing
by a larger one. Also, much open source software is infrastructure, and in
infrastructure software (and all mature software) most changes are defined
by bug lists, not ideas for new use.

It appears that every successful open source project has a very modular
structure. This supports parallel development, that is, many people can
work on separate parts at the same time because they are separate. Online
support for change roll in (and back) and repeated automatic testing is
also needed.

Open code follows an incremental model, in which small changes accu-
mulate over time, but so does Microsoft much of the time. If you compare
the Microsoft position on daily builds with open source, it is very similar. Of
course, in all such systems there must sometimes be architectural breaks, and
they are very difficult and are often the cause of major forks. Such a break
occurred between OS/2 and Windows leading to the Microsoft/IBM split,
and between Windows 95 and Windows NT as Microsoft ran a ten-year
plan to get rid of the old DOS-based 16-bit architecture. There is a similar
architectural shift going on in the Apache world between 1.3 and 2, and in
Perl as it moves to its new Parrot virtual machine.

Successful closed code companies are often located in one or a few
actual places. A major strength of Microsoft is its single location in the
state of Washington, although in recent years other labs, including those in
Canada, Israel, the United Kingdom, and India, have sprung up. In the
1990s, Microsoft was able to reorganize massively and quickly several
times on its Redmond campus without layoffs or geographic moves. Geo-
graphic clusters, such as those around northern California and Boston,
clearly matter to closed code and open source equally and are in fact the
same places in each case. Open code developers are often more distributed
than that, but there are some that are collocated: Red Hat, Gnome, and
Mozilla, for example. The importance of geography is also indicated when
European developers such as Guido Van Rossum and Linus Torvalds are
living in the United States.

Much of open source is released and tested using a large network of vol-
unteers. This is a very effective method, but it is not unique to open source;

9.1

Methodology 207

Chapter 9

Microsoft has done this for years. What is unique to open source is that the
large pool can see the code, a method known as “with enough eyeballs.”
Elsewhere I have argued other advantages to this approach, but it is not
clear that this is essential to user testing. Eric Raymond argues that software
that requires high reliability should be open source. However, Windows
2000 is a very successful and fairly reliable product despite the belief of
many in the open source community at one time (including Raymond) that
it would never get done.

9.1.2 Open Source Compared with
Corporate Development

Comparing open source development to corporate development, we do see
much bigger variations. First, both open source and closed code software
developers pay a very high price for failure; they disappear as organizations
and are not actually being considered here. Corporate developers can fail
and live again, and analysis shows that most corporate systems do fail on
measures of time, cost, and quality. So we are really measuring successful
software products against all corporate practices, mostly not successful.

Second, corporate development is not usually maintained over the same
time frames and with the same levels of staffing and consistency as open
source. Where it is, as with the reservation system Sabre or with some finan-
cial systems, it often approaches the software product in style and some-
times even in formal structure.

Third, while the software house toolkit is similar to open source (mostly
C/C++ with other languages used for peripheral development and front-
end scripting), the corporate developer favors proprietary toolkits that have
shifted over time, currently usually Java based, and as a result has no sub-
stantial consistent track record of tools or practices.

9.1.3 Open Source Development Tools

The open source community is conservative and frugal in tool use. Open
source tools include CVS; Emacs and other text editors; GNU Make,
debugger, and other tools; and Jakarta ANT. All these tools have a long tra-
dition and are very effective. They have crude but robust features and are
often ugly when first approached, but are well understood in the commu-
nity. In other words, they are like Ken Olsen’s old remark about UNIX as
the “Russian truck.”

208

9.1

Methodology

9.1.4 Managing People

Some articles, particularly introductory ones, make open source develop-
ment seem like altruism, or communism, or something else unrealistic
and unlikely to survive, but we should dismiss this. History shows that
this approach to software development is about as old as software itself
and grows out of earlier models for academic and scientific work that are
much older.

We find very similar motivations in open source as anywhere else when
we look in detail. One obvious similarity is to the research scientist. Many
scientists don’t get rich (although a few do), but they make a living and see
a clear career and skill progression. They often don’t care what kind of car
they drive anyway. They really enjoy the work they do, both for its results
and its intrinsic nature. And they enjoy publication and recognition, such
as the occasional conference where they get together with their peers. As
with the research scientist, the software engineer in a commercial world
often has a culture conflict with the salespeople and others in the corporate
end of the business.

Motivation in the software community includes:

�

Playing with technologies and experiencing the sheer fun of writing
code

�

Getting something done that an individual needs, such as inventing
the Perl language, or a peer-to-peer music sharing system

�

Earning money, or enhancing career and skill development (which is
deferred money)

�

Ego gratification, such as publishing, leadership, or belonging to a
community and helping others

Managing people in closed source software development has always
involved pulling all of these levers. Technology developers are not as directly
motivated by money as salespeople. In open source product development,
the money motivation is probably not as high as in some other places. The
ego factor seems to be higher in many cases and, of course, the ability to
select what to work on. This is an age-old story of handling creative people.

Although the developers of open source products need to be managed
differently in some ways, the people who are implementing and managing

9.2

Languages Used to Develop Open Source Products 209

Chapter 9

open source products in organizations should be little different from the
people who are doing similar work with closed code. They are paid in a
similar way; in fact, they are us. The place where it is necessary to deal with
a different kind of person is when negotiating with open source product
developers.

9.2 Languages Used to Develop Open
Source Products

It is interesting to analyze the languages used to create open source soft-
ware. I did this in three ways:

�

Analysis of data on language on SourceForge (http://sourceforge.net),
which is by far the largest repository for open source projects

�

Review of the best-known open source programs, such as Apache

�

Anecdotal review of developers at open source conferences and user
groups

SourceForge contains all the best-known projects, and there is no reason
I know of to think that the projects on it are not typical. It is very easy to
query this database for statistics by using Freshmeat. Figure 9.1 shows open

Figure 9.1

Open source
language use.

210

9.2

Languages Used to Develop Open Source Products

source language use, based on the data in Table 9.1, which contains analysis
that was done on Freshmeat in November 2003 and January 2004.

9.2.1 C and C++

Half of the projects on Freshmeat are C or C++, with the rest split fairly
evenly among the higher-level languages: Perl, Java, PHP, and Python. Most
of the successful open source products so far are written in C/C++. Table
9.2 shows the top 20 most popular Freshmeat projects and the language of
development. Out of 20, 15 are wholly C/C++; three combine C/C++ with
another language (Java, PHP, JavaScript) used for front-end scripting; one is
in PHP; one is in Perl.

Table 9.1

Open Source Language Use

Language Number of Projects

C/C++ (C 5639, C++ 2550) 8,189

Perl 2,806

Java 2,473

PHP 2,124

Python 1,238

Table 9.2

Most Popular Projects

Project Language Function

Mplayer C Movie player

Linux C/C++ Operating system kernel

cdrtools C CD burner tools

Gaim C Instant messaging

xine C Movie player

MySQL C Database

gcc C Compilers

TightVNC C/C++, Java Remote desktop

PHP C, PHP High-level language

Apache C Web server

9.2

Languages Used to Develop Open Source Products 211

Chapter 9

To put it simply, C/C++ is the language of choice of the open source
community. Actually, it is mostly C.

Table 9.3 is an attempt to throw the net wider in an unscientific and
somewhat arbitrary attempt to find a representative sample of programs
written in languages other than C/C++. It shows that there are many useful
programs written in other languages, but these are not on the scale of popu-
larity or use of the top 20.

PHP, Perl, Java, and Python are the language choices of the open source
community for projects other than C/C++.

phpMyAdmin PHP Database administration

Nmap C Network security

zlib C Compression library

GKrellM C System monitor

Webmin Perl Web administration

Mozilla C++, JavaScript Browser

Samba C/C++ File/print sharing

OpenSSL C/C++ Cryptography

libjpeg C Graphics library

XMMS C Multimedia player

Table 9.3

Projects Not in C/C++

Project Function Language Comment

Movable Type Weblog publish-
ing

Perl OSDir.com choice

Webmin Web administra-
tion

Perl Heavily used program

SpamAssassin Mail filtering Perl Heavily used, popular pro-
gram, OSDir.com choice

Slash Content manage-
ment/feedback

Perl Runs the heavily used Slash-
dot site

Table 9.2

Most Popular Projects (continued)

Project Language Function

212

9.2

Languages Used to Develop Open Source Products

The Gallery Image manage-
ment

PHP In Freshmeat top-rated 20

Moodle Learning man-
agement

PHP In Freshmeat top-rated 20

Nova Gaming frame-
work

PHP In Freshmeat top-rated 20

PHP-Nuke Content manage-
ment portal

PHP Popular program

b2 Weblogging soft-
ware

PHP Popular program

Exchange4-
Linux

Exchange
replacement

Python —

BitTorrent Peer-to-peer data
delivery

Python OSDir.com choice, 10 million
users

Mailman Mailing list man-
agement

Python Linux Magazine and Source-
Forge projects of the month

Chandler Personal infor-
mation manager

Python OSAF

Plone
(includes
CMF, Zope)

Content manage-
ment

Python O’Reilly open source winner

Anaconda Red Hat installer Python Very visible project seen by
every Red Hat user

Twisted Network pro-
gramming frame-
work

Python Innovative project with broad
potential

Lucene Text search
engine

Java From Jakarta project

Compiere Enterprise
requirements and
customer rela-
tionship software

Java Rare example of open source
enterprise application software

Eclipse Integrated devel-
opment environ-
ment

Java Massive product, originally
IBM internal

Table 9.3

Projects Not in C/C++ (continued)

Project Function Language Comment

9.2

Languages Used to Develop Open Source Products 213

Chapter 9

9.2.2 Perl

Perl has an enthusiastic community and a well-respected leader, Larry Wall.
It is a practical, portable language. A major asset of Perl is its database of
reusable code, CPAN. Using CPAN, it is possible for Perl users to quickly
find solutions to problems that are new to them but have been met and
solved by others. Other languages have built similar systems modeled on
CPAN, but perhaps not so effectively.

Referring to Table 9.1, we see that Perl is somewhat more widely used
than PHP or Python, perhaps because it is the oldest of the three. Perl is
best known for scripting, such as by system administrators, and also as a
Web language (e.g., Apache mod_perl). Perl is a good language for sophisti-
cated scripting. IT is criticized for being hard to understand and is probably
a better choice for individuals than teams.

Perl applications include several system administration tools, including
Webmin, the very popular SpamAssassin tool, and the Movable Type
Weblog tool. Perl code runs the high-volume Slashdot and Kuro5hin con-
tent sites.

9.2.3 PHP

PHP is a Web development language similar to Active Server Pages and Java
Server Pages. PHP originally stood for Personal Home Page; it was more
like Front Page originally but has evolved into an object-oriented language.

PHP is primarily a Web language, but it can be used for scripting, and
there is a version of PHP for GUI development called PHP-GTK.

PHP is the newest of the languages in Table 9.1, with a young commu-
nity that is growing fast (about 50 percent annually), whereas Perl and
Python are stable or shrinking. Because of this, it seems likely that PHP will
be the #2 language in the open source community, overtaking Perl and Java,
within a year or two. It is already the leading language for Web develop-
ment (most of which is not open source).

Cocoon/
Lenya

Content manage-
ment system

Java Apache project

Table 9.3

Projects Not in C/C++ (continued)

Project Function Language Comment

214

9.2

Languages Used to Develop Open Source Products

PHP is powerful, an easy language to learn, and there are several well-
rated open source applications written in it. PHP appears to be the leading
language for developing Web applications.

9.2.4 Python

Python is an object-oriented language that is easy to learn and use. It has
extensive libraries available to allow development of pretty much any kind
of application, including games, OpenGL graphics, cross-platform GUI,
and network programming. As a general-purpose language Python is pow-
erful, balanced, and well organized.

One unusual feature of Python is the version called Jython. Although
Python is usually implemented in C, there is a version written all in Java
called Jython. Jython has the same syntax as Python, so that Jython 2.2 is
equivalent to Python 2.2. It can call equivalents of most Python classes but
is additionally able to call any Java classes. Jython is a good scripting tool
for Java applications and an excellent integration tool between Java and
other systems.

Python is used to develop complex client applications such as OSAF’s
Chandler and Red Hat’s Anaconda, as well as server-based applications such
as Mailman and BitTorrent.

9.2.5 Java

 Java is a popular language, but is used less for open source development
than you might expect. It seems caught in the middle between C, which is
the best performer, and scripting languages, which are more productive.
Java is less of a general-purpose scripting language with built-in functions
for common tasks like Perl or Python, but it does have a strong available
set of classes.

The most important exception, Eclipse, is a system that single-handedly
demonstrates the feasibility of developing a successful large system in Java.
It is not, however, a typical open source project but began as an internal
IBM corporate effort that was “open sourced” after development. Also, as a
desktop system, it demonstrates capacity for complexity and response time
but not high throughput.

There may be more Java projects in widespread use over time, particu-
larly in complex higher-level application areas. Java is still new, and the
table of big projects mostly contains code started ten years ago that could
not really be in Java. However, new projects such as Gaim and Xine are still

9.3

Cross-Platform Code 215

Chapter 9

written in C, and the primary uses of Java are as front ends to C core code,
not wholesale replacement of C. Mozilla was once planned to be in Java but
is in C++ and JavaScript for performance reasons.

The Java language itself is not an open source project. There are open
source Java implementations available, but none has much share. But many
crucial tools used with Java, such as Java Server Pages, Tomcat from the
Jakarta project, and the JBoss application server, are open source. Java is a
reasonable development tool for open source software, but not the first
choice in practice.

9.2.6 Other Languages

The next most used language after those listed in Table 9.1 is UNIX shell.
This, of course, is a good choice for simple tasks, most of which probably
don’t get loaded to SourceForge, but shell scripting does not scale well to
larger applications. Large applications are not written entirely in shell
scripts. Perl and Python were designed to be more integrated and portable
than shell.

JavaScript is most commonly used for client-side coding in browsers. It
has a unique role in this, since it is the only language supported by the two
major browsers, Microsoft Internet Explorer and Mozilla/Netscape. There
is little relationship between JavaScript and Java.

Other languages, including Ruby, Scheme, and C#, have their admirers
but are not used in significant numbers.

9.3 Cross-Platform Code

Most servers today run Windows, Linux, or another form of UNIX, and
most larger organizations have a mix of those. Those servers today are split
fairly evenly between the UNIX-like systems (including Linux) and Win-
dows. Linux is growing faster mostly at the expense of UNIX, so this will
be an even split for still some time. Windows’ share of desktop PCs is still
over 90 percent, with Linux second but still only 3 percent. However, if
clients are defined more broadly to include other small appliances, Linux
(and other systems such as Palm and the Japanese embedded system Tron)
has much more share.

Since there will be a long period where most organizations will have
Windows and Linux servers, it is not necessary for server software to run on
both systems as long as it can interoperate. Software for PCs may not need

216

9.3

Cross-Platform Code

to run on anything but Windows for most markets. So it is not necessary
for all open source software to be cross-platform.

However, in servers CIOs are very interested in “commodity comput-
ing,” which will enable them to host applications without regard to the
operating system beneath them. It will certainly be helpful if we can make
application selections without platform constraints. This ability to run soft-
ware on a variety of platforms is, other things being equal, plainly an advan-
tage in flexibility and cost. More freedom to run applications on available
servers is better. Organizations over time need to balance loads and repur-
pose systems, and this is simpler to do if you are not restricted on which
applications are deployed on which infrastructure.

On desktops, most organizations have standardized on Windows desk-
tops, but three things may change that. The Web provides a simple stan-
dard for cross-platform applications and a class of user outside the
organization whose choices cannot be controlled. Linux and the Mac are
viable alternatives for the general desktop in some markets, particularly
international and youth. And new appliances, including phones and music
players, which probably do not run Windows, begin to play an acknowl-
edged role in organizations.

There is an opportunity cost to making applications run on multiple
platforms. Microsoft, for example, states two issues: ability to focus on
functional enhancement rather than porting, and ability to optimize for the
chosen platform. This is all a matter of constrained resources, so it is true in
practice except, ironically, for the largest companies and applications.

Table 9.4

Cross-Platform Applications

Product Function
Competes
with Runs on

Apache Web server IIS Windows, Linux, UNIX, others

Oracle Database
server (cli-
ent tools)

SQL Server Windows, Linux, UNIX, others

Notes Calendar &
groupware

Exchange Windows, Linux, UNIX, Mac, oth-
ers

Opera or
Mozilla,
Netscape

Browser (cli-
ent)

Internet
Explorer

Windows, Linux, Mac, others

9.3

Cross-Platform Code 217

Chapter 9

Table 9.4 shows examples of cross-platform applications that are com-
petitive functionally and performance-wise with Windows applications
while also running on several other platforms.

Why Open Source Is Cross-Platform

Open code developers are able to develop cross-platform. The languages
that are used for open source (C++, Perl, Java, PHP, Python) are all available
on Linux, Windows, and other UNIX platforms, including the Mac. So are
key elements of the development platform: shell, database, Web server, sup-
port tools. The most awkward area is GUI tools, and this is often the reason
for otherwise surprising cross-platform limitations. There are three good
GUI tools: Qt, wxWindows, and TCL. No one is the right choice across
Linux, Mac OS X, and Windows when you consider performance, native
support, and licensing. Qt is the only one for embedded systems, but is
dual licensed and has to be purchased on Windows. wxWindows is fast and
powerful but is not native on the Mac, where it runs in X11 with an Aqua-
compatible window manager. TCL does not use native toolkits on any plat-
form and is not very powerful. See Table 9.5.

Open source developers are motivated to develop cross-platform. They
favor Linux much more than the general public but work in a mixed world.
At OSCON 2003, which contained a broad set of open source users and
developers, I observed a fairly even split among Linux, Mac, and Windows
(30-30-40). Open source developers favor Linux even more, with most hard-
core developers using Linux. But of course, in the general public, the market
most programmers address, the distribution is strongly Windows (3-3-94).

The structure of open source projects allows for cross-platform develop-
ment where there is a market. In a small closed code company, limited
resources must be deployed making economic choices, and some skill sets

Table 9.5

GUI Toolkits

Tool Linux Windows Mac OS X
Embedded

Linux Comments

Qt ++ + ++ ++ C++ native on
Mac, not Python

wxWindows ++ ++ + — Not native on
Mac (X11)

TCL + + + — Not native any-
where, slow

218

9.4

Summary

may be lacking. In open source projects, there may be a group of volunteers
prepared to develop a Mac or Windows version, or a company prepared to
sponsor it. This need not impact the resources or budget of the original
effort, or at least not much.

Open Source on Cross-Platform in Practice

Looking at open source products in actual practice shows that most of the
more popular server products are available on Linux (all distributions),
Windows, and some forms of UNIX, with a few on Linux/UNIX only—
for example, Apache, MySQL, PHP, Perl. Popular client products (media
players, instant messaging, office, mail) will mostly be Linux/Windows/
Mac but may be Linux/Mac or Linux only.

Sometimes the purpose of a project is to make functions available on
Linux that are available on Windows or the Mac, so there may not be much
point in making it cross-platform. Wine (Windows emulation) is the most
obvious example here! The purpose of the Gnome and KDE desktop
project is to improve Linux to meet and beat the Windows desktop, and
Evolution specifically is a Linux replacement for Outlook, so they are
Linux-only.

The Mac is a special case, because it is often supported only for the
newer UNIX-based systems (OS X) and with an X11 version rather than
native Mac (Carbon/Cocoa). This is simpler to do and these versions can
look quite good (the Mac X11 window manager looks like Carbon) but are
slower and require installation of the X11 software. OpenOffice, for exam-
ple, is available for Linux, Windows, and Mac. The Mac version is 1.0,
which is a level back and is not native but requires X11 installation.

There are some cases of Windows-only open source products, and even
a few VB projects: open source software written in a closed code language
for a closed code platform. It would not be unusual to develop a Perl pro-
gram to manage Windows networks that runs only on the Windows plat-
form, or a Python or Java driver to access SQL Server on Windows. At least
one open source system is written in the language MUMPS.

9.4 Summary

The methodology of successful open source software projects is not really
tremendously different from that of successful closed code software devel-
opment practices in ways that can be proved. Open source developers tend
to stay with the products longer, and the products tend to undergo

9.4

Summary 219

Chapter 9

smoother upgrade paths, presumably because they are less affected by cor-
porate shifts. The advantages of many users reviewing and contributing are
genuine, but closed code has evolved methods to get similar results.

Open source code projects do appear different from typical corporate
practices in several respects. The problem space is different, more focused
on tools and products. The language and tool choices are consistently dif-
ferent, probably because they are more geared to the problem.

The language of choice for open source development is C (including
C++). The open source community very clearly prefers C. All of the famous
open source projects are C/C++. This prevalence may be somewhat related
to the type of software; encryption, compression, and portable libraries
really have to be written in C, and other system software probably should
be. It may be partly because open source development core teams are small
and highly motivated. But the dominance continues into projects that
could be written in other ways. Projects can be structured with front ends
written in other languages, and while this is done, it is done less than possi-
ble. I think it comes down to the fact that C++ is an excellent choice for a
motivated group of developers developing products, and this describes the
environment of most successful open source software.

Application development in the open source community outside of C++
does take place. The languages chosen for successful projects most often
appear to be the scripting languages Perl, PHP, and Python. If the applica-
tion is large, the project may use a layered architecture with low-level func-
tions written in C/C++ and higher-level functions in the scripting language.
Perl, PHP, and Python all employ this architecture.

For large architected software systems, the consensus of the development
community, open source and closed code, now is C++ or Java. The closed
code development community can be separated into software companies
and large corporate IT departments.

Software companies (Microsoft, IBM, Oracle, SAP, PeopleSoft, etc.)
have mostly used C/C++ for their core products, with some use of scripting
languages. Many have now mixed in some Java front ends, and some are
attempting to write new products all in Java (or in Microsoft’s case C#), but
this transition takes a long time. Outside the open source community, we
should expect software developers to continue as they have done before:
using a mixture of C/C++ with scripting languages and Java, with Microsoft
using C#. To the extent that open source gains a larger mind-share, the
scripting languages will tilt toward LAMP.

This page intentionally left blank

221

10

Managing System Implementation

In this chapter, we will look at system deployment in the large organization
and see how the current state of the art is affected by using open source
tools and methods.

Contemporary system implementation in the organization is usually not
a matter of custom development versus package deployment, but of both. A
solution is established by assembling products and integrating them with
custom components. The process consists of product selection, customiza-
tion and integration, deployment, and then ongoing support.

To discuss the issues, we will fit the deployment effort into a framework
with models for the implementation team and process and a set of princi-
ples. Then we will review issues of migration and support.

10.1 Implementation Roles

A software development or installation team is generally a very mixed
team, regarding skill types and levels and often other factors, but it runs as
a team of peers. There may be varying talent and experience, but good
teams tend to be highly demanding of talent and work effort. Teams must
also work well with other groups in the company, which may have different
skills and motivations, and must interact externally with customers, suppli-
ers (such as software component and tool vendors), competitors (to under-
stand the market situation), and other external factors such as regulation
and funding availability.

Teams vary in size, but some components are always present. One way
to approach this is to define a set of roles. We can define six internal roles as
follows:

222

10.1

Implementation Roles

�

Customer management

�

Program management

�

Development

�

Testing

�

Communication

�

Deployment

Figure 10.1 illustrates the implementation roles. The roles are seen as
peers, although the program management role is central for coordination.

These roles can be viewed quite flexibly. In general, all of these roles will
be present on each project, but not as one person. On smaller projects, one
person may play several roles. However, there are certain roles that do not
combine well. Program management should not usually combine with cus-
tomer management, and testing should not combine with development, as
there are conflicts of interest. A possible small team is one person doing cus-
tomer management and testing, another doing development, and another
doing the other roles.

On large projects, some roles will be played by teams and there may be a
need for team leaders; we also may break large tasks into feature teams, par-

Figure 10.1

Implementation
roles.

10.1

Implementation Roles 223

Chapter 10

ticularly in development. The roles are defined in the following text, and
the part they play in each phase will be described phase by phase. The pri-
mary terms used (such as customer management) are not important. In
some open source projects, quite informal or humorous terms (such as
“benevolent dictator” and “lieutenants”) may be used.

10.1.1 Customer Management

This role is one of sales and evangelism. The customer management role
represents the customer and his or her needs to the project team, and the
project team represents its product to the customer. This is the role that
plans and predicts the market and its needs. When trade-offs are being
made, this role will usually be an advocate for more features. The success of
this role is measured by the product’s ability to create satisfied customers.

10.1.2 Program Management

The program management role manages and maintains the project plan
and schedule. It is responsible for managing activities in line with cost and
personnel plans. It maintains and updates the risk estimates. The success of
this role is measured by delivery of the product to specifications, within
constraints.

10.1.3 Development

This role designs and builds the code and tests it at the unit level. The
development role selects the tools used in development and the compo-
nents incorporated into the product. The success of this role is measured by
the delivery of working product and the rate of addressing reported issues.

10.1.4 Testing

This role involves translating the specification into functional test plans,
selecting and creating automated tests, reporting and tracking problems,
managing the testing community to ensure test coverage, and managing the
product toward shipping.

10.1.5 Communication

This role manages communication with the user, including interface
design, documentation, a help system, and training materials. Documents
may be paper or interactive; these days they are often composed of HTML

224

10.2

Open Source Impact on Team Issues

and may include multimedia elements. The success of this role is measured
by user uptake, satisfaction, and level of complaints.

10.1.6 Deployment

This role manages system setup and delivery. This may involve researching
particular problems with remote sites and special client situations. The suc-
cess of this role is measured by issues at deployment and after. This is a key
channel of communication with customers. This function can collect issues
and feedback into the next phase design, such as user and support FAQs.

10.2 Open Source Impact on Team Issues

Development moves in increasingly rapid cycles, and this is continuing.
This makes incremental development and use of rapid languages increas-
ingly necessary. There is a trend to more types of outsourcing, so that teams
are more virtual and probably have little in common except the specific
project. Per project hires are more common, so transparency of work and
rapid testing are more critical. Teams must work to industry-wide stan-
dards, because there is no time or system to create project-specific ones.
Much more than in the past, we are now working with people outside our
immediate organization, including customers, competitors, industry bod-
ies, standards bodies, and the open source community.

It is useful to find ways of extending the team to bring in extra resources
while maintaining coordination of efforts. Here, the work of the open
source community can be directly applied to corporate development. Open
source practices have demonstrated that virtual teams can extend the devel-
opment and testing resources. There are limits to this, caused by the need to
integrate code in development and to coordinate testing around a plan in
the testing phase. Some products are highly constrained by these limits, as
Fred Brooks pointed out in “The Mythical Man-Month.” It is unlikely that
core database servers can benefit from more developers, for example, since
the integration is more critical than the extra features. On the other hand, a
word processor can be extended from support for 40 languages to 100 by
additional development and testing resources. Figure 10.2 shows the impact
on team composition. Open source development teams are able to draw on
developers outside their core team. They also leverage testing from a large
group outside the core team. More resources are available, and some
resources that would have been part of the core team can be “outsourced” to
the virtual team in this way. These practices can be employed in some inter-
nal projects if the circumstances are right.

10.2

Open Source Impact on Team Issues 225

Chapter 10

In the open source process, a vision is often propagated and used as a rally-
ing point. The vision should be simply stated, shared among all parties. The
vision can change over time, but too much change may be a warning sign.
The design phase does not appear to be exposed in as general a fashion. It is
not clear how specifications will be gathered from the user, if that user is not
on the development team. In the testing phase, open source style becomes
similar to corporate testing or the best practice in corporate environments.

There are more international issues with a modern team. The use of
Internet technology for development and testing has made it possible to
bring together teams from all around the world. The first issue is time zone
differences, which can sometimes be exploited positively to allow code
hand-off around the world for 24-hour development on some projects.
When developers and testers co-operate worldwide, language issues arise
such as bug reporting or test data. International development can lead to
misunderstandings of various kinds, as there may be cultural differences in
methodology or communication styles. For example, many jokes translate
poorly or offensively. There are differences in etiquette, as in levels of
aggression, between different cultures.

There may be some opportunities to work in the open source style
within organizations. We can assemble teams from different departments,
encourage them to work together without regard for their position in the
organization, and resort to unconventional methods of reward and motiva-

Figure 10.2

Effect of extended
teams on resources.

226

10.3

Implementation Process

tion. This could apply to community processes within the organization,
such as standards. This type of effort needs collaborative tools, usually
needs to bring together people from different parts of the organization, and
is not well rewarded in a conventional manner. Another example could be
involving users in a migration project in an explicit way, in an attempt to
convert potential hostile energy into a positive force.

10.3 Implementation Process

Figure 10.3 shows the implementation (or development) process model.
This is cyclic, with a continuous series of releases. Each release contains four
phases: defining, designing, developing, and testing. Table 10.1 lists the
phase definitions.

10.3.1 Releases

There can be some overlap between phases, but generally this does not
include coding, which needs special arrangements. Most commonly, the
vision and plan for the next release can take place during testing of the cur-
rent release.

Releases iterate at two levels. In addition to external releases, there will
often be releases at an internal level. There are several benefits to scheduling
internal releases. The trick to development is to get the product to a known
state and then incrementally build on it, and this supports that by ensuring

Figure 10.3

Development
process model.

10.3

Implementation Process 227

Chapter 10

that components are complete and working together. To schedule releases,
we break big systems into smaller systems that do known work and can be
tested, revealing measurable progress (done or not done; not 80 percent
done) and allowing correction. We can manage risks and priorities by put-
ting risky features in early releases. Internal releases also allow a team to gain
practice at releasing, which is a morale booster.

10.3.2 Team Roles during the Process

During the phases, team roles vary to some extent. Table 10.2 shows the
focus of different roles during different phases.

Table 10.1

Phase Definitions

Defining The team defines goals and determines scope.

Interim milestones are team formation and drafts of the project defi-
nition components.

End milestone is delivery of the project definition, complete and
reviewed.

Designing The team drafts a specification and plans a schedule.

Interim milestones are design components, reduction of high risks,
and more complete costs and schedule.

End milestone is delivery of the functional and technical specs and
updated project definition, complete and reviewed.

Developing Interim milestones are partial releases and components.

End milestone is a functionally complete system with managed source
code and executables, user support and testing support materials, and
updated functional and technical specs and project definition.

Testing Interim milestones are typically preliminary releases. This is driven by
problem reporting, until the number of acceptable severity bugs
allows release.

End milestone is release.

Table 10.2

Team Roles during the Process

Role Defining Designing Developing Testing

Customer manage-
ment

Owns process;
vision document;
concept

Communication
plan; managing
customer expecta-
tions

Manage customer
expectations; com-
municate with cus-
tomer

Communication;
test site/result
coordination; next
release planning

228

10.4

Implementation Principles

10.4 Implementation Principles

Many principles of system implementation that are relevant to all develop-
ment are the same now as they have always been at successful software
houses. Managers know that the future is uncertain and we can’t control all
of the developments in a significant project. Because of this, we should not
commit to fixed schedules and prices. This uncertainty includes the com-
petitive outlook and business context. Often, projects must change direc-
tion because of the actions of competitive or complementary systems. Our
uncertainty also includes which code will get written. We cannot predict
the completion date of any but the most trivial tasks, and significant pieces
of code can have surprising effects or performance characteristics.

10.4.1 Resource Trade-offs

There is always a need for trade-offs between resources, features, and sched-
ule. It is difficult to add resources effectively late in a project. Because of
this, when a problem develops we usually have a choice between slipping

Program manage-
ment

Design goals;
project risks and
costs

Owns process;
functional spec;
project plan

Track project;
communicate with
team; plan testing

Project and bug
tracking

Development Prototypes; feasi-
bility; approaches

Development plan;
technical spec

Owns process;
build and test

Bug resolution;
optimization

Testing Acceptance crite-
ria; testing strate-
gies

Evaluate design for
testability; detailed
test plan

Develop test cases
and scripts; test
components;
begin testing
releases

Owns process; bug
finding and
reporting

Communication User performance
and communica-
tion needs

Plan for user per-
formance and edu-
cation

Develop and test Training; bug fix-
ing

Deployment Major deployment
and support con-
siderations

Evaluate design for
deployment;
deployment plan

Operational docu-
mentation; plan
staging; support
internal deploy-
ment

Test deployment;
deployment plan-
ning; operations/
support training

Table 10.2

Team Roles during the Process (continued)

Role Defining Designing Developing Testing

10.4

Implementation Principles 229

Chapter 10

features to maintain a schedule, or slipping a schedule to maintain features.
The rule at software houses and in corporate life is generally that it is better
to hold the date and slip features into future releases. Open source may be
different, because the presence of volunteer workers and the community
process for feature addition may make it hard to throw out features while
providing additional resources to get them done. It may be possible to hold
features and slip the date. This needs to be considered carefully, as the
downside to this is the cost of integration. Plus, of course, if features don’t
get delivered, they don’t ship.

10.4.2 Frequent Releases

Recent practice has moved toward very frequent build and release of code,
even daily. In open source development each build of new code is generally
available via CVS, with more stable releases tagged. In this scenario, effec-
tive testing is made possible by abundant hardware and automated scripts.
A product that has been built and tested is a product whose status we
understand in full. This fits in well with current programmer practices of
test-driven development, although that is not necessary. As part of the prac-
tice of testing early and often, design should call for several versions to be
released, as early as possible, and tested. To do this well, it is necessary to
make an extra effort to find small systems that are useful in their own right
and also as steps on the path to the larger system. For example, I worked on
a reservation system whose final product allowed customers to book hotels,
cars, and air travel over the Internet. The first interim release simply dis-
played air travel schedules, but this was useful by itself and could be distrib-
uted to users for testing.

Reporting accurately versus managing the plan is very important. Soft-
ware development tends to slip, and it is more important to be aware of
where we really are than to try to make our efforts look good. This is where
common self-delusions and management dysfunction can affect our judg-
ment. If we slip a date, we need to be really careful in two ways. First, we
should take extra care to replace it with an accurate estimate, so we don’t fol-
low one bad date with another. Second, we need to review other estimates. If
we slipped the first half from four weeks to five, it is not likely we will “make
it up” by doing the second half in three: five if the correct new estimate.

The best way to do estimating is bottom-up. Those who will do the
work should make the estimate. Generally, they will know better than man-
agers, who usually do not have the time and current knowledge to make an
accurate estimate. This is effective as motivation, since people are more

230

10.4

Implementation Principles

committed to meet estimates that they made than to those imposed on
them by others.

10.4.3 Support Elements

In order to control team-based application design and development, we
must put a structure in place. All design work and code must be managed
through source control. Application components must be put in a place
where they can be reviewed and reused. Code must be consolidated onto a
central server for integration testing. In order to tie the pieces together early
and keep them working together, application components must be pack-
aged and deployed to staging and production servers.

Code in all application tiers should be able to run in a debug mode,
reporting everything we may need to know. We need facilities to run the
application; monitor processing, performance, and results; and compare
these to previous runs. We need the ability to find components that we
can include in our solution—preferably open source but possibly in some
cases not. In open source, source code management is generally done with
CVS. There are alternatives; Subversion, which is an update to CVS by
the original developers, is worth evaluating because it is easier to learn
and use. Of course, if the organization is already using a particular source
code management system, that could continue to be used. Projects can be
found using SourceForge, the repository for most open source code, and
Freshmeat, which serves as an index search for particular types of projects,
such as an application or a solution implemented in a particular language.

10.4.4 Watching for Problems

Projects that are running into trouble can be measured technically, such as
through bug reports or performance measures. They also reveal themselves
in human factors. In team communications, there may be an increasing
emphasis on secrecy or blame. Items may be piling up waiting for someone
else, perhaps a new hire, to do them. The schedules of our team members
may be expanding, leaving no time for other life activities such as shopping,
so those get done during the day. Possibly the parking lot is full at midnight
because there are heroes working away at all hours, but the schedule is still
slipping. Unlike a technology concept, a product should have a clear focus
on the customer and his or her needs. The product should be tending
toward something. Its size and performance should be stabilizing.

10.5

Key Documents 231

Chapter 10

10.5 Key Documents

Important documents include the project definition, functional, and tech-
nical specifications (specs).

10.5.1 Project Definition

Every project should have a definition. This begins with the vision phase and
is carried through and updated at every phase, and finally evaluated at project
completion. Table 10.3 shows the components of a project definition.

10.5.2 Risk Management

The risk assessment document is created in the vision phase and then main-
tained up-to-date throughout the project. We will use the risk document to
drive risk-driven scheduling. We identify the risky (hard) stuff and attack it
first, even if that is not the most convenient approach. By attempting to
remove risks early, we prepare ourselves for the likelihood that other prob-
lems will creep in later.

The purpose of the risk document is to identify risks that are of sufficient
likelihood and severity to be a concern. This is typically a dozen or so; more
than one or two, but less than a hundred. Severe risks should be addressed

Table 10.3

Project Definition

Component Description

Vision Brief description of project and background

Intended users and major scenarios

Important goals, whether business or technical

Scope and
constraints

Statement of boundaries and areas of impact, including time deadlines

Constraints on technology choices, such as standards or interoper-
ability

Risk Prioritized dynamic list of risks with likelihood and severity

Costs and bene-
fits

Hardware, software, manpower, whether one-time or continuing;
expected returns

Schedule Project plan with milestones

Team Structure Full-time team members; virtual team members including partners
and users (includes assumptions, skills, critical needs, dependencies)

232

10.5

Key Documents

early, so that if things are going well the risk document may become smaller
and less severe as the project progresses. For each risk, we create:

�

Statement that captures the nature of the risk

�

Probability that it will occur

�

Severity of the problem that would be caused, described and given an
impact number

�

Mitigation plans that would prevent the risk from occurring

�

Contingency plans that would minimize or cope with the problem if
it occurs

�

Ownership, or the party who will monitor the risk

A Risk Checklist

The following are all examples of common general risks for information
technology projects. Listed first are external risks, which are related to areas
outside the control of the project team, followed by internal risks, which are
related to the project team and its members and structure.

�

Is there sufficient commitment from senior management and users?

�

What is the business impact on users, and how much change will
they undergo?

�

Do users understand the effects and limitations of the technology?

�

How many outside bodies, such as regulatory boards, unions, or
external partners, are involved?

�

Are there multiple user branches or sites (or companies or countries)
that may have different processes?

�

Are the requirements expected to be detailed and stable?

�

Are there immovable deadlines or time to market pressures?

�

Was the team size and development schedule calculated from the
requirements?

�

Has the project manager done this sort of thing before?

�

Does the team have sufficient relevant knowledge?

�

Is there significant shipping experience among senior team members?

10.5

Key Documents 233

Chapter 10

�

Is there sufficient commitment from senior management or users?

�

Has all the technology been seen working somewhere?

This list is worth reviewing, but it needs to be supplemented with more
specific issues relating to the project technologies and specific goals.

10.5.3 Example of a Risk Assessment

Table 10.4 is a risk assessment from an actual project (names have been
changed). Each risk is given an ID number and a description. Each is
assigned a probability and severity. In this case, they were multiplied to gen-
erate a priority by which the table was sorted. Each risk has an owner and
mitigation and/or contingency actions.

It is important to honestly identify risks in this shared document; but as
this example shows, it may be necessary to be diplomatic.

Table 10.4

Risk Assessment

ID Priority Description Probability Severity Owner
Mitigation
Action(s)

Contingency
Action(s)

1 4 Scalability and
performance of several
technologies, e.g.,
mobile device, and
database connector are
unknown.
Consequently,
presentation of
product information
may take too long or a
caching scheme will
need to be devised.

0.8 5 Carol Work with
DBA and
architecture
group to
design
queries. Run
early
performance
tests to ensure
system can
meet spec.

Design a
caching
system and
preload cache
to isolate
query time.

2 2.4 Team resources not
completely identified
or dedicated to the
cause. Consequently,
project deadline will be
missed.

0.6 4 Mark Commitment
from team
members’
managers that
they will are
committed to
the project.

Work
overtime.

234

10.5

Key Documents

3 2 Store-only items do
not have attributes
defined in the
database. These may
not be entered in time
for the pilot.
Consequently,
attribute data for
many products may
not be available. If
these are important
items, the pilot will
not be accepted.

0.5 4 Susan Determine
source for
missing
information
and arrange
its entry.

Revise release
plan or
curtail pilot.

4 2 Editorial content to
support the objective
is incomplete. No
editorial process
currently exists.
Consequently, there is
a lack of compelling
program information.

1.0 2 Carol Meet with
senior
management
to identify a
process.

RELEASE 2.

Deploy with
limited
functionality.

5 2 Physical issues (e.g.,
battery life of device)
are currently
unknown.
Consequently,
employees may find
the devices
inconvenient to use
and abandon them.

0.5 4 Paul Test to ensure
acceptable
battery life,
comfort of
straps and
cases, etc.

Investigate
options for
devices as
necessary
during pilot.

6 1.6 Complete product
comparison data not
available.
Consequently,
comparison
functionality will be
available for a reduced
number of products.

0.8 2 Susan Work with
data owners
to locate/
create
information.

Provide “not
available”
page.

Table 10.4 Risk Assessment (continued)

ID Priority Description Probability Severity Owner
Mitigation
Action(s)

Contingency
Action(s)

10.5 Key Documents 235

Chapter 10

10.5.4 Functional Specification

A functional specification (spec) is a list of features to be included in the
project, prioritized and spelled out in sufficient detail. The right level of
detail is first a matter of trust and communication. Outsourced projects
often have very detailed specifications. The ideal is just enough detail to
enable a developer to build the system that is needed. Too much detail
leads to time wasted on a paper process. Too little detail leads to coding in
a vacuum.

7 1.2 Operational
acceptance criteria
may require more
time than available to
meet deadline.
Consequently, missed
deadline.

0.3 4 Paul Meet early
with
operations
team to gain
acceptance
for fast path.

Escalate
issue.

8 1.2 Other applications on
the hand-held must
coexist with the
portal. Web apps need
to run on the device.
Consequently,
employee may need to
perform a hard reset
to access the other
applications.

0.6 2 Paul Meet with
team
responsible
for local
applications
to coordinate.

Run
functional
tests on
device for all
deployed
apps.

Build portal
to access only
certified
applications.

9 1.2 Enough people with
appropriate store
experience are not
participating in the
requirements.
Consequently,
functionality will not
meet the needs of the
employees.

0.3 4 Vera Attempt to
engage critical
sales training
resources and
pilot stores
early in
process.

RELEASE 2.

Reevaluate
requirements
at conclusion
of pilot
phase.

Table 10.4 Risk Assessment (continued)

ID Priority Description Probability Severity Owner
Mitigation
Action(s)

Contingency
Action(s)

236 10.6 Migration

The spec should break the product into features, explain the features,
and indicate whether they are required or desirable. For most business sys-
tems, features will be broken into presentation, business, and data tiers.

Because it is repetitive, comprehensive, and subject to change, a spec
should usually be maintained as a spreadsheet or in some database-driven
format.

10.5.5 Technical Specification

The technical specification should indicate how the functional spec will
be implemented. This includes the technical architecture and details of each
of the included components. Many people would call this the technical
architecture. It should be sufficiently detailed for skilled developers to build
the system. It includes:

� Logical model of the system

� Physical model

� Key design points, technology choices, and proofs of concept

� Infrastructure for development, testing, and deployment

� Interoperability, including data flows and events

� Migration, including data conversion

� Security, including authentication/authorization and threat manage-
ment

� Data stores, including schemata

� Management by operations, including logging and monitoring

10.6 Migration

In a migration, risks are higher than with a new system because expecta-
tions are higher and users have something to lose. If we have to replace an
existing system with a new one, we need to take extra care to plan carefully,
test everything thoroughly, and still be prepared for unexpected problems
that require backing out changes. Problems may not be our fault now, but
they will be after a migration. This work will increase the costs and the time
to implement the system.

10.6 Migration 237

Chapter 10

The same issues may not occur when implementing a new system,
where a partial solution may be quite acceptable, at least for a first release.

10.6.1 Migration Approaches

In existing organizations, there generally is an existing system. There are
several different approaches we can take for its disposition. We can:

� Keep the system, recognizing that the system is paid for and works, at
least to a point. Abandon the system, outsourcing its function or
doing it manually.

� Redeploy the system to another platform with minimal changes—for
instance, from UNIX to Linux.

� Develop a replacement system with appropriate new tools and prod-
ucts. This may include redesigning the process more generally to
streamline processes.

� Beautify it, leaving the core product but improving access, perhaps
with a Web front end.

� Starve it, preventing further investment until we can cut it off.

In larger systems, we may combine these. We might leave part of a sys-
tem and abandon the rest, build a new front end on a system while starving
it, or redeploy a system to Linux and add a new GUI front end.

10.6.2 Assessing the Current System

To determine the right approach, we need to assess both the business and
the technology situation. The business problem will be identified in the
vision phase and built into the project definition, as described earlier in this
chapter. The business situation has various opportunities and threats,
including the actions of customers and competitors and new ideas in busi-
ness organization.

Business opportunities are diverse. We might be able to target our exist-
ing customers with new products—for example, by accessing our informa-
tion on them. We could compress the time to introduce a new product or
to satisfy a customer requirement. We might access inventory or issue cus-
tom prices immediately, to support ideas such as real-time pricing or to sell
our information as a product. We might develop ways to measure and

238 10.6 Migration

improve our operating efficiency or product quality. Of course, we might
develop new customers and/or products.

Business threats are also diverse. Our sales volume or margins might be
down. Competitors might have a cost advantage from technology or labor
cost. We might already be losing market share to competition or have com-
petitors routinely beat us on price, speed of response, or product introduc-
tion. Expectations of customer service might be increasing, or demographic
changes might be altering our customers or workforce. New or changing
sales channels might need different support processes. Companies in our
industry might be changing in size through mergers and acquisitions. A
regulatory change may affect our business environment or our operations.

The technology situation includes an assessment of the current system
and available replacement technologies and processes. It is difficult to assess
an existing complex system. An assessment team needs to bring a variety of
skills and points of view and be very open to working together. Nobody will
understand the old and the new equally, so the whole must be greater than
the parts.

Technologies change so fast that by the time a system is deployed the
architecture is often obsolete. The team must understand the old system
well enough without too much work. Maintainers of the old system will
understand it, but may have an exaggerated sense of its complexity and
value. A common problem is to end up writing the same system over. If
important details are not specified sufficiently, the implementation team
gets them from the system users and maintainers, although it was the
potential offered by new technology that justified the migration cost.

It may be difficult to get good measurements on performance of the
current system. People involved with existing systems generally do not
report accurately on the customer satisfaction and reliability of the sys-
tem. They measure what they do well, or what they can measure, not nec-
essarily what matters.

The areas to assess for a system include:

� Size, performance, complexity, condition of applications

� Hardware and software infrastructure

� Current staffing, service requests, and workload

� Costs

� Problems that the current system cannot address

10.7 Interacting with the Open Source Community 239

Chapter 10

From this, we can tell if the application is a candidate for migration and
start developing a project definition.

Issues we may find include data quality of the current system, its histori-
cal availability and cost of service, and security. Older systems often have
issues with system availability, scheduled or unscheduled—for instance,
they are not so likely to support Web or global 24/7 needs. There also may
be difficulty in use, such as high training costs or data entry error rates.

A common strength of existing systems is that the system is paid for and
the current staff is trained in its use. However, over time costs of security
and maintenance may have crept up, and most systems have periodic main-
tenance and upgrades. Some companies outsource because these types of
costs have gone out of control.

Development productivity is commonly an issue with older systems,
making it difficult to respond to changes in the business or to access data in
new ways. Development activities in old complex systems often have
remarkably little connection with current customer priorities.

10.7 Interacting with the Open Source Community

We will interact with the open source community in several ways. We will
have open source developers on staff, and need to consider how to hire and
retain them. We will interface with open source products by using them, and
may have opportunities to contribute to them with code, work, or finance.

10.7.1 Hiring from the Community

A few people in open source are famous in a general sense, but, much more
importantly, at the level of code contribution to particular projects, many
people have built reputations within a particular community. Open source
is open and public, so you can see code, written postings, and so on that
you would never see in a candidate from a closed code company. It may be
a good idea to use those resources.

In some cases, you might want to hire the maintainer of a code project if
it’s important to you. Martin Fink of Hewlett-Packard cites a “two-hop”
rule. If a project is important to his organization, he likes to know that he is
two people away from a maintainer or key contributor to the project. Either
someone on the project, or someone who is known and trusted by those on
the project, should be known to him.

240 10.7 Interacting with the Open Source Community

In any case, a maintainer from a successful open source project has a
project management background. Maintainers have managed code contri-
butions; motivated and given credit; attracted/retained developers and
other resources, mostly without using money; and developed or adopted
processes for code management and release. That is a good set of skills, even
if the project they work on is directly relevant to you.

10.7.2 Employee Agreements

There are several issues where organizations generally do not have policies
today, but may need to develop one. This may involve a review of relevant
employment contracts. The following are some examples, but this is not an
exhaustive list; there may be other issues.

Some employees will want to be allowed to work on open source
projects while on organization projects—for instance, by sharing utility
code or returning enhancements made to open source software. This is rea-
sonable, but may conflict with current employment agreements. Others
may wish to contribute to open source software on their own time. This is
also reasonable, but many organizations have blanket policies prohibiting
it. There is also the question of copyright ownership. Most open software
projects, including Samba and Apache, do not allow retention of copyright
by the contributing company. This again may conflict with current policies.
Some employees may only be willing to work on open source, and your
company will probably not be doing open source exclusively. This may
require a special arrangement—for instance, they may have to work as con-
tractors rather than employees.

10.7.3 Repaying the Community

Organizations that benefit from open source software often develop meth-
ods for repaying the community. The simplest can be allowing employees to
work and contribute to the community, as well as serving as a reference and
otherwise being a good citizen. There may be opportunities for sponsoring
enhancements that are relevant to your organization’s use. By directing
investment toward enhancements your organization needs, you may gain
leverage in the direction of the product.

In negotiating with open source developers, it may be helpful to bear in
mind the motivation discussed in the previous chapter. Money is an ele-
ment, but so is a measure of fame and an opportunity to work on some-
thing worthwhile. If your organization is able to offer a proposition that

10.8 Support 241

Chapter 10

honestly meets those aspirations, it may be an attractive place for developers
to spend their time.

It is often difficult to find people to work on less glamorous code, or on
non-coding issues such as documentation. Documentation is an area where
an organization using open source can contribute very naturally. This can
be expanded to benchmarking and best practices.

Sometimes there may be an opportunity to release code to open source.
For this to be successful there needs to be a community that can respond to
it. This includes a market for use, plus people interested in developing, and
a future. You should not do it because it is end of life or just a failure. But
this type of move is not eccentric or noncommercial. Among organizations
that have contributed in significant ways to the open source community are
CERN (World Wide Web), IBM (Eclipse), Novell (iFolders), and Sun
(OpenOffice).

10.8 Support

Support costs include software maintenance, internal resources, and con-
tracted external resource. Software maintenance fees, typically annual
charges of about 20 percent of the purchase price, are simply a cost of doing
business when using many closed code program, which you will escape by
using open source software.

The essential step in managing support is to analyze what we really
need. One meaning of support is primarily hand-holding—helping people
do something with the software—or training—teaching people features or
how to use documentation and so on. Another meaning is developing code,
fixing errors, or adding or extending features of the software to meet needs.
These two different requirements interact. Often, reports on problems and
missing features in software must be resolved into user or software error.
Specifically, we can resolve support into three levels, as follows:

� Level 1: Report and identify issue, assign ID, triage and resolve if
possible.

� Level 2: Get the issue to an expert in the problem area and resolve
without development request.

� Level 3: A bug is filed, and a patch developed in the field and incor-
porated or the problem is worked on by a developer.

242 10.8 Support

Level 1 support is usually managed internally (or outsourced directly).
By definition, these issues are hand-holding or other trivial activities and
need to be resolved inexpensively, not by calling a vendor. Level 2 support
can be handled internally, through the software vendor, or through a third
party or community process. Level 3 support requires developers with
access to the source code. This is the bulk of what maintenance program-
mers do on custom code within organizations. It is a service that you must
get from a closed code company for its software, since nobody else can per-
form it, so you must contract for it. For instance, look at support for
Microsoft Office. Level 1 will be provided by an internal help desk. Level 2
will generally be routed to Microsoft Product Support Services, to a similar
organization at IBM or HP, or could be handled internally by some large
organizations. Level 3 must be handled by reporting a defect and allowing it
to be handled by the Microsoft Office group. The correct reporting of a
defect is potentially quite a lot of work in itself, and this will be handled by
the level 2 support, which may be outsourced.

For open source, a lot of people worry that there is no place to turn for
support. This is never true, since there is always the option of supporting
yourself, as you do for custom software. It is certainly not true for the seri-
ous, commonly used products such as Linux and Apache. They are at least
as responsive to level 3 defect reports as any commercial vendor; in my
experience they are comparable to the best commercial support. There is an
active community providing level 2 support; vendors will enter into com-
mercial contracts to provide it with service-level agreements. The major dif-
ference with open source is that you don’t have to buy support from the
software vendor.

For smaller open source software products, the system is like the source
code escrow you might use with a startup. There is a market risk that the
product will not succeed, or will tail off before you are finished with it, and
in that case you may have to take on the maintenance.

Some companies would like to buy warranties or other insurance-like
arrangements. This is difficult to get in open source; if this is needed, you
will probably need to deal with a large company such as IBM or HP.

In practice, when you have a problem it is always going to be your
responsibility, legally and in practice. Software licenses always state that the
software is not warranted for your particular purpose. Vendors will make
their best efforts to work around problems, but if this involves purchasing
additional hardware or rewriting your software to approach the problem
differently, that will be your responsibility.

10.9 Summary 243

Chapter 10

10.9 Summary

In this chapter, we reviewed how to manage a team, the process and roles,
and the more important typical deliverable documents. There are some
improvements to consider suggested by successful practices in the open
source software community.

For most organizations, the new issues posed by open source software
are less that they will be creating it than that they will be using the software,
employing or otherwise interacting with authors, and integrating it with
their own work. There may be opportunities to use open source methods
within the organization. There may be a need to review policies that may be
overly restrictive on copyright and work for hire in the light of open source
possibilities.

The issue of support is critical for organizations adopting open source
software. The organization needs a clear policy about what it expects in the
way of support, what it is willing to provide, and what it wants to pay for.
Given this, the resources are available to deliver this, generally at non rea-
sonable prices and with more flexibility than from closed code vendors.

This page intentionally left blank

245

11

Application Architecture

In this chapter, we will look at different classes of applications, and then
review some key design points for applications that will perform well. Then
we will cover the methods for loosely coupled communication with other
systems, which can include mainframes and Java application servers. Finally,
we review the development platforms available and position the open source
choices, which are LAMP and Tomcat/JBoss, against the major closed code
products, which are server pages and application servers based on .Net and
Java. The term LAMP refers to development with Linux, Apache, MySQL,
and PHP. Less commonly, it might include the other open source languages
Perl or Python or the open source database PostgreSQL.

11.1 Types of Systems

If an organization is planning to implement a complex enterprise applica-
tion, the possibility of running it on an open source platform should be
reviewed. At this time, it is usually possible to run the major enterprise
applications, such as those from SAP, Oracle, and PeopleSoft, on Linux
servers. There are fewer applications available that are open source from top
to bottom, but there are some available and more can be built. This type of
deployment has only been happening recently, yet already there are over
2,000 SAP deployments and over 500 Oracle deployments on Linux.

According to the Gartner report “Fear the Penguin” (January 2003), by
2005–2007 users will be commonly deploying complex tiered applications
on Linux, using both clusters and “big iron” servers. It will typically take
approximately two years to move from consideration through development
or acquisition to deployment of the larger category of complex application,
such as a substantial ERP deployment or a significant custom financial or
manufacturing system. However, smaller systems of this type, such as a few
ERP modules or a less comprehensive custom application, might be com-

246

11.1

Types of Systems

pleted in a year or less. In either case, it is now time to plan in order to
deploy in that time frame.

Since Apache is the most popular Web server and PHP the most popular
Web development tool, it is not necessary to demonstrate that the majority
of normal Web applications can be built this way. A cursory search of the
Web reveals large numbers of attractive and reliable applications that have
been built using the open source tools (LAMP) and that there is a large
body of people available who can develop and maintain these applications.

Because of the fact that the Web is de facto an open source and LAMP
playground, vendors of closed code systems usually focus on issues of scal-
ability and enterprise integration to justify their products. This chapter will
focus on those issues also. We will note that most needs fall comfortably in
the range of performance of the open source products and that when neces-
sary that performance can be increased through the appropriate techniques.

Systems vary by their customer types, their performance requirements,
and the type of information they manage and display. Applications that
serve external customers will usually handle large and unpredictable num-
bers of users. Of course, we have no control over their technology or behav-
ior. Applications that service business to business (B2B) customers, such as
channel, purchasing, or supply chain, can be as large in some cases as cus-
tomer systems but should be more predictable, because we have a relation-
ship with the customers that is more manageable. Internal sites should deal
with predictable numbers of users, and quite often we can manage the tech-
nology platform for internal users if we want to. Call center sites are the
most manageable, since they are internal and we generally control the plat-
form, installed applications, and the manner of use.

11.1.1 Extreme Systems

The development tools discussed in this book will handle many complex
distributed applications. However, many of the largest and best-known sys-
tems are really extreme cases that employ exceptional methods and are not
typical of the way other business systems will be built. They are often the
first application of their category, the largest company in their industry, or a
unique organization such as a clearing-house. Examples include:

�

Travel reservation systems, such as Sabre and Amadeus

�

Banking clearing-house systems, such as SWIFT

11.1

Types of Systems 247

Chapter 11

�

Exchange systems, such as the New York Stock Exchange (NYSE)
and the Commodities Exchange (COMEX)

�

Large organizations, such as Wal-Mart, Bank of America, and Citicorp

�

Leading dot-com companies, such as Google and Amazon.com

These organizations have developed substantial innovative software sys-
tems using specialized transaction processors and low-level languages. Sabre
and NYSE use Tandem (now HP NonStop) systems. Bank of America and
Sabre use the custom mainframe IBM Transaction Processing Facility. The
language used in these systems is C++ or older low-level languages, includ-
ing PL/I and assembler. This behavior is really more like software product
developers than typical business systems. In fact, several of these operations
have spun off software product organizations.

When applications need the highest performance, the language to use is
always C (or C++.) For example, Microsoft generally finds Web applica-
tions to be about twice as fast running benchmarks when written in
(unmanaged) Visual C++ instead of VB and ASP. Other vendors just don’t
do database benchmarks except with Tuxedo and C++, because their appli-
cation servers are even slower. This is surprising, since much of a Web appli-
cation is a constant overhead, including the Web server, database, and
network communication. It is not only the language performance, but
more importantly the architecture it is deployed with, that determines the
performance. C++ is used with ISAPI rather than ASP, direct database
access rather than ADO, memory caching rather than simple database
access, and so on.

If you are going to build a high-performance system in C, it will proba-
bly cost a few extra months to set up, take twice the development time, and
you will have to pay higher rates for developers. For a small application, tak-
ing two developers three months, this could be a difference in development
cost of $100,000 ($150K – $50K). Most applications will require much
more than this effort level, and most organizations will have several such
applications, so they could easily spend a half million. In order to make up
these costs through better performance on servers, if the application is twice
as fast, half a million would have to be saved. So the rule of thumb is that for
systems with over a million dollars in deployed servers, we will consider
building a complex custom-designed application; otherwise, we will use
higher-level languages and build the system through integration.

Outside of benchmarks, most businesses don’t need to complicate their
development to achieve the highest possible performance. They can always

248

11.1

Types of Systems

approach the problem by buying some extra equipment. This is only a
problem if the equipment becomes expensive. The cost saving from rapid
development using developers with standard skill sets generally dwarfs the
higher cost of extra servers.

11.1.2 Transactional Systems

Normal development in organizations is not the same as software product
development or these extreme systems. Leaving aside these special cases,
almost all transactional Web applications can be constructed with “server
page technology,” such as PHP, ASP, or JSP, with some sensible use of
server-side components. In this way, systems can be quickly deployed by
typical integration teams without special expertise.

Applications of this class that may run into performance limitations can
follow standard risk management methods to mitigate the performance
issue. We can develop a performance model early in the project and bench-
mark it. The following optimization techniques, which are described later,
can give order of magnitude improvements in performance but must be
designed into the application:

�

Effective state management

�

Queuing

�

Good database design

If we have applications with unpredictable performance requirements,
we should first attempt to gather some information on constraints, and
then design for scalability. Applications designed in tiers can be scaled to
support very high numbers of users, and database performance can reach
very high numbers at some price.

11.1.3 Knowledge Management

Not all applications are transactional. Other applications typically have
fewer users and offer a less directed and predictable set of interactions.
This includes many kinds of information and support systems and forms
of collaboration; we will put them all in the category of knowledge man-
agement. These applications usually interoperate with transactional sys-
tems indirectly. They may steer users to transactional applications, as
portals do; allow analysis of data that ultimately is derived from those

11.2

Tiered Design 249

Chapter 11

applications, such as business intelligence tools applied to data warehouses;
or may add value to them, similar to custom shopping front ends, such as
Amazon recommendations.

Knowledge management applications also commonly interact with
infrastructure systems. They typically rely on the mail system to deliver
messages, the directory for authentication, or the file system as a data store
for documents. They commonly need programmatic access to these system
interfaces. Transactional systems typically will not want to share resources
with such systems, because they need to manage their scalability separately
from the general organization.

11.2 Tiered Design

We will design applications as a number of logical components. This breaks
down complex problems into smaller pieces and hides implementation
details from calling components. Components for business applications
generally have recognizable tiers for user interface, business rules, and data,
although this does not have to be a hard and fast rule. Of course, applica-
tions may and commonly will use components from other developed appli-
cations. This has implications for documentation and testing of the original
applications, and also on the need for multilanguage and cross-platform
support, since applications developed at different times will often run on
different platforms.

There is no strict general mapping between software tiers and hardware
(logical and physical components). There is also no strict rule that there
should be exactly three tiers, or any other exact number. As specific exam-
ples, business components can call business components, and database
stored procedures can be nested. These are application architecture choices.
In particular, there is no need for logical components to be implemented as
physical components communicating via containers, as in the EJB and
COM+ architectures. This is actually very expensive in terms of perform-
ance in many situations and should be discouraged. The usual design is to
run application components on the Web server to avoid remote calls.

The partitioning design is about maintaining a balance between flexi-
bility and control. A good design should also allow reuse of code between
batch, Web, and GUI applications. Figure 11.1 shows the general map-
ping at a conceptual level. Clients can be a Web browser, an intelligent
device such as a PC or a phone, or another system accessing through a
Web service. Our application will consist of our business components
interacting with framework components such as server pages and transac-

250

11.2

Tiered Design

tion managers. While our back-end store will usually be a database, we
may access other systems, such as a directory or email system, or access
other applications.

In fully connected networks, business rules usually go into server-side
components, to allow reuse and to avoid deployment problems. The
trade-off here is possible duplication of code connected with validation.
Because we can’t usually trust client code and preparation such as data
lookups performed at clients, it may be necessary to replicate tables to
support this. In occasionally disconnected networks, business rules must
be available where needed.

Different components can, in general, be written in different languages,
subject to all sorts of real-world limitations. We may choose to do this to
take advantage of the various strengths of different languages—for example,
combining Java with PL-SQL or Python with C++. More commonly, we
might be able to create a new application while reusing large sections of a
legacy language.

Interlanguage calling conventions may not translate between plat-
forms. It is usually possible to call anything from C and to call code writ-
ten in C from anything; this is one of the reasons C is such a popular
programming language.

Figure 11.1

Application
architecture.

11.3

Managing Performance and Scalability 251

Chapter 11

11.3 Managing Performance and Scalability

What we want to achieve is loose coupling on commodity platforms. This
provides scalability and is also best for costs, so the result is the best price/
performance. Loose coupling combines queuing, to remove time depen-
dencies with use of a non-application-specific data format to remove data
dependencies. Figure 11.2 illustrates loosely coupled systems. A consumer
is interacting with an ecommerce system. The ecommerce system has copies
of elements of the product catalog and customer data. When a purchase is
made, a message is sent to the ERP system for fulfillment. This system may,
in turn, send a message to a business partner. These messages may be asyn-
chronous, so that the customer interaction does not wait on the response
from the back end.

11.3.1 State Management

The question of transient state management is where to keep data in the
course of a long-running transaction. This could be a shopping cart in
ecommerce, for example. We can choose to manage transient state at the
customer, at the Web server, or at the database (see Figure 11.3).

We can maintain transient state at the Web server, and we will get good
performance in the sense that we cut down on network traffic. However,
we lose a great deal of function by giving up the database. We do not get
transactions, which can give us a lot of extra work in the application or
may expose us to corrupt data after a Web server failure. This model also

Figure 11.2

Loosely coupled
systems.

252

11.3

Managing Performance and Scalability

limits our ability to use distributed systems; for example, we must set Web
server load balancing to “sticky,” because customers must return to the
same server. Finally, by holding server resources during a long-running
transaction, we use them over much longer time frames because user time
is orders of magnitude larger than machine time. Figure 11.4 shows the
impact of holding resources at the Web server. If machine time is 100
times faster, a given server can serve 100 times more users if it can release
all resources during user “think time.” Resources could be many items,
including allocated memory, entries in a shopping cart or cache table, or
database connections. Database connections are such an important issue
that they will usually be pooled.

We can maintain transient data in the database, either in regular database
tables or special formats, such as temporary tables or dedicated dictionaries as
in commerce products. If we manage state this way, we have transactions, and
we have reliability against most kinds of failure. But we incur extra network
communication and probably additional disk access, since databases are more
general purpose than specialized stores.

If we manage state at the client, we will scale well, but we face issues of
management, security (e.g., tampering with prices), privacy (cookies), and
client identification (AOL caching issues).

We do not want to hold state in a transactional database over transac-
tion boundaries or during user interaction. The general plan is to get in,

Figure 11.3

Transient state.

11.3

Managing Performance and Scalability 253

Chapter 11

do work, and get out. For transient state, we will normally store shared
data in a database and keep nothing at the Web server. If we don’t hold the
state at the server we are also safe in the multiuser environment, safe
against network failure, and safe against the user walking away. This was
learned in the 1960s, using CICS instead of TSO; again in the 1990s,
using COM or EJB; and it always applies. We can store client state on the
client, most commonly a cookie that allows us to access other data but in
some cases a disconnected set of data, if we combine this with an optimis-
tic locking strategy.

Of course, the problem is that state needs to be saved somewhere. An
important exception is data that is cached—in other words, it can be recov-
ered from the database if lost. Caching data on the Web server can provide
substantial performance gains, since typically a small set of data is used
repetitively. A cached copy of data on the server is very useful. It is caching
if, when you throw it away, you can get it back. This is fast, since as long as
the server stays up, there may be no need to return to the database. It is
robust, since data may be recovered from the database. And it secures client
data from tampering, since it may be checked against the server. But a cach-
ing strategy has to be designed for a set of data to get these features, which
are trade-offs.

Figure 11.4

Effect of resources
held at server.

254

11.3

Managing Performance and Scalability

11.3.2 Queuing

One of the most important elements of design for performance is to use
asynchronous methods correctly to decouple components from each
other—for instance, front end from back end. There are several names for
this but I’ll simply call it queuing. A correct use of queuing was behind
many of the most successful transaction processing systems of the last 40
years. IBM IMS/DC and the Tandem (now HP) NonStop platform both
used asynchronous design effectively within their products, which have
been extensively used in the financial industry over the last 30+ years.

There are ways to achieve the design feature without using message
queue products, such as by writing queues into the file system or database,
and that is what most people do.

Queuing offers improvement to an application in reliability and through-
put. The first advantage of queuing is that it increases reliability. Queuing
decouples a business transaction from issues of server, client, or network
availability—in other words, it can provide “success in the face of failure.”
Queuing also allows us to remove tight coupling from business partners,
who may have different capacities or availability cycles. For example, our
order processing may depend on a shipping component. But possibly ship-
ping faces delays or is not in operation all the time. We can acknowledge
orders now and then queue them for later processing and shipping.

The second advantage of queuing is that it allows us to economically
manage large variations in demand. Businesses do not experience consis-
tent demand for services, but have many cycles from hourly and daily to
periodic, and also may experience heavy volumes caused by unusual events.
Examples include workers logging in at the beginning of the day, “end of
month” payroll processing, the impact of TV advertising on a home shop-
ping channel, or the effect of the Superbowl on a sports site. It is common
for peak events to be an order of magnitude over normal. For example,
suppose we are building a system that we expect will do 1 million transac-
tions a day. We will take orders around the clock, seven days a week. Peak
orders might be in the morning from 9:00

A.M.

 to 12:00 noon and in the
afternoon from 2:00

P.M.

 to 5:00

P.M

. The average order rate for this sys-
tem is around 50,000 an hour, but possibly a peak hour could be 500,000
orders. If ordering and shipping are tightly coupled, the shipping system
will need to be sized for 500,000 orders per hour. If ordering is loosely cou-
pled to shipping, so that it can pass off orders into a queue without waiting
for fulfillment, a shipping system sized for 50,000 orders per hour could do
the workload, although we would probably size it larger than that to pre-

11.3

Managing Performance and Scalability 255

Chapter 11

vent the queues from getting too large. See Figure 11.5, which sizes the
back end around 100,000. The tightly coupled system would need more
back-end servers and is still subject to failure. The loosely coupled system is
good until the queue size is exceeded.

Queuing is not for every application, because of the extra work it intro-
duces. This includes:

�

Marshalling the data into and out of the queue format

�

Handling business error situations, which can occur if, for instance,
an order is not fulfilled

�

Replication of data, such as catalogs

We must make sure that the extra work caused by queuing is not dispro-
portionate to the benefits it brings the application. The error situations that
can occur in a long-running transaction involving queuing can be complex
to reverse.

Figure 11.5

Queuing improves
reliability and

throughput.

256

11.3

Managing Performance and Scalability

One form of queuing that is relatively easy to implement is to write
changes into a staging table. This table is designed for fast writes; for
instance, it may be a set of sequential rows with all transaction details in a
row and no or only one index. The table could be in a separate database or
on another machine. Then a writer program can apply the updates. A strat-
egy like this is used by several enterprise applications, such as leading ERP
products. By using the database for queuing, we do not need to acquire
another piece of software and we can use a data format compatible with the
final destination. The problem is latency, since the delay in the update
might affect another transaction, and we need to take that into account in
the design, possibly by checking the queued transactions when necessary.
Figure 11.6 illustrates queuing in the database.

Queuing is a very good method for loosely coupled communication
between applications. One obvious way to get queuing is to employ a “mes-
sage queuing” product. While messaging can be implemented over a data-
base, mail, HTTP POST, or FTP, message queue products can provide
higher-level facilities including serialization, idempotency, and support for
long-running transactions and transaction reversal. Proprietary products
include IBM Message Queue Series, BEA, and Microsoft Message Queuing.
There are several open source tools for messaging, including JBoss, and sev-
eral Java Messaging Services (JMS) products, OSMQ and MOM4J are two
open source products that implement JMS for open source languages in
addition to Java.

11.3.3 Database Design

For large systems, we will need to optimize the database. I have spent sev-
eral years in a consulting practice reviewing databases; our team was usually
called in when the customer had decided to replace the database with
another because of lack of performance. Our experience was that we could

Figure 11.6

Queuing in the
database.

11.3

Managing Performance and Scalability 257

Chapter 11

always get much more performance, often as much as an order of magni-
tude. The techniques to do this are as follows:

�

Measure performance, isolate the problem areas to allow focus on the
important areas, and use tools to see the actual database queries run-
ning.

�

Review the application requirements and design against the database
design. It is common for implementers of the application not to be
aware of data volumes, and database administrators not to be familiar
with application logic.

�

Use database-specific optimizations, such as stored procedures, cur-
sors, indexes, and prepared statements, correctly. In MySQL, this
includes choosing the storage type.

�

Find a clean way to pool database connections so that the pool is
maintained, rather than continually connecting and dropping.

The next two figures show examples of high-performance database
design. Figure 11.7, adapted from an account of the Travelocity system
given at the MySQL conference, shows a travel reservation system that uses
replication to uncouple pricing, which is higher in volume and lower in
criticality, from ticketing. The system uses six HP NonStop 16-processor
systems running Open System Services for ticketing and 45 HP 4-processor
Itanium systems running Red Hat Enterprise Linux and MySQL for pric-
ing. The application is written in C++ (GNU 3.2.3). Each MySQL system
has a 50GB to 60GB database. The NonStop systems are the database mas-
ter. Golden Gate Extractor is used to replicate data from the master to the
pricing systems. This design allows complex processing to be performed on
the more scalable systems.

Replication can be used to separate update transactions from read-only.
Figure 11.8 shows a scheme modeled on Slashdot that works well for high-
volume content management. Read access is a hundred to a thousand times
the volume of write access, as on many Web sites. Updates are applied at
one database and replicated to as many others as volume requires.

Storage Engines

MySQL offers several table types, which refer to different storage engines.
The two most important are InnoDB and MyISAM. The MyISAM type
has no transactions and is not good at handling mixed reads and writes, but

258

11.3

Managing Performance and Scalability

Figure 11.7

Travel reservation
system.

Figure 11.8

Replication with
content

management.

11.3

Managing Performance and Scalability 259

Chapter 11

it is fast at writing or reading. The InnoDB type is best for normal mixed
database activity. In Figure 11.8, we will most likely write to an InnoDB
engine for transactions, and then replicate to MyISAM for text search and
read speed.

Two other types are useful for specific purposes. The Memory type is
fast but has no disk storage, so is appropriate for caching. We can copy
translation tables, pricing, and other nonvolatile information into a cache
to avoid database access. We can even cache transient state to allow quick
access on subsequent visits in a session. The Merge type can be useful for
logs, since it allows us to maintain a different physical file for each day or
week of activity, yet combine them when needed. Figure 11.9 shows these
four storage engines (table types) used together in a Web application.

11.3.4 Application Servers

Application servers provide a number of useful things. They provide trans-
actions (this is the main point of EJB and COM+), including transaction
composition, automatic failure handling, and two-phase commit. They
allow us to split our application into parts, in some cases across languages
and particularly across system boundaries. They perform the work of shar-
ing some number of users across an arbitrary number of processes. They

Figure 11.9

Combining
MySQL storage

engines.

260

11.4

Interoperability

give us thread and process management in a language-independent man-
ner while hiding the details. They manage resource pooling, such as data-
base connections.

Remarkably, the best choice is often not to use these features. We should
certainly not just assume that we are going to do it. If we stick to a single
database, that will provide the transactions. For multiple databases, we will
try to use a loosely coupled approach. We can use language-independent
services on a single platform, but when operating over multiple platforms
we will use shared database or Web services. Given a decision to build sev-
eral loosely coupled connected systems, most applications should be devel-
oped in a single language.

The leading open source choice for an application server is JBoss. This is
the most deployed Java application server among developers. At the time of
writing, it rivals the closed code leaders in deployment. It was second in
deployment to IBM WebSphere and ahead of BEA WebLogic.

11.4 Interoperability

A typical large organization has several distinct environments. Applications
written to run on any of these platforms must be able to share information
and interoperate with any of the others. So it is important to have a plan for
interoperability between systems running different software on those differ-
ent operating systems. These include:

�

Microsoft Windows infrastructure with COM and/or .Net develop-
ment

�

IBM mainframes with COBOL, CICS, DB2, and possibly AS/400
systems, often with WebSphere

�

Systems based on Java application servers, such as WebLogic or Web-
Sphere, generally on UNIX or Linux

�

Linux systems with LAMP applications

One would certainly expect that a system should be accessible to its
owners, so that any information contained in it can be recovered with rea-
sonable time and skills. In contrast, many companies feel that their data is
“trapped inside” their legacy systems, unreachable except by an expensive
project akin to archeology.

11.4

Interoperability 261

Chapter 11

All of this, of course, can be greatly complicated by security issues. Obvi-
ously, applying security to a multivendor heterogeneous situation is very dif-
ferent from relying on a single vendor. So if you have the option of putting
everything inside one vendor’s protection, it can be considered. This is a very
serious kind of lock-in because once all applications are in a common secu-
rity perimeter, it will be hard to escape. Depending on the vendor, this could
be very expensive and inflexible, and may not necessarily be very secure.

Strategies for interoperability can be placed under the broad headings of
shared access to data, including file transfer and shared database, and process
communication, including Web services. Whichever approach is chosen, if
data formats are complex, as they generally are, there is a need for data shar-
ing standards. These are usually structured around XML. The two preferred
alternatives are shared database and Web services.

11.4.1 Shared Data

We can share data using a file system or a database. For knowledge manage-
ment applications, we will often use file transfer or shared access to files.
This can include FTP; network file sharing with Samba, NFS, or iFolders;
or files sent as mail attachments. This is a good way to manage slowly
changing data that is distributed from a central point. It can also be used to
replicate databases in some circumstances. We can map a database into
XML and send it as a file.

There are some basic problems of file sharing that must be addressed.
Windows, Linux, and the Mac encode text files differently, and binary data
is subject to platform variations. Network file shares are subject to more fre-
quent and different types of error than local files.

This is a very difficult way to manage transactional data. If the data
changes regularly, the file distribution becomes absurdly large and we must
start looking at delta mechanisms. If the data is changed at multiple loca-
tions, we are managing multimaster replication, which is a hard problem.
Even simple file drops need planning to deal with locking and event notifi-
cation. Once we get past the simple cases, it becomes time for a database.

Shared Database

Shared database is the preferred way of doing cross-system interoperability.
The database handles a range of data types, the network communication
issues, and transactions and serialization.

Database replication is often a requirement. With homogeneous data-
bases, this is commonly provided; MySQL and PostgreSQL both support

262

11.4

Interoperability

replication as a database feature. We can also manage replication with
scripting. For complex replication needs involving several heterogeneous
databases, it is worth considering products such as Golden Gate.

11.4.2 Process Communication

Process communication generally involves development. It includes:

�

TCP/IP socket programming

�

Screen scraping

�

Messaging

�

Application integration engines

�

Web services

Socket programming is a good mechanism for tightly coupled com-
munication. It is not always as easy as one would wish, and there are data
marshaling issues, but use of a high-level language such as Python and
XML for encoding makes this reasonably simple. Network errors are diffi-
cult to handle.

Screen scraping is an unattractive technique that we fall back on if we
have no access to an application. A variant of this is Web scraping. This is
very vulnerable to changes in screen layouts. We would prefer to use Web
services.

11.4.3 Application Integration Engines

The general-purpose integration engines such as WebMethods, BizTalk,
and IBM WebSphere Integration Server can sound appealing. Integration
engines offer an attractive interface, which demos well, and a long list of
packages they can work with. But there are many issues with these packages
that generally make them not worth the hassle. Several of these problems
are similar to other “big picture” solutions, such as CASE tools and 4GLs,
in the past.

The problems these tools address are more complex than they appear, so
often the tool fails and has to be superseded with custom code for the
harder problems. These tools are sold to bypass developers by using pretty
GUIs and such, but they don’t bypass developers (because the details really
are complex). Developers don’t like the pretty GUIs, because they lack sup-

11.4

Interoperability 263

Chapter 11

port for versioning, backup, and often basics such as scalable diagrams. In
any case, good developers like to work with a standard set of tools. This is a
different tool, typically quite difficult to learn to use well, and since it is for
a very specialized function most developers don’t learn it well. Integration
of this type of tool is, ironically, not particularly easy.

These tools are expensive, so there is often pressure to use them in sev-
eral projects to amortize the cost. There may not always be a good fit. In
practice, most people write their own solutions for application integration.
At any time, most people have a point-to-point integration need, which can
usually be addressed with a program in a scripting language such as Python.

Two cases from personal experience, one involving WebMethods, the
other using BizTalk Server, illustrate problems with integration engines.
One example is a hospitality organization hosting many different retailers
within the resort. These stores needed to exchange transaction data with the
resort. Originally we had planned to slightly extend a TCP/IP socket proto-
col that was in place. Bringing in an integration engine changed a two-
month project into a six-month one, increasing costs proportionately;
delayed the start by a further six months while waiting for the initial engine
deployment; and worsened performance by a factor of ten.

The second example is a distribution company that used an integration
engine to manage sales of product at many hundreds of “stores within
stores” at dozens of retailers with different reporting formats. Unfortu-
nately, performance was slow because of the large amount of reformatting
needed by the engine, as things went in and out of XML. Customization
was difficult; it turned out that requirements of the most important part-
ners were too complex for the integration engine, and custom code was
needed to manage many parts of the process. That code jumped through
such hoops to work with the engine that it was more complex than if the
problem had just been solved by custom code.

Once again, the most general solution to this problem is Web services.

11.4.4 Web Services

Web services offer a standard method of communication that is independ-
ent of language and platform. Using Web services, we can make a call to
another system regardless of the platform on which it runs. The data is mar-
shaled and tagged in XML, and the call is made across platform and operat-
ing system. As Figure 11.10 illustrates, we can use Web services to achieve
interoperability between WebSphere, .Net, and LAMP applications. This

264 11.4 Interoperability

can be achieved at quite small levels of granularity, such as a function call,
or large levels, such as a file of purchase orders.

Web services can be asynchronous or synchronous. Asynchronous calls
allow for loosely coupled systems, particularly combined with document-
style XML to allow transfer of large quantities of related data.

The simplest form of Web service is XML-RPC. XML-RPC may be the
best choice for internal use and rapid development. SOAP is a more elabo-
rate standard, with more features and choices. SOAP is more likely to be
used for industry standards or interbusiness communication. All of the
open source languages have good support for Web services.

For simple communication, replacing socket programming and screen
scraping, particularly in internal applications, Web services work very well.
It is still difficult to use them for interbusiness development. Many of the
standards at higher levels are not really ready yet. Encryption, standards for
interorganization communication, and security all have to be addressed.

To solve the integration engine scenarios using Web services, we develop
our own code to address the specific problem or problems we are facing,
using XML and queuing if appropriate. If the problem is somewhat gener-
alized, such as many customers or vendors, we develop a general solution to
the problem on a hub and spoke basis. It is very unusual for such a solution
to be more expensive and difficult than using the integration engine, and,
of course, it will use the standard development tools and database of our

Figure 11.10
Web services.

11.4 Interoperability 265

Chapter 11

organization. Figure 11.11 shows the previous distribution company exam-
ple. The relationship between the three entities (distributor, corporate, and
retail) is loosely coupled using XML files passed variously by mail and file
transfer (FTP). The XML schemata differ for different documents (pur-
chase orders, invoices), as we might expect, and also, unfortunately, for dif-
ferent retailers. The largest challenge, as often in long-running transactional
systems, is tying related documents together. We rely on lookup against the
ERP system to do this.

11.4.5 Data Formats

The problem of data marshaling, which is an issue for most of the interop-
erability techniques, occurs at several levels. At the lowest level is the issue
of character representation: encoding (such as Unicode), line endings (car-
riage return and/or line feed), and byte order (big endian or little endian).
At the next level, we need a system for tagging field names, then for data
typing, and then to manage linkages between fields to support hierarchical
representations. Above this are semantic issues, such as agreement on the
content and relationships of fields. Shared database solves many of these
directly, but more complex relationships still need to be mapped to XML.

Figure 11.11
Distribution

example.

266 11.5 Development Platform Choices

For loosely coupled interoperability, the minimum we need is self-
describing data, which is typed and represents correctly on each platform.
XML does this very well. For many purposes, we can use a simple one-level
XML generated from flat files, which is easily done with a Python or Perl
script and involves no overhead. In any case, the open source languages sup-
port powerful XML parsers. Different systems will use different schemata,
but as long as we can identify fields, we can transform them from one XML
schema to another.

There are excellent XML parsers and libraries available for all the open
source languages—notably, Perl, Python, and Java.

11.5 Development Platform Choices

For corporate development today, the choice generally comes down to one
of the following:

� Java, including Java Server Pages (JSP) and/or Java application servers
such as WebSphere, WebLogic, and JBoss

� Microsoft .Net, including C# or Visual Basic with ASP and the CLR
run-time environment

� LAMP (Linux-Apache-MySQL-PHP)

Any of these approaches can be used for rapid development of simple
applications and then scaled up where necessary, at some trouble and cost,
to produce large architected solutions that meet complex requirements with
high performance. All of these can be developed to run on various servers,
including Windows and Linux. All are cross-platform at the client if devel-
oped as Web applications and tested correctly, and all can create client/
server cross-platform code under the right circumstances. We’ll compare
them in some detail.

11.5.1 Java

We can build simple applications with JSP (Java Server Pages), which is
how most Java applications are done. We can build complex applications
with a Java application server using a framework such as Struts.

11.5 Development Platform Choices 267

Chapter 11

The leading open source choice for Java Server Pages is Jakarta Tomcat.
Application servers include JBoss, the leading open source application
server, or one of the closed code application servers:

� IBM WebSphere

� BEA WebLogic

� Oracle Application Server

� SUN ONE

The products from IBM, BEA, and JBoss are the leading choices of large
corporations. The closed code application server development environ-
ments are typically very expensive. JBoss apparently has about a 25 percent
share of production systems, although closer to 50 percent share among
developers (many of whom are individuals).

JSP and Java applications are cross-platform across Linux, Windows,
UNIX, and other servers, as well as across clients, including Windows,
Mac, Linux, and others, if developed and tested correctly.

Pure Java Server Page applications are pretty portable. Unfortunately,
applications that use the vendor application server environments such as
WebLogic and WebSphere are difficult to move between vendors, since
these environments are integrated with proprietary vendor tools and serv-
ices. My experience is that companies find this too difficult, and often finish
up with more than one of these application servers supporting different
applications. Roger Sessions, of the newsletter ObjectWatch, quotes the
IBM publication “Migrating WebLogic Applications to WebSphere V5,”
available at www.redbooks.ibm.com, as taking 260 pages to describe how to
do this move.

The main strength of the Java approach is its cross platform, which is
excellent. These systems can be scaled for high performance, albeit at a high
price. The weaknesses of the Java approach are cost and difficulty of devel-
opment. While the majority of Java systems have been developed using JSP,
and probably could have been done with open source approaches, most
organizations have used expensive tools to do it.

The ability of large systems built as recommended using application
servers to scale economically is very questionable. All the benchmark evi-
dence is that large Java systems are significantly less efficient than alterna-
tives developed in C++ or .Net. A few years ago, there was a year-long

268 11.5 Development Platform Choices

debate over a “Java Pet Shop,” which Sun had published to show how to
build a Java application. The story demonstrated, in a nutshell, that vendors
are not recommending or selling the same architecture to the enterprise that
they use themselves for performance or internal applications. In any case, at
some point as the application scales, large vendors that support this option
will predict failure unless you move to their closed code tool sets.

The best bet for this approach would be to use Java Server Pages and the
open source product Tomcat. If an application server is needed, we can use
JBoss.

11.5.2 .Net

With this approach, we can build simple applications with ASP.Net using
C# or VB. We can build complex applications using tiers, with COM+ as
the application server and SQL stored procedures.

Many dot-net development tools are available from Microsoft and third-
party tool vendors for the Microsoft platform; of course, most developers
will use Visual Studio.

Dot-net is noticeably less expensive than a full Enterprise Java solution.
In fact, ASP.Net is arguably free with Windows 2003 Server if you can
forgo the Visual Studio development environment and use a programming
editor instead.

Dot-net applications are not necessarily confined to the Windows plat-
form. They can be deployed cross-platform using Mono or DotGNU. The
Mono project allows .Net applications written in C# to run on Linux sys-
tems, although typically Mono developers now recommend building on
Visual Studio and porting to other platforms. The language and many
classes have been submitted to a standards body. It is planned to extend this
to VB as a source language and to OS X as a target platform. Mono is a
project of the Novell division Ximian and has a heavy-duty development
team behind it. They are motivated because they want to move their code
base (e.g., Gnome) from C to an object-oriented type-safe language, so we
can expect that this will happen. Since Mono can support the Gnome code,
it should be robust and high-performance enough for just about anything.
It still seems unlikely to me that in the next few years C# adoption will
catch up to Java, let alone pass it, outside of the Windows closed code area.
Mono is beta in at the time of writing, so it will be some time before it is in
general production use.

11.5 Development Platform Choices 269

Chapter 11

The strengths of the .Net approach are scale, cost, and ease of develop-
ment. The weakness of the .Net approach is that it is not cross-platform—
at least until the Mono project is more widely used. It is true that develop-
ment for the Web allows cross-platform applications, but even here there is
a bias in the documentation toward closed systems, such as recommending
use of client-side COM, Office, and IE-specific browser features.

The best bet for .Net is to use C#, but it is not an open source language
and is not going to be chosen for cross-platform development yet.

11.5.3 LAMP

Using this approach, we can build simple applications with PHP, Perl, or
Python. We can build complex applications in the traditional way for open
source software, tiered with a scripting language in front and C/C++ server
and library elements as necessary, or we can use the JBoss application server.
All of these systems are cross-platform at the client if developed as Web
applications and tested correctly.

LAMP applications are cross-platform across Linux, Windows, UNIX,
and other servers, as well as across clients, including Windows, Mac, Linux,
and others, if developed and tested correctly.

The strengths of the LAMP approach are cost, cross-platform capability,
and ease of development. The potential weakness of the LAMP approach is
complexity growing with scale.

Successful LAMP implementations include many small to medium sys-
tems, which have been developed simply, and some very large ones, includ-
ing Amazon, Sabre, and Slashdot. As discussed earlier, some very large
applications will need to have some seriously competent C++ programmers
available.

Open source languages such as Python typically compile to an interme-
diate code, similar to VB and Java, and as a result Python code can be
slower than C. When this matters, individual Python classes can be recoded
in C without alteration in the calling code. The Python variant Jython runs
on Java and is free to call Java classes directly. So just as VB programmers in
Windows can call VC++ components, Python programmers using Jython
can call Java components. This is a great cross-platform tool, and it also
means that Python can access Java components such as Lucene and JBoss.
Integration with Java applications can be done using Jython.

270 11.5 Development Platform Choices

The best bet here is to deploy with LAMP as the default choice. For very
large systems, we will architect carefully and be prepared to substitute com-
ponents for the highest scale or to interoperate with other enterprise systems.

Migrating Microsoft Developers to Open Source

The majority of programmers today are not working in Java, .Net, or LAMP.
Surveys of programmers on all platforms find that most people who identify
themselves as programmers do most of their work in Visual BASIC (VB).

Microsoft documents of the last ten years, from the DNA era on, have
generally advocated development through “components,” which would be
assembled through scripting into custom solutions for business. This has
usually meant, in practice, VB. VB has been the most widely used language
in the world practically since its introduction, when it supplanted plain old
BASIC. It is easy to learn, supports interactive development, batch, and
Web development, and has the support of a healthy market in third-party
components. It has lagged in performance, but the components, usually
written in C, could be as fast as necessary, and recent versions perform well.

For Web development, most Microsoft shops use Active Server Pages
(ASP). ASP, as with JSP and PHP, is a mixture of HTML, with scripting for
“quick and dirty” development. For batch development, most Windows
organizations use Windows Scripting Host (WSH). ASP and WSH are
used with VBScript. Data Transformation Services (DTS), a graphical
scripting tool for data management, also employ VBScript. Most program-
mers in Windows are familiar with Visual BASIC, and most applications in
the Microsoft environment involve a version of Visual BASIC. In the .Net
component architecture, the language can as well be C# as Visual BASIC,
and Microsoft would probably prefer that but my experience is that in cor-
porate America, the migration, such as it is, is to VB.Net. VB is changed
significantly by VB.Net and may change again in a few years when Long-
horn is introduced. ASP.Net allows and encourages a strict separation
between code and markup language, particularly using Visual Studio.
ASP.Net supports the VB.Net and C# languages, with books and documen-
tation providing examples in both. In the long run, .Net improves the story
greatly for the Microsoft developer, but for now, the main effect is to add
VB.Net to the several VB flavors that must be handled.

What Should Visual BASIC Programmers Do?

Visual BASIC runs only on the Microsoft Windows platform. The question
for the majority of programmers in a world where open source plays a larger
part is what language will play the role played by VB in Windows? There is

11.5 Development Platform Choices 271

Chapter 11

no realistic chance of a cross-platform Visual BASIC. Other versions of
BASIC exist, but are little used in comparison to Visual BASIC and are
incompatible. The Mono project plans a port of VB.Net to Linux, but this is
not yet available, applies only to VB.Net, and is unlikely to ever have much
share on that platform. The Mono project’s primary goal is the porting of
C#, and programmers who are interested should learn C#. There is plenty of
time to become proficient in C# before Mono is production ready.

How can a developer escape lock-in to the Windows platform while
using a single language to develop applications that are graphical, batch, or
Web based? The language should be relatively easy to learn and able to be
extended to cover almost any type of development problem.

VB programmers or their managers (whoever makes the language deci-
sion) have already had the opportunity on Windows to consider C++, Java,
and C#, and they have, for whatever reasons, chosen VB instead. Of course,
given a stronger need for cross-platform development, they could revisit
that choice. If they did not choose to be Visual C++ programmers, they are
not particularly likely to become GNU C++ programmers either (although
the free-structured nature of the open source community will make this
choice possible for a few).

Java is a good choice—one that frees VB programmers from their single
platform and limited engineering—but again it is not the only or even the
most obvious choice, since they could have made it years ago (e.g., Visual
J++.) If they are predominantly Web developers (ASP), they will probably
be comfortable with JSP, and that is a possibility.

VB programmers should consider the open source languages PHP, Perl,
and Python. Web developers should look first to PHP, which is the most
used Web development language, doubling in use every 18 months. Perl is
an interesting choice for individuals with an administrative bent, who may
have used VB to manage Exchange or BizTalk or to perform database
imports or WSH scripting (of course, they might have already used Perl
on Windows).

The one language that is the most effective way to get an open source
application shipped, whether it is Web, GUI, or script, is Python. I argue
that for VB programmers the language of the next few years is Python.
Python has the good features of Visual BASIC (and some of its own) with-
out most of the drawbacks.

Python is an easy language to learn. It can be used for GUI, script, or
Web-based development. Everyone comments on its one idiosyncratic
point of syntax: the significance of white space; after that, it is pretty much

272 11.6 Summary

common sense. The Python language is similar to VB in the availability of
components (class libraries) that can do just about anything. They are gen-
erally written in C for best performance, and, unlike VB, they are almost all
free (no charge and source code available). Many of the most useful come
with the standard distribution. So, as with VB, Python is a language where
the general developer starts by finding and using classes rather than by
defining and building them.

Python runs on Windows, Linux, and the Mac; simple self-installing
binary packages are available for these platforms. Most Linux distributions
(e.g., Red Hat and SuSE) include Python installed, as does Mac OS X 10.3.
It also runs on any UNIX system and some others; less common platforms
may need a source code install.

The Windows version of Python is very powerful and a good place for a
Windows professional to start. It is easily downloaded (e.g., from
www.python.org); that download is self-installing and ready to go for most
purposes. There has been serious thought given to cross-platform compati-
bility, and it is a simple matter to develop code on, for example, Windows
that will run on Linux and the Mac (this book contains an example).

11.6 Summary

If we are interested in performance, the first rule is to get the basic architec-
tural choices right, using multiple commodity systems for price/perform-
ance, loose coupling using queuing to control peaks and failures, managing
resources carefully, and with database tuning using the specific features of
the available engines.

We can build open source applications with the three major architec-
tures, and many larger organizations will do this. If we want to choose .Net,
we can set up a Visual Studio.Net development environment and a Mono
(or DotGNU) development environment and build ASP.Net applications
with C#. If we want to choose Java, we can set up Jakarta Tomcat with
JDBC and our chosen database and build JSP applications. If we move to
an application server, we can use the open source product JBoss.

LAMP is a good choice for many applications even if you plan to use
Java or .Net for others. There are several ways to ensure interoperability,
including shared databases and Web services. LAMP applications can be
scaled and are inexpensive to deploy. The majority of business systems, with
databases of tens of gigabytes and hundreds of requests per second, suit the
LAMP approach very well, and the systems can be scaled up if necessary.

11.6 Summary 273

Chapter 11

The development environments, debuggers, and tools are powerful. Apache
is the most used Web server and PHP the most used Web development lan-
guage, so you are not sticking your neck out.

This page intentionally left blank

275

12

The Cost of Open Source Systems

Of course, it is not difficult to price open source software products, since
they are almost all free. The difficulty comes when we move past this to do
these more difficult things:

�

Price comparable closed code products.

�

Price all associated costs, including hardware, staffing, and support
costs, to derive a total cost of ownership (TCO).

In this chapter, we will compare open source software prices with similar
closed code software. Of course, there are not always similar products and
where there are, we may have a preference for one feature set over another.
In this chapter, we will only compare costs.

Then we will examine the total cost of ownership of open source and
closed code products and compare those. To do this, we will take some sce-
narios for businesses of different sizes. The estimates for hardware and staff-
ing are kept very simple, and you are invited to substitute your own
numbers.

Because so many factors differ, this is only a framework, which will need
to be adjusted for a particular organization. The tables here are available at
the Web site

www.kavana.org/opensource

 for download if you would like to
adjust them for your own situation. Figure 12.1 illustrates the major cost
elements, which are staffing, hardware, and software, usually in that order.

We will review these costs by category, and then put the per unit prices
into simple tables. We can use these tables as the cost basis for some typical
scenarios. In all cases, we should substitute our local information into this
table, since our prices may vary.

276

12.1

Total Cost of Ownership

12.1 Total Cost of Ownership

There is a simple answer to the question of open source software costs,
where open source solutions are comparable to closed code alternatives.
When compared with similar closed code systems, open source systems as a
general rule cost:

�

Much less for software

�

No more and often less for hardware

�

If other things are equal, no more for anything else

As far as software costs are concerned, we will review tables with the
prices for common open source and closed code products, and see that
open source software costs much less.

As far as hardware is concerned, open source products are available for
effectively all current hardware platforms, including the systems with the
best price/performance. Open source performance on a platform is usually
similar to closed code competitors, as already discussed throughout this
book. So hardware for open source software generally costs the same as for
the least expensive system for closed code. In most cases, we are comparing

Figure 12.1

Cost elements.

12.1

Total Cost of Ownership 277

Chapter 12

the same hardware running Windows or UNIX on the one hand versus
Linux on the other.

Other things may not be equal and total cost of ownership (TCO) stud-
ies offer an opportunity to show that. There are many forms of these, and
there is a small industry that compares and contrasts TCO versus ROI ver-
sus various other terms. Here, we will keep this simple and use TCO to
include the other costs involved over a reasonable period of time when
making a software decision.

The issue usually comes down to staffing costs. There are some pub-
lished TCO studies that attempt to show that open source software costs
more than you think, or that hardware costs more for Linux in some spe-
cific situation, but they are from obviously biased sources and are not really
credible. The three big cost elements of TCO are staffing, hardware, and
software. Of these, staffing dwarfs the others in all the scenarios we will
look at. Because of the dominance of staffing costs, even where open source
software saves millions, this will not represent a particularly large percent-
age difference in TCO. However, software may be the only controllable
cost. In these cases, TCO can obscure the real savings by adding large costs,
which are effectively fixed, such as system administration and support, to
both sides of a comparison.

12.1.1 Staffing Costs

Personnel costs dominate software costs for infrastructure. Because of this, the
savings from open source software such as Linux and MySQL will be small
compared with the costs of personnel for development and management.

An IDC report on Windows and Linux infrastructure costs estimates
the TCO cost breakdown for infrastructure, as shown in Figure 12.2.

This may understate software costs, but it is broadly consistent with
work by Gartner on IT costs, which again shows staffing and downtime as
the major costs for infrastructure. So for IT infrastructure systems, the
impact of a system on system administration and end users can be ten times
more important than its purchase cost. This indicates how inexpensive IT
infrastructure is today measured at the server. Desktop costs alter this sub-
stantially, as we will see later.

Application solutions can be much more expensive. Large applications
can incur millions of dollars in costs for software acquisition or develop-
ment, as well as large server hardware costs, particularly for database sys-

278

12.1

Total Cost of Ownership

tems. Even for simple Web applications, hardware and software are higher
than for infrastructure.

Table 12.1 has a simple estimate of resource prices for developers and
system administrators. The costs are loaded, including salary, vacation,
management overhead, general training, taxes, and benefits. They are aver-
aged, with no effort to distinguish between skill levels. There is also an
entry representing a week of training. Many projects require training of a
week or two for developers and administrators.

Support costs are difficult to calculate, because there are so many differ-
ent options. For mission-critical systems, an organization will want to con-
tract with the system developers to ensure coverage whenever there is a
system problem. For desktop systems and infrastructure, it is usually
enough to maintain competent staff and solve the issues in house. A sup-
port contract with a software vendor such as Microsoft Product Support
Services, providing a full-time equivalent, costs upward of $250,000. Con-
tracts involving a named contact and some number of incidents might start

Figure 12.2

TCO elements for
infrastructure.

Table 12.1

Staffing Costs

Item Cost Per Details/Comments

Developer $95,000 Year Loaded cost

Sysadmin $75,000 Year Loaded cost

Training $10,000 Week Including class, travel, and expenses

12.1

Total Cost of Ownership 279

Chapter 12

at around $50,000 annually. Similar contracts can be struck for open source
software products. They are likely to cost much less (a third or a quarter as
much) and will be structured less formally.

12.1.2 Hardware Costs

Hardware costs include servers, clients, networking equipment, and other
appliances such as firewalls. Hardware costs are generally about the same
between Windows and Linux, unless there is some unusual performance
issue causing a difference. Usually, the same hardware can be used at all lev-
els. Before the recent releases of the Linux 2.6 kernel or some specialized
late 2.4 kernels, such as Red Hat Enterprise Linux 3, Linux threading was
slower than the hardware allowed, and this had a negative effect on database
and application server measures.

Table 12.2 includes estimates for hardware. Most organizations will use
a few standard boxes so that service parts can be stockpiled and one set of
trained users can maintain all the systems. I have used commodity systems
of the type commonly used for Windows and Linux. Most systems can be
put together with these components. There are, of course, much more
expensive servers available for specialized purposes.

12.1.3 Software Costs

The closed code comparative software prices that follow are given for
Microsoft. The major vendors track each other’s pricing and Microsoft’s
pricing is more transparent than other larger vendors. In my experience,
Microsoft is very rarely more expensive for the same class of product than
IBM or Oracle, and its pricing is relatively stable, easy to get, and easy to
work with.

Microsoft server prices are discounted for volume purchasing. This can
reduce prices by 25 percent for a large organization, more in some cases.

Table 12.2

Hardware Costs

Item Cost Per Details/Comments

Big 4-processor box $25,000 Server HP DL745 4-processor 2gig RAM

Medium box $12,000 Server Dell 2650 2-processor

Small box $4,000 Server Dell 1750 2-processor

SAN, shared disks $80,000 Project Dell/EMC

280

12.1

Total Cost of Ownership

Microsoft server products are licensed by processor or by client access
licenses (CALs). This is usually decided by the product, but SQL Server
allows you to license either way. If you have a two-processor machine sup-
porting 70 users, you could license per processor for $10,000 ($5,000 per
processor) or per CAL for $10,110 ($1,500 plus $123

×

 70). This is the
practical cutoff; for more than 70 users, you would pick the unlimited per
processor license. Considering that even a small two-processor system
would be expected to support more than 70 users, and this method
removes licensing hassles of the CAL mode, this will be the way most peo-
ple will license.

Infrastructure Software

In this category, we will include the operating system and any essential tools
for networking and system management. There is a variety of good open
source administration tools available. Windows includes directory, file, and
print services; simple routing; and a Web server, so we will count them in
also. In Windows environments, firewall and proxy services (ISA) and mail
(Exchange) are additional products, and we will factor that into the costs
since organizations generally need those services. There is a simple mail
server included with Windows Server, but this is not usually used for enter-
prise mail.

The majority of Windows customers do not use the more expensive
server products such as BizTalk Server, Content Management Server, Share-
point Portal Server, or Commerce Server. These products cost from
$10,000 to $40,000 per processor. Competitors such as WebTrends,
Vignette, Plumtree Portal, or Blue Martini are even more expensive. We
will do one comparison using these types of products for completeness.

Open source software will generally be less expensive. In addition,
license tracking is wholly or partially eliminated. For Windows, client
access licenses (CALs) must be counted for all these, including directory
access. Client access licenses are generally the largest software cost element.

Database and Development Software

In a Windows environment, this usually includes SQL Server and Visual
Studio as items of additional cost. Other development tools, such as the
IIS Web server, the .Net development framework, application server com-
ponents, and Active Server Pages, are included with Windows Server.

In an open source environment, we will take this to include MySQL,
Apache, and PHP, and in some cases JBoss and Tomcat. These products
generally ship with and always install on popular enterprise Linux choices,

12.1

Total Cost of Ownership 281

Chapter 12

such as Red Hat and SuSE. MySQL has a small license fee in a commercial
environment, and JBoss has a support charge; we will include those where
appropriate.

Many organizations will use Oracle or DB2 as the database. These typi-
cally cost as much or more than SQL Server.

12.1.4 Using Third-Party Application and
Database Servers

In both the open source and Windows environments, there are many alter-
native choices of third-party tools and database servers. Popular choices
include:

�

Oracle or IBM DB2 database servers

�

IBM WebSphere, BEA WebLogic, or Oracle application servers

�

Tools for modeling, debugging, code management, and so on, such as
Rational and ClearCase

These products have the same performance and functionality and are
about the same price in either environment. People who choose these prod-
ucts generally choose them at least partly for this ability to offer the same
experience across the Windows and Linux platforms; they do not see the
Windows-only tools as equivalents.

These products are very expensive in comparison with open source soft-
ware or Windows development software. In 2003, for example, IBM was
listing the following prices:

WebSphere Advanced Server $11,400 per processor

WebSphere MQ $5,000 per processor

WebSphere Interchange Server $123,000 per processor

Counting the necessary maintenance and support contract, the three-
year price is twice that quoted. So the list price to put WebSphere on a cou-
ple of four-processor servers to perform a typical complex Web application
with components and queuing will cost $32,800

×

 8, which is $262,400,
not including any database. There are several warnings to consider with this

282

12.1

Total Cost of Ownership

price; there are lighter, less expensive versions of WebSphere that will work
for many situations, these prices are subject to discount, and may have
changed since the time of writing.

The effect on cost calculations of including these products is to add a
fixed (large) element to each side of the comparison, damping the overall
difference. Of course, if you add these products to one side of the compari-
son only, their cost will determine the outcome, but your comparison will
be of very limited value.

12.1.5 Pricing Open Source Software

Table 12.3 lists the prices of commonly used open source software prod-
ucts. Note that you can always distribute an open source software product,
so you only need to buy a single copy to get documentation and CDs. The
two exceptions here are MySQL, which is sold under a commercial license
priced per server, and Red Hat Enterprise Linux, which is only sold includ-
ing support, so that is also priced per server.

All prices for open source software are per system. Note that the Red
Hat Linux product prices include support. The MySQL database is dual
licensed, with a commercial license price of $500 per server, or is available
as free software under the GPL; we included it as $500.

Table 12.3

Open Source Software Prices

Product Price Function

Server Software

Fedora Core $0 Server OS

Debian GNU/Linux $0 Server OS

Red Hat WS Standard $300 Server OS

SuSE Standard Server $450 Server OS

Red Hat Enterprise Linux AS $1,500 Server OS

SuSE Enterprise Server $1,000 Server OS

Squid and iptables $0 Proxy and caching

OpenLDAP $0 Directory

Samba $0 File and print sharing

MySQL Commercial $500 Database

12.1

Total Cost of Ownership 283

Chapter 12

12.1.6 Pricing Closed Code Software

It is difficult to fully determine closed code software costs for several rea-
sons. Not all systems have a published price list, and the lists that exist are
incomplete. Products are often offered with very different prices to different
customers, and even different pricing models. Most companies offer sub-
stantial discounts, which are not published, to large customers. Some prod-
ucts are only available through personal contact and quotation from a
salesperson. Prices can change substantially overnight, such as Oracle data-
base prices, which went down with the release of 10

g

. Complex products
such as WebSphere have many components and several different pricing
models. Deals can be made, particularly if vendors know they are in compe-
tition with lower-priced products.

Although it is not possible to predict the precise number that a vendor will
quote to a particular customer, we can get a good estimate of the selling price
for that class of customer. For example, I have quotes received in recent con-
sulting engagements, or shared with me by customers, and all companies pro-
vide pricing examples for their published benchmarks and comparisons.

When we calculate prices in detail, many things can raise prices above
the initial expectation. Two examples are add-on products and software

PostgreSQL $0 Database

Postfix, Horde, Courier $0 Mail server

JBoss $0 Application server

Client Software

Eclipse (or alternatives) $0 IDE

OpenOffice.org $0 Office suite

Dia $0 Diagramming

GIMP $0 Image editing

Fedora Core $0 Desktop OS

SuSE Professional $0 Desktop OS

Debian GNU/Linux $0 Desktop OS

Table 12.3

Open Source Software Prices (continued)

Product Price Function

284

12.1

Total Cost of Ownership

maintenance. These costs are usually higher for closed code. Software main-
tenance is commonly 25 percent of the purchase price annually.

12.1.7 Pricing Windows Software

Microsoft has a published price list, so we can work with those numbers.
Table 12.4 lists prices of Windows software. It is often a good practice to
compare list prices, since discounts are unpublished and can vary consider-
ably. Although list price comparison usually tends to be roughly fair, it is
not fair when comparing open source with closed code. Closed code soft-
ware has higher prices and is often discounted considerably, so ignoring dis-
counts will tend to overcount the price of the closed code. I have used list
prices in Table 12.4, because that is what is available publicly. Large organi-
zations should often be able to get substantial discounts—for instance, 25
percent less than these prices.

Table 12.4

Windows Software Prices

Item Cost Per CAL Details/Comments

Server Software (unlimited clients)

Windows Server Web $400 Server — Windows maintenance 25%
annual

ISA Standard $1,500 Processor — —

SQL Server Standard $5,000 Processor — Up to 4 processors, 2GB RAM

SQL Server Enterprise $20,000 Processor — Clustering, 64GB RAM

BizTalk Server Enterprise $25,000 Processor — BizTalk Standard is not practical

Server Software (per computer with CALs)

Windows Server Standard $800 Server $25 Windows maintenance 25%
annual

Windows Server Enterprise $3,300 Server $25 Windows maintenance 25%
annual

Exchange Standard $1,300 Server $67 —

Exchange Enterprise $7,000 Server $67 —

SQL Standard $1,500 Server $123 SQL is licensed by CAL or proc-
essor

12.2

Types of Costs 285

Chapter 12

The column titled Per in the table shows how the product is priced.
Microsoft prices its products either per processor or per server with client
access licenses (CALs). The CAL column shows the per user price for prod-
ucts priced in that manner. Other companies may have other licensing sys-
tems, but per processor licensing is the most common for large servers. Per
user pricing is less common for servers but is often a way of offering low
prices to small organizations.

This table only lists Microsoft prices, because they are more generally
available. Commercial prices for comparable products from other vendors,
such as IBM, Sun, and Oracle, are usually similar or more expensive. We
can start from the spreadsheets here and feed in our own situation for
quoted prices and numbers of systems and users.

12.2 Types of Costs

We must take into account several cost factors that weigh heavily, including
fixed, off-budget, sunk, and switching costs. In a direct comparison of two
new systems, where things are equal, open source software will be less
expensive in almost every case. But often the comparison is in some sense a
migration, where there will be a big advantage to the incumbent, most
likely Windows today. This is what most TCO studies comparing propri-
etary software against open source actually do. In a migration, assumptions
favoring the incumbent product will increase staffing costs and probably
dominate the software savings. There are even some incumbent advantages

SQL Enterprise $11,000 Server $123 —

Client Software

Visual Studio Professional $1,080 Desktop — $2,500 for MSDN Universal

Office Standard $500 Desktop — $600 for Professional (Access,
XML)

Visio Standard $200 Desktop — —

Adobe PhotoShop $600 Desktop — —

Windows XP Professional $300 Desktop — —

Table 12.4

Windows Software Prices (continued)

Item Cost Per CAL Details/Comments

286

12.2

Types of Costs

to Windows in a new installation situation, at least perceived. Decision
makers may be unfamiliar with open source and inclined to assign higher
risks or expect to pay more for services.

12.2.1 Fixed Costs

IT and higher management costs above the level of project management are
a given and will not vary based on project activities.

Network and desktop infrastructure, including firewalls, storage area
networks, and personal computers, can be treated as a fixed cost when look-
ing at applications in most contemporary organizations. If we are funding a
project that brings technology to a new population, we will have to con-
sider these costs in the project, but they will in any case be the same for
open source or closed code.

12.2.2 Off-Budget Costs

End-user costs, including training, possible downtime or dissatisfaction,
and self-supporting (“messing around”), can be important, and some cost
models show these costs as the highest single cost component. However,
they are not usually reported as costs by IT organizations, because they are
not on the budget.

The effect on users may sometimes be reflected in penalties related to a
service-level agreement, but more commonly as a constraint on the IT
organization, which must maintain a particular level of service. The effect
of off-budget costs, when included, is to make estimates of user downtime
and dissatisfaction the largest elements of the cost models, although these
are very difficult to measure objectively.

These elements are not included in the models here. Instead it is
assumed that the systems being compared will offer equivalent availability
and ease of use. This is very likely to be true for server systems, which run
on the same hardware and are not directly visible to the end user. It is less
easy to demonstrate for desktop systems, and may be a factor to consider.
Presumably, organizations that do not find desktop systems equivalent in
this regard will not deploy them regardless of cost savings.

12.2.3 Sunk Costs

Sunk costs are the costs already spent on existing systems and are not recov-
erable. It is difficult to get money for old systems, particularly after the dot-

12.2

Types of Costs 287

Chapter 12

com bubble; many systems that are a couple of years old are only worth
about ten cents on the dollar on the hardware, as a quick search on eBay
will reveal. Software and support costs and other soft costs, such as training,
can add up to much more than hardware and they will never be recovered.

The effect of sunk costs is to make it much more difficult to move to
new technology, because the acquisition cost of the new system is com-
pared with the residual value of the existing system, which is much less
than it cost.

12.2.4 Switching Costs

Switching costs are the additional costs it will take to move from an existing
system to a proposed new one, as opposed to keeping the existing one. The
effect of switching costs is to make new technology harder to adopt. The
first application with a new technology will cost more than subsequent
ones, because of training of developers and administrators, who presumably
know the old technology, and because of first purchase of servers, develop-
ment tools, and other infrastructure that will be reused for future applica-
tions. If there were a single standard before, then adding the new
technology also leads to having to support two technologies, which may
lead to additional cost.

Sunk costs are similar to a switching cost in effect, since they make exist-
ing systems and skills appear less expensive than they would be if acquired
now. However, existing systems still have costs, since equipment has to be
maintained, software upgraded, and new staff trained. Often, after a period
of time, an existing system must undergo a migration of its own, and this is
the best time to consider a switch.

Staffing is usually the highest cost in a TCO calculation, and the effect
on staffing costs of a migration will usually be to increase them. IT staff will
need to be retrained or rehired, possibly with expensive training. If there are
end users, they also need to be retrained. They also may have satisfaction or
quality issues in the transition. Of course, these are generally off-budget
costs, but they may need to be included as a one-time cost when part of a
conversion project.

If we look each year at our existing system, the switching costs will
always be there. Because they effectively raise the price of the alternative,
they act as a premium to the vendor of the existing solution. Any charge less
than the switching cost is not sufficient to cause the switch. Although a
switching cost is a one-time charge, this “vendor premium,” which the cost
makes possible, can be applied every year, as shown in Figure 12.3. In this

288

12.2

Types of Costs

diagram, the cost of a replacement in year 1 is high because of switching
costs; the replacement would be lower in subsequent years. If the migration
is not done, the same situation recurs in year 2 and subsequent years.

Vendors are well aware of this situation, as evidenced in this quote from
Aaron Contorer of Microsoft in an email to Bill Gates in 1997, quoted by
the European Commission 2004:

There is a huge switching cost to using a different operating sys-
tem. . . . It is this switching cost that has given customers the patience
to stick with Windows through all our mistakes, our buggy drivers,
our high TCO, our lack of a sexy version at times. . . . It would be so
much work to move over that they hope we just improve Windows
rather than force them to move.

It is the nature of vendors to attempt to hold us captive, whether it is
Microsoft, IBM, SAP, or Oracle. Our best defense is flexibility, avoiding
lock-in by preserving our ability to choose. Flexibility manages risk, because
it allows the possibility to use another technology or platform. Lock-in is

Figure 12.3

Switching costs and
vendor premium.

12.3

Scenarios 289

Chapter 12

also a cost now because of the vendor premium and later when we’ll have to
move anyway.

Of course, this premium is not literally charged but is an opportunity
for additional costs or unsatisfactory quality or service to pass. Software
maintenance charges are an example of this.

12.3 Scenarios

The following examples illustrate two companies with greatly varying num-
bers of internal desktops: 50 and 15,000. They have different scenarios of
internal and external applications that represent different issues. We will
calculate likely costs for infrastructure, development, and application prod-
ucts separately and then sum them. Costs will include hardware (expected
to last three years), software purchase, software maintenance (typically 25
percent of the purchase cost per year), development (one-time), manage-
ment (for the three years), and any switching costs (one-time).

Cost savings generally need to be produced in two years or less to justify
the return on investment (ROI) of a project. Longer time frames are riskier
because the project may outlast the personalities and circumstances that jus-
tified it and the technologies deployed may be surpassed. Small projects
should probably produce payback in under a year. However, systems are
deployed for longer than this. Hardware generally survives for three years,
at which point it has little residual value. Benefits are harder to calculate
than costs and many tend to be vague, such as “better communications” or
“improved productivity.” Some benefits of a project should be tangible; a
rule of thumb is that if we take a real objective away, the project should dif-
fer in scope.

In these cases, we will use an assumed life of three years, include a one-
time development cost in the first year, and ignore switching costs by
assuming a new installation.

12.3.1 Small Organization: Web Site

Figure 12.4 is the first scenario for us to examine. This is a small company
with an ecommerce server. The system has a small production database, a
pair of Web/application servers, and a development box, all of which are
small two-processor servers.

Table 12.5 compares the costs for this system with three development
approaches: SQL Server with ASP.Net on Windows, MySQL with Apache/

290

12.3

Scenarios

PHP on Linux, and WebSphere (or WebLogic) with Oracle or DB2 on
Linux. The system uses four two-processor servers: two Web servers, a data-
base server, and one system for development and testing. Application devel-
opment is assumed to be four months using PHP or ASP, or six months
using Enterprise Java, which can have a more substantial setup involved.
System administration would be a quarter of a resource annually, priced
over three years. Databases are priced with the unlimited user license, which
is usually the best for Web systems.

The Linux system with open source software is less expensive than the
Windows one. If you add Oracle and an application server, you get the
results shown in the third column, where the Linux system is more expen-
sive due to the cost of these two items.

Microsoft likes to compare the first and third columns, finding that
.Net development on Windows is less expensive than proprietary Java
development on Linux. Of course, if you want to use WebSphere and Ora-
cle, you should add them to the Windows solution costs too, bringing the
cost up considerably.

The cost differences here are small, really amounting to the cost of the
database server and application server. An open source solution on Win-
dows, such as LAMP or Jakarta/JBoss, would also be possible and cost little
more than the Linux solution.

The largest variable in this model is the cost of staffing. If a good pack-
age can be found reducing development cost, if the available development
resources skills favor a particular choice, or if one system is easier to manage
because it is compatible with other systems in the data center, then that will
change the equation. For example, I believe the Java/Oracle development

Figure 12.4

Small ecommerce
system.

12.3

Scenarios 291

Chapter 12

choice will have somewhat higher development costs. Others may believe
that one or another system is easier to manage or develop.

Small Organization: Internal Use

Of course, the small company in the previous example will have internal
operations, too. We can add 50 desktops with an office suite, mail, and file
and print services, and a couple of internal servers to support them with an
intranet. Figure 12.5 illustrates this added to Figure 12.4. In this case, the
third column might be IBM.

The costs for this are shown in Table 12.6. In this case, while staffing is
still the highest cost, software prices are a higher percentage. This is usually

Table 12.5

Small Web Site Costs

Microsoft Cost LAMP Cost J2EE Cost

Dell servers $16,000 Dell servers $16,000 Dell servers $16,000

Windows Server $1,200 Linux $450 Linux $450

SQL Server $5,000 MySQL $500 Oracle or DB2 $5,000

Visual Studio,
Com+

$1,000 PHP/Apache $0 WebLogic $20,000

Develop application $32,000 Develop application $32,000 Develop application $48,000

Management $57,000 Management $57,000 Management $57,000

TOTALS $112,200 $105,950 $146,450

Figure 12.5

Added internal
operations.

292

12.3

Scenarios

the case when desktops are included. Because of this, the open source solu-
tion is much cheaper than the proprietary ones.

This system will use two two-processor systems for Web, file, and print
services. A quarter of a system administrator should suffice, priced over
three years. Fifty client access licenses are needed for Windows ($40) and
Exchange ($67). The intranet can be done with Microsoft Sharepoint Team
Services and functions from the .Net community Web sites. An alternative
would be the Microsoft portal and content management software, but that
is much more expensive. An IBM solution would use the WebSphere por-
tal. Open source choices include Plone among others. Office suite choices
would include the Microsoft, Lotus, or OpenOffice suites. A couple of spe-
cialists might need Visio, PhotoShop, and Visual Studio.

If we sum Tables 12.5 and 12.6, we get these comparative totals:

Microsoft: $212,300

Open Source: $171,400

Java/IBM: $248,650

Of course, each of these approaches can be varied, and would be for a
cost-sensitive organization. In this example, IBM might recommend using
the portal instead of its office suite for most users, saving over $20,000.
Once again, there is room for opinions on the staffing costs. Many would
argue that removing Office from the desktops and leaving them as browser-

Table 12.6

Internal Costs

Microsoft Cost LAMP Cost J2EE Cost

Dell servers $8,000 Dell servers $8,000 Dell servers $8,000

Windows Server $2,800 Linux $450 Linux $450

Exchange $4,700 Mail $0 Notes $5,000

Intranet $0 Intranet $0 Intranet $4,250

Office $25,000 Office $0 Office $25,000

Other $2,600 Other $0 Other $2,500

Management $57,000 Management $57,000 Management $57,000

TOTALS $100,100 $65,450 $102,200

12.3

Scenarios 293

Chapter 12

based could save significantly on management costs. Once again, we can
adjust these numbers as we choose to reflect these opinions.

12.3.2 Large Organization: Internal Use

In Figure 12.6, we show a large company supporting its internal operations
for 15,000 desktops. In this case, we assume that there is a custom applica-
tion using a relational database supporting 7,500 desktops. There are 7,500
users running Office; from a cost point of view it does not matter if this is
the same or another group. All users are supported with a mail server
(Exchange in the Microsoft case) and file and print services.

We have not given Office licenses to all employees with desktops. This is
realistic and holds down Microsoft costs compared with giving Office and
SQL to everyone, which would cost another $5 million.

A large company such as this would probably save over $2 million
through Select or Enterprise licensing. There are additional costs for Soft-
ware Assurance if chosen.

Note that Advanced Server costs three times the standard server. This
was priced to be broadly revenue neutral for Microsoft, so if you used stan-
dard servers you would probably purchase three times more of them. Table
12.7 lists the costs. Now the difference is very large, because in this situa-
tion desktop and client licenses are the dominant costs.

Figure 12.6

Large IT shop.

294

12.3

Scenarios

Table 12.7

Large company IT Costs

Functions Microsoft Cost
Open Source

Cost

Database servers $750,000 $750,000

Other servers $180,000 $180,000

Database licenses $1,650,000 $15,000

File/print licenses $630,000 $450

Mail licenses $1,055,000 $0

Office licenses $3,750,000 $0

Development $285,000 $285,000

Sysadmin $1,200,000 $1,200,000

TOTALS $9,500,000 $2,430,450

Notes:

Total

SQL Server for 7,500 users:

30 Enterprise Servers $90,000

30 SQL Enterprise $330,000

7,500 CALs $1,230,000

$1,650,000

File/print for 15,000 users:

10 Advanced Servers $30,000

15,000 CALs $600,000

$630,000

Mail for 15,000 users:

5 Advanced Servers $15,000

5 Exchange Enterprise $35,000

15,000 CALs $1,005,000

$1,055,000

Office for 7,500 users:

$3,750,000

Medium Servers $12,000

Staffing

Development: 24 person-months, 6 months/yrs 2/3 $285,000

Sysadmin: 4 resources, 3 years $1,200,000

12.4

Summary 295

Chapter 12

12.4 Summary

These days, many CIOs want to commoditize core computing. By abstract-
ing the applications they are running from the infrastructure layer, they can
allow the business more flexibility. Systems that are more flexible can select
solutions for their business impact without being constrained by the tech-
nology they have deployed. They can scale systems up or down on demand
or distribute or outsource functions. They can share components and infra-
structure between systems. This also lowers staffing costs by allowing a
more consistent approach to infrastructure and sharing components and
tools. Cost is also lowered by the ability to negotiate for components from
multiple vendors and to escape the premium vendors obtain from lock-in.

Many organizations have a proliferation of staff doing infrastructure and
desktop maintenance and want to get that under control. By stripping costs
out of the infrastructure and desktop, the money will be there to support
the business. The industry structure shown in Figure 12.7 indicates the
direction we are going. The emphasis is shifting further“up the stack.”

Systems employing open source software will usually be less expensive
than alternatives. This is clear in any straightforward comparison. In some
circumstances, such as infrastructure, where software costs are small com-
pared with staffing, this difference may not be large in TCO measurements.
In situations where there are many users running desktop software or server

Figure 12.7
Software industry

structure.

296 12.4 Summary

client access licenses, the software costs may be high. Client access licenses
can be incurred for most internal desktop uses and some external: file shar-
ing, mail, database access, and authentication to a directory.

At this time, switching and sunk costs and de facto industry standards
are tending to delay adoption of open source, particularly at the desktop. As
this situation changes over the next few years, the natural cost advantages of
open source will apply in even more situations.

297

13

Licensing

Software licensing has always been a part of the process of managing sys-
tems. The issues around open source licensing are not really different from
licensing in general, but they do seem to receive more attention at the
moment.

Many professionals find legal issues and, in particular, licensing, one of
their least favorite parts of the job. However, it is essential for all of us to
know the basics of licensing. We will cover the basics in a simple way here.
If your needs are more complex, you will require a lawyer.

If open source licensing documents seem long and difficult to read, you
are probably just not used to reading legal documents. Typical closed code
licensing agreements such as those from Microsoft or Oracle are no better.
They are usually longer and more difficult, and very often more restrictive.

13.1 Types of Licenses

Open source licenses can be divided into two groups: the reciprocal or
“free” licenses, of which the GNU General Public License (GPL) is best
known, and the nonreciprocal or “open” licenses, such as the BSD and
Apache licenses.

Reciprocal licenses contain a provision that requires that on relicensing
the code must be open source. This is reciprocal in the sense that if a dis-
tributor receives the source code, then it passes it on to others. For example,
Linux uses the GPL. If you choose to distribute an operating system based
on Linux with some changes you have contributed, you must distribute the
source code to that system.

Nonreciprocal licenses do not contain a relicensing provision, so they
allow derivative works from open source code to revert to closed. This is non-
reciprocal in the sense that a distributor can receive source code but may not

298

13.2

Licenses in Use

necessarily pass it on. So, for example, Apple uses FreeBSD code as part of
Mac OS X without needing to distribute the Mac OS X source code.

13.1.1 Relicensing Only Matters If You Distribute

Some people use the term

viral

 for reciprocal. The implication is that han-
dling viral licenses is dangerous, as Microsoft sometimes suggests. It is true
that Microsoft needs to be careful using products licensed with the GPL.
Microsoft is a distributor of products, such as compilers and operating sys-
tems, which could appear to be derivatives. This is a risk it can handle:
Microsoft actually distributes a product (Microsoft Services for UNIX) that
includes components licensed under the GPL. This risk only applies to
organizations that are distributing software that extends the GPL-licensed
product. Software companies that distribute code based partly on GPL-
licensed products need to establish guidelines on their use.

13.1.2 Reciprocal Licenses Are Similar to
Commercial Licenses

Reciprocal licenses are quite similar to commercial (closed source) licenses,
which commonly contain terms that restrict relicensing and distribution of
information. A common commercial restriction prevents you from reli-
censing the software or derivative works. The GPL has provisions that
affect your subsequent licensing of derivative works, which is less restric-
tive than preventing relicensing. Commercial licenses normally require you
to agree not to disclose proprietary information that you acquired under
the license to others. This may include elements of source code (such as
APIs) and other information such as performance data. The GPL requires
that you agree to disclose the source code you acquired, and any you have
added, to others.

13.2 Licenses in Use

There are many licenses in use today, but only a few that need to be consid-
ered by most organizations. The Freshmeat site lists about 50 categories of
licenses, some of which are groups of licenses, but only about 20 are used
by at least 100 projects. Figure 13.1 shows the distribution of licenses as
reported on Freshmeat. Over two-thirds use the GPL, and about one-sixth
use one of the LGPL, BSD, Apache, Mozilla, or MIT licenses. One of these
five licenses should suffice for most purposes.

13.2

Licenses in Use 299

Chapter 13

13.2.1 Reciprocal Licenses

The GPL is the original “free software” license. It is used by Linux and
many other core tools and will be used by everyone at some time. The GPL
is also an important piece of work in its own right, and a source of contro-
versy in some quarters, so everyone should read it.

The Mozilla Public License is similar to the GPL but with clearer terms
in requiring future free use.

13.2.2 Nonreciprocal Licenses

The other licenses (LGPL, BSD, Apache, and MIT) are nonreciprocal.
The Lesser General Public License (LGPL) is a nonreciprocal version of
the GPL intended for certain libraries. There are two forms of the BSD
license. The new form omits an advertising clause in the license that was
officially rescinded when the Director of the Office of Technology Licens-
ing of the University of California stated on July 22, 1999 that clause 3
was “hereby deleted in its entirety.” The new BSD license is thus equiva-
lent to the MIT license, except for a no-endorsement final clause. The
MIT license is best known for its use in the X Windows System. The
Apache license is very similar.

Figure 13.1

License use by
project.

300

13.3

Mixing Open and Closed Code

The nonreciprocal licenses are less restrictive than the GPL on distribu-
tors. Subsequent users can use, modify, and redistribute the code without
distributing their source code. This lack of restriction for the distributor
removes the rights of users downstream from them to see that code. The
restriction that the GPL places on distributors has the effect of later users
retaining their rights to view and modify code.

Some companies take open source software, add little or nothing, and
resell the result as a closed code solution, possibly for substantial prices.
Reciprocal licenses address this by ensuring that companies cannot extend
code without giving it back for others to offer also. Of course, these compa-
nies may add value by improving support, documentation, bundling the
product for a particular market, or developing a complementary product.
They just cannot gain a proprietary advantage from changes to the code,
since those enhancements must go back to the community.

13.2.3 Which License to Use

It is strongly recommended that if you are distributing your own open
source product you adopt one of these licenses without alteration:

�

GNU General Public License

�

Mozilla Public License

�

BSD, Apache, or MIT license

�

GNU Lesser General Public License

The alternative is to hire an attorney who specializes in these issues to
develop a custom license, as large companies such as IBM do.

The GPL, Mozilla Public License, and BSD license are attached as
Appendix D. Machine-readable copies of these and other licenses can be
obtained at http://www.opensource.org/licenses.

13.3 Mixing Open and Closed Code

It is quite possible to use closed code and some open source software
together. This is common today and is likely to be the way most systems are
built in the future.

13.3

Mixing Open and Closed Code 301

Chapter 13

The majority of open source developers spend most of their time on
closed code development. Most open source developers work primarily on
internal or closed code development within companies, so they are quite
familiar with closed code.

Most open source products above the operating system are offered on
one or more closed platforms, generally Windows and UNIX. Products that
use databases often support some closed code databases, most often Oracle.

Open source products are often sold as part of a bundled sale, which
includes closed code products. Large organizations often purchase the top
level of the software and service stack from a major closed code vendor.
Their primary purchase might be outsourcing or other services from IBM
Global Services, Accenture, or CSC; software from IBM, BEA, Oracle, or
SAP; hardware from IBM, HP, or Dell, with Linux and other open source
products included in the overall sale.

Table 13.1 shows examples of open source and closed code deployed
together.

The most common hybrid case is simply organizations that obtain a vari-
ety of open source and closed code products, and then deploy them to meet

Table 13.1

Using Open Source and Closed Code Together

Product Example

Compiere An open source ERP system built on Java (closed code) and Oracle
(closed code).

SAP Closed code ERP system available on Linux and other operating sys-
tems. SAP converted its internal database, SAP DB, to open source
and gave it to MySQL to manage (as Max DB).

Apple OS X Closed code operating system (charging license fees) based in large
part on the open source FreeBSD. Apple distributes an open source
operating system called Darwin without the Apple GUI, as well as
its own distribution of Xfree86.

Oracle Closed code database (charging license fees) available on Linux
(open source), as well as Windows, UNIX, and other systems.

DB2 Closed code database available on Linux, Windows, Solaris, and
IBM operating systems.

WebSphere IBM brand for a variety of middleware products. Includes many
components, some of which are open source, such as Linux and
Apache.

302

13.4

Dual Licensing

their own internal needs or their customers’ needs. Google, for example,
employs a great deal of open source software in systems development. Its
own software is not open source, and there are license restrictions on access
to most Google services to prevent others from getting a free ride—for
instance, by republishing a Google search as their own.

As this example shows, a company can develop closed code software
using open source tools and distribute it on open source systems, as long as
it follows a few simple rules. Enhancements that an organization makes to
the open source software it uses, however, MUST be contributed back.

It is common for companies to take open source projects, add a layer of
additional functionality in closed code, offer support for both their
enhancements and the open source base, and charge a fee. This describes
IBM WebSphere, Red Hat, and some other distribution companies. It is a
healthy part of the process, because customers have a choice of whether to
choose the enhanced bundle or the open source system.

13.4 Dual Licensing

Some products are dual licensed. They are available with either an open
source license or a commercial license. Examples of such products are:

�

Qt, from TrollTech, the GUI toolkit used by KDE

�

MySQL, from MySQL AB, the database server

�

Berkeley DB, from SleepyCat Software, the embedded database
program

The dual license allows these companies to offer open source products
to those who are developing open source software, or to individual end
users. Depending on their intentions or organization, others may be
required to pay for a commercial license.

There are probably many ways to do this, but the path taken by these
three companies is to license under the GPL, and then offer a commercial
license to companies that would prefer not to meet the GPL terms. This
exact strategy requires a development tool, such as a toolkit or database; it
leverages the property of the GPL so that if you link to it you fall under its
terms. Vendors of a pure application might need to write different licensing
terms, but of course they could.

13.5

Other Intellectual Property Issues 303

Chapter 13

A dual license strategy relies on code ownership. It will be difficult in prac-
tice to get a large group of contributors to assign ownership to a commercial
organization. In fact, the cases of dual licensing listed, and others I know of,
have the look of a commercial company, where development is done in house
and external contributions are signed over and compensated for.

13.5 Other Intellectual Property Issues

While the term

intellectual property

 is a good description of this area, it
includes the specific ideas of trademark, copyright, and patents, as well as
contracts, including licensing agreements and employment contract terms
such as

right for hire

. It is important not to confuse these, so it is always
helpful when looking at a particular claim to see which of these it is based
on rather than using loose terminology such as “intellectual property.”

Open source licenses use intellectual property law in general, and copy-
right law in particular, to selectively distribute works for broad use while
retaining ownership and restricting certain behavior that would have an
adverse effect on others. These licenses are voluntary and gain their power
from the ownership of the author.

Open source software should not be confused with public domain.
Open source uses copyright and licensing law to enforce intellectual prop-
erty rights, essentially like any other licensing agreement but with a particu-
lar purpose in mind. Including public domain as an option, then, our
distribution choices come down to these:

�

Closed code—you grant a license with restrictions that you specify,
typically including relicensing and publication of proprietary infor-
mation, and retain ownership.

�

Open source (reciprocal, e.g., GPL)—you grant a license with restric-
tions on relicensing of derivatives and retain ownership.

�

Open source (nonreciprocal)—you grant a broad license and retain
ownership.

�

Public domain—you relinquish ownership and all rights to it per-
manently.

304

13.5

Other Intellectual Property Issues

13.5.1 Provenance

There is always risk in any business decision, including software licensing,
and open source is generally similar. One area where some open source
products may have more risk is provenance. Provenance is the issue of
whether code that you have licensed from some party was actually its to
offer. This is a concern with any type of licensing. Programmers working
for a vendor might have copied code into the product from elsewhere. If
this was proprietary, it would contaminate your system and your system
would fall under restrictions imposed by that code’s licensing terms. It
might expose you to a license fee, for instance, or a requirement to share
your source.

All projects need to maintain records of where any contributed code was
obtained. Because some open source projects receive code from many con-
tributors, it may be more onerous for them. For others, it is no different
from any other project. When acquiring a product, we need to make sure
this provenance work was done.

There are occasionally specific allegations that a piece of open source
software is stolen “intellectual property” from private companies. This may
happen on occasion, but it is not common. It is illegal to appropriate copy-
righted code, to use others’ trademarks, or to obtain others’ trade secrets.
There is nothing unusual about open source in this regard. The laws against
these activities have been used often and still apply. However, it is the
nature of open source that all the code is available for inspection, so any
wrongdoing is far more likely to be caught than with closed code. Although
open source software has been around for 30 years, nothing has yet been
found. There has been no lawsuit that has succeeded in proving that any
significant amount of closed code has been incorporated into open source.
If such a lawsuit were won, that offending code would need to be replaced,
but the status of open source in general would not be different.

The same laws also apply if a closed code developer appropriates copy-
righted or trademarked material or wrongly uses trade secrets. There have
been several such lawsuits in the private sector. There may be issues where
closed code developers wrongly appropriate open source code, which is easy
to get. The company Black Duck was founded to address this problem.
Organizations with a concern that open source code has made its way into
their products can use the Black Duck product to search online open source
libraries for code that looks like code in their products.

Of course, it is fine if an open source product is functionally equivalent
to closed code software, was built cleanly without access to that code and

13.6

Summary 305

Chapter 13

does not copy the expression closely, and has no copyright or trademark
infringements. There were major lawsuits over “look and feel” between
Apple and Microsoft over Windows’ similarity to the Macintosh, and
between Borland and Lotus over Quattro Pro’s similarity to Lotus 1-2-3,
but they were resolved.

The software patent issue is another area, and there may be grounds for
long-term concern here. Bill Gates has said that patents are being interpreted
now in ways that would have made software development as we know it
practically impossible in the past. In addition, legislation such as the Digital
Millennium Copyright Act (DMCA) and proposals regarding Digital Rights
Management (DRM) threaten to extend restrictions further. These issues are
complex and cannot be covered usefully here. I suggest referring to Lawrence
Lessig’s books, particularly

Free Culture

 and

The Future of Ideas

; searching the
Electronic Freedom Foundation, Free Software, and Open Source sites for
the terms software patent and DMCA; and visiting the Creative Commons
site for other information and activities.

13.6 Summary

There are legal issues with open source software, as there are with closed
code. There are risks, as there are with all business decisions. Companies
can breach contracts, go bankrupt, and so on, as they always could. Support
arrangements need to be specified and contracted for, as they always do.

There is little in open source that is different in principle from closed
code. For example, a company such as MySQL will offer either a commer-
cial license or a GPL license for the same code. Clearly, support arrange-
ments, concerns about provenance, and many other issues are the same
whichever license you choose.

Open source software is always voluntary. Developers of software can
choose the licensing model for their work, and adopters of software can
choose products from the many licensing models available. It is one more
choice we can consider in either case.

This page intentionally left blank

307

A

Resources

A.1 Managing an Open Source Lab

An open source software lab will serve as a resource for:

�

Selling the advantages of open source software to executives who
want to understand what it is all about.

�

Demonstrating relevant products and practices, and their operation
and features, for users and professionals who want to see the software
before using it.

�

Identifying internal systems and people who already have been suc-
cessful.

�

Developing solutions to problems in the organization that can be
assembled from these products and practices.

�

Training professionals, developers, and system administrators, who
want to evaluate open source software and learn to use it.

�

Testing system operation—for instance, to check vendor claims,
make sure elements work together, and practice migrations.

�

Benchmarking capacity and performance—for instance, database
performance in requests/seconds, or the number of users supported
by a directory.

This is such a useful list of activities, and a simple lab is so easy to get
started, that this is the first thing we should do in the course of investigating
and/or introducing open source software.

308

A.1

Managing an Open Source Lab

We can set up an adequate lab with two or three machines as Linux
servers. They will support file and print services, directory, Web server,
database, and other applications. We will also set up several clients running
whatever we are likely to work with in our organization. This might be, for
instance, Mac OS X, Windows XP, and whichever Linux flavors we want
to examine (e.g., SuSE Linux 9, Debian GNU Linux, or RHEL 3). To test
Web systems, we may want to run several browsers. Many of the systems
can be older, particularly for clients, perhaps adopted from other lab func-
tions, or second-hand systems after a desktop refresh. Many Linux func-
tions run well on older systems. However, the latest desktop applications
running on KDE and Gnome with“eye candy” turned on usually require a
new system.

If the lab is used for training in a regular way, or for short-notice dem-
onstrations, it will need to be reasonably permanent with dedicated sys-
tems. In other circumstances, the systems don’t need to be completely
dedicated and we can set systems up as dual boot or multiple boot. We
should keep some machines running all the time for demonstrations, edu-
cation, and to prove reliability, but let others be brought up and down and
reconfigured by staff who are learning to use the systems. As a general rule,
clients can be dual boot but servers should usually be dedicated, because we
may want to access files, printers, or databases at any time without having
to reboot.

If finances allow, we can expand on the adequate lab by using better
equipment and facilities. With better funding, the lab can be more of a sales
tool. We could use the same equipment we normally order for new loca-
tions, which will be faster and better looking than used stuff and will allow
benchmarks to be more realistic (and faster). If we are looking for large sys-
tems, perhaps a cooperative vendor can loan us equipment. For a real
impression, we could pay someone to design the layout. If executives are
going to see the demonstrations, it can be worth making them look fancy.
This may work for a consulting or training organization that would see
many customers over a period.

We won’t forget to allow vendors to see our open source lab. When a
closed code company is made aware that we are seriously considering open
source, this can have a very significant effect on its pricing and support
offers. There are companies that have told their sales force that they must
never lose to Linux (or other such products) and must “do whatever it
takes” to win.

If finances are an issue, we can create a technical lab as long as we have a
computer. We can get an available laptop or desktop with a 10GB hard

A.2

Installing an Evaluation Linux System 309

Appendix A

drive running Windows XP or Windows 2000 Professional. Then we can
set it up as dual boot so it can be started as either a Windows or a Linux sys-
tem. We do this by partitioning the hard drive as half Windows, half Linux
using Partition Manager, and then installing from a CD-based copy of
Linux with all software. On such a system we can learn and test all software
mentioned in this book, and yet continue to run Windows and any soft-
ware we need that requires it.

Many organizations already have some equipment and space set aside
for this type of activity, and the only cost involved will be the time to set up
the systems and evaluate them. Such a project involves a few days to a few
weeks of staffing, and could well be encompassed during downtime from
other projects. If space and equipment are dedicated over some months,
and training is conducted and analysis work performed to support migra-
tions, then we will need to budget for a significant project.

A.2 Installing an Evaluation Linux System

Most people evaluating Linux will want to put their hands on a Linux sys-
tem and get a feel for how it compares to what they are used to. As with any
system, it is more difficult to install a system correctly than to use it. Installa-
tion is a place where potential users can get frustrated or even give up before
even getting a system to work. The following text will try to steer you to the
right machine and Linux distribution to make installation go well.

The installation problem occurs with Windows; when I worked for
Microsoft, I would go into retail stores on special occasions such as Christ-
mas and Windows launches to meet the public. My least favorite part of
this was meeting people who had attempted to install a new version of
Windows for themselves and got stuck. However, with Windows you can
always choose to buy a new computer that is set up correctly, and that
option is still an issue with Linux.

If you don’t feel that you have the time to install Linux, you can just run
it from a live CD using Knoppix or another distribution that loads that
way. This is a great method for initial evaluation and is also useful for expe-
rienced users who are borrowing or repairing a machine.

Most systems can run Linux, but not all systems will be easy to install. It
is common for a new Linux user to spend a few days scraping up informa-
tion to solve problems such as those listed in Table A.1. If our goal is to
spend a week learning how to manage Apache and Samba and review the
operation of OpenOffice, Evolution, and KDE, it is worth thinking about

310

A.2

Installing an Evaluation Linux System

Table A.1

Possible Problems with Linux Install on Windows Machine

Problem Comment Workaround

Hardware supported by
Windows but not Linux

Particularly older systems.

More likely with Windows 98/ME,
which supports more old hardware
than NT/2000.

Component problems include large
disk drives in old machines, 3D graph-
ics cards (e.g., nVidia), sound cards,
and modems.

Select the machine carefully before
installing. Some machines may not
ever work well or will need difficult
activities (such as kernel patches) to get
going.

Notebook and laptop
computers

More likely to have unusual cards and
drivers that might not be supported.

Quite likely not to have full support
for all power management features
without manual installation.

If used, more likely to have weird
defects.

Decide if you must use a notebook.

Check sites such as Linux on Laptops,
http://www.linux-laptop.net/, to see
that your notebook and graphics card
are specifically supported.

Disk partitioning If a machine has Windows installed,
you probably need to shrink the Win-
dows partition to get space to install
Linux, not an easy task.

Most Linux installs will let you delete
the entire Windows partition, but
that’s probably not what you want. See
dual boot.

Graphical (X Windows)
install hangs or fails

This is pretty common and is why
most systems offer a text-mode install.
Installers can usually detect the graph-
ics adapter but often don’t detect the
monitor sync rates.

Use text-mode install and then do X
after.

Note the monitor sync data from Win-
dows before you start and enter it man-
ually.

If you can choose, get an ATI (e.g.,
Radeon) adapter rather than nVidia,
since the nVidia driver may need tricky
installation.

System does not use entire
screen for display

System did not detect the monitor and
is using VESA, or did not detect
adapter memory.

Note monitor and adapter information
from Windows before starting.

A.2

Installing an Evaluation Linux System 311

Appendix A

whether we want to begin with installation. We could spend the week set-
ting up DNS and IP addresses and searching the Internet for the scripts
that can make particular devices work correctly. If you know an experienced
Linux user, this is a good point at which to ask for help.

Alternatively, if money is not an issue, the easiest course may be to buy
a new system set up for the version of Linux you want to use, or pay some-
one to install it. The major manufacturers (Dell, IBM, HP, etc.) don’t sell
these systems retail as I write but will do it as a custom service. This is

Dual boot You may want to keep your Windows
system and add Linux so you can
choose which operating system to
bring up: a dual-boot system.

Dual boot adds risks; it is harder to set
up, and a severe failure could knock
out both setups. It can be annoying to
use if you need to switch back and
forth.

Use a Windows-based disk partitioning
tool, such as Partition Magic, to shrink
the Windows partition before install-
ing Linux. Most computer techs have a
disk partitioning tool.

Most Linux versions support dual boot
(using LILO or GRUB).

A second system or a swappable boot
drive is preferable. Don’t dual boot
unless you have a spare system or are
completely backed up.

Reading from the Win-
dows partition

When in Linux, you may want to read
files from your Windows file system
(which is presumably where any files
you’ve created, such as Mail, are today).

Linux can mount FAT32 or NTFS file
systems: FAT32 read/write, NTFS gen-
erally read-only. See Chapter 11.

Accessing files and print-
ers on the Windows net-
work

There will be some setup needed to do
this, possibly scripting. In some secu-
rity configurations, it may not be possi-
ble.

See Chapter 11.

Work in a lab setting where the Win-
dows security can be simplified.

Wireless and PCMCIA
cards

Current Red Hat and SuSE Linux
should set up automatically (you’ll
need to enter the ESSID).

Older and unusual cards may not
work. Very new cards may not work
(today, 802.11g fast wireless is very
hard to set up).

Older Linux versions (e.g., Red Hat,
SuSE 7) are less likely to work without
manual intervention.

You run into a problem
that needs Internet access
to solve

Many possible problems could leave
you with a machine that does not work
or does not connect to the Internet.

Have a spare machine available.

Table A.1

Possible Problems with Linux Install on Windows Machine (continued)

Problem Comment Workaround

312

A.2

Installing an Evaluation Linux System

changing very rapidly, with IBM and HP committing to offering installed
Linux systems. Already, many smaller companies will be happy to sell a
machine set up with a Linux system or to install the operating system on
your machine (stand-alone or dual-boot) for a fee. I do recommend get-
ting the system you want to evaluate, so it is not worth popping into Wal-
Mart and buying a Lindows system, since that probably won’t be what
your organization will select.

At a later point, you may want to put in the effort to configure a Linux
system exactly as you want it. If you have the disk space available, it may be
better to just load up everything.

A.2.1 Setting up Interoperability

We will need to establish interoperability between Linux systems and our
existing systems. There are several ways to do this, starting with those that
work on a single machine. Options include a dual-boot system, running
Linux on Windows, and running Windows on Linux. Of these, the most
generally useful is to create a dual-boot system.

A.2.2 Dual Boot

A dual-boot machine can start in either Windows or Linux, for example,
but we must choose. If we need an application from the “other side,” we
must stop and restart, and that is inconvenient. If a machine is dual boot,
you can see exactly how it compares on the same hardware—for instance,
speed, graphics. Second, if you have difficulty with something in the course
of testing (which might be a seldom used Windows program or a logon via
modem you only use on the road), you preserve the ability to boot in Win-
dows to do that. Finally, you can later take off whichever operating system
you don’t need.

To set up a dual-boot system, which leaves your Windows install intact
and allows testing of a full version of Linux, you will need a disk drive with
a minimum size of about 10GB (5GB for each system). The dual boot is a
little harder to set up in the first place, and there is a slight risk that a failure
setting up the dual boot will disable the Windows system. Any data should
be backed up before trying this, and you may need some expert help for this
if a problem occurs. If you have a new system, you can install Windows
using half the drive, and then install Linux on the unused space.

Since I often find systems with Windows installed and data on them, if
only from the manufacturer, I usually use the program Partition Magic,

A.2

Installing an Evaluation Linux System 313

Appendix A

which runs from Windows and allows resizing of existing partitions. This is
not open source but is fairly inexpensive for workstations, and it is likely
that administrative staff in a Windows-based organization have this already.
One alternative if your partition(s) is FAT32 is the Linux program “parted,”
but this does not work to resize NTFS partitions.

Once the dual-boot system is working, you will want to set up file
access from the Linux system to the Windows partition. Windows systems
cannot read Linux partitions. Linux systems as a rule can read and write
FAT and FAT32 and can read from but not write to NTFS partitions. For
two-way communication, it is better if the Windows system has at least
some space partitioned as FAT32. Some Linux systems will mount the
Windows partition automatically. If they do not, it is necessary to edit the
/etc/fstab file with something like this, and then ensure that appropriate
permissions are granted:

//dev/hda1 /mnt/xp ntfs

A.2.3 Running Linux on Windows

Instead of booting one of Linux or Windows as needed, it is possible to run
the one under the other. To run Linux (or at least UNIX) under Windows,
we can use emulation or a virtual machine. Emulations include:

�

Cygwin (open source)

�

Microsoft Services for UNIX (SFU)

�

Commercial packages such as MKS

Cygwin is the open source package that provides a UNIX-like set of util-
ities and APIs under Windows. This allows a program such as PostgreSQL
to run under Windows. It is also popular with technical staff who are used
to the UNIX command line and would like the same features under Win-
dows. SFU, which is functionally similar to Cygwin, is available as a no-
charge download from Microsoft.

People who need to switch often between operating systems will use a
virtual machine system, which allows the systems to run simultaneously
without need for reboot. The leading such system is VMware. The worksta-
tion product is reasonably priced and very powerful, and I use it. It is an
excellent tool for developers testing different versions of their products, for

314

A.2

Installing an Evaluation Linux System

example. VMware is available for Windows or Linux as the underlying
operating system, and will then run the other as a guest (as well as other sys-
tems such as Novell). Microsoft also offers a similar product, Virtual PC.

Some people are tempted to try VMware on Windows to support their
first Linux installation. I do not recommend that. VMware supports spe-
cific operating system versions; as I write, it does not support the latest
Fedora or SuSE workstation versions. Setting up VMware is an art in itself.
When completed, your system networks from the Linux or Windows side,
can read files across both, and operates quickly in a full graphical environ-
ment. However, setup issues may occur that will leave you in an incomplete
situation, and debugging will involve learning and getting support from
VMware (not Linux). VMware is an excellent choice for a lab environment
once the first couple of Linux systems are set up.

A.2.4 Running Windows on Linux

In this direction, the choice is also emulation or a virtual machine. In addi-
tion to running Linux on Windows, VMware can be used to run Windows
on Linux. For example, we could set up Windows XP, Windows NT4, and
Windows ME systems on a single Linux box and test an application on
them. The Windows systems will access installed printers, network cards,
and so on.

A common problem with Linux systems is the need to run some Win-
dows applications that are not available on Linux—for example, Microsoft
Office, the MacroMedia Director plug-in, and many games. To support this,
emulation is required. Crossover Office, from CodeWeavers, lets you run
Office, PhotoShop, Lotus Notes, Visio, and browser plug-ins on Windows
(e.g., QuickTime, Microsoft Office Viewers, and Macromedia Director).
You do need to get specific versions of Crossover Office for the programs you
want to run, and you also need to license the programs themselves.

Wine (short for WINdows Emulation) is the open source product that
underlies Crossover Office (and is sponsored by it). Wine exposes the Win-
dows APIs so that a program written for Microsoft Windows can run on
Linux. This is mostly aimed at developers.

It is possible to run Microsoft Windows drivers under Linux in order to
access hardware that has only been released with Windows drivers, using
drivers from Linuxant.

Another alternative to achieve the need of running Windows programs
is using Citrix clients to access Windows programs on servers.

A.4

Top Ten Reasons to Use Open Source Software 315

Appendix A

A.3 Next Steps

Develop personal skills. Install Linux on a system; the easiest way is to use
Knoppix, so if nothing else do that. Get your hands on open source soft-
ware that meets your needs.

Join a local user group. There is no substitute for personal meetings. I
would be much worse off without user groups, and I am convinced every-
one needs user group involvement. This is important in any software, but
more so with open source, because some of the other communication chan-
nels are less effective. Open source user groups are also more likely to con-
tain deep technical resources. I believe it is because of access to the source
code, so that people can help themselves; the opportunity to contribute,
which motivates; and the absence of dominant vendors that tend to turn
their user groups into marketing events. Sign in to open source communi-
ties such as Slashdot and Freshmeat.

Develop an open source strategy. Always include open source software
in the alternatives for evaluation when buying products. Prepare for the
open source sales model, the absence of sales representation and freebies,
and the low-key branding and press coverage. For complex deployments,
plan measures now to set up for migration later.

Consider open source now if you need to:

�

Buy or replace infrastructure products.

�

Select standards, particularly for interoperability and integration.

�

Build, buy, or rewrite applications.

�

Deploy solutions in new areas, such as suppliers, channel, customer
access, community access, call centers, and retail stores.

A.4 Top Ten Reasons to Use Open Source Software

1. The open source development model has worked for over 25
years for highly complex and secure systems.

2. Open source is the international solution because of the cost
model, ability to employ local talent, and capacity for localiza-
tion.

3. You can access a growing pool of skilled professionals who share
with and learn from each other.

316

A.5

Web Links

4. The Internet runs on and empowers open source software.

5. You can see and fix the code that your system runs on, or your
representatives can.

6. There are no proprietary information formats unless you choose
to employ them.

7. There is no licensing to manage, no piracy, and you can upgrade
your systems as you choose.

8. You are free to change and mix products from different platforms,
vendors, and service providers.

9. You can do your own integration and customization.

10. It costs less money for licenses and less for hardware, and no more
for staffing, support, or anything else.

A.5 Web Links

This set of technologies and practices is large enough and new enough that
we all need a variety of resources to learn about them and stay on top of
them. Fortunately, the Internet comes to our aid here. Some useful URLs
are included in Table A.2. There is a tremendous amount of literature,
including system documentation, on the Internet and this should usually be
the first place to look. The user manuals for GIMP and MySQL are just
two examples of really high-quality, online documentation. The Web links
in Table A.2 are a small sample of the resources available.

Table A.2

Web Links

URL Description Comment

linuxshop.ru/linuxbegin/win-lin-soft-en/
table.shtml

Table of Linux equivalents for
Windows

Lists all of the open
source Linux equivalents
for programs on Win-
dows

freshmeat.net Freshmeat Index of available open
source projects

sourceforge.net SourceForge Repository of open
source code and center
of open source software
development

A.5

Web Links 317

Appendix A

www.apache.org Apache Foundation Manages the Apache
Web browser develop-
ment team, and also
related products includ-
ing Jakarta.

www.dwheeler.com/oss_fs_why.html Why OSS/FSS? Essential resources if
compiling data on open
source market share or
performance

www.fedstats.gov FedStats Useful site of informa-
tion on U.S. statistics

www.freebsd.org Free BSD The “other” free operat-
ing system.

www.fsf.org/philosophy/free-sw.html Free software and GPL Essential philosophy

www.gnome.org Gnome Foundation Manage development of
Gnome desktop and
tools, including Evolu-
tion.

www.gnu.org Home of GNU and FSF

www.ibm.com/developerworks/linux IBM Developer Works Linux
page

Often a good resource
for non-proprietary
tools, in addition of
course to the IBM tools.

www.kbst.bund.de German federal government site search the English docu-
ments

www.kuro5hin.org Kuro5hin Discussion site on tech-
nology and culture

www.linux.org Linux Linux

www.linuxjournal.com Linux Journal Monthly magazine

www.linux-laptop.net Linux on Laptops Information on install-
ing Linux on laptops

www.linux-mag.com Linux Magazine Another Linux magazine

www.mozilla.org Mozilla Home site for Mozilla
browser and other soft-
ware

Table A.2

Web Links (continued)

URL Description Comment

318

A.5

Web Links

www.newsforge.com NewsForge Online daily newspaper
for Linux and open
source

www.netcraft.com NetCraft Reports on Web soft-
ware usage

www.objectwatch.com Object Watch Roger Session’s devel-
oper site. Good pricing
spreadsheet. Great on
WebSphere versus .Net.

www.opengroup.org Open Group Manages open stan-
dards, including the
UNIX APIs

www.opensource.org Open Source Initiative Manages the Open
Source Definition and
keeps list of approved
software licenses.

www.python.org Python Main Python site

www.redbooks.ibm.com IBM RedBooks Practical books on soft-
ware issues

www.securityspace.com Security Space Research reports on e.g.
Apache module usage

www.slashdot.org Slashdot Essential reading on
technology-related sub-
jects every day

www.ssc.com/glue/groups Groups of Linux users every-
where

Big list of user groups

www.stanford.edu/class/cs240/readings Readings in computer history This directory contains
many useful papers
including Richard Gab-
riel’s paper on the UNIX
design philosophy, The
Rise of "Worse is Better"

www.tldp.org The Linux Documentation
Project

Great resource for Linux
documentation

www.tpc.org TPC Database benchmarks

Table A.2

Web Links (continued)

URL Description Comment

A.5

Web Links 319

Appendix A

www.w3.org W3C World Wide Web Con-
sortium; the major stan-
dards body of the Web.

www.xfree.org XFree86 The open source Intel
implementation of the X
Windows System.

http:www.opensource.org/licenses Repository for all open source
licenses

Essential resource.

Table A.2

Web Links (continued)

URL Description Comment

This page intentionally left blank

321

B

The Open Source Definition

Introduction

Open source doesn’t just mean access to the source code. The distribution
terms of open-source software must comply with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the soft-
ware as a component of an aggregate software distribution containing pro-
grams from several different sources. The license shall not require a royalty
or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in
source code as well as compiled form. Where some form of a product is not
distributed with source code, there must be a well-publicized means of
obtaining the source code for no more than a reasonable reproduction cost
preferably, downloading via the Internet without charge. The source code
must be the preferred form in which a programmer would modify the pro-
gram. Deliberately obfuscated source code is not allowed. Intermediate
forms such as the output of a preprocessor or translator are not allowed.

3. Derived Works

The license must allow modifications and derived works, and must allow
them to be distributed under the same terms as the license of the original
software.

4. Integrity of The Author’s Source Code

The license may restrict source-code from being distributed in modified
form only if the license allows the distribution of "patch files" with the
source code for the purpose of modifying the program at build time. The

322 The Open Source Definition

license must explicitly permit distribution of software built from modified
source code. The license may require derived works to carry a different
name or version number from the original software.

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a
specific field of endeavor. For example, it may not restrict the program from
being used in a business, or from being used for genetic research.

7. Distribution of License

The rights attached to the program must apply to all to whom the program
is redistributed without the need for execution of an additional license by
those parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program’s
being part of a particular software distribution. If the program is extracted
from that distribution and used or distributed within the terms of the pro-
gram’s license, all parties to whom the program is redistributed should have
the same rights as those that are granted in conjunction with the original
software distribution.

9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed
along with the licensed software. For example, the license must not insist
that all other programs distributed on the same medium must be open-
source software.

10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology
or style of interface.

Copyright © 2004 by the Open Source Initiative

*This is available on the Web at http://www.opensource.org/docs/
definition_plain.php. An annotated version, which explains the purpose of
each paragraph and is probably to be preferred, is also available at http://
www.opensource.org/docs/definition.php.

323

C

Examples of Open Source Licenses

C.1 GPL

GNU GENERAL PUBLIC LICENSE

 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.

 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation’s software and to any other
program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if
you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

324

C.1

GPL

 To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restric-
tions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.

 For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

 We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

 Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems intro-
duced by others will not reflect on the original authors’ reputations.

 Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individu-
ally obtain patent licenses, in effect making the program closed code. To
prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

 The precise terms and conditions for copying, distribution and modifica-
tion follow.

 GNU GENERAL PUBLIC LICENSE

 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

 0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed under
the terms of this General Public License. The "Program", below, refers to
any such program or work, and a "work based on the Program" means
either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it, either verba-
tim or with modifications and/or translated into another language. (Here-

C.1

GPL 325

Appendix C

inafter, translation is included without limitation in the term
"modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its con-
tents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the
Program does.

 1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License
and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

 c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in the
most ordinary way, to print or display an announcement including an
appropriate copyright notice and a

326

C.1

GPL

 notice that there is no warranty (or else, saying that you provide a war-
ranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announce-
ment, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reason-
ably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you

distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of a
storage or distribution medium does not bring the other work under the
scope of this License.

 3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically perform-
ing source distribution, a complete machine-readable copy of the corre-

C.1

GPL 327

Appendix C

sponding source code, to be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for mak-
ing modifications to it. For an executable work, complete source code
means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a

special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the execut-
able.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

 4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

 5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the

328

C.1

GPL

Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, dis-
tributing or modifying the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original licen-
sor to copy, distribute or modify the Program subject to these terms and
conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues), condi-
tions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from
the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at
all. For example, if a patent license would not permit royalty-free redistri-
bution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of soft-
ware distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

C.1

GPL 329

Appendix C

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body
of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies a version number of this License which applies to it and "any later ver-
sion", you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Founda-
tion. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

 10. If you wish to incorporate parts of the Program into other free pro-
grams whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserv-
ing the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

330

C.1

GPL

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIB-
UTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATE WITH ANY OTHER PROGRAMS),EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these
terms.

 To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program’s name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify

C.1

GPL 331

Appendix C

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. Also add
information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author

 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w’.

 This is free software, and you are welcome to redistribute it under certain
conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appro-
priate parts of the General Public License. Of course, the commands you
use may be called something other than `show w’ and `show c’; they could
even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if necessary.
Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program

 `Gnomovision’ (which makes passes at compilers) written by James
Hacker.

 <signature of Ty Coon>, 1 April 1989

 Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

332

C.2

Mozilla Public License

C.2 Mozilla Public License

Version 1.1

1. Definitions.

1.0.1. "Commercial Use"

means distribution or otherwise making the
Covered Code available to a third party.

1.1. ’’Contributor’’

 means each entity that creates or contributes to the
creation of Modifications.

1.2. ’’Contributor Version’’

 means the combination of the Original Code,
prior Modifications used by a Contributor, and the Modifications made by
that particular Contributor.

1.3. ’’Covered Code’’

 means the Original Code or Modifications or the
combination of the Original Code and Modifications, in each case includ-
ing portions thereof

.

1.4. ’’Electronic Distribution Mechanism’’

 means a mechanism generally
accepted in the software development community for the electronic transfer
of data.

1.5. ’’Executable’’

 means Covered Code in any form other than Source
Code.

1.6. ’’Initial Developer’’

 means the individual or entity identified as the
Initial Developer in the Source Code notice required by

Exhibit A

.

1.7. ’’Larger Work’’

 means a work which combines Covered Code or por-
tions thereof with code not governed by the terms of this License.

1.8. ’’License’’

 means this document.

1.8.1. "Licensable"

 means having the right to grant, to the maximum
extent possible, whether at the time of the initial grant or subsequently
acquired, any and all of the rights conveyed herein.

1.9. ’’Modifications’’

 means any addition to or deletion from the substance
or structure of either the Original Code or any previous Modifications.
When Covered Code is released as a series of files, a Modification is:

A.

 Any addition to or deletion from the contents of a file containing Origi-
nal Code or previous Modifications.

C.2

Mozilla Public License 333

Appendix C

B.

 Any new file that contains any part of the Original Code or previous
Modifications.

1.10. ’’Original Code’’

 means Source Code of computer software code
which is described in the Source Code notice required by

Exhibit A

 as
Original Code, and which, at the time of its release under this License is
not already Covered Code governed by this License.

1.10.1. "Patent Claims"

 means any patent claim(s), now owned or hereaf-
ter acquired, including without limitation, method, process, and apparatus
claims, in any patent Licensable by grantor.

1.11. ’’Source Code’’

 means the preferred form of the Covered Code for
making modifications to it, including all modules it contains, plus any asso-
ciated interface definition files, scripts used to control compilation and
installation of an Executable, or source code differential comparisons
against either the Original Code or another well known, available Covered
Code of the Contributor’s choice. The Source Code can be in a compressed
or archival form, provided the appropriate decompression or de-archiving
software is widely available for no charge.

1.12. "You’’ (or "Your")

 means an individual or a legal entity exercising
rights under, and complying with all of the terms of, this License or a future
version of this License issued under Section 6.1. For legal entities, "You’’
includes any entity which controls, is controlled by, or is under common
control with You. For purposes of this definition, "control’’ means (a) the
power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial ownership of
such entity.

2. Source Code License.

2.1. The Initial Developer Grant.

The Initial Developer hereby grants You a world-wide, royalty-free, non-
exclusive license, subject to third party intellectual property claims:

(a)

 under intellectual property rights (other than patent or trademark) Lic-
ensable by Initial Developer to use, reproduce, modify, display, perform,
sublicense and distribute the Original Code (or portions thereof) with or
without Modifications, and/or as part of a Larger Work; and

(b)

 under Patents Claims infringed by the making, using or selling of Orig-
inal Code, to make, have made, use, practice, sell, and offer for sale, and/or
otherwise dispose of the Original Code (or portions thereof).

334

C.2

Mozilla Public License

(c)

the licenses granted in this Section 2.1(a) and (b) are effective on the
date Initial Developer first distributes Original Code under the terms of
this License.

(d)

Notwithstanding Section 2.1(b) above, no patent license is granted: 1)
for code that You delete from the Original Code; 2) separate from the Orig-
inal Code; or 3) for infringements caused by: i) the modification of the
Original Code or ii) the combination of the Original Code with other soft-
ware or devices.

2.2. Contributor Grant.

Subject to third party intellectual property claims, each Contributor hereby
grants You a world-wide, royalty-free, non-exclusive license

(a)

 under intellectual property rights (other than patent or trademark) Lic-
ensable by Contributor, to use, reproduce, modify, display, perform, subli-
cense and distribute the Modifications created by such Contributor (or
portions thereof) either on an unmodified basis, with other Modifications,
as Covered Code and/or as part of a Larger Work; and

(b)

 under Patent Claims infringed by the making, using, or selling of Mod-
ifications made by that Contributor either alone and/or in combination
with its Contributor Version (or portions of such combination), to make,
use, sell, offer for sale, have made, and/or otherwise dispose of: 1) Modifica-
tions made by that Contributor (or portions thereof); and 2) the combina-
tion of Modifications made by that Contributor with its Contributor
Version (or portions of such combination).

(c)

the licenses granted in Sections 2.2(a) and 2.2(b) are effective on the
date Contributor first makes Commercial Use of the Covered Code.

(d)

 Notwithstanding Section 2.2(b) above, no patent license is granted: 1)
for any code that Contributor has deleted from the Contributor Version; 2)
separate from the Contributor Version; 3) for infringements caused by: i)
third party modifications of Contributor Version or ii) the combination of
Modifications made by that Contributor with other software (except as part
of the Contributor Version) or other devices; or 4) under Patent Claims
infringed by Covered Code in the absence of Modifications made by that
Contributor.

3. Distribution Obligations.

C.2

Mozilla Public License 335

Appendix C

3.1. Application of License.

The Modifications which You create or to which You contribute are gov-
erned by the terms of this License, including without limitation Section

2.2

. The Source Code version of Covered Code may be distributed only
under the terms of this License or a future version of this License released
under Section

6.1

, and You must include a copy of this License with every
copy of the Source Code You distribute. You may not offer or impose any
terms on any Source Code version that alters or restricts the applicable ver-
sion of this License or the recipients’ rights hereunder. However, You may
include an additional document offering the additional rights described in
Section

3.5

.

3.2. Availability of Source Code.

Any Modification which You create or to which You contribute must be
made available in Source Code form under the terms of this License either
on the same media as an Executable version or via an accepted Electronic
Distribution Mechanism to anyone to whom you made an Executable ver-
sion available; and if made available via Electronic Distribution Mecha-
nism, must remain available for at least twelve (12) months after the date it
initially became available, or at least six (6) months after a subsequent ver-
sion of that particular Modification has been made available to such recipi-
ents. You are responsible for ensuring that the Source Code version remains
available even if the Electronic Distribution Mechanism is maintained by a
third party.

3.3. Description of Modifications.

You must cause all Covered Code to which You contribute to contain a file
documenting the changes You made to create that Covered Code and the
date of any change. You must include a prominent statement that the Mod-
ification is derived, directly or indirectly, from Original Code provided by
the Initial Developer and including the name of the Initial Developer in (a)
the Source Code, and (b) in any notice in an Executable version or related
documentation in which You describe the origin or ownership of the Cov-
ered Code.

3.4. Intellectual Property Matters

(a) Third Party Claims

.
If Contributor has knowledge that a license under a third party’s intellectual
property rights is required to exercise the rights granted by such Contribu-
tor under Sections 2.1 or 2.2, Contributor must include a text file with the
Source Code distribution titled "LEGAL’’ which describes the claim and
the party making the claim in sufficient detail that a recipient will know
whom to contact. If Contributor obtains such knowledge after the Modifi-

336

C.2

Mozilla Public License

cation is made available as described in Section 3.2, Contributor shall
promptly modify the LEGAL file in all copies Contributor makes available
thereafter and shall take other steps (such as notifying appropriate mailing
lists or newsgroups) reasonably calculated to inform those who received the
Covered Code that new knowledge has been obtained.

(b) Contributor APIs

.

If Contributor’s Modifications include an application programming inter-
face and Contributor has knowledge of patent licenses which are reasonably
necessary to implement that API, Contributor must also include this infor-
mation in the LEGAL file.

(c) Representations.

Contributor represents that, except as disclosed pursuant to Section 3.4(a)
above, Contributor believes that Contributor’s Modifications are Contribu-
tor’s original creation(s) and/or Contributor has sufficient rights to grant
the rights conveyed by this License.

3.5. Required Notices.

You must duplicate the notice in

Exhibit A

 in each file of the Source Code.
If it is not possible to put such notice in a particular Source Code file due to
its structure, then You must include such notice in a location (such as a rel-
evant directory) where a user would be likely to look for such a notice. If
You created one or more Modification(s) You may add your name as a Con-
tributor to the notice described in

Exhibit A

. You must also duplicate this
License in any documentation for the Source Code where You describe
recipients’ rights or ownership rights relating to Covered Code. You may
choose to offer, and to charge a fee for, warranty, support, indemnity or lia-
bility obligations to one or more recipients of Covered Code. However, You
may do so only on Your own behalf, and not on behalf of the Initial Devel-
oper or any Contributor. You must make it absolutely clear than any such
warranty, support, indemnity or liability obligation is offered by You alone,
and You hereby agree to indemnify the Initial Developer and every Con-
tributor for any liability incurred by the Initial Developer or such Contrib-
utor as a result of warranty, support, indemnity or liability terms You offer.

3.6. Distribution of Executable Versions.

You may distribute Covered Code in Executable form only if the require-
ments of Section

3.1-3.5

 have been met for that Covered Code, and if You
include a notice stating that the Source Code version of the Covered Code
is available under the terms of this License, including a description of how
and where You have fulfilled the obligations of Section

3.2

. The notice
must be conspicuously included in any notice in an Executable version,

C.2

Mozilla Public License 337

Appendix C

related documentation or collateral in which You describe recipients’ rights
relating to the Covered Code. You may distribute the Executable version of
Covered Code or ownership rights under a license of Your choice, which
may contain terms different from this License, provided that You are in
compliance with the terms of this License and that the license for the Exe-
cutable version does not attempt to limit or alter the recipient’s rights in the
Source Code version from the rights set forth in this License. If You distrib-
ute the Executable version under a different license You must make it abso-
lutely clear that any terms which differ from this License are offered by You
alone, not by the Initial Developer or any Contributor. You hereby agree to
indemnify the Initial Developer and every Contributor for any liability
incurred by the Initial Developer or such Contributor as a result of any
such terms You offer.

3.7. Larger Works.

You may create a Larger Work by combining Covered Code with other
code not governed by the terms of this License and distribute the Larger
Work as a single product. In such a case, You must make sure the require-
ments of this License are fulfilled for the Covered Code.

4. Inability to Comply Due to Statute or Regulation.

If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Code due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this
License to the maximum extent possible; and (b) describe the limitations
and the code they affect. Such description must be included in the LEGAL
file described in Section

3.4

 and must be included with all distributions of
the Source Code. Except to the extent prohibited by statute or regulation,
such description must be sufficiently detailed for a recipient of ordinary
skill to be able to understand it.

5. Application of this License.

This License applies to code to which the Initial Developer has attached the
notice in

Exhibit A

 and to related Covered Code.

6. Versions of the License.

6.1. New Versions

.
Netscape Communications Corporation (’’Netscape’’) may publish revised
and/or new versions of the License from time to time. Each version will be
given a distinguishing version number.

6.2. Effect of New Versions

.
Once Covered Code has been published under a particular version of the

338

C.2

Mozilla Public License

License, You may always continue to use it under the terms of that version.
You may also choose to use such Covered Code under the terms of any sub-
sequent version of the License published by Netscape. No one other than
Netscape has the right to modify the terms applicable to Covered Code cre-
ated under this License.

6.3. Derivative Works

.
If You create or use a modified version of this License (which you may only
do in order to apply it to code which is not already Covered Code governed
by this License), You must (a) rename Your license so that the phrases
’’Mozilla’’, ’’MOZILLAPL’’, ’’MOZPL’’, ’’Netscape’’, "MPL", ’’NPL’’ or any
confusingly similar phrase do not appear in your license (except to note that
your license differs from this License) and (b) otherwise make it clear that
Your version of the license contains terms which differ from the Mozilla
Public License and Netscape Public License. (Filling in the name of the Ini-
tial Developer, Original Code or Contributor in the notice described in

Exhibit A

 shall not of themselves be deemed to be modifications of this
License.)

7. DISCLAIMER OF WARRANTY.

COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN
"AS IS’’ BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITA-
TION, WARRANTIES THAT THE COVERED CODE IS FREE OF
DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE COVERED CODE IS WITH YOU.
SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY
RESPECT, YOU (NOT THE INITIAL DEVELOPER OR ANY OTHER
CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SER-
VICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF
WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS
LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED
HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

8. TERMINATION.

8.1.

This License and the rights granted hereunder will terminate automat-
ically if You fail to comply with terms herein and fail to cure such breach
within 30 days of becoming aware of the breach. All sublicenses to the Cov-
ered Code which are properly granted shall survive any termination of this
License. Provisions which, by their nature, must remain in effect beyond
the termination of this License shall survive.

C.2

Mozilla Public License 339

Appendix C

8.2.

If You initiate litigation by asserting a patent infringement claim
(excluding declatory judgment actions) against Initial Developer or a Con-
tributor (the Initial Developer or Contributor against whom You file such
action is referred to as "Participant") alleging that:

(a)

such Participant’s Contributor Version directly or indirectly infringes
any patent, then any and all rights granted by such Participant to You under
Sections 2.1 and/or 2.2 of this License shall, upon 60 days notice from Par-
ticipant terminate prospectively, unless if within 60 days after receipt of
notice You either: (i) agree in writing to pay Participant a mutually agree-
able reasonable royalty for Your past and future use of Modifications made
by such Participant, or (ii) withdraw Your litigation claim with respect to
the Contributor Version against such Participant. If within 60 days of
notice, a reasonable royalty and payment arrangement are not mutually
agreed upon in writing by the parties or the litigation claim is not with-
drawn, the rights granted by Participant to You under Sections 2.1 and/or
2.2 automatically terminate at the expiration of the 60 day notice period
specified above.

(b)

 any software, hardware, or device, other than such Participant’s Con-
tributor Version, directly or indirectly infringes any patent, then any rights
granted to You by such Participant under Sections 2.1(b) and 2.2(b) are
revoked effective as of the date You first made, used, sold, distributed, or
had made, Modifications made by that Participant.

8.3.

If You assert a patent infringement claim against Participant alleging
that such Participant’s Contributor Version directly or indirectly infringes
any patent where such claim is resolved (such as by license or settlement)
prior to the initiation of patent infringement litigation, then the reasonable
value of the licenses granted by such Participant under Sections 2.1 or 2.2
shall be taken into account in determining the amount or value of any pay-
ment or license.

8.4.

 In the event of termination under Sections 8.1 or 8.2 above, all end
user license agreements (excluding distributors and resellers) which have
been validly granted by You or any distributor hereunder prior to termina-
tion shall survive termination.

9. LIMITATION OF LIABILITY.

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THE-
ORY, WHETHER TORT (INCLUDING NEGLIGENCE), CON-
TRACT, OR OTHERWISE, SHALL YOU, THE INITIAL
DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBU-
TOR OF COVERED CODE, OR ANY SUPPLIER OF ANY OF SUCH

340

C.2

Mozilla Public License

PARTIES, BE LIABLE TO ANY PERSON FOR ANY INDIRECT, SPE-
CIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY
CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER COM-
MERCIAL DAMAGES OR LOSSES, EVEN IF SUCH PARTY SHALL
HAVE BEEN INFORMED OF THE POSSIBILITY OF SUCH DAM-
AGES. THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO
LIABILITY FOR DEATH OR PERSONAL INJURY RESULTING
FROM SUCH PARTY’S NEGLIGENCE TO THE EXTENT APPLICA-
BLE LAW PROHIBITS SUCH LIMITATION. SOME JURISDIC-
TIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THIS
EXCLUSION AND LIMITATION MAY NOT APPLY TO YOU.

10. U.S. GOVERNMENT END USERS.

The Covered Code is a “commercial item,’’ as that term is defined in 48
C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software’’
and ’’commercial computer software documentation,’’ as such terms are
used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212
and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995), all U.S. Gov-
ernment End Users acquire Covered Code with only those rights set forth
herein.

11. MISCELLANEOUS.

This License represents the complete agreement concerning subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. This License shall be governed by California law provisions
(except to the extent applicable law, if any, provides otherwise), excluding
its conflict-of-law provisions. With respect to disputes in which at least
one party is a citizen of, or an entity chartered or registered to do business
in the United States of America, any litigation relating to this License shall
be subject to the jurisdiction of the Federal Courts of the Northern Dis-
trict of California, with venue lying in Santa Clara County, California,
with the losing party responsible for costs, including without limitation,
court costs and reasonable attorneys’ fees and expenses. The application of
the United Nations Convention on Contracts for the International Sale of
Goods is expressly excluded. Any law or regulation which provides that
the language of a contract shall be construed against the drafter shall not
apply to this License.

C.2 Mozilla Public License 341

Appendix C

12. RESPONSIBILITY FOR CLAIMS.

As between Initial Developer and the Contributors, each party is responsi-
ble for claims and damages arising, directly or indirectly, out of its utiliza-
tion of rights under this License and You agree to work with Initial
Developer and Contributors to distribute such responsibility on an equita-
ble basis. Nothing herein is intended or shall be deemed to constitute any
admission of liability.

13. MULTIPLE-LICENSED CODE.

Initial Developer may designate portions of the Covered Code as “Multi-
ple-Licensed.” “Multiple-Licensed” means that the Initial Developer per-
mits you to utilize portions of the Covered Code under Your choice of the
MPL or the alternative licenses, if any, specified by the Initial Developer in
the file described in Exhibit A.

EXHIBIT A -Mozilla Public License.

``The contents of this file are subject to the Mozilla Public License Version
1.1 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF
ANY KIND, either express or implied. See the License for the specific lan-
guage governing rights and
limitations under the License.

The Original Code is ______________________________________.

The Initial Developer of the Original Code is ____________________.

Portions created by ______________________ are Copyright (C) ______
_______________________. All Rights Reserved.

Contributor(s): ______________________________________.

Alternatively, the contents of this file may be used under the terms of the
_____ license (the “[___] License”), in which case the provisions of
[______] License are applicable instead of those above. If you wish to allow
use of your version of this file only under the terms of the [____] License
and not to allow others to use your version of this file under the MPL, indi-
cate your decision by deleting the provisions above and replace them with
the notice and other provisions required by the [___] License. If you do not

342 C.2 Mozilla Public License

delete the provisions above, a recipient may use your version of this file
under either the MPL or the [___] License.”

[NOTE: The text of this Exhibit A may differ slightly from the text of the
notices in the Source Code files of the Original Code. You should use the
text of this Exhibit A rather than the text found in the Original Code
Source Code for Your Modifications.]

C.3 The BSD License 343

Appendix C

C.3 The BSD License

The following is a BSD license template. To generate your own license,
change the values of OWNER, ORGANIZATION and YEAR from their
original values as given here, and substitute your own.

<OWNER> = Regents of the University of California

<ORGANIZATION> = University of California, Berkeley

<YEAR> = 1998

License Template

Copyright (c) <YEAR>, <OWNER> All rights reserved.

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

Neither the name of the <ORGANIZATION> nor the names of its con-
tributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIA-
BLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This page intentionally left blank

345

Bibliography

I have occasionally heard complaints that open source software is not well
documented, but that is not my experience. What I find is that there is an
overwhelming amount of information available for the major software
products. This information is available in several forms. This bibliography
lists published hardcover books, but some software is extensively docu-
mented with online tutorials or HOWTOs which are freely available. The
tutorials for MySQL and the GIMP, for example, or the German guide to
open source migration are of excellent quality but not to my knowledge
available as bound books. There are also many books from several publish-
ers covering the major products, including Linux, Apache, and the develop-
ment tools. In general, the web site of a product will refer to the available
documentation. Some of these web sites are listed in this book; others can
be found through a web search engine such as Google.

The books below were all used by me in the last year while planning or
working on this book. The selection is pretty arbitrary, except that I selected
them at the time as being the most current and having the best coverage,
and found them useful and interesting. I’ve separated them into three cate-
gories; books on general issues, on system administration, and on software
development including databases.

346 Bibliography

Software History and Philosophy, Business Principles, and Open Source

Title Author Publisher Description

Open Sources DiBona et al (ed) O’Reilly A collection of essays from the leaders
of the open source movement
(Stallman, Torvalds, Wall, Perens,
etc.) at a critical time in its
development.

From Airline
Reservations to Sonic
the Hedgehog

Martin Campbell-
Kelly

MIT Press A great book on software history with
particularly good coverage of areas
that get insufficient attention,
including mainframe software and
custom corporate development.

The Future of Ideas Lawrence Lessig Vintage Books An essential book on the balance of
rights that impact intellectual
property and on the developing
threats to that balance.

Linux and the Unix
Philosophy

Mike Gancarz Digital Press This is an economically written
introduction to the key points of the
Unix philosophy of system
development, which is important to
understand. The book is a classic text
that was recently updated for Linux.

The Business and
Economics of Linux and
Open Source

Martin Fink Prentice Hall A good management overview of
open source issues by a manager who
has been influential in its adoption.
The book covers many general issues,
but is particularly focused for
managers at software and systems
integration companies.

Loosely Coupled: The
Missing Pieces of Web
Services

Doug Kaye RDS Press A high-level view from a successful
software business manager of how to
achieve business integration using
web services. It has an honest
treatment of what works now and
what is still to be developed.

Understanding Open
Source Software
Development

Feller & Fitzgerald Addison-Wesley An academic analysis of the impact of
open source development methods
on the software industry.

Bibliography 347

Bibliography

The Innovator’s
Dilemma

Clayton
Christensen

HarperBusiness
Essentials

The best-selling, highly influential
book on disruptive technologies and
their impact on established industries.
The follow up, “The Innovator’s
Solution,” develops the theory
further.

Technological
Revolutions and
Financial Capital

Carlota Perez Edward Elgar A good analysis of how new
technology is financed and sold,
which provides useful analogies to use
in analyzing software introduction.

Crossing the Chasm Geoffrey Moore HarperBusiness
Essentials

The famous summary of principles
for the successful marketing of high
technology products beyond their
initial niches.

System Administration

Title Author Publisher Description

Fedora for Dummies Jon “maddog”
Hall

Wiley A good starter book on Linux from a
veteran industry evangelist. The book
includes a full copy of Fedora Core
Linux on DVD.

Moving to Linux Marcel Gagne Addison-Wesley A simple book appropriate for end-
users currently using Windows. The
book is well-illustrated and includes a
Knoppix live CD so the reader can
evaluate Linux immediately..

Red Hat Linux and
Fedora Unleashed

Ball & Duff Sams This immense manual is the latest in
a series that has been released to cover
every Red Hat version for years. It
includes Fedora Core Linux on DVD

Unix System
Administration
Handbook, 2nd Edition

Nemeth et al Prentice Hall A long-established classic on Unix
systems administration.

Software History and Philosophy, Business Principles, and Open Source (continued)

Title Author Publisher Description

348 Bibliography

Migration Guide: A
guide to migrating the
basic software
components on server
and workstation
computers

KBSt Publication
Service

This is an indispensable guide with
great practical detail for anyone
migrating to open source software
from a Windows environment. This
book comes out of the German
government and Munich migration
projects. It is well translated from
German.

The Official SAMBA-3
HOWTO and
Reference Guide

Terpstra and
Vernooij (ed)

Prentice-Hall An indispensable guide to
interconnection with Samba.There
are several books on this subject; this
one has full coverage of Samba 3 and
is written specifically for Windows
administrators.

LDAP System
Administration

Gerald Carter O’Reilly A practical manual on administration
of LDAP. All examples refer to the
OpenLDAP open source product.

Open Source Network
Administration

Kretchmar Prentice Hall A “from the trenches” look at
practical open source tools for
network management. Kretchmar is a
systems administrator at a large
university.

Linux Security for
Large-Scale Enterprise
Networks

Becker Digital Press A book on the larger scale issues of
Linux security.

Securing Linux Koconis et al SANS Press A short book with practical scripts for
securing Linux in detail.

System Administration (continued)

Title Author Publisher Description

Bibliography 349

Bibliography

Software Development

Title Author Publisher Description

Microsoft Secrets Cusumano &
Selby

Simon & Schuster There have been many books
published on the theme of secrets at
Microsoft. Despite the title, this book
is the best reference on how
development was done at Microsoft.

Dynamics of Software
Development

Jim McCarthy Addison-Wesley This book has a powerful set of
principles enriched by great stories on
development from a successful
manager of complex development
tools including Visual C++.

JBOSS Administration
and Development

Stark & Fleury Sams An overview of the JBOSS open
source J2EE application server. Fleury
is the product architect.

MySQL Paul DuBois Sams A large, comprehensive book on
MySQL, covering administration and
development with examples in C,
Perl, and PHP. The 2nd Edition
covers MySQL 4.

Python Essential
Reference

David Beazley New Riders In my view, this is the best reference
book on Python.

PHP and MySQL Web
Development

Welling &
Thomson

Sams A definitive book on PHP
development by professional
instructors.

PostgreSQL Developers
Handbook

Geschwinde &
Schonig

Sams An extensive, comprehensive book
with chapters on development from
different languages.

Programming with
GNU Software

Loukides & Oram O’Reilly Basic reference on using Emacs, the
GNU C/C++ compiler, make, and
revision control, which are the
essential tools for maintaining most
open source software.

The Wiki Way Leuf &
Cunningham

Addison-Wesley Cunningham invented the Wiki idea.
The book is illustrated with code
examples in Perl and includes a CD-
ROM with wiki software and Perl
and Apache for Windows or Linux.

350 Bibliography

Programming Web
Services with XML-RPC

St Laurent,
Johnston, &
Dumbill

O’Reilly Simple explanation of a key
integration technology. The book
contains examples in Java, ASP, PHP,
Perl, and Python.

Software Development (continued)

Title Author Publisher Description

351

About the Author

I have been a corporate developer and consultant for over 20 years in Lon-
don, New York, Chicago, and the southeastern United States. I started on
IBM mainframes, was an early PC enthusiast, and had some Digital VAX
experience, but I really fell in love with UNIX when I first saw networked
Sun workstations. After that, I had a UNIX consulting business for several
years. IBM was a major client, so the flavor of UNIX we used was mostly
AIX. I had the opportunity to conduct training for thousands of IBM sys-
tem engineers on TCP/IP and the Internet at a time when it was new to
most of them. I was the subject matter consultant on a couple of books
about AIX system administration.

In 1993, I wrote a book on the development strategies and methods of
that time, generally called client/server computing. Research for that book
convinced me that what was then called Windows NT was the best
upcoming opportunity, so from 1994 to 2002, I worked for Microsoft on
server adoption and enterprise consulting. This was mostly Microsoft
Consulting, but included two years managing regional product sales for
development tools and database. This included the introduction of SQL
Server 7.0, which altered price/performance in the database market five
years ago in rather the way open source database products are doing today.
At one time I was a Microsoft Certified Systems Engineer, Solution Devel-
oper, and Trainer (MCP #22989), but most of my MCP qualifications
have now expired.

In my last job with Microsoft as a .Net architect, my team was often
called upon to debate with or otherwise compete with, and also to interop-
erate with, open source systems. In the course of those activities, I was sur-
prised and impressed by the quality of the open source products, and I
resolved to switch to them.

Since 2002, I have been developing and consulting on open source
software, particularly migration from and interoperability with Microsoft

352 About the Author

Windows systems. I have contributed to a couple of small open source
projects, but I consider my role to be more a consultant than an open
source developer.

I have done a lot of training, in technologies from OLTP to UNIX
and TCP/IP to Microsoft .Net, and in how to build high-performance
online systems, complex distributed software, and reliable server farms.
Although the details differ, many of the important issues in developing
systems are the same, and this book will emphasize those similarities as
well as the differences.

Writing Environment

This book was developed, written, and tested from September 2003 to
March 2004 using the following systems, which all share files and printers
using Samba:

�

ASUS dual-processor server running Red Hat Enterprise Linux 3.

�

LinuxCertified notebook running SuSE Professional Linux 9.

�

Dell Latitude L400 running Fedora Core 1. This old lightweight sys-
tem has a 1,024

×

 768 screen, which makes a good screenshot.

�

Dell Inspiron 4100 running Windows 2003 Server for interoperabil-
ity and cross-platform testing.

�

Toshiba R100 notebook running SuSE Standard Server 8 under
VMWare on Windows XP.

�

Apple Powerbook G4 running Mac OS X 10.3 for interoperability
and cross-platform testing.

All of the systems run MySQL, Apache, Python, PHP, and OpenOffice.
Text was written with OpenOffice Writer, spreadsheets with OpenOffice
Calc. Screenshots and other bit maps were edited with GIMP. Line art was
done with Dia and Microsoft Visio.

Final files were assembled using a Mac platform (Apple PowerMac G4
dual-processor and PowerBook G4) and Adobe software (FrameMaker 7,
Distiller, Acrobat, and PhotoShop). The final file for printing was delivered
in PDF format.

353

Index

Amazon.com, 33, 36
Linux and, 36
recommendations page, 37

Analytical framework, 19–29
Apache, 27, 57, 148–49

defined, 30, 148
series, 148–49
structure, 149

Application architecture, 245–73
application servers, 259–60
database design, 256–59
illustrated, 250
interoperability, 260–66
performance and scalability, 251–60
queuing, 254–56
state management, 251–53
system types, 245–49
tiered design, 249–51

Application integration engines, 262–63
Application servers, 259–60
Army Research Lab (MSRC), 35
AS3AP Benchmark, 165–66
ASP developers, 71
ASP.Net, 268

Berkeley DB, 156, 161–62
defined, 161–62
dual licensing model, 162

See also

 Database servers

Berkeley Software Distribution (BSD), 8–9,
30

Big databases, 158–59
BIND, 30
Bioinformatics, 33–34
BizTalk, 262, 263
BMC, 95
Bottom-up estimation, 229
Branding, 61–62
BSD license, 299, 343

defined, 299
example, 343

See also

 Licenses; Nonreciprocal licenses
Bundling, 60–61
Business to business (B2B) customers, 246

Cadence, 94
Call centers, 81–83

applications, 82
issues, 81–82
turnover, 82

See also

 Desktop software
C/C++, 210–13, 219

performance and, 247
popularity, 211
projects, 210–11

Changing source code, 43–44
Client access licenses (CALs), 72, 102
Client/server applications, 12, 77

354 Index

Closed code software
branding, 61–62
bundling, 60–61
databases, 166–67
defined, 2
development comparison, 204–7
integration, 62
operating system, 126
pricing, 283–84
system management tools, 169

See also

 Software
Cobalt Linux, 136
Collaboration.

See

 Groupware and
collaboration

Common Internet File System (CIFS), 147
Communication

loosely coupled, 256
process, 262
role, 223–24

Computer Associates, 94
Concurrent licensing, 188
Content management, 114–15
Cost(s), 64, 275–96

elements, 276
fixed, 286
hardware, 279
internal use scenario, 293–94
large organization, 293–94
off-budget, 286
pricing and, 282–85
scenarios, 289–94
small organization, 289–93
software, 279–81
staffing, 277–79
summary, 295–96
sunk, 286–87
support, 241, 278
switching, 287–89
TCO, 276–85
third-party applications/database servers,

281–82

types, 285–89
Web site scenario, 289–93

Cross-platform code, 215–18
applications, 216
open source, 217–18
opportunity cost, 216
in practice, 218

Customer management, 223
Customer relationship management (CRM),

95–96, 121
integrated, 96
product acquisition, 95

Customization, 100–101
CVS, 230

Data architecture, 54–55
Database platforms, 53
Databases

big, 154, 158–59
categories, 156
closed code, 166–67
connections, 252
design, 256–59
embedded, 160–61
good enough performance, 164–66
leading, 155
for loosely coupled communication, 256
medium, 159–60
migrating, 90–96
open source, evaluating, 92
OSDB benchmark, 165–66
performance over time, 165
queuing in, 256
replacing, with open source, 92–93
replication, 257, 261
shared, 261–62
small, 160
storage engines, 257–59
very big, 157–58
Winter Top Ten lists, 153–57

Index 355

Index

Database servers, 27, 150–67
Berkeley DB, 156, 161–62
big transactional systems, 151–52
classes, 151
cost, 280–81
MySQL, 27, 56–57, 160–61, 163–64
open source choices, 161–64
PostgreSQL, 162–63
size analysis, 151–61
TPC benchmark, 152
TPC-C benchmark, 152–53
Winter Top Ten lists, 153–57

See also

 Servers
Data formats, 265–66
DB2, 155, 156, 157, 158
Debian Linux, 138–39
Deployment, 224

ERP, 245
platforms, 52–53

Desktop applications, 173–201
graphical desktops, 175–79
mail and calendar clients, 195–98
office suites, 182–95
personal software, 198–200
summary, 201
Web browsers, 180–81

Desktop software, 79–90
call centers, 81–83
food service, 83
franchises, 81
government, 85–87
healthcare/education, 87–88
hospitality, 83–84
new/small businesses, 80–81
new systems, 79–90
retail, 83–84

Developer training, 70–71
Development, 203–19

cross-platform code, 215–18
geographic clusters and, 206
implementation role, 223

languages, 209–15
methodology, 203–9
open source tools, 207
open source vs. closed code, 204–7
open source vs. corporate development,

207
people management, 208–9
process model, 226
productivity, 239
software costs, 280–81
summary, 218–19

Development platforms, 266–72
Java, 266–68
LAMP, 269–72
.Net, 268–69

See also

 Application architecture
Dia, 197, 198
Digital Millennium Copyright Act (DMCA),

305
Digital Rights Management (DRM), 305
Directory services, 102–3

migration and interoperability, 103
OpenLDAP, 102–3, 147–48
open source applications, 147–48

Direct sales model, 56–57
Disruptive innovations, 19–23

defined, 19
examples, 19
“good enough,” 20
lock-in, 21–23
open source as, 21
successive, 20

Dot-coms, 33
Drawing/image management, 197–98
Dual boot, 312–13
Dual licensing, 302–3

defined, 302
strategy, 303

See also

 Licenses; Licensing

356 Index

Eclipse, 214
Education applications, 87–88
Email, 103–7

Exchange replacement, 105–6
integrated Exchange replacements, 107
migration, 104
PC-based mail systems, 104–5
UNIX mail systems, 103

Embedded databases, 160–61
Employee agreements, 240
Enterprise application software, 95–96
Enterprise distribution vendors, 138
Enterprise requirements planning (ERP), 95–

96, 121
deployment, 245
integrated, 96
product acquisition, 95

Evaluation Linux system
dual boot, 312
installing, 309–14
interoperability setup, 312

See also

 Linux
Evolution, 195–96
Exchange, 105

integrated replacements, 107
mapping, to open source mail, 106
replacing, 105–6

Extreme systems, 246–48
defined, 246
examples, 246–47

FedStats, 36, 37
File and print servers, 71–75

consolidation, 74–75
hypothetical analysis, 72–74
infrastructure, 72
installed systems, 74
network-attached storage (NAS), 75
open source applications, 146–47
small Linux boxes, 74

Fixed costs, 286
Food service applications, 83
“Fork,” 44
Franchises, 81
FreeBSD, 33, 128
Free software, 2–3
Free Software Foundation (FSF), 10
Functional specification, 235–36

GAIM, 111–12
GIMP, 197
Gnome, 177–79, 204

defined, 177
display, 178
screenshot, 179

Gnome Office, 182
GNU, 9–10, 204

defined, 9
General Public License, 10, 323–31
kernel, 10
UNIX modeling, 9–10

Google, 33
Government, 85–87

agencies, 86–87
funding cycle, 86
issues, 85
migrations, 86

See also

 Desktop software
GPL license, 299, 323–31

defined, 299
example, 323–31

See also

 Licenses; Reciprocal licenses
Graphical desktops, 175–79

Gnome, 177–79
KDE, 177–79
X11, 175–76

See also

 Desktop applications
Grid computing, 34
Groupware and collaboration, 107–12

instant messaging (IM), 111–12

Index 357

Index

Scoop, 109, 110
Slashdot, 109–10
Weblogs, 111
wiki, 107–9

GUI toolkits, 217

Hardware costs, 279
Healthcare applications, 87–88
High-performance computing, 34
Hospitality applications, 83–84
HP OpenMail, 103
HTML, 186–87
Hybrid licensing model, 2

IBM, 35, 47, 94
IMAP, 168
Implementation

communication role, 223–24
customer management, 223
deployment role, 224
development role, 223
key documents, 231–36
management, 221–43
migration and, 236–39
open source community interaction, 239–

41
principles, 228–30
problems and, 230
process, 226–28
program management, 223
releases, 226–27, 229–30
resource trade-offs and, 228–29
roles, 221–24
summary, 243
support and, 241–42
support elements and, 230
team roles during, 227–28
teams, 221
testing role, 223

Infrastructure services, 145–48
directory, 147–48
file and print, 146–47
security, 145

Infrastructure software costs, 280
InnoDB, 257, 259
Integration, 46–48, 62, 100–101

closed code, 62
CRM, 96
engines, 262–63
ERP, 96
OpenOffice, 189
open source, 62

Intellectual property issues, 303–5
Interlanguage calling conventions, 250
Internal use cost scenarios

large organization, 293–94
small organization, 291–93

See also

 Cost(s)
International companies, 50–51
International opportunities, 89–90
Internet, 12–13

beginnings, 12
history, 12–13
as “killer application,” 14
open source software and, 12–13, 29–30
software, 14
TCP/IP protocol, 13, 30

Internet Information Server (IIS), 60, 149
Interoperability, 260–66

application integration engines, 262–63
data formats, 265–66
process communication, 262
setting up, 312
shared data, 261–62
strategies, 261
Web services, 263–65

Jabber format, 112
Java, 214–15

358 Index

as development platform, 266–68
Eclipse system, 214
specification, 53–54

Java Messaging Services (JMS), 256
JavaScript, 215
Java Server Pages (JSP), 266–67
JBoss, 56, 256, 260, 267
Jython, 269

KDE, 177–79
defined, 177
display, 178
screenshot, 179

Knoppix, 140–41
booting, 141
defined, 140
desktop, 141
ease of use, 140

See also

 Linux
Knowledge management, 248–49
KOffice, 182

LAMP, 76–79, 90, 97, 246
applications, 269
client/server applications, 77
defined, 76
as development platform, 269–72
first system selection, 78–79
illustrated, 77
redeveloped, 91
strengths, 269
successful implementations, 269
Web applications, 77, 97

Language(s), 53–54
C and C++, 210–13
Java, 214–15
JavaScript, 215
open source use, 209–10
Perl, 213

PHP, 213–14
projects, 210–13
Python, 214

Licenses
BSD, 299, 343
dual, 302–3
examples, 323–43
GPL, 299, 323–31
LGPL, 299
MIT, 299
Mozilla Public License, 299, 332–42
nonreciprocal, 297–98
reciprocal, 297, 298
types of, 297–300
in use, 298–300
use decision, 300

Licensing, 48–50, 297–305
analysis, 120–21
concurrent, 188
cost, 48–49
dual, 302–3
intellectual property issues, 303–5
open/closed code mix and, 300–302
simplicity, 49–50
upgrades and, 50

Linux, 4, 10–11, 28
Amazon.com use, 33
appliances, 31–32
in character mode, 175
Debian, 138–39
defined, 10
development speed, 132
distribution/package management, 137–

38
distribution vendors, 134–38
enterprise distribution vendors, 138
evaluation system installation, 309–14
expected events, 30–31
family tree, 11
file configuration, 129–30
Google use, 33

Index 359

Index

GUI interface, 129–30
hardware costs, 48
installations, 35
international alternatives, 139–41
Knoppix, 140–41
migrating UNIX to, 93–94
momentum, 31
packages, evaluating/purchasing, 94–95
platform availability, 45
recent improvements, 131–32
Red Hat, 135, 136
Red Hat Enterprise, 138
Red Hat Fedora, 139
running, on Windows, 313–14
running Windows on, 314
scaling, 132–33
security, 134
servers, 28, 71
Slashdot use, 33
SuSE, 136, 137, 138
training administrators in, 75–76
unit shipments, 30–31
versions, 134–36
Windows machine install problems, 310–

11

See also

 Operating systems
Linux desktops, 173–75

adoption limitations, 174–75
applications, 173, 175
hardware, 174
share, 174
support services, 175

Linux kernel
management, 125
size, 127

Local area networks (LANs), 104
Lock-in, 21–23
Lotus Notes, 105

Mail/calendar clients, 195–98

Dia, 197, 198
drawing/image management, 197–98
Evolution, 195–96
GIMP, 197, 198
professional applications, 196

Mail servers, 167–68
IMAP, 168
Postfix, 167–68

See also

 Servers
MapStats, 36, 38
Massive multiplayer games, 34
Medium databases, 159–60
Memory type storage engines, 259
Merge type storage engines, 259
Microsoft, 47

Exchange Server, 61
skills, 49

Microsoft Office
competition, 187
importing/exporting between, 190–91
market share, 185
migration from, 189–91
OpenOffice comparison, 188–89
piracy rate, 185
problem, 187–88

Migration, 90–96, 236–39
approaches, 237
database, 92–93, 94
directory services, 103
email, 104
infrastructure, 71–76
Microsoft developer, 270
to OpenOffice, 189–91
portal components, 116
risks, 236
system assessment and, 237–39
UNIX, 93–94
user desktops, 117

MOM4J, 256
Mozilla, 148, 180–81

defined, 30

360 Index

Firefox, 181
versions, 181

See also

 Web browsers
Mozilla Public License, 299, 332–42

defined, 299
example, 332–42

See also

 Licenses; Reciprocal licenses
MyISAM, 257–59
MySQL, 27, 56, 57, 63, 163–64, 204

defined, 163
dual-licensed, 163
embedded version, 161
introducing, 160
power, 164
price/performance, 159
Pro version, 160
storage engines, 259

See also

 Database servers

Nagios, 169–70
defined, 169
online demonstration, 169
status map, 170

.Net, 268–69
applications, 268
strengths, 269

Network-attached storage (NAS), 75
New businesses, 80–81
Nonreciprocal licenses, 297–98

BSD, 299, 343
defined, 297–98
LGPL, 299
MIT, 299

See also

 Licenses; Licensing

Off-budget costs, 286
Office suites, 28–29, 182–95

Gnome Office, 182
KOffice, 182

lock-in and complexity, 191–94
market competition, 185–88
no need for, 194–95

See also

 OpenOffice
Open directories, 100
OpenLDAP, 102–3, 168

closed code product comparison, 102
migrating infrastructure to, 71–76
setting up, 147–48

OpenOffice, 4, 28–29, 120–23, 182–95
bundling, 188–89
calc, 184
comparison, 183
defined, 28, 183
downloads, 35
formats, 189
importing/exporting between, 190–91
installing, 182
integration, 189
Microsoft Office comparison, 188–89
migration to, 189–91
one-time migration, 193
OpenOffice.org, 183
presentation, 185
switching costs, 29, 193–94
two-way interoperability, 193
write, 184

See also

 Office suites
Open Software Application Foundation

(OSAF), 122
Open source

adopting, 3–4
advantages, 41–52
alternative, 2
analytical framework, 19–29
bioinformatics and, 33–34
business methods and, 4–5
closed code software coexistence, 5
content portals, 116–17
corporate adopters, 35–36
costs, 64

Index 361

Index

databases, evaluating, 92
defined, 1
desktop, 79–90, 173–201
development, 203–19
development tools, 207
directory services, 102–3
disadvantages, 56–62
dot-coms and, 33
email, 103–7
examples, 3
“following tail lights,” 205
grid computing and, 34
groupware and collaboration, 107–12
high-performance computing and, 34
integration between products, 46–48
for international companies, 50–51
Internet and, 12–13, 29–30
learning, 52
licensing, 48–50, 297–305
massive multiplayer games and, 34
opportunities, 67–124
performance, 276
as piracy alternative, 88
professionals, 51–52
sales support, 56–58
security, 134
server applications, 145–71
software pricing, 282–83
stack, 25–26
system cost, 275–96
system examples, 36–39
technology adoption, 26–29
top ten reasons to use, 315–16
as trend, 5
user desktop management, 117–21
Web publishing, 112–17
in widespread successful use, 29–36, 39–

40
Open source appliances, 31–32

defined, 31
examples, 31–32

Open source/closed code mix, 300–302
Open source community

employee agreements, 240
hiring from, 239–40
interacting with, 239–41
repaying, 240–41

Open Source Database Benchmark (OSDB),
165–66

Open Source Definition (OSD), 1, 321–22
derived works, 321
distribution of license, 322
free redistribution, 321
integrity of author's source code, 321–22
introduction, 321
license must be technology neutral, 322
license must not be specific, 322
license must not restrict other software,

322
no discrimination against fields of

endeavor, 322
no discrimination against persons/groups,

322
source code, 321

Open source labs, 68–71
creating, 68–71
as dedicated space, 68
defined, 68
developer training, 70–71
elements illustration, 68
expanding, 308
finances and, 308–9
managing, 307–9
uses, 308
work review, 69–70

Open source products
data architecture, 54–55
database platform, 53
deployment platform, 52–53
language, 53–54
review elements, 52

Operating systems, 28, 125–43

362 Index

alternative, value, 129
closed code, 126
contents, 125–34
FreeBSD, 128
scaling, 132–33
security, 134

See also

 Linux
Oracle, 94

benchmarking, 167
costs, 160
on Linux, 57
on UNIX, 155
on Windows, 159

Organization size, 101–2
OSM, 256

PC-based mail systems, 104–5
PDAs, 32
People management, 208–9
PeopleSoft, 94
Perl, 213, 271

applications, 213
LAMP client/server applications, 77

Personal computers (PCs), 11–12
Personal software, 198–99

illustrated, 200
Windows applications, 199–200

PHP, 35, 60, 213–14, 271
advantages, 214
defined, 313
developers, 71
as development language, 76
training in, 70

PHP-Nuke, 116, 117, 118
Piracy, 88–89

effect, 88–89
open source as alternative, 88

Platforms
database, 53
deployment, 52–53

development, 266–72
new, adopting, 44–45

See also

 Linux
Plone, 116–17, 205

defined, 116
example, 118
home page, 117
international use, 117

Portable Document Format (PDF), 186
Portal components, 114–16

authentication and personalization, 114
component integration, 116
content management, 114–15
indexing and search, 115
internationalization, 116
migration, 116

See also

 Web publishing
Portals

example offerings, 113
open source content, 116–17

Postfix, 167–68
PostgreSQL, 162–63
Pricing

closed code software, 283–84
open source software, 282–83
Windows software, 284–85

See also

 Cost(s)
Process communication, 262
Products

branding, 61–62
bundling, 60–61
evaluation criteria, 60
integration, 62
package, 59
release dates, 59
reviews, 58–60
versions, 59

Program management, 223
Project definition, 231
Proprietary information formats, 46
Proprietary systems, 47

Index 363

Index

Provenance, 304–5
Python, 269, 271

components availability, 272
LAMP client/server applications, 77
learning, 271
training in, 70
Windows version, 272

Qtopia, 175
Queuing, 254–56

benefits, 254
in database, 256
defined, 254
illustrated, 255
reliability/throughput and, 255
work introduced by, 255

Reciprocal licenses, 297
commercial licenses vs., 298
defined, 297
GPL, 299, 323–31
Mozilla Public License, 299, 332–42

See also

 Licenses; Licensing
Red Hat Linux, 63, 135, 136

Enterprise, 59, 138
Fedora, 139

See also

 Linux
Redistributing source code, 43–44
Releases, 226–27

frequent, 229–30
internal, 226
scheduling, 227

Replication, 257, 261
Resource trade-offs, 228–29
Retail applications, 83–84
Return on investment (ROI), 289
Review(s)

existing work, 69–70
product, 58–60

Risk assessment, 231–35
example, 233–35
purpose, 231

Risks
checklist, 232–33
ID number, 233
management, 231–33
migration, 236
removal, 231
severe, 231–32

Sales support, 56–58
direct sales model and, 56–57
inside selling, 57–58

Samba, 97, 146–47
for file and print infrastructure, 72
migrating infrastructure to, 71–76
scaling, 146
training administrators in, 75–76
for user management, 147

SAP, 57, 94
SAS, 95
Scoop, 109, 110
SCO Xenix, 93
Security, 134
Sendmail, 30, 104
Server applications, 145–71

infrastructure services, 145–48
summary, 170–71
systems management, 168–70
Web servers, 148–50

Server Message Block (SMB), 147
Servers

application, 259–60
consolidation, 74–75
database, 27, 150–67
effect of resources held at, 253
file and print, 71–75
infrastructure, replacing, 73–74
installed systems, 73

364 Index

Linux, 28, 71
mail, 167–68
operating systems, 29
UNIX, 90
Web, 27–28, 148–50

Shared data, 261–62
Sharp Zaurus, 175, 176

defined, 199
illustrated, 200

Sherwin-Williams, 35
Slashdot, 33, 109–10

defined, 39
illustrated, 39, 110
Slash, 109

Small businesses, 80–81
Small databases, 160
Small organization cost scenarios, 289–93

internal use, 291–93
Web site, 289–91

Software
closed code, 2, 60–62, 166–67, 204–7,

283–84
companies, 6–7
early years, 6
enterprise application, 95–96
GNU and, 9–10
history, 6–14
industry structure, 295–96
Internet, 14
UNIX and, 7–8
unlicensed, 88–89

See also

 Open source
Software costs, 279–81

database and development, 280–81
infrastructure, 280

Source code
changing/redistributing, 43–44
viewing, 41–43

SQL, 53, 54
SQL Server, 61, 156, 158, 159

costs, 160

TPC-C results, 164
Staffing costs, 277–78

savings, 277
support, 278
table, 278

See also

 Cost(s)
State

management, 251–53
saving, 253
transient, 251–52

Storage engines, 257–59
InnoDB, 257, 259
Memory type, 259
Merge type, 259
MyISAM, 257–59

Struts, 266
Sunk costs, 286–87
Support, 241–42

costs, 241, 278
levels, 241–42
managing, 241
open source and, 242
sales, 56–58

SuSE Linux, 136, 137, 138
Switching costs, 287–89

defined, 287
illustrated, 288
vendor premium and, 288–89

See also

 Cost(s)
Symantec, 95
Systems

assessment, 237–39
extreme, 246–48
infrastructure, 249
integrators, 24
knowledge management, 248–49
loosely coupled, 251
management, 168–70
transactional, 248
types of, 245–49

Index 365

Index

TCP/IP protocol, 13, 30
Teams

extending, 224–25
international issues, 225
open source impact on, 224–26
size, 221

See also

 Implementation
Technical specification, 236
Technological revolutions, 14
Technology adoption curve, 23–25

defined, 23
illustrated, 24
S-curve, 24–25

Testing, 223
Tiered design, 249–51

flexibility/control balance, 249
illustrated, 250

See also

 Application architecture
Tomcat, 268
Total cost of ownership (TCO), 276–85

elements, 277
elements for infrastructure, 278
hardware, 279
software, 279–81
staffing, 277–78

TPC-C benchmark, 152–53
Transactional systems, 248
Transient state, 251–52
Travelocity, 35, 36

defined, 36
illustrated, 38

Tux, 150
Twisted, 205

UNIX, 7–8
BSD, 8–9, 30
fracturing, 63–64
history, 7–8
mail systems, 103

migrating, to Linux, 93–94
Oracle on, 155
proprietary improvements, 64
servers, 90

UNIX System Labs (USL), 9
Upgrades, controlling, 50
User desktops, 117–21

migration of, 117
use, 119
use analysis, 120–21

Vendors
buying from, 44–45
selling on inside, 57

Verisign, 95
Very big databases, 157–58
Viewing source code, 41–43
Visual BASIC (VB), 270
Visual BASIC (VB) programmers, 270–72

Web applications, 77
Web browsers, 180–81

choosing, 180
deploying, 180–81
Mozilla, 180–81

See also

 Desktop applications
Web links, 316–19
Weblogs, 111
WebMethods, 262, 263
Web publishing, 112–17

open source content portals, 116–17
portal components, 114–16

Web servers, 27–28, 148–50
Apache, 148–49
Tux, 150
Zeus, 150

See also

 Servers
Web services, 263–65

asynchronous, 264

366 Index

defined, 263
illustrated, 264
XML-RPC, 264

Web site cost scenario, 289–93
WebSphere, 57, 262
Wiki, 107–9

defined, 107
implementations, 107–8
interoperability problem, 108

See also

 Groupware and collaboration
Windows

applications, running, 199–200
proprietary features, 75
running, on Linux, 314
running Linux on, 313–14
software pricing, 284–85

Winter Top Ten lists, 153–57
database categories, 156
leading databases, 155
statistics, 153–54

See also

 Databases; Database servers
Work review, 69–70
World Wide Web, 13–14

X11, 175–76
XML, 54, 55

format, 187
schemata, 265

XML-RPC, 264

Zeus, 150

	Open Source Software : Implementation and ManagementSoftware Development
	Cover

	Contents
	Preface
	Intended Audience for This Book
	How This Book Is Structured
	Acknowledgements
	1 Open Source Software: Definitions and History
	1.1 Definition of Terms
	1.1.1 What Is Free Software?
	1.1.2 What Are Good Examples of Open Source?
	1.1.3 Is It Necessary to Adopt Open Source Wholesale?
	1.1.4 Does "Open Source" Mean Linux?
	1.1.5 Does Open Source Require Different Business Methods?
	1.1.6 Will All Systems Be Open Source One Day?
	1.1.7 Is Open Source a Fad That Will Go Away?

	1.2 A Brief History of Software
	1.2.1 Early Years
	1.2.2 Software Companies
	1.2.3 UNIX
	1.2.4 BSD
	1.2.5 GNU and FSF
	1.2.6 Linux
	1.2.7 The Personal Computer
	1.2.8 The Internet
	1.2.9 The World Wide Web

	1.3 Summary

	2 Where Open Source Is Successful
	2.1 Analytical Framework
	2.1.1 Disruptive Innovations
	2.1.2 The Technology Adoption Curve
	2.1.3 The Open Source Stack
	2.1.4 Adoption of Specific Open Source Technologies

	2.2 Open Source Is in Widespread Successful Use
	2.2.1 Open Source Is the Heart of the Internet
	2.2.2 Linux Is Shipping a Lot
	2.2.3 Open Source Appliances Are Everywhere
	2.2.4 New Companies and New Businesses Use Open Source
	2.2.5 Open Source Is Broadly Adopted

	2.3 Examples of Open Source Systems
	2.4 Summary

	3 Open Source: The Good, the Bad, and the Ugly
	3.1 What Is Good about Open Source
	3.1.1 Why Your Right to View Code Matters
	3.1.2 Why Your Right to Change and Redistribute Code Matters
	3.1.3 You Can Buy from Different Vendors and Adopt New Platforms
	3.1.4 Open Source Avoids Proprietary Information Formats
	3.1.5 Open Source Allows Integration between Products
	3.1.6 Open Source Licensing Is Simpler and Less Expensive
	3.1.7 Open Source is a Good Solution for International Companies
	3.1.8 There Is a Large Pool of Skilled Open Source Professionals

	3.2 Open Source Is Not Enough by Itself
	3.2.1 Deployment Platform
	3.2.2 Database Platform
	3.2.3 Software Language, Architecture, and Implementation
	3.2.4 Data Architecture

	3.3 How Choosing Open Source Is More Difficult for You
	3.3.1 Open Source Has a Less Complete Level of Sales Support
	3.3.2 Specific Product Reviews Will Not Favor Open Source
	3.3.3 Open Source Products Are Not Bundled, Branded, or Integrated

	3.4 What Others Say about Open Source
	3.5 Summary

	4 Five Immediate Open Source Opportunities
	4.1 Create an Open Source Lab
	4.1.1 Review Existing Work
	4.1.2 Train Developers to Program in Open Source Languages

	4.2 Migrate Infrastructure to Samba and OpenLDAP
	4.2.1 File and Print Servers
	4.2.2 Manage Use of Windows Proprietary Features
	4.2.3 Train Administrators in Linux and Samba

	4.3 Build Some LAMP Applications
	4.4 Bring New Desktop Systems to the Underserved
	4.4.1 New and Small Businesses
	4.4.2 Franchises
	4.4.3 Call Centers
	4.4.4 Retail, Food Service, and Hospitality
	4.4.5 Government, Healthcare, and Education
	4.4.6 Unlicensed Software
	4.4.7 International Opportunities

	4.5 Migrate Applications and Databases to Open Source
	4.5.1 Evaluate Open Source Databases
	4.5.2 Replace Small and Old Database Applications with Open Source
	4.5.3 Migrate UNIX to Linux
	4.5.4 Evaluate and Purchase Packages on Linux
	4.5.5 Enterprise Application Software

	4.6 Summary

	5 Five More Open Source Opportunities
	5.1 Introduction
	5.1.1 Customization and Integration
	5.1.2 Organization Size

	5.2 Directory Services
	5.2.1 Migration and Interoperability

	5.3 Email
	5.3.1 UNIX Mail Systems
	5.3.2 Migration
	5.3.3 PC-Based Mail Systems
	5.3.4 Replacing Exchange
	5.3.5 Integrated Exchange Replacements

	5.4 Groupware and Collaboration
	5.4.1 Wiki
	5.4.2 Other Community Software
	5.4.3 Weblogs
	5.4.4 Instant Messaging

	5.5 Complex Web Publishing
	5.5.1 Portal Components
	5.5.2 Open Source Content Portals

	5.6 Manage User Desktops
	5.6.1 Analyze Desktop Use and Licensing

	5.7 Other Possibilities
	5.8 Summary

	6 Operating Systems
	6.1 Contents of the Operating System
	6.1.1 FreeBSD
	6.1.2 The Value of Alternative Operating Systems?
	6.1.3 Using the Shell . . .
	6.1.4 Recent Linux Improvements
	6.1.5 Scaling Linux up and Down
	6.1.6 Security

	6.2 Linux Distribution Vendors
	6.2.1 The Many Versions of Linux
	6.3 Enterprise Distribution Vendors
	6.4 Community-Supported Distribution Vendors
	6.4.1 Debian
	6.4.2 Fedora

	6.5 International Alternatives
	6.5.1 Consumer Linux Choices
	6.5.2 Booting from a CD

	6.6 Summary

	7 Open Source Server Applications
	7.1 Infrastructure Services
	7.1.1 File and Print Services
	7.1.2 Directory Services

	7.2 Web Servers
	7.2.1 Apache
	7.2.2 Other Web Servers

	7.3 Database Servers
	7.3.1 Classes of Database Servers
	7.3.2 Analysis of Database System Sizes
	7.3.3 Open Source Database Choices
	7.3.4 Database Performance Is Good Enough
	7.3.5 Competing with Closed Code Databases

	7.4 Mail Servers
	7.5 Systems Management
	7.6 Summary

	8 Open Source Desktop Applications
	8.1 Introduction
	8.1.1 The Open Source Desktop
	8.1.2 Linux Desktop Share
	8.1.3 Limitations to Desktop Linux Adoption

	8.2 Graphical Desktops
	8.3 Web Browsers
	8.3.1 Deploying Browsers

	8.4 The Office Suite
	8.4.1 OpenOffice.org
	8.4.2 Competition in the Office Suite Market
	8.4.3 Comparison of Microsoft Office to OpenOffice
	8.4.4 Migration from Microsoft Office to OpenOffice
	8.4.5 Lock-in and Complexity
	8.4.6 When You Don't Need an Office Suite

	8.5 Mail and Calendar Clients
	8.5.1 Professional Applications
	8.5.2 Drawing and Image Management

	8.6 Personal Software
	8.6.1 Running Windows Applications

	8.7 Summary

	9 How Open Source Software Is Developed
	9.1 Methodology
	9.1.1 Open Source Compared with Closed Code
	9.1.2 Open Source Compared with Corporate Development
	9.1.3 Open Source Development Tools
	9.1.4 Managing People

	9.2 Languages Used to Develop Open Source Products
	9.2.1 C and C++
	9.2.2 Perl
	9.2.3 PHP
	9.2.4 Python
	9.2.5 Java
	9.2.6 Other Languages

	9.3 Cross-Platform Code
	9.4 Summary

	10 Managing System Implementation
	10.1 Implementation Roles
	10.1.1 Customer Management
	10.1.2 Program Management
	10.1.3 Development
	10.1.4 Testing
	10.1.5 Communication
	10.1.6 Deployment

	10.2 Open Source Impact on Team Issues
	10.3 Implementation Process
	10.3.1 Releases
	10.3.2 Team Roles during the Process

	10.4 Implementation Principles
	10.4.1 Resource Trade-offs
	10.4.2 Frequent Releases
	10.4.3 Support Elements
	10.4.4 Watching for Problems

	10.5 Key Documents
	10.5.1 Project Definition
	10.5.2 Risk Management
	10.5.3 Example of a Risk Assessment
	10.5.4 Functional Specification
	10.5.5 Technical Specification

	10.6 Migration
	10.6.1 Migration Approaches
	10.6.2 Assessing the Current System

	10.7 Interacting with the Open Source Community
	10.7.1 Hiring from the Community
	10.7.2 Employee Agreements
	10.7.3 Repaying the Community

	10.8 Support
	10.9 Summary

	11 Application Architecture
	11.1 Types of Systems
	11.1.1 Extreme Systems
	11.1.2 Transactional Systems
	11.1.3 Knowledge Management

	11.2 Tiered Design
	11.3 Managing Performance and Scalability
	11.3.1 State Management
	11.3.2 Queuing
	11.3.3 Database Design
	11.3.4 Application Servers

	11.4 Interoperability
	11.4.1 Shared Data
	11.4.2 Process Communication
	11.4.3 Application Integration Engines
	11.4.4 Web Services
	11.4.5 Data Formats

	11.5 Development Platform Choices
	11.5.1 Java
	11.5.2 .Net
	11.5.3 LAMP

	11.6 Summary

	12 The Cost of Open Source Systems
	12.1 Total Cost of Ownership
	12.1.1 Staffing Costs
	12.1.2 Hardware Costs
	12.1.3 Software Costs
	12.1.4 Using Third-Party Application and Database Servers
	12.1.5 Pricing Open Source Software
	12.1.6 Pricing Closed Code Software
	12.1.7 Pricing Windows Software

	12.2 Types of Costs
	12.2.1 Fixed Costs
	12.2.2 Off-Budget Costs
	12.2.3 Sunk Costs
	12.2.4 Switching Costs

	12.3 Scenarios
	12.3.1 Small Organization: Web Site
	12.3.2 Large Organization: Internal Use

	12.4 Summary

	13 Licensing
	13.1 Types of Licenses
	13.1.1 Relicensing Only Matters If You Distribute
	13.1.2 Reciprocal Licenses Are Similar to Commercial Licenses

	13.2 Licenses in Use
	13.2.1 Reciprocal Licenses
	13.2.2 Nonreciprocal Licenses
	13.2.3 Which License to Use

	13.3 Mixing Open and Closed Code
	13.4 Dual Licensing
	13.5 Other Intellectual Property Issues
	13.5.1 Provenance
	13.6 Summary

	A Resources
	A.1 Managing an Open Source Lab
	A.2 Installing an Evaluation Linux System
	A.2.1 Setting up Interoperability
	A.2.2 Dual Boot
	A.2.3 Running Linux on Windows
	A.2.4 Running Windows on Linux

	A.3 Next Steps
	A.4 Top Ten Reasons to Use Open Source Software
	A.5 Web Links

	B The Open Source Definition
	C Examples of Open Source Licenses
	C.1 GPL
	C.2 Mozilla Public License
	C.3 The BSD License

	Bibliography
	About the Author
	Writing Environment
	Index
	Team DDU

