
OBEX Errata 
 
 

Following are a list of corrections/clarifications and suggested amendments or changes to the OBEX 
specification Version 1.3. Relevant section numbers for the OBEX v1.3 specification are shown in 
parenthesis next to the heading. 
 
The points are classified according to the following scheme: 
 
• CORRECTION:  a change required to correct an error in the existing document.  Corrections may 

change the specified behavior of the protocol to match that which was originally intended by the 
authors 

 
• CLARIFICATION: textual enhancement that provides clearer explanation of a protocol element 

without changing any behavior 
 
• MODIFICATION:  a modification of the currently specified behavior that adds but does not delete any 

functionality from the protocol 
 
• CHANGE:  a modification of the currently specified protocol that may add and/or delete functionality 

from the protocol 
 
• PROBLEM: a known problem for which an alteration to the document has yet to be proposed. 
 
 

1 APPROVED ERRATA FOR APRIL 2003 
1.1 Action operation for Copy, Move/Rename and Modifying 

Permissions (2.1, 2.2 & 3.3) 
MODIFICATION 
2.1 OBEX Headers 
 
HI - identifier Header name Description 
0x94 Action Id Specifies the action to be performed (used in ACTION operation) 
0x15 DestName The destination object name (used in certain ACTION operations)  
0xD6 Permissions 4 byte bit mask for setting permissions  
0x17 to 0x2F Reserved for future 

use 
This range includes all combinations of the upper 2 bits 

 
2.2.20 Action Identifier 
Action Id is a 1-byte quantity for specifying the action of the ACTION operation. The Action Id header 
contains an Action Identifier, which defines what action is to be performed.  The Action Id header is 
mandatory for the ACTION operation and restricted for any other OBEX operations (see Section 3.3.8 
Action). When in use, the Action Id header must be the first header in the request unless the Connection 
Id header is in use, in which case the Action Id header must immediately follow the Connection Id header 
(see section 2.2.11 Connection Identifier). 
 
 
Action 
Identifier 

Action Name Description 

0x00 Copy Object (See Section 3.3.8.1 Copy Object Action) 



0x01 Move/Rename Object (See Section 3.3.8.2 Move/Rename Object Action) 
0x02 Set Object 

Permissions 
(See Section 3.3.8.3 Set Object Permissions Action) 

0x03 – 7F Reserved for future 
use 

Reserved for assignment by OBEX. 

0x80 – FF Reserved for use in 
vendor extensions 

An area of the Action Identifier space, which is reserved for use in 
vendor specific applications. 

 
2.2.21 DestName 
DestName is a null terminated Unicode text string describing the destination name of the object. The 
DestName header is used with different ACTION operations and its usage is action specific (see for more 
details sections 3.3.8.1 Copy Object Action and 3.3.8.2 Move/Rename Object Action).  It MUST NOT be 
used with the PUT and GET operations. 
 
 
 
The schema used in the DestName can be either the same as the standard FTP (File Transfer Protocol) uses 
or UNC (Universal Naming Convention).   
 
In the “FTP style” the object names can be relative to the current folder or absolute pathnames. The 
backslash “\”or slash “/” character must be used to indicate the folder hierarchy within the DestName 
headers i.e. “\blah\blahsubdir\file.txt”, when referring locations outside the current folder. 
 
Examples of valid DestName values using “FTP style”:  

 
Text.txt (relative to the current folder) 
MyStuff\Text.txt (relative to the current folder) 
MyStuff/Text.txt (relative to the current folder) 
c:\MyStuff\Texts\Text.txt (absolute) 
c:/MyStuff/Texts/Text.txt (absolute) 
\MyStuff\Texts\Text.txt (relative to the root folder) 
/MyStuff/Texts/Text.txt (relative to the root folder) 

 
If UNC path names are used a full path name must be given starting with “\\”. Backslash “\” is used to 
delimit path.  
 
Example of valid UNC path name: 
 
 \\server1\storage1\MyStuff\Text.txt 
 
2.2.22 Permissions 
Permissions is a 4-byte unsigned integer where the 4 bytes describe bit masks representing the various 
permission values. It is used for setting “Read”, “Write”, “Delete” and “Modify Permissions” permissions 
for files and folders. The permissions are applied to three different permission levels, which are “User”, 
“Group” and “Other”. The Permissions header can be used with different ACTION operations or with the 
PUT, GET and SETPATH operations.  In the case of a PUT and SETPATH, the object permissions 
should be set according to the Permissions header only when a new file/folder is created. When changing 
the permissions of an already existing file/folder the ACTION operation should be used (see section 
3.3.8.3 Set Object Permissions Action). On a GET, the OBEX Server may return the permissions of the 
object in this header. 
 
Byte 0 Byte 1 Byte 2 Byte 3 
Reserved  
(Should be set to zero) 

User permissions Group permissions Other permissions 

 



Within the context of OBEX, a “User” refers to permissions for the OBEX Client’s current authenticated 
user (see section 3.5 Authentication Procedure). If no user is authenticated, permissions are relative to a 
“guest” user. “Group” refers to the group or groups to which the OBEX Server has assigned the current 
authenticated user. “Other” refers to permissions for a user who is neither the current user nor the member 
of any of the user’s groups. 

Permissions flags 
The bits in each permissions byte have the following meanings: 
 
bit Meaning 
0 Read. When this bit is set to 1, reading permission is granted. For a file object, the OBEX Client may use 

ACTION/Copy or GET on the file. For a folder object, the OBEX Client may use ACTION/Copy or 
SETPATH on the folder. 
To do ACTION/Move client needs to have both “Read” and “Delete” permission to the source file/folder. 

1 Write.  When this bit is set to 1, writing permission is granted. For a file object, the OBEX Client may use 
PUT on the file. 
To do ACTION/Move client needs to have both “Read” and “Delete” permission to the source file/folder. 

2 Delete. When this bit is set to 1, deletion permission is granted. For a file/folder object, the OBEX Client 
may use PUT-delete. 

3 Reserved for future use 
4 Reserved for future use 
5 Reserved for future use 
6 Reserved for future use 
7 Modify Permissions. When this bit is set to 1 the file access permissions can be changed. For a file/folder 

object, the OBEX Client may use ACTION/Set Object Permissions 
 
For devices that do not discriminate between permission groups, the default is “User” permissions.  That is, 
the “Group” permissions byte should match the “User” permissions byte. 
 
3.3 OBEX Operations and Opcode definitions 
 
Opcode (w/high bit set) Definition Meaning 
0x06 (0x86) Action common actions to be performed by the target 
0x08to 0x0F  
 

Reserved for future use not to be used w/out extension to this 
specification 

 
3.3.8 Action 
 
 
The ACTION operation is defined to cover the needs of common actions. The Action Id header is used in 
the ACTION operation and contains an action identifier, which defines what action is to be performed.  All 
actions are optional and devices may chose to implement all, some or none of the actions.  
 
The Action Id header is described in section 2.2.20 Action Identifier. 
 

Byte 0 Bytes 1, 2 Bytes 3,4 Bytes 5 to n 
0x06 

(0x86) 
Packet length Action Identifier Header Sequence of headers 

 
The positive responses to an ACTION request are either SUCCESS or CONTINUE depending on the 
presence of the FINAL bit in the request. Any failure response code can be used to indicate a negative 
response.   
 



3.3.8.1 Copy Object Action 

This action copies an object from one location to another.  The Name header specifies the source file name 
and the DestName header specifies the destination file name. These two headers are mandatory for this 
action.  
 
The Action Identifier for the Copy Object Action is specified in section 2.2.20 Action Identifier.   
 

Byte 0 Bytes 1, 2 Bytes 3, 4 Bytes 5 to n Bytes n to m 
Opcode 

 
 

Packet 
length 

Action Identifier 
Header for Copy 

 

Name Header 
(Source Filename) 

DestName Header 
(Destination 
Filename) 

Optional 
headers 

0x06 
(0x86) 

 0x94 0x00  0x15   

 
Response Codes:  

• Success 0x20 (0xA0) 
• Not Found 0x44 (0xC4) – source object or destination folder does not exist 
• Forbidden 0x43 (0xC3) – cannot read source object or create object in destination folder, 

permission denied 
• Database Full 0x60 (0xE0) - cannot create object in destination folder, out of memory 
• Conflict 0x49 (0xC9) - cannot create object in destination folder, sharing violation, object or Copy 

Object Action reserved/busy 
• Not Implemented 0x51 (0xD1) – Copy Object Action not supported 
• Not modified 0x34 (0xB4) - cannot create folder/file, destination folder/file already exits 

 
If the Permissions header is used with the Copy Object Action, then the permissions of the destination 
object should be set as specified in the Permissions header.  If the header is not used, the permissions 
should be set to be the same as the source.  
 
3.3.8.2 Move/Rename Object Action 
This action moves an object from one location to another.  It can also be used to rename an object.  The 
Name header specifies the source file name and the DestName header specifies the destination file name. 
These two headers are mandatory for this action.  
 
The Action Identifier for the Move/Rename Object Action is specified in section 2.2.20 Action Identifier.   
 

Byte 0 Bytes 1, 2 Bytes 3, 4 Bytes 5 to n Bytes n to m 
Opcode 

 
 

Packet 
length 

Action Identifier 
header for 

Move/Rename 
 

Name header 
(Source filename) 

DestName header 
(Destination 
filename) 

Optional 
headers 

0x06 
(0x86) 

 0x94 0x01  0x15   

 
Response Codes:  

• Success 0x20 (0xA0) 
• Not Found 0x44 (0xC4) – source object or destination folder does not exist 
• Forbidden 0x43 (0xC3) – cannot read source object or create object in destination folder, 

permission denied 
• Database Full 0x60 (0xE0) - cannot create object in destination folder, out of memory 
• Conflict 0x49 (0xC9) - cannot create object in destination folder, sharing violation, object or 

Move/Rename Object Action busy 
• Not Implemented 0x51 (0xD1) - Move/Rename Object Action not supported 
• Not modified 0x34 (0xB4) - cannot create folder/file, destination folder/file already exits 

Comment:  Clearer usage of error 
codes helps the UI design.



 
If the Permissions header is used with the Move/Rename Object Action, then the permissions of the 
destination object should be set as specified in the Permissions header.  If the header is not used, the 
permissions should be set to be the same as the source. 
 
3.3.8.3 Set Object Permissions Action 

This action sets the access permissions of an object or folder. The Name header specifies the object and the 
Permissions header specifies the new permissions for this object.  These two headers are mandatory for 
this action..  When using the Set Object Permissions Action for folders, it will set the permissions only for 
the folder; it doesn’t affect the permissions of the contents of the folder.  
 
The Action Identifier for the Set Object Permissions Action is specified in section 2.2.20 Action Identifier.  
 

Byte 0 Bytes 1, 2 Bytes 3, 4 Bytes 5 to n Bytes n to m 
Opcode 

 
 

Packet 
length 

Action Identifier 
header for Set 

Object Permissions 
 

Name header Permissions header Optional 
headers 

0x06 
(0x86) 

 0x94 0x02  0xD6   

 
Response Codes:  

• Success 0x20 (0xA0) 
• Not Found 0x44 (0xC4) – source object or destination folder does not exist 
• Forbidden 0x43 (0xC3) – cannot modify the permissions of the destination object/folder, 

permission denied 
• Not Implemented 0x51 (0xD1) – Set Object Permissions Action not supported 
• Conflict 0x49 (0xC9) - cannot modify the permissions, sharing violation, object or Set Object 

Permissions Action busy 
 
3.3.8.4 Common Issues For Move/Rename, Copy and Set Object Permissions Actions 

The operations and actions on files within a file structure are complicated when some of the files are 
protected.  Ideally the command should succeed or fail completely.  Unfortunately, some devices may not 
be able to restore deleted files if an error occurs in a multi-file delete operation.  The following defines 
what should happen in the event that the entire operation cannot be completed or failed as a single 
operation. 
 
When a PUT operation is used to delete a folder, all of the subfolders beneath it should be deleted.  If a file 
or folder within the structure is protected (deleting forbidden), then the file/folder itself and the folders in 
the tree above the file/folder should not be deleted.  All of the other files and folders in the subfolders that 
are not protected should be deleted.  The error response FORBIDDEN should be returned in this case. 
 
A Move Action of a folder should also move the contents of all the subfolders beneath it.  If a file or folder 
within the structure is protected (deleting forbidden), then the file/folder itself and the folders in the tree 
above the file/folder should not be deleted.  Instead, new versions of the protected files/folders should be 
created in the destination folder.  All of the other files in the folders that are not protected should be moved.   
The error response FORBIDDEN should be returned in this case. 
 
A Copy Action of a folder should also copy the contents of all the subfolders beneath it.  If a file or folder 
within the structure is protected (reading forbidden), then the folder itself and the files/folders beneath it 
will not be copied.  The same principle applies to Move action when reading of the source file/folder is 
forbidden. The error response FORBIDDEN should be returned. 
 



When a folder is moved or copied, the current folder is not changed, even if this folder is no longer valid.  
For example if you are in the folder “\blah” and you move the folder “\blah” to “\blah2”, the current folder 
is still “\blah”. 
 
Files and folders at the same folder level MUST not have the same name, i.e. it must be obvious by the 
name that they are different, and not implicitly known by the operating system of the file store. 
 
The client must preserve case between the folder listings returned and the names sent in the Name and 
DestName headers, as the remote file system may be case sensitive. 
 


