THE EXPERT'S VOICE" IN ORACLE

Database Architecture

9/and 10g Programming Techniques and Solutions

Th-:}mas_Ky_t_e |

EErE R N T, T
el Lol kT

Apress’

Expert Oracle Database
Architecture

9/and 10g Programming
Techniques and Solutions

Thomas Kyte

Apress’

Expert Oracle Database Architecture: 9i and 10g Programming Techniques and Solutions
Copyright © 2005 by Thomas Kyte

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-530-0
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis

Technical Reviewer: Jonathan Lewis, Roderick Manalac, Michael Moller, Gabe Romanescu

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Manager: Sofia Marchant

Copy Edit Manager: Nicole LeClerc

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Dina Quan

Proofreader: Linda Marousek

Indexer: Broccoli Information Management

Artist: Kinetic Publishing Services, LLC

Interior Designer: Van Winkle Design Group

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

Contents

FOrBWOId ... Xi
About the AUthor o Xiv
About the Technical ReVIEWESo e XV
ACKNOWIBAGMENTS XVi
IrOdUCHION ... Xvii
Setting Up Your Environment XXV
CHAPTER 1 Developing Successful Oracle Applications 1
My Approach 2

The Black Box Approach 4

How (and How Not) to Develop Database Applications 9

Understanding Oracle Architecture 9

Understanding Concurrency Control 15

Multi-Versioning 20

Database Independence? ...t 26

“How Do | Make It Run Faster?” 42

The DBA-Developer Relationship 46

SUMMANY .. 47

CHAPTER 2 Architecture Overview 49
Defining Database and Instance 50

The SGA and Background Processesco.oovvvvinint. 55
ConnectingtoOracle, 57

Dedicated Server 57

Shared Server 59

Mechanics of Connecting over TCP/IP 60

SUMMArY ... 62

CONTENTS

CHAPTER 3

CHAPTER 4

Files ... 65
ParameterFiles 66
What Are Parameters? 67
Legacy init.ora ParameterFiles 69
Server Parameter Files (SPFILES) 71
Parameter FileWrap-Up 78
Trace Fileso 78
Requested Trace Filesl 79
Trace Files Generated in Response to Internal Errors 83
Trace FileWrap-Up 85
AlertFile 85
DataFiles ... i 88
A Brief Review of File System Mechanisms 89
The Storage Hierarchy in an Oracle Database 90
Dictionary-Managed and Locally-Managed Tablespaces 94
TempFiles ... 96
Control Files i 98
RedoLogFiles 98
OnlineRedO LOg ... o 99
ArchivedRedoLog ... 101
Password Files 103
Change Tracking Filet 106
Flashback Log Files i, 107
Flashback Database 107
Flash RecoveryArea ...t 108
DMP Files (EXP/IMPFileS) ..ot 108
DataPumpFiles 110
FlatFiles 113
SUMMArY ... 114
Memory Structures .. 115
The Process Global Area and User GlobalArea 115
Manual PGA Memory Management 116
Automatic PGA Memory Management 123
Choosing Between Manual and Auto Memory Management 133
PGAand UGAWrap-Up ..., 135
The System Global Area il 135
Fixed SGA 139

Redo Buffer ... 140

CHAPTER 5

CHAPTER 6

CONTENTS

Block BufferCache i 141
Shared Pool 148
Large Pool 150
JavaPool 151
Streams Pool 152
Automatic SGA Memory Management 152
SUMMANY .. 154
Oracle Processesccc......... 155
SEIVEr PrOCESSES ..\ttt et 156
Dedicated Server Connections 156
Shared Server Connections 158
Connections vS. SESSIONSot 159
Dedicated Server vs. Shared Server 165
Dedicated/Shared ServerWrap-Up 169
Background Processesooeiiiii i 170
Focused Background Processes 171
Utility Background Processes 178
Slave ProCeSSESot 181
FOSIAVES 181
Parallel Query Slaves ..., 182
SUMMANY ... 182
Locking and Latching 183
What Are LOCKS? 183
Locking ISSUBS i 186
LostUpdateso i 186
Pessimistic Locking 187
OptimisticLockingco o 189
Optimistic or Pessimistic Locking? 200
Blocking ... 200
Deadlocksc i 203
Lock Escalation 208
LOCK TYPES ..ot e 209
DMLLOCKS 209
DDLLOCKS ...t 217
Latcheso 220
Manual Locking and User-Defined Locks 229

SUMMANY ... 230

v

vi

CONTENTS

CHAPTER 7

CHAPTER 8

Concurrency and Multi-Versioning 231
What Are Concurrency Controls? 231
Transaction Isolation Levels 232
READ UNCOMMITTED ... 234
READ COMMITTED 235
REPEATABLEREAD, 237
SERIALIZABLE 239
READ ONLYo 241
Implications of Multi-Version Read Consistency 242
A Common Data Warehousing Technique That Fails 242
An Explanation for Higher Than Expected I/0 on Hot Tables 244
Write Consistencyo i 246
Consistent Reads and CurrentReads 247
SeeingaRestart 249
Why Is a Restart ImportanttoUs? 252
SUMMANY ... 253
Transactions .. 255
Transaction Control Statements 256
AOMICITY ... 257
Statement-Level Atomicity 257
Procedure-Level Atomicity 259
Transaction-Level Atomicityool.L. 262
Integrity Constraints and Transactions 262
IMMEDIATE Constraintsoo.... 262
DEFERRABLE Constraints and Cascading Updates 263
Bad TransactionHabits 265
Committinginaloop ... 266
Using Autocommit i 272
Distributed Transactionscoiiiiiiiii ... 273
Autonomous Transactions, 275
How Autonomous TransactionsWork 275
When to Use Autonomous Transactions 277

SUMMArY 281

CHAPTER 9

CHAPTER 10

CONTENTS

RedoandUndo ... 283
WhatIs Redo? 283
WhatlsUndo? 284
How Redo and Undo Work Together 287
Example INSERT-UPDATE-DELETE Scenario 287
Commit and Rollback Processingcoooviiint 291
What Doesa COMMIT Do? ..., 292
What Does a ROLLBACKDo? 298
InvestigatingRedo 300
MeasuringRedo i 300
Redo Generation and BEFORE/AFTER Triggers 302
Can | Turn Off Redo Log Generation? 308
Why Can’t | AllocateaNew Log? 313
Block Cleanout i, 314
Log Contention ... 317
Temporary Tablesand Redo/Undo 319
InvestigatingUndo 323
What Generates the Most and LeastUndo? 323
ORA-01555: snapshottooold Error 325
SUMMArY ... 336
Database Tables ... 337
Typesof Tablesco i 337
Terminology ... 339
SegmeNnt ... 339
Segment Space Management 341
High-Water Mark, 342
FREELISTS 344
PCTFREEand PCTUSED, 347
LOGGING and NOLOGGINGcooiiinints. 350
INITRANS and MAXTRANS 351
Heap Organized Tablesoi it 351
Index Organized Tables ..., 354
Index Organized TablesWrap-Up 369
Index Clustered Tables i, 370
Index Clustered TablesWrap-Upcccoinin... 378
Hash Clustered Tables i, 378
Hash Clustered TablesWrap-Up 387

Sorted Hash Clustered Tables ..., 388

vil

viii

CONTENTS

CHAPTER 11

NestedTablesc. i 390
Nested Tables Syntax, 391
Nested Table Storagecoiiiiii ... 399
Nested TablesWrap-Up, 402

TemporaryTables 403
Temporary TablesWrap-Upo oo, 410

ObjectTables o 410
Object TablesWrap-Up ...t 418

SUMMArY ... e 418

Indexes ... 421

An Overview of Oracle Indexes 422

B*Tree INdexXesS ...t 423
Index Key Compression, 426
Reverse KeyIndexes 429
DescendingIndexes 435
When Should You Use a B*Tree Index? 437
B*TreesWrap-Up ... 447

Bitmap Indexes ... 448
When Should You Use a Bitmap Index? 449
Bitmap JoinIndexes 453
Bitmap IndexesWrap-Up L 455

Function-Based Indexes 455
Important Implementation Details 455
A Simple Function-Based Index Example 456
Indexing Only Some of the Rows 464
Implementing Selective Uniqueness 466
Caveaton CASE i, 467
Caveat Regarding ORA-01743 468
Function-Based IndexesWrap-Up 469

Application DomainIndexes L. 469

Frequently Asked Questions and Myths About Indexes 471
Do Indexes Work onViews? 471
Do Nulls and Indexes Work Together? 471
Should Foreign Keys Be Indexed? 474
Why Isn’t My Index Getting Used? 475
Myth: Space Is Never Reused inanindex 482
Myth: Most Discriminating Elements Should Be First 485

SUMMANY .. 488

CHAPTER 12

CHAPTER 13

CONTENTS

Datatypes ... 489
An Overview of Oracle Datatypes 489
Character and Binary String Types 492
NLS Qverview ...t 492
Character Strings i 495
Binary Strings: RAWTypes ..., 502
NUMDEr TYPES ..o 504
NUMBER Type Syntaxand Usage 507
BINARY_FLOAT/BINARY_DOUBLE Type Syntax and Usage 510
Non-Native NumberTypes, 511
Performance Considerations 511
LONG TYPES ..ot e e 513
Restrictions on LONG and LONG RAW Types 513
Coping with Legacy LONGTypes 515
DATE, TIMESTAMP, and INTERVALTypeScoovvevnn... 520
Formats ... 521
DATETYPE .o 522
TIMESTAMP TYPE ... 529
INTERVALTYPE ... 537
LOBTYPES ... 540
Internal LOBS 541
BFILESo 553
ROWID/UROWID TYPES . ..o oot e e e 555
SUMMArY 556
Partitioning .. 557
Partitioning Overview i 558
Increased Availability 558
Reduced Administrative Burden 560
Enhanced Statement Performance 565
Table Partitioning Schemes i 567
Range Partitioning 567
Hash Partitioning 570
List Partitioning 575
Composite Partitioningo 577
Row Movement i 579

Table Partitioning SchemesWrap-Up 581

IX

X

CONTENTS

CHAPTER 14

CHAPTER 15

Partitioning Indexesco i 582
Local Indexes vs. Global Indexes 583
LocalIndexes ... 584
Global Indexes ... 590

Partitioning and Performance, Revisited 606

Auditing and Segment Space Compression........................ 612

SUMMArY ... 614

Parallel Execution .. 615

When to Use Parallel Execution 616
A Parallel Processing Analogyooiiiiiiin.s. 617

Parallel QUery 618

Parallel DML 624

Parallel DDL 627
Parallel DDL and Data Loading Using External Tables 628
Parallel DDL and Extent Trimming 630

Parallel Recovery i 639

Procedural Parallelism 639
Parallel Pipelined Functions 640
Do-It-Yourself Parallelism 643

SUMMArY ... 648

Data Loading and Unloading 649

SQL*Loader 649
Loading Data with SQLLDRFAQsocees. 653
SQLLDR Caveatscooviiiiiiii i 679
SQLLDR Summaryt 680

External Tables 680
Setting Up External Tables 681
Dealingwith Errors 687
Using an External Table to Load Different Files 690
MUItiUSEr ISSUES 691
External Tables Summary 692

FlatFileUnload 692

DataPumpUnload 701

SUMMANY ... 703

.. 705

Foreword

(11

THINK.” In 1914, Thomas J. Watson, Sr. joined the company that was to become IBM, and
he brought with him this simple one-word motto. It was an exhortation to all IBM employees,
no matter their role, to take care in decision-making and do their jobs with intelligence.
“THINK” soon became an icon, appearing on publications, calendars, and plaques in the
offices of many IT and business managers within and outside IBM, and even in The New
Yorker magazine cartoons. “THINK” was a good idea in 1914, and it is a good idea now.

“Think different.” More recently, Apple Computer used this slogan in a long-running
advertising campaign to revitalize the company’s brand, and even more important, to revolu-
tionize how people think of technology in their daily lives. Instead of saying “think differently,”
suggesting how to think, Apple’s slogan used the word “different” as the object of the verb
“think,” suggesting what to think (as in, “think big”). The advertising campaign emphasized
creativity and creative people, with the implication that Apple’s computers uniquely enable
innovative solutions and artistic achievements.

When I joined Oracle Corporation (then Relational Software Incorporated) back in 1981,
database systems incorporating the relational model were a new, emerging technology.
Developers, programmers, and a growing group of database administrators were learning the
discipline of database design using the methodology of normalization. The then unfamiliar,
nonprocedural SQL language impressed people with its power to manipulate data in ways
that previously took painstaking procedural programming. There was a lot to think about
then—and there still is. These new technologies challenged people not only to learn new ideas
and approaches, but also to think in new ways. Those who did, and those who do, were and
are the most successful in creating innovative, effective solutions to business problems using
database technology to its best advantage.

Consider the SQL database language that was first introduced commercially by Oracle.
SQL permits application designers to manipulate sets of rows with a nonprocedural (or
“declarative”) language, rather than writing iterative loops in conventional languages that
process records one at a time. When I was first introduced to SQL, I found it required me to
“think at 45 degrees” to figure out how to use set processing operations like joins and sub-
queries to achieve the result I wanted. Not only was the idea of set processing new to most
people, but so also was the idea of a nonprocedural language, where you specified the result
you wanted, not how to derive it. This new technology really did require me to “think differ-
ently” and also gave me an opportunity to “think different.”

Set processing is far more efficient than one-at-a-time processing, so applications that
fully exploit SQL in this way perform much better than those that do not. Yet, it is surprising
how often applications deliver suboptimal performance. In fact, in most cases, it is applica-
tion design, rather than Oracle parameter settings or other configuration choices, that most
directly determines overall performance. Thus, application developers must learn not only
details about database features and programming interfaces, but also new ways to think about
and use these features and interfaces in their applications.

Xi

X

FOREWORD

Much “conventional wisdom” exists in the Oracle community about how to tune the
system for best performance or the best way to use various Oracle features. Such “wisdom”
sometimes becomes “folklore” or even “mythology,” with developers and database administra-
tors adopting these ideas uncritically or extending these ideas without reasoning about them.

One example is the idea that “if one is good, more—lots more—is better.” This idea is
popular, but only rarely true. Take Oracle’s array interface, for example, which allows the
developer to insert or retrieve multiple rows in a single system call. Clearly, reducing the num-
ber of network messages between the application and the database is a good thing. But, if you
think about it, there is a point of diminishing returns. While fetching 100 rows at once is far
better than one at a time, fetching 1,000 rows at once instead of 100 is generally not really any
more efficient overall, especially when you consider memory requirements.

Another example of uncritical thinking is to focus on the wrong aspects of system design
or configuration, rather than those most likely to improve performance (or, for that matter,
reliability, availability, or security). Consider the “conventional wisdom” of tuning the system
to maximize the buffer hit ratio. For some applications, it’s true that maximizing the chance
that required data is in memory will maximize performance. However, for most applications
it's better to focus attention on performance bottlenecks (what we call “wait states”) than it is
to focus on specific system-level metrics. Eliminate those aspects of the application design
that are causing delays, and you'll get the best performance.

I've found that breaking down a problem into smaller parts and solving each part sepa-
rately is a great way to think about application design. In this way, you can often find elegant
and creative uses of SQL to address application requirements. Often, it is possible to do things
in a single SQL statement that at first seem to require complex procedural programming.
When you can leverage the power of SQL to process sets of rows at a time, perhaps in parallel,
not only are you more productive as an application developer, but the application runs faster
as well!

Sometimes, best practices that were based, even in part, on some degree of truth become
no longer applicable as the facts change. Consider the old adage, “Put indexes and data in
separate tablespaces for best performance.” I've often seen database administrators express
strong opinions over the merits of this idea, without taking into account changes in disk
speeds and capacities over time, or the specifics of given workloads. In evaluating this parti-
cular “rule,” you should think about the fact that the Oracle database caches frequently and
recently used database blocks (often blocks belonging to an index) in memory, and the fact
that it uses index and data blocks sequentially, not simultaneously, for any given request. The
implication is that I/O operations for both index and data really should be spread across all
simultaneous users, and across as many disk drives as you have. You might choose to separate
index and data blocks for administrative reasons or for personal preference, but not for per-
formance. (Tom Kyte provides valuable insights on this topic on the Ask Tom web site, http://
asktom.oracle.com, where you can search for articles on “index data tablespace”.) The lesson
here is to base your decisions on facts, and a complete set of current facts at that.

No matter how fast our computers or how sophisticated the database becomes, and
regardless of the power of our programming tools, there simply is no substitute for human
intelligence coupled with a “thinking discipline.” So, while it’s important to learn the intrica-
cies of the technologies we use in our applications, it’s even more important to know how to
think about using them appropriately.

Tom Kyte is one of the most intelligent people I know, and one of the most knowledgeable
about the Oracle database, SQL, performance tuning, and application design. I'm pretty sure

FOREWORD

Tom is an aficionado of the “THINK” and “Think different” slogans. Tom quite obviously also
believes in that anonymous wise saying, “Give a man a fish and you feed him for a day. Teach a
man to fish and you feed him for a lifetime.” Tom enjoys sharing his knowledge about Oracle,
to the great benefit of our community, but rather than simply dispensing answers to ques-
tions, he helps others learn to think and reason.

On his web site (http://asktom.oracle.com), in his public speaking engagements, and in
this book, Tom implicitly challenges people to “think differently” too, as they design database
applications with the Oracle database. He rejects conventional wisdom and speculation,
instead insisting on relying on facts proven through examples. Tom takes a very pragmatic and
simple approach to problem solving, and by following his advice and methodology, you can
be more productive and develop better, faster applications.

Not only will Tom’s book teach you about features of Oracle and how to use them, but it
also reflects many of these simple thoughts:

* Don't believe in myths—reason for yourself.

* Don't follow “conventional wisdom”—often the things everybody knows are simply
wrong!

e Don'’t trust rumors or opinions—test things for yourself and base decisions on proven
examples.

e Break apart a problem into simpler questions, and assemble the answers to each step
into an elegant, efficient solution.

e Don't do things in your programs when the database can do them better and faster.
¢ Understand the differences between the ideal and the real.

* Ask questions about and be skeptical of unjustified “company policies” for technical
standards.

* Consider the big picture of what's best overall for the requirements at hand.
e Take the time to THINK.

Tom encourages you to treat Oracle as much more than a black box. Instead of you just
putting data into and taking data out of Oracle, Tom will help you understand how Oracle
works and how to exploit its power. By learning how to apply Oracle technology creatively and
thoughtfully, you will be able to solve most application design problems quickly and elegantly.

As you read and enjoy this book, I know you'll learn a lot of new facts about Oracle data-
base technology and important concepts about application design. As you do, I'm confident
that you'll also start to “think differently” about the challenges you face.

IBM’s Watson once said, “Thought has been the father of every advance since time began.
‘Tdidn’t think’ has cost the world millions of dollars.” This is a thought with which both Tom
and I agree. Armed with the knowledge and techniques you'll learn in this book, I hope you’ll
be able to save the world (or at least your enterprise) millions of dollars, and enjoy the satis-
faction of a job well done.

Ken Jacobs
Vice President of Product Strategy (Server Technologies)
Oracle Corporation

X

Xiv

About the Author

I am TOM KYTE. I have been working for Oracle since version 7.0.9 (that’s 1993 for people who
don’t mark time by Oracle versions). However, I've been working with Oracle since about ver-
sion 5.1.5c¢ (the $99 single-user version for DOS on 360KB floppy disks). Before coming to
work at Oracle, I worked for more than six years as a systems integrator, building large-scale,
heterogeneous databases and applications, mostly for military and government customers.
These days, I spend a great deal of my time working with the Oracle database and, more
specifically, helping people who are using the Oracle database. I work directly with customers,
either in specifying and building their systems or, more frequently, in helping them rebuild or
tune them (“tuning” frequently being a synonym for rebuilding). In addition, I am the Tom
behind the “Ask Tom” column in Oracle Magazine, where I answer people’s questions about
the Oracle database and tools. On a typical day, I receive and answer dozens of questions at
http://asktom.oracle.com. Every two months, I publish a “best of” in the magazine (all of the
questions asked are available on the Web—stored in an Oracle database, of course). Addition-
ally, I give technical seminars covering much of the material you'll find in this book. Basically,
I spend a lot of my time helping people be successful with the Oracle database. Oh yes, in my
spare time, I build applications and develop software within Oracle Corporation itself.

This book is a reflection of what I do every day. The material within covers topics and
questions that I see people struggling with every day. These issues are covered from a perspec-
tive of “When I use this, I do it this way.” It is the culmination of many years of experience
using the product in myriad situations.

About the Technical Reviewers

JONATHAN LEWIS has been involved in database work for more than 19 years, specializing in
Oracle for the last 16 years, and working as a consultant for the last 12 years. Jonathan is
currently a director of the UK Oracle User Group (UKOUG) and is well known for his many
presentations at the UKOUG conferences and SIGs. He is also renowned for his tutorials and
seminars about the Oracle database engine, which he has held in various countries around
the world.

Jonathan authored the acclaimed book Practical Oracle 8i (Addison-Wesley, ISBN:
0201715848), and he writes regularly for the UKOUG magazine and occasionally for other
publications, including OTN and DBAZine. He also finds time to publish Oracle-related
material on his web site, http://www. jlcomp.demon.co.uk.

RODERICK MANALAC graduated from the University of California, Berkeley in 1989 with a bach-
elor’s degree in electrical engineering and computer science. He’s been an employee of Oracle
Support Services ever since. Practically all of that time has been spent in assisting external
customers and internal employees (around the globe) gain a better understanding of the sub-
tleties involved with running the Oracle database product on UNIX platforms. Other than
that, he spends way too much time playing video games, watching TV, eating snacks, and will-
ing the San Francisco Giants to win the World Series.

MICHAEL MOLLER has been interested in computers since his tenth birthday, approximately
40 years ago. He’s been involved in pretty much everything related to building and running
software systems, as a programmer, design engineer, project manager, and quality assurance
manager. He worked in the computer business in the United States, England, and Denmark
before joining Oracle Denmark ten years ago, where he worked in Support and later in Pre-
mium Support. He has often taught in Oracle Education, even taking the “Oracle Internals”
seminar on a whistle-stop tour of Europe. He spent the last two years of his time with Oracle
working in development in the United States, creating the course materials for advanced
courses, including “Internals on NLS” and “RAC.” Nowadays, Méller is gainfully employed at
Miracle A/S in Denmark with consultancy and education.

GABE ROMANESCU has a bachelor’s degree in mathematics and works as an independent
Oracle consultant. He discovered relational theory and technologies in 1992 and has found
comfort ever since in the promise of applied logic in the software industry. He mostly benefits
from, and occasionally contributes to, the Ask Tom and OTN forums. He lives in Toronto,
Canada, with his wife, Arina, and their two daughters, Alexandra and Sophia.

Xv

XVi

Acknowledgments

I would like to thank many people for helping me complete this book.

First, I would like to thank Tony Davis for his work making my work read well. If you enjoy
the flow of the sections, the number of section breaks, and the clarity, then that is probably in
some part due to him. I have worked with Tony writing technical material since the year 2000
and have watched his knowledge of Oracle grow over that time. He now has the ability to not
only “edit” the material, but in many cases “tech edit” it as well. Many of the examples in this
book are there because of him (pointing out that the casual reader was not going to “get it”
without them). This book would not be what it is without him.

Without a technical review team of the caliber I had during the writing of this book, I
would be nervous about the content. Jonathan Lewis, Roderick Manalac, Michael Méller, and
Gabe Romanescu spent many hours poring over the material and verifying it was technically
accurate as well as useful in the real world. I firmly believe a technical book should be judged
not only by who wrote it, but also by who reviewed it.

At Oracle, I work with the best and brightest people I have ever known, and they all have
contributed in one way or another. I would like to thank Ken Jacobs in particular for his sup-
port and enthusiasm.

I would also like to thank everyone I work with for their support during this book-writing
ordeal. It took a lot more time and energy than I ever imagined, and I appreciate everyone’s
flexibility in that regard. In particular, I would like to thank Tim Hoechst and Mike Hichwa,
whom I've worked with and known for over 12 years now. Their constant questioning and
pushing helped me to discover things that I would never have even thought of investigating
on my own.

I would also like to acknowledge the people who use the Oracle software and ask so many
good questions. Without them, I would never even have thought of writing this book. Much of
what is included here is a direct result of someone asking me “how” or “why” at one time or
another.

Lastly, but most important, I would like to acknowledge the unceasing support I've
received from my family. You know you must be important to someone when you try to do
something that takes a lot of “outside of work hours” and someone lets you know about it.
Without the continual support of my wife Lori, son Alan, and daughter Megan, I don't see
how I could have finished this book.

Introduction

The inspiration for the material contained in this book comes from my experiences develop-
ing Oracle software, and from working with fellow Oracle developers and helping them build

reliable and robust applications based on the Oracle database. The book is basically a reflec-

tion of what I do every day and of the issues I see people encountering each and every day.

I covered what I felt was most relevant, namely the Oracle database and its architecture.
I could have written a similarly titled book explaining how to develop an application using a
specific language and architecture—for example, one using JavaServer Pages that speaks to
Enterprise JavaBeans, which in turn uses JDBC to communicate with Oracle. However, at the
end of the day, you really do need to understand the topics covered in this book in order to
build such an application successfully. This book deals with what I believe needs to be univer-
sally known to develop successfully with Oracle, whether you are a Visual Basic programmer
using ODBC, a Java programmer using EJBs and JDBC, or a Perl programmer using DBI Perl.
This book does not promote any specific application architecture; it does not compare three-
tier to client/server. Rather, it covers what the database can do and what you must understand
about the way it works. Since the database is at the heart of any application architecture, the
book should have a broad audience.

In writing this book, I completely revised an updated the architecture sections from
Expert One-on-One Oracle and added substantial new material. There have been three data-
base releases since Oracle 8.1.7, the release upon which the original book was based: two
Oracle9i releases and Oracle Database 10g Release 1, which is the current production release
of Oracle at the time of this writing. As such, there was a lot of new functionality and many
new features to cover.

The sheer volume of new material required in updating Expert One-on-One Oracle for 9i
and 10g was at the heart of the decision to split it into two books—an already large book was
getting unmanageable. The second book will be called Expert Oracle Programming.

As the title suggests, Expert Oracle Database Architecture concentrates on the database
architecture and how the database itself works. I cover the Oracle database architecture in
depth—the files, memory structures, and processes that comprise an Oracle database and
instance. I then move on to discuss important database topics such as locking, concurrency
controls, how transactions work, and redo and undo, and why it is important for you to know
about these things. Lastly, I examine the physical structures in the database such as tables,
indexes, and datatypes, covering techniques for making optimal use of them.

What This Book Is About

One of the problems with having plenty of development options is that it's sometimes hard to
figure out which one might be the best choice for your particular needs. Everyone wants as
much flexibility as possible (as many choices as they can possibly have), but they also want
things to be very cut and dried—in other words, easy. Oracle presents developers with almost

Xvii

Xviil

INTRODUGTION

unlimited choice. No one ever says, “You can’t do that in Oracle”; rather, they say, “How many
different ways would you like to do that in Oracle?” I hope that this book will help you make
the correct choice.

This book is aimed at those people who appreciate the choice but would also like some
guidelines and practical implementation details on Oracle features and functions. For example,
Oracle has a really neat feature called parallel execution. The Oracle documentation tells you
how to use this feature and what it does. Oracle documentation does not, however, tell you
when you should use this feature and, perhaps even more important, when you should not use
this feature. It doesn’t always tell you the implementation details of this feature, and if you're
not aware of them, this can come back to haunt you (I'm not referring to bugs, but the way the
feature is supposed to work and what it was really designed to do).

In this book I strove to not only describe how things work, but also explain when and
why you would consider using a particular feature or implementation. I feel it is important to
understand not only the “how” behind things, but also the “when” and “why”—as well as the
“when not” and “why not”!

Who Should Read This Book

The target audience for this book is anyone who develops applications with Oracle as the
database back end. It is a book for professional Oracle developers who need to know how to
get things done in the database. The practical nature of the book means that many sections
should also be very interesting to the DBA. Most of the examples in the book use SQL*Plus to
demonstrate the key features, so you won't find out how to develop a really cool GUI—but you
will find out how the Oracle database works, what its key features can do, and when they
should (and should not) be used.

This book is for anyone who wants to get more out of Oracle with less work. It is for any-
one who wants to see new ways to use existing features. It is for anyone who wants to see how
these features can be applied in the real world (not just examples of how to use the feature,
but why the feature is relevant in the first place). Another category of people who would find
this book of interest is technical managers in charge of the developers who work on Oracle
projects. In some respects, it is just as important that they understand why knowing the data-
base is crucial to success. This book can provide ammunition for managers who would like to
get their personnel trained in the correct technologies or ensure that personnel already know
what they need to know.

To get the most out of this book, the reader should have

* Knowledge of SQL. You don’t have to be the best SQL coder ever, but a good working
knowledge will help.

* An understanding of PL/SQL. This isn’t a prerequisite, but it will help you to “absorb”
the examples. This book will not, for example, teach you how to program a FOR loop or
declare a record type—the Oracle documentation and numerous books cover this well.
However, that’s not to say that you won't learn a lot about PL/SQL by reading this book.
You will. You'll become very intimate with many features of PL/SQL and you’ll see new
ways to do things, and you'll become aware of packages/features that perhaps you
didn’'t know existed.

INTRODUCGTION

e Exposure to some third-generation language (3GL), such as C or Java. 1 believe that any-
one who can read and write code in a 3GL language will be able to successfully read and
understand the examples in this book.

e Familiarity with the Oracle Concepts manual.

A few words on that last point: due to the Oracle documentation set’s vast size, many
people find it to be somewhat intimidating. If you're just starting out or haven’t read any of
itas yet, I can tell you that the Oracle Concepts manual is exactly the right place to start. It’s
about 700 pages long and touches on many of the major Oracle concepts that you need to
know about. It may not give you each and every technical detail (that’s what the other 10,000
to 20,000 pages of documentation are for), but it will educate you on all the important con-
cepts. This manual touches the following topics (to name a few):

e The structures in the database, and how data is organized and stored
¢ Distributed processing

e Oracle’s memory architecture

 Oracle’s process architecture

* Schema objects you will be using (tables, indexes, clusters, and so on)
 Built-in datatypes and user-defined datatypes

¢ SQL stored procedures

e How transactions work

e The optimizer

e Data integrity

* Concurrency control

I will come back to these topics myself time and time again. These are the fundamentals—
without knowledge of them, you will create Oracle applications that are prone to failure. I
encourage you to read through the manual and get an understanding of some of these topics.

How This Book Is Structured

To help you use this book, most chapters are organized into four general sections (described
in the list that follows). These aren'’t rigid divisions, but they will help you navigate quickly to
the area you need more information on. This book has 15 chapters, and each is like a “mini-
book”—a virtually stand-alone component. Occasionally, I refer to examples or features in
other chapters, but you could pretty much pick a chapter out of the book and read it on its
own. For example, you don’'t have to read Chapter 10 on database tables to understand or
make use of Chapter 14 on parallelism.

XIX

XX INTRODUGTION

The format and style of many of the chapters is virtually identical:
* Anintroduction to the feature or capability.

* Why you might want to use the feature or capability (or not). I outline when you would
consider using this feature and when you would not want to use it.

* How to use this feature. The information here isn't just a copy of the material in the SQL
reference; rather, it’s presented in step-by-step manner: here is what you need, here is
what you have to do, and these are the switches you need to go through to get started.
Topics covered in this section will include

¢ How to implement the feature

¢ Examples, examples, examples

¢ How to debug this feature

* Caveats of using this feature

e How to handle errors (proactively)
* A summary to bring it all together.

There will be lots of examples, and lots of code, all of which is available for download from
the Source Code area of http://www.apress.com. The following sections present a detailed
breakdown of the content of each chapter.

Chapter 1: Developing Successful Oracle Applications

This chapter sets out my essential approach to database programming. All databases are not
created equal, and in order to develop database-driven applications successfully and on time,
you need to understand exactly what your particular database can do and how it does it. If
you do not know what your database can do, you run the risk of continually reinventing the
wheel—developing functionality that the database already provides. If you do not know how
your database works, you are likely to develop applications that perform poorly and do not
behave in a predictable manner.

The chapter takes an empirical look at some applications where a lack of basic under-
standing of the database has led to project failure. With this example-driven approach, the
chapter discusses the basic features and functions of the database that you, the developer,
need to understand. The bottom line is that you cannot afford to treat the database as a black
box that will simply churn out the answers and take care of scalability and performance by
itself.

Chapter 2: Architecture Overview

This chapter covers the basics of Oracle architecture. We start with some clear definitions of
two terms that are very misunderstood by many in the Oracle world, namely “instance” and
“database.” We also take a quick look at the System Global Area (SGA) and the processes
behind the Oracle instance, and examine how the simple act of “connecting to Oracle” takes
place.

INTRODUCGTION

Chapter 3: Files

This chapter covers in depth the eight types of files that make up an Oracle database and
instance. From the simple parameter file to the data and redo log files, we explore what they
are, why they are there, and how we use them.

Chapter 4: Memory Structures

This chapter covers how Oracle uses memory, both in the individual processes (Process Global
Area, or PGA, memory) and shared memory (SGA). We explore the differences between man-
ual and automatic PGA and, in Oracle 10g, SGA memory management, and see when each is
appropriate. After reading this chapter, you will have an understanding of exactly how Oracle
uses and manages memory.

Chapter 5: Oracle Processes

This chapter offers an overview of the types of Oracle processes (server processes versus back-
ground processes). It also goes into much more depth on the differences in connecting to the
database via a shared server or dedicated server process. We'll also take a look, process by
process, at most of the background processes (such as LGWR, DBWR, PMON, and SMON) that we’ll
see when starting an Oracle instance and discuss the functions of each.

Chapter 6: Locking and Latching

Different databases have different ways of doing things (what works well in SQL Server may
not work as well in Oracle), and understanding how Oracle implements locking and concur-
rency control is absolutely vital to the success of your application. This chapter discusses
Oracle’s basic approach to these issues, the types of locks that can be applied (DML, DDL, and
latches) and the problems that can arise if locking is not implemented carefully (deadlocking,
blocking, and escalation).

Chapter 7: Concurrency and Multi-Versioning

In this chapter, we’ll explore my favorite Oracle feature, multi-versioning, and how it affects
concurrency controls and the very design of an application. Here we will see that all databases
are not created equal and that their very implementation can have an impact on the design of
our applications. We'll start by reviewing the various transaction isolation levels as defined by
the ANSI SQL standard and see how they map to the Oracle implementation (as well as how
the other databases map to this standard). Then we’ll take a look at what implications multi-
versioning, the feature that allows Oracle to provide non-blocking reads in the database,
might have for us.

Chapter 8: Transactions

Transactions are a fundamental feature of all databases—they are part of what distinguishes a
database from a file system. And yet, they are often misunderstood and many developers do
not even know that they are accidentally not using them. This chapter examines how transac-
tions should be used in Oracle and also exposes some “bad habits” that may have been
picked up when developing with other databases. In particular, we look at the implications of

XXI

Xxi INTRODUGTION

atomicity and how it affects statements in Oracle. We also discuss transaction control state-
ments (COMMIT, SAVEPOINT, and ROLLBACK), integrity constraints, distributed transactions (the
two-phase commit, or 2PC), and finally autonomous transactions.

Chapter 9: Redo and Undo

It can be said that developers do not need to understand the detail of redo and undo as much
as DBAs, but developers do need to know the role they play in the database. After first defining
redo, we examine what exactly a COMMIT does. We discuss how to find out how much redo is
being generated and how to significantly reduce the amount of redo generated by certain
operations using the NOLOGGING clause. We also investigate redo generation in relation to
issues such as block cleanout and log contention.

In the undo section of the chapter, we examine the role of undo data and the operations
that generate the most/least undo. Finally, we investigate the infamous ORA-01555: snapshot
too old error, its possible causes, and how to avoid it.

Chapter 10: Database Tables

Oracle now supports numerous table types. This chapter looks at each different type—heap
organized (i.e., the default, “normal” table), index organized, index clustered, hash clustered,
nested, temporary, and object—and discusses when, how, and why you should use them.
Most of time, the heap organized table is sufficient, but this chapter will help you recognize
when one of the other types might be more appropriate.

Chapter 11: Indexes

Indexes are a crucial aspect of your application design. Correct implementation requires

an in-depth knowledge of the data, how it is distributed, and how it will be used. Too often,
indexes are treated as an afterthought in application development, and performance suffers
as a consequence.

This chapter examines in detail the different types of indexes, including B*Tree, bitmap,
function-based, and application domain indexes, and discusses where they should and
should not be used. I'll also answer some common queries in the “Frequently Asked Questions
and Myths About Indexes” section, such as “Do indexes work on views?” and “Why isn't my
index getting used?”

Chapter 12: Datatypes

There are a lot of datatypes to choose from. This chapter explores each of the 22 built-in
datatypes, explaining how they are implemented, and how and when to use each one. First up
is a brief overview of National Language Support (NLS), a basic knowledge of which is neces-
sary to fully understand the simple string types in Oracle. We then move on to the ubiquitous
NUMBER type and look at the new Oracle 10g options for storage of numbers in the database.
The LONG and LONG RAW types are covered, mostly from a historical perspective. The main
objective here is to show how to deal with legacy LONG columns in applications and migrate
them to the LOB type. Next, we delve into the various datatypes for storing dates and time,
investigating how to manipulate the various datatypes to get what we need from them. The
ins and outs of time zone support are also covered.

INTRODUCGTION

Next up are the LOB datatypes. We'll cover how they are stored and what each of the many
settings such as IN ROW, CHUNK, RETENTION, CACHE, and so on mean to us. When dealing with
LOBs, it is important to understand how they are implemented and how they are stored by
default—especially when it comes to tuning their retrieval and storage. We close the chapter
by looking at the ROWID and UROWID types. These are special types, proprietary to Oracle, that
represent the address of a row. We'll cover when to use them as a column datatype in a table
(which is almost never!).

Chapter 13: Partitioning

Partitioning is designed to facilitate the management of very large tables and indexes, by
implementing a “divide and conquer” logic—basically breaking up a table or index into many
smaller and more manageable pieces. It is an area where the DBA and developer must work
together to maximize application availability and performance. This chapter covers both table
and index partitioning. We look at partitioning using local indexes (common in data ware-
houses) and global indexes (common in OLTP systems).

Chapter 14: Parallel Execution

This chapter introduces the concept of and uses for parallel execution in Oracle. We'll start by
looking at when parallel processing is useful and should be considered, as well as when it
should not be considered. After gaining that understanding, we move on to the mechanics of
parallel query, the feature most people associate with parallel execution. Next we cover paral-
lel DML (PDML), which allows us to perform modifications using parallel execution. We’'ll

see how PDML is physically implemented and why that implementation leads to a series of
restrictions regarding PDML.

We then move on to parallel DDL. This, in my opinion, is where parallel execution really
shines. Typically, DBAs have small maintenance windows in which to perform large opera-
tions. Parallel DDL gives DBAs the ability to fully exploit the machine resources they have
available, permitting them to finish large, complex operations in a fraction of the time it
would take to do them serially.

The chapter closes on procedural parallelism, the means by which we can execute appli-
cation code in parallel. We cover two techniques here. The first is parallel pipelined functions,
or the ability of Oracle to execute stored functions in parallel dynamically. The second is do-it-
yourself (DIY) parallelism, whereby we design the application to run concurrently.

Chapter 15: Data Loading and Unloading

This first half of this chapter focuses on SQL*Loader (SQLLDR) and covers the various ways in
which we can use this tool to load and modify data in the database. Issues discussed include
loading delimited data, updating existing rows and inserting new ones, unloading data, and
calling SQLLDR from a stored procedure. Again, SQLLDR is a well-established and crucial
tool, but it is the source of many questions with regard to its practical use. The second half of
the chapter focuses on external tables, an alternative and highly efficient means by which to
bulk load and unload data.

XXxin

XXIV

INTRODUGTION

Source Code and Updates

As you work through the examples in this book, you may decide that you prefer to type in all
the code by hand. Many readers choose to do this because it is a good way to get familiar with
the coding techniques that are being used.

Whether you want to type the code in or not, all the source code for this book is available
in the Source Code section of the Apress web site (http://www.apress.com). If you like to type
in the code, you can use the source code files to check the results you should be getting—they
should be your first stop if you think you might have typed in an error. If you don't like typing,
then downloading the source code from the Apress web site is a must! Either way, the code
files will help you with updates and debugging.

Errata

Apress makes every effort to make sure that there are no errors in the text or the code. How-
ever, to err is human, and as such we recognize the need to keep you informed of any mistakes
as they’re discovered and corrected. Errata sheets are available for all our books at http://
www . apress.com. If you find an error that hasn't already been reported, please let us know.

The Apress web site acts as a focus for other information and support, including the code
from all Apress books, sample chapters, previews of forthcoming titles, and articles on related
topics.

Setting Up Your Environment

In this section, I cover how to set up an environment capable of executing the examples in
this book, specifically with regard to the following topics:

* How to set up the SCOTT/TIGER demonstration schema properly

* The environment you need to have up and running

* How to configure AUTOTRACE, a SQL*Plus facility

* How to install Statspack

¢ How to install and run runstats and other custom utilities used throughout the book
* The coding conventions used in this book

All of the non-Oracle-supplied scripts are available for download from the Source Code
section of the Apress web site (http://www.apress.com).

Setting Up the SCOTT/TIGER Schema

The SCOTT/TIGER schema may already exist in your database. It is generally included during a
typical installation, but it is not a mandatory component of the database. You may install

the SCOTT example schema into any database account—there is nothing magic about using the

SCOTT account. You could install the EMP/DEPT tables directly into your own database account
if you wish.

Many of the examples in this book draw on the tables in the SCOTT schema. If you would
like to be able to work along with them, you will need these tables as well. If you are working
on a shared database, it is advisable to install your own copy of these tables in some account
other than SCOTT to avoid side effects caused by other users using the same data.

To create the SCOTT demonstration tables, simply

1. cd [ORACLE_HOME]/sqlplus/demo.

2. Run demobld.sql when connected as any user.

Note In Oracle 10g and later, you must install the demonstration subdirectories from the companion CD.

I have reproduced the necessary components of demobld. sql later as well.

XXV

XXVI SETTING UP YOUR ENVIRONMENT

demobld.sql will create and populate five tables for you. When it is complete, it exits
SQL*Plus automatically, so don't be surprised when SQL*Plus disappears after running the
script—it is supposed to do that.

The standard demo tables do not have any referential integrity defined on them. Some of
my examples rely on them having referential integrity. After you run demobld.sql, it is recom-
mended that you also execute the following:

alter table emp add constraint emp pk primary key(empno);
alter table dept add constraint dept pk primary key(deptno);
alter table emp add constraint emp fk dept
foreign key(deptno) references dept;
alter table emp add constraint emp fk_emp foreign key(mgr) references emp;

This finishes off the installation of the demonstration schema. If you would like to drop
this schema at any time to clean up, you can simply execute [ORACLE_HOME] /sqlplus/demo/
demodrop.sql. This will drop the five tables and exit SQL*Plus.

In the event you do not have access to demobld. sql, the following is sufficient to run the
examples in this book:

CREATE TABLE EMP
(EMPNO NUMBER(4) NOT NULL,
ENAME VARCHAR2(10),

JOB VARCHAR2(9),

MGR NUMBER(4),

HIREDATE DATE,

SAL NUMBER(7, 2),

COMM NUMBER(7, 2),

DEPTNO NUMBER(2)

5

INSERT INTO EMP VALUES (7369, 'SMITH', 'CLERK', 7902,
TO_DATE('17-DEC-1980', 'DD-MON-YYYY'), 800, NULL, 20);
INSERT INTO EMP VALUES (7499, 'ALLEN', 'SALESMAN', 7698,
TO_DATE('20-FEB-1981', 'DD-MON-YYYY'), 1600, 300, 30);
INSERT INTO EMP VALUES (7521, 'WARD', 'SALESMAN', 7698,
TO DATE('22-FEB-1981', 'DD-MON-YYYY'), 1250, 500, 30);
INSERT INTO EMP VALUES (7566, 'JONES', 'MANAGER', 7839,
TO_DATE('2-APR-1981', 'DD-MON-YYYY'), 2975, NULL, 20);
INSERT INTO EMP VALUES (7654, 'MARTIN', 'SALESMAN', 7698,
TO_DATE('28-SEP-1981', 'DD-MON-YYYY'), 1250, 1400, 30);
INSERT INTO EMP VALUES (7698, 'BLAKE', 'MANAGER', 7839,
TO DATE('1-MAY-1981', 'DD-MON-YYYY'), 2850, NULL, 30);
INSERT INTO EMP VALUES (7782, 'CLARK', 'MANAGER', 7839,
TO DATE('9-JUN-1981', 'DD-MON-YYYY'), 2450, NULL, 10);
INSERT INTO EMP VALUES (7788, 'SCOTT', 'ANALYST', 7566,
TO_DATE('09-DEC-1982', 'DD-MON-YYYY'), 3000, NULL, 20);
INSERT INTO EMP VALUES (7839, 'KING', 'PRESIDENT', NULL,
TO_DATE('17-NOV-1981', 'DD-MON-YYYY'), 5000, NULL, 10);
INSERT INTO EMP VALUES (7844, 'TURNER', 'SALESMAN', 7698,

SETTING UP YOUR ENVIRONMENT

TO DATE('8-SEP-1981', 'DD-MON-YYYY'), 1500, 0, 30);
INSERT INTO EMP VALUES (7876, 'ADAMS', 'CLERK', 7788,
TO DATE('12-JAN-1983', 'DD-MON-YYYY'), 1100, NULL, 20);
INSERT INTO EMP VALUES (7900, 'JAMES', 'CLERK', 7698,
TO DATE('3-DEC-1981', 'DD-MON-YYYY'), 950, NULL, 30);
INSERT INTO EMP VALUES (7902, 'FORD', "ANALYST', 7566,
TO DATE('3-DEC-1981', 'DD-MON-YYYY'), 3000, NULL, 20);
INSERT INTO EMP VALUES (7934, 'MILLER', 'CLERK', 7782,
TO DATE('23-JAN-1982', 'DD-MON-YYYY'), 1300, NULL, 10);

CREATE TABLE DEPT
(DEPTNO NUMBER(2),
DNAME VARCHAR2(14),
LOC VARCHAR2(13)

IB

INSERT INTO DEPT VALUES (10, "ACCOUNTING', 'NEW YORK');
INSERT INTO DEPT VALUES (20, 'RESEARCH', 'DALLAS");
INSERT INTO DEPT VALUES (30, 'SALES', "CHICAGO');
INSERT INTO DEPT VALUES (40, 'OPERATIONS', 'BOSTON');

The Environment

Most of the examples in this book are designed to run 100 percent in the SQL*Plus environ-
ment. Other than SQL*Plus, there is nothing else to set up and configure. I can make a
suggestion, however, on using SQL*Plus. Almost all the examples in this book use DBMS_OUTPUT
in some fashion. For DBMS_OUTPUT to work, the following SQL*Plus command must be issued:

SQL> set serveroutput on

If you are like me, typing in this command each and every time will quickly get tiresome.
Fortunately, SQL*Plus allows us to set up a login.sql file—a script that is executed each and
every time we start SQL*Plus. Further, it allows us to set an environment variable, SQLPATH, so
that it can find this login.sql script, no matter what directory it is in.

The login.sql I use for all examples in this book is as follows:

define editor=vi

set serveroutput on size 1000000
set trimspool on

set long 5000

set linesize 100

set pagesize 9999

column plan plus exp format a80
column global name new value gname
set termout off

define gname=idle

column global name new value gname

XXvii

Xxvili SETTING UP YOUR ENVIRONMENT

select lower(user) || '@' || substr(global name, 1,

decode(dot, 0, length(global name), dot-1)) global name

from (select global name, instr(global name,'.') dot from global name);
set sqlprompt ‘&gname> '
set termout on

An annotated version of this is as follows:

DEFINE _EDITOR=VI: This sets up the default editor SQL*Plus will use. You may set the
default editor to be your favorite text editor (not a word processor) such as Notepad or
emacs.

SET SERVEROUTPUT ON SIZE 1000000: This enables DBMS _OUTPUT to be on by default
(hence, you don't have to type it in each and every time). It also sets the default buffer
size as large as possible.

SET TRIMSPOOL ON:When spooling text, lines will be blank-trimmed and not fixed width.
If this is set to OFF (the default), spooled lines will be as wide as your LINESIZE setting.

SET LONG 5000: This sets the default number of bytes displayed when selecting LONG and
CLOB columns.

SET LINESIZE 100: This sets the width of the lines displayed by SQL*Plus to be 100
characters.

SET PAGESIZE 9999: This sets the PAGESIZE, which controls how frequently SQL*Plus
prints out headings, to a large number (you get one set of headings per page).

COLUMN PLAN_PLUS_EXP FORMAT A80: This sets the default width of the explain plan out-
put you receive with AUTOTRACE. A80 is generally wide enough to hold the full plan.

The next bit in login.sql sets up the SQL*Plus prompt:

define gname=idle
column global name new_value gname
select lower(user) || '@" || substr(global name,1,
decode(dot, 0, length(global name), dot-1)) global name
from (select global name, instr(global name,'.') dot from global name);
set sqlprompt '&gname> '

The directive COLUMN GLOBAL NAME NEW_VALUE GNAME tells SQL*Plus to take the last value it
retrieves for any column named GLOBAL_NAME and place it into the substitution variable GNAME.
I then select the GLOBAL_NAME out of the database and concatenate this with the username I am
logged in with. That makes my prompt look like this:

ops$tkyte@oralog>

so I know who I am as well as where I am.

SETTING UP YOUR ENVIRONMENT

Setting Up AUTOTRACE in SQL*Plus

AUTOTRACE is a facility within SQL*Plus that shows you the explain plan of the queries you've
executed and the resources they used. This book makes extensive use of the AUTOTRACE
facility.

There is more than one way to get AUTOTRACE configured. This is what I like to do to get
AUTOTRACE working:

1. cd [ORACLE HOME]/rdbms/admin

2. log into SQL*Plus as SYSTEM

3. Run @utlxplan

4. Run CREATE PUBLIC SYNONYM PLAN_TABLE FOR PLAN_TABLE;
5. Run GRANT ALL ON PLAN_TABLE TO PUBLIC;

You can replace the GRANT TO PUBLIC with some user if you want. By making the PLAN_
TABLE public, you let anyone trace using SQL*Plus (not a bad thing, in my opinion). This
prevents each and every user from having to install his or her own plan table. The alternative
is for you to run @utlxplan in every schema from which you want to use AUTOTRACE.

The next step is creating and granting the PLUSTRACE role:

1. cd [ORACLE_HOME]/sqlplus/admin

2. Login to SQL*Plus as SYS or as SYSDBA
3. Run @plustrce

4. Run GRANT PLUSTRACE TO PUBLIC;

Again, you can replace PUBLIC in the GRANT command with some user if you want.

About AUTOTRACE

You can automatically get a report on the execution path used by the SQL optimizer and the
statement execution statistics. The report is generated after successful SQL DML (i.e., SELECT,
DELETE, UPDATE, MERGE, and INSERT) statements. It is useful for monitoring and tuning the per-
formance of these statements.

Controlling the Report
You can control the report by setting the AUTOTRACE system variable:
e SET AUTOTRACE OFF: No AUTOTRACE report is generated. This is the default.

e SET AUTOTRACE ON EXPLAIN: The AUTOTRACE report shows only the optimizer
execution path.

e SET AUTOTRACE ON STATISTICS: The AUTOTRACE report shows only the SQL statement
execution statistics.

XXIX

XXX

SETTING UP YOUR ENVIRONMENT

e SET AUTOTRACE ON: The AUTOTRACE report includes both the optimizer execution path
and the SQL statement execution statistics.

e SET AUTOTRACE TRACEONLY: This is like SET AUTOTRACE ON, but it suppresses the printing
of the user’s query output, if any.

Setting Up Statspack

Statspack is designed to be installed when connected as SYSDBA (CONNECT / AS SYSDBA). To
install it, you must be able to perform that operation. In many installations, this will be a task
that you must ask the DBA or administrators to perform.

Once you have the ability to connect, installing Statspack is trivial. You simply run
@spcreate.sql. You can find that script in [ORACLE_HOME]\rdbms\admin, and you should execute
it when connected as SYSDBA via SQL*Plus. It looks something like this:

[tkyte@desktop admin]$ sqlplus / as sysdba

SQL*Plus: Release 10.1.0.4.0 - Production on Sat Jul 23 16:26:17 2005
Copyright (c) 1982, 2005, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.1.0.4.0 - Production
With the Partitioning, OLAP and Data Mining options

Sys@ORA10G> @spcreate
. Installing Required Packages
. <output omitted for brevity> ...

You'll need to know three pieces of information before running the spcreate.sql script:
* The password you would like to use for the PERFSTAT schema that will be created

¢ The default tablespace you would like to use for PERFSTAT

* The temporary tablespace you would like to use for PERFSTAT

The script will prompt you for this information as it executes. In the event you make a
typo or inadvertently cancel the installation, you should use spdrop.sql to remove the user
and installed views prior to attempting another installation of Statspack. The Statspack instal-
lation will create a file called spcpkg.lis. You should review this file for any errors that might
have occurred. The Statspack packages should install cleanly, however, as long as you supplied
valid tablespace names (and didn't already have a PERFSTAT user).

Custom Scripts

In this section, I describe the requirements (if any) needed by various scripts used throughout
this book. As well, we investigate the code behind the scripts.

SETTING UP YOUR ENVIRONMENT

Runstats

Runstats is a tool I developed to compare two different methods of doing the same thing and
show which one is superior. You supply the two different methods and runstats does the rest.
Runstats simply measures three key things:

o Wall clock or elapsed time: This is useful to know, but it isn’t the most important piece
of information.

o System statistics: This shows, side by side, how many times each approach did some-
thing (e.g., a parse call) and the difference between the two.

e Latching: This is the key output of this report.

As you’ll see in this book, latches are a type of lightweight lock. Locks are serialization
devices. Serialization devices inhibit concurrency. Applications that inhibit concurrency are
less scalable, can support fewer users, and require more resources. Our goal is always to build
applications that have the potential to scale—ones that can service 1 user as well as 1,000 or
10,000 users. The less latching we incur in our approaches, the better off we will be. I might
choose an approach that takes longer to run on the wall clock but that uses 10 percent of the
latches. I know that the approach that uses fewer latches will scale substantially better than
the approach that uses more latches.

Runstats is best used in isolation—that is, on a single-user database. We will be measuring
statistics and latching (locking) activity that result from our approaches. We do not want other
sessions to contribute to the system’s load or latching while this is going on. A small test data-
base is perfect for these sorts of tests. I frequently use my desktop PC or laptop, for example.

Note | believe all developers should have a test bed database they control to try ideas on, without need-
ing to ask a DBA to do something all of the time. Developers definitely should have a database on their
desktop, given that the licensing for the personal developer version is simply “Use it to develop and test
with, do not deploy, and you can just have it.” This way, there is nothing to lose! Also, I've taken some infor-
mal polls at conferences and seminars and discovered that virtually every DBA out there started as a
developer. The experience and training developers could get by having their own database—being able
to see how it really works—pays large dividends in the long run.

To use runstats, you need to set up access to several V$ views, create a table to hold the
statistics, and create the runstats package. You will need access to three V$ tables (those magic
dynamic performance tables): V$STATNAME, V$MYSTAT, and V$LATCH. Here is a view I use:

create or replace view stats
as select 'STAT...' || a.name name, b.value
from v$statname a, v$mystat b
where a.statistic# = b.statistic#
union all
select 'LATCH.' || name, gets
from v$latch;

XXXI

XXXI1

SETTING UP YOUR ENVIRONMENT

Either you can have SELECT on V$STATNAME, V$MYSTAT, and V$LATCH granted directly to you
(that way you can create the view yourself), or you can have someone that does have SELECT
on those objects create the view for you and grant SELECT privileges to you.

Once you have that set up, all you need is a small table to collect the statistics:

create global temporary table run_ stats
(runid varchar2(15),

name varchar2(80),

value int)
on commit preserve rows;

Last, you need to create the package that is runstats. It contains three simple API calls:
e RS_START (runstats start) to be called at the beginning of a runstats test

e RS _MIDDLE to be called in the middle, as you might have guessed

e RS _STOP to finish off and print the report

The specification is as follows:

ops$tkyte@ORA920> create or replace package runstats pkg

2 as

3 procedure rs_start;

4 procedure rs_middle;

5 procedure rs_stop(p_difference threshold in number default 0);
6 end;

7/

Package created.

The parameter P_DIFFERENCE_THRESHOLD is used to control the amount of data printed at
the end. Runstats collects statistics and latching information for each run, and then prints a
report of how much of a resource each test (each approach) used and the difference between
them. You can use this input parameter to see only the statistics and latches that had a differ-
ence greater than this number. By default this is zero, and you see all of the outputs.

Next, we'll look at the package body procedure by procedure. The package begins with
some global variables. These will be used to record the elapsed times for our runs:

ops$tkyte@ORA920> create or replace package body runstats pkg

2 as

3

4 g start number;

5 g runil number;
6 g run2 number;
7

Next is the RS_START routine. This will simply clear out our statistics-holding table and
then populate it with the “before” statistics and latches. It will then capture the current timer
value, a clock of sorts that we can use to compute elapsed times in hundredths of seconds:

8

9
10
11
12
13
14
15
16
17
18

SETTING UP YOUR ENVIRONMENT

procedure rs start
is
begin
delete from run stats;

insert into run_stats
select 'before', stats.* from stats;

g start := dbms_utility.get time;
end;

Next is the RS_MIDDLE routine. This procedure simply records the elapsed time for the first

run of our test in G_RUN1. Then it inserts the current set of statistics and latches. If we were to
subtract these values from the ones we saved previously in RS_START, we could discover how
many latches the first method used, how many cursors (a statistic) it used, and so on.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Last, it records the start time for our next run:

procedure rs_middle
is
begin
g runl := (dbms utility.get time-g start);
insert into run_stats
select 'after 1', stats.* from stats;
g start := dbms_utility.get time;
end;

procedure rs_stop(p_difference threshold in number default 0)
is
begin

g run2 := (dbms utility.get time-g start);
dbms_output.put_line

('Runi ran in ' || g runl || ' hsecs');
dbms_output.put_line

('Run2 ran in ' || g run2 || ' hsecs');
dbms_output.put_line
('run 1 ran in ' || round(g runi/g run2*100,2) ||

‘% of the time');
dbms_output.put_line(chr(9));

insert into run_stats
select 'after 2', stats.* from stats;

dbms_output.put_line
(rpad('Name', 30) || lpad('Runi', 10) ||

XXXin

XXXIV SETTING UP YOUR ENVIRONMENT

49 lpad('Run2', 10) || 1lpad('Diff', 10));

50

51 for x in

52 (select rpad(a.name, 30) ||

53 to char(b.value-a.value, '9,999,999') |

54 to char(c.value-b.value, '9,999,999') ||

55 to char(((c.value-b.value)-(b.value-a.value)), '9,999,999') data
56 from run_stats a, run stats b, run stats c

57 where a.name = b.name

58 and b.name = c.name

59 and a.runid = 'before'

60 and b.runid = 'after 1'

61 and c.runid = 'after 2'

62 and (c.value-a.value) > 0

63 and abs((c.value-b.value) - (b.value-a.value))

64 > p_difference threshold

65 order by abs((c.value-b.value)-(b.value-a.value))

66) loop

67 dbms_output.put line(x.data);

68 end loop;

69

70 dbms_output.put line(chr(9));

71 dbms_output.put line

72 ('Runi latches total versus runs -- difference and pct');
73 dbms_output.put line

74 (lpad('Runi', 10) || 1lpad('Run2', 10) ||

75 lpad('Diff', 10) || 1lpad('Pct', 8));

76

77 for x in

78 (select to char(runi, '9,999,999') ||

79 to_char(run2, '9,999,999') ||

80 to_char(diff, '9,999,999') ||

81 to_char(round(runi/run2*100,2), '999.99') || '%' data
82 from (select sum(b.value-a.value) runi, sum(c.value-b.value) run2,
83 sum((c.value-b.value)-(b.value-a.value)) diff
84 from run_stats a, run stats b, run stats c

85 where a.name = b.name

86 and b.name = c.name

87 and a.runid = 'before’

88 and b.runid = 'after 1'

89 and c.runid = 'after 2'

90 and a.name like 'LATCH%'

91)

92) loop

93 dbms_output.put line(x.data);

94 end loop;

95 end;

SETTING UP YOUR ENVIRONMENT

96
97 end;
98 /

Package body created.

And now we are ready to use runstats. By way of example, we’ll demonstrate how to use
runstats to see which is more efficient, a single bulk INSERT or row-by-row processing. We'll
start by setting up two tables into which to insert 1,000,000 rows:

ops$tkyte@ORA10GR1> create table t1
2 as
3 select * from big table.big table
4 where 1=0;

Table created.

ops$tkyte@ORA10GR1> create table t2
2 as
3 select * from big table.big table
4 where 1=0;

Table created.

Next, we perform the first method of inserting the records: using a single SQL statement.
We start by calling RUNSTATS_PKG.RS_START:

ops$tkyte@ORA10GR1> exec runstats pkg.rs start;
PL/SOL procedure successfully completed.

ops$tkyte@ORA10GR1> insert into t1 select * from big table.big table;
1000000 rows created.

ops$tkyte@ORA10GR1> commit;
Commit complete.

Now we are ready to perform the second method, which is row-by-row insertion of data:

ops$tkyte@ORAL10GR1> exec runstats pkg.rs middle;
PL/SQL procedure successfully completed.

ops$tkyte@ORA10GR1> begin

2 for x in (select * from big table.big table)
3 loop

4 insert into t2 values X;

5 end loop;

6 commit;

7 end;

8 /

PL/SQL procedure successfully completed.

XXXV

XXXVI SETTING UP YOUR ENVIRONMENT

and finally, we generate the report:

ops$tkyte@ORA10GR1> exec runstats pkg.rs stop(1000000)
Runl ran in 5810 hsecs

Run2 ran in 14712 hsecs

run 1 ran in 39.49% of the time

Name Run1 Run2 Diff
STAT...recursive calls 8,089 1,015,451 1,007,362
STAT...db block changes 109,355 2,085,099 1,975,744
LATCH.1library cache 9,914 2,006,563 1,996,649
LATCH.1library cache pin 5,609 2,003,762 1,998,153
LATCH.cache buffers chains 575,819 5,565,489 4,989,670
STAT...undo change vector size 3,884,940 67,978,932 64,093,992
STAT...redo size 118,854,004 378,741,168 259,887,164

Run1l latches total versus runs -- difference and pct
Runi Run2 Diff Pct
825,530 11,018,773 10,193,243 7.49%

PL/SOL procedure successfully completed.

Mystat

mystat.sql and its companion, mystat2.sql, are used to show the increase in some Oracle
“statistic” before and after some operation. mystat.sql simply captures the begin value of
some statistic:

set echo off

set verify off

column value new_val V
define S="&1"

set autotrace off

select a.name, b.value

from v$statname a, v$mystat b

where a.statistic# = b.statistic#

and lower(a.name) like '%' || lower('&S')||'%'
/

set echo on

and mystat2.sql reports the difference for us:

set echo off

set verify off

select a.name, b.value V, to char(b.value-8V,'999,999,999,999"') diff
from v§statname a, v$mystat b

SETTING UP YOUR ENVIRONMENT

where a.statistic# = b.statistic#

and lower(a.name) like '%' || lower('&S')||'%"
/

set echo on

For example, to see how much redo is generated by some UPDATE, we can do the following:

big table@ORA10G> @mystat "redo size"
big table@ORA10G> set echo off

redo size 496

big table@ORA10G> update big table set owner = lower(owner)
2 where rownum <= 1000;

1000 rows updated.

big table@ORA10G> @mystat2
big table@ORA10G> set echo off

redo size 89592 89,096

That shows our UPDATE of 1,000 rows generated 89,096 bytes of redo.

SHOW_SPACE

The SHOW_SPACE routine prints detailed space utilization information for database segments.
Here is the interface to it:

ops$tkyte@ORA10G> desc show_space
PROCEDURE show_space

Argument Name Type In/Out Default?
P_SEGNAME VARCHAR2 IN

P_OWNER VARCHAR2 IN DEFAULT
P_TYPE VARCHAR2 IN DEFAULT
P_PARTITION VARCHAR2 IN DEFAULT

The arguments are as follows:
e P_SEGNAME: Name of the segment (e.g., the table or index name).

e P_OWNER: Defaults to the current user, but you can use this routine to look at some other
schema.

XXXVII

XXXVl SETTING UP YOUR ENVIRONMENT

e P_TYPE: Defaults to TABLE and represents the type of object you are looking at. For exam-
ple, SELECT DISTINCT SEGMENT TYPE FROM DBA SEGMENTS lists valid segment types.

e P_PARTITION: Name of the partition when you show the space for a partitioned object.
SHOW_SPACE shows space for only one partition at a time.

The output of this routine looks as follows, when the segment resides in an Automatic
Segment Space Management (ASSM) tablespace:

big table@ORA10G> exec show_space('BIG TABLE');

Unformatted Blockscccceeeinn... 0
FS1 Blocks (0-25) weevvenennernennnennn 0
FS2 Blocks (25-50) «euvuveennuennneennnnn 0
FS3 B1oCkS (50-75) weeveenennernernnenns 0
FS4 Blocks (75-200)c.ueeueenernernnenns 0
Full Blocks iiiiiiiiiiiiinenn.. 14,469
Total BlockS..ueeeweeniieiieneenennennnn 15,360
Total Bytes....ovveieiiiennnnnn 125,829,120
Total MBytes.....covveeieeeennnnnns 120
Unused BlockS..oeeeneeeneeineninennnnn. 728
Unused Bytes......oovvvvvviiiiiinnnnnnnn 5,963,776
Last Used Ext FileId......cocvvueevnnn.n. 4
Last Used Ext BlockId......ccvveveunenn.. 43,145
Last Used Block....ovuveenneennneennn... 296

PL/SOL procedure successfully completed.
The items reported are as follows:

e Unformatted Blocks: The number of blocks that are allocated to the table and are below
the high-water mark (HWM), but have not been used. Add unformatted and unused
blocks together to get a total count of blocks allocated to the table but never used to
hold data in an ASSM object.

e FS1 Blocks—FS4 Blocks: Formatted blocks with data. The ranges of numbers after their
name represent the “emptiness” of each block. For example, (0-25) is the count of
blocks that are between 0 and 25 percent empty.

e Full Blocks: The number of blocks so full that they are no longer candidates for future
inserts.

e Total Blocks, Total Bytes, Total MBytes:The total amount of space allocated to the
segment measured in database blocks, bytes, and megabytes.

* Unused Blocks, Unused Bytes: These represent a portion of the amount of space never
used. These blocks are allocated to the segment but are currently above the HWM of
the segment.

e Last Used Ext FilelId:The file ID of the file that contains the last extent that contains
data.

SETTING UP YOUR ENVIRONMENT

e Last Used Ext BlockId: The block ID of the beginning of the last extent; the block ID
within the last used file.

e Last Used Block: The offset of the last block used in the last extent.

When you use SHOW_SPACE to look at objects in user space managed tablespaces, the out-
put resembles this:

big table@ORA10G> exec show_space('BIG TABLE')

Free Blocks...ovveiineiineennnnnnnnn. 1
Total BlockS. . ueeeweeneieiieneenennennnn 147,456
Total Bytes....ovveeeiiennnnnn 1,207,959,552
Total MBytes.....covveeeeennennns 1,152
Unused BlocKS. . eee e iininennenennnnns 1,616
Unused Bytes......ooovvvviiiniiinnnnnnn 13,238,272
Last Used Ext FileId......cocvvueevnnn.n. 7
Last Used Ext BlockId.....cevveveunenn.. 139,273
Last Used BlocK. .o eeeiierienenennennn. 6,576

PL/SOL procedure successfully completed.

The only difference is the Free Blocks item at the beginning of the report. This is a count
of the blocks in the first freelist group of the segment. My script reports only on this freelist
group. You would need to modify the script to accommodate multiple freelist groups.

The commented code follows. This utility is a simple layer on top of the DBMS_SPACE API in
the database.

create or replace procedure show space
(p_segname in varchar2,

p_owner in varchar2 default user,

p_type in varchar2 default 'TABLE',

p partition in varchar2 default NULL)
-- this procedure uses authid current user so it can query DBA *
-- views using privileges from a ROLE, and so it can be installed
-- once per database, instead of once per user who wanted to use it
authid current user

as
1 free blks number;
1 total blocks number;
1 total bytes number;
1 unused blocks number;
1 unused bytes number;
1 LastUsedExtFileId number;
1 LastUsedExtBlockId number;
1 LAST USED BLOCK number;
1 segment space mgmt varchar2(255);

1 unformatted blocks number;
1 unformatted bytes number;
1 fs1 blocks number; 1 fsi bytes number;

XXXIX

x|

SETTING UP YOUR ENVIRONMENT

1
1
1
1

fs2 _blocks number; 1 fs2 bytes number;
fs3 _blocks number; 1 fs3 bytes number;
fs4_blocks number; 1 fs4 bytes number;
full blocks number; 1 full bytes number;

-- inline procedure to print out numbers nicely formatted
-- with a simple label
procedure p(p_label in varchar2, p num in number)

is
begin
dbms_output.put line(rpad(p_label,40,'.") ||
to_char(p_num,'999,999,999,999"));
end;
begin

this query is executed dynamically in order to allow this procedure
to be created by a user who has access to DBA_SEGMENTS/TABLESPACES
via a role as is customary.

NOTE: at runtime, the invoker MUST have access to these two

views!

this query determines if the object is an ASSM object or not

begin

execute immediate
'select ts.segment space management

from dba_segments seg, dba tablespaces ts

where seg.segment name = :p_segname
and (:p partition is null or

seg.partition name = :p partition)

and seg.owner = :p _owner
and seg.tablespace name = ts.tablespace name'
into 1 segment space mgmt

using p _segname, p partition, p partition, p_owner;

exception

when too_many rows then
dbms_output.put line
('This must be a partitioned table, use p partition => ');
return;

end;

if the object is in an ASSM tablespace, we must use this API
call to get space information, otherwise we use the FREE_BLOCKS
API for the user-managed segments

if 1 segment space mgmt = 'AUTO'
then

dbms_space.space_usage
(p_owner, p segname, p_type, 1 unformatted blocks,

1 unformatted bytes, 1 fsi blocks, 1 fsi bytes,

SETTING UP YOUR ENVIRONMENT

1 fs2 blocks, 1 fs2 bytes, 1 fs3 blocks, 1 fs3 bytes,
1 fs4 blocks, 1 fs4 bytes, 1 full blocks, 1 full bytes, p partition);

p('Unformatted Blocks ', 1 unformatted blocks);
p('FS1 Blocks (0-25) ', 1 fs1 blocks);
p('FS2 Blocks (25-50) ', 1 fs2 blocks);
p('FS3 Blocks (50-75) ', 1 fs3 blocks);
p('FS4 Blocks (75-100)', 1 fs4 blocks);

p('Full Blocks ', 1 full blocks);
else
dbms_space.free blocks(
segment_owner => p_owner,
segment _name => p_segname,
segment_type => p_type,
freelist group id => o,
free blks => 1 free blks);

p('Free Blocks', 1
end if;

free blks);

-- and then the unused space API call to get the rest of the

-- information

dbms_space.unused space

(segment owner => p_owner,
segment name => p_segname,
segment_type => p_type,
partition_name => p_partition,
total blocks => 1 total blocks,
total bytes => 1 total bytes,
unused_blocks => 1 unused blocks,
unused_bytes => 1 unused bytes,

LAST USED_EXTENT FILE ID => 1 LastUsedExtFileId,
LAST USED_EXTENT BLOCK ID => 1 LastUsedExtBlockId,
LAST USED BLOCK => 1_LAST USED BLOCK);

p('Total Blocks', 1 total blocks);
p('Total Bytes', 1 total bytes);
p('Total MBytes', trunc(l total bytes/1024/1024));
p('Unused Blocks', 1 unused blocks);
p('Unused Bytes', 1 unused bytes);
p('Last Used Ext FileId', 1 LastUsedExtFileId);
p('Last Used Ext BlockId', 1 LastUsedExtBlockId);
p('Last Used Block', 1 LAST USED BLOCK);
end;

xh

xii

SETTING UP YOUR ENVIRONMENT

BIG_TABLE

For examples throughout this book, I use a table called BIG_TABLE. Depending on which sys-
tem I use, this table has between 1 record and 4 million records, and varies in size from 200MB
to 800MB. In all cases, the table structure is the same.

To create BIG_TABLE, I wrote a script that does the following:

* Creates an empty table based on ALL_OBJECTS. This dictionary view is used to populate
BIG_TABLE.

* Makes this table NOLOGGING. This is optional. I did it for performance. Using NOLOGGING
mode for a test table is safe; you won't use it in a production system, so features like
Oracle Data Guard won'’t be enabled.

» Populates the table by seeding it with the contents of ALL_OBJECTS and then iteratively
inserting into itself, approximately doubling its size on each iteration.

e Creates a primary key constraint on the table.
* Gathers statistics.
e Displays the number of rows in the table.

To build the BIG_TABLE table, you can run the following script at the SQL*Plus prompt and
pass in the number of rows you want in the table. The script will stop when it hits that number
of rows.

create table big table
as
select rownum id, a.*
from all objects a
where 1=0
/
alter table big table nologging;

declare
1 cnt number;
1 rows number := 8&1;
begin
insert /*+ append */
into big table
select rownum, a.*
from all objects a;

1 cnt := sql%rowcount;
commit;
while (1 cnt < 1 rows)

loop
insert /*+ APPEND */ into big table

SETTING UP YOUR ENVIRONMENT xhn

OWNER, OBJECT NAME, SUBOBJECT NAME,
OBJECT ID, DATA OBJECT ID,
OBJECT TYPE, CREATED, LAST DDL TIME,
TIMESTAMP, STATUS, TEMPORARY,
GENERATED, SECONDARY
from big table
where rownum <= 1 rows-1 cnt;
1 cnt := 1 cnt + sql%rowcount;
commit;
end loop;
end;
/

alter table big table add constraint
big table pk primary key(id)

/
begin
dbms_stats.gather table stats
(' ownname => user,
tabname => 'BIG TABLE',
method opt => 'for all indexed columns',
cascade => TRUE);
end;
/

select count(*) from big table;

I gathered baseline statistics on the table and the index associated with the primary key.
Additionally, I gathered histograms on the indexed column (something I typically do). His-
tograms may be gathered on other columns as well, but for this table, it just isn’'t necessary.

Coding Conventions

The one coding convention I use in this book that I would like to point out is how I name vari-
ables in PL/SQL code. For example, consider a package body like this:

create or replace package body my pkg
as
g variable varchar2(25);

procedure p(p_variable in varchar2)
is
1 variable varchar2(25);
begin
null;
end;
end;

Xxliv

SETTING UP YOUR ENVIRONMENT

Here I have three variables: a global package variable, G_VARIABLE; a formal parameter to
the procedure, P_VARIABLE; and finally a local variable, L_VARIABLE. I name my variables after
the scope they are contained in. All globals begin with G_, parameters with P_, and local vari-
ables with L_. The main reason for this is to distinguish PL/SQL variables from columns in a
database table. For example, a procedure such as the following:

create procedure p(ENAME in varchar2)

as
begin
for x in (select * from emp where ename = ENAME) loop
Dbms_output.put line(x.empno);
end loop;
end;

will always print out every row in the EMP table, where ENAME is not null. SQL sees ename =
ENAME, and compares the ENAME column to itself (of course). We could use ename = P.ENAME—
that is, qualify the reference to the PL/SQL variable with the procedure name—but this is too
easy to forget and leads to errors.

I just always name my variables after the scope. That way, I can easily distinguish para-
meters from local variables and globals, in addition to removing any ambiguity with respect
to column names and variable names.

CHAPTER 1

Developing Successful
Oracle Applications

I spend the bulk of my time working with Oracle database software and, more to the point,
with people who use this software. Over the last 18 years, I've worked on many projects—
successful ones as well as complete failures—and if I were to encapsulate my experiences
into a few broad statements, they would be

¢ An application built around the database—dependent on the database—will succeed
or fail based on how it uses the database. Additionally, in my experience, all applica-
tions are built around databases. I cannot think of a single useful application that does
not store data persistently somewhere.

* Applications come, applications go. The data, however, lives forever. In the long term,
the goal is not about building applications; it really is about using the data underneath
these applications.

* A development team needs at its heart a core of database-savvy developers who are
responsible for ensuring the database logic is sound and the system is built to perform
from day one. Tuning after the fact (tuning after deployment) typically means you did
not give serious thought to these concerns during development.

These may seem like surprisingly obvious statements, but I have found that too many
people approach the database as if it were a black box—something that they don’t need to
know about. Maybe they have a SQL generator that they figure will save them from the hard-
ship of having to learn the SQL language. Maybe they figure they will just use the database
like a flat file and do keyed reads. Whatever they figure, I can tell you that thinking along these
lines is most certainly misguided: you simply cannot get away with not understanding the
database. This chapter will discuss why you need to know about the database, specifically why
you need to understand

* The database architecture, how it works, and what it looks like.
* What concurrency controls are, and what they mean to you.

» That performance, scalability, and security are requirements to be designed into your
development efforts, not something to hope you achieve by accident.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

* How features are implemented in the database. The way in which a specific database
feature is actually implemented may not be the way you might envision. You have to
design for how the database works, not how you think it should work.

* What features your database already provides for you and why it is generally better to
use a provided feature than to build your own.

* Why you might want more than a cursory knowledge of SQL.

¢ That the DBA and developer staff members are fighting for the same cause; they’re not
two enemy camps trying to outsmart each other at every turn.

This may initially seem like a long list of things to learn, but consider this analogy for a
second: If you were developing a highly scalable, enterprise application on a brand-new oper-
ating system (OS), what would be the first thing you would do? Hopefully, your answer is,
“Find out how this new OS works, how things will run on it, and so on.” If you did not do this,
your development effort would fail.

Consider, for example, Windows versus Linux. Both are operating systems. Each provides
largely the same set of services to developers, such as file management, memory management,
process management, security, and so on. However, they are very different architecturally.
Consequently, if you're a longtime Windows programmer and you're asked to develop a new
application on the Linux platform, you would have to relearn a couple of things. Memory
management is done differently. The way in which you build a server process is considerably
different. Under Windows, you develop a single process, a single executable, with many
threads. Under Linux, you do not develop a single stand-alone executable; instead, you have
many processes working together. In summary, much of what you learned in the Windows
environment doesn't apply to Linux (and vice versa, to be fair). You have to unlearn some old
habits to be successful on the new platform.

What is true of applications running natively on operating systems is also true of applica-
tions that will run on a database: you need to understand that the database is crucial to your
success. If you do not understand what your particular database does or how it does it, then
your application is likely to fail. If you assume that because your application ran fine on SQL
Server, it will necessarily run fine on Oracle then, again, your application is likely to fail. And
to be fair, the opposite is true: a scalable, well-developed Oracle application will not necessar-
ily run on SQL Server as is without major architectural changes. Just as Windows and Linux are
both operating systems, but fundamentally different, so Oracle and SQL Server (pretty much
any database could be noted here) are both databases, but fundamentally different.

My Approach

Before you read further, I feel I should explain my approach to development. I tend to take a
database-centric approach to problems. If I can do it in the database, I will. There are a couple
of reasons for this, the first and foremost being that I know if I build functionality in the data-
base, I can deploy it anywhere. I am not aware of any popular server operating system on
which Oracle is not available; from Windows, to dozens of UNIX/Linux systems, to the OS/390
mainframe, the same exact Oracle software and options are available. I frequently build and
test solutions on my laptop running Oracle9i, Oracle 10g under Linux, or Windows XP using
VMware to emulate either environment. I am able to then deploy these solutions on a variety

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

of servers running the same database software but different operating systems. When I have
to implement a feature outside of the database, I find it extremely hard to deploy that feature
anywhere I want. One of the main features that makes the Java language appealing to many
people is the fact that their programs are always compiled in the same virtual environment,
the Java Virtual Machine (JVM), making those programs highly portable. Ironically, this is the
same feature that makes the database appealing to me. The database is my “virtual machine”;
it is my “virtual operating system.”

As just mentioned, my approach is to do everything I can in the database. If my require-
ments go beyond what the database environment can offer, I'll work in Java or C outside of the
database. In this way, almost every OS intricacy will be hidden from me. I still have to under-
stand how my “virtual machines” work (Oracle and occasionally a JVM)—you need to know
the tools you are using—but they, in turn, worry for me about how best to do things on a
given OS.

Thus, simply by knowing the intricacies of this one “virtual operating system,” I can build
applications that will perform and scale well on many operating systems. I do not intend to
imply that you can be totally ignorant of your underlying OS. However, as a software devel-
oper who builds database applications, you can be fairly well insulated from it, and you will
not have to deal with many of its nuances. Your DBA, who is responsible for running the Oracle
software, will be infinitely more in tune with the OS (if he or she is not, please get a new DBA!).
If you develop client/server software, and the bulk of your code is outside of the database and
outside of a virtual machine (VM; JVMs perhaps being the most popular VM), you will have to
be concerned about your OS once again.

I have a pretty simple philosophy when it comes to developing database software, and it
is one that has not changed over many years:

* You should do it in a single SQL statement if at all possible.

e Ifyou cannot do it in a single SQL statement, then do it in PL/SQL (but as little PL/SQL
as possible!).

* If you cannot do it in PL/SQL (due to some missing feature like listing the files in a
directory), try a Java stored procedure. This is an extremely rare need today with
Oracle9i and above.

e Ifyou cannot do it in Java, do it in a C external procedure. This is most frequently the
approach when raw speed or the use of a third-party API written in C is needed.

e Ifyou cannot do it in a C external routine, you might want to think seriously about why
exactly you need to do it.

Throughout this book, you will see the preceding philosophy implemented. We'll use SQL
whenever possible, exploiting powerful new capabilities, such as analytic functions to solve
reasonably sophisticated problems without recourse to procedural code. When needed, we’ll
use PL/SQL and object types in PL/SQL to do things that SQL itself cannot do. PL/SQL has
been around for a very long time—over 18 years of tuning has gone into it. In fact, the Oracle10g
compiler itself was rewritten to be, for the first time, an optimizing compiler. You will find no
other language so tightly coupled with SQL or any as optimized to interact with SQL. Working
with SQL in PL/SQL is a very natural thing, whereas in virtually every other language—from
Visual Basic to Java—using SQL can feel cumbersome. It never quite feels “natural”; it is not an
extension of the language itself. When PL/SQL runs out of steam, which is exceedingly rare in

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Oracle9i or 10g, we'll use Java. Occasionally, we'll do something in C, but typically as a last
resort, when C is the only choice or when the raw speed offered by C is required. With the
advent of native Java compilation (the ability to convert your Java bytecode into OS-specific
object code on your platform), you will find that Java runs just as fast as C in many cases.
Therefore, the need to resort to C is becoming rare.

The Black Box Approach

I have an idea, borne out by first-hand personal experience (meaning I made the mistake
myself as I was learning software development), as to why database-backed software develop-
ment efforts so frequently fail. Let me be clear that I'm including here those projects that may
not be documented as failures, but take much longer to roll out and deploy than originally
planned because of the need to perform a major rewrite, re-architecture, or tuning effort. Per-
sonally, I call these delayed projects “failures,” as more often than not they could have been
completed on schedule (or even faster).

The single most common reason for database project failure is insufficient practical
knowledge of the database—a basic lack of understanding of the fundamental tool that is
being used. The black box approach involves a conscious decision to protect the developers
from the database—they are actually encouraged to not learn anything about it! In many
cases, they are prevented from exploiting it. The reasons for this approach appear to be related
to FUD (fear, uncertainty, and doubt). The accepted wisdom is that databases are “hard,” and
that SQL, transactions, and data integrity are “hard.” The solution: don’t make anyone do any-
thing “hard.” They treat the database as a black box and have some software tool generate all
of the code. They try to insulate themselves with many layers of protection so that they do not
have to touch this “hard” database.

This is an approach to database development that I've never been able to understand, for
a couple of reasons. One of the reasons I have difficulty grasping this approach is that, for me,
learning Java and C was a lot harder than learning the concepts behind the database. I'm now
pretty good at Java and C, but it took a lot more hands-on experience for me to become com-
petent using them than it did to become competent using the database. With the database,
you need to be aware of how it works, but you don’t have to know everything inside and out.
When programming in C or Java, you do need to know everything inside and out, and these
are huge languages.

Another reason I don’t understand this approach is that when building a database appli-
cation, then the most important piece of software is the database. A successful development
team will appreciate this and will want its people to know about it and to concentrate on it.
Many times I've walked into a project where almost the complete opposite was true. For
example, a typical scenario would be as follows:

* The developers were fully trained in the GUI tool or the language they were using to
build the front end (such as Java). In many cases, they had had weeks if not months of
training in it.

» The developers had zero hours of Oracle training and zero hours of Oracle experience.
Most had no database experience whatsoever and so had no real understanding of
how to use core database constructs, such as the various indexes and table structures
available.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

* The developers were following a mandate to be “database independent”—a mandate
they could not hope to follow for many reasons, the most obvious being that they didn't
know enough about what databases are and how they might differ. This team would not
be able to know what features of the database to avoid in an attempt to remain data-
base independent.

* The developers encountered massive performance problems, data integrity problems,
hanging issues, and the like (but they had very pretty screens).

As a result of the inevitable performance problems, I was called in to help solve the diffi-
culties. Since I started my career attempting to build database-independent applications (to
the extent that I wrote my own ODBC drivers before ODBC existed), I know where the mis-
takes will be made because at one time or another I have made them myself. I always look for
inefficient SQL, lots of procedural code where a single SQL statement would suffice, no feature
invented after 1995 being used (to remain database independent), and so on.

I can recall one particular occasion when I'd been called in to help and could not fully
remember the syntax of a new command that we needed to use. I asked for the SQL Reference
manual and was handed an Oracle 6.0 document. The development was taking place on ver-
sion 7.3, five years after the release of version.6.0! It was all the developers had to work with,
but this did not seem to concern them at all. Never mind the fact that the tool they really
needed to know about for tracing and tuning didn't even exist back then. Never mind the fact
that features such as triggers, stored procedures, and hundreds of others had been added in
the five years since the documentation to which they had access was written. It was very easy
to determine why they needed help—fixing their problems was another issue altogether.

Note Even today, in 2005, | often find that database application developers have not spent any time read-
ing the documentation. On my web site (http://asktom.oracle.com), | frequently get questions along the
lines of “What is the syntax for . ..” coupled with “We don’t have the documentation, so please just tell us.”
| refuse to directly answer many of those questions, but rather point questioners to the online documenta-
tion, which is freely available to anyone, anywhere in the world. In the last ten years, the excuse of “We don’t
have documentation” or “We don’t have access to resources” has been rendered obsolete. The introduction
of the Web and sites such as http://otn.oracle.com (Oracle Technology Network) and http://
groups.google.com (Google Groups Usenet discussion forums) make it inexcusable to not have a full
set of documentation at your fingertips!

The very idea that developers building a database application should be shielded from
the database is amazing to me, but this approach persists. Many people still believe that
developers cannot afford the time to get trained in the database and that basically they should
not have to know anything about the database. Why? Well, more than once I've heard “Oracle
is the most scalable database in the world, so my people don’t have to learn about it—it will
justdo X,Y, and Z.” It is true that Oracle is the most scalable database in the world. However,
itis just as easy (if not easier) to write bad, nonscalable code in Oracle as it is to write good,
scaleable code. You can replace the word “Oracle” in the last sentence with the name of any

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

other technology and the statement will remain true. This is a fact: it is easier to write applica-
tions that perform poorly than it is to write applications that perform well. If you don’t know
what you’re doing, you may find that you've managed to build a single-user system in the
world’s most scalable database!

The database is a tool, and the improper use of any tool can lead to disaster. Would you
use a nutcracker as if it were a hammer to smash walnuts? You could, but it would not be a
proper use of that tool, and the result would be messy (and probably involve some seriously
damaged fingers). Similar effects can be achieved by remaining ignorant of your database.

For example, I was called into a project recently. The developers were experiencing mas-
sive performance issues—it seemed that their system was serializing many transactions.
Instead of many people working concurrently, everyone was getting into a really long line and
waiting for those in front of them to complete before they could proceed. The application
architects walked me through the architecture of their system—the classic three-tier approach.
They would have a web browser talk to a middle-tier application server running JavaServer
Pages (JSP). The JSPs would in turn use another layer, Enterprise JavaBeans (EJB), that did all
of the SQL. The SQL in the EJBs was generated by some third-party tool and was done in a
database-independent fashion.

Now, in this system it was very hard to diagnose anything, because none of the code was
instrumented or traceable. Instrumenting code is the fine art of making every other line of
developed code be debug code, something that allows you to trace the execution of your
application so that when you are faced with performance, capacity, or even logic issues, you
can track down exactly where the problem is. In this case, we could only say for sure that the
problem was “somewhere in between the browser and the database.” In other words, the
entire system was suspect. Fortunately, the Oracle database is heavily instrumented, but
unfortunately, the application needs to be able to turn the instrumentation on and off at
appropriate points—an ability that this application did not have.

So, we were faced with trying to diagnose a performance issue with not too many details,
just what we could glean from the database itself. Normally, an application-level trace would
be preferred for investigating an application performance issue. Fortunately, however, in this
case the solution was fairly easy. A review of some of the Oracle V$ tables (the V$ tables are
one way Oracle exposes its instrumentation—its statistics) revealed that the major contention
was around a single table, a queue table of sorts. We could see this based on the V$LOCK view,
which would show us the blocked sessions, and V$SQL, which would show us the SQL that
these blocked sessions were trying to execute. The application would place records into this
table, and another set of processes would pull the records out of this table and process them.
Digging deeper, we found a bitmap index on the PROCESSED_FLAG column in this table.

Note Chapter 12 provides detailed information on bitmapped indexes, including a discussion of why they
are not just for low-cardinality values and why they are not appropriate for update-intensive columns.

The reasoning was that this column, the PROCESSED_FLAG column, had only two values:
Y and N. Records inserted into the table would have a value of N (for not processed). As the
other processes read and processed the record, they would update the value from N to Y.
These processes needed to be able to find the N records rapidly, hence the developers knew

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

that they wanted to index that column. They had read somewhere that bitmap indexes are
for low-cardinality columns (columns that have only a few distinct values) so it seemed a nat-
ural fit.

Nevertheless, that bitmap index was the cause of all of their problems. In a bitmap index,
a single key entry points to many rows—hundreds or more of them. If you update a bitmap
index key, the hundreds of records to which that key points are effectively locked as well as the
single row you are actually updating.

So, someone inserting a new N record would lock an N key in the bitmap index, effec-
tively locking hundreds of other N records as well. Meanwhile, the process trying to read this
table and process the records would be prevented from modifying some N record to be a
Y (processed) record, because in order for it to update this column from N toY, it would need
to lock that same bitmap index key. In fact, other sessions just trying to insert a new record
into this table would be blocked as well, as they would be attempting to lock this same bitmap
key entry. In short, the developers had implemented a set of structures that at most one per-
son would be able to insert or update against at a time!

I can demonstrate this scenario easily with a simple example. Here, I use two sessions to
demonstrate the blocking that can easily happen:

ops$tkyte@RA10G> create table t (processed_flag varchar2(1));
Table created.

ops$tkyte@RA10G> create bitmap index t_idx on t(processed_flag);
Index created.

ops$tkyte@RA10G> insert into t values ('N');

1 row created.

Now, in another SQL*Plus session, if I execute
ops$tkyte@ORA10G> insert into t values ('N');

that statement will “hang” until I issue a COMMIT in the first blocking session.

So here we had an issue whereby a lack of understanding of the database feature (bitmap
indexes), of what it did and how it worked, meant that the database was doomed to poor scal-
ability from the start. Once this issue was discovered, correcting it was easy. We needed an index
on the processed flag column, but not a bitmap index. We needed a conventional B*Tree
index here. This took a bit of convincing because no one wanted to believe that use of a con-
ventional index on a column with two distinct values was a “good idea.” But after setting up a
simulation (I am very much into simulations, testing, and experimenting), we were able to
prove that it was the correct approach. There were two ways to approach the indexing of this
particular column:

* Just create an index on the processed flag column.

* Create an index only on the processed flag column when the processed flag is N—that
is, only index the values of interest. Typically, we do not want to use an index where the
processed flag is Y, since the vast majority of the records in the table would have the
valueY. Notice that I did not say “We never want to use”—if you need to frequently
count the number of processed records for some reason, then an index on the
processed records may well prove useful.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

We ended up creating a very small index on just the records where the processed flag was
N, which provided quick access to the records of interest.

Was that the end of the story? No, not at all. The developers still had a less than optimal
solution on their hands. We fixed their major problem, caused by their not fully understanding
the tools they were using, and found only after lots of study that the system was not nicely
instrumented. We didn’t yet address the following issues:

* The application was built without a single consideration for scalability. Scalability is
something you have to design for.

e The application itself could not be tuned or touched. Experience has shown that 80 to
90 percent of all tuning is done at the application level, not at the database level.

e The application was performing functionality (the queue table) that the database
already supplied in a highly concurrent and scalable fashion. I'm referring to the
Advanced Queuing (AQ) software that is burned into the database, functionality
they were trying to reinvent.

* The developers had no idea what the beans did in the database or where to look for
potential problems.

That was hardly the end of the problems on this project. We then had to figure out

* How to tune SQL without changing the SQL. Oracle 10g actually does permit us to
accomplish this magical feat for the first time to a large degree.

¢ How to measure performance.

¢ How to see where the bottlenecks are.
e How and what to index.

e And so on.

At the end of the week, the developers, who had been insulated from the database, were
amazed at what the database could actually provide for them, how easy it was to get that
information and, most important, how big a difference it could make to the performance of
their application. In the end they were successful—just behind schedule by a couple of weeks.

This example is not meant to be a criticism of tools or technologies like EJBs and
container-managed persistence. Rather, it is a criticism of purposely remaining ignorant of
the database, how it works, and how to use it. The technologies used in this case worked
well—after the developers gained some insight into the database itself.

The bottom line is that the database is typically the cornerstone of your application. If it
does not work well, nothing else really matters. If you have a black box and it does not work
well, what are you going to do about it? About the only thing you can do is look at it and won-
der why it is not doing so well. You cannot fix it; you cannot tune it. You quite simply do not
understand how it works—and you made the decision to be in this position. The alternative is
the approach that I advocate: understand your database, know how it works, know what it can
do for you, and use it to its fullest potential.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

How (and How Not) to Develop Database
Applications

So far, I've described the importance of understanding the database in a fairly anecdotal
manner. In the remainder of this chapter, I'll take a more empirical approach, discussing
specifically why knowledge of the database and its workings will definitely go a long way
toward a successful implementation (without having to write the application twice!). Some
problems are simple to fix as long as you understand how to find them. Others require drastic
rewrites. One of the goals of this book is to help you avoid problems in the first place.

Note In the following sections, | discuss certain core Oracle features without delving into exactly what
these features are and all of the ramifications of using them. | will refer you either to a subsequent chapter
in this book or to the relevant Oracle documentation for more information.

Understanding Oracle Architecture

Recently, I was working with a customer running a large production application. This appli-
cation had been “ported” from SQL Server to Oracle. I enclose the term “ported” in quotes
simply because most ports I see are of the “what is the minimal change we can make to have
our SQL Server code compile and execute on Oracle” variety. To port an application from one
database to another is a major undertaking. The algorithms should be examined in detail to
see if they work correctly in the target database; features such as concurrency controls and
locking mechanisms work differently in different databases, and this in turn affects the way
the application will function in different databases. The algorithms should also be looked at to
see if there is a sensible way to implement them in the target database. The applications that
result from a minimal “port” are, frankly, the ones I see most often because they are the ones
that need the most help. Of course, the opposite is equally true: taking an Oracle application
and just plopping it on top of SQL Server with as few changes as possible will result in a prob-
lematic and poorly performing application.

In any event, the goal of this “port” was to scale up the application to support a larger
installed base of users. However, the customer wanted to achieve this aim with as little work as
humanly possible. So, the customer kept the architecture basically the same in the client and
database layers, the data was moved over from SQL Server to Oracle, and as few code changes
as possible were made. The decision to impose on Oracle the same application design as was
used on SQL Server had grave consequences. The two most critical ramifications of this deci-
sion were as follows:

¢ The connection architecture to the database was the same in Oracle as it was in
SQL Server.

¢ The developers used literal (nonbound) SQL.

These two ramifications resulted in a system that could not support the required user
load (the database server simply ran out of available memory), and abysmal performance for
the set of users that could log in and use the application.

10

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Use a Single Connection in Oracle

Now, in SQL Server it is a very common practice to open a connection to the database for each
concurrent statement you want to execute. If you are going to do five queries, you might well
see five connections in SQL Server. SQL Server was designed that way—much like Windows
was designed for multithreading, not multiprocessing. In Oracle, whether you want to do five
queries or five hundred queries, the maximum number of connections you want to open is
one. Oracle was designed that way. So, what is a common practice in SQL Server is something
that is actively discouraged in Oracle; having multiple connections to the database is some-
thing you just don’'t want to do.

But do it they did. A simple web-based application would open 5, 10, 15, or more connec-
tions per web page, meaning that the server could support only 1/5, 1/10, 1/15, or an even
fewer number of concurrent users that it should have been able to. Additionally, they were
attempting to run the database on the Windows platform itself—just a plain Windows XP
server without access to the Datacenter version of Windows. This meant that the Windows
single-process architecture limited the Oracle database server to about 1.75GB of RAM in
total. Since each Oracle connection was designed to handle multiple statements simultane-
ously, a single connection to Oracle typically takes more RAM than a single connection to SQL
Server (but it can do a whole lot more). The developer’s ability to scale was severely limited on
this hardware. They had 8GB of RAM on the server but could use only about 2GB of it.

Note There are ways to get much more RAM used in a Windows environment, such as with the /AWE
switch, but this requires versions of the operating system that were not in use in this situation, such as
Windows Server Datacenter Edition.

There were three possible solutions to this problem, and all three entailed quite a bit of
work (and remember, this was after the “port” was supposedly complete!). Our options were
as follows:

 Re-architect the application, to allow it to take advantage of the fact it was running “on”
Oracle and use a single connection to generate a page, not somewhere between 5 to 15
connections. This was the only solution that would actually solve the problem.

* Upgrade the OS (no small chore) and use the larger memory model of the Windows
Datacenter version (itself not a small chore either, as this process involves a rather
involved database setup with indirect data buffers and other nonstandard settings).

* Migrate the database from a Windows-based OS to some other OS where multiple
processes are used, effectively allowing the database to use all installed RAM (again,
a nontrivial task).

As you can see, none of the presented options is the sort of solution that would have you
thinking, “OK, we’ll do that this afternoon.” Each was a complex solution to a problem that
would have most easily been corrected during the database “port” phase, while you were in
the code poking around and changing things in the first place. Furthermore, a simple test to
“scale” prior to rolling out a production would have caught such issues prior to the end users
feeling the pain.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Use Bind Variables

If I were to write a book about how to build nonscalable Oracle applications, then “Don’t Use
Bind Variables” would be the title of the first and last chapters. This is a major cause of per-
formance issues and a major inhibitor of scalability. The Oracle shared pool (a very important
shared memory structure, found in the System Global Area [SGA]) is where Oracle stores
parsed, compiled SQL among other things. We cover the shared pool in detail in Chapter 4.
This structure’s smooth operation is predicated on developers using bind variables in most
cases. If you want to make Oracle run slowly—even grind to a total halt—just refuse to use
bind variables.

A bind variable is a placeholder in a query. For example, to retrieve the record for
employee 123, I can use this query:

select * from emp where empno = 123;
Alternatively, I can set the bind variable :empno to 123 and execute the following query:
select * from emp where empno = :empno;

In a typical system, you would query up employee 123 maybe once and then never again.
Later, you would query employee 456, then 789, and so on. If you use literals (constants) in the
query, then each and every query is a brand-new query, never before seen by the database. It
will have to be parsed, qualified (names resolved), security checked, optimized, and so on—in
short, each and every unique statement you execute will have to be compiled every time it is
executed.

The second query uses a bind variable, :empno, the value of which is supplied at query
execution time. This query is compiled once, and then the query plan is stored in a shared
pool (the library cache), from which it can be retrieved and reused. The difference between
the two in terms of performance and scalability is huge—dramatic, even.

From the previous description, it should be fairly obvious that parsing a statement with
hard-coded variables (called a hard parse) will take longer and consume many more resources
than reusing an already parsed query plan (called a soft parse). What may not be so obvious is
the extent to which the former will reduce the number of users your system can support. This
is due in part to the increased resource consumption, but an even larger factor arises due to
the latching mechanisms for the library cache. When you hard-parse a query, the database will
spend more time holding certain low-level serialization devices called latches (see Chapter 6
for more details). These latches protect the data structures in the shared memory of Oracle
from concurrent modifications by two sessions (otherwise Oracle would end up with corrupt
data structures) and from someone reading a data structure while it is being modified. The
longer and more frequently you have to latch these data structures, the longer the queue to get
these latches will become. You will start to monopolize scarce resources. Your machine may
appear to be underutilized at times, and yet everything in the database is running very slowly.
The likelihood is that someone is holding one of these serialization mechanisms and a line is
forming—you are not able to run at top speed. It only takes one ill-behaved application in
your database to dramatically affect the performance of every other application. A single,
small application that does not use bind variables will cause the SQL of other well-designed
applications to get discarded from the shared pool over time. That will cause the well-
designed applications to have to hard-parse their SQL all over again as well. You only need
one bad apple to spoil the entire barrel.

"

12

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

If you use bind variables, then everyone who submits the same exact query that refer-
ences the same object will use the compiled plan from the pool. You will compile your
subroutine once and use it over and over again. This is very efficient and is the way the data-
base intends you to work. Not only will you use fewer resources (a soft parse is much less
resource intensive), but also you will hold latches for less time and need them less frequently.
This increases your applications’ performance and scalability.

To give you an inkling of how huge a difference the use of bind variables can make per-
formance-wise, we only need to run a very small test. In this test, we'll insert some rows into
a table. The simple table we’ll use is as follows:

ops$tkyte@ORA9IR2> drop table t;
Table dropped.
ops$tkyte@ORA9IR2> create table t (x int);

Table created.

Now we'll create two very simple stored procedures. They both will insert the numbers
1 through 10,000 into this table; however, the first procedure uses a single SQL statement with
a bind variable:

ops$tkyte@ORA9IR2> create or replace procedure proci

2 as

3 begin

4 for i in 1 .. 10000

5 loop

6 execute immediate

7 'insert into t values (:x)' using i;
8 end loop;

9 end;
10 /

Procedure created.

The second procedure constructs a unique SQL statement for each and every row to be
inserted:

ops$tkyte@ORA9IR2> create or replace procedure proc2

2 as

3 begin

4 for i in 1 .. 10000

5 loop

6 execute immediate

7 'insert into t values ('||i|[")";
8 end loop;

9 end;

10 /

Procedure created.

Now, the only difference between the two is that one uses a bind variable and the other
does not. Both are using dynamic SQL (i.e., SQL that is not known until runtime) and the logic
in both is identical. The only change is the use or nonuse of a bind variable.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Let’'s now compare the two approaches in detail with runstats, a simple tool I've developed:

Note For details on setting up runstats and other utilities, please see the “Setting Up” section at the
beginning of this book.

ops$tkyte@RA9IR2> exec runstats_pkg.rs_start
PL/SQL procedure successfully completed.

ops$tkyte@ORA9IR2> exec proci
PL/SQL procedure successfully completed.

ops$tkyte@RA9IR2> exec runstats_pkg.rs_middle
PL/SQL procedure successfully completed.

ops$tkyte@ORA9IR2> exec proc2
PL/SQL procedure successfully completed.

ops$tkyte@RA9IR2> exec runstats_pkg.rs_stop(1000)
Runi ran in 159 hsecs

Run2 ran in 516 hsecs

run 1 ran in 30.81% of the time

Now, that result clearly shows that by the wall clock, proc2, which did not use a bind vari-
able, took significantly longer to insert 10,000 rows than proc1, which did. In fact, proc2 took
three times longer, meaning that, in this case, for every “non-bind-variable” INSERT, we spent
two-thirds of the time to execute the statement simply parsing the statement!

Note If you like, you can run the example in this section without runstats by issuing SET TIMING ON in
SQL*Plus and running proc1 and proc2 as well.

But the news gets even worse for proc2. The runstats utility produces a report that shows
the actual values and calculates the differences in latch utilization, as well as statistics such as
number of parses. Here I asked runstats to print out anything with a difference greater than
1,000 (that is the meaning of the 1000 in the rs_stop call). When we look at this information,
we can see a significant difference in the resources used by each approach:

Name Runi Run2 Diff
STAT...parse count (hard) 4 10,003 9,999
LATCH.1library cache pin 80,222 110,221 29,999
LATCH.1library cache pin alloca 40,161 80,153 39,992
LATCH.row cache enqueue latch 78 40,082 40,004

LATCH.row cache objects 98 40,102 40,004

13

14

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

LATCH.child cursor hash table 35 80,023 79,988
LATCH.shared pool 50,455 162,577 112,122
LATCH.1library cache 110,524 250,510 139,986

Runl latches total versus runs -- difference and pct
Run1 Run2 Diff Pct
407,973 889,287 481,314 45.88%

PL/SQL procedure successfully completed.

Note It is to be expected that you see somewhat different values in your testing. | would be surprised if
you got exactly the same values for all numbers, especially the latching numbers. You should, however, see
similar numbers, assuming you are using Oracle9/ Release 2 on Linux, as | was here. In all releases, | would
expect the number of latches used to hard parse to be higher than those for soft parsing each insert, or
parsing the insert once and executing it over and over. Running the preceding test in Oracle 10g Release 1
on the same machine produced results such that the elapsed time of the bind variable approach was one-
tenth of the non—bind variable approach, and the amount of latches taken was 17 percent. This was due to
two factors, one being that 10g is a new release and some internal algorithms changed. The other was due
to an improved way dynamic SQL is processed in PL/SQL in 10g.

You can see that there were only four hard parses with the bind variable approach, but
over 10,000 hard parses without bind variables (once for each of the inserts). But that is just
the tip of the iceberg. You can see here that twice as many “latches” were used in the non-bind
variable approach than when using bind variables. This is because in order to modify this
shared structure, Oracle must take care to allow only one process in at a time (it is very bad if
two processes or threads attempt to update the same in-memory data structure simultane-
ously—corruption would abound). So, Oracle employs a latching mechanism, a lightweight
locking device, to serialize access. Don't be fooled by the word “lightweight”—these are seriali-
zation devices, allowing one-at-a-time, short duration access to a data structure. The latches
overused by the hard-parsing implementation are among the most used latches out there. The
latch into the shared pool and the latch for the library cache are big-time latches; they’re the
ones that people compete for frequently. What that means is that as we increase the number
of users attempting to hard-parse statements simultaneously, our performance problem will
get progressively worse over time. The more people parsing, the more people fighting for the
right to latch the shared pool, the longer the queues, the longer the wait.

Note In 9/and above on machines with more than one processor, the shared pool may be divided into
multiple subpools, each protected by its own latch. This permits increased scalability for applications that do
not use bind variables, but it does not make the latching problem go away by any means.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Executing SQL statements without bind variables is very much like compiling a subrou-
tine before each and every method call. Imagine shipping Java source code to your customers
where, before calling a method in a class, they had to invoke the Java compiler, compile the
class, run the method, and then throw away the bytecode. The next time they wanted to exe-
cute the exact same method, they would do the same thing: compile it, run it, and throw it
away. You would never consider doing this in your application. You should never consider
doing this in your database, either.

As it was, on this particular project, reworking the existing code to use bind variables was
the best course of action. The resulting code ran orders of magnitude faster and increased
many times the number of simultaneous users that the system could support. However, it
came at a high price in terms of time and effort. It is not that using bind variables is difficult or
error-prone, it’s just that the developers did not do it initially and thus were forced to go back
and revisit virtually all of the code and change it. They would not have paid this high price if
they had understood that it was vital to use bind variables in their application from day one.

Understanding Concurrency Control

Concurrency control is one area where databases differentiate themselves. It is an area that
sets a database apart from a file system and databases apart from each other. It is vital that
your database application work correctly under concurrent access conditions, and yet this is
something people fail to test time and time again. Techniques that work well if everything
happens consecutively do not work so well when everyone does them simultaneously. If you
don’t have a good grasp of how your particular database implements concurrency control
mechanisms, then you will

e Corrupt the integrity of your data.
* Have applications run slower than they should with a small number of users.
* Decrease your ability to scale to a large number of users.

Notice I don't say, “You might . ..” or “You run the risk of . . .” Rather, you will invariably
do these things without proper concurrency control without even realizing it. Without correct
concurrency control, you will corrupt the integrity of your database because something that
works in isolation will not work as you expect in a multiuser situation. Your application will
run slower than it should because it will end up waiting for resources. You'll lose your ability to
scale because of locking and contention issues. As the queues to access a resource get longer,
the wait times get longer and longer.

An analogy here would be a backup at a tollbooth. If cars arrive in an orderly, predictable
fashion, one after the other, there will never be a backup. If many cars arrive simultaneously,
lines start to form. Furthermore, the waiting time does not increase in line with the number of
cars at the booth. After a certain point, considerable additional time is spent “managing” the
people that are waiting in line, as well as servicing them (the parallel in the database is context
switching).

Concurrency issues are the hardest to track down; the problem is similar to debugging a
multithreaded program. The program may work fine in the controlled, artificial environment
of the debugger but crashes horribly in the real world. For example, under race conditions,
you find that two threads can end up modifying the same data structure simultaneously.

10

16

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

These kinds of bugs are terribly difficult to track down and fix. If you only test your application
in isolation and then deploy it to dozens of concurrent users, you are likely to be (painfully)
exposed to an undetected concurrency issue.

Over the next two sections, I'll relate two small examples of how the lack of understanding
concurrency control can ruin your data or inhibit performance and scalability.

Implementing Locking

The database uses locks to ensure that, at most, one transaction is modifying a given piece

of data at any given time. Basically, locks are the mechanism that allows for concurrency—
without some locking model to prevent concurrent updates to the same row, for example,
multiuser access would not be possible in a database. However, if overused or used improperly,
locks can actually inhibit concurrency. If you or the database itself locks data unnecessarily,
then fewer people will be able to concurrently perform operations. Thus, understanding what
locking is and how it works in your database is vital if you are to develop a scalable, correct
application.

What is also vital is that you understand that each database implements locking differently.
Some have page-level locking, others have row-level locking; some implementations escalate
locks from row level to page level, whereas others do not; some use read locks, others do not;
and some implement serializable transactions via locking and others via read-consistent views
of data (no locks). These small differences can balloon into huge performance issues or down-
right bugs in your application if you do not understand how they work.

The following points sum up Oracle’s locking policy:

* Oracle locks data at the row level on modification only. There is no lock escalation to a
block or table level under normal circumstances (there is a short period of time during
a two-phase commit, a not common operation, where this is not true).

e Oracle never locks data just to read it. There are no locks placed on rows of data by
simple reads.

e Awriter of data does not block a reader of data. Let me repeat: reads are not blocked by
writes. This is fundamentally different from almost every other database, where reads
are blocked by writes. While this sounds like an extremely positive attribute (it generally
is), if you do not understand this idea thoroughly, and you attempt to enforce integrity
constraints in your application via application logic, you are most likely doing it incor-
rectly. We will explore this topic in Chapter 7 on concurrency control in much more
detail.

» Awriter of data is blocked only when another writer of data has already locked the row
it was going after. A reader of data never blocks a writer of data.

You must take these facts into consideration when developing your application, and you
must also realize that this policy is unique to Oracle—every database has subtle differences in
its approach to locking. Even if you go with lowest common denominator SQL in your appli-
cations, the locking and concurrency control models employed by each database’s vendor
dictates that something about how your application behaves will be different. A developer
who does not understand how his or her database handles concurrency will certainly

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

encounter data integrity issues. (This is particularly common when developers move from
another database to Oracle, or vice versa, and neglect to take the differing concurrency mech-
anisms into account in their application.)

Preventing Lost Updates

One of the side effects of Oracle’s non-blocking approach is that if you actually want to ensure
that no more than one user has access to a row at once, then you, the developer, need to do a
little work yourself.

Consider the following example. A developer was demonstrating to me a resource-
scheduling program (for conference rooms, projectors, etc.) that he had just developed and
was in the process of deploying. The application implemented a business rule to prevent the
allocation of a resource to more than one person, for any given period of time. That is, the
application contained code that specifically checked that no other user had previously allo-
cated the time slot (as least, the developer thought it did). This code queried the SCHEDULES
table and, if no rows existed that overlapped that time slot, inserted the new row. So, the devel-
oper was basically concerned with two tables:

create table resources (resource_name varchar2(25) primary key, ...);
create table schedules
(resource name references resources,

start_time date not null,

end time date not null,

check (start time < end time),

primary key(resource name,start time)

);
And, before making, say, a room reservation, the application would query:

select count(*)
from schedules

where resource name = :room_name
and (start_time <= :new_end_time)
AND (end_time >= :new_start_time)

It looked simple and bulletproof (to the developer anyway): if the count came back as
zero, the room was yours. If it came back as nonzero, you could not reserve the room for that
period. Once I knew what his logic was, I set up a very simple test to show him the error that
would occur when the application went live—an error that would be incredibly hard to track
down and diagnose after the fact. Someone would be convinced it must be a database bug.

All 1 did was get someone else to use the terminal next to him. Both he and the other per-
son navigated to the same screen and, on the count of three, each clicked the Go button and
tried to reserve the same room for about the same time—one from 3:00 pm to 4:00 pm and the
other from 3:30 pm to 4:00 pm. Both people got the reservation. The logic that worked per-
fectly in isolation failed in a multiuser environment. The problem in this case was caused in
part by Oracle’s non-blocking reads. Neither session ever blocked the other session. Both ses-
sions simply ran the query and then performed the logic to schedule the room. They could
both run the query to look for a reservation, even if the other session had already started to

17

18

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

modify the SCHEDULES table (the change wouldn'’t be visible to the other session until commit,
by which time it would be too late). Since they were never attempting to modify the same row
in the SCHEDULES table, they would never block each other and, thus, the business rule could
not enforce what it was intended to enforce.

The developer needed a method of enforcing the business rule in a multiuser environ-
ment—a way to ensure that exactly one person at a time made a reservation on a given
resource. In this case, the solution was to impose a little serialization of his own. What he did
was lock the parent row in the RESOURCES table prior to making a modification in the SCHEDULES
table. That way, all modifications to the SCHEDULES table for a given RESOURCE_NAME value would
be done one at a time. That is, to reserve a block of time for resource X, he locked the single
row in the RESOURCES table for X and then modified the SCHEDULES table. So, in addition to per-
forming the preceding count (*), the developer first performed the following:

select * from resources where resource name = :room_name FOR UPDATE;

What he did here was to lock the resource (the room) to be scheduled immediately before
scheduling it—in other words, before he queries the SCHEDULES table for that resource. By lock-
ing the resource he is trying to schedule, the developer ensures that no one else is modifying
the schedule for this resource simultaneously. Everyone else must wait until he commits his
transaction, at which point they will be able to see his schedule. The chance of overlapping
schedules is removed.

Developers must understand that, in the multiuser environment, they must at times
employ techniques similar to those used in multithreaded programming. The FOR UPDATE
clause is working like a semaphore in this case. It serializes access to the RESOURCES tables for
that particular row—ensuring no two people can schedule it simultaneously. My suggestion
was to make this logic a transaction API—that is, bundle all of the logic into a stored procedure
and only permit applications to modify the data via this API. The code could look like this:

create or replace procedure schedule resource
(p_resource name in varchar2,
p_start time in date,

p_end time in date
as
1 resource name resources.resource name%type;
1 ent number;
begin

We start by locking the single row in the RESOURCES table for the resource we want to
schedule. If anyone else has this row locked, we block and wait for it:

select resource name into 1 resource name
from resources

where resource name = p_resource_name
FOR UPDATE;

Now that we are the only ones inserting into this SCHEDULES table for this resource name, it
is safe to look at this table:

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

select count(*)
into 1 cnt
from schedules
where resource name = p_resource_name
and (start time <= p_end time)
and (end time >= p start time);
if (lent<>0)
then
raise application error
(-20001, 'Room is already booked!');
end if;

If we get to this point in the code without raising an error, we can safely insert rows for
our resource into the SCHEDULES table without any overlaps:

insert into schedules

(resource name, start time, end time)

values

(p_resource name, p start time, p end time);
end schedule resources;

This solution is still highly concurrent, as there are potentially thousands of resources to
be reserved. What we have done is ensure that only one person modifies a resource at any
time. This is a rare case where the manual locking of data we are not going to actually update
is called for. We need to be able to recognize where we need to do this and, perhaps as
important, where we do not need to do this (I present an example of when not to shortly).
Additionally, this does not lock the resource from other people reading the data as it might
in other databases, hence this solution will scale very well.

Issues such as the one described in this section have massive implications when you’re
attempting to port an application from database to database (I return to this theme a little
later in the chapter), and this trips people up time and time again. For example, if you are
experienced in other databases where writers block readers and vice versa, then you may have
grown reliant on that fact to protect you from data integrity issues. The lack of concurrency is
one way to protect yourself from this—that is how it works in many non-Oracle databases. In
Oracle, concurrency rules supreme and you must be aware that, as a result, things will happen
differently (or suffer the consequences).

Note We will revisit this example again in Chapter 7. The code as provided works under the assumption
the transaction isolation level is READ COMMITTED. The logic will not work properly in SERIALIZABLE trans-
action isolations. Rather than complicate this chapter with the differences between those two modes, | defer
that discussion until later.

Ninety-nine percent of the time, locking is totally transparent and you need not concern
yourself with it. It is that other 1 percent that you must be trained to recognize. There is no

19

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

simple checklist of “If you do this, you need to do this” for this issue. It is a matter of under-
standing how your application will behave in a multiuser environment and how it will behave
in your database.

Chapter 7 delves into this topic in much more depth. There you will learn that integrity
constraint enforcement of the type presented in this section, where we must enforce a rule
that crosses multiple rows in a single table or is between two or more tables (like a referential
integrity constraint), are cases where we must always pay special attention and will most likely
have to resort to manual locking or some other technique to ensure integrity in a multiuser
environment.

Multi-Versioning

This topic is very closely related to concurrency control, as it forms the foundation for Oracle’s
concurrency control mechanism—Oracle operates a multi-version, read-consistent concur-
rency model. Again, in Chapter 7, we'll cover the technical aspects of this in more detail but,
essentially, it is the mechanism by which Oracle provides for the following:

* Read-consistent queries: Queries that produce consistent results with respect to a point
in time.

* Non-blocking queries: Queries are never blocked by writers of data, as they would be in
other databases.

These are two very important concepts in the Oracle database. The term multi-versioning
basically describes Oracle’s ability to simultaneously materialize multiple versions of the data
from the database. If you understand how multi-versioning works, you will always understand
the answers you get from the database. Before we explore in a little more detail how Oracle
implements multi-versioning, here is the simplest way I know to demonstrate multi-versioning
in Oracle:

ops$tkyte@ORA10G> create table t
2 as
3 select *
4 from all_users;

Table created.

ops$tkyte@0RA10G> variable x refcursor

ops$tkyte@RA10G> begin

2 open :x for select * from t;
3 end;
4 /

PL/SQL procedure successfully completed.

ops$tkyte@RA10G> delete from t;
28 rows deleted.

ops$tkyte@RA10G> commit;
Commit complete.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

ops$tkyte@0RA10G> print x

USERNAME USER_ID CREATED

BIG_TABLE 411 14-NOV-04
OPS$TKYTE 410 14-NOV-04
DIY 69 26-SEP-04
OUTLN 11 21-JAN-04
SYSTEM 5 21-JAN-04
SYS 0 21-JAN-04

28 rows selected.

In the preceding example, we created a test table, T, and loaded it with some data from
the ALL_USERS table. We opened a cursor on that table. We fetched no data from that cursor;
we just opened it.

Note Bear in mind that Oracle does not “answer” the query. It does not copy the data anywhere when
you open a cursor—imagine how long it would take to open a cursor on a 1-billion-row table if it did. The
cursor opens instantly and it answers the query as it goes along. In other words, it just reads data from the
table as you fetch from it.

In the same session (or maybe another session would do this; it would work as well), we
then proceed to delete all data from that table. We even go as far as to COMMIT work on that
delete. The rows are gone—but are they really? In fact, they are retrievable via the cursor. The
fact is that the resultset returned to us by the OPEN command was preordained at the point in
time we opened it. We had touched not a single block of data in that table during the open,
but the answer was already fixed in stone. We have no way of knowing what the answer will be
until we fetch the data; however, the result is immutable from our cursor’s perspective. It is not
that Oracle copied all of the data to some other location when we opened the cursor; it was
actually the DELETE command that preserved our data for us by placing it into a data area
called undo segments, also known as rollback segments.

This is what read-consistency and multi-versioning is all about. If you do not understand
how Oracle’s multi-versioning scheme works and what it implies, you will not be able to take
full advantage of Oracle, and you will not be able to write correct applications (i.e., ones that
ensure data integrity) in Oracle.

Multi-Versioning and Flashback

In the past, Oracle always made the decision as to the point in time from which our queries
would be made consistent. That is, Oracle made it such that any resultset we opened would be
current with respect to one of two points in time:

21

22 CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

e The point in time at which the cursor was opened. This is the default behavior in READ
COMMITTED isolation mode, which is the default transactional mode (we’ll examine the
differences between READ COMMITTED, READ ONLY, and SERIALIZABLE transaction levels in
Chapter 7).

* The point in time at which the transaction to which the query belongs began. This is the
default behavior in READ ONLY and SERIALIZABLE isolation levels.

Starting with Oracle9i, however, we have a lot more flexibility than this. In fact, we can
instruct Oracle to present query results “as of” any specified time (with certain reasonable lim-
itations on the length of time you can go back in to the past; of course, your DBA has control
over this), by using a feature called flashback query.

Consider the following example. We start by getting an SCN (System Change or System
Commit Number; the terms are interchangeable). This SCN is Oracle’s internal clock: every
time a commit occurs, this clock ticks upward (increments). We could use a date or timestamp
as well, but here the SCN is readily available and very precise:

scot@ORA10G> variable SCN number
scott@RA10G> exec :scn := dbms flashback.get system change number
PL/SQL procedure successfully completed.
Scott@ORA10G> print scn
SCN

33295399

We can now instruct Oracle to present data “as of” the point in time represented by the
SCN value. We can query Oracle later and see what was in this table at this precise moment in
time. First, let’s see what is in the EMP table right now:

scott@ORA10G> select count(*) from emp;

COUNT (*)

Now let’s delete all of this information and verify that it is “gone”:

scott@ORA10G> delete from emp;
14 rows deleted.

scott@ORA10G> select count(*) from emp;

COUNT(*)

Also, using the flashback query (namely the AS OF SCN or AS OF TIMESTAMP clause) we can
ask Oracle to reveal to us what was in the table as of the point in time represented by the SCN
value of 33295399:

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

scott@ORA10G> select count(*) from emp AS OF SCN :scnj;

COUNT (*)

Further, this capability works across transactional boundaries. We can even query the
same object “as of two points in time” in the same query! That opens some interesting oppor-
tunities indeed:

scott@ORA10G> commit;
Commit complete.

scott@ORA10G> select *
2 from (select count(*) from emp),
3 (select count(*) from emp as of scn :scn)
4 /

COUNT(*) COUNT(*)

If you are using Oracle 10g and above, you have a command called “flashback” that uses
this underlying multi-versioning technology to allow you to return objects to the state they
were in at some prior point in time. In this example, we can put EMP back the way it was before
we deleted all of the information:

scott@ORA10G> flashback table emp to scn :scn;
Flashback complete.

scott@ORA10G> select *
2 from (select count(*) from emp),
3 (select count(*) from emp as of scn :scn)
4 /

COUNT(*) COUNT(*)

Note If you receive the error “ORA-08189: cannot flashback the table because row movement is not
enabled using the FLASHBACK command,” you must issue ALTER TABLE EMP ENABLE ROW MOVEMENT.
This, in effect, gives Oracle the permission to change the rowid assigned to a row. In Oracle, when you insert
a row, a rowid is assigned to it and that row will forever have that rowid. The flashback table process will
perform a DELETE against EMP and reinsert the rows, hence assigning them a new rowid. You must allow
Oracle to do this operation in order to flash back.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Read Consistency and Non-Blocking Reads

Let’s now look at the implications of multi-versioning, read-consistent queries, and non-
blocking reads. If you are not familiar with multi-versioning, what you see in the following
code might be surprising. For the sake of simplicity, assume that the table we are reading
stores one row per database block (the smallest unit of storage in the database) and that we
are full-scanning the table in this example.

The table we will query is a simple ACCOUNTS table. It holds balances in accounts for a
bank. It has a very simple structure:

create table accounts
(account_number number primary key,
account_balance number

);

In reality, the ACCOUNTS table would have hundreds of thousands of rows in it, but for sim-
plicity’s sake we're just going to consider a table with four rows (we’ll revisit this example in
more detail in Chapter 7), as shown in Table 1-1.

Table 1-1. ACCOUNTS Table Contents

Row Account Number Account Balance
1 123 $500.00
2 234 $250.00
3 345 $400.00
4 456 $100.00

We would like to run an end-of-day report that tells us how much money is in the bank.
That is an extremely simple query:

select sum(account balance) from accounts;

And, of course, in this example the answer is obvious: $1,250.00. However, what happens
if we read row 1, and while we're reading rows 2 and 3, an automated teller machine (ATM)
generates transactions against this table and moves $400.00 from account 123 to account 4562
Our query counts $500.00 in row 4 and comes up with the answer of $1,650.00, doesn’t it? Well,
of course, this is to be avoided, as it would be an error—at no time did this sum of money exist
in the account balance column. Read consistency is the way in which Oracle avoids such
occurrences, and you need to understand how Oracle’s methods differ from those of most
every other database.

In practically every other database, if you want to get a “consistent” and “correct” answer
to this query, you either have to lock the whole table while the sum is calculated or you have to
lock the rows as you read them. This prevents people from changing the answer as you are get-
ting it. If you lock the table up front, you'll get the answer that was in the database at the time
the query began. If you lock the data as you read it (commonly referred to as a shared read
lock, which prevents updates but not other readers from accessing the data), you'll get the
answer that was in the database at the point the query finished. Both methods inhibit concur-
rency a great deal. The table lock prevents any updates from taking place against the entire
table for the duration of your query (for a table of four rows, this would be only a very short

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

period, but for tables with hundred of thousands of rows, this could be several minutes). The
“lock as you go” method prevents updates on data you have read and already processed, and
could actually cause deadlocks between your query and other updates.

Now, I said earlier that you are not able to take full advantage of Oracle if you don’t
understand the concept of multi-versioning. Here is one reason why that is true. Oracle uses
multi-versioning to get the answer, as it existed at the point in time the query began, and the
query will take place without locking a single thing (while our account transfer transaction
updates rows 1 and 4, these rows will be locked to other writers but not locked to other read-
ers, such as our SELECT SUM... query). In fact, Oracle doesn’t have a “shared read” lock (a type
oflock that is common in other databases) because it doesn’t need it. Everything inhibiting
concurrency that can be removed has been removed.

I have seen actual cases where a report written by a developer who did not understand
Oracle’s multi-versioning capabilities would lock up an entire system as tight as could be. The
reason: the developer wanted to have read-consistent (i.e., correct) results from his queries.
In every other database the developer had used, this required locking the tables, or using a
SELECT ... WITH HOLDLOCK (a SQL Server mechanism for locking rows in a shared mode as
you go along). So the developer would either lock the tables prior to running the report or use
SELECT ... FOR UPDATE (the closest they could find with holdlock). This would cause the sys-
tem to basically stop processing transactions—needlessly.

So, how does Oracle get the correct, consistent answer ($1,250.00) during a read without
locking any data? In other words, without decreasing concurrency? The secret lies in the
transactional mechanisms that Oracle uses. Whenever you modify data, Oracle creates undo
entries. These entries are written to undo segments. If your transaction fails and needs to be
undone, Oracle will read the “before” image from the rollback segment and restore the data.
In addition to using this rollback segment data to undo transactions, Oracle uses it to undo
changes to blocks as it is reading them to restore the block to the point in time your query
began. This gives you the ability to read right through a lock and to get consistent, correct
answers without locking any data yourself.

So, as far as our example is concerned, Oracle arrives at its answer as shown in Table 1-2.

Table 1-2. Multi-versioning in Action

Time Query Account Transfer Transaction
T1 Reads row 1; sum = $500 so far.
T2 Updates row 1; puts an exclusive lock

on row 1, preventing other updates.
Row 1 now has $100.

T3 Reads row 2; sum = $750 so far.

T4 Reads row 3; sum = $1,150 so far.

T5 Updates row 4; puts an exclusive lock
on row 4, preventing other updates
(but not reads). Row 4 now has $500.

T6 Reads row 4; discovers that row 4 has

been modified. It will actually roll back
the block to make it appear as it did at
time = T1. The query will read the value
$100 from this block.

T7 Presents $1,250 as the answer.

29

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

At time T6, Oracle is effectively “reading through” the lock placed on row 4 by our transac-
tion. This is how non-blocking reads are implemented: Oracle only looks to see if the data
changed, and it does not care if the data is currently locked (which implies that the data has
changed). Oracle will simply retrieve the old value from the rollback segment and proceed on
to the next block of data.

This is another clear demonstration of multi-versioning. Multiple versions of the same
piece of information, all at different points in time, are available in the database. Oracle is able
to make use of these snapshots of data at different points in time to provide us with read-
consistent queries and non-blocking queries.

This read-consistent view of data is always performed at the SQL statement level. The
results of any single SQL statement are consistent with respect to the point in time they began.
This quality is what makes a statement like the following insert a predictable set of data:

Begin
for x in (select * from t)
loop
insert into t values (x.username, x.user id, x.created);
end loop;
end;

The result of the SELECT * FROM T is preordained when the query begins execution. The
SELECT will not see any of the new data generated by the INSERT. Imagine if it did—this state-
ment might be a never-ending loop. If, as the INSERT generated more rows in T, the SELECT
could “see” those newly inserted rows, the preceding code would create some unknown num-
ber of rows. If the table T started out with 10 rows, we might end up with 20, 21, 23, or an
infinite number of rows in T when we finished. It would be totally unpredictable. This consis-
tent read is provided to all statements so that an INSERT such as the following is predicable
as well:

insert into t select * from t;

The INSERT statement will be provided with a read-consistent view of T. It will not see the
rows that it itself just inserted; rather, it will only insert the rows that existed at the time the
INSERT began. Many databases won'’t even permit recursive statements such as the preceding
due to the fact that they cannot tell how many rows might actually be inserted.

So, if you are used to the way other databases work with respect to query consistency
and concurrency, or you have never had to grapple with such concepts (i.e., you have no real
database experience), you can now see how understanding how this works will be important
to you. To maximize Oracle’s potential, and to implement correct code, you need to under-
stand these issues as they pertain to Oracle—not how they are implemented in other
databases.

Database Independence?

By now, you might be able to see where I'm going in this section. I have made references to
other databases and how features are implemented differently in each. With the exception of
some read-only applications, it is my contention that building a wholly database-independent
application that is highly scalable is extremely hard—it is, in fact, quite impossible unless you

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

know exactly how each database works in great detail. And, if you knew how each database
worked in great detail, you would understand that database independence is not something
you really want to achieve (a very circular argument!).

For example, let’s revisit our initial resource scheduler example (prior to adding the
FOR UPDATE clause). Let’s say this application had been developed on a database with an
entirely different locking/concurrency model from Oracle. What I'll show here is that if we
migrate our application from one database to another database, we will have to verify that it
still works correctly in these different environments and substantially change it as we do!

Let’s assume that we had deployed the initial resource scheduler application in a database
that employed blocking reads (reads are blocked by writes). Also consider that the business
rule was implemented via a database trigger (after the INSERT had occurred but before the
transaction committed, we would verify that only our row existed in the table for that time
slot). In a blocking read system, due to this newly inserted data, it would be true that insertions
into this table would serialize. The first person would insert his or her request for “room A” from
2:00 pm to 3:00 pm on Friday and then run a query looking for overlaps. The next person
would try to insert an overlapping request and, upon looking for overlaps, that request would
become blocked (while waiting for the newly inserted data that it had found to become avail-
able for reading). In that blocking read database our application would be apparently well
behaved (well, sort of—we could just as easily deadlock, a concept covered in Chapter 6, as
well if we both inserted our rows and then attempted to read each other’s data)—our checks
on overlapping resource allocations would have happened one after the other—never concur-
rently.

If we migrated this application to Oracle and simply assumed that it would behave in the
same way, we would be in for a shock. On Oracle, which does row-level locking and supplies
non-blocking reads, it appears to be ill behaved. As shown previously, we had to use the
FOR UPDATE clause to serialize access. Without this clause, two users could schedule the same
resource for the same times. This is a direct consequence of our not understanding how the
database we have works in a multiuser environment.

I have encountered issues such as this many times when an application is being moved
from database A to database B. When an application that worked flawlessly in database A
does not work, or works in an apparently bizarre fashion, on database B, the first thought is
that database B is a “bad” database. The simple truth is that database B just works differently.
Neither database is wrong or “bad”; they are just different. Knowing and understanding how
they both work will help you immensely in dealing with these issues. Taking an application
from Oracle to SQL Server exposes SQL Server’s blocking reads and deadlock issues—in other
words, it goes both ways.

For example, I was asked to help convert some Transact-SQL (T-SQL, the stored procedure
language for SQL Server) into PL/SQL. The developer doing the conversion was complaining
that the SQL queries in Oracle returned the “wrong” answer. The queries looked like this:

declare
1 _some_variable varchar2(25);
begin
if (some_condition)
then

1 some_variable := f(...);
end if;

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

for C in (select * from T where x = 1 some_variable)
loop

The goal here was to find all of the rows in T where X was NULL if some condition was not
met or where x equaled a specific value if some condition was met.

The complaint was that, in Oracle, this query would return no data when L_SOME_VARIABLE
was not set to a specific value (when it was left as NULL). In Sybase or SQL Server, this was not
the case—the query would find the rows where X was set to a NULL value. I see this on almost
every conversion from Sybase or SQL Server to Oracle. SQL is supposed to operate under
trivalued logic, and Oracle implements NULL values the way ANSI SQL requires them to be
implemented. Under those rules, comparing X to a NULL is neither true nor false—it is, in fact,
unknown. The following snippet shows what I mean:

ops$tkyte@RA10G> select * from dual where null=null;
no rows selected

ops$tkyte@RA10G> select * from dual where null <> null;
no rows selected

ops$tkyte@RA10G> select * from dual where null is null;

D

This can be confusing the first time you see it. It proves that, in Oracle, NULL is neither
equal to nor not equal to NULL. SQL Server, by default, does not do it that way: in SQL Server
and Sybase, NULL is equal to NULL. Neither Oracle’s, nor Sybase or SQL Server’s SQL process-
ing is wrong—it is just different. All these databases are, in fact, ANSI compliant, but they still
work differently. There are ambiguities, backward compatibility issues, and so on to be over-
come. For example, SQL Server supports the ANSI method of NULL comparison, just not by
default (it would break thousands of existing legacy applications built on that database).

In this case, one solution to the problem is to write the query like this instead:

select *
from t
where (x = 1_some_variable OR (x is null and 1_some_variable is NULL))

However, this leads to another problem. In SQL Server, this query would use an index
on x. This is not the case in Oracle, since a B*Tree index will not index an entirely NULL entry
(we'll examine indexing techniques in Chapter 12). Hence, if you need to find NULL values,
B*Tree indexes are not very useful.

What we did in this case to minimize impact on the code was to assign X some value that
it could never in reality assume. Here, X, by definition, was a positive number, so we chose the
number -1. Thus, the query became

select * from t where nvl(x,-1) = nvl(1l_some_ variable,-1)

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

and we created a function-based index:
create index t_idx on t(nvl(x,-1));

With minimal change, we achieved the same end result. The important points to recog-
nize from this example are as follows:

» Databases are different. Experience with one will, in part, carry over to another, but you
must be ready for some fundamental differences as well as some very minor differences.

¢ Minor differences (such as treatment of NULLSs) can have as big an impact as funda-
mental differences (such as concurrency control mechanism).

» Being aware of the database, how it works, and how its features are implemented is the
only way to overcome these issues.

Developers frequently ask me (usually more than once a day) how to do something spe-
cific in the database, for example, “How do I create a temporary table in a stored procedure?”
I do not answer such questions directly; instead, I respond with a question: “Why do you want
to do that?” Many times, the answer that comes back is “In SQL Server we created temporary
tables in our stored procedures and we need to do this in Oracle.” That is what I expected to
hear. My response, then, is easy: “You do not want to create temporary tables in a stored pro-
cedure in Oracle—you only think you do.” That would, in fact, be a very bad thing to do in
Oracle. If you created the tables in a stored procedure in Oracle, you would find that

* Doing DDL is a scalability inhibitor.
* Doing DDL constantly is not fast.
¢ Doing DDL commits your transaction.

¢ You would have to use dynamic SQL in all of your stored procedures to access this
table—no static SQL.

¢ Dynamic SQL in PL/SQL is not as fast or as optimized as static SQL.

The bottom line is that you don’t want to create the temp table in a procedure exactly as
you did in SQL Server (if you even need the temporary table in Oracle at all). You want to do
things as they are best done in Oracle. Just as if you were going the other way, from Oracle to
SQL Server, you would not want to create a single table for all users to share for temporary
data (as you would in Oracle). That would limit scalability and concurrency in SQL Server.
All databases are not created equal—they are all very different.

The Impact of Standards

If all databases are SQL99 compliant, then they must be the same. At least that is the assump-
tion made many times. In this section, I would like to dispel that myth.

SQL99 is an ANSI/ISO standard for databases. It is the successor to the SQL92 ANSI/ISO
standard, which in turn superceded the SQL89 ANSI/ISO standard. It defines a language (SQL)
and behavior (transactions, isolation levels, etc.) that tell you how a database will behave. Did
you know that many commercially available databases are SQL99 compliant to at least some
degree? Did you also know that it means very little as far as query and application portability
goes?

30 CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

The SQL92 standard had four levels:

* Entry level: This is the level to which most vendors have complied. This level is a minor
enhancement of the predecessor standard, SQL89. No database vendors have been cer-
tified higher and, in fact, the National Institute of Standards and Technology (NIST), the
agency that used to certify for SQL compliance, does not even certify anymore. I was
part of the team that got Oracle 7.0 NIST-certified for SQL92 entry-level compliance in
1993. An entry level-compliant database has a feature set that is a subset of Oracle 7.0’s
capabilities.

 Transitional: This level is approximately halfway between entry level and intermediate
level as far as a feature set goes.

e Intermediate: This level adds many features, including (this is not by any means an
exhaustive list)

e Dynamic SQL
e Cascade DELETE for referential integrity
* DATE and TIME datatypes
¢ Domains
 Variable-length character strings
e A CASE expression
e CAST functions between datatypes
e Full: Adds provisions for (again, this list is not exhaustive)
¢ Connection management
e ABIT string datatype
¢ Deferrable integrity constraints
¢ Derived tables in the FROM clause
e Subqueries in CHECK clauses
e Temporary tables

The entry-level standard does not include features such as outer joins, the new inner join
syntax, and so on. Transitional does specify outer join syntax and inner join syntax. Intermedi-
ate adds more, and full is, of course, all of SQL92. Most books on SQL92 do not differentiate
between the various levels, which leads to confusion on the subject. They demonstrate what a
theoretical database implementing SQL92 full would look like. It makes it impossible to pick
up a SQLI92 book and apply what you see in the book to just any SQL92 database. The bottom
line is that SQL92 will not go very far at entry level and, if you use any of the features of inter-
mediate or higher, you risk not being able to “port” your application.

SQL99 defines only two levels of conformance: Core and Enhanced. SQL99 attempts to go
far beyond traditional “SQL” and introduces object-relational constructs (arrays, collections,

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

etc.). It covers a SQL MM (multimedia) type, object-relational types, and so on. No vendor is
certifying databases to be SQL99 Core or Enhanced “compliant” and, in fact, I know of

no vendor who is even claiming that their product is fully compliant with either level of
conformance.

In addition to SQL syntactic differences, implementation differences, and differences in
performance of the same query in different databases, there are the issues of concurrency
controls, isolation levels, query consistency, and so on. We'll cover these items in some detail
in Chapter 7 and see how their differences may affect you.

SQL92/SQL99 attempts to give a straightforward definition of how a transaction should
work and how isolation levels are to be implemented, but in the end, you'll get different results
from different databases. It is all due to the implementation. In one database, an application
will deadlock and block all over the place. In another database, the same exact application will
not do any of these things—it will run smoothly. In one database, the fact that you did block
(physically serialize) was used to your advantage, and when you go to deploy on another data-
base, and it does not block, you get the wrong answer. Picking an application up and dropping
it on another database takes a lot of hard work and effort, even if you followed the standard
100 percent.

The bottom line is that you should not be afraid to make use of vendor-specific features—
after all, you are paying a lot of money for them. Every database has its own bag of tricks, and
we can always find a way to perform the operation in each database. Use what is best for your
current database, and reimplement components as you go to other databases. Use good pro-
gramming techniques to isolate yourself from these changes. I call this defensive programming.

Defensive Programming

The same defensive programming techniques that I advocate for building truly portable data-
base applications are, in essence the same as those employed by people writing OS-portable
applications. The goal is to fully utilize the facilities available to you, but ensure you can
change the implementation on a case-by-case basis.

As an analogy, Oracle is a portable application. It runs on many operating systems. How-
ever, on Windows it runs in the Windows way: using threads and other Windows-specific
facilities. On UNIX, Oracle runs as a multiprocess server, using individual processes to do
what threads did on Windows—that is the UNIX way. The “core Oracle” functionality is avail-
able on both platforms, but it is implemented in very different ways under the covers. Your
database applications that must function on multiple databases will be the same.

For example, a common function of many database applications is the generation of a
unique key for each row. When you insert the row, the system should automatically generate a
key for you. Oracle has implemented the database object called a SEQUENCE for this. Informix
has a SERIAL datatype. Sybase and SQL Server have an IDENTITY type. Each database has a way
to do this. However, the methods are different, both in how you do it and the possible out-
comes. So, for the knowledgeable developer, there are two paths that can be pursued:

e Develop a totally database-independent method of generating a unique key.

e Accommodate the different implementations and use different techniques when
implementing keys in each database.

31

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

The theoretical advantage of the first approach is that to move from database to database
you need not change anything. I call it a “theoretical” advantage because the downside of this
implementation is so huge that it makes this solution totally infeasible. What you would have
to do to develop a totally database-independent process is to create a table such as

ops$tkyte@ORA10G> create table id_table
2 (id_name varchar2(30) primary key,
3 id_value number);

Table created.

ops$tkyte@RA10G> insert into id_table values ('MY_KEY', 0);
1 row created.

ops$tkyte@ORA10G> commit;
Commit complete.

Then, in order to get a new key, you would have to execute the following code:

ops$tkyte@RA10G> update id_table
2 set id_value = id_value+1
3 where id_name = 'MY_KEY';

1 row updated.

ops$tkyte@RA10G> select id_value
2 from id_table
3 where id_name = 'MY_KEY';

ID VALUE

Looks simple enough, but the outcomes (notice plural) are as follows:

¢ Only one user at a time may process a transaction row. You need to update that row to
increment a counter, and this will cause your program to serialize on that operation. At
best, one person at a time will generate a new value for this key.

* In Oracle (and the behavior might be different in other databases), all but the first user
to attempt to concurrently perform this operation would receive the error “ORA-08177:
can't serialize access for this transaction” in the SERIALIZABLE isolation level.

For example, using a serializable transaction (which is more common in the J2EE envi-
ronment, where many tools automatically use this as the default mode of isolation, often
unbeknownst to the developers), you would observe the following behavior. Notice that the
SQL prompt (using the SET SQLPROMPT SQL*Plus command) contains information about which
session is active in this example:

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

OPS$TKYTE session(261,2586)> set transaction isolation level serializable;
Transaction set.

OPS$TKYTE session(261,2586)> update id_table
2 set id_value = id_value+1
3 where id_name = 'MY_KEY';

1 row updated.

OPS$TKYTE session(261,2586)> select id _value
2 from id_table
3 where id_name = 'MY_KEY';

ID VALUE

Now, we'll go to another SQL*Plus session and perform the same operation, a concurrent
request for a unique ID:

OPS$TKYTE session(271,1231)> set transaction isolation level serializable;
Transaction set.

OPS$TKYTE session(271,1231)> update id_table
2 set id_value = id_value+1
3 where id_name = 'MY_KEY';

This will block at this point, as only one transaction at a time can update the row. This
demonstrates the first possible outcome, namely that we would block and wait for the row.
But since we're using SERIALIZABLE in Oracle, we'll observe the following behavior as we com-
mit the first session’s transaction:

OPS$TKYTE session(261,2586)> commit;
Commit complete.

The second session will immediately display the following error:

OPS$TKYTE session(271,1231)> update id_table
2 set id_value = id_value+1
3 where id_name = 'MY_KEY';
update id_table
*

ERROR at line 1:
ORA-08177: can't serialize access for this transaction

So, that database-independent piece of logic really isn’t database independent at all.
Depending on the isolation level, it may not even perform reliably in a single database, let
alone across any database! Sometimes we block and wait; sometimes we get an error message.
To say the end user would be upset given either case (wait a long time, or wait a long time to
get an error) is putting it mildly.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

This issue is compounded by the fact that our transaction is much larger than just out-
lined. The UPDATE and SELECT in the example are only two statements of potentially many
other statements that make up our transaction. We have yet to insert the row into the table
with this key we just generated and do whatever other work it takes to complete this transac-
tion. This serialization will be a huge limiting factor in scaling. Think of the ramifications if
this technique were used on web sites that process orders, and this was how we generated
order numbers. There would be no multiuser concurrency, so we would be forced to do every-
thing sequentially.

The correct approach to this problem is to use the best code for each database. In Oracle,
this would be (assuming the table that needs the generated primary key is T) as follows:

create table t (pk number primary key, ...);
create sequence t_seq;
create trigger t trigger before insert on t for each row
begin
select t _seq.nextval into :new.pk from dual;
end;

This will have the effect of automatically—and transparently—assigning a unique key to
each row inserted. A more performance driven approach would be simply

Insert into t (pk, ...) values (t_seq.NEXTVAL, ...);

That is, skip the overhead of the trigger altogether (this is my preferred approach).

In the first example, we've gone out of our way to use each database’s feature to generate
a non-blocking, highly concurrent unique key, and we've introduced no real changes to the
application code—all of the logic is contained in this case in the DDL.

Tip The same effect can be achieved in the other databases using their built-in features or generating
unique numbers. The CREATE TABLE syntax may be different, but the net results will be the same.

Once you understand that each database will implement features in a different way,
another example of defensive programming to allow for portability is to layer your access to
the database when necessary. For example, say you are programming using JDBC. If all you
use is straight SQL SELECTs, INSERTs, UPDATEs, and DELETEs, you probably do not need a layer of
abstraction. You may very well be able to code the SQL directly in your application, as long as
you limit the constructs you use to those supported by each of the databases you intend to
support—and that you have verified work exactly the same (remember the NULL=NULL discus-
sion!). Another approach that is both more portable and offers better performance is to use
stored procedures to return resultsets. You will discover that every vendor’s database can
return resultsets from stored procedures, but how they are returned is different. The actual
source code you must write is different for different databases.

Your two choices here are either to not use stored procedures to return resultsets or to
implement different code for different databases. I would definitely follow the different code

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

for different vendors method and use stored procedures heavily. This apparently seems to
increase the amount of time it would take to implement on a different database. However, you
will find it is actually easier to implement on multiple databases with this approach. Instead of
having to find the perfect SQL that works on all databases (perhaps better on some than on
others), you implement the SQL that works best on that database. You can do this outside of
the application itself, giving you more flexibility in tuning the application. You can fix a poorly
performing query in the database itself, and deploy that fix immediately, without having to
patch the application. Additionally, you can take advantage of vendor extensions to SQL using
this method freely. For example, Oracle supports hierarchical queries via the CONNECT BY oper-
ation in its SQL. This unique feature is great for resolving recursive queries. In Oracle, you are
free to use this extension to SQL since it is “outside” of the application (i.e., hidden in the data-
base). In other databases, you would use a temporary table and procedural code in a stored
procedure to achieve the same results, perhaps. You paid for these features, so you might as
well use them.

This technique of developing a specialized layer of code for the database on which you
will deploy is the same as that used by developers who implement multiplatform code. Oracle
Corporation, for example, uses these techniques in the development of its own database.
There is a large amount of code (but a small percentage of the database code overall), called
operating system—dependent (OSD) code, that is implemented specifically for each platform.
Using this layer of abstraction, Oracle is able to make use of many native OS features for per-
formance and integration, without having to rewrite the large majority of the database itself.
The fact that Oracle can run as a multithreaded application on Windows and a multiprocess
application on UNIX attests to this feature. The mechanisms for interprocess communication
are abstracted to such a level that they can be reimplemented on an OS-by-OS basis, allowing
for radically different implementations that perform as well as an application written directly,
and specifically, for that platform.

Another argument for this approach is that finding a single developer (let alone a team of
developers) who is savvy enough to understand the nuances of the differences between Oracle,
SQL Server, and DB2 (let’s limit the discussion to three databases in this case) is virtually
impossible. I've worked mostly with Oracle for the last 11 years (mostly, not exclusively). I
learn something new about Oracle every single day I use it. To suggest that I could be expert in
three databases simultaneously and understand what the differences between all three are
and how those differences will affect the “generic code” layer I would have to build is highly
questionable. I doubt I would be able to do that accurately or efficiently. Also consider the fact
that we are talking about individuals here—how many developers actually fully understand or
use the database they currently have, let alone three of them? Seeking to find the unique indi-
vidual who can develop bulletproof, scalable, database-independent routines is a Holy Grail
quest. Building a team of developers that can do this is impossible. Finding an Oracle expert, a
DB2 expert, and a SQL Server expert, and telling them “We need a transaction to do X, Y and
Z”—that’s relatively easy. They are told, “Here are your inputs, these are the outputs we need,
and this is what this business process entails,” and from there it is relatively simple to produce
transactional APIs (stored procedures) that fit the bill. Each will be implemented in the best
manner for that particular database, according to that database’s unique set of capabilities.
These developers are free to use the full power (or lack thereof, as the case may be) of the
underlying database platform.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Features and Functions

A natural extension of the argument that you shouldn’t necessarily strive for database inde-
pendence is the idea that you should understand exactly what your specific database has to
offer and make full use of it. This section does not outline all of the features that Oracle 10g
has to offer—that would be an extremely large book in itself. The new features of Oracle 9i
Release 1, 9i Release 2, and 10g Release 1 themselves fill a book in the Oracle documentation
set. With about 10,000 pages of documentation provided by Oracle, covering each and every
feature and function would be quite an undertaking. Rather, this section explores the benefits
of getting at least a cursory knowledge of what is provided.

As I've said before, I answer questions about Oracle on http://asktom.oracle.com. I'd say
that 80 percent of my answers are simply URLs to the documentation (for every question you
see that I've published—many of which are pointers into the documentation—there are two
more questions I chose not to publish, almost all of which are “read this” answers). People ask
how they might go about writing some complex piece of functionality in the database (or out-
side of it), and I just point them to the place in the documentation that tells them how Oracle
has already implemented it and how to use it. Replication comes up this way frequently. I'll
receive the following question: “I would like to keep a copy of my data elsewhere. I would like
this to be a read-only copy. I need it to update only once a day at midnight. How can I write
the code to do that?” The answer is as simple as a CREATE MATERIALIZED VIEW command. This
is built-in functionality in the database. Actually, there are many ways to implement replica-
tion, from read-only materialized views, to updateable materialized views, to peer-to-peer
replication, to streams-based replication.

It is true that you can write your own replication—it might even be fun to do so—but at
the end of the day, it would not be the smartest thing to do. The database does a lot of stuff.
In general, the database can do it better than we can ourselves. Replication, for example, is
internalized in the kernel, written in C. It’s fast, it’s fairly easy, and it’s robust. It works across
versions and across platforms. It is supported, so if you hit a problem, Oracle’s support team
will be glad to help. If you upgrade, replication will be supported there as well, probably with
some new features. Now, consider if you were to develop your own. You would have to provide
support for all of the versions you wanted to support. Interoperability between old and new
releases? This would be your job. If it “breaks,” you won't be calling support—at least not
until you can get a test case that is small enough to demonstrate your basic issue. When the
new release of Oracle comes out, it will be up to you to migrate your replication code to that
release.

Not having a full understanding of what is available to you can come back to haunt you
in the long run. I was working with some developers with years of experience developing
database applications—on other databases. They built analysis software (trending, reporting,
and visualization software). It was to work on clinical data (healthcare related). They were
not aware of SQL syntactical features such as inline views, analytic functions, and scalar sub-
queries. Their major problem was they needed to analyze data from a single parent table to
two child tables. An entity-relationship diagram (ERD) might look like Figure 1-1.

Child_1 Parent Child_2

Figure 1-1. Simple ERD

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

They needed to be able to report on the parent record with aggregates from each of the
child tables. The databases they worked with in the past did not support subquery factoring
(WITH clause), nor did they support inline views, the ability to “query a query” instead of query
a table. Not knowing these features existed, the developers wrote their own database of sorts
in the middle tier. They would query the parent table and for each row returned run an aggre-
gate query against each of the child tables. This resulted in their running thousands of queries
for each single query the end user wanted to run. Or, they would fetch the entire aggregated
child tables into their middle tier into hash tables in memory—and do a hash join.

In short, they were reinventing the database, performing the functional equivalent of a
nested loops join or a hash join, without the benefit of temporary tablespaces, sophisticated
query optimizers, and the like. They were spending their time developing, designing, fine-
tuning, and enhancing software that was trying to do the same thing the database they already
bought did! Meanwhile, end users were asking for new features but not getting them, because
the bulk of the development time was in this reporting “engine,” which really was a database
engine in disguise.

I showed them that they could do things such as join two aggregations together, in
order to compare data that was stored at different levels of detail in many different ways
(see Listings 1-1 through 1-3).

Listing 1-1. Inline Views: Query from a “Query”

select p.id, c1_sumi, c2_sum2
from p,
(select id, sum(ql) c1 suml
from c1
group by id) c1,
(select id, sum(g2) c2_sum2
from c2
group by id) c2
where p.id = c1.id
and p.id = c2.id

Listing 1-2. Scalar Subqueries: Run Another Query per Row

select p.id,
(select sum(q1) from c1 where ci.id = p.id) c1 sumi,
(select sum(q2) from c2 where c2.id = p.id) c2_sum2
from p
where p.name = '1234'
/

Listing 1-3. WITH Subquery Factoring

with c1_ww as
(select id, sum(q1) ci_sumi
from c1

37

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

group by id),

c2_vw as

(select id, sum(g2) c2_sum2
from c2
group by id),

cl c2 as

(select c1.id, ci1.c1 sumi, c2.c2_sum2
from c1_vw c1, c2_vw c2
where c1.id = c2.id)

select p.id, c1_sumi, c2_sum2
from p, c1 _c2

where p.id = c1_c2.id

/

Not to mention what they can do with analytic functions like LAG, LEAD, ROW_NUMBER; the
ranking functions; and so much more. Well, rather than spending the rest of the day trying to
figure out how to tune their middle-tier database engine, we spent the day with the SQL Refer-
ence Guide projected on the screen (coupled with SQL*Plus to create ad hoc demonstrations
of how things worked). The end goal was no longer tuning the middle tier; now it was turning
off the middle tier as quickly as possible.

I have seen people set up daemon processes in an Oracle database that read messages off
of pipes (a database IPC mechanism). These daemon processes execute the SQL contained
within the pipe message and commit the work. They did this so that they could execute audit-
ing in a transaction that would not get rolled back if the bigger transaction did. Usually, if a
trigger or something were used to audit an access to some data, but a statement failed later
on, all of the work would be rolled back. So, by sending a message to another process, they
could have a separate transaction do the work and commit it. The audit record would stay
around, even if the parent transaction rolled back. In versions of Oracle before Oracle8i, this
was an appropriate (and pretty much the only) way to implement this functionality. When I
told them of the database feature called autonomous transactions, they were quite upset with
themselves. Autonomous transactions, implemented with a single line of code, do exactly
what they were doing. On the bright side, this meant they could discard a lot of code and not
have to maintain it. In addition, the system ran faster overall and was easier to understand.
Still, they were upset at the amount of time they had wasted reinventing the wheel. In particu-
lar, the developer who wrote the daemon processes was quite upset at having just written a
bunch of shelfware.

This is something I see repeated time and time again—large, complex solutions to prob-
lems that are already solved by the database itself. I've been guilty of this myself. I still remember
the day when my Oracle sales consultant (I was the customer at the time) walked in and saw
me surrounded by a ton of Oracle documentation. I looked up at him and just asked “Is this
all true?” I spent the next couple of days just digging and reading. I had fallen into the trap of
thinking “I know all about databases,” because I had worked with SQL/DS, DB2, Ingress,
Sybase, Informix, SQLBase, Oracle, and others. Rather than take the time to see what each
had to offer, I would just apply what I knew from the others to whatever I was working on.
(Moving to Sybase/SQL Server was the biggest shock to me—it worked nothing like the others
at all.) Upon actually discovering what Oracle could do (and the others, to be fair), I started
taking advantage of it and was able to move faster, with less code. This was in 1993. Imagine
what you can do with the software today, over a decade later.

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Unless you take the time to learn what is available, you are doomed to do the same thing
at some point. In this book, we are going to take an in-depth look at a handful of functionality
provided by the database. I picked and chose the features and functions that I see people
using frequently or functionality that should be used more often but is not. The material cov-
ered here is only the tip of the iceberg, however. There is so much more to Oracle than can be
presented in a single book.

I'll say it again: I learn something new about Oracle pretty much every single day. It
requires some keeping up with. I myself read the documentation (still). Even so, every day
someone points out something to me that I didn’t know.

Solving Problems Simply

There are always two ways to solve everything: the easy way and the hard way. Time and time
again, I see people choosing the hard way. It is not always done consciously. More often, it is
done out of ignorance. They never expected the database to be able to do “that.” I, on the
other hand, expect the database to be capable of anything and only do it the hard way (by
writing it myself) when I discover it cannot do something.

For example, I am frequently asked, “How can I make sure the end user has only one ses-
sion in the database?” (There are hundreds of other examples I could have used here.) This
must be a requirement of many applications, but none that I've ever worked on—I've not
found a good reason for limiting people in this way. However, people want to do it, and when
they do, they usually do it the hard way. For example, they’ll have a batch job run by the OS
that will look at the V$SESSION table and arbitrarily kill sessions of users who have more than
one session. Alternatively, they will create their own tables and have the application insert a
row when a user logs in and remove the row when the user logs out. This implementation
invariably leads to lots of calls to the help desk, because when the application “crashes,” the
row never gets removed. I've seen lots of other “creative” ways to do this, but none is as easy
as this:

ops$tkyte@ORA10G> create profile one_session limit sessions_per user 1;
Profile created.

ops$tkyte@ORA10G> alter user scott profile one_session;
User altered.

ops$tkyte@0RA10G> alter system set resource_limit=true;
System altered.

ops$tkyte@RA10G> connect scott/tiger
Connected.
scott@ORA10G> host sqlplus scott/tiger

SOL*Plus: Release 10.1.0.2.0 - Production on Sun Nov 28 12:49:49 2004
Copyright (c) 1982, 2004, Oracle. All rights reserved.

ERROR:

ORA-02391: exceeded simultaneous SESSIONS_PER_USER limit

Enter user-name:

39

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

That'’s it—now any user with the ONE_SESSION profile can log on only once. When I bring
up this solution, I can usually hear the smacking of a hand on the forehead followed by the
statement “I never knew it could do that!” Taking the time to familiarize yourself with what the
tools you have to work with are capable of doing can save you lots of time and energy in your
development efforts.

The same “keep it simple” argument applies at the broader architecture level. I urge people
to think carefully before adopting very complex implementations. The more moving parts you
have in your system, the more things you have that can go wrong, and tracking down exactly
where that error is occurring in an overly complex architecture is not easy. It may be really
“cool” to implement umpteen tiers, but it is not the right choice if a simple stored procedure
can do it better, faster, and with fewer resources.

I've seen projects where application development has been going on for months, with no
end in sight. The developers are using the latest and greatest technologies and languages, but
still the development is not going very fast. It wasn’t that big of an application—and perhaps
that was the problem. If you are building a doghouse (a small woodworking job), you would
not bring in the heavy machinery. You would use a few small power tools, but you wouldn't
have use for the big stuff. On the other hand, if you were building an apartment complex, you
would have a cast of hundreds working on the project and you would use the big machines—
you would use totally different tools to approach this problem. The same is true of application
development. There is not a single “perfect architecture.” There is not a single “perfect lan-
guage.” There is not a single “perfect approach.”

For example, to build my web site, I used HTML DB. It was a smallish application, and
there was a single developer (or two) working on it. It has maybe 20 screens. Using PL/SQL
and HTML DB was the correct choice for this implementation—it did not need a cast of
dozens, coding in Java, making EJBs, and so on. It was a simple problem, solved simply. There
are few complex, large-scale, huge applications (we buy most of those today: our HR systems,
our ERP systems, etc.), but there are thousands of small applications. We need to use the
proper approach and tools for the job.

I will always go with the simplest architecture that solves the problem completely over a
complex one any day. The payback can be enormous. Every technology has its place. Not
every problem is a nail, so we can use more than a hammer in our toolbox.

Openness

I frequently see people doing things the hard way for another reason, and again it relates to
the idea that we should strive for openness and database independence at all costs. The devel-
opers wish to avoid using closed, proprietary database features—even things as simple as
stored procedures or sequences—because doing so will lock them into a database system.
Well, let me put forth the idea that the instant you develop a read/write application, you are
already somewhat locked in. You will find subtle (and sometimes not-so-subtle) differences
between the databases as soon as you start running queries and modifications. For example,
in one database you might find that your SELECT COUNT(*) FROM T deadlocks with a simple
update of two rows. In Oracle, you'll find that the SELECT COUNT(*) never blocks for a writer.
You've seen the case where a business rule appears to get enforced on one database, due to
side effects of the database’s locking model, and does not get enforced in another database.
You'll find that, given the same exact transaction mix, reports come out with different answers
in different databases, all because of fundamental implementation differences. You'll discover

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

that it is a very rare application that can simply be picked up and moved from one database
to another. Differences in the way the SQL is interpreted (e.g., the NULL=NULL example) and
processed will always be there.

On arecent project I was involved in, the developers were building a web-based product
using Visual Basic, ActiveX controls, IIS server, and the Oracle database. I was told that the
development folks had expressed concern that since the business logic had been written in
PL/SQL, the product had become database dependent. I was asked, “How can we correct
this?”

I was a little taken aback by this question. In looking at the list of chosen technologies,

I could not figure out how being database dependent was a “bad” thing:

* The developers had chosen a language that locked them into a single OS supplied by a
single vendor (they could have opted for Java).

e They had chosen a component technology that locked them into a single OS and
vendor (they could have opted for J2EE).

e They had chosen a web server that locked them into a single vendor and a single plat-
form (why not Apache?).

Every other technology choice they made locked them into a very specific configura-
tion—in fact, the only technology that offered them any choice as far as operating systems
went was the database.

Regardless of this (they must have had good reasons to choose the technologies they did),
we still have a group of developers making a conscious decision to not use the functionality
of a critical component in their architecture, and doing so in the name of openness. It is my
belief that you pick your technologies carefully, and then you exploit them to the fullest possi-
ble extent. You have paid a lot for these technologies—would it not be in your best interest to
exploit them fully? T had to assume that they were looking forward to using the full potential of
the other technologies, so why was the database an exception? This was an even harder ques-
tion to answer in light of the fact that it was crucial to their success.

We can put a slightly different spin on this argument if we consider it from the perspective
of openness. You put all of your data into the database. The database is a very open tool. It
supports data access via a large variety of open systems protocols and access mechanisms.
Sounds great so far—the most open thing in the world.

Then, you put all of your application logic and, more important, your security, outside of
the database. Perhaps in your beans that access the data. Perhaps in the JSPs that access the
data. Perhaps in your Visual Basic code running under Microsoft Transaction Server (MTS).
The end result is that you have just closed off your database—you have made it “nonopen.” No
longer can people hook in existing technologies to make use of this data; they must use your
access methods (or bypass security altogether). This sounds all well and good today, but what
you must remember is that the whiz-bang technology of today—EJBs for example—is yester-
day’s concept and tomorrow’s old, tired technology. What has persevered for over 25 years in
the relational world (and probably most of the object implementations as well) is the database
itself. The front ends to the data change almost yearly, and as they do, the applications that
have all of the security built inside themselves, not in the database, become obstacles—road-
blocks to future progress.

The Oracle database provides a feature called fine-grained access control (FGAC). In a nut-
shell, this technology allows developers to embed procedures in the database that can modify

41

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

queries as they are submitted to the database. This query modification is used to restrict the
rows the client will receive or modify. The procedure can look at who is running the query,
when they are running the query, what terminal they are running the query from, and so on,
and it can constrain access to the data as appropriate. With FGAC, we can enforce security
such that, for example

* Any query executed outside of normal business hours by a certain class of users returns
zero records.

* Any data can be returned to a terminal in a secure facility, but only nonsensitive infor-
mation can be returned to a remote client terminal.

Basically, FGAC allows us to locate access control in the database, right next to the data.

It no longer matters if the user comes at the data from a bean, a JSP, a Visual Basic application
using ODBC, or SQL*Plus—the same security protocols are enforced. You are well situated for
the next technology that comes along.

Now I ask you, which implementation is more “open”? The one that makes all access to
the data possible only through calls to the Visual Basic code and ActiveX controls (replace
Visual Basic with Java and ActiveX with EJB, if you like—I'm not picking on a particular tech-
nology but an implementation here) or the solution that allows access from anything that can
talk to the database, over protocols as diverse as SSL, HTTP, and Oracle Net (and others) or
using APIs such as ODBC, JDBC, OCI, and so on? I have yet to see an ad hoc reporting tool that
will “query” Visual Basic code. I know of dozens that can do SQL, though.

The decision to strive for database independence and total openness is one that people
are absolutely free to take, and many try, but I believe that it is the wrong decision. No matter
what database you are using, you should exploit it fully, squeezing every last bit of functional-
ity you can out of that product. You'll find yourself doing that in the tuning phase (which again
always seems to happen right after deployment) anyway. It is amazing how quickly the data-
base independence requirement can be dropped when you can make the application run five
times faster just by exploiting the software’s capabilities.

“How Do I Make It Run Faster?”

I am asked the question in the heading all the time. Everyone is looking for the “fast = true”
switch, assuming “database tuning” means that you tune the database. In fact, it is my experi-
ence that more than 80 percent (frequently 100 percent) of all performance gains are to be
realized at the design and implementation level—not the database level. I have often achieved
orders of magnitude increases in performance via application changes. It would be rare to be
able to say that of a database-level change. You cannot tune a database until you have tuned
the applications that run on the database.

As time goes on, there are some switches we can throw at the database level to help
lessen the impact of egregious programming blunders. For example, Oracle 8.1.6 adds a new
parameter, CURSOR_SHARING=FORCE. This feature implements an auto-binder, if you will. It will
silently take a query written as SELECT * FROM EMP WHERE EMPNO = 1234 and rewrite it for us
as SELECT * FROM EMP WHERE EMPNO = :x.This can dramatically decrease the number of hard
parses and decrease the library latch waits we discussed earlier—but (there is always a “but”)
it can have some side effects. A common side effect with cursor sharing is something like this:

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

ops$tkyte@RA10G> select /* TAG */ substr(username, 1, 1)
2 from all _users aul
3 where rownum = 1;

ops$tkyte@RA10G> alter session set cursor sharing=force;
Session altered.

ops$tkyte@RA10G> select /* TAG */ substr(username, 1, 1)
2 from all_users au2
3 where rownum = 1;

SUBSTR(USERNAME, 1,1)

What happened there? Why is the column reported by SQL*Plus suddenly so large for the
second query, which is arguably the same query? If we look at what the cursor sharing setting
did for us, it (and something else) will become obvious:

ops$tkyte@RA10G> select sql_text from v$sql
2 where sql_text like 'select /* TAG */ %';

SOL_TEXT
select /* TAG */ substr(username, 1, 1) from all _users aul where rownum =
1

select /* TAG */ substx(username, :"SYS_B_ 0", :"SYS B 1") from all_users au
2 where rownum = :"SYS B 2"

The cursor sharing removed information from the query. It found every literal, including
the parameters to the built-in substring function, which were constants we were using. It
removed them from the query and replaced them with bind variables. The SQL engine no
longer knows that the column is a substring of length 1—it is of indeterminate length. Also,
you can see that where rownum = 1 is now bound as well. That seems like a good idea; however,
the optimizer has just had some important information removed. It no longer knows that “this
query will retrieve a single row”; it now believes “this query will return the first N rows and N
could be any number at all.” In fact, if you run these queries with SQL_TRACE=TRUE, you will find
the query plans used by each query and the amount of work they perform to be very different.
Consider the following:

select /* TAG */ substr(username, 1, 1)
from all_users aul
where rownum = 1

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.00 0.00 0 77 0 1
total 4 0.00 0.00 0 77 0 1

Misses in library cache during parse: 0
Optimizer mode: ALL_ROWS
Parsing user id: 412

1 COUNT STOPKEY (cr=77 pr=0 pw=0 time=5767 us)
1 HASH JOIN (cr=77 pr=0 pw=0 time=5756 us)
1028 HASH JOIN (cr=70 pr=0 pw=0 time=8692 us)
9 TABLE ACCESS FULL TS$ (cr=15 pr=0 pw=0 time=335 us)
1028 TABLE ACCESS FULL USER$ (cr=55 pr=0 pw=0 time=2140 us)
4 TABLE ACCESS FULL TS$ (cr=7 pr=0 pw=0 time=56 us)

select /* TAG */ substr(username, :"SYS B 0", :"SYS B 1")
from all_users au2
where rownum = :"SYS B 2"

call count cpu elapsed disk query current rows
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0

Fetch 2 0.00 0.00 0 85 0 1
total 4 0.00 0.00 0 85 0 1

Misses in library cache during parse: 0
Optimizer mode: ALL_ROWS
Parsing user id: 412

Rows Row Source Operation
1 COUNT (cr=85 pr=0 pw=0 time=3309 us)
1 FILTER (cr=85 pr=0 pw=0 time=3301 us)
1028 HASH JOIN (cr=85 pr=0 pw=0 time=5343 us)
1028 HASH JOIN (cr=70 pr=0 pw=0 time=7398 us)
9 TABLE ACCESS FULL TS$ (cr=15 pr=0 pw=0 time=148 us)
1028 TABLE ACCESS FULL USER$ (cr=55 pr=0 pw=0 time=1079 us)
9 TABLE ACCESS FULL TS$ (cr=15 pr=0 pw=0 time=90 us)

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS 49

The plans were subtly different (sometimes you'll find them to be radically different); they
did different amounts of work. So, just turning on cursor sharing is something to do with great
trepidation (well, testing really—you need to test this). It will potentially change the behavior
of your application (e.g., the column widths) and because it removes all literals from SQL,
even those that never really change, it can have a negative impact on your query plans.

Additionally, I have proven that while CURSOR_SHARING = FORCE runs much faster than
parsing and optimizing lots of unique queries, I have also found it to be slower than using
queries where the developer did the binding. This arises not from any inefficiency in the cursor
sharing code, but rather in inefficiencies in the program itself. In many cases, an application
that does not use bind variables is not efficiently parsing and reusing cursors either. Since the
application believes each query is unique (it built them as unique statements), it will never
use a cursor more than once. The fact is that if the programmer had used bind variables in the
first place, he or she could have parsed a query once and reused it many times. It is this over-
head of parsing that decreases the overall potential performance.

Basically, it is important to keep in mind that simply turning on CURSOR_SHARING = FORCE
will not necessarily fix your problems. It may well introduce new ones. CURSOR_SHARING is, in
some cases, a very useful tool, but it is not a silver bullet. A well-developed application would
never need it. In the long term, using bind variables where appropriate, and constants when
needed, is the correct approach.

Note There are no silver bullets—none. If there were, they would be the default behavior and you would
never hear about them.

Even if there are some switches that can be thrown at the database level—and they are
truly few and far between—problems relating to concurrency issues and poorly executing
queries (due to poorly written queries or poorly structured data) cannot be fixed with a
switch. These situations require rewrites (and frequently a re-architecture). Moving data files
around, changing the multiblock read count, and other database-level switches frequently
have a minor impact on the overall performance of an application. Definitely not anywhere
near the two, three, . . . n times increase in performance you need to achieve to make the
application acceptable. How many times has your application been 10 percent too slow? No
one complains about 10 percent too slow. Five times too slow, and people get upset. I repeat:
you will not get a five times increase in performance by moving data files around. You will only
achieve this by fixing the application, perhaps by making it do significantly less 1/0O.

Performance is something you have to design for, to build to, and to test for continuously
throughout the development phase. It should never be something considered after the fact. I
am amazed at how often people wait until the application has been shipped to their customer,
put in place, and actually running before they even start to tune it. I've seen implementations
where applications are shipped with nothing more than primary keys—no other indexes
whatsoever. The queries have never been tuned or stress-tested. The application has never
been tried out with more than a handful of users. Tuning is considered to be part of the instal-
lation of the product. To me, that is an unacceptable approach. Your end users should be
presented with a responsive, fully tuned system from day one. There will be enough “product

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

issues” to deal with without having poor performance be the first thing users experience.
Users are expecting a few bugs from a new application, but don’t make users wait a painfully
long time for them to appear onscreen.

The DBA-Developer Relationship

It’s certainly true that the most successful information systems are based on a symbiotic rela-
tionship between the DBA and the application developer. In this section, I want to give a
developer’s perspective on the division of work between developer and DBA (assuming that
every serious development effort has a DBA team).

As a developer, you should not necessarily have to know how to install and configure
the software. That should be the role of the DBA and perhaps the system administrator (SA).
Setting up Oracle Net, getting the listener going, configuring the shared server, enabling con-
nection pooling, installing the database, creating the database, and so on—these are functions
I place in the hands of the DBA/SA.

In general, a developer should not have to know how to tune the OS. I myself generally
leave this task to the SAs for the system. As a software developer for database applications,
you will need to be competent in use of your OS of choice, but you shouldn’t expect to have
to tune it.

The single largest DBA responsibility is database recovery. Note I did not say “backup,”
said “recovery,” and I would claim that this is the sole responsibility of the DBA. Understand-
ing how rollback and redo work—yes, that is something a developer has to know. Knowing
how to perform a tablespace point-in-time recovery is something a developer can skip over.
Knowing that you can do it might come in handy, but actually having to do it—no.

Tuning at the database instance level and figuring out what the optimum PGA AGGREGATE
TARGET should be is typically the job of the DBA (and the database is quite willing and able to
assist them in determining the correct figure). There are exceptional cases where a developer
might need to change some setting for a session, but at the database level, the DBA is respon-
sible for that. A typical database supports more than just a single developer’s application. Only
the DBA who supports all of the applications can make the right decision.

Allocating space and managing the files is the job of the DBA. Developers will contribute
their estimations for space (how much they feel they will need), but the DBA/SA will take care
of the rest.

Basically, developers do not need to know how to run the database. They need to know
how to run in the database. The developer and the DBA will work together on different pieces
of the same puzzle. The DBA will be visiting you, the developer, when your queries are con-
suming too many resources, and you'll be visiting the DBA when you cannot figure out how to
make the system go any faster (that’'s when instance tuning can be done, when the application
is fully tuned).

These tasks will all vary by environment, but I would like to think that there is a division of
labor. A good developer is usually a very bad DBA, and vice versa. They are two different skill
sets, two different mind-sets, and two different personalities, in my opinion. People naturally
gravitate toward the job they enjoy doing most, and subsequently get better and better at it.

It is not that they are necessarily bad at one of the jobs as much as they are better at the other
because they enjoy it more. As for me, I consider myself more of a developer with lots of DBA
opinions. I enjoy the development aspects of the job, but I also like to work “in the server”
(which has sharpened my application-tuning capabilities, where the low-hanging fruit is
always to be found).

CHAPTER 1 = DEVELOPING SUCCESSFUL ORACLE APPLICATIONS

Summary

In this chapter, we have taken a somewhat anecdotal look at why you need to know the data-
base. The examples I gave throughout are not isolated—they happen every day, day in and day
out. I observe a continuous cycle of these sorts of issues happening.

Let’s quickly recap the key points. If you are developing with Oracle,

* You need to understand the Oracle architecture. You don’t have to know it so well that
you are able to rewrite the server if you want, but you should know it well enough that
you are aware of the implications of using a particular feature.

¢ You need to understand the locking and concurrency control features, and that every
database implements them differently. If you don't, your database will give “wrong”
answers and you will have large contention issues, leading to poor performance.

¢ Do not treat the database as a black box—that is, something you need not understand.
The database is the most critical piece of most applications. Trying to ignore it would
be fatal.

* Solve problems as simply as possible, using as much of Oracle’s built-in functionality as
possible. You paid a lot for it.

* Software projects come and go, and programming languages and frameworks come
and go. We developers are expected to have systems up and running in weeks, maybe
months, and then move on to the next problem. If you reinvent the wheel, you will
never come close to keeping up with the frantic pace of development. Just as you would
never build your own hash table class in Java—since Java comes with one—you should
use the database functionality you have at your disposal. The first step to being able to
do that, of course, is to understand what it is you have at your disposal. I've seen more
than one development team get in trouble, not only technically but also on a personal
level, due to a lack of awareness of what Oracle provides for free.

* And building on that last point—software projects come and go, programming lan-
guages come and go—but the data is here forever. We build applications that use data,
and that data will be used by many applications over time. It is not about the applica-
tion—it is about the data. Use techniques and implementations that permit the data to
be used and reused. If you use the database as a bit bucket, making it so that all access
to any data must come through your application, you have missed the point. You can-
not ad hoc query your application. You cannot build a new application on top of your
old application. But if you use the database, you'll find adding new applications,
reports, or whatever to be much easier over time.

So, with those points in mind, let’s continue.

CHAPTER 2

Architecture Overview

Oracle is designed to be a very portable database; it is available on every platform of rele-
vance, from Windows to UNIX to mainframes. For this reason, the physical architecture of
Oracle looks different on different operating systems. For example, on a UNIX operating sys-
tem, you will see Oracle implemented as many different operating system processes, with
virtually a process per major function. On UNIX, this is the correct implementation, as it
works on a multiprocess foundation. On Windows, however, this architecture would be inap-
propriate and would not work very well (it would be slow and nonscaleable). On the Windows
platform, Oracle is implemented as a single, threaded process. On IBM mainframe systems,
running 0OS/390 and z/0OS, the Oracle operating system-specific architecture exploits multiple
0S/390 address spaces, all operating as a single Oracle instance. Up to 255 address spaces can
be configured for a single database instance. Moreover, Oracle works together with OS/390
Workload Manager (WLM) to establish execution priority of specific Oracle workloads relative
to each other and relative to all other work in the OS/390 system. Even though the physical
mechanisms used to implement Oracle from platform to platform vary, the architecture is
sufficiently generalized so that you can get a good understanding of how Oracle works on all
platforms.

In this chapter, I present a broad picture of this architecture. We’ll examine the Oracle
server and define some terms such as “database” and “instance” (terms that always seem to
cause confusion). We'll take a look at what happens when we “connect” to Oracle and, at a
high level, how the server manages memory. In the subsequent three chapters, we’ll look in
detail at the three major components of the Oracle architecture:

e Chapter 3 covers files. In this chapter, we'll look at the set of five general categories of
files that make up the database: parameter, data, temp, control, and redo log files. We'll
also cover other types of files, including trace, alert, dump (DMP), data pump, and sim-
ple flat files. We'll look at the Oracle 10g new file area called the Flashback Recovery
Area, and we'll also discuss the impact that Automatic Storage Management (ASM) has
on our file storage.

¢ Chapter 4 covers the Oracle memory structures referred to as the System Global Area
(SGA), Process Global Area (PGA), and User Global Area (UGA). We'll examine the rela-
tionships between these structures, and we’ll also discuss the shared pool, large pool,
Java pool, and various other SGA components.

» Chapter 5 covers Oracle’s physical processes or threads. We'll look at the three different
types of processes that will be running on the database: server processes, background
processes, and slave processes.

49

CHAPTER 2 = ARCHITEGCTURE OVERVIEW

It was hard to decide which of these components to cover first. The processes use the
SGA, so discussing the SGA before the processes might not make sense. On the other hand,
when discussing the processes and what they do, I'll need to make references to the SGA.
These two components are closely tied: the files are acted on by the processes and would
not make sense without first understanding what the processes do.

What I will do, then, in this chapter is define some terms and give a general overview of
what Oracle looks like (if you were to draw it on a whiteboard). You'll then be ready to delve
into some of the details.

Defining Database and Instance

There are two terms that, when used in an Oracle context, seem to cause a great deal of confu-
sion: “instance” and “database.” In Oracle terminology, the definitions of these terms are as
follows:

* Database: A collection of physical operating system files or disk. When using Oracle 10g
Automatic Storage Management (ASM) or RAW partitions, the database may not appear
as individual separate files in the operating system, but the definition remains the
same.

* Instance: A set of Oracle background processes/threads and a shared memory area,
which is memory that is shared across those threads/processes running on a single
computer. This is the place to maintain volatile, nonpersistent stuff (some of which gets
flushed to disk). A database instance can exist without any disk storage whatsoever. It
might not be the most useful thing in the world, but thinking about it that way will defi-
nitely help draw the line between the instance and the database.

The two terms are sometimes used interchangeably, but they embrace very different con-
cepts. The relationship between them is that a database may be mounted and opened by many
instances. An instance may mount and open a single database at any point in time. In fact, it
is true to say that an instance will mount and open at most a single database in its entire life-
time! We'll look at an example of that in a moment.

Confused even more? Some further explanation should help clear up these concepts. An
instance is simply a set of operating system processes, or a single process with many threads,
and some memory. These processes can operate on a database; a database is just a collection
of files (data files, temporary files, redo log files, and control files). At any time, an instance will
have only one set of files (one database) associated with it. In most cases, the opposite is true
as well: a database will have only one instance working on it. However, in the special case of
Oracle Real Application Clusters (RAC), an option of Oracle that allows it to function on many
computers in a clustered environment, we may have many instances simultaneously mount-
ing and opening this one database, which resides on a set of shared physical disks. This gives
us access to this single database from many different computers at the same time. Oracle RAC
provides for extremely highly available systems and has the potential to architect extremely
scalable solutions.

Let’s take a look at a simple example. Say we've just installed Oracle 10g version 10.1.0.3.
We did a software-only installation. No starter databases, nothing—just the software.

The pwd command shows the current working directory (this example was performed on a
Linux-based computer). We're in the dbs directory (on Windows, this would be the database

CHAPTER 2 = ARCRITEGTURE OVERVIEW

directory) and the 1s -1 command shows it is “empty.” There is no init.ora file and no
SPFILEs (stored parameter files; these will be discussed in detail in Chapter 3).

[orai0og@localhost dbs]$ pwd
/home/ora10g/dbs
[orai0g@localhost dbs]$ 1s -1
total 0

Using the ps (process status) command, we can see all processes being run by the user
ora10g (the Oracle software owner in this case). There are no Oracle database processes what-
soever at this point.

[oralog@localhost dbs]$ ps -aef | grep oralog

0ralog 4173 4151 0 13:33 pts/0 00:00:00 -su

oralog 4365 4173 0 14:09 pts/0 00:00:00 ps -aef
oralog 4366 4173 0 14:09 pts/0 00:00:00 grep oralOg

We then use the ipcs command, a UNIX command that is used to show interprocess
communication devices such as shared memory, semaphores, and the like. Currently there
are none in use on this system at all.

[oral0g@localhost dbs]$ ipcs -a

—————— Shared Memory Segments --------
key shmid owner perms bytes nattch status

—————— Semaphore Arrays --------
key semid owner perms nsems

------ Message Queues --------
key msqid owner perms used-bytes messages

We then start up SQL*Plus (Oracle’s command-line interface) and connect AS SYSDBA (the
account that is allowed to do virtually anything in the database). The connection is successful
and SQL*Plus reports we are connected to an idle instance:

[orai0g@localhost dbs]$ sqlplus "/ as sysdba"

SQL*Plus: Release 10.1.0.3.0 - Production on Sun Dec 19 14:09:44 2004
Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to an idle instance.

SoL>

Our “instance” right now consists solely of the Oracle server process shown in bold in the
following output. There is no shared memory allocated yet and no other processes.

SQL> !ps -aef | grep oralog

0ralog 4173 4151 0 13:33 pts/0 00:00:00 -su

0ralog 4368 4173 0 14:09 pts/0 00:00:00 sqlplus as sysdba

oralog 4370 1 0 14:09 ? 00:00:00 oracleoraiog (...)

0ralog 4380 4368 0 14:14 pts/0 00:00:00 /bin/bash -c ps -aef | grep oral0g

a1

CHAPTER 2 = ARCRITEGCTURE OVERVIEW

0ralog 4381 4380 0 14:14 pts/0 00:00:00 ps -aef
0ralog 4382 4380 0 14:14 pts/0 00:00:00 grep oral0g

SOL> lipcs -a

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status

------ Semaphore Arrays --------
key semid owner perms nsems

------ Message Queues --------
key msqid owner perms used-bytes messages

SQL>
Let’s try to start the instance now:

SQL> startup

ORA-01078: failure in processing system parameters

LRM-00109: could not open parameter file '/home/oral10g/dbs/initoral0g.ora’
SoL>

That is the sole file that must exist in order to start up an instance—we need either a
parameter file (a simple flat file described in more detail shortly) or a stored parameter file.
We'll create the parameter file now and put into it the minimal information we need to actu-
ally start a database instance (normally, many more parameters will be specified, such as the
database block size, control file locations, and so on):

$ cat initora10g.ora
db_name = oraiog

and then once we get back into SQL*Plus:

SOL> startup nomount
ORACLE instance started.

We used the nomount option to the startup command since we don'’t actually have a data-
base to “mount” yet (see the SQL*Plus documentation for all of the startup and shutdown
options).

Note 0On Windows, prior to running the startup command, you'll need to execute a service creation
statement using the oradim. exe utility.

Now we have what I would call an “instance.” The background processes needed to actu-
ally run a database are all there, such as process monitor (PMON), log writer (LGWR), and so
on (these processes are covered in detail in Chapter 5).

Total System Global Area 113246208 bytes
Fixed Size 777952 bytes
Variable Size 61874464 bytes
Database Buffers 50331648 bytes
Redo Buffers 262144 bytes
SQL> !ps -aef | grep oralog

0ralog 4173 4151 0 13:33 pts/0 00:
0ralog 4368 4173 0 14:09 pts/0 00:
oralog 4404 1 0 14:18 ? 00:
0ralog 4406 1 0 14:18 ? 00:
0ralog 4408 1 0 14:18 ? 00:
oralog 4410 1 0 14:18 ? 00:
oralog 4412 1 0 14:18 ? 00:
oralog 4414 1 0 14:18 ? 00:
oralog 4416 1 0 14:18 ? 00:
oralog 4418 1 0 14:18 ? 00:
0ralog 4419 4368 0 14:18 pts/0 00:
oralog 4420 4419 0 14:18 pts/0 00:
oralog 4421 4419 0 14:18 pts/0 00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00
00
00
00
00

CHAPTER 2 = ARCRITEGTURE OVERVIEW

-su
sqlplus as sysdba
ora_pmon_oral0g

ora_mman_orallg

ora_dbw0_ora10g

ora_lgwr oralog

ora_ckpt oraiog

ora_smon_oral0g

ora_reco_oral0g

oracleoraiog (...)

/bin/bash -c ps -aef | grep oralog
ps -aef

grep orallg

Additionally, ipcs is, for the first time, reporting the use of shared memory and
semaphores—two important interprocess communication devices on UNIX:

SOL> !ipcs -a

Shared Memory Segments

key shmid owner perms
0x99875060 458760 oral0g 660
—————— Semaphore Arrays --------

key semid owner perms
0xf182650c 884736 0ralog 660
—————— Message Queues --------

key msqid owner perms
SoL>

bytes

nattch status

115343360 8

nsems
34

used-bytes

messages

Note that we have no “database” yet. We have a name of a database (in the parameter file
we created), but no database whatsoever. It we tried to “mount” this database, then it would
fail because it quite simply does not yet exist. Let’s create it. I've been told that creating an
Oracle database involves quite a few steps, but let’s see:

SOL> create database;
Database created.

That is actually all there is to creating a database. In the real world, however, we would use
a slightly more complicated form of the CREATE DATABASE command because we would need to
tell Oracle where to put the log files, data files, control files, and so on. But here we now have a

CHAPTER 2 = ARCHITEGCTURE OVERVIEW

fully operational database. We would need to run the $ORACLE_HOME/rdbms/admin/catalog.sql
script and other catalog scripts to build the rest of the data dictionary we use every day (the
views we use such as ALL_OBJECTS are not yet present in this database), but we have a database
here. We can use a simple query against some Oracle V$ views, specifically V$DATAFILE,
V$LOGFILE, and V$CONTROLFILE, to list the files that make up this database:

SQL> select name from v$datafile;

/home/ora10g/dbs/dbs1ora10g.dbf
/home/ora10g/dbs/dbx1ora10g.dbf

SOL> select member from v$logfile;

MEMBER

/home/ora10g/dbs/logloral0g.dbf
/home/ora10g/dbs/log2ora10g.dbf

SQL> select name from v$controlfile;

/home/ora10g/dbs/cntrloralog.dbf

SoL>

Oracle used defaults to put everything together and created a database as a set of persis-
tent files. If we close this database and try to open it again, we'll discover that we can't:

SQL> alter database close;
Database altered.

SOL> alter database open;

alter database open
*

ERROR at line 1:
ORA-16196: database has been previously opened and closed

An instance can mount and open at most one database in its life. We must discard this
instance and create a new one in order to open this or any other database.
To recap,

* An instance is a set of background processes and shared memory.
¢ Adatabase is a collection of data stored on disk.
* Aninstance can mount and open only a single database, ever.

* A database may be mounted and opened by one or more instances (using RAC).

CHAPTER 2 = ARCHITECTURE OVERVIEW

As noted earlier, there is, in most cases, a one-to-one relationship between an instance
and a database. This is probably how the confusion surrounding the terms arises. In most
peoples’ experience, a database is an instance, and an instance is a database.

In many test environments, however, this is not the case. On my disk, I might have five
separate databases. On the test machine, at any point in time there is only one instance of
Oracle running, but the database it is accessing may be different from day to day or hour to
hour, depending on my needs. By simply having many different configuration files, I can
mount and open any one of these databases. Here, I have one “instance” at a time but many
databases, only one of which is accessible at any point in time.

So now when someone talks about an instance, you'll know they mean the processes and
memory of Oracle. When they mention the database, they are talking about the physical files
that hold the data. A database may be accessible from many instances, but an instance will
provide access to exactly one database at a time.

The SGA and Background Processes

You're probably ready now for an abstract picture of what an Oracle instance and database
looks like (see Figure 2-1).

Instance
ackg Background
ro

Bac ¢ Bac B
Prd P Prod
SGA

Procs Process

Figure 2-1. Oracle instance and database

Figure 2-1 is a depiction of an Oracle instance and database in their simplest form. Oracle
has a large chunk of memory called the SGA where it will, for example, do the following:

¢ Maintain many internal data structures that all processes need access to.

* Cache data from disk; buffer redo data before writing it to disk.

* Hold parsed SQL plans.

e And so on.

Oracle has a set of processes that are “attached” to this SGA, and the mechanism by which
they attach differs by operating system. In a UNIX environment, they will physically attach to

29

CHAPTER 2 = ARCHITECTURE OVERVIEW

a large shared memory segment, a chunk of memory allocated in the operating system that
may be accessed by many processes concurrently (generally using shmget () and shmat()).

Under Windows, these processes simply use the C callmalloc() to allocate the memory,
since they are really threads in one big process and hence share the same virtual memory
space. Oracle will also have a set of files that the database processes/threads read and write
(and Oracle processes are the only ones allowed to read or write these files). These files hold
all of our table data, indexes, temporary space, redo logs, and so on.

If you were to start up Oracle on a UNIX-based system and execute a ps command, you
would see that many physical processes are running, with various names. You saw an example
of that earlier when you observed the pmon, smon, and other processes. I cover what each of
these processes are in Chapter 5, so just be aware for now that they are commonly referred to
as the Oracle background processes. They are persistent processes that make up the instance,
and you will see them from the time you start the instance until the time you shut it down.

It is interesting to note that these are processes, not individual programs. There is only
one Oracle binary executable on UNIX; it has many “personalities” depending on what it was
told to do when it starts up. The same binary executable that was run to get ora_pmon_ora10g
was also used to get the process ora_ckpt_ora10g. There is only one binary executable pro-
gram, named simply oracle. It is just executed many times with different names.

On Windows, using the pslist tool (http://www.sysinternals.com/ntw2k/freeware/
pslist.shtml), we'll find only one process, oracle.exe. Again, on Windows there is only one
binary executable (oracle.exe). Within this process, we'll find many threads representing the
Oracle background processes.

Using pslist (or any of a number of tools), we can see these threads:

C:\Documents and Settings\tkyte>pslist oracle

PslList 1.26 - Process Information Lister
Copyright (C) 1999-2004 Mark Russinovich
Sysinternals - www.sysinternals.com

Process information for ORACLE-N15577HE:

Name Pid Pri Thd Hnd Priv CPU Time Elapsed Time
oracle 1664 8 19 284 354684 0:00:05.687 0:02:42.218

Here we can see there are 19 threads (Thd in the display) contained in the single Oracle
process. These threads represent what were processes on UNIX—they are the pmon, arch, 1gwr,
and so on bits of Oracle. We can use pslist to see more details about each:

C:\Documents and Settings\tkyte>pslist -d oracle
PsList 1.26 - Process Information Lister
Copyright (C) 1999-2004 Mark Russinovich
Sysinternals - www.sysinternals.com

Thread detail for ORACLE-N15577HE:

oracle 1664:

Tid Pri Cswtch
1724 9 148
756 9 236
1880 8 2
1488 8 403
1512 8 149
1264 8 254
960 9 425
2008 9 341
1504 8 1176
1464 8 97
1420 8 171
1588 8 131
1600 8 61
1608 9 5
2080 8 84
2088 8 127
2092 8 110
2144 8 115
2148 9 803

We cannot see the thread “names” like we could on UNIX (ora_pmon_ora10g and so on)
but we can see the thread IDs (Tid), priorities (Pri), and other operating system accounting

State

Wait:Executive

Wait:
Wait:
Wait:
Wait:
Wait:
Wait:
Wait:
Wait:
Wait:
Wait:
Wait:
Wait:

UserReq
UserReq
UserReq
UserReq
UserReq
UserReq
UserReq
UserReq
UserReq
UserReq
UserReq
UserReq

Wait:Queue

Wait:
Wait:
Wait:
Wait:
Wait:

information about them.

UserReq
UserReq
UserReq
UserReq
UserReq

Connecting to Oracle

In this section, we’ll take a look at the mechanics behind the two most common ways to have
requests serviced by an Oracle server: dedicated server and shared server connections. We'll
see what happens on the client and the server in order to establish connections, so we can
log in and actually do work in the database. Lastly, we'll take a brief look at how to establish
TCP/IP connections—TCP/IP being the primary networking protocol used to connect over
the network to Oracle—and at how the listener process on our server, which is responsible for
establishing the physical connection to the server, works differently in the cases of dedicated
and shared server connections.

Dedicated Server

Figure 2-1 and the pslist output presented a picture of what Oracle looks like immediately
after starting. If we were now to log into this database using a dedicated server, we would see
a new process get created just to service us:

C:\Documents and Settings\tkyte>sqlplus tkyte/tkyte

O O O O O O O O O O O O O O O o o o o

User Time

:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:

00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.

000
000
000
000
000
000
000
000
046
000
015
000
000
000
015
000
000
015
093

CHAPTER 2

Kernel Time

O O O O O O O O O O O O O O O O o o o

:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:

00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.
00.

218
046
000
109
046
062
125
093
218
031
093
046
046
000
046
046
015
171
859

ARCHITEGTURE OVERVIEW

Elapsed Time

0:

O O O O O O O O O O O O O o o o o o

02:
:02:
:02:
:02:
:02:
:02:
:02:
:02:
:02:
:02:
:02:
:02:
:02:
:02:
Ok
Ok
Ok
Ok
Ok

SQL*Plus: Release 10.1.0.3.0 - Production on Sun Dec 19 15:41:53 2004
Copyright (c) 1982, 2004, Oracle.

Connected to:

All rights reserved.

46.
45.
45.
10,
09.
09.
09.
09.
09.
09.
08.
08.
08.
01.
33.
15.
14.
12.
09.

625
984
953
593
171
140
078
062
015
000
984
890
796
953
468
968
687
421
718

af

CHAPTER 2 = ARCHITEGCTURE OVERVIEW

Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production
With the Partitioning, OLAP and Data Mining options

tkyte@ORA10G> host pslist oracle
PsList 1.26 - Process Information Lister
Copyright (C) 1999-2004 Mark Russinovich

Sysinternals - www.sysinternals.com

Process information for ORACLE-N15577HE:

Name Pid Pri Thd Hnd Priv CPU Time Elapsed Time
oracle 1664 8 20 297 356020 0:00:05.906 0:03:21.546
tkyte@ORA10G>

Now you can see there are 20 threads instead of 19, the extra thread being our dedicated
server process (more information on what exactly a dedicated server process is shortly). When
we log out, the extra thread will go away. On UNIX, we would see another process get added to
the list of Oracle processes running, and that would be our dedicated server.

This brings us to the next iteration of the previous diagram. Now, if we were to connect to
Oracle in its most commonly used configuration, we would see something like Figure 2-2.

Instance
Bac ¢ Bac Backg Background
Prd P Prod Procs Process
SGA
A
S Database
Access
C > 3
Client Dedicated)
Connection Disk I/0 “-ﬁ

Figure 2-2. Typical dedicated server configuration

As noted, typically Oracle will create a new process for me when I'log in. This is commonly
referred to as the dedicated server configuration, since a server process will be dedicated to me
for the life of my session. For each session, a new dedicated server will appear in a one-to-one
mapping. This dedicated server process is not (by definition) part of the instance. My client
process (whatever program is trying to connect to the database) will be in direct communica-
tion with this dedicated server over some networking conduit, such as a TCP/IP socket. It is
this server process that will receive my SQL and execute it for me. It will read data files if nec-
essary, and it will look in the database’s cache for my data. It will perform my update statements.
It will run my PL/SQL code. Its only goal is to respond to the SQL calls that I submit to it.

CHAPTER 2 = ARCHITECTURE OVERVIEW

Shared Server

Oracle may also accept connections in a manner called shared server (formally known as
Multi-Threaded Server, or MTS), in which we would not see an additional thread created or a
new UNIX process appear for each user connection. In shared server, Oracle uses a pool of
“shared processes” for a large community of users. Shared servers are simply a connection
pooling mechanism. Instead of having 10,000 dedicated servers (that’s a lot of processes or
threads) for 10,000 database sessions, shared server allows us to have a small percentage of
this number of processes/threads, which are (as the name implies) shared by all sessions. This
allows Oracle to connect many more users to the database than would otherwise be possible.
Our machine might crumble under the load of managing 10,000 processes, but managing 100
or 1,000 processes is doable. In shared server mode, the shared processes are generally started
up with the database and just appear in the ps list.

A big difference between shared and dedicated server connections is that the client
process connected to the database never talks directly to a shared server, as it would to a dedi-
cated server. It cannot talk to a shared server because that process is, in fact, shared. To share
these processes, we need another mechanism through which to “talk.” Oracle employs a
process (or set of processes) called dispatchers for this purpose. The client process will talk
to a dispatcher process over the network. The dispatcher process will put the client’s request
into the request queue in the SGA (one of the many things the SGA is used for). The first
shared server that is not busy will pick up this request and process it (e.g., the request could
be UPDATE T SET X = X+5 WHERE Y = 2). Upon completion of this command, the shared server will
place the response in the invoking dispatcher’s response queue. The dispatcher process is
monitoring this queue and, upon seeing a result, will transmit it to the client. Conceptually,
the flow of a shared server request looks like Figure 2-3.

Shared Server

@ .

SGA @
Request Response (
Queue Queue
A

Client @

Connection
Dispatcher (—®

Figure 2-3. Steps in a shared server request

As shown in Figure 2-3, the client connection will send a request to the dispatcher. The
dispatcher will first place this request onto the request queue in the SGA (1). The first available
shared server will dequeue this request (2) and process it. When the shared server completes,
the response (return codes, data, and so on) is placed into the response queue (3), subse-
quently picked up by the dispatcher (4), and transmitted back to the client.

29

CHAPTER 2 = ARCRITEGCTURE OVERVIEW

As far as the developer is concerned, there is no difference between a shared server con-
nection and a dedicated server connection.

Now that you understand what dedicated server and shared server connections are, you
may have the following questions:

* How do I get connected in the first place?
* What would start this dedicated server?
e How might I get in touch with a dispatcher?

The answers depend on your specific platform, but the sections that follow outline the
process in general terms.

Mechanics of Connecting over TCP/IP

We'll investigate the most common networking case: a network-based connection request
over a TCP/IP connection. In this case, the client is situated on one machine and the server
resides on another machine, with the two connected on a TCP/IP network. It all starts with
the client. The client makes a request using the Oracle client software (a set of provided appli-
cation program interfaces, or APIs) to connect to database. For example, the client issues the
following:

[tkyte@localhost tkyte]$ sqlplus scott/tiger@oral0g.localdomain

SQL*Plus: Release 10.1.0.3.0 - Production on Sun Dec 19 16:16:41 2004
Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production
With the Partitioning, OLAP and Data Mining options

scott@ORA10G>

Here, the client is the program SQL*Plus, scott/tiger is the username/password, and
ora10g.localdomain is a TNS service name. TINS stands for Transparent Network Substrate
and is “foundation” software built into the Oracle client that handles our remote connections,
allowing for peer-to-peer communication. The TNS connection string tells the Oracle software
how to connect to the remote database. Generally, the client software running on your
machine will read a file called tnsnames.ora. This is a plain-text configuration file commonly
found in the [ORACLE_HOME]\network\admin directory ([ORACLE HOME] represents the full path
to your Oracle installation directory). It will have entries that look like this:

ORA10G.LOCALDOMAIN =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = localhost.localdomain)(PORT = 1521))
)
(CONNECT _DATA =
(SERVICE_NAME = ora10g)

)

CHAPTER 2 = ARCHITECTURE OVERVIEW

This configuration information allows the Oracle client software to map the TNS connec-
tion string we used, ora10g.localdomain, into something useful—namely, a hostname, a port
on that host on which a “listener” process will accept connections, the service name of the
database on the host to which we wish to connect, and so on. A service name represents
groups of applications with common attributes, service level thresholds, and priorities. The
number of instances offering the service is transparent to the application, and each database
instance may register with the listener as willing to provide many services. So, services are
mapped to physical database instances and allow the DBA to associate certain thresholds
and priorities with them.

This string, ora10g.localdomain, could have been resolved in other ways. For example,
it could have been resolved using Oracle Internet Directory (OID), which is a distributed
Lightweight Directory Access Protocol (LDAP) server, similar in purpose to DNS for hostname
resolution. However, use of the tnsnames.ora file is common in most small to medium instal-
lations where the number of copies of such a configuration file is manageable.

Now that the client software knows where to connect to, it will open a TCP/IP socket con-
nection to the server with the hostname localhost.localdomain on port 1521. If the DBA for
our server has installed and configured Oracle Net, and has the listener listening on port 1521
for connection requests, this connection may be accepted. In a network environment, we will
be running a process called the TNS listener on our server. This listener process is what will get
us physically connected to our database. When it receives the inbound connection request,
it inspects the request and, using its own configuration files, either rejects the request (e.g.,
because there is no such database, or perhaps our IP address has been disallowed connections
to this host) or accepts it and goes about getting us connected.

If we are making a dedicated server connection, the listener process will create a dedi-
cated server for us. On UNIX, this is achieved via a fork() and exec() system call (the only
way to create a new process after initialization in UNIX is via fork()). The new dedicated
server process inherits the connection established by the listener, and we are now physically
connected to the database. On Windows, the listener process requests the database process to
create a new thread for a connection. Once this thread is created, the client is “redirected” to
it, and we are physically connected. Diagrammatically in UNIX, it would look as shown in
Figure 2-4.

@client

Connection

Request

Listener

@fork (/

exec()

Y
Dedicated
Server

Figure 2-4. The listener process and dedicated server connections

®)client

Connection

On the other hand, the listener will behave differently if we are making a shared server
connection request. This listener process knows the dispatcher(s) we have running in the
instance. As connection requests are received, the listener will choose a dispatcher process

61

CHAPTER 2 = ARCHITECTURE OVERVIEW

from the pool of available dispatchers. The listener will either send back to the client the con-
nection information describing how the client can connect to the dispatcher process or, if
possible, “hand off” the connection to the dispatcher process (this is operating system-and
database version—dependent, but the net effect is the same). When the listener sends back

the connection information, it is done because the listener is running on a well-known host-
name and port on that host, but the dispatchers will be accepting connections on randomly
assigned ports on that server. The listener is made aware of these random port assignments by
the dispatcher and will pick a dispatcher for us. The client then disconnects from the listener
and connects directly to the dispatcher. We now have a physical connection to the database.
Figure 2-5 illustrates this process.

Dclient

Connection
Request

Dispatcher on
Port 24356
Dispatcher on
Port 12754

Figure 2-5. The listener process and shared server connections

@Tells Client to
Connect to Port
12754

®)client

Connection

Summary

That completes our overview of the Oracle architecture. In this chapter, we defined the terms
“instance” and “database” and saw how to connect to the database through either a dedicated
server connection or a shared server connection. Figure 2-6 sums up the material covered in
the chapter and shows the interaction between a client using a shared server connection and
a client using a dedicated server connection. It also shows that an Oracle instance may use
both connection types simultaneously. (In fact, an Oracle database always supports dedicated
server connections—even when configured for shared server.)

CHAPTER 2 = ARCHITEGCTURE OVERVIEW 63

Instance
Backy” Backg” Backg” Back¢” Backg” Background
Prod._ Pro Procs_ Pro Prol Process m
Dispatcher SGA (—}
b

Memory
Shared Access
Connection

Dedicated
Connection

Dedicated
Server

Disk I/0

Figure 2-6. Connection overview

Now you're ready to take a more in-depth look at the processes behind the server, what they
do, and how they interact with each other. You're also ready to look inside the SGA to see what
it contains and what its purpose is. You'll start in the next chapter by looking at the types of
files Oracle uses to manage the data and the role of each file type.

CHAPTER 3

Files

In this chapter, we will examine the eight file types that make up a database and instance.
The files associated with an instance are simply

¢ Parameter files: These files tell the Oracle instance where to find the control files, and
they also specify certain initialization parameters that define how big certain memory
structures are, and so on. We will investigate the two options available for storing data-
base parameter files.

* Trace files: These are diagnostic files created by a server process generally in response to
some exceptional error condition.

e Alert file: This is similar to a trace file, but it contains information about “expected”
events, and it also alerts the DBA in a single, centralized file of many database events.

The files that make up the database are

* Data files: These files are for the database; they hold your tables, indexes, and all other
segments.

» Temp files: These files are used for disk-based sorts and temporary storage.

 Control files: These files tell you where the data files, temp files, and redo log files are, as
well as other relevant metadata about their state.

* Redo log files: These are your transaction logs.

* Password files: These files are used to authenticate users performing administrative
activities over the network. We will not discuss these files in any detail.

Starting in Oracle 10g, there are a couple of new optional file types that are used by Oracle
to facilitate faster backup and faster recovery operations. These two new files are

* Change tracking file: This file facilitates a true incremental backup of Oracle data. It
does not have to be located in the Flash Recovery Area, but as it relates purely to data-
base backup and recovery we’'ll discuss it in the context of that area.

e Flashback log files: These files store “before images” of database blocks in order to facil-
itate the new FLASHBACK DATABASE command.

65

66 CHAPTER 3 © FILES

We'll also take a look at other types of files commonly associated with the database,
such as

* Dump (DMP) files: These files are generated by the Export database utility and con-
sumed by the Import database utility.

* Data Pump files: These files are generated by the new Oracle 10g Data Pump Export
process and consumed by the Data Pump Import process. This file format may also
be created and consumed by external tables.

e Flat files: These are plain old files you can view in a text editor. You normally use these
for loading data into the database.

The most important files in the previous lists are the data files and the redo log files,
because they contain the data you worked so hard to accumulate. I can lose any and all of
the remaining files and still get to my data. If I lose my redo log files, I may start to lose some
data. If T lose my data files and all of their backups, I've definitely lost that data forever.

We will now take a look at the types of files and what we might expect to find in them.

Parameter Files

There are many different parameter files associated with an Oracle database, from a tnsnames.ora
file on a client workstation (used to “find” a server on the network), to a listener.ora file on
the server (for the network listener startup), to the sqlnet.ora, cman.ora, and ldap.ora files, to
name a few. The most important parameter file, however, is the database’s parameter file—
without this, we cannot even get a database started. The remaining files are important; all of
them are related to networking and getting connected to the database. However, they are
beyond the scope of our discussion. For information on their configuration and setup, I refer
you to the Net Services Administrator’s Guide. Typically as a developer, these files would be set
up for you, not by you.

The parameter file for a database is commonly known as an init file, or an init.ora file.
This is due to its historic default name, which is init<ORACLE_SID>.ora.I term it the “historic”
default name because starting with Oracle9i Release 1, a vastly improved method of storing
parameter settings for the database was introduced: the server parameter file, or simply
SPFILE. This file has the default name of spfile<ORACLE_SID>.ora. We'll take a look at both
kinds of parameter files in turn.

Note If you're unfamiliar with the term SID or ORACLE_SID, a full definition is called for. The SID is a site
identifier. It and ORACLE_HOME (where the Oracle software is installed) are hashed together in UNIX to create
a unique key name for attaching an SGA. If your ORACLE_SID or ORACLE_HOME is not set correctly, you’ll get
the ORACLE NOT AVAILABLE error, since you can’t attach to a shared memory segment that is identified by
this unique key. On Windows, shared memory isn’t used in the same fashion as UNIX, but the SID is still
important. You can have more than one database on the same ORACLE_HOME, so you need a way to uniquely
identify each one, along with their configuration files.

CRAPTER 3 = FILES

Without a parameter file, you cannot start an Oracle database. This makes the parameter
file fairly important, and as of Oracle9i Release 2 (versions 9.2 and above), the backup and
recovery tool Recovery Manager (RMAN) recognizes this file’s importance and will allow you
to include the server parameter file (but not the legacy init.ora parameter file type) in your
backup set. However, since it is simply a plain text file, which you can create with any text edi-
tor, it is not a file you have to necessarily guard with your life. You can re-create it, as long as
you know what was in it (e.g., you can retrieve that information from the database’s alert log,
if you have access to that).

We will now examine each type of parameter file (init.ora and SPFILE) in turn, but
before we do that, let’s see what a database parameter file looks like.

What Are Parameters?

In simple terms, a database parameter may be thought of as a “key” and “value” pair. You saw
an important parameter, DB_NAME, in the preceding chapter. The DB_NAME parameter was stored
simply as db_name = ora10g. The “key” here is DB_NAME and the “value” is ora10g—that is our
key/value pair. In order to see the current value of an instance parameter, you can query the
V§$ view V$PARAMETER. Alternatively, in SQL*Plus you can use the SHOW PARAMETER command, for
example:

Sys@ORA10G> select value
2 from v$parameter
3 where name = 'pga aggregate target';

1073741824

Sys@ORA10G> show parameter pga agg

pga_aggregate target big integer 1G

Both outputs show basically the same information, although you can get more informa-
tion from V$PARAMETER (there are many more columns to choose from than displayed in this
example). But SHOW PARAMETER wins for me in ease of use and the fact that it “wildcards” auto-
matically. Notice that I typed in only pga_agg; SHOW PARAMETER adds % to the front and back.

Note AllV$ views and all dictionary views are fully documented in the Oracle Database Reference man-
ual. Please regard that manual as the definitive source of what is available in a given view.

If you counted the number of documented parameters that you may set in each of the
database versions 9.0.1, 9.2.0, and 10.1.0, you would probably find 251, 258, and 255 different
parameters, respectively (I'm sure there could be additional parameters available on an

CHAPTER 3 = FILES

operating system-by—operating system basis). In other words, the number of parameters (and
their names) varies by release. Most parameters, like DB_BLOCK_SIZE, are very long lived (they
won't go away from release to release), but over time many other parameters become obsolete
as implementations change.

For example, in Oracle 9.0.1 there was a DISTRIBUTED_TRANSACTIONS parameter that could
be set to some positive integer and that controlled the number of concurrent distributed
transactions the database could perform. It was available in prior releases, but it is not found
in any release subsequent to 9.0.1 and, in fact, attempting to use it with subsequent releases
will raise an error:

ops$tkyte@ORA10G> alter system set distributed transactions = 10;

alter system set distributed transactions = 10

*

ERROR at line 1:

ORA-25138: DISTRIBUTED TRANSACTIONS initialization parameter has been made
obsolete

If you would like to review these parameters and get a feeling for what is available and
what each parameter does, you should refer to the Oracle Database Reference manual. The first
chapter of this manual examines each and every documented parameter in detail. I would like
to point out that in general, the default value assigned to these parameters (or the derived
value for parameters that obtain their default settings from other parameters) is sufficient for
most systems. In general, the values of parameters, such as the CONTROL_FILES parameter
(which specifies the location of the control files on your system), DB_BLOCK_SIZE, and various
memory-related parameters, need to be set uniquely for each database

Notice I used the term “documented” in the preceding paragraph. There are undocu-
mented parameters as well. You can identify these by the fact that their names begin with an
underscore (). There is a great deal of speculation about these parameters. Since they are
undocumented, some people believe they must be “magical,” and many people assume that
they are well known and used by Oracle “insiders.” In fact, I find the opposite to be true.

They are not well known and they are hardly ever used. Most of these undocumented para-
meters are rather boring, actually, as they represent deprecated functionality and backward-
compatibility flags. Others help in the recovery of data, not of the database itself; for example,
some of them enable the database to start up in certain extreme circumstances, but only long
enough to get data out. You have to rebuild after that.

Unless you are so directed by Oracle Support, there is no reason to have an undocu-
mented parameter in your configuration. Many have side effects that could be devastating.

In my development database, I use only one undocumented setting, if any:

_TRACE_FILES_PUBLIC = TRUE

This parameter makes trace files readable by all, not just the DBA group. On my develop-
ment database, I want my developers to use SQL_TRACE, TIMED_STATISTICS, and the TKPROF
utility frequently (well, I demand it actually); hence they need to be able to read the trace files.
With the advent of external tables in Oracle 9.0.1 and above, we’ll see that we need not use
even this parameter to permit access to trace files.

In my production database, I don’t use any undocumented settings. In fact, the seemingly
“safe” undocumented parameter just mentioned can have undesirable side effects in a live
system. Think about the sensitive information that you might find in a trace file, such as SQL

CRAPTER 3 = FILES

and even data values (see the upcoming section titled “Trace Files”), and ask yourself, “Do I
really want any end user to have read access to that data?” The answer is most likely no.

Caution Use undocumented parameters only at the request of Oracle Support. Their use can be damag-
ing to a database, and their implementation can—and will—change from release to release.

You may set the various parameter values in one of two ways: either for the current
instance or persistently. It is up to you make sure that the parameter files contain the values
you want them to. When using legacy init.ora parameter files, this is a manual process. To
change a parameter value persistently when using an init.ora file, to have that new setting be
in place across server restarts, you must manually edit and modify the init.ora parameter
file. With server parameter files, you'll see that this has been more or less fully automated for
you in a single command.

Legacy init.ora Parameter Files

The legacy Oracle init.ora file is a very simple file in terms of its construction. It is a series of
variable key/value pairs. A sample init.ora file might look like this:

db_name = "orag9ir2"
db_block size = 8192
control files = ("C:\oradata\controloi.ctl", "C:\oradata\controlo2.ctl")

In fact, this is pretty close to the most basic init.ora file that you could get away with in
real life. If I had a block size that was the default on my platform (the default block size varies
by platform), I could remove that. The parameter file is used at the very least to get the name
of the database and the location of the control files. The control files tell Oracle the location of
every other file, so they are very important to the “bootstrap” process of starting the instance.

Now that you know what these legacy database parameter files are and where to get more
details about the valid parameters that you can set, the last thing you need to know is where to
find them on disk. The naming convention for this file by default is

init$ORACLE SID.ora (Unix environment variable)
init%O0RACLE SID%.ora (Windows environment variable)

and by default it will be found in

$ORACLE_HOME/dbs (Unix)
%ORACLE_HOME%\DATABASE (Windows)

It is interesting to note that, in many cases, you will find the entire contents of this param-
eter file to be something like

IFILE="C:\oracle\admin\ora1og\pfile\init.ora'

The IFILE directive works in a similar fashion to an #include in C. It includes in the cur-
rent file the contents of the named file. The preceding directive includes an init.ora file from
a nondefault location.

CHAPTER 3 = FILES

It should be noted that the parameter file does not have to be in any particular location.
When starting an instance, you may use the pfile=filename option to the startup command.
This is most useful when you would like to try out different init.ora parameters on your data-
base to see the effects of having different settings.

Legacy parameter files can be maintained by using any plain text editor. For example, on
UNIX/Linux, I would use vi; on the many Windows operating system versions, I would use
Notepad; and on a mainframe, I would perhaps use Xedit. It is important to note that you are
fully responsible for editing and maintaining this file. There are no commands within the
Oracle database itself that you can use to maintain the values contained in the init.ora file.
For example, when you use the init.ora parameter file, the issue of an ALTER SYSTEM com-
mand to change the size of an SGA component would not be reflected as a permanent change
in the init.ora file. If you would like that change to be made permanent—in other words, if
you would like it to be the default for subsequent restarts of the database—it is up to you to
make sure all init.ora parameter files that might be used to start this database are manually
updated.

The last interesting point of note is that the legacy parameter file is not necessarily
located on the database server. One of the reasons the stored parameter that we’ll discuss
shortly was introduced was to remedy this situation. The legacy parameter file must be pres-
ent on the client machine attempting to start the database, meaning that if you run a UNIX
server, but administer it using SQL*Plus installed on your Windows desktop machine over the
network, then you would need the parameter file for the database on your desktop.

I still remember how I made the painful discovery that the parameter files are not stored
on the server. This goes back many years to when a brand-new tool called SQL*DBA was intro-
duced. This tool allowed us to perform remote operations (specifically, remote administrative
operations). From my server (running SunOS at the time), [was able to connect remotely to a
mainframe database server. I was also able to issue the “shutdown” command. However, it
was at that point I realized that I was in a bit of a jam—when I tried to start up the instance,
SQL*DBA would complain about not being able to find the parameter file. I learned that these
parameter files—the init.ora plain text files—were located on the machine with the client,
not on the server. SQL*DBA was looking for a parameter file on my local system with which to
start the mainframe database. Not only did I have no such file, but I also had no idea what to
put into one to get the system started up again! I didn't know the db_name or control file loca-
tions (even just getting the correct naming convention for the mainframe files would have
been a bit of stretch), and I didn’t have access to log into the mainframe system itself. I've not
made that same mistake since; it was a painful lesson to learn.

When DBAs realized that the init.ora parameter file had to reside on the client’s machine
that starts the database, it led to a proliferation of these files. Every DBA wanted to run the
administrative tools from his desktop, and so every DBA needed a copy of the parameter file
on his desktop machine. Tools such as Oracle Enterprise Manager (OEM) would add yet
another parameter file to the mix. These tools would attempt to centralize the administration
of all databases in an enterprise on a single machine, sometimes referred to as a “manage-
ment server.” This single machine would run software that would be used by all DBAs to start
up, shut down, back up, and otherwise administer a database. That sounds like a perfect
solution: centralize all parameters files in one location and use the GUI tools to perform

CRAPTER 3 = FILES

all operations. But the reality is that sometimes it was much more convenient to issue the
administrative startup command from within SQL*Plus on the database server machine itself
during the course of some administrative task, so we ended up with multiple parameter files
again: one on the management server and one on the database server. These parameter files
would then proceed to get out of sync with each other, and people would wonder why the
parameter change they made last month “disappeared,” but seemingly randomly made a
reappearance.

Enter the server parameter file (SPFILE), which can now be a single source of truth for the
database.

Server Parameter Files (SPFILEs)

SPFILEs represent a fundamental change in the way Oracle accesses and now maintains
parameter settings for the instance. An SPFILE removes the two serious issues associated
with legacy parameter files:

e [t removes the proliferation of parameter files. An SPFILE is always stored on the data-
base server; the SPFILE must exist on the server machine itself and cannot be located
on the client machine. This makes it practical to have a single source of “truth” with
regard to parameter settings.

[t removes the need (in fact, it removes the ability) to manually maintain parameter files
using text editors outside of the database. The ALTER SYSTEM command allows you to
write values directly into the SPFILE. Administrators no longer have to find and main-
tain all of the parameter files by hand.

The naming convention for this file by default is

spfile$ORACLE SID.ora (Unix environment variable)
spfile%0RACLE SID%.ora (Windows environment variable)

I strongly recommend using the default location; doing otherwise defeats the simplicity
SPFILEs represent. When an SPFILE is in its default location, everything is more or less done
for you. Moving the SPFILE to a nondefault location involves you having to tell Oracle where
to find the SPFILE, leading to the original problems of legacy parameter files all over again!

Converting to SPFILEs

Suppose we have a database that is using a legacy parameter file described previously. The
move to an SPFILE is quite simple; we use the CREATE SPFILE command.

Note You can also use a “reverse” command to create a parameter file (PFILE) from an SPFILE.
("Il 'explain shortly why you might want to do that.)

n

CHAPTER 3 = FILES

So, assuming we are using an init.ora parameter file, and that init.ora parameter file is
in fact in the default location on the server, we simply issue the CREATE SPFILE command and
restart our server instance:

SyS@ORA10G> show parameter spfile;

spfile string
Sys@ORA10G> create spfile from pfile;
File created.

Sys@ORA10G> startup force;
ORACLE instance started.

Total System Global Area 603979776 bytes

Fixed Size 780300 bytes
Variable Size 166729716 bytes
Database Buffers 436207616 bytes
Redo Buffers 262144 bytes

Database mounted.
Database opened.
SyS@ORA10G> show parameter spfile;

spfile string /home/ora10g/dbs/spfileoral0g.ora

The SHOW PARAMETER command was used here to show that initially we were not using an
SPFILE, but after we created one and restarted the instance, we were in fact using one and it
had the default name.

Note In a clustered environment, using Oracle RAC, all instances share the same SPFILE, so this process
of converting over to an SPFILE from a PFILE should be done in a controlled fashion. The single SPFILE can
contain all of the parameter settings, even instance-specific settings in the single SPFILE, but you will have
to merge all of the necessary parameter files into a single PFILE using the format that follows.

In a clustered environment, in order to convert from using individual PFILEs to a com-
mon SPFILE shared by all, you would merge your individual PFILEs into a single file
resembling this:

CRAPTER 3 = FILES

.cluster database instances=2

.cluster database=TRUE

.cluster_interconnects='10.10.10.0"

.compatible="'10.1.0.2.0'

.control files='/ocfs/010G/controlol.ctl’,'/ocfs/010G/controlo2.ctl’
.db_name="'010G"

* X X ¥ X *

*.processes=150
*.undo_management="AUTO'
010G1.1instance_number=1
010G2.1instance_number=2

010G1.local listener='LISTENER 010G1'
010G2.local listener='LISTENER_010G2'
010G1.remote listener='LISTENER 010G2'
010G2.remote_listener="LISTENER 010G1'
010G1.thread=1

010G2.thread=2
010G1.undo_tablespace="UNDOTBS1'
010G2.undo_tablespace="UNDOTBS2'

That is, parameter settings that are common to all instances in the cluster would start
with *.. Parameter settings that are specific to a single instance, such as the INSTANCE_NUMBER
and the THREAD of redo to be used, are prefixed with the instance name (the Oracle SID). In the
preceding example,

¢ The PFILE would be for a two-node cluster with instances named 010G1 and 010G2.

e The *.db_name = '010G' assignment indicates that all instances using this SPFILE will
be mounting a database named 010G.

* 010G1.undo_tablespace="UNDOTBS1' indicates that the instance named 010G1 will use
that specific undo tablespace, and so on.

Setting Values in SPFILES

Once our database is up and running on the SPFILE, the next question relates to how we set
and change values contained therein. Remember, SPFILEs are binary files and we cannot just
edit them using a text editor. The answer is to use the ALTER SYSTEM command, which has the
following syntax (portions in <> are optional, and the presence of the pipe symbol indicates
“one of the list”):

Alter system set parameter=value <comment='text'> <deferred>
<scope=memory |spfile|both> <sid="'sid|*'>

13

CHAPTER 3 = FILES

The ALTER SYSTEM SET command, by default, will update the currently running instance
and make the change to the SPFILE for you, greatly easing administration and removing the
problems that arose when parameter settings were made via the ALTER SYSTEM command, but
you forgot to update or missed an init.ora parameter file.

With that in mind, let’s take a look at each element of the command:

e The parameter=value assignment supplies the parameter name and the new value
for the parameter. For example, pga_aggregate target = 1024m would set the
PGA_AGGREGATE_TARGET parameter to a value of 1,024MB (1GB).

e comment="text' is an optional comment we may associate with this setting of the
parameter. The comment will appear in the UPDATE_COMMENT field of the V$PARAMETER
view. If we use the options to also save the change to the SPFILE, the comment will be
written into the SPFILE and preserved across server restarts as well, so future restarts of
the database will see the comment.

» deferred specifies whether the system change takes place for subsequent sessions only
(not currently established sessions, including the one making the change). By default,
the ALTER SYSTEM command will take effect immediately, but some parameters cannot
be changed “immediately”—they can be changed only for newly established sessions.
We can use the following query to see what parameters mandate the use of deferred:

ops$tkyte@ORA10G> select name
2 from v$parameter
3 where ISSYS MODIFIABLE = 'DEFERRED';

backup tape io slaves

audit file dest

object cache optimal size
object cache max_size percent
sort area size

sort area retained size

olap page pool size

7 rows selected.

The code shows that SORT_AREA SIZE is modifiable at the system level, but only in a
deferred manner. The following code shows what happens if we try to modify its value
with and without the deferred option:

ops$tkyte@ORA10G> alter system set sort area size = 65536;
alter system set sort area size = 65536
*
ERROR at line 1:
ORA-02096: specified initialization parameter is not modifiable with this
option

CRAPTER 3 = FILES

ops$tkyte@ORA10G> alter system set sort area size = 65536 deferred;
System altered.

e SCOPE=MEMORY | SPFILE |BOTH indicates the “scope” of this parameter setting. We have the
choice of setting the parameter value with the following:

* SCOPE=MEMORY changes it in the instance(s) only; it will not survive a database
restart. The next time you restart the database, the setting will be whatever it was
before the change.

* SCOPE=SPFILE changes the value in the SPFILE only. The change will not take place
until the database is restarted and the SPFILE is processed again. Some parameters
may only be changed using this option—for example, the processes parameter
must use SCOPE=SPFILE, as we cannot change the active instance value.

* SCOPE=BOTH means the parameter change takes place both in memory and in the
SPFILE. The change will be reflected in the current instance and, the next time you
restart, this change will still be in effect. This is the default value for scope when
using an SPFILE. When using an init.ora parameter file, the default and only valid
value is SCOPE=MEMORY.

e sid="sid|*' is mostly useful in a clustered environment; sid="*" is the default. This
allows you to specify a parameter setting uniquely for any given instance in the cluster.
Unless you are using Oracle RAC, you will not need to specify the sid= setting.

A typical use of this command is simply

ops$tkyte@ORA10G> alter system set pga aggregate target=1024m;
System altered.

or, better yet, perhaps, using the COMMENT= assignment to document when and why a particu-
lar change was made:

ops$tkyte@ORA10G> alter system set pga aggregate target=1024m
2 comment = 'changed 01-jan-2005 as per recommendation of George';

System altered.

ops$tkyte@ORA10G> select value, update comment
2 from v$parameter
3 where name = 'pga aggregate target';

1073741824
changed 01-jan-2005 as per recommendation of George

CHAPTER 3 = FILES

Unsetting Values in SPFILES

The next question that arises is, “OK, so we set a value, but we would now like to ‘unset’ it—in
other words, we don’t want that parameter setting in our SPFILE at all, and we would like it
removed. Since we cannot edit the file using a text editor, how do we accomplish that?” This,
too, is done via the ALTER SYSTEM command, but using the RESET clause:

Alter system reset parameter <scope=memory|spfile|both> sid="sid|*'

Here the SCOPE/SID settings have the same meaning as before, but the SID= component is
not optional. The documentation in the Oracle SQL Reference manual is a bit misleading on
this particular command, as it seems to indicate that it is only valid for RAC (clustered) data-
bases. In fact, it states the following:

Thealter system reset clause is for use in a Real Application Clusters environment.
Later, it does go on to state
In a non-RAC environment, you can specify SID="*" for this clause.

But this is a bit confusing. Nonetheless, this is the command we would use to “remove” a
parameter setting from the SPFILE, allowing it to default. So, for example, if we wanted to
remove the SORT_AREA SIZE, to allow it to assume the default value we specified previously,
we could do so as follows:

Sys@ORA10G> alter system reset sort area size scope=spfile sid="*';
System altered.

The SORT_AREA_SIZE is removed from the SPFILE, a fact you can verify by issuing the
following:

SysS@ORA10G> create pfile='/tmp/pfile.tst' from spfile;
File created.

You can then review the contents of /tmp/pfile.tst, which will be generated on the data-
base server. You will find the SORT_AREA_SIZE parameter does not exist in the parameter files
anymore.

Creating PFILEs from SPFILES

The CREATE PFILE...FROM SPFILE command from the previous section is the opposite of
CREATE SPFILE. It takes the binary SPFILE and creates a plain text file from it—one that can be
edited in any text editor and subsequently used to start up the database. You might use this
command for at least two things on a regular basis:

* To create a “one-time” parameter file used to start up the database for maintenance, with
some special settings. So, you would issue CREATE PFILE...FROM SPFILE and edit the
resulting text PFILE, modifying the required settings. You would then start up the data-
base, using the PFILE=<FILENAME> option to specify use of your PFILE instead of the
SPFILE. After you are finished, you would just start up normally, and the database

CRAPTER 3 = FILES

¢ To maintain a history of commented changes. In the past, many DBAs heavily com-
mented their parameter files with a change history. If they changed the size of the
buffer cache 20 times over the period of a year, for example, they would have 20 com-
ments in front of the db_cache_size init.ora parameter setting, stating the date and
reason for making the change. The SPFILE does not support this, but you can achieve
the same effect if you get into the habit of doing the following:

SyS@ORA10G> create pfile='init 01 jan 2005 oral0g.ora' from spfile;
File created.

Sys@ORA10G> !1s -1 $ORACLE_HOME/dbs/init *

-IW-IW-I-- 1 oralOg oral0g 871 Jan 1 17:04 init 01 jan 2005 oralOg.ora
SyS@ORA10G> alter system set pga aggregate target=1024m

2 comment = 'changed 01-jan-2005 as per recommendation of George';

In this way, your history will be saved in the series of parameter files over time.

Fixing Corrupted SPFILEs

The last question that comes up with regard to SPFILEs is, “SPFILEs are binary files, so what
happens if one gets corrupted and the database won't start? At least the init.ora file was just
text, so we could edit it and fix it.” Well, SPFILEs shouldn’t go corrupt any more than should a
data file, redo log file, control file, and so forth. However, in the event that one does, you have
a couple of options.

First, the amount of binary data in the SPFILE is very small. If you are on a UNIX plat-
form, a simple strings command will extract all of your settings:

[tkyte@localhost dbs]$ strings spfile$ORACLE SID.ora

*.compatible="'10.1.0.2.0'

*.control files='/home/oral0g/oradata/ora10g/controlol.ctl’,'/home/oral0g/oradata/or
alog/controlo2.ctl', ' /home/oral0g/oradata/ora10g/controlo3.ctl’

*.user_dump_dest="'/home/ora10g/admin/ora10g/udump’

On Windows, simply open the file with write.exe (WordPad). WordPad will display for you
all of the clear text in the file, and a simple cut and paste into init<ORACLE_SID>.ora will allow
you to create a PFILE you can use to start your instance.

In the event that the SPFILE has just “gone missing” (for whatever reason—not that I have
seen an SPFILE disappear), you can also resurrect the information for your parameter file
from the database’s alert log (more information on the alert log shortly). Every time you start
the database, the alert log will contain a section like this:

System parameters with non-default values:
processes = 150

timed_statistics = TRUE

shared_pool_size = 67108864
large pool_size = 8388608
java_pool size = 33554432

control_files C:\oracle\oradata\ora9ir2w\CONTROLO1.CTL,

CHAPTER 3 = FILES

C:\oracle\oradata\ora9ir2w\CONTROL02.CTL,

C:\oracle\oradata\ora9ir2w\CONTROLO3.CTL

pga_aggregate_target
aq_tm_processes

PMON started with pid=2

DBWO started with pid=3

25165824
1

From this section, you can easily create a PFILE to be converted into a new SPFILE using
the CREATE SPFILE command.

Parameter File Wrap-Up

In this section, we covered all of the basics of managing Oracle initialization parameters and
parameter files. We looked at how to set parameters, view parameter values, and have those
settings persist across database restarts. We explored the two types of database parameter
files: legacy PFILEs (simple text files) and SPFILEs. For all existing databases, using SPFILEs
is recommended for the ease of administration and clarity they bring to the table. The ability
to have a single source of parameter “truth” for the database, coupled with the ability of the
ALTER SYSTEM command to persist the parameter values, make SPFILEs a compelling feature.
I started using them the instant they became available and haven’t looked back.

Trace Files

Trace files are a source of debugging information. When the server encounters a problem, it
generates a trace file full of diagnostic information. When a developer sets SOL_TRACE=TRUE, the
server generates a trace file full of performance-related information. Trace files are available to
us because Oracle is a heavily instrumented piece of software. By “instrumented,” I mean that
the programmers who wrote the database kernel put in debugging code—lots and lots of it.
And they left it in, on purpose.

I've met many developers who consider debugging code to be overhead—something that
must be ripped out before it goes into production in a vain attempt to squeeze every ounce of
performance out of the code. Later, of course, they discover that their code has “a bug” or it
“isn’t running as fast as it should” (which end users tend to call “a bug” as well. To an end user,
poor performance is a bug!). At that point, they are really wishing that the debug code was still
in there (or had been in there if it never was), especially since they cannot drop debug code
into the production system—that is an environment where new code must be tested first, not
something you do at the drop of a hat.

The Oracle database (and Application Server and Oracle applications) is heavily instru-
mented. Signs of this instrumentation in the database are

* V8 views: Most V$ views contain “debug” information. V$WAITSTAT, V$SESSION EVENT,
and many others are there solely to let us know what is going on in the bowels of the
kernel.

* The auditing command: This command allows you to specify what events the database
should record for later analysis.

CRAPTER 3 = FILES

* Resource Manager (DBMS_RESOURCE_MANAGER): This feature allows you to micromanage
resources (CPU, 1/0, and the like) within the database. What makes a Resource Man-
ager in the database a possibility is the fact that it has access to all of the runtime
statistics describing how the resources are being used.

* Oracle “events™ These provide the ability for you to ask Oracle to produce trace or diag-
nostic information as needed.

e DBMS_TRACE: This facility within the PL/SQL engine exhaustively records the call tree of
stored procedures, exceptions raised, and errors encountered.

* Database event triggers: These triggers, such as ON SERVERERROR, allow you to monitor
and log any condition you feel is “exceptional” or out of the ordinary. For example, you
can log the SQL that was running when an “out of temp space” error was raised.

e SOL TRACE: The SQL Trace facility is also available in an extended fashion via the 10046
Oracle event.

... among others. Instrumentation is vital in application design and development, and the
Oracle database becomes better instrumented with each release. In fact, the amount of addi-
tional instrumentation in the database between Oracle9i Release 2 and Oracle 10g Release 1
itself is phenomenal. Oracle 10g took code instrumentation in the kernel to a whole new level.
In this section we're going to focus on the information that can be found in various types
of trace files. We'll cover what they are, where they are stored, and what we can do with them.
There are generally two types of trace file, and what we do with each kind is very different:

e Trace files you expected and want: For example, these are the result of enabling
SOL_TRACE=TRUE. They contain diagnostic information about your session and will help
you tune your application to optimize its performance and diagnose what bottlenecks
it is experiencing.

* Trace files you were not expecting to receive but the server generated as the result of an
ORA-00600 “Internal Error’, ORA-03113 “End of file on communication channel’, or
ORA-07445 “Exception Encountered” error: These traces contain diagnostic information
that is most useful to an Oracle Support analyst and, beyond showing us where in our
application the internal error was raised, are of limited use to us.

Requested Trace Files

The trace files you expect to be most commonly generated as the result of setting
SQL_TRACE=TRUE, or using the extended trace facility via the 10046 event, are as follows:

ops$tkyte@ORA10G> alter session set events
2 '10046 trace name context forever, level 12°';
Session altered.

9

CHAPTER 3 = FILES

File Locations

Whether you use SQL_TRACE or the extended trace facility, Oracle will start generating a trace
file on the database server machine in one of two locations:

e Ifyou are using a dedicated server connection, the trace file will be generated in the
directory specified by the USER_DUMP_DEST parameter.

 Ifyou are using a shared server connection, the trace file will be generated in the direc-
tory specified by the BACKGROUND _DUMP_DEST parameter.

To see where the trace files will go, you may either issue SHOW PARAMETER DUMP_DEST from
SQL*Plus or query the V$PARAMETER view directly:

ops$tkyte@ORA10G> select name, value
2 from v$parameter
3 where name like '%dump dest%'

4 /
NAME VALUE
background dump dest /home/ora10g/admin/oral0g/bdump
user dump dest /home/ora10g/admin/ora10g/udump
core_dump_dest /home/ora10g/admin/ora10g/cdump

This shows the three dump (trace) destinations. Background dump destination is used by
any “server” process (see Chapter 5 for a comprehensive list of Oracle background processes
and their functions).

If you are using a shared server connection to Oracle, you are using a background process;
hence the location of your trace files is defined by BACKGROUND_DUMP_DEST. If you are using a
dedicated server connection, you are using a user or foreground process to interact with Oracle;
hence your trace files will go in the directory specified by the USER_DUMP_DEST parameter. The
CORE_DUMP_DEST parameter defines where a “core” file would be generated in the event of a
serious Oracle internal error (such as a segmentation fault on UNIX) or if Oracle Support were
to have to you generate one for additional debug information. In general, the two destinations
of interest are the background and user dump destinations. As a note, unless otherwise stated,
we will be using dedicated server connections in the course of this book.

In the event you do not have access to the V$PARAMETER view, you may use DBMS_UTILITY to
access the values of most (but not all) parameters. The following example demonstrates that
all you need is the CREATE SESSION privilege in order to, at the very least, see this information:

ops$tkyte@ORA10G> create user least privs identified by least privs;
User created.

ops$tkyte@ORA10G> grant create session to least privs;
Grant succeeded.

ops$tkyte@ORA10G> connect least privs/least privs
Connected.
least privs@ORA10G> declare

3
4
5
6
7
8
9

10
11
12

background: /home/ora10g/admin/ora10g/bdump

user: /home/ora10g/admin/ora10g/udump

PL/SOL procedure successfully completed.

CRAPTER 3 = FILES

dbms_output.put line('background: ' || 1 string);

" || 1 string);

1 _dummy number;
begin
1 dummy := dbms utility.get parameter value
("background dump_dest', 1 dummy, 1 string);
1 dummy := dbms utility.get parameter value
("user_dump_dest', 1 dummy, 1 string);
dbms_output.put line(‘'user:
end;
/

Naming Convention

The trace file naming convention changes from time to time in Oracle, but if you have an
example of a trace file name from your system, it is easy to see the template in use. For example,
on my various servers, a trace file name looks as shown in Table 3-1.

Table 3-1. Sample Trace File Names

Trace File Name Platform Database Version
oral0g _ora_24574.trc Linux 10g Release 1
ora9ir2 ora_24628.trc Linux 9i Release 2
ora_10583.trc Linux 9i Release 1
ora9ir2w _ora 688.trc Windows 9i Release 2
oral0g ora 1256.trc Windows 10g Release 1

On my servers, the trace file name can be broken down as follows:

e The first part of the file name is the ORACLE_SID (with the exception of Oracle9i
Release 1, where Oracle decided to leave that off).

¢ The next bit of the file name is just oza.

e The number in the trace file name is the process ID of your dedicated server, available

to you from the V$PROCESS view.

Therefore, in practice (assuming dedicated server mode), you need access to four views:

V$PROCESS: To find the process ID

V$INSTANCE: To get the ORACLE_SID

V$PARAMETER: To locate the trace file for USER_DUMP_DEST

V$SESSION: To correctly identify your session’s information in the other views

a1

CHAPTER 3 = FILES

As noted earlier, you can use DBMS_UTILITY to find the location, and often you simply
“know” the ORACLE_SID, so technically you need access to V$SESSION and V$PROCESS only, but
for ease of use you would want access to all four.

A query, then, to generate your trace file name would be

ops$tkyte@ORA10G> alter session set sql trace=true;
Session altered.

ops$tkyte@ORA10G> select c.value || '/' || d.instance name ||
2 ' ora ' || a.spid || '.trc' trace
3 from v$process a, v$session b, v$parameter c, v$instance d
4 where a.addr = b.paddr
5 and b.audsid = userenv('sessionid")
6 and c.name = 'user dump_dest'
7

/home/ora10g/admin/ora10g/udump/oralog_ora 24667.trc

ops$tkyte@ORA10G>

It should be obvious that on Windows you would replace the / with \. If you are using
9i Release 1, you would simply issue the following, instead of adding the instance name into
the trace file name:

select c.value || 'ora ' || a.spid || '.txc'

Tagging Trace Files

There is a way to “tag” your trace file so that you can find it even if you are not permitted
access to V$PROCESS and V$SESSION. Assuming you had access to read the USER_DUMP_DEST
directory, you can use the session parameter TRACEFILE_IDENTIFIER. Using this, you may
add a uniquely identifiable string to the trace file name, for example:

ops$tkyte@ORA10G> alter session set tracefile identifier = 'Look For Me';
Session altered.

ops$tkyte@ORA10G> alter session set sql trace=true;
Session altered.

ops$tkyte@ORA10G> !ls /home/oral0g/admin/oral0g/udump/*Look For Me*
/home/ora10g/admin/ora10g/udump/oral0g_ora 24676 Look For Me.trc

ops$tkyte@ORA10G>

As you can see, the trace file is now named in the standard <ORACLE_SID> ora_
<PROCESS_ID> format, but it also has the unique string we specified associated with it,
making it rather easy to find “our” trace file name.

CRAPTER 3 = FILES

Trace Files Generated in Response to Internal Errors

I'd like to close this section with a discussion about those other kinds of trace files—the ones
we did not expect that were generated as a result of an ORA-00600 or some other internal
error. Is there anything we can do with them?

The short answer is that in general, they are not for you and me. They are useful to Oracle
Support. However, they can be useful when we are filing an iTAR with Oracle Support. That
point is crucial: if you are getting internal errors, then the only way they will ever be corrected
is if you file an iTAR. If you just ignore them, they will not get fixed by themselves, except by
accident.

For example, in Oracle 10g Release 1, if you create the following table and run the query,
you may well get an internal error (or not—it was filed as a bug and is corrected in later patch
releases):

ops$tkyte@ORA10G> create table t (x int primary key);
Table created.

ops$tkyte@ORA10G> insert into t values (1);
1 row created.

ops$tkyte@ORA10G> exec dbms stats.gather table stats(user, 'T');
PL/SOL procedure successfully completed.

ops$tkyte@ORA10G> select count(x) over ()
2 from t;
from t
£
ERROR at line 2:
ORA-00600: internal error code, arguments: [12410], [], []1, [1, [1, [1, [1, []

Now, you are the DBA and all of a sudden this trace file pops up in the user dump destina-
tion. Or you are the developer and your application raises an ORA-00600 error and you want
to find out what happened. There is a lot of information in that trace file (some 35,000 lines
more in fact), but in general it is not useful to you and me. We would generally just compress
the trace file and upload it as part of our iTAR processing.

However, there is some information in there that can help you track down the “who,”
“what,” and “where” of the error, and also help you find out if the problem is something others
have experienced—many times, the “why”—on http://metalink.oracle.com. A quick inspec-
tion of the very top of the trace file will provide you with some useful information, such as

Dump file c:\oracle\admin\ora10g\udump\oral0g ora 1256.trc

Sun Jan 02 14:21:29 2005

ORACLE V10.1.0.3.0 - Production vsnsta=0

vsnsql=13 vsnxtr=3

Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production
With the Partitioning, OLAP and Data Mining options

Windows XP Version V5.1 Service Pack 2

CPU : 1 - type 586

Process Affinity: 0x00000000

CHAPTER 3 = FILES

Memory (A/P) : PH:11M/255M, PG:295M/1002M, VA:1605M/2047M
Instance name: oral0g

Redo thread mounted by this instance: 1

Oracle process number: 21

Windows thread id: 1256, image: ORACLE.EXE (SHAD)

The database information is important to have when you go to http://metalink.oracle.
com to file the iTAR, of course, but it is also useful when you go to search http://metalink.
oracle.comto see if this is a known problem. In addition, you can see the Oracle instance on
which this error occurred. It is quite common to have many instances running concurrently,
so isolating the problem to a single instance is useful.

*%% 2005-01-02 14:21:29.062

k% ACTION NAME: () 2005-01-02 14:21:28.999

kkk MODULE NAME: (SQL*Plus) 2005-01-02 14:21:28.999
*4k% SERVICE NAME: (SYS$USERS) 2005-01-02 14:21:28.999

This part of the trace file is new with Oracle 10g and won't be there in Oracle9i. It shows
the session information available in the columns ACTION and MODULE from V$SESSION. Here we
can see that it was a SQL*Plus session that caused the error to be raised (you and your devel-
opers can and should set the ACTION and MODULE information; some environments such as
Oracle Forms and HTML DB do this already for you).

Additionally, we have the SERVICE NAME. This is the actual service name used to connect to
the database—SYS$USERS, in this case—indicating we didn’t connect via a TNS service. If we
logged in using user/pass@oral10g.localdomain, we might see

*kk SERVICE NAME: (oral0g) 2005-01-02 15:15:59.041

where ora10g is the service name (not the TNS connect string; rather, it’s the ultimate service
registered in a TNS listener to which it connected). This is also useful in tracking down which
process/module is affected by this error.

Lastly, before we get to the actual error, we can see the session ID and related date/time
information (all releases) as further identifying information:

**k GESSION ID:(146.2) 2005-01-02 14:21:28.999
Now we are ready to get into the error itself:

ksedmp: internal or fatal error
ORA-00600: internal error code, arguments: [12410], [], [], [1, [1, [1, [1, []
Current SQL statement for this session:
select count(x) over ()

from t
————— Call Stack Trace -----
_ksedmp+524
_ksfdmp.160+14
_kgeriv+139
_kgesiv+78
_ksesico+59

CRAPTER 3 = FILES

_gerixAllocate+4155
_gknRwsAllocateTree+281
_gknRwsAllocateTree+252
_gknRwsAllocateTree+252
_gknRwsAllocateTree+252
_gknDoRwsAllocate+9

Here we see a couple of important pieces of information. First, we find the SQL statement
that was executing when the internal error was raised, which is very useful for tracking down
what application(s) was affected. Also, since we see the SQL here, we can possibly start investi-
gating possible work-arounds—trying different ways to code the SQL to see if we can quickly
work around the issue while working the bug. Furthermore, we can cut and paste the offend-
ing SQL into SQL*Plus and see if we have a nicely reproducible test case for Oracle Support
(these are the best kinds of test cases, of course).

The other important pieces of information are the error code (typically 600, 3113, or 7445)
and other arguments associated with the error code. Using these, along with some of the stack
trace information that shows the set of Oracle internal subroutines that were called in order,
we might be able to find an existing bug (and work-arounds, patches, and so on). For example,
we might use the search string

0ra-00600 12410 ksesicO gerixAllocate gknRwsAllocateTree

Using MetaLink’s advanced search (using all of the words, search the bug database), we
immediately find the bug 3800614, “ORA-600 [12410] ON SIMPLE QUERY WITH ANALYTIC
FUNCTION”. If we go to http://metalink.oracle.com and search using that text, we will dis-
cover this bug, see that it is fixed in the next release, and note that patches are available—all
of that information is available to us. I find many times, the error I receive is an error that has
happened before and there are in fact fixes or work-arounds for it.

Trace File Wrap-Up

You now know the two types of general trace files, where they are located, and how to find
them. Hopefully, you'll use trace files mostly for tuning and increasing the performance of
your application, rather than for filing iTARs. As a last note, Oracle Support does have access
to many undocumented “events” that are very useful for dumping out tons of diagnostic infor-
mation whenever the database hits any error. For example, if you believe you are getting an
ORA-01555 when you absolutely feel you should not be, Oracle Support can guide you
through the process of setting such diagnostic events in order to help you track down precisely
why that error is getting raised, by creating a trace file every time that error is encountered.

Alert File

The alert file (also known as the alert log) is the diary of the database. It is a simple text file

written to from the day the database is “born” (created) to the end of time (until you erase it).
In this file, you will find a chronological history of your database—the log switches; the inter-
nal errors that might be raised; when tablespaces were created, taken offline, put back online;

CHAPTER 3 = FILES

and so on. It is an incredibly useful file for seeing the history of a database. I like to let mine
grow fairly large before “rolling” (archiving) them. The more information the better, I believe,
for this file.

I will not describe everything that goes into an alert log—that is a fairly broad topic. I
encourage you to take a look at yours, however, and see the wealth of information that is in
there. Instead, in this section we'll take a look at a specific example of how to mine informa-
tion from this alert log, in this case to create an uptime report.

I recently used the alert log file for the http://asktom.oracle.com website and to generate
an uptime report for my database. Instead of poking through the file and figuring that out
manually (the shutdown and startup times are in there), I decided to take advantage of the
database and SQL to automate this, thus creating a technique for creating a dynamic uptime
report straight from the alert log.

Using an EXTERNAL TABLE (which is covered in much more detail Chapter 10), we can
actually query our alertlog and see what is in there. I discovered that a pair of records was
produced in my alert log every time I started the database:

Thu May 6 14:24:42 2004
Starting ORACLE instance (normal)

That is, a timestamp record, in that constant fixed width format, coupled with the mes-
sage Starting ORACLE instance.Ialso noticed that before these records there would either be
an ALTER DATABASE CLOSE message (during a clean shutdown) or a shutdown abort message,
or “nothing”—no message, indicating a system crash. But any message would have some
timestamp associated with it as well. So, as long as the system didn’t “crash,” some mean-
ingful timestamp would be recorded in the alert log (and in the event of a system crash, some
timestamp would be recorded shortly before the crash, as the alert log is written to quite
frequently).

I noticed that I could easily generate an uptime report if I

¢ Collected all of the records like Starting ORACLE instance %
¢ Collected all of the records that matched the date format (that were in fact dates)

* Associated with each Starting ORACLE instance record the prior two records (which
would be dates)

The following code creates an external table to make it possible to query the alert log.
(Note: replace /background/dump/dest/ with your actual background dump destination and
use your alert log name in the CREATE TABLE statement.)

ops$tkyte@ORA10G> create or replace directory data dir as '/background/dump/dest/'
2/
Directory created.

ops$tkyte@ORA10G> CREATE TABLE alert log

2 (
3 text line varchar2(255)
4)

5 ORGANIZATION EXTERNAL

O 00 N4 O

10
11
12
13
14
15
16
17
18
19

CRAPTER 3

TYPE ORACLE_LOADER
DEFAULT DIRECTORY data dir
ACCESS PARAMETERS

(

)

records delimited by newline
fields
REJECT ROWS WITH ALL NULL FIELDS

LOCATION

(

)
)

'alert AskUs.log'

20 REJECT LIMIT unlimited

21

/

Table created.

We can now query that information anytime:

ops$tkyte@ORA10G> select to char(last time, 'dd-mon-yyyy hh24:mi') shutdown,

2

O 0N O U1 B W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

from
select

from
select

from
select
from
where
or

where

to _char(start time, 'dd-mon-yyyy hh24:mi') startup,
round((start_time-last time)*24*60,2) mins_down,

round((last time-lag(start time) over (order by r)),2) days_ up,
case when (lead(r) over (order by r) is null)

then round((sysdate-start time),2)

end days_still up

(

IJ
to date(last time, 'Dy Mon DD HH24:MI:SS YYYY') last time,
to date(start time, 'Dy Mon DD HH24:MI:SS YYYY') start time

(
IJ
text line,

lag(text line,1) over (order by r) start time,

lag(text line,2) over (order by r) last time

(
rownum r, text line
alert log
text line like ' 20

text_line like 'Starting ORACLE instance %'

)

)
text _line like 'Starting ORACLE instance %'

)

FILES

CHAPTER 3 = FILES

SHUTDOWN STARTUP MINS_DOWN DAYS UP DAYS STILL UP

06-may-2004 14:00

06-may-2004 14:24 06-may-2004 14:24 .25 .02
10-may-2004 17:18 10-may-2004 17:19 .93 4.12
26-jun-2004 13:10 26-jun-2004 13:10 .65 46.83
07-sep-2004 20:13 07-sep-2004 20:20 7.27 73.29 116.83

I won'’t go into the nuances of the SQL query here, but the innermost query from lines 18
through 21 collect the “Starting” and date lines (remember, when using a LIKE clause, _
matches precisely one character—at least one and at most one). It also “numbers” the lines
using ROWNUM. Then, the next level of query uses the built-in LAG() analytic function to reach
back one and two rows for each row, and slide that data up so the third row of this query has
the data from rows 1, 2, and 3. Row 4 has the data from rows 2, 3, and 4, and so on. We end up
keeping just the rows that were like Starting ORACLE instance %, which now have the two
preceding timestamps associated with them. From there, computing downtime is easy: we
just subtract the two dates. Computing the uptime is not much harder (now that you've seen
the LAG() function): we just reach back to the prior row, get its startup time, and subtract that
from this line’s shutdown time.

My Oracle 10g database came into existence on May 6 and it has been shut down four
times (and as of this writing it has been up for 116.83 days in a row). The average uptime is
getting better and better over time (and hey, it is SQL—we could easily compute that now,
t00).

If you are interested in seeing another example of mining the alert log for useful infor-
mation, go to http://asktom.oracle.com/~tkyte/alert arch.html. This page shows a
demonstration of how to compute the average time it took to archive a given online redo
log file. Once you understand what is in the alert log, generating these queries on your own
becomes easy.

Data Files

Data files, along with redo log files, are the most important set of files in the database. This is
where all of your data will ultimately be stored. Every database has at least one data file asso-
ciated with it, and typically it will have many more than one. Only the most simple “test”
database will have one file. In fact, in Chapter 2 we saw the most simple CREATE DATABASE
command by default created a database with two data files: one for the SYSTEM tablespace
(the true Oracle data dictionary) and one for the SYSAUX tablespace (where other nondic-
tionary objects are stored in version 10g and above). Any real database, however, will have at
least three data files: one for the SYSTEM data, one for SYSAUX data, and one for USER data.

After a brief review of file system types, we’ll discuss how Oracle organizes these files and
how data is organized within them. To understand this, you need to know what a tablespace,
segment, extent, and block are. These are the units of allocation that Oracle uses to hold
objects in the database, and I describe them in detail shortly.

CRAPTER 3 = FILES

A Brief Review of File System Mechanisms

There are four file system mechanisms in which to store your data in Oracle. By your data, I
mean your data dictionary, redo, undo, tables, indexes, LOBs, and so on—the data you per-
sonally care about at the end of the day. Briefly, they are

* “Cooked” operating system (OS) file systems: These are files that appear in the file system
just like your word processing documents do. You can see them in Windows Explorer;
you can see them in UNIX as the result of an 1s command. You can use simple OS utili-
ties such as xcopy on Windows or cp on UNIX to move them around. Cooked OS files
are historically the “most popular” method for storing data in Oracle, but I personally
expect to see that change with the introduction of ASM (more on that in a moment).
Cooked file systems are typically buffered as well, meaning that the OS will cache infor-
mation for you as you read and, in some cases, write to disk.

* Raw partitions: These are not files—these are raw disks. You do not 1s them; you do not
review their contents in Windows Explorer. They are just big sections of disk without
any sort of file system on them. The entire raw partition appears to Oracle as a single
large file. This is in contrast to a cooked file system, where you might have many dozens
or even hundreds of database data files. Currently, only a small percentage of Oracle
installations use raw partitions due to their perceived administrative overhead. Raw
partitions are not buffered devices—all I/O performed on them is a direct I/0O, without
any OS buffering of data (which, for a database, is generally a positive attribute).

* Automatic Storage Management (ASM): This is a new feature of Oracle 10g Release 1 (for
both Standard and Enterprise editions). ASM is a file system designed exclusively for
use by the database. An easy way to think about it is as a database file system. You won’t
store your shopping list in a text file on this file system—you’ll store only database-
related information here: your tables, indexes, backups, control files, parameter files,
redo logs, archives, and more. But even in ASM, the equivalent of a data file exists; con-
ceptually, data is still stored in files, but the file system is ASM. ASM is designed to work
in either a single machine or clustered environment.

* Clustered file system: This is specifically for a RAC (clustered) environment and provides
for the appearance of a cooked file system that is shared by many nodes (computers)
in a clustered environment. A traditional cooked file system is usable by only one com-
puter is a clustered environment. So, while it is true that you could NFS mount or
Samba share (a method of sharing disks in a Windows/UNIX environment similar to
NES) a cooked file system among many nodes in a cluster, it represents a single point of
failure. In the event that the node owning the file system and performing the sharing
was to fail, then that file system would be unavailable. The Oracle Cluster File System
(OCFS) is Oracle’s offering in this area and is currently available for Windows and Linux
only. Other third-party vendors do provide certified clustered file systems that work
with Oracle as well. The clustered file system brings the comfort of a cooked file system
to a clustered environment.

CHAPTER 3 © FILES

The interesting thing is that a database might consist of files from any and all of the pre-
ceding file systems—you don't need to pick just one. You could have a database whereby
portions of the data were stored in conventional cooked file systems, some on raw partitions,
others in ASM, and yet other components in a clustered file system. This makes it rather easy
to move from technology to technology, or to just get your feet wet in a new file system type
without moving the entire database into it. Now, since a full discussion of file systems and all
of their detailed attributes is beyond the scope of this particular book, we'll dive back into the
Oracle file types. Regardless of whether the file is stored on cooked file systems, in raw parti-
tions, within ASM, or on a clustered file system, the following concepts always apply.

The Storage Hierarchy in an Oracle Database

A database is made up of one or more tablespaces. A tablespace is a logical storage container
in Oracle that comes at the top of the storage hierarchy and is made up of one or more data
files. These files might be cooked files in a file system, raw partitions, ASM-managed database
files, or files on a clustered file system. A tablespace contains segments, as described next.

Segments

We will start our examination of the storage hierarchy by looking at segments, which are the
major organizational structure within a tablespace. Segments are simply your database objects
that consume storage—objects such as tables, indexes, rollback segments, and so on. When
you create a table, you create a table segment. When you create a partitioned table, you create
a segment per partition. When you create an index, you create an index segment, and so on.
Every object that consumes storage is ultimately stored in a single segment. There are rollback
segments, temporary segments, cluster segments, index segments, and so on.

Note It might be confusing to read “Every object that consumes storage is ultimately stored in a single
segment.” You will find many CREATE statements that create mulitsegment objects. The confusion lies in the
fact that a single CREATE statement may ultimately create objects that consist of zero, one, or more seg-
ments! For example, CREATE TABLE T (x int primary key, y clob) will create four segments: one
for the TABLE T, one for the index that will be created in support of the primary key, and two for the CLOB
(one segment for the CLOB is the LOB index and the other segment is the LOB data itself). On the other
hand, CREATE TABLE T (x int, y date) cluster MY _CLUSTER, will create no segments. We'll
explore this concept further in Chapter 10.

Extents

Segments themselves consist of one or more extent. An extent is a logically contiguous alloca-
tion of space in a file (files themselves, in general, are not contiguous on disk; otherwise,
we would never need a disk defragmentation tool!). Also, with disk technologies such as

CRAPTER 3 = FILES

Redundant Array of Independent Disks (RAID), you might find a single file is not only not con-
tiguous on a single disk, but also spans many physical disks. Every segment starts with at least
one extent, and some objects may require at least two (rollback segments are an example of a
segment that require at least two extents). For an object to grow beyond its initial extent, it will
request another extent be allocated to it. This second extent will not necessarily be located
right next to the first extent on disk—it may very well not even be allocated in the same file as
the first extent. The second extent may be located very far away from the first extent, but the
space within an extent is always logically contiguous in a file. Extents vary in size from one
Oracle data block to 2GB.

Blocks

Extents, in turn, consist of blocks. A block is the smallest unit of space allocation in Oracle.
Blocks are where your rows of data, or index entries, or temporary sort results will be stored.
A block is what Oracle generally reads from and writes to disk. Blocks in Oracle are generally
one of four common sizes: 2KB, 4KB, 8KB, or 16KB (although 32KB is also permissible in some
cases; there are restrictions in place as to the maximum size by operating system).

Note Here’s a little-known fact: the default block size for a database does not have to be a power of two.
Powers of two are just a convention commonly used. You can, in fact, create a database with a 5KB, 7KB, or
nKB block size, where nis between 2KB and 32KB. | do not advise making use of this fact in real life,
though— stick with 2KB, 4KB, 8KB, or 16KB as your block size.

The relationship between segments, extents, and blocks is shown in Figure 3-1.

2MB Segment 5

' ome | mB [t~

| Extent Extent || Se o
\ ‘\ NN N \\\
\ [8KB] 8kB T8KB | 8kB
' [8KB_| 8KB | 8KB.| 8KB
'[8kB | 8KB | 8KB [8KB
Data Blocks | 8KB [8KB | 8KB | 8KB

Figure 3-1. Segments, extents, and blocks

A segment is made up of one or more extents, and an extent is a contiguous allocation of
blocks. Starting with Oracle9i Release 1, a database may have up to six different block sizes in it.

9N

CHAPTER 3 = FILES

Note This feature of multiple block sizes was introduced for the purpose of making transportable table-
spaces usable in more cases. The ability to transport a tablespace allows a DBA to move or copy the already
formatted data files from one database and attach them to another—for example, to immediately copy all of
the tables and indexes from an Online Transaction Processing (OLTP) database to a Data Warehouse (DW).
However, in many cases, the OLTP database might be using a small block size, such as 2KB or 4KB, whereas
the DW would be using a much larger one (8KB or 16KB). Without support for multiple block sizes in a single
database, you would not be able to transport this information. Tablespaces with multiple block sizes should
be used to facilitate transporting tablespaces and are not generally used for anything else.

There will be the database default block size, which is the size that was specified in the
initialization file during the CREATE DATABASE command. The SYSTEM tablespace will have this
default block size always, but you can then create other tablespaces with nondefault block
sizes of 2KB, 4KB, 8KB, 16KB and, depending on the operating system, 32KB. The total number
of block sizes is six if and only if you specified a nonstandard block size (not a power of two)
during database creation. Hence, for all practical purposes, a database will have at most five
block sizes: the default size and then four other nondefault sizes.

Any given tablespace will have a consistent block size, meaning that every block in that
tablespace will be the same size. A multisegment object, such as a table with a LOB column,
may have each segment in a tablespace with a different block size, but any given segment
(which is contained in a tablespace) will consist of blocks of exactly the same size. All blocks,
regardless of their size, have the same general format, which looks something like Figure 3-2.

<€—— Header
Table Directory
] Row Directory

<€— Free Space

€— Data
<€— Talil

Figure 3-2. The structure of a block

The block header contains information about the type of block (table block, index block,
and so on), transaction information when relevant (only blocks that are transaction managed
have this information—a temporary sort block would not, for example) regarding active and
past transactions on the block, and the address (location) of the block on the disk. The next
two block components, table directory and row directiry, are found on the most common
types of database blocks, those of HEAP organized tables. We'll cover database table types in
much more detail in Chapter 10, but suffice it to say that most tables are of this type. The
table directory, if present, contains information about the tables that store rows in this block

CRAPTER 3 = FILES

(data from more than one table may be stored on the same block). The row directory contains
information describing the rows that are to be found on the block. This is an array of pointers
to where the rows are to be found in the data portion of the block. These three pieces of the
block are collectively known as the block overhead, which is space used on the block that is not
available for your data, but rather is used by Oracle to manage the block itself. The remaining
two pieces of the block are straightforward: there will possibly be free space on a block, and
then there will generally be used space that is currently storing data.

Now that you have a cursory understanding of segments, which consist of extents, which
consist of blocks, let’s take a closer look at tablespaces and then at exactly how files fit into the
big picture.

Tablespaces

As noted earlier, a tablespace is a container—it holds segments. Each and every segment
belongs to exactly one tablespace. A tablespace may have many segments within it. All of the
extents for a given segment will be found in the tablespace associated with that segment. Seg-
ments never cross tablespace boundaries. A tablespace itself has one or more data files
associated with it. An extent for any given segment in a tablespace will be contained entirely
within one data file. However, a segment may have extents from many different data files.
Graphically, a tablespace might look like Figure 3-3.

Tablespace USER_DATA

/do1/user_data01.dbf
T2 [T2|T12

MW T]T]T]
(W[n]n]

/do1/user_data02.dbf

Figure 3-3. A tablespace containing two data files, three segments, and four extents

Figure 3-3 shows a tablespace named USER_DATA. It consists of two data files, user datao1
and user_datao2. It has three segments allocated it: T1, T2, and I1 (probably two tables and an
index). The tablespace has four extents allocated in it, and each extent is depicted as a logi-
cally contiguous set of database blocks. Segment T1 consists of two extents, one extent in each
file. Segments T2 and I1 each have one extent depicted. If we need more space in this table-
space, we could either resize the data files already allocated to the tablespace or we could add
a third data file to it.

Tablespaces are a logical storage container in Oracle. As developers, we will create seg-
ments in tablespaces. We will never get down to the raw “file level”—we do not specify that we
want our extents to be allocated in a specific file (we can, but we do not in general). Rather,
we create objects in tablespaces, and Oracle takes care of the rest. If at some point in the
future, the DBA decides to move our data files around on disk to more evenly distribute I/0,
that is OK with us. It will not affect our processing at all.

94 CHAPTER 3 = FILES

Storage Hierarchy Summary

In summary, the hierarchy of storage in Oracle is as follows:
1. A database is made up of one or more tablespaces.

2. Atablespace is made up of one or more data files. These files might be cooked files in
a file system, raw partitions, ASM managed database files, or a file on a clustered file
system. A tablespace contains segments.

3. A segment (TABLE, INDEX, and so on) is made up of one or more extents. A segment
exists in a tablespace, but may have data in many data files within that tablespace.

4. An extent is a logically contiguous set of blocks on disk. An extent is in a single table-
space and, furthermore, is always in a single file within that tablespace.

5. A block is the smallest unit of allocation in the database. A block is the smallest unit of
I/0 used by a database.

Dictionary-Managed and Locally-Managed Tablespaces

Before we move on, we will look at one more topic related to tablespaces: how extents are
managed in a tablespace. Prior to Oracle 8.1.5, there was only one method to manage the allo-
cation of extents within a tablespace: a dictionary-managed tablespace. That is, the space
within a tablespace was managed in data dictionary tables, in much the same way you would
manage accounting data, perhaps with a DEBIT and CREDIT table. On the debit side, we have all
of the extents allocated to objects. On the credit side, we have all of the free extents available
for use. When an object needed another extent, it would ask the system to get one. Oracle
would then go to its data dictionary tables, run some queries, find the space (or not), and then
update a row in one table (or remove it all together) and insert a row into another. Oracle
managed space in very much the same way you will write your applications: by modifying
data and moving it around.

This SQL, executed on your behalf in the background to get the additional space, is
referred to as recursive SQL. Your SQL INSERT statement caused other recursive SQL to be exe-
cuted to get more space. This recursive SQL can be quite expensive if it is done frequently.
Such updates to the data dictionary must be serialized; they cannot be done simultaneously.
They are something to be avoided.

In earlier releases of Oracle, we would see this space management issue—this recursive
SQL overhead—most often occurring in temporary tablespaces (this was before the introduc-
tion of “real” temporary tablespaces created via the CREATE TEMPORARY TABLESPACE command).
Space would frequently be allocated (we would have to delete from one dictionary table and
insert into another) and de-allocated (we would put the rows we just moved back where they
were initially). These operations would tend to serialize, dramatically decreasing concurrency
and increasing wait times. In version 7.3, Oracle introduced the concept of a true temporary
tablespace, a new tablespace type dedicated to just storing temporary data, to help alleviate
this issue. Prior to this special tablespace type, temporary data was managed in the same
tablespaces as persistent data and treated in much the same way as permanent data was.

A temporary tablespace was one in which you could create no permanent objects of your
own. This was fundamentally the only difference; the space was still managed in the data

CRAPTER 3 = FILES

dictionary tables. However, once an extent was allocated in a temporary tablespace, the sys-
tem would hold on to it (i.e., it would not give the space back). The next time someone
requested space in the temporary tablespace for any purpose, Oracle would look for an
already allocated extent in its internal list of allocated extents. If it found one there, it would
simply reuse it, or else it would allocate one the old-fashioned way. In this manner, once the
database had been up and running for a while, the temporary segment would appear full but
would actually just be “allocated.” The free extents were all there; they were just being man-
aged differently. When someone needed temporary space, Oracle would look for that space in
an in-memory data structure, instead of executing expensive, recursive SQL.

In Oracle 8.1.5 and later, Oracle goes a step further in reducing this space management
overhead. It introduced the concept of a locally-managed tablespace as opposed to a dictionary-
managed one. Local management of space effectively did for all tablespaces what Oracle 7.3
did for temporary tablespaces: it removed the need to use the data dictionary to manage
space in a tablespace. With a locally-managed tablespace, a bitmap stored in each data file is
used to manage the extents. Now to get an extent, all the system needs to do is set a bit to 1
in the bitmap. To free space, the system sets a bit back to 0. Compared to using dictionary-
managed tablespaces, this is incredibly fast. We no longer serialize for a long-running
operation at the database level for space requests across all tablespaces. Rather, we serialize
at the tablespace level for a very fast operation. Locally-managed tablespaces have other nice
attributes as well, such as the enforcement of a uniform extent size, but that is starting to get
heavily into the role of the DBA.

Going forward, the only storage management method you should be using is a locally-
managed tablespace. In fact, in Oracle9i and above, if you create a database using the
database configuration assistant (DBCA), it will create SYSTEM as a locally-managed tablespace,
and if SYSTEM is locally managed, all other tablespaces in that database will be locally managed
as well, and the legacy dictionary-managed method will not work. It is not that dictionary-
managed tablespaces are not supported in a database where SYSTEM is locally managed, it is
that they simply cannot be created:

ops$tkyte@ORA10G> create tablespace dmt
2 datafile '/tmp/dmt.dbf' size 2m
3 extent management dictionary;
create tablespace dmt
*
ERROR at line 1:
ORA-12913: Cannot create dictionary managed tablespace

ops$tkyte@ORA10G> !oerr ora 12913

12913, 00000, "Cannot create dictionary managed tablespace"

// *Cause: Attempt to create dictionary managed tablespace in database
// which has system tablespace as locally managed

// *Action: Create a locally managed tablespace.

This is a positive side effect, as it prohibits you from using the legacy storage mechanism,
which was less efficient and dangerously prone to fragmentation. Locally-managed table-
spaces, in addition to being more efficient in space allocation and de-allocation, also prevent
tablespace fragmentation from occurring. This is a side effect of the way space is allocated and
managed in locally-managed tablespaces. We'll take an in-depth look at this in Chapter 10.

P9

CHAPTER 3 © FILES

Temp Files

Temporary data files (temp files) in Oracle are a special type of data file. Oracle will use tempo-
rary files to store the intermediate results of a large sort operation and hash operations, as well
as to store global temporary table data, or result set data, when there is insufficient memory to
hold it all in RAM. Permanent data objects, such as a table or an index, will never be stored in
a temp file, but the contents of a temporary table and its indexes would be. So, you'll never
create your application tables in a temp file, but you might store data there when you use a
temporary table.

Temp files are treated in a special way by Oracle. Normally, each and every change you
make to an object will be recorded in the redo logs; these transaction logs can be replayed at a
later date in order to “redo a transaction,” which you might do during recovery from failure, for
example. Temp files are excluded from this process. Temp files never have redo generated for
them, although they can have undo generated. Thus, there will be redo generated working
with temporary tables since UNDO is always protected by redo, as you will see in detail in
Chapter 9. The undo generated for global temporary tables is in order to support rolling back
some work you have done in your session, either due to an error processing data or because
of some general transaction failure. A DBA never needs to back up a temporary data file, and
in fact to attempt to do so would be a waste of time, as you can never restore a temporary
data file.

It is recommended that your database be configured with locally-managed temporary
tablespaces. You'll want to make sure that as a DBA, you use a CREATE TEMPORARY TABLESPACE
command. You do not want to just alter a permanent tablespace to a temporary one, as you
do not get the benefits of temp files that way.

One of the nuances of true temp files is that if the OS permits it, the temporary files will
be created sparse—that is, they will not actually consume disk storage until they need to. You
can see that easily in this example (on Red Hat Linux in this case):

ops$tkyte@ORA10G> !df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 74807888 41999488 29008368 60% /
/dev/hda1 102454 14931 82233 16% /boot

none 1030804 0 1030804 0% /dev/shm

ops$tkyte@ORA10G> create temporary tablespace temp_huge
2 tempfile '/doi/temp/temp_huge' size 2048m
3/

Tablespace created.

ops$tkyte@ORA10G> !df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 74807888 41999616 29008240 60% /
/dev/hda1 102454 14931 82233 16% /boot

none 1030804 0 1030804 0% /dev/shm

CRAPTER 3 = FILES

Note df is a Unix command to show “disk free.” This command showed that | have 29,008,368KB free in
the file system containing /do1/temp before | added a 2GB temp file to the database. After | added that file,
I had 29,008,240KB free in the file system.

Apparently it took only 128KB of storage to hold that file. But if we 1s it

ops$tkyte@ORA10G> !1s -1 /do1/temp/temp_huge
~ITW-TW---- 1 oral0g oral0g 2147491840 Jan 2 16:34 /do1/temp/temp_huge

it appears to be a normal 2GB file, but it is in fact only consuming some 128KB of storage. The
reason I point this out is because we would be able to actually create hundreds of these 2GB
temporary files, even though we have roughly 29GB of disk space free. Sounds great—free stor-
age for all! The problem is as we start to use these temp files and they start expanding out, we
would rapidly hit errors stating “no more space.” Since the space is allocated or physically
assigned to the file as needed by the OS, we stand a definite chance of running out of room
(especially if after we create the temp files someone else fills up the file system with other stuff).

How to solve this differs from OS to OS. On Linux, some of the options are to use dd to fill
the file with data, causing the OS to physically assign disk storage to the file, or use cp to create
a nonsparse file, for example:

ops$tkyte@ORA10G> !cp --sparse=never /d01/temp/temp huge /d01/temp/temp huge2

ops$tkyte@ORA10G> !df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 74807888 44099336 26908520 63% /
/dev/hdal 102454 14931 82233 16% /boot

none 1030804 0 1030804 0% /dev/shm

ops$tkyte@ORA10G> drop tablespace temp_huge;
Tablespace dropped.

ops$tkyte@ORA10G> create temporary tablespace temp huge
2 tempfile '/do1/temp/temp huge2' reuse;

Tablespace created.

ops$tkyte@ORA10G> !df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda2 74807888 44099396 26908460 63% /
/dev/hdal 102454 14931 82233 16% /boot

none 1030804 0 1030804 0% /dev/shm

After copying the sparse 2GB file to /do1/temp/temp_huge2 and creating the temporary
tablespace using that temp file with the REUSE option, we are assured that temp file has allo-
cated all of its file system space and our database actually has 2GB of temporary space to

CHAPTER 3 = FILES

Note In my experience, Windows NTFS does not do sparse files, and this applies to UNIX/Linux variants.
On the plus side, if you have to create a 15GB temporary tablespace on UNIX/Linux and have temp file sup-
port, you'll find it goes very fast (instantaneous), but just make sure you have 15GB free and reserve it in
your mind.

Control Files

The control file is a fairly small file (it can grow up to 64MB or so in extreme cases) that con-
tains a directory of the other files Oracle needs. The parameter file tells the instance where the
control files are, and the control files tell the instance where the database and online redo log
files are.

The control files also tell Oracle other things, such as information about checkpoints that
have taken place, the name of the database (which should match the DB_NAME parameter), the
timestamp of the database as it was created, an archive redo log history (this can make a con-
trol file large in some cases), RMAN information, and so on.

Control files should be multiplexed either by hardware (RAID) or by Oracle when RAID or
mirroring is not available. More than one copy of them should exist, and they should be stored
on separate disks, to avoid losing them in the event you have a disk failure. It is not fatal to
lose your control files—it just makes recovery that much harder.

Control files are something a developer will probably never have to actually deal with.

To a DBA they are an important part of the database, but to a software developer they are not
extremely relevant.

Redo Log Files

Redo log files are crucial to the Oracle database. These are the transaction logs for the data-
base. They are generally used only for recovery purposes, but they can be used for the
following as well:

* Instance recovery after a system crash

* Media recovery after a data file restore from backup

» Standby database processing

* Input into Streams, a redo log mining process for information sharing (a fancy way of
saying replication)

Their main purpose in life is to be used in the event of an instance or media failure, or as
amethod of maintaining a standby database for failover. If the power goes off on your data-
base machine, causing an instance failure, Oracle will use the online redo logs to restore the
system to exactly the point it was at immediately prior to the power outage. If your disk drive
containing your data file fails permanently, Oracle will use archived redo logs, as well as online
redo logs, to recover a backup of that drive to the correct point in time. Additionally, if you

CRAPTER 3 = FILES

“accidentally” drop a table or remove some critical information and commit that operation,
you can restore a backup and have Oracle restore it to the point immediately prior to the acci-
dent using these online and archive redo log files.

Virtually every operation you perform in Oracle generates some amount of redo to be
written to the online redo log files. When you insert a row into a table, the end result of that
insert is written to the redo logs. When you delete a row, the fact that you deleted that row is
written. When you drop a table, the effects of that drop are written to the redo log. The data
from the table you dropped is not written; however, the recursive SQL that Oracle performs
to drop the table does generate redo. For example, Oracle will delete a row from the SYS.0BJ$
table (and other internal dictionary objects), and this will generate redo, and if various modes
of supplemental logging are enabled, the actual DROP TABLE statement will be written into the
redo log stream.

Some operations may be performed in a mode that generates as little redo as possible.
For example, I can create an index with the NOLOGGING attribute. This means that the initial
creation of the index data will not be logged, but any recursive SQL Oracle performed on my
behalf will be. For example, the insert of a row into SYS.0BJ$ representing the existence of the
index will be logged, as will all subsequent modifications of the index using SQL inserts,
updates, and deletes. But the initial writing of the index structure to disk will not be logged.

I've referred to two types of redo log file: online and archived. We'll take a look at each in
the sections that follow. In Chapter 9, we'll take another look at redo in conjunction with roll-
back segments, to see what impact they have on you as the developer. For now, we'll just
concentrate on what they are and what their purpose is.

Online Redo Log

Every Oracle database has at least two online redo log file groups. Each redo log group consists
of one or more redo log members (redo is managed in groups of members). The individual
redo log file members of these groups are true mirror images of each other. These online redo
log files are fixed in size and are used in a circular fashion. Oracle will write to log file group 1,
and when it gets to the end of this set of files, it will switch to log file group 2 and rewrite the
contents of those files from start to end. When it has filled log file group 2, it will switch back to
log file group 1 (assuming we have only two redo log file groups; if we have three, it would, of
course, proceed to the third group). This is shown in Figure 3-4.

&
Embd

Figure 3-4. Log file groups

99

100

CHAPTER 3 © FILES

The act of switching from one log file group to the other is called a log switch. It is impor-
tant to note that a log switch may cause a temporary “pause” in a poorly configured database.
Since the redo logs are used to recover transactions in the event of a failure, we must assure
ourselves that we won't need the contents of a redo log file in the event of a failure before we
reuse it. If Oracle isn't sure that it won’t need the contents of a log file, it will suspend opera-
tions in the database momentarily and make sure that the data in the cache that this redo
“protects” is safely written (checkpointed) onto disk itself. Once Oracle is sure of that, process-
ing will resume and the redo file will be reused.

We've just started to talk about a key database concept: checkpointing. To understand how
online redo logs are used, you'll need to know something about checkpointing, how the data-
base buffer cache works, and what a process called data block writer (DBWn) does. The database
buffer cache and DBWn are covered in more detail a little later on, but we’ll skip ahead a little
anyway and touch on them now.

The database buffer cache is where database blocks are stored temporarily. This is a
structure in the SGA of Oracle. As blocks are read, they are stored in this cache, hopefully to
allow us to not have to physically reread them later. The buffer cache is first and foremost a
performance-tuning device. It exists solely to make the very slow process of physical I/0
appear to be much faster than it is. When we modify a block by updating a row on it, these
modifications are done in memory, to the blocks in the buffer cache. Enough information to
redo this modification is stored in the redo log buffer, another SGA data structure. When we
COMMIT our modifications, making them permanent, Oracle does not go to all of the blocks we
modified in the SGA and write them to disk. Rather, it just writes the contents of the redo log
buffer out to the online redo logs. As long as that modified block is in the buffer cache and is
not on disk, we need the contents of that online redo log in the event the database fails. If at
the instant after we committed, the power was turned off, the database buffer cache would
be wiped out.

If this happens, the only record of our change is in that redo log file. Upon restart of the
database, Oracle will actually replay our transaction, modifying the block again in the same
way we did and committing it for us. So, as long as that modified block is cached and not writ-
ten to disk, we cannot reuse that redo log file.

This is where DBWn comes into play. This Oracle background process is responsible for
making space in the buffer cache when it fills up and, more important, for performing
checkpoints. A checkpoint is the writing of dirty (modified) blocks from the buffer cache to
disk. Oracle does this in the background for us. Many things can cause a checkpoint to occur,
the most common event being a redo log switch.

As we filled up log file 1 and switched to log file 2, Oracle initiated a checkpoint. At this
point in time, DBWn started writing to disk all of the dirty blocks that are protected by log file
group 1. Until DBWn flushes all of these blocks protected by that log file, Oracle cannot reuse it.
If we attempt to use it before DBWn has finished its checkpoint, we will get a message like this in
our database’s ALERT log:

Thread 1 cannot allocate new log, sequence 66
Checkpoint not complete
Current log# 2 seq# 65 mem# 0: C:\ORACLE\ORADATA\ORA10G\RED002.LOG

CRAPTER 3 = FILES

So, at the point in time when this message appeared, processing was suspended in the
database while DBWn hurriedly finished its checkpoint. Oracle gave all the processing power it
could to DBWn at that point in the hope it would finish faster.

This is a message you never want to see in a nicely tuned database instance. If you do
see it, you know for a fact that you have introduced artificial, unnecessary waits for your end
users. This can always be avoided. The goal (and this is for the DBA, not the developer neces-
sarily) is to have enough online redo log files allocated so that you never attempt to reuse a
log file before the checkpoint initiated by it completes. If you see this message frequently, it
means a DBA has not allocated sufficient online redo logs for the application, or that DBWn
needs to be tuned to work more efficiently.

Different applications will generate different amounts of redo log. A Decision Support
System (DSS, query only) or DW system will naturally generate significantly less online redo
log than an OLTP (transaction processing) system would, day to day. A system that does a lot
of image manipulation in Binary Large Objects (BLOBs) in the database may generate radi-
cally more redo than a simple order-entry system. An order-entry system with 100 users will
probably generate a tenth the amount of redo 1,000 users would generate. There is no “right”
size for your redo logs, although you do want to ensure they are large enough for your unique
workload.

You must take many things into consideration when setting both the size of and the num-
ber of online redo logs. Many of them are beyond the scope of this particular book, but I'll list
some of them to give you an idea:

* Peak workloads: You would like your system to not have to wait for checkpoint not-
complete messages, to not get bottlenecked during your peak processing. You will be
sizing your redo logs not for “average” hourly throughput, but rather for your peak pro-
cessing. If you generate 24GB of log per day, but 10GB of that log is generated between
9:00 am and 11:00 am, you'll want to size your redo logs large enough to carry you
through that two-hour peak. Sizing them for an average of 1GB per hour would proba-
bly not be sufficient.

* Lots of users modifying the same blocks: Here you might want large redo log files. Since
everyone is modifying the same blocks, you would like to update them as many times
as possible before writing them out to disk. Each log switch will fire a checkpoint, so
you would like to switch logs infrequently. This may, however, affect your recovery time.

e Mean time to recover: If you must ensure that a recovery takes as little time as possible,
you may be swayed toward smaller redo log files, even if the previous point is true. It
will take less time to process one or two small redo log files than a gargantuan one
upon recovery. The overall system will run slower than it absolutely could day to day
perhaps (due to excessive checkpointing), but the amount of time spent in recovery
will be shorter. There are other database parameters that may also be used to reduce
this recovery time, as an alternative to the use of small redo log files.

Archived Redo Log

The Oracle database can run in one of two modes: ARCHIVELOG mode and NOARCHIVELOG
mode. The difference between these two modes is simply what happens to a redo log file

101

102

CHAPTER 3 © FILES

when Oracle goes to reuse it. “Will we keep a copy of that redo or should Oracle just overwrite
it, losing it forever?” is an important question to answer. Unless you keep this file, you cannot
recover data from a backup to the current point in time.

Say you take a backup once a week on Saturday. Now, on Friday afternoon, after you have
generated hundreds of redo logs over the week, your hard disk fails. If you have not been run-
ning in ARCHIVELOG mode, the only choices you have right now are as follows:

* Drop the tablespace(s) associated with the failed disk. Any tablespace that had a file
on that disk must be dropped, including the contents of that tablespace. If the SYSTEM
tablespace (Oracle’s data dictionary) is affected, you cannot do this.

* Restore last Saturday’s data and lose all of the work you did that week.

Neither option is very appealing. Both imply that you lose data. If you had been executing
in ARCHIVELOG mode, on the other hand, you simply would have found another disk. You would
have restored the affected files from Saturday’s backup onto it. Lastly, you would have applied
the archived redo logs and, ultimately, the online redo logs to them (in effect replaying the
week’s worth of transactions in fast-forward mode). You lose nothing. The data is restored to
the point in time of the failure.

People frequently tell me they don’t need ARCHIVELOG mode for their production systems.

I have yet to meet anyone who was correct in that statement. I believe that a system is not a
production system unless it is in ARCHIVELOG mode. A database that is not in ARCHIVELOG mode
will, some day, lose data. It is inevitable; you will lose data if your database is not in ARCHIVELOG
mode.

“We are using RAID-5, so we are totally protected” is a common excuse. I've seen cases
where, due to a manufacturing error, all disks in a RAID set froze, all at about the same time.
I've seen cases where the hardware controller introduced corruption into the data files, so
they safely protected corrupt data with their RAID devices. RAID also does not do anything to
protect you from operator error, one of the most common causes of data loss.

“If we had the backups from before the hardware or operator error and the archives were
not affected, we could have recovered.” The bottom line is that there is no excuse for not being
in ARCHIVELOG mode on a system where the data is of any value. Performance is no excuse;
properly configured archiving adds little to no overhead. This and the fact that a “fast system”
that “loses data” is useless would make it so that even if archiving added 100 percent over-
head, you would need to do it. A feature is overhead if you can remove it and lose nothing
important; overhead is like icing on the cake. Preserving your data, and making sure you
don’tlose you data isn't overhead—it’s the DBA’s primary job!

Only a test or development system should execute in NOARCHIVELOG mode. Don't let any-
one talk you out of being in ARCHIVELOG mode. You spent a long time developing your
application, so you want people to trust it. Losing their data will not instill confidence in
your system.

Note There are some cases in which a large DW could justify being in NOARCHIVELOG mode if it made
judicious use of READ ONLY tablespaces and was willing to fully rebuild any READ WRITE tablespace that
suffered a failure by reloading the data.

CRAPTER 3 = FILES

Password Files

The password file is an optional file that permits remote SYSDBA or administrator access to the
database.

When you attempt to start up Oracle, there is no database available that can be consulted
to verify passwords. When you start up Oracle on the “local” system (i.e., not over the network,
but from the machine the database instance will reside on), Oracle will use the OS to perform
the authentication.

When Oracle was installed, the person performing the installation was asked to specify
the “group” for the administrators. Normally on UNIX/Linux, this group will be DBA by default
and 0SDBA on Windows. It can be any legitimate group name on that platform, however. That
group is “special,” in that any user in that group can connect to Oracle “as SYSDBA” without
specifying a username or password. For example, in my Oracle 10g Release 1 install, I specified
an ora10g group. Anyone in the ora10g group may connect without a username/password:

[oral0g@localhost ora10g]$ sqlplus / as sysdba

SQL*Plus: Release 10.1.0.3.0 - Production on Sun Jan 2 20:13:04 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> show user
USER is "SYS"

That worked—I'm connected, and I could now start up this database, shut it down, or
perform whatever administration I wanted to. However, suppose I wanted to perform these
operations from another machine, over the network. In that case, I would attempt to connect
using @tns-connect-string. However, this would fail:

[oraiog@localhost admin]$ sqlplus /@oral0g admin.localdomain as sysdba
SQL*Plus: Release 10.1.0.3.0 - Production on Sun Jan 2 20:14:20 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.

ERROR:

ORA-01031: insufficient privileges

Enter user-name:

OS authentication won't work over the network for SYSDBA, even if the very unsafe (for
security reasons) parameter REMOTE_OS_AUTHENT is set to TRUE. So, OS authentication won't
work and, as discussed earlier, if you're trying to start up an instance to mount and open a
database, then there by definition is “no database” at the other end of the connection yet, in
which to look up authentication details. It is the proverbial chicken and egg problem. Enter
the password file. The password file stores a list of usernames and passwords that are allowed
to remotely authenticate as SYSDBA over the network. Oracle must use this file to authenticate
them and not the normal list of passwords stored in the database.

So, let’s correct our situation. First, we'll start up the database locally so we can set the
REMOTE_LOGIN_PASSWORDFILE. Its default value is NONE, meaning there is no password file; there

103

104

CHAPTER 3 = FILES

are no “remote SYSDBA logins.” It has two other settings: SHARED (more than one database can
use the same password file) and EXCLUSIVE (only one database uses a given password file).
We'll set ours to EXCLUSIVE, as we want to use it for only one database (i.e., the normal use):

SOL> alter system set remote login passwordfile=exclusive scope=spfile;
System altered.

This setting cannot be changed dynamically while the instance is up and running, so we’ll
have to restart for this to take effect. The next step is to use the command-line tool (on UNIX
and Windows) named orapwd:

[oral0og@localhost dbs]$ orapwd
Usage: orapwd file=<fname> password=<password> entries=<users> force=<y/n>

where
file - name of password file (mand),
password - password for SYS (mand),
entries - maximum number of distinct DBA and OPERs (opt),
force - whether to overwrite existing file (opt),
There are no spaces around the equal-to (=) character.

to create and populate the initial password file. The command we’ll use is
$ orapwd file=orapw$ORACLE SID password=bar entries=20

That created a password file named orapwora10g in my case (my ORACLE_SID is ora10g).
That is the naming convention for this file on most UNIX platforms (see your installation/OS
admin guide for details on the naming of this file on your platform), and it resides in the
$ORACLE_HOME/dbs directory. On Windows, this file is named PW%0RACLE_SID%.ora and is located
in the %0RACLE_HOME%\database directory.

Now, currently the only user in that file is in fact the user SYS, even if there are other
SYSDBA accounts on that database (they are not in the password file yet). Using that knowledge,
however, we can for the first time connect as SYSDBA over the network:

[orai0og@localhost dbs]$ sqlplus sys/bar@oral0g _admin.localdomain as sysdba
SQL*Plus: Release 10.1.0.3.0 - Production on Sun Jan 2 20:49:15 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to an idle instance.

SoL>

We have been authenticated, so we are in—we can now successfully start up, shut down,
and remotely administer this database using the SYSDBA account. Now, we have another user,
OPS$TKYTE, who has been granted SYSDBA, but will not be able to connect remotely yet:

[orailog@localhost dbs]$ sqlplus 'ops$tkyte/foo' as sysdba

SQL*Plus: Release 10.1.0.3.0 - Production on Sun Jan 2 20:51:07 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> show user

CRAPTER 3 = FILES

USER is "SYS"

SQL> exit

[oraiog@localhost dbs]$ sqlplus 'ops$tkyte/foo@orai0g_admin.localdomain' as sysdba
SQL*Plus: Release 10.1.0.3.0 - Production on Sun Jan 2 20:52:57 2005

Copyright (c) 1982, 2004, Oracle. All rights reserved.

ERROR:

ORA-01031: insufficient privileges

Enter user-name:

The reason for that is that OPS$TKYTE is not yet in the password file. In order to get
OPS$TKYTE into the password file, we need to “regrant” that account SYSDBA:

SQL> grant sysdba to ops$tkyte;
Grant succeeded.

Disconnected from Oracle Database 10g

Enterprise Edition Release 10.1.0.3.0 - Production

With the Partitioning, OLAP and Data Mining options

[orai0og@localhost dbs]$ sqlplus 'ops$tkyte/foo@orai0g admin.localdomain' as sysdba
SQL*Plus: Release 10.1.0.3.0 - Production on Sun Jan 2 20:57:04 2005

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production

With the Partitioning, OLAP and Data Mining options

That created an entry in the password file for us, and Oracle will now keep the password
“in sync.” If OPS$TKYTE alters his password, the old one will cease working for remote SYSDBA
connections and the new one will start:

SOL> alter user ops$tkyte identified by bar;
User altered.

[orailog@localhost dbs]$ sqlplus 'ops$tkyte/foo@orai0g_admin.localdomain' as sysdba
SQL*Plus: Release 10.1.0.3.0 - Production on Sun Jan 2 20:58:36 2005

Copyright (c) 1982, 2004, Oracle. All rights reserved.

ERROR:

ORA-01017: invalid username/password; logon denied

Enter user-name: ops$tkyte/bar@ora10g_admin.localdomain as sysdba
Connected to:

Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL> show user

USER is "SYS"

SoL>

The same process is repeated for any user that was a SYSDBA but is not yet in the password
file.

100

106

CHAPTER 3 = FILES

Change Tracking File

The change tracking file is a new, optional file for use with Oracle 10g Enterprise Edition. The
sole purpose of this file is to track what blocks have modified since the last incremental
backup. In this fashion, the Recovery Manager (RMAN) tool can back up only the database
blocks that have actually been modified without having to read the entire database.

In releases prior to Oracle 10g, an incremental backup would have had to read the entire
set of database files to find blocks that had been modified since the last incremental backup.
So, if you had a 1TB database to which you simply added 500MB of new data (e.g., a data ware-
house load), the incremental backup would have read 1TB of data to find that 500MB of new
information to backup. So, the incremental backup would have stored significantly less data in
the backup, and it would have still read the entire database.

In Oracle 10g Enterprise Edition, that is no longer the case. As Oracle is running, and as
blocks are modified, Oracle will optionally maintain a file that tells RMAN what blocks have
been changed. The process of creating this change tracking file is rather simple and is accom-
plished via the ALTER DATABASE command:

ops$tkyte@ORA10GR1> alter database enable block change tracking

2 using file

3 '/home/ora10gri/product/10.1.0/oradata/ora10gr1/0RA10GR1/changed blocks.bct';
Database altered.

Caution r'll say this from time to time throughout the book: please bear in mind that commands that set
parameters, change the database, and make fundamental changes should not be done lightly, and definitely
should be tested prior to performing them on your “real” system. The preceding command will, in fact, cause
the database to do more work. It will consume resources.

To turn off and remove the block change tracking file, you would use the ALTER DATABASE
command once again:

ops$tkyte@ORAL10GR1> alter database disable block change tracking;
Database altered.

ops$tkyte@ORA10GR1> !1s -1 /home/oral0gri/.../changed blocks.bct
1s: /home/ora10gri/.../changed blocks.bct: No such file or directory

Note that that command will in fact erase the block change tracking file. It does not just
disable the feature—it removes the file as well. You can enable this new block change tracking
feature in either ARCHIVELOG or NOARCHIVELOG mode. But remember, a database in NOARCHIVELOG
mode, where the redo log generated daily is not retained, cannot recover all changes in the
event of a media (disk/device) failure! A NOARCHIVELOG mode database will lose data some day.
We will cover these two database modes in more detail in Chapter 9.

CRAPTER 3 = FILES

Flashback Log Files

Flashback log files (or simply flashback logs) were introduced in Oracle 10g in support of the
FLASHBACK DATABASE command, a new feature of the Enterprise Edition of the database. Flash-
back logs contain “before images” of modified database blocks that can be used to return the
database to the way it was at some prior point in time.

Flashback Database

The FLASHBACK DATABASE command was introduced to speed up the otherwise slow process
of a point in time database recovery. It can be used in place of a full database restore and a
rolling forward using archive logs, and it is primarily designed to speed up the recovery from
an “accident.” For example, let’s take a look at what a DBA might do to recover from an
“accidentally” dropped schema, in which the right schema was dropped, just in the wrong
database (it was meant to be dropped in the test environment). The DBA recognizes immedi-
ately the mistake he has made and immediately shuts down the database. Now what?

Prior to the flashback database capability, what would probably happen is this:

1. The DBA would shut down the database.

2. The DBA would restore the last full backup of database from tape (typically). This is
generally a long process.

3. The DBA would restore all archive redo logs generated since the backup that were not
available on the system.

4. The DBA would roll the database forward and stop rolling forward at a point in time
just before the erroneous DROP USER command.

5. The database would be opened with the RESETLOGS option.

This was a nontrivial process with many steps and would generally consume a large piece
of time (time where no one would be accessing the database, of course). The causes of a point
in time recovery like this are many: an upgrade script gone awry, an upgrade gone bad, an
inadvertent command issued by someone with the privilege to issue it (a mistake, probably
the most frequent cause), or some process introducing data integrity issues into a large data-
base (again, an accident; maybe it was run twice instead of just once, or maybe it had a bug).
Whatever the reason, the net effect was a large period of downtime.

The steps to recover in Oracle 10g Enterprise Edition, assuming you configured the flash-
back database capability, would be as follows:

1. The DBA shuts down the database.

2. The DBA startup-mounts the database and issues the flashback database command,
using either an SCN, the Oracle internal clock, or a timestamp (wall clock time), which
would be accurate to within a couple of seconds.

3. The DBA opens the database with resetlogs.

107

108

CHAPTER 3 = FILES

To use this feature, the database must be in ARCHIVELOG mode and must have been set up
to enable the FLASHBACK DATABASE command. What I'm trying to say is that you need to have
set up this capability prior to having a need to use it. It is not something you can enable after
the damage is done; you must make a conscious decision to use it.

Flash Recovery Area

The Flash Recovery Area is a new concept in Oracle 10g. For the first time in many years (over
25 years), the basic concept behind database backups has changed in Oracle. In the past, the
design of backup and recovery in the database was built around the concept of a sequential
medium, such as a tape device. That is, random access devices (disk drives) were always con-
sidered too expensive to waste for mere backups. You used relatively inexpensive tape devices
with large storage capacities.

Today, however, you can buy terabytes of disk storage at a very low cost. In fact, by 2007,
HP intends to ship desktop computers with terabyte disk drives. I remember my first hard drive
on my personal computer: a whopping 40MB. I actually had to partition it into two logical
disks because the OS I was using (MS-DOS at the time) could not recognize a disk larger than
32MB. Things have certainly changed in the last 20 years.

The Flash Recovery Area in Oracle 10g is a new location where Oracle will manage many
of the files related to database backup and recovery. In this area (an area being a set-aside area
of disk for this purpose; a directory, for example), you could find

* Copies of data files on disk
¢ Incremental backups of your database
* Redo logs (archived redo logs)

¢ Control files and backups of control files

Flashback logs

This new area is used to allow Oracle to manage these files, for the server to have knowl-
edge of what is on disk and what is not on disk (and perhaps on tape elsewhere). Using this
information, the database can perform operations like a disk-to-disk restore of a damaged
data file or the flashing back (a “rewind” operation) of the database to undo an operation that
should not have taken place. For example, you could use the flashback database command
to put the database back the way it was five minutes ago (without doing a full restore of the
database and a point in time recovery). That would allow you to “undrop” that accidentally
dropped user account.

The Flash Recovery Area is more of a “logical” concept. It is a holding area for the file
types discussed in this chapter. Its use is optional—you do not need to use it—but if you want
to use some advanced features such as the Flashback Database, you must use this area to store
the information.

DMP Files (EXP/IMP Files)

Export and Import are venerable Oracle data extraction and load tools that have been around
for many versions. Export’s job is to create a platform-independent DMP file that contains all

CRAPTER 3 = FILES

of the required metadata (in the form of CREATE and ALTER statements), and optionally the data
itself to re-create tables, schemas, or even entire databases. Import’s sole job in life is to read
these DMP files, and execute the DDL statements and load any data it finds.

DMP files are designed to be backward-compatible, meaning that newer releases can read
older releases’ DMP files and process them successfully. I have heard of people exporting a
version 5 database and successfully importing it into Oracle 10g (just as a test!). So Import can
read older version DMP files and process the data therein. The converse, however, is most
definitely not true: the Import process that comes with Oracle9i Release 1 cannot—will not—
successfully read a DMP file created by Oracle9i Release 2 or Oracle 10g Release 1. For
example, I exported a simple table from both Oracle 10g Release 1 and Oracle9i Release 2.
Upon trying to use these DMP files in Oracle9i Release 1, I soon discovered Oracle9i Release 1
import will not even attempt to process the Oracle 10g Release 1 DMP file:

[tkyte@localhost tkyte]$ imp userid=/ full=y file=10g.dmp

Import: Release 9.0.1.0.0 - Production on Sun Jan 2 21:08:56 2005

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option

JServer Release 9.0.1.0.0 - Production

IMP-00010: not a valid export file, header failed verification
IMP-00000: Import terminated unsuccessfully

When processing the Oracle9i Release 2 file, things are not that much better:

[tkyte@localhost tkyte]$ imp userid=/ full=y file=9ir2.dmp

Import: Release 9.0.1.0.0 - Production on Sun Jan 2 21:08:42 2005

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Connected to: Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export file created by EXPORT:V09.02.00 via conventional path

import done in WEBIS08859P1 character set and AL16UTF16 NCHAR character set

. importing OPS$TKYTE's objects into OPS$TKYTE

IMP-00017: following statement failed with ORACLE error 922:

"CREATE TABLE "T" ("X" NUMBER(*,0)) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRA"
"NS 255 STORAGE(INITIAL 65536 FREELISTS 1 FREELIST GROUPS 1) TABLESPACE "USE"
"RS" LOGGING NOCOMPRESS"

IMP-00003: ORACLE error 922 encountered

ORA-00922: missing or invalid option

Import terminated successfully with warnings.

While 9i Release 1 tried to read the file, it could not process the DDL contained therein. In
Oracle9i Release 2 a new feature, table compression, was added. Hence Export in that version
started adding NOCOMPRESS or COMPRESS as a keyword to each and every CREATE TABLE state-
ment. The DDL from Oracle9i Release 2 does not work in Oracle9i Release 1.

If, however, I use the Oracle9i Release 1 Export tool against either Oracle9i Release 2 or
Oracle 10g Release 1, I will get a valid DMP file that can be successfully imported into Oracle9i
Release 1. So, the rule with DMP files is that they must be created by a version of Export that is

109

10

CHAPTER 3 © FILES

less than or equal to the version of Import that will be used against them. To import data in
Oracle9i Release 1, you must use Oracle9i Release 1’s Export (or you could use a version 8i
Export process as well; the DMP file must be created by a release of Export less than or equal
to Oracle9i Release 1).

These DMP files are platform independent, so you can safely take an Export from any
platform, transfer it to another, and import it (as long as the versions of Oracle permit). One
caveat, however, with Windows and FTPing of files is that Windows will consider a DMP file a
“text” file by default and will tend to convert linefeeds (the end-of-line marker on UNIX) into
carriage return/linefeed pairs, thus totally corrupting the DMP file. When FTPing a DMP file
in Windows, make sure you're doing a binary transfer, and if the import won't work, check the
source and target file sizes to make sure they’re the same. I can’t recall how many times this
issue has brought things to a screeching halt while the file has to be retransferred.

DMP files are binary files, meaning you won't be editing them to change them. You can
extract a large amount of information from them—CREATE DDL, and more—but you won't be
editing them in a text editor (or any sort of editor, actually). In the first edition of Expert One-
on-One Oracle (which you as owner of the second edition have full access to in electronic
form), I spent a great deal of time discussing the Import and Export utilities and working with
DMP files. As these tools are falling out of favor, in place of the infinitely more flexible Data
Pump utilities, I'll defer a full discussion of how to manipulate them, extract data from them,
and use them in general to the online first edition.

Data Pump Files

Data Pump is a file format used by at least two tools in Oracle 10g. External tables can load
and unload data in the Data Pump format, and the new import/export tools IMPDP and
EXPDP use this file format much in the way IMP and EXP used the DMP file format.

Note The Data Pump format is exclusive to Oracle 10g Release 1 and above—it did not exist in any
Oracle9i release, nor can it be used with that release.

Pretty much all of the same caveats that applied to DMP files mentioned previously will
apply over time to Data Pump files as well. They are cross-platform (portable) binary files that
contain metadata (not stored in CREATE/ALTER statements, but rather in XML) and possibly
data. That they use XML as a metadata representation structure is actually relevant to you and
I as end users of the tools. IMPDP and EXPDP have some sophisticated filtering and transla-
tion capabilities never before seen in the IMP/EXP tools of old. This is in part due to the use of
XML and the fact that a CREATE TABLE statement is not stored as a CREATE TABLE, but rather as a
marked-up document. This permits easy implementation of a request like “Please replace all
references to tablespace FOO with tablespace BAR.” When the metadata was stored in the DMP
file as CREATE/ALTER statements, the Import utility would have had to basically parse each SQL
statement before executing it in order to accomplish this feat (something it does not do).

CRAPTER 3 = FILES

IMPDBP however, just has to apply a simple XML transformation to accomplish the same—F00,
when it refers to a TABLESPACE, would be surrounded by <TABLESPACE>FOO</TABLESPACE> tags
(or some other representation).

The fact that XML is used has allowed the EXPDP and IMPDP tools to literally leapfrog the
old EXP and IMP tools with regard to their capabilities. In Chapter 15, we’ll take a closer look
at these tools in general. Before we get there, however, let’s see how we can use this Data Pump
format to quickly extract some data from database A and move it to database B. We’ll be using
an “external table in reverse” here.

External tables, originally introduced in Oracle9i Release 1, gave us the ability to read flat
files—plain old text files—as if they were database tables. We had the full power of SQL to
process them. They were read-only and designed to get data from outside Oracle in. External
tables in Oracle 10g Release 1 and above can go the other way: they can be used to get data out
of the database in the Data Pump format to facilitate moving the data to another machine,
another platform. To start this exercise, we’ll need a DIRECTORY object, telling Oracle the loca-
tion to unload to:

ops$tkyte@ORA10G> create or replace directory tmp as '/tmp'
2/
Directory created.

Next, we'll unload the data from the ALL_OBJECTS view. It could be from any arbitrary
query, involving any set of tables or SQL constructs we want:

ops$tkyte@ORA10G> create table all objects unload
2 organization external

3 (type oracle datapump

4 default directory TMP

5 location('allobjects.dat')
6)

7 as

8 select * from all objects

9 /

Table created.

And that literally is all there is to it: we have a file in /tmp named allobjects.dat that con-
tains the contents of the query select * from all objects.We can peek at this information:

ops$tkyte@ORA10G> 'head /tmp/allobjects.dat
.......... Linuxi386/Linux-2.0.34-8.1.0WE8ISO8859P1..........
<?xml version="1.0"?>
<ROWSET>
<ROW>
<STRMTABLE_T>
<VERS_MAJOR>1</VERS_MAJOR>
<VERS_MINOR>O </VERS_MINOR>
<VERS_DPAPI>3</VERS_DPAPI>
<ENDIANNESS>0</ENDIANNESS>
<CHARSET>WE8IS08859P1</CHARSET>

m

12

CHAPTER 3 = FILES

That is just the head, or top, of the file; binary data is represented by the (don’t be
surprised if your terminal “beeps” at you when you look at this data). Now, using a binary FTP
(same caveat as for a DMP file!), | moved this allobject.dat file to a Windows XP server and
created a directory object to map to it:

tkyte@ORA10G> create or replace directory TMP as 'c:\temp\'
2/
Directory created.

Then I created a table that points to it:

tkyte@ORA10G> create table t

2 (OWNER VARCHAR2(30),
3 OBJECT NAME VARCHAR2(30),
4 SUBOBJECT NAME VARCHAR2(30),
5 OBJECT ID NUMBER,

6 DATA OBJECT ID NUMBER,

7 OBJECT TYPE VARCHAR2(19),
8 CREATED DATE,

9 LAST DDL TIME DATE,
10 TIMESTAMP VARCHAR2(19),
11 STATUS VARCHAR2(7),
12 TEMPORARY VARCHAR2(1),
13 GENERATED VARCHAR2(1),
14 SECONDARY VARCHAR2 (1)
15)

16 organization external

17 (type oracle datapump

18 default directory TMP

19 location('allobjects.dat')
20)

21/

Table created.

And now I'm able to query the data unloaded from the other database immediately:

tkyte@ORA10G> select count(*) from t;

COUNT(*)

That is the power of the Data Pump file format: immediate transfer of data from system to
system over “sneaker net” if need be. Think about that the next time you'd like to take a subset
of data home to work with over the weekend while testing.

One thing that wasn’t obvious here was that the character sets were different between
these two databases. If you notice in the preceding head output, the character set of my Linux
database WE8IS08859P1 was encoded into the file. My Windows server has this:

CRAPTER 3 = FILES

tkyte@ORA10G> select *
2 from nls_database parameters
3 where parameter = 'NLS_CHARACTERSET';

PARAMETER VALUE

NLS_CHARACTERSET WE8MSWIN1252

Oracle has the ability now to recognize the differing character sets due to the Data Pump
file format and deal with them. Character-set conversion can be performed on the fly as
needed to make the data “correct” in each database’s representation.

Again, we'll come back to the Data Pump file format in Chapter 15, but this section should
give you an overall feel for what it is about and what might be contained in the file.

Flat Files

Flat files have been around since the dawn of electronic data processing. We see them literally
every day. The alert log described previously is a flat file.
I found these definitions for “flat file” on the Web and feel they pretty much wrap it up:

An electronic record that is stripped of all specific application (program) formats. This
allows the data elements to be migrated into other applications for manipulation.
This mode of stripping electronic data prevents data loss due to hardware and propri-
etary software obsolescence.!

A computer file where all the information is run together in a signal character string.?

A flat file is simply a file whereby each “line” is a “record,” and each line has some text
delimited, typically by a comma or pipe (vertical bar). Flat files are easily read by Oracle using
either the legacy data-loading tool SQLLDR or external tables—in fact, I will cover this in
detail in Chapter 15 (external tables are also covered in Chapter 10). Flat files, however, are not
something produced so easily by Oracle—for whatever reason, there is no simple command-
line tool to export information in a flat file. Tools such as HTMLDB and Enterprise Manager
facilitate this process, but there are no official command-line tools that are easily usable in
scripts and such to perform this operation.

That is one reason I decided to mention flat files in this chapter: to propose a set of tools
that is capable of producing simple flat files. Over the years, I have developed three methods
to accomplish this task, each appropriate in its own right. The first uses PL/SQL and UTL_FILE
with dynamic SQL to accomplish the job. With small volumes of data (hundreds or thousands
of rows), this tool is sufficiently flexible and fast enough to get the job done. However, it must

1. Seehttp://osulibrary.oregonstate.edu/archives/handbook/definitions.

2. Seehttp://www.oregoninnovation.org/pressroom/glossary.d-f.html.

113

14

CHAPTER 3 = FILES

create its files on the database server machine, which is sometimes not the location we'd like
for them. To that end, I have a SQL*Plus utility that creates flat files on the machine that is
running SQL*Plus. Since SQL*Plus can connect to an Oracle server anywhere on the network,
this gives us the ability to unload to a flat file any data from any database on the network.
Lastly, when the need for total speed is there, nothing but C will do (if you ask me). To that
end, I also have a Pro*C command-line unloading tool to generate flat files. All of these tools
are freely available at http://asktom.oracle.com/~tkyte/flat/index.html, and any new tools
developed for unloading to flat files will appear there as well.

Summary

In this chapter, we explored the important types of files used by the Oracle database, from
lowly parameter files (without which you won't even be able to get started) to the all important
redo log and data files. We examined the storage structures of Oracle from tablespaces to seg-
ments, and then extents, and finally down to database blocks, the smallest unit of storage. We
reviewed how checkpointing works in the database, and we even started to look ahead at what
some of the physical processes or threads of Oracle do.

CHAPTER 4

Memory Structures

In this chapter, we’ll look at Oracle’s three major memory structures:

* System Global Area (SGA): This is a large, shared memory segment that virtually all
Oracle processes will access at one point or another.

* Process Global Area (PGA): This is memory that is private to a single process or thread,
and is not accessible from other processes/threads.

» User Global Area (UGA): This is memory associated with your session. It will be found
either in the SGA or the PGA depending on whether you are connected to the database
using shared server (then it will be in the SGA), or dedicated server (it will be in the
PGA, in the process memory).

Note In earlier releases of Oracle, shared server was referred to as Multi-Threaded Server or MTS. In this
book, we will always use the term “shared server.”

We'll first discuss the PGA and UGA, and then we’ll move on to examine the really big
structure: the SGA.

The Process Global Area and User Global Area

The PGA is a process-specific piece of memory. In other words, it is memory specific to a
single operating system process or thread. This memory is not accessible by any other
process/thread in the system. It is typically allocated via either of the C runtime calls malloc()
or memmap(), and it may grow (and shrink even) at runtime. The PGA is never allocated in
Oracle’s SGA—it is always allocated locally by the process or thread.

The UGA is, in effect, your session’s state. It is memory that your session must always be
able to get to. The location of the UGA is wholly dependent on how you connected to Oracle.
If you connected via a shared server, then the UGA must be stored in a memory structure that
every shared server process has access to—and that would be the SGA. In this way, your ses-
sion can use any one of the shared servers, since any one of them can read and write your
session’s data. On the other hand, if you are using a dedicated server connection, this need for
universal access to your session state goes away, and the UGA becomes virtually synonymous
with the PGA; it will, in fact, be contained in the PGA of your dedicated server. When you look

115

116

CHAPTER 4 & MEMORY STRUCTURES

at the system statistics, you'll find the UGA reported in the PGA in dedicated server mode (the
PGA will be greater than or equal to the UGA memory used; the PGA memory size will include

the UGA size as well).

So, the PGA contains process memory and may include the UGA. The other areas of PGA
memory are generally used for in-memory sorting, bitmap merging, and hashing. It would be
safe to say that, besides the UGA memory, these are the largest contributors by far to the PGA.

Starting with Oracle9i Release 1 and above, there are two ways to manage this other non-

UGA memory in the PGA:

* Manual PGA memory management, where you tell Oracle how much memory is it
allowed to use to sort and hash any time it needs to sort or hash in a specific process

* Automatic PGA memory management, where you tell Oracle how much memory it

should attempt to use systemwide

The manner in which memory is allocated and used differs greatly in each case and, as
such, we’ll discuss each in turn. It should be noted that in Oracle9i, when using a shared
server connection, you can only use manual PGA memory management. This restriction was
lifted with Oracle 10g Release 1 (and above). In that release, you can use either automatic or

manual PGA memory management with shared server connections.
PGA memory management is controlled by the database initialization parameter

WORKAREA SIZE POLICY and may be altered at the session level. This initialization parameter
defaults to AUTO, for automatic PGA memory management when possible in Oracle9i Release 2

and above. In Oracle9i Release 1, the default setting was MANUAL.
In the sections that follow, we’ll take a look at each approach.

Manual PGA Memory Management

In manual PGA memory management, the parameters that will have the largest impact on the
size of your PGA, outside of the memory allocated by your session for PL/SQL tables and other

variables, will be as follows:

e SORT_AREA SIZE:The total amount of RAM that will be used to sort information before

swapping out to disk.

SORT_AREA RETAINED SIZE: The amount of memory that will be used to hold sorted
data after the sort is complete. That is, if SORT AREA SIZE was 512KB and SORT_AREA
RETAINED SIZE was 256KB, then your server process would use up to 512KB of memory
to sort data during the initial processing of the query. When the sort was complete, the
sorting area would be “shrunk” down to 256KB, and any sorted data that did not fit in
that 256KB would be written out to the temporary tablespace.

HASH_AREA SIZE: The amount of memory your server process would use to store hash
tables in memory. These structures are used during a hash join, typically when joining
a large set with another set. The smaller of the two sets would be hashed into memory
and anything that didn’t fit in the hash area region of memory would be stored in the
temporary tablespace by the join key.

These parameters control the amount of space Oracle will use to sort or hash data before
writing (swapping) it to disk, and how much of that memory segment will be retained after the

CHAPTER 4 & MEMORY STRUCTURES

sortis done. The SORT_AREA SIZE-SORT_AREA RETAINED SIZE is generally allocated out of your
PGA, and the SORT_AREA_RETAINED SIZE will be in your UGA. You can discover your current
usage of PGA and UGA memory and monitor its size by querying special Oracle V$ views, also
referred to as dynamic performance views.

For example, let’s run a small test whereby in one session we'll sort lots of data and, from a
second session, we’'ll monitor the UGA/PGA memory usage in that first session. To do thisin a
predicable manner, we'll make a copy of the ALL_OBJECTS table, with about 45,000 rows in this
case, without any indexes (so we know a sort has to happen):

ops$tkyte@ORA10G> create table t as select * from all objects;
Table created.

ops$tkyte@ORA10G> exec dbms_stats.gather table stats(user, 'T');
PL/SOL procedure successfully completed.

To remove any side effects from the initial hard parsing of queries, we’ll run the following
script, but for now ignore its output. We'll run the script again in a fresh session so as to see
the effects on memory usage in a controlled environment. We'll use the sort area sizes of 64KB,
1MB, and 1GB in turn:

create table t as select * from all objects;
exec dbms stats.gather table stats(user, 'T');
alter session set workarea size policy=manual;
alter session set sort area size = 65536;

set termout off

select * from t order by 1, 2, 3, 4;

set termout on

alter session set sort area size=1048576;

set termout off

select * from t order by 1, 2, 3, 4;

set termout on

alter session set sort area size=1073741820;
set termout off

select * from t order by 1, 2, 3, 4;

set termout on

Note When we process SQL in the database, we must first “parse” the SQL statement. There are two
types of parses available. The first is a hard parse, which is what happens the first time a query is parsed
by the database instance and includes query plan generation and optimization. The second is a soft parse,
which can skip many of the steps a hard parse must do. We hard parse the previous queries so as to not
measure the work performed by that operation in the following section.

Now, I would suggest logging out of that SQL*Plus session and logging back in before con-
tinuing, in order to get a consistent environment, or one in which no work has been done yet.

17z

138

CHAPTER 4 = MEMORY STRUCTURES

To ensure we're using manual memory management, we'll set it specifically and specify our
rather small sort area size of 64KB. Also, we'll identify our session ID (SID) so we can monitor
the memory usage for that session.

ops$tkyte@ORA10G> alter session set workarea size policy=manual;
Session altered.

ops$tkyte@ORA10G> select sid from v$mystat where rownum = 1;

Now, we need to measure SID 151’s memory from a second separate session. If we used
the same session, then our query to see how much memory we are using for sorting might
itself influence the very numbers we are looking at. To measure the memory from this second
session, we'll use a small SQL*Plus script I developed for this. It is actually a pair of scripts. The
one we want to watch that resets a small table and sets a SQL*Plus variable to the SID is called
reset stat.sql:

drop table sess stats;

create table sess stats
(name varchar2(64), value number, diff number);

variable sid number
exec :sid := &1

Note Before using this script (or any script, for that matter), make sure you understand what the script
does. This script is dropping and re-creating a table called SESS_STATS. If your schema already has such a
table, you'll probably want to use a different name!

The other script is called watch_stat.sql, and for this case study, it uses the MERGE SQL
statement so we can initially INSERT the statistic values for a session and then later come back
and update them—without needing a separate INSERT/UPDATE script:

merge into sess stats
using
(
select a.name, b.value

from v$statname a, v$sesstat b
where a.statistic# = b.statistic#

and b.sid = :sid

and (a.name like '%ga %'

or a.name like '%direct temp%')

) curr stats

CHAPTER 4 & MEMORY STRUCTURES

on (sess stats.name = curr stats.name)
when matched then
update set diff = curr stats.value - sess stats.value,
value = curr stats.value
when not matched then
insert (name, value, diff)
values
(curr stats.name, curr stats.value, null)
/

select *
from sess stats
order by name;

I emphasized the phrase “for this case study” because of the lines in bold—the names of
the statistics we're interested in looking at change from example to example. In this particular
case, we're interested in anything with ga in it (pga and uga), or anything with direct temp,
which in Oracle 10g will show us the direct reads and writes against temporary space (how
much I/0 we did reading and writing to temp).

Note In Oracle9;, direct I/0 to temporary space was not labeled as such. We would use a WHERE clause
thatincluded and (a.name like '%ga %'or a.name like '%physical % direct%')init.

When this watch_stat.sql script is run from the SQL*Plus command line, we'll see a list-
ing of the PGA and UGA memory statistics for the session, as well as temporary I/O. Before we
do anything in session 151, the session using manual PGA memory management, let’s use this
script to find out how much memory that session is currently using and how many temporary
I/0s we have performed:

ops$tkyte@ORA10G> @watch stat
6 rows merged.

NAME VALUE DIFF
physical reads direct temporary tablespace 0
physical writes direct temporary tablespace 0
session pga memory 498252
session pga memory max 498252
session uga memory 152176
session uga memory max 152176

So, before we begin we can see that we have about 149KB (152,176/1,024) of data in the
UGA and 487KB of data in the PGA. The first question is “How much memory are we using
between the PGA and UGA?” That is, are we using 149KB + 487KB of memory, or are we using

19

120

CHAPTER 4 = MEMORY STRUCTURES

some other amount? This is a trick question, and one that you cannot answer unless you know
whether the monitored session with SID 151 was connected to the database via a dedicated
server or a shared server—and even then it might be hard to figure out. In dedicated server
mode, the UGA is totally contained within the PGA, in which case we would be consuming
487KB of memory in our process or thread. In shared server, the UGA is allocated from the
SGA, and the PGA is in the shared server. So, in shared server mode, by the time we get the last
row from the preceding query, the shared server process may be in use by someone else. That
PGA isn't “ours” anymore, so technically we are using 149KB of memory (except when we are
actually running the query, at which point we are using 487KB of memory between the com-
bined PGA and UGA). So, let’s now run the first big query in session 151, which is using
manual PGA memory management in dedicated server mode. Note that we are using the
same script from earlier, so the SQL text matches exactly, thus avoiding the hard parse:

Note Since we haven't set a SORT AREA RETAINED SIZE, its reported value will be zero, but its used
value will match SORT_AREA SIZE.

ops$tkyte@ORA10G> alter session set sort area size = 65536;
Session altered.

ops$tkyte@ORA10G> set termout off;
query was executed here
ops$tkyte@ORA10G> set termout onj;

Now if we run our script again in the second session, we’ll see something like this.
Notice this time that the session xxx memory and session xxx memory max values do not
match. The session xxx memory max value represents how much memory we are using right
now. The session xxx memory max value represents the peak value we used at some time
during our session while processing the query.

ops$tkyte@ORA10G> @watch stat
6 rows merged.

NAME VALUE DIFF
physical reads direct temporary tablespace 2906 2906
physical writes direct temporary tablespace 2906 2906
session pga memory 498252 0
session pga memory max 563788 65536
session uga memory 152176 0
session uga memory max 217640 65464

6 rows selected.

As you can see, our memory usage went up—we've done some sorting of data. Our UGA
temporarily increased from 149KB to 213KB (64KB) during the processing of our query, and

CHAPTER 4 & MEMORY STRUCTURES

then it shrunk back down. To perform our query and the sorting, Oracle allocated a sort area
for our session. Additionally, the PGA memory went from 487KB to 551KB, a jump of 64KB.
Also, we can see that we did 2,906 writes and reads to and from temp.

By the time we finish our query and exhausted the resultset, we can see that our UGA
memory went back down where it started (we released the sort areas from our UGA) and the
PGA shrunk back somewhat (note that in Oracle8i and before, you would not expect to see
the PGA shrink back at all; this is new with Oracle9i and later).

Let’s retry that operation but play around with the size of our SORT_AREA_SIZE increasing it
to 1IMB. We'll log out of the session we’re monitoring, log back in, and use the reset_stat.sql
script to start over. As the beginning numbers are consistent, I don’t display them here—only
the final results:

ops$tkyte@ORA10G> alter session set sort area size=1048576;

Session altered.

ops$tkyte@ORA10G> set termout off;
query was executed here
ops$tkyte@ORA10G> set termout on

Now in the other session we can measure our memory usage again:

ops$tkyte@ORAL10G> @watch stat
6 rows merged.

NAME VALUE DIFF
physical reads direct temporary tablespace 684 684
physical writes direct temporary tablespace 684 684
session pga memory 498252 0
session pga memory max 2398796 1900544
session uga memory 152176 0
session uga memory max 1265064 1112888

6 rows selected.

Asyou can see, our PGA had grown considerably this time during the processing of our
query. It temporarily grew by about 1,728KB, but the amount of physical I/O we had to do to
sort this data dropped considerably as well (use more memory, swap to disk less often). We
may have avoided a multipass sort as well, a condition that happens when there are so many
little sets of sorted data to merge together that Oracle ends up writing the data to temp more
than once. Now, let’s go to an extreme here:

ops$tkyte@ORA10G> alter session set sort area size=1073741820;
Session altered.

ops$tkyte@ORA10G> set termout off;
query was executed here
ops$tkyte@ORA10G> set termout on

121

122

CHAPTER 4 = MEMORY STRUCTURES

Measuring from the other session, we can see the memory used so far:

ops$tkyte@ORA10G> @watch stat
6 rows merged.

NAME VALUE DIFF
physical reads direct temporary tablespace 0 0
physical writes direct temporary tablespace 0 0
session pga memory 498252 0
session pga memory max 7445068 6946816
session uga memory 152176 0
session uga memory max 7091360 6939184

6 rows selected.

We can observe that even though we allowed for up to 1GB of memory to the SORT_AREA
SIZE, we really only used about 6.6MB. This shows that the SORT_AREA SIZE setting is an upper
bound, not the default and only allocation size. Here notice also that we did only one sort
again, but this time it was entirely in memory; there was no temporary space on disk used, as
evidenced by the lack of physical I/0O.

If you run this same test on various versions of Oracle, or perhaps even on different oper-
ating systems, you might see different behavior, and I would expect that your numbers in all
cases would be a little different from mine. But the general behavior should be the same. In
other words, as you increase the permitted sort area size and perform large sorts, the amount
of memory used by your session will increase. You might notice the PGA memory going up
and down, or it might remain constant over time, as just shown. For example, if you were to
execute the previous test in Oracle8i, I am sure that you would notice that PGA memory does
not shrink back in size (i.e., the SESSION PGA MEMORY equals the SESSION PGA MEMORY MAX in all
cases). This is to be expected, as the PGA is managed as a heap in 8i releases and is created via
malloc()-ed memory. In 9i and 10g, new methods attach and release work areas as needed
using operating system-specific memory allocation calls.

The important things to remember about using the * AREA SIZE parameters are as follows:

* These parameters control the maximum amount of memory used by a SORT, HASH,
and/or BITMAP MERGE operation.

¢ Asingle query may have many operations taking place that use this memory, and mul-
tiple sort/hash areas could be created. Remember that you may have many cursors
opened simultaneously, each with their own SORT_AREA_RETAINED needs. So, if you set
the sort area size to 10MB, you could use 10, 100, 1,000 or more megabytes of RAM in
your session. These settings are not session limits; rather, they are limits on a single
operation, and your session could have many sorts in a single query or many queries
open that require a sort.

CHAPTER 4 = MEMORY STRUCTURES

* The memory for these areas is allocated on an “as needed basis.” If you set the sort area
size to 1GB as we did, it does not mean you will allocate 1GB of RAM. It only means that
you have given the Oracle process the permission to allocate that much memory for a
sort/hash operation.

Automatic PGA Memory Management

Starting with Oracle9i Release 1, a new way to manage PGA memory was introduced that
avoids using the SORT_AREA_SIZE, BITMAP_MERGE_AREA SIZE, and HASH_AREA SIZE parameters.
It was introduced to attempt to address a few issues:

* Ease of use: Much confusion surrounded how to set the proper * AREA SIZE parameters.
There was also much confusion over how those parameters actually worked and how
memory was allocated.

* Manual allocation was a “one-size-fits-all” method: Typically as the number of users
running similar applications against a database went up, the amount of memory used
for sorting/hashing went up linearly as well. If 10 concurrent users with a sort area size
of 1IMB used 10MB of memory, 100 concurrent users would probably use 100MB, 1,000
would probably use 1000MB, and so on. Unless the DBA was sitting at the console con-
tinually adjusting the sort/hash area size settings, everyone would pretty much use the
same values all day long. Consider the previous example, where you saw for yourself
how the physical I/0 to temp decreased as the amount of RAM we allowed ourselves
to use went up. If you run that example for yourself, you will almost certainly see a
decrease in response time as the amount of RAM available for sorting increases. Manual
allocation fixes the amount of memory to be used for sorting at a more or less constant
number, regardless of how much memory is actually available. Automatic memory
management allows us to use the memory when it is available; it dynamically adjusts
the amount of memory we use based on the workload.

e Memory control: As a result of the previous point, it was hard, if not impossible, to keep
the Oracle instance inside a “box” memory-wise. You could not control the amount of
memory the instance was going to use, as you had no real control over the number of
simultaneous sorts/hashes taking place. It was far too easy to use more real memory
(actual physical free memory) than was available on the machine.

Enter automatic PGA memory management. Here, you first simply set up and size the
SGA. The SGA is a fixed-size piece of memory, so you can very accurately see how big it is, and
that will be its total size (until and if you change that). You then tell Oracle, “This is how much
memory you should try to limit yourself across all work areas—a new umbrella term for the
sorting and hashing areas you use.” Now, you could in theory take a machine with 2GB of
physical memory and allocate 768MB of memory to the SGA and 768MB of memory to the
PGA, leaving 512MB of memory for the OS and other processes. I say “in theory” because it
doesn’t work exactly that cleanly, but it’s close. Before I discuss why that is true, we'll take a
look at how to set up automatic PGA memory management and turn it on.

123

124 CHAPTER 4 = MEMORY STRUCTURES

The process to set this up involves deciding on the proper values for two instance initial-
ization parameters, namely

* WORKAREA SIZE POLICY:This parameter may be set to either MANUAL, which will use the
sort area and hash area size parameters to control the amount of memory allocated,
or AUTO, in which case the amount of memory allocated will vary based on the current
workload present in the database. The default and recommended value is AUTO.

* PGA AGGREGATE_TARGET: This parameter controls how much memory the instance
should allocate, in total, for all work areas used to sort/hash data. Its default value
varies by version and may be set by various tools such as the DBCA. In general, if
you are using automatic PGA memory management, you should explicitly set this
parameter.

So, assuming that WORKAREA SIZE POLICY is set to AUTO, and PGA AGGREGATE_TARGET has a
nonzero value, you will be using the new automatic PGA memory management. You can
“turn it on" in your session via the ALTER SESSION command or at the system level via the
ALTER SESSION command.

Note Bear in mind the previously discussed caveat that in Oracle9i, shared server connections will not
use automatic memory management; rather, they will use the SORT_AREA_SIZE and HASH AREA SIZE
parameters to decide how much RAM to allocate for various operations. In Oracle 10g and up, automatic
PGA memory management is available to both connection types. It is important to properly set the
SORT_AREA SIZE and HASH_AREA SIZE parameters when using shared server connections with Oracle9i.

So, the entire goal of automatic PGA memory management is to maximize the use of RAM
while at the same time not using more RAM than you want. Under manual memory manage-
ment, this was virtually an impossible goal to achieve. If you set SORT_AREA SIZE to 10MB,
when one user was performing a sort operation that user would use up to 10MB for the sort
work area. If 100 users were doing the same, they would use up to 1000MB of memory. If you
had 500MB of free memory, the single user performing a sort by himself could have used
much more memory, and the 100 users should have used much less. That is what automatic
PGA memory management was designed to do. Under a light workload, memory usage could
be maximized as the load increases on the system, and as more users perform sort or hash
operations, the amount of memory allocated to them would decrease—to obtain the goal of
using all available RAM, but not attempting to use more than physically exists.

Determining How the Memory Is Allocated

Questions that come up frequently are “How is this memory allocated?” and “What will be

the amount of RAM used by my session?” These are hard questions to answer for the simple
reason that the algorithms for serving out memory under the automatic scheme are not docu-
mented and can and will change from release to release. When using things that begin with
“A”—for automatic—you lose a degree of control, as the underlying algorithms decide what to
do and how to control things.

CHAPTER 4 & MEMORY STRUCTURES

We can make some observations based on some information from MetaLink note
147806.1:

The PGA_AGGREGATE_TARGET is a goal of an upper limit. It is not a value that is pre-allocated
when the database is started up. You can observe this by setting the PGA_AGGREGATE _
TARGET to a value much higher than the amount of physical memory you have available
on your server. You will not see any large allocation of memory as a result.

A serial (nonparallel query) session will use a small percentage of the PGA_AGGREGATE
TARGET, about 5 percent or less. So, if you have set the PGA AGGREGATE_TARGET to 100MB,
you would expect to use no more than about 5MB per work area (e.g., the sort or hash
work area). You may well have multiple work areas in your session for multiple queries,
or more than one sort/hash operation in a single query, but each work area will be
about 5 percent or less of the PGA_AGGREGATE_TARGET.

As the workload on you server goes up (more concurrent queries, concurrent users), the
amount of PGA memory allocated to your work areas will go down. The database will
try to keep the sum of all PGA allocations under the threshold set by PGA AGGREGATE
TARGET. It would be analogous to having a DBA sit at a console all day, setting the
SORT_AREA SIZE and HASH AREA SIZE parameters based on the amount of work being
performed in the database. We will directly observe this behavior shortly in a test.

A parallel query may use up to 30 percent of the PGA AGGREGATE_TARGET, with each paral-
lel process getting its slice of that 30 percent. That is, each parallel process would be
able to use about 0.3 * PGA_AGGREGATE_TARGET / (number of parallel processes).

OK, so how can we observe the different work area sizes being allocated to our session? By
applying the same technique we used earlier in the manual memory management section, to
observe the memory used by our session and the amount of I/O to temp we performed. The
following test was performed on a Red Hat Advanced Server 3.0 Linux machine using Oracle
10.1.0.3 and dedicated server connections. This was a two-CPU Dell PowerEdge with hyper-

thread

ing enabled, so it was as if there were four CPUs available. Using reset_stat.sql and a

slightly modified version of watch_stat.sql from earlier, I captured the session statistics for a
session as well as the total statistics for the instance. The slightly modified watch_stat.sql
script captured this information via the MERGE statement:

merge
using
(
select
from
where
and
and

union
select
from
where
and

into sess stats

a.name, b.value

v$statname a, v$sesstat b
a.statistic# = b.statistic#
b.sid = &1

(a.name like '%ga %'

or a.name like '%direct temp%')
all

"total: ' || a.name, sum(b.value)
v$statname a, v$sesstat b, v$session c
a.statistic# = b.statistic#
(a.name like '%ga %'

125

126

CHAPTER 4 = MEMORY STRUCTURES

or a.name like '%direct temp%')

and b.sid = c.sid

and c.username is not null
group by 'total: ' || a.name
) curr stats
on (sess stats.name = curr stats.name)
when matched then

update set diff = curr stats.value - sess stats.value,

value = curr stats.value

when not matched then

insert (name, value, diff)

values

(curr stats.name, curr stats.value, null)
/

I simply added the UNION ALL section to capture the total PGA/UGA and sort writes by
summing over all sessions, in addition to the statistics for a single session. I then ran the fol-
lowing SQL*Plus script in that particular session. The table BIG_TABLE had been created
beforehand with 50,000 rows in it. I dropped the primary key from this table, so all that
remained was the table itself (ensuring that a sort process would have to be performed):

set autotrace traceonly statistics;
select * from big table order by 1, 2, 3, 4;
set autotrace off

Note The BIG_TABLE table is created as a copy of ALL_OBJECTS with a primary key, and it can have as
many or as few rows as you like. The big_table.sql script is documented in the “Setting Up” section at
the beginning of this book.

Now, I ran that small query script against a database with a PGA_AGGREGATE_TARGET of
256MB, meaning I wanted Oracle to use up to about 256MB of PGA memory for sorting. I set
up another script to be run in other sessions to generate a large sorting load on the machine.
This script loops and uses a built-in package, DBMS_ALERT, to see if it should continue process-
ing. If it should, it runs the same big query, sorting the entire BIG_TABLE table. When the
simulation was over, a session could signal all of the sorting processes, the load generators,
to “stop” and exit. The script used to perform the sort is as follows:

declare

1 msg long;

1 status number;
begin

dbms_alert.register("WAITING');

for i in 1 .. 999999 loop
dbms_application info.set client info(i);
dbms_alert.waitone('WAITING', 1 msg, 1 status, 0);

CHAPTER 4 = MEMORY STRUCTURES

exit when 1 status = 0;
for x in (select * from big table order by 1, 2, 3, 4)

loop
null;
end loop;
end loop;
end;
/
exit

The script to stop these processes from running is as follows:

begin
dbms_alert.signal('WAITING', '');
commit;

end;

To observe the differing amounts of RAM allocated to the session I was measuring, I ini-
tially ran the SELECT in isolation—as the only session. I captured the same six statistics and
saved them into another table, along with the count of active sessions. Then I added 25 sessions
to the system (i.e., I ran the preceding benchmark script with the loop in 25 new sessions). I
waited a short period of time—one minute for the system to adjust to this new load—and then
I created a new session, captured the statistics for it with reset_stat.sql, ran the query that
would sort, and then ran watch_stat.sql to capture the differences. I did this repeatedly, for
up to 500 concurrent users.

It should be noted that I asked the database instance to do an impossible thing here. As
noted previously, based on the first time we ran watch_stat.sql, each connection to Oracle,
before even doing a single sort, consumed almost .5MB of RAM. At 500 users, we would be
very close to the PGA_AGGREGATE_TARGET setting just by having them all logged in, let alone
actually doing any work! This drives home the point that the PGA_AGGRECGATE_TARGET is just
that: a target, not a directive. We can and will exceed this value for various reasons.

Table 4-1 summarizes my findings using approximately 25 user increments.

Table 4-1. PGA Memory Allocation Behavior with Increasing Numbers of Active Sessions, with
PGA_AGGREGATE_TARGET Set to 256MB

Active PGA Used by PGA in Use Writes to Temp by Reads from Temp
Sessions Single Session by System Single Session by Single Session
1 7.5 2 0 0
27 7.5 189 0 0
51 4.0 330 728 728
76 4.0 341 728 728
101 3.2 266 728 728
126 1.5 214 728 728
151 1.7 226 728 728
177 1.4 213 728 728

Continued

127

128

CHAPTER 4 = MEMORY STRUCTURES

Table 4-1. Continued

Active PGA Used by PGA in Use Writes to Temp by Reads from Temp
Sessions Single Session by System Single Session by Single Session

201 1.3 218 728 728

226 1.3 211 728 728

251 1.3 237 728 728

276 1.3 251 728 728

301 1.3 281 728 728

326 1.3 302 728 728

351 1.3 324 728 728

376 1.3 350 728 728

402 1.3 367 728 728

426 1.3 392 728 728

452 1.3 417 728 728

476 1.3 439 728 728

501 1.3 467 728 728

Note You might wonder why only 2MB of RAM is reported in use by the system with one active user. It
has to do with the way | measured. The simulation would snapshot the single session’s of interest’s statis-
tics. Next, I would run the big query in the single session of interest and then snapshot that session’s
statistics again. Finally, | would measure how much PGA was used by the system. By the time | measured,
the single session of interest would have already completed and given back some of the PGA it was using to
sort. So, the number for PGA used by the system is an accurate measurement of the system’s PGA memory
at the time it was measured.

As you can see, when I had few active sessions, my sorts were performed entirely in mem-
ory. For an active session count of 1 to somewhere less than 50, I was allowed to sort entirely
in memory. However, by the time I got 50 users logged in, actively sorting, the database started
reining in the amount of memory I was allowed to use at a time. It took a couple of minutes
before the amount of PGA being used fell back within acceptable limits (the 256 MB request),
but it eventually did. The amount of PGA memory allocated to the session dropped from
7.5MB to 4MB to 3.2MB, and eventually down to the area of 1.7 to 1.3MB (remember, parts of
that PGA are not for sorting, but are for other operations—just the act of logging in created a
.5MB PGA). The total PGA in use by the system remained within tolerable limits until some-
where around 300 to 351 users. There I started to exceed on a regular basis the PGA_AGGREGATE _
TARGET and continued to do so until the end of the test. I gave the database instance in this
case an impossible task—the very act of having 350 users, most executing a PL/SQL, plus the

CHAPTER 4 = MEMORY STRUCTURES

sort they were all requesting, just did not fit into the 256MB of RAM I had targeted. It simply
could not be done. Each session, therefore used as little memory as possible, but had to allo-
cate as much memory as it needed. By the time I finished this test, 500 active sessions were
using a total of 467MB of PGA memory—as little as they could.

You should, however, consider what Table 4-1 would look like under a manual memory
management situation. Suppose the SORT_AREA SIZE had been set to 5MB. The math is very
straightforward: each session would be able to perform the sort in RAM (or virtual memory as
the machine ran out of real RAM), and thus would consume 6 to 7MB of RAM per session (the
amount used without sorting to disk in the previous single-user case). I ran the preceding test
again with SORT_AREA_SIZE set to 5MB, and as I went from 1 user to adding 25 at a time, the
numbers remained consistent, as shown in Table 4-2.

Table 4-2. PGA Memory Allocation Behavior with Increasing Numbers of Active Sessions, with
SORT_AREA_SIZE Set to 5MB (Manual Memory Management)

Active PGA Used by PGA in Use Writes to Temp by Reads from Temp
Sessions Single Session by System Single Session by Single Session
1 6.4 5 728 728
26 6.4 137 728 728
51 6.4 283 728 728
76 6.4 391 728 728
102 6.4 574 728 728
126 6.4 674 728 728
151 6.4 758 728 728
176 6.4 987 728 728
202 6.4 995 728 728
226 6.4 1227 728 728
251 6.4 1383 728 728
277 6.4 1475 728 728
302 6.4 1548 728 728

Had I been able to complete the test (I have 2GB of real memory on this server and my
SGA was 600MB; by the time I got to 325 users, the machine was paging and swapping to
the point where it was impossible to continue), at 500 users I would have allocated around
2,750MB of RAM! So, the DBA would probably not set the SORT_AREA SIZE to 5MB on this sys-
tem, but rather to about 0.5MB, in an attempt to keep the maximum PGA usage at a bearable
level at peak. Now at 500 users I would have had about 500MB of PGA allocated, perhaps simi-
lar to what we observed with automatic memory management—but at times when there were
fewer users, we would have still written to temp rather than performing the sort in memory.
In fact, when running the preceding test with a SORT_AREA SIZE of .5MB, we would observe the
data in Table 4-3.

129

130

CHAPTER 4 = MEMORY STRUCTURES

Table 4-3. PGA Memory Allocation Behavior with Increasing Numbers of Active Sessions, with
SORT_AREA_SIZE Set to 0.5MB (Manual Memory Management)

Active PGA Used by PGA in Use Writes to Temp by Reads from Temp
Sessions Single Session by System Single Session by Single Session
1 1.2 1 728 728
26 1.2 29 728 728
51 1.2 57 728 728
76 1.2 84 728 728
101 1.2 112 728 728
126 1.2 140 728 728
151 1.2 167 728 728
176 1.2 194 728 728
201 1.2 222 728 728
226 1.2 250 728 728

This represents a very predicable—but suboptimal—use of memory as the workload
increases or decreases over time. Automatic PGA memory management was designed exactly
to allow the small community of users to use as much RAM as possible when it was available
and back off on this allocation over time as the load increased, and increase the amount of
RAM allocated for individual operations over time as the load decreased.

Using PGA_AGGREGATE_TARGET to Control Memory Allocation

Earlier, wrote that “in theory” we can use the PGA_AGGREGATE_TARGET to control the overall
amount of PGA memory used by the instance. We saw in the last example that this is nota
hard limit, however. The instance will attempt to stay within the bounds of the PGA_AGGREGATE _
TARGET, but if it cannot, it will not stop processing; rather, it will just be forced to exceed that
threshold.

Another reason this limit is “in theory” is because the work areas, while a large contribu-
tor to PGA memory, are not the only contributor to PGA memory. Many things contribute to
your PGA memory allocation, and only the work areas are under the control of the database
instance. If you create and execute a PL/SQL block of code that fills in a large array with data
in dedicated server mode where the UGA is in the PGA, Oracle cannot do anything but allow
you to do it.

Consider the following quick example. We'll create a package that can hold some persis-
tent (global) data in the server:

ops$tkyte@ORA10G> create or replace package demo pkg

2 as

3 type array is table of char(2000) index by binary integer;
4 g data array;

5 end;

6 /

Package created.

CHAPTER 4 & MEMORY STRUCTURES

Now we’ll measure the amount of memory our session is currently using in the PGA/UGA
(I'was using dedicated server in this example, so the UGA is a subset of the PGA memory):

ops$tkyte@ORA10G> select a.name, to char(b.value, '999,999,999') value
2 from v§statname a, vémystat b
3 where a.statistic# = b.statistic#

4 and a.name like '%ga memory%';
NAME VALUE
session uga memory 1,212,872
session uga memory max 1,212,872
session pga memory 1,677,900
session pga memory max 1,677,900

So, initially we are using about 1.5MB of PGA memory in our session (as a result of com-
piling a PL/SQL package, running this query, etc.). Now, we'll run our query against BIG_TABLE
again using the same 256MB PGA AGGREGATE_TARGET (this was done in an otherwise idle
instance; we are the only session requiring memory right now):

ops$tkyte@ORA10GR1> set autotrace traceonly statistics;
ops$tkyte@ORA10GR1> select * from big table order by 1,2,3,4;
50000 rows selected.

Statistics
0 recursive calls
0 db block gets
721 consistent gets
0 physical reads
0 redo size
2644246 bytes sent via SOL*Net to client
37171 bytes received via SQL*Net from client
3335 SOL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
50000 rows processed
ops$tkyte@ORA10GR1> set autotrace off

As you can see, the sort was done entirely in memory, and in fact if we peek at our ses-
sion’s PGA/UGA usage, we can see how much we used:

ops$tkyte@ORA10GR1> select a.name, to char(b.value, '999,999,999') value
2 from v$statname a, vémystat b
3 where a.statistic# = b.statistic#
4 and a.name like '%ga memory%';

131

132 CHAPTER 4 = MEMORY STRUCTURES

NAME VALUE

session uga memory 1,212,872
session uga memory max 7,418,680
session pga memory 1,612,364
session pga memory max 7,838,284

The same 7.5MB of RAM we observed earlier. Now, we will proceed to fill up that CHAR
array we have in the package (a CHAR datatype is blank-padded so each of these array elements
is exactly 2,000 characters in length):

ops$tkyte@ORA10G> begin

2 for i in 1 .. 100000
3 loop
4 demo_pkg.g data(i) := 'x';
5 end loop;
6 end;
7/
PL/SOL procedure successfully completed.

Upon measuring our session’s current PGA utilization after that, we find something simi-
lar to the following:

ops$tkyte@ORA10GR1> select a.name, to char(b.value, '999,999,999') value
2 from v§statname a, vémystat b
3 where a.statistic# = b.statistic#

4 and a.name like '%ga memory%';
NAME VALUE
session uga memory 312,952,440
session uga memory max 312,952,440
session pga memory 313,694,796
session pga memory max 313,694,796

Now, that is memory allocated in the PGA that the database itself cannot control. We
already exceeded the PGA AGGREGATE_TARGET and there is quite simply nothing the database
can do about it—it would have to fail our request if it did anything, and it will do that only
when the OS reports back that there is no more memory to give. If we wanted, we could allo-
cate more space in that array and place more data in it, and the database would just have to
do it for us.

However, the database is aware of what we have done. It does not ignore the memory it
cannot control; rather, it recognizes that the memory is being used and backs off the size of
memory allocated for work areas accordingly. So if we rerun the same sort query, we see that
this time we sorted to disk—the database did not give us the 7MB or so of RAM needed to do
this in memory since we had already exceeded the PGA_ AGGREGATE TARGET:

ops$tkyte@ORAL10GR1> set autotrace traceonly statistics;
ops$tkyte@ORA10GR1> select * from big table order by 1,2,3,4;
50000 rows selected.

CHAPTER 4 & MEMORY STRUCTURES

Statistics
6 recursive calls
2 db block gets
721 consistent gets
728 physical reads
0 redo size
2644246 bytes sent via SOL*Net to client
37171 bytes received via SOL*Net from client
3335 SOL*Net roundtrips to/from client
0 sorts (memory)
1 sorts (disk)
50000 rows processed
ops$tkyte@ORA10GR1> set autotrace off

So, because some PGA memory is outside of Oracle’s control, it is easy for us to exceed the
PGA_AGGREGATE_TARGET simply by allocating lots of really large data structures in our PL/SQL
code. I am not recommending you do that by any means—I'm just pointing out that the
PGA_AGGREGATE_TARGET is a more of a request than a hard limit.

Choosing Between Manual and Auto Memory Management

So, which method should you use: manual or automatic? My preference is to use the auto-
matic PGA memory management by default.

Caution I'll repeat this from time to time in the book: please do not make any changes to a production
system—a live system—uwithout first testing for any side effects. For example, please do not read this
chapter, check your system, and find you are using manual memory management, and then just turn on
automatic memory management. Query plans may change, and performance may be impacted. One of
three things could happen:

e Things run exactly the same.
e Things run better than they did before.
¢ Things run much worse then they did before.

Exercise caution before making changes, test the proposed change first.

One of the most perplexing things for a DBA can be setting the individual parameters,
especially parameters such as SORT |HASH_AREA SIZE and so on. Many times, I see systems
running with incredibly small values for these parameters—values so small that system per-
formance is massively impacted in a negative way. This is probably a result of the fact that the
default values are very small themselves: 64KB for sorting and 128KB for hashing. There is a lot
of confusion over how big or small these values should be. Not only that, but the values you
would like to use for them might vary over time, as the day goes by. At 8:00 am, with two users,

133

134

CHAPTER 4 & MEMORY STRUCTURES

a 50MB sort area size might be reasonable for the single user logged in. However, at

12:00 pm with 500 users, 50MB might not be appropriate. This is where the WORKAREA SIZE
POLICY = AUTO setting and the corresponding PGA_AGGREGATE_TARGET come in handy. Setting the
PGA_AGGREGATE_TARGET, the amount of memory you would like Oracle to feel free to use to sort
and hash, is conceptually easier than trying to figure out the perfect SORT |[HASH_AREA SIZE,
especially since there isn't a perfect value for these parameters; the perfect value varies by
workload.

Historically, the DBA configured the amount of memory used by Oracle by setting the
size of the SGA (the buffer cache; the log buffer; and the Shared, Large, and Java pools). The
remaining memory on the machine would then be used by the dedicated or shared servers in
the PGA region. The DBA had little control over how much of this memory would or would not
be used. She could set the SORT_AREA SIZE, but if there were 10 concurrent sorts, then Oracle
could use as much as 10 * SORT_AREA SIZE bytes of RAM. If there were 100 concurrent sorts,
then Oracle would use 100 * SORT_AREA SIZE bytes; for 1,000 concurrent sorts, 1,000 *
SORT_AREA_SIZE; and so on. Couple that with the fact that other things go into the PGA, and
you really don’'t have good control over the maximal use of PGA memory on the system.

What you would like to have happen is for this memory to be used differently as the
memory demands on the system grow and shrink. The more users, the less RAM each should
use. The fewer users, the more RAM each should use. Setting WORKAREA SIZE POLICY = AUTOis
just such a way to achieve this. The DBA specifies a single size now, the PGA_ AGGRECGATE_TARGET
or the maximum amount of PGA memory that the database should strive to use. Oracle will
distribute this memory over the active sessions as it sees fit. Further, with Oracle9i Release 2
and up, there is even PGA advisory (part of Statspack, available via a V$ dynamic performance
view and visible in Enterprise Manager), much like the buffer cache advisor. It will tell you
over time what the optimal PGA_AGGREGATE_TARGET for your system is to minimize physical I/O
to your temporary tablespaces. You can use this information to either dynamically change the
PGA size online (if you have sufficient RAM) or decide whether you might need more RAM on
your server to achieve optimal performance.

Are there times, however, when you won't want to use it? Absolutely, and fortunately they
seem to be the exception and not the rule. The automatic memory management was designed
to be multiuser “fair.” In anticipation of additional users joining the system, the automatic
memory management will limit the amount of memory allocated as a percentage of the
PGA_AGGREGATE_TARGET. But what happens when you don’t want to be fair, when you know
that you should get all of the memory available? Well, that would be the time to use the ALTER
SESSION command to disable automatic memory management in your session (leaving it in
place for all others) and to manually set your SORT|HASH_AREA_SIZE as needed. For example,
that large batch process that takes place at 2:00 am and does tremendously large hash joins,
some index builds, and the like? It should be permitted to use all of the resources on the
machine. It does not want to be “fair” about memory use—it wants it all, as it knows it is the
only thing happening in the database right now. That batch job can certainly issue the ALTER
SESSION commands and make use of all resources available.

So, in short, I prefer to use automatic PGA memory management for end user sessions—
for the applications that run day to day against my database. Manual memory management
makes sense for large batch jobs that run during time periods when they are the only activities
in the database.

CHAPTER 4 & MEMORY STRUCTURES

PGA and UGA Wrap-Up

So far, we have looked at two memory structures: the PGA and the UGA. You should under-
stand now that the PGA is private to a process. It is the set of variables that an Oracle dedicated
or shared server needs to have independent of a session. The PGA is a “heap” of memory in
which other structures may be allocated. The UGA is also a heap of memory in which various
session-specific structures may be defined. The UGA is allocated from the PGA when you use
a dedicated server to connect to Oracle and from the SGA under a shared server connection.
This implies that when using a shared server, you must size your SGA’s Large pool to have
enough space in it to cater for every possible user that will ever connect to your database con-
currently. So, the SGA of a database supporting shared server connections is generally much
larger than the SGA for a similarly configured, dedicated server mode—only database. We'll
cover the SGA in more detail next.

The System Global Area

Every Oracle instance has one big memory structure referred to as the System Global Area
(SGA). This is a large, shared memory structure that every Oracle process will access at one
point or another. It will vary in size from a few of megabytes on small test systems, to hun-
dreds of megabytes on medium to large systems, up to many gigabytes in size for really big
systems.

On a UNIX operating system, the SGA is a physical entity that you can “see” from the OS
command line. It is physically implemented as a shared memory segment—a stand-alone
piece of memory to which processes may attach. It is possible to have an SGA on a system
without having any Oracle processes; the memory stands alone. It should be noted, however,
that if you have an SGA without any Oracle processes, this is an indication that the database
crashed in some fashion. It is an unusual situation, but it can happen. This is what an SGA
“looks like” on Red Hat Linux:

[tkyte@localhost tkyte]$ ipcs -m | grep ora

0x99875060 2031619 0ra10g 660 538968064 15
0x0d998a20 1966088 ora9ir2 660 117440512 45
0x6b390abc 1998857 ora9irli 660 130560000 50

Three SGAs are represented here: one owned by the OS user ora10g, another by the OS
user oragir2, and the third by the OS user oragir1. They are about 512MB, 112MB, and
124MB, respectively.

On Windows, you really cannot see the SGA as a distinct entity the way you can in
UNIX/Linux. Because on the Windows platform, Oracle executes as a single process with a
single address space, the SGA is allocated as private memory to the oracle.exe process. If you
use the Windows Task Manager or some other performance tool, you can see how much mem-
ory oracle.exe has allocated, but you cannot see what is the SGA versus any other piece of
allocated memory.

Within Oracle itself, you can see the SGA regardless of platform, using another magic V$
view called V$SGASTAT. It might look as follows (note that this code does not come from the
preceding system; it’s from a system with all features configured to enable viewing of all pools
available):

139

136

CHAPTER 4 = MEMORY STRUCTURES

ops$tkyte@ORA10G> compute sum of bytes on pool

ops$tkyte@ORA10G> break on pool skip 1
ops$tkyte@ORA10G> select pool, name, bytes
2 from v$sgastat
3 order by pool, name;

java pool free memory
skokskokok sk kok ok ok kok

sum

large pool PX msg pool
free memory
skokskokok sk kok ok ok ok

sum

shared pool ASH buffers
FileOpenBlock
KGLS heap
KOR L SO
KOR M PO
KOR M SO

sql area

table definiti

trigger defini

trigger inform

trigger source

type object de
skokskokok sk ok ok ok ok

sum

streams pool free memory
skokskok ok sk kok ok k ok

sum

buffer cache

fixed sga

log_buffer
skokskokok sk kok ok ok kok

sum

43 rows selected.

16777216

64000
16713216

16777216

2097152
746704
777516

29696
599576
42496

2664728
280
1792
1944
640

352321536

33554432

33554432

1157627904
779316
262144

1158669364

CHAPTER 4 & MEMORY STRUCTURES

The SGA is broken up into various pools:

Java pool: The Java pool is a fixed amount of memory allocated for the JVM running in
the database. In Oracle10g, the Java pool may be resized online while the database is up
and running.

Large pool: The Large pool is used by shared server connections for session memory,
by parallel execution features for message buffers, and by RMAN backup for disk I/0
buffers. This pool is resizable online in both Oracle 10g and 9i Release 2.

Shared pool: The Shared pool contains shared cursors, stored procedures, state objects,
dictionary caches, and many dozens of other bits of data. This pool is resizable online
in both Oracle 10g and 9i.

Streams pool: This is a pool of memory used exclusively by Oracle Streams, a data-
sharing tool within the database. This pool is new in Oracle 10g and is resizable online.
In the event the Streams pool is not configured and you use the Streams functionality,
Oracle will use up to 10 percent of the Shared pool for streams memory.

The “Null” pool: This one doesn’t really have a name. It is the memory dedicated to
block buffers (cached database blocks), the redo log buffer, and a “fixed SGA” area.

A typical SGA might look as shown in Figure 4-1.

~N
SGA Fixed
Shared SGA
Pool
Java Pool Redo
Buffer

(

-] Block Buffers
J

-

Figure 4-1. Typical SGA

The parameters that have the greatest effect on the overall size of the SGA are as follows:

JAVA_POOL_SIZE: Controls the size of the Java pool.
SHARED_POOL_SIZE: Controls the size of the Shared pool, to some degree.
LARGE_POOL_SIZE: Controls the size of the Large pool.

DB _* CACHE_SIZE: Eight of these CACHE_SIZE parameters control the sizes of the various
buffer caches available.

LOG_BUFFER: Controls the size of the redo buffer, to some degree.
SGA_TARGET: Used with automatic SGA memory management in Oracle 10g and above.

SGA_MAX_SIZE: Used to control the maximum size to which the SGA can be resized while

137

138

CHAPTER 4 = MEMORY STRUCTURES

In Oracle9i, the various SGA components must be manually sized by the DBA but, start-
ing in Oracle 10g, there is a new option to consider: automatic SGA memory management,
whereby the database instance will allocate and reallocate the various SGA components at
runtime, in response to workload conditions. When using the automatic memory manage-
ment with Oracle 10g, it is a matter of simply setting the SGA_TARGET parameter to the desired
SGA size, leaving out the other SGA-related parameters altogether. The database instance will
take it from there, allocating memory to the various pools as needed and even taking memory
away from one pool to give to another over time.

Regardless of whether you are using automatic or manual memory management, you will
find that memory is allocated to the various pools in units called granules. A single granule is
an area of memory either 4MB, 8MB, or 16MB in size. The granule is the smallest unit of allo-
cation, so if you ask for a Java pool of 5MB and your granule size is 4MB, Oracle will actually
allocate 8MB to the Java pool (8 being the smallest number greater than or equal to 5 thatis a
multiple of the granule size of 4). The size of a granule is determined by the size of your SGA
(this sounds recursive to a degree, as the size of the SGA is dependent on the granule size). You
can view the granule sizes used for each pool by querying V$SGA DYNAMIC COMPONENTS. In fact,
we can use this view to see how the total SGA size might affect the size of the granules:

SyS@ORA10G> show parameter sga target

sga_target big integer 576M

SyS@ORA10G> select component, granule size from v$sga dynamic_components;

COMPONENT GRANULE SIZE
shared pool 4194304
large pool 4194304
java pool 4194304
streams pool 4194304
DEFAULT buffer cache 4194304
KEEP buffer cache 4194304
RECYCLE buffer cache 4194304
DEFAULT 2K buffer cache 4194304
DEFAULT 4K buffer cache 4194304
DEFAULT 8K buffer cache 4194304
DEFAULT 16K buffer cache 4194304
DEFAULT 32K buffer cache 4194304
0SM Buffer Cache 4194304

13 rows selected.

In this example, [used automatic SGA memory management and controlled the size of
the SGA via the single parameter SGA_TARGET. When my SGA size is under about 1GB, the gran-
ule is 4MB. When the SGA size is increased to some threshold over 1GB (it will vary slightly
from operating system to operating system and even from release to release), I see an

CHAPTER 4

Sys@ORA10G> alter system set sga target = 1512m scope=spfile;

System altered.

Sys@ORA10G> startup force
ORACLE instance started.

Total System Global Area 1593835520 bytes

Fixed Size 779316 bytes
Variable Size 401611724 bytes
Database Buffers 1191182336 bytes
Redo Buffers 262144 bytes

Database mounted.
Database opened.

MEMORY STRUCTURES

Sys@ORA10G> select component, granule size from v$sga dynamic_components;

COMPONENT GRANULE_SIZE
shared pool 16777216
large pool 16777216
Jjava pool 16777216
streams pool 16777216
DEFAULT buffer cache 16777216
KEEP buffer cache 16777216
RECYCLE buffer cache 16777216
DEFAULT 2K buffer cache 16777216
DEFAULT 4K buffer cache 16777216
DEFAULT 8K buffer cache 16777216
DEFAULT 16K buffer cache 16777216
DEFAULT 32K buffer cache 16777216
OSM Buffer Cache 16777216

13 rows selected.

Asyou can see, at 1.5GB of SGA, my pools will be allocated using 16MB granules, so any

given pool size will be some multiple of 16MB.

With this in mind, let’s look at each of the major SGA components in turn.

Fixed SGA

The fixed SGA is a component of the SGA that varies in size from platform to platform and
from release to release. It is “compiled” into the Oracle binary itself at installation time (hence
the name “fixed”). The fixed SGA contains a set of variables that point to the other compo-
nents of the SGA, and variables that contain the values of various parameters. The size of the
fixed SGA is something with which we have no control over, and it is generally very small.
Think of this area as a “bootstrap” section of the SGA—something Oracle uses internally to

find the other bits and pieces of the SGA.

139

140

CHAPTER 4 = MEMORY STRUCTURES

Redo Buffer

The redo buffer is where data that needs to be written to the online redo logs will be cached
temporarily, before it is written to disk. Since a memory-to-memory transfer is much faster
then a memory-to-disk transfer, use of the redo log buffer can speed up database operation.
The data will not reside in the redo buffer for very long. In fact, LGWR initiates a flush of this
area in one of the following scenarios:

» Every three seconds

* Whenever someone commits

e When LGWR is asked to switch log files

* When the redo buffer gets one-third full or contains 1MB of cached redo log data

For these reasons, it will be a very rare system that will benefit from a redo buffer of more
than a couple of megabytes in size. A large system with lots of concurrent transactions could
benefit somewhat from large redo log buffers because while LGWR (the process responsible for
flushing the redo log buffer to disk) is writing a portion of the log buffer, other sessions could
be filling it up. In general, a long-running transaction that generates a lot of redo log will bene-
fit the most from a larger than normal log buffer, as it will be continuously filling up part of the
redo log buffer while LGWR is busy writing out some of it. The larger and longer the transaction,
the more benefit it could receive from a generous log buffer.

The default size of the redo buffer, as controlled by the LOG_BUFFER parameter, is whatever
is the greater of 512KB and (128 * number of CPUs)KB. The minimum size of this area is OS
dependent. If you would like to find out what that is, just set your LOG_BUFFER to 1 byte and
restart your database. For example, on my Red Hat Linux instance I see the following:

Sys@ORA10G> alter system set log buffer=1 scope=spfile;
System altered.

Sys@ORA10G> startup force
ORACLE instance started.

Total System Global Area 1593835520 bytes

Fixed Size 779316 bytes
Variable Size 401611724 bytes
Database Buffers 1191182336 bytes
Redo Buffers 262144 bytes

Database mounted.
Database opened.
SyS@ORA10G> show parameter log buffer

log buffer integer 262144

The smallest log buffer I can really have, regardless of my settings, is going to be 256KB on
this system.

CHAPTER 4 = MEMORY STRUCTURES

Block Buffer Cache

So far, we have looked at relatively small components of the SGA. Now we are going to look at
one that is possibly huge in size. The block buffer cache is where Oracle stores database blocks
before writing them to disk and after reading them in from disk. This is a crucial area of the
SGA for us. Make it too small and our queries will take forever to run. Make it too big and we’ll
starve other processes (e.g., we won't leave enough room for a dedicated server to create its
PGA, and we won't even get started).

In earlier releases of Oracle, there was a single block buffer cache, and all blocks from
any segment went into this single area. Starting with Oracle 8.0, we had three places to store
cached blocks from individual segments in the SGA:

* Default pool: The location where all segment blocks are normally cached. This is the
original—and previously only—buffer pool.

e Keep pool: An alternate buffer pool where by convention you would assign segments
that were accessed fairly frequently, but still got aged out of the default buffer pool due
to other segments needing space.

e Recycle pool: An alternate buffer pool where by convention you would assign large seg-
ments that you access very randomly, and which would therefore cause excessive buffer
flushing but would offer no benefit, because by the time you wanted the block again it
would have been aged out of the cache. You would separate these segments out from
the segments in the Default and Keep pools so that they would not cause those blocks
to age out of the cache.

Note that in the Keep and Recycle pool descriptions I used the phrase “by convention.”
There is nothing in place to ensure that you use neither the Keep pool nor the Recycle pool in
the fashion described. In fact, the three pools manage blocks in a mostly identical fashion;
they do not have radically different algorithms for aging or caching blocks. The goal here was
to give the DBA the ability to segregate segments to hot, warm, and do not care to cache areas.
The theory was that objects in the Default pool would be hot enough (i.e., used enough) to
warrant staying in the cache all by themselves. The cache would keep them in memory since
they were very popular blocks. You might have had some segments that were fairly popular,
but not really hot; these would be considered the warm blocks. These segments’ blocks could
get flushed from the cache to make room for some blocks you used infrequently (the “do not
care to cache” blocks). To keep these warm segments blocks cached, you could do one of the
following:

¢ Assign these segments to the Keep pool, in an attempt to let the warm blocks stay in the
buffer cache longer.

* Assign the “do not care to cache” segments to the Recycle pool, keeping the Recycle
pool fairly small so as to let the blocks come into the cache and leave the cache rapidly
(decrease the overhead of managing them all).

This increased the management work the DBA had to perform, as there were three caches
to think about, size, and assign objects to. Remember also that there is no sharing between
them, so if the Keep pool has lots of unused space, it won't give it to the overworked Default
or Recycle pool. All in all, these pools were generally regarded as a very fine, low-level tuning

141

142

CHAPTER 4 = MEMORY STRUCTURES

device, only to be used after most all other tuning alternatives had been looked at (if I could
rewrite a query to do one-tenth the I/0 rather then set up multiple buffer pools, that would be
my choice!).

Starting in Oracle9i, the DBA had up to four more optional caches, the db_Nk_caches, to
consider in addition to the Default, Keep, and Recycle pools. These caches were added in sup-
port of multiple blocksizes in the database. Prior to Oracle9i, a database would have a single
blocksize (typically 2KB, 4KB, 8KB, 16KB, or 32KB). Starting with Oracle9i, a database can have
a default blocksize, which is the size of the blocks stored in the Default, Keep, or Recycle pool,
as well as up to four nondefault blocksizes, as explained in Chapter 3.

The blocks in these buffer caches are managed in the same way as the blocks in the origi-
nal Default pool—there are no special algorithm changes for them either. Let’s now move on
to cover how the blocks are managed in these pools.

Managing Blocks in the Buffer Cache

For simplicity, assume in this discussion that there is just a single Default pool. Because the
other pools are managed in the same way, we need only discuss one of them.

The blocks in the buffer cache are basically managed in a single place with two different
lists pointing at them:

e The dirtylist of blocks that need to be written by the database block writer (DBWn; we’ll
take a look at that process a little later)

¢ Alist of nondirty blocks

The list of nondirty blocks used to be a Least Recently Used (LRU) list in Oracle 8.0 and
before. Blocks were listed in order of use. The algorithm has been modified slightly in Oracle8i
and in later versions. Instead of maintaining the list of blocks in some physical order, Oracle
employs a touch count algorithm, which effectively increments a counter associated with a
block as you hit it in the cache. This count is not incremented every time you hit the block, but
about once every three seconds—if you hit it continuously. You can see this algorithm at work
in one of the truly magic sets of tables: the X$ tables. The X$ tables are wholly undocumented
by Oracle, but information about them leaks out from time to time.

The X$BH table shows information about the blocks in the block buffer cache (which offers
more information than the documented V$BH view). Here, we can see the touch count get
incremented as we hit blocks. We can run the following query against that view to find the five
“currently hottest blocks” and join that information to the DBA_OBJECTS view to see what seg-
ments they belong to. The query orders the rows in X$BH by the TCH (touch count) column and
keeps the first five. Then we join the X$BH information to DBA_OBJECTS by X$BH.0BJ to
DBA OBJECTS.DATA OBJECT_ID:

Sys@ORA10G> select tch, file#, dbablk,
2 case when obj = 4294967295
then 'rbs/compat segment'
else (select max('('||object type||') " ||
owner || '.' || object name) ||
decode(count(*), 1, '", ' maybe!')
from dba_objects

~N o v B W

10
11
12
13
14
15
16
17

CHAPTER 4 & MEMORY STRUCTURES

where data_object id = X.0BJ)
end what
from (
select tch, file#, dbablk, obj
from x$bh
where state <> 0
order by tch desc
) x

where rownum <= 5

TCH FILE# DBABLK WHAT

1 1434 (TABLE) SYS.JOB$
1 1433 (TABLE) SYS.JOB$

48526 1 1450 (INDEX) SYS.I JOB NEXT
2 57 rbs/compat segment
1 1442 (INDEX) SYS.I JOB JOB

Note (2732 —1) or 4,294,967,295 is a magic number used to denote “special” blocks. If you would like
to understand what the block is associated with, use the query select * from dba_extents where
file id = FILE# and block id <= <DBABLK and block id+blocks-1 >= DBABLK.

You might be asking what is meant by the 'maybe! ' and the use of MAX() in the preceding

scalar subquery. This is due to the fact that DATA_OBJECT ID is not a “primary key” in the
DBA_OBJECTS view as evidenced by the following:

Sys@ORA10G> select data object id, count(*)

2
3
4
5

from dba_objects
where data_object id is not null
group by data object id
having count(*) > 1;

DATA OBJECT ID COUNT(*)

2 17
6 3
8 3
10 3
29 3
161 3
200 3
210 2

143

144

CHAPTER 4 = MEMORY STRUCTURES

294
559 2

10 rows selected.

This is due to clusters (discussed in the Chapter 10), which may contain multiple tables.
Therefore, when joining from X$BH to DBA_OBJECTS to print out a segment name, we would
technically have to list all of the names of all of the objects in the cluster, as a database block
does not belong to a single table all of the time.

We can even watch as Oracle increments the touch count on a block that we query
repeatedly. We will use the magic table DUAL in this example—we know it is a one row, one
column table. We need to find out the block information for that single row. The built-in
DBMS_ROWID package is good for getting that. Additionally, since we query ROWID from DUAL,
we are making Oracle actually read the real DUAL table from the buffer cache, not the “virtual”
DUAL table enhancement of Oracle 10g.

Note Prior to Oracle 10g, querying DUAL would incur a full table scan of a real table named DUAL stored
in the data dictionary. If you set autotrace on and query SELECT DUMMY FROM DUAL, you will observe some
I/0 in all releases of Oracle (consistent gets). In 9/ and before, if you query SELECT SYSDATE FROM DUAL
or variable := SYSDATE in PL/SQL, you will also see real I/0 occur. However, in Oracle 10g, that
SELECT SYSDATE is recognized as not needing to actually query the DUAL table (since you are not asking
for the column or rowid from dual) and is done in a manner similar to calling a function. Therefore, DUAL
does not undergo a full table scan—just SYSDATE is returned to the application. This small change can
dramatically decrease the amount of consistent gets a system that uses DUAL heavily performs.

So every time we run the following query, we should be hitting the real DUAL table:

SyS@ORA9IR2> select tch, file#, dbablk, DUMMY
2 from x$bh, (select dummy from dual)
where obj = (select data object id
from dba_objects
where object name = 'DUAL'
and data_object id is not null)

~N o v B W

TCH FILE# DBABLK D

Sys@ORA9IR2> exec dbms lock.sleep(3.2);
PL/SOL procedure successfully completed.

CHAPTER 4 & MEMORY STRUCTURES

Sys@ORA9IR2> /

TCH FILE# DBABLK D
2 1 1617 X
1 1618 X

Sys@ORA9IR2> exec dbms lock.sleep(3.2);
PL/SOL procedure successfully completed.

Sys@ORA9IR2> /

TCH FILE# DBABLK D
3 1 1617 X
0 1 1618 X

Sys@ORA9IR2> exec dbms lock.sleep(3.2);
PL/SOL procedure successfully completed.

Sys@ORA9IR2> /

TCH FILE# DBABLK D
4 1 1617 X
0 1 1618 X

I expect output to vary by Oracle release—you may well see more than two rows returned.
You might observe TCH not getting incremented every time. On a multiuser system, the results
will be even more unpredictable. Oracle will attempt to increment the TCH once every three
seconds (there is a TIM column that shows the last update time to the TCH column), but it is not
considered important that the number be 100 percent accurate, as it is close. Also, Oracle will
intentionally “cool” blocks and decrement the TCH count over time. So, if you run this query on
your system, be prepared to see potentially different results.

So, in Oracle8i and above, a block buffer no longer moves to the head of the list as it used
to; rather, it stays where it is in the list and has its touch count incremented. Blocks will natu-
rally tend to “move” in the list over time, however. I put the word “move” in quotes because the
block doesn’t physically move; rather, multiple lists are maintained that point to the blocks
and the block will “move” from list to list. For example, modified blocks are pointed to by a
dirty list (to be written to disk by DBWn). Also, as they are reused over time, when the buffer
cache is effectively full, and some block with a small touch count is freed, it will be “placed
back” into approximately the middle of the list with the new data block.

The whole algorithm used to manage these lists is fairly complex and changes subtly from
release to release of Oracle as improvements are made. The actual full details are not relevant
to us as developers, beyond the fact that heavily used blocks will be cached, and blocks that
are not used heavily will not be cached for long.

14

146

CHAPTER 4 = MEMORY STRUCTURES

Multiple Blocksizes

Starting in Oracle97, you can have multiple database blocksizes in the same database. Previously,
all blocks in a single database were the same size and in order to have a different blocksize,
you had to rebuild the entire database. Now you can have a mixture of the “default” blocksize
(the blocksize you used when you initially created the database; the size that is used for the
SYSTEM and all TEMPORARY tablespaces) and up to four other blocksizes. Each unique blocksize
must have its own buffer cache area. The Default, Keep, and Recycle pools will only cache
blocks of the default size. In order to have nondefault blocksizes in your database, you will
need to have configured a buffer pool to hold them.

In this example, my default blocksize is 8KB. I will attempt to create a tablespace with a
16KB blocksize:

ops$tkyte@ORA10G> create tablespace ts_ 16k
2 datafile size 5m
3 blocksize 16k;
create tablespace ts 16k
%
ERROR at line 1:
ORA-29339: tablespace blocksize 16384 does not match configured blocksizes

ops$tkyte@ORA10G> show parameter 16k

db_16k cache size big integer 0

Right now, since I have not configured a 16KB cache, I cannot create such a tablespace.
I could do one of a couple things right now to rectify this situation. I could set the DB_16K _
CACHE_SIZE parameter and restart the database. I could shrink one of my other SGA compo-
nents in order to make room for a 16KB cache in the existing SGA. Or, I might be able to just
allocate a 16KB cache if the SGA_MAX_SIZE parameter was larger than my current SGA size.

Note Starting in Oracle9/, you have the ability to resize various SGA components while the database is up
and running. If you want the ability to “grow” the size of the SGA beyond its initial allocation, you must have
set the SCA_MAX_SIZE parameter to some value larger than the allocated SGA. For example, if after startup
your SGA size was 128MB and you wanted to add an additional 64MB to the buffer cache, you would have
had to set the SGA_MAX_SIZE to 192MB or larger to allow for the growth.

In this example, I will shrink my DB_CACHE_SIZE since I currently have it set rather large:

CHAPTER 4 & MEMORY STRUCTURES

ops$tkyte@ORA10G> show parameter db cache size

db_cache_size big integer 1G

ops$tkyte@ORA10G> alter system set db cache size = 768m;
System altered.

ops$tkyte@ORA10G> alter system set db 16k cache size = 256m;
System altered.

ops$tkyte@ORA10G> create tablespace ts 16k
2 datafile size 5m
3 blocksize 16k;

Tablespace created.

So, now I have another buffer cache set up: one to cache any blocks that are 16KB in size.
The Default pool, controlled by the db_cache_size parameter, is 768MB in size and the 16KB
cache, controlled by the db_16k_cache_size parameter, is 256MB in size. These two caches are
mutually exclusive; if one “fills up,” it cannot use space in the other. This gives the DBA a very
fine degree of control over memory use, but it comes at a price. A price of complexity and
management. These multiple blocksizes were not intended as a performance or tuning fea-
ture, but rather came about in support of transportable tablespaces—the ability to take
formatted data files from one database and transport or attach them to another database.
They were implemented in order to take data files from a transactional system that was using
an 8KB blocksize and transport that information to a data warehouse using a 16KB or 32KB
blocksize.

The multiple blocksizes do serve a good purpose, however, in testing theories. If you want
to see how your database would operate with a different blocksize—how much space, for
example, a certain table would consume if you used a 4KB block instead of an 8KB block—
you can now test that easily without having to create an entirely new database instance.

You may also be able to use multiple blocksizes as a very finely focused tuning tool for a
specific set of segments, by giving them their own private buffer pools. Or, in a hybrid system
with transactional users, you could use one set of data and reporting/warehouse users could
query a separate set of data. The transactional data would benefit from the smaller blocksizes
due to less contention on the blocks (less data/rows per block means less people in general
would go after the same block at the same time) as well as better buffer cache utilization
(users read into the cache only the data they are interested in—the single row or small set of
rows). The reporting/warehouse data, which might be based on the transactional data, would
benefit from the larger blocksizes due in part to less block overhead (it takes less storage over-
all), and larger logical I/O sizes perhaps. And since reporting/warehouse data does not have
the same update contention issues, the fact that there are more rows per block is not a con-
cern, but a benefit. Additionally, the transactional users get their own buffer cache in effect;
they do not have to worry about the reporting queries overrunning their cache.

But in general, the Default, Keep, and Recycle pools should be sufficient for fine-tuning
the block buffer cache, and multiple blocksizes would be used primarily for transporting data
from database to database and perhaps for a hybrid reporting/transactional system.

147

143

CHAPTER 4 & MEMORY STRUCTURES

Shared Pool

The Shared pool is one of the most critical pieces of memory in the SGA, especially with regard
to performance and scalability. A Shared pool that is too small can kill performance to the
point where the system appears to hang. A Shared pool that is too large can have the same
effect. A Shared pool that is used incorrectly will be a disaster as well.

So, what exactly is the Shared pool? The Shared pool is where Oracle caches many bits of
“program” data. When we parse a query, the parsed representation is cached there. Before we
go through the job of parsing an entire query, Oracle searches the Shared pool to see if the
work has already been done. PL/SQL code that you run is cached in the Shared pool, so the
next time you run it, Oracle doesn't have to read it in from disk again. PL/SQL code is not only
cached here, it is shared here as well. If you have 1,000 sessions all executing the same code,
only one copy of the code is loaded and shared among all sessions. Oracle stores the system
parameters in the Shared pool. The data dictionary cache (cached information about database
objects) is stored here. In short, everything but the kitchen sink is stored in the Shared pool.

The Shared pool is characterized by lots of small (4KB or less in general) chunks of mem-
ory. Bear in mind that 4KB is not a hard limit—there will be allocations that exceed that
size—but in general the goal is to use small chunks of memory to prevent the fragmentation
that would occur if memory chunks were allocated in radically different sizes, from very
small to very large. The memory in the Shared pool is managed on a LRU basis. It is similar to
the buffer cache in that respect—if you don’t use it, you'll lose it. A supplied package called
DBMS_SHARED_POOL may be used to change this behavior—to forcibly pin objects in the Shared
pool. You can use this procedure to load up your frequently used procedures and packages at
database startup time, and make it so they are not subject to aging out. Normally, though, if
over time a piece of memory in the Shared pool is not reused, it will become subject to aging
out. Even PL/SQL code, which can be rather large, is managed in a paging mechanism so that
when you execute code in a very large package, only the code that is needed is loaded into the
Shared pool in small chunks. If you don’t use it for an extended period of time, it will be aged
out if the Shared pool fills up and space is needed for other objects.

The easiest way to break Oracle’s Shared pool is to not use bind variables. As you saw in
Chapter 1, not using bind variables can bring a system to its knees for two reasons:

* The system spends an exorbitant amount of CPU time parsing queries.

* The system uses large amounts of resources managing the objects in the Shared pool as
aresult of never reusing queries.

If every query submitted to Oracle is a unique query with the values hard-coded, the con-
cept of the Shared pool is substantially defeated. The Shared pool was designed so that query
plans would be used over and over again. If every query is a brand-new, never-before-seen
query, then caching only adds overhead. The Shared pool becomes something that inhibits
performance. A common but misguided technique that many use to try to solve this issue is
adding more space to the Shared pool, which typically only makes things worse than before.
As the Shared pool inevitably fills up once again, it gets to be even more of an overhead than
the smaller Shared pool, for the simple reason that managing a big, full Shared pool takes
more work than managing a smaller, full Shared pool.

The only true solution to this problem is to use shared SQL—to reuse queries. Earlier, in
Chapter 1, we briefly looked at the parameter CURSOR_SHARING, which can work as a short-term

CHAPTER 4 & MEMORY STRUCTURES 149

crutch in this area. The only real way to solve this issue, however, is to use reusable SQL in the
first place. Even on the largest of large systems, I find that there are typically at most 10,000 to
20,000 unique SQL statements. Most systems execute only a few hundred unique queries.

The following real-world example demonstrates just how bad things can get if you use the
Shared pool poorly. I was asked to work on a system where the standard operating procedure
was to shut down the database each and every night, to wipe out the SGA and restart it clean.
The reason for doing this was that the system was having issues during the day whereby it was
totally CPU-bound and, if the database were left to run for more than a day, performance
would really start to decline. They were using a 1GB Shared pool inside of a 1.1GB SGA. This is
true: 0.1GB dedicated to block buffer cache and other elements and 1GB dedicated to caching
unique queries that would never be executed again. The reason for the cold start was that if
they left the system running for more than a day, they would run out of free memory in the
Shared pool. At that point, the overhead of aging structures out (especially from a structure so
large) was such that it overwhelmed the system and performance was massively degraded
(not that performance was that great anyway, since they were managing a 1GB Shared pool).
Additionally, the people working on this system constantly wanted to add more and more
CPUs to the machine, due to the fact that hard-parsing SQL is so CPU intensive. By correcting
the application and allowing it to use bind variables, not only did the physical machine
requirements drop (they then had many times more CPU power than they needed), but also
the allocation of memory to the various pools was reversed. Instead of a 1GB Shared pool, they
had less then 100MB allocated—and they never used it all over many weeks of continuous
uptime.

One last comment about the Shared pool and the parameter SHARED_POOL_SIZE. In
Oracle9i and before, there is no direct relationship between the outcome of the query

ops$tkyte@ORA9IR2> select sum(bytes) from v$sgastat where pool = 'shared pool';

SUM(BYTES)

100663296
and the SHARED POOL_SIZE parameter

ops$tkyte@ORA9IR2> show parameter shared pool size

NAME TYPE VALUE

shared pool size big integer 83886080

other than the fact that the SUM(BYTES) FROM V$SGASTAT will always be larger than the SHARED
POOL_SIZE. The Shared pool holds many other structures that are outside the scope of the
corresponding parameter. The SHARED _POOL_SIZE is typically the largest contributor to the
Shared pool as reported by the SUM(BYTES), but it is not the only contributor. For example,
the parameter CONTROL_FILES contributes 264 bytes per file to the “miscellaneous” section
of the Shared pool. It is unfortunate that the “Shared pool” in V$SGASTAT and the parameter
SHARED_POOL_SIZE are named as they are, since the parameter contributes to the size of the
Shared pool, but it is not the only contributor.

150

CHAPTER 4 = MEMORY STRUCTURES

In Oracle 10g and above, however, you should see a one-to-one correspondence between
the two, assuming you are using manual SGA memory management (i.e., you have set the
SHARED POOL_SIZE parameter yourself):

ops$tkyte@ORA10G> select sum(bytes)/1024/1024 mbytes
2 from v$sgastat where pool = 'shared pool';

MBYTES

shared pool size big integer 128M

This is a relatively important change as you go from Oracle9i and before to 10g. In Oracle
10g, the SHARED POOL_SIZE parameter controls the size of the Shared pool, whereas in Oracle9i
and before, it was just the largest contributor to the Shared pool. You would want to review
your 9i and before actual Shared pool size (based on V$SGASTAT) and use that figure to set your
SHARED POOL_SIZE parameter in Oracle 10g and above. The various other components that
used to add to the size of the Shared pool now expect that memory to have been allocated
for them by you.

Large Pool

The Large pool is not so named because it is a “large” structure (although it may very well be
large in size). It is so named because it is used for allocations of large pieces of memory that
are bigger than the Shared pool is designed to handle.

Prior to the introduction of the Large pool in Oracle 8.0, all memory allocation took place
in the Shared pool. This was unfortunate if you were using features that made use of “large”
memory allocations such as shared server UGA memory allocations. This issue was further
complicated by the fact that processing, which tended to need a lot of memory allocation,
would use the memory in a different manner than the way in which the Shared pool managed
it. The Shared pool manages memory on a LRU basis, which is perfect for caching and reusing
data. Large memory allocations, however, tended to get a chunk of memory, use it, and then
were done with it—there was no need to cache this memory.

What Oracle needed was something similar to the Recycle and Keep buffer pools imple-
mented for the block buffer cache. This is exactly what the Large pool and Shared pool are
now. The Large pool is a Recycle-style memory space, whereas the Shared pool is more like the
Keep buffer pool—if people appear to be using something frequently, then you keep it cached.

Memory allocated in the Large pool is managed in a heap, much in the way C manages
memory viamalloc() and free(). As soon as you “free” a chunk of memory, it can be used by
other processes. In the Shared pool, there really was no concept of freeing a chunk of memory.
You would allocate memory, use it, and then stop using it. After a while, if that memory
needed to be reused, Oracle would age out your chunk of memory. The problem with using
just a Shared pool is that one size doesn’t always fit all.

CHAPTER 4 = MEMORY STRUCTURES

The Large pool is used specifically by
* Shared server connections, to allocate the UGA region in the SGA

e Parallel execution of statements, to allow for the allocation of interprocess message
buffers, which are used to coordinate the parallel query servers

* Backup for RMAN disk I/0 buffers in some cases

As you can see, none of these memory allocations should be managed in an LRU buffer
pool designed to manage small chunks of memory. With shared server connection memory;,
for example, once a session logs out, this memory is never going to be reused, so it should be
immediately returned to the pool. Also, shared server UGA memory allocation tends to be
“large.” If you review the earlier examples with the SORT _AREA RETAINED SIZE or PGA
AGGREGATE_TARGET, the UGA can grow very large and is definitely bigger than 4KB chunks.
Putting MTS memory into the Shared pool causes it to fragment into odd-sized pieces of
memory and, furthermore, you will find that large pieces of memory that will never be reused
will age out memory that could be reused. This forces the database to do more work to rebuild
that memory structure later.

The same is true for parallel query message buffers, since they are not LRU manageable.
They are allocated and cannot be freed until they are done being used. Once they have deliv-
ered their message, they are no longer needed and should be released immediately. With
backup buffers, this applies to an even greater extent—they are large, and once Oracle is
done using them, they should just “disappear.”

The Large pool is not mandatory when using shared server connections, but it is highly
recommended. If you do not have a Large pool and use a shared server connection, the
allocations come out of the Shared pool as they always did in Oracle 7.3 and before. This will
definitely lead to degraded performance over some period of time and should be avoided.
The Large pool will default to some size if the parameter DBWR_IO_SLAVES or PARALLEL_MAX_
SERVERS is set to some positive value. It is recommended that you set the size of the Large pool
manually if you are using a feature that uses it. The default mechanism is typically not the
appropriate value for your situation.

Java Pool

The Java pool was added in version 8.1.5 of Oracle to support running Java in the database.
If you code a stored procedure in Java, Oracle will make use of this chunk of memory when
processing that code. The parameter JAVA POOL_SIZE is used to fix the amount of memory
allocated to the Java pool for all session-specific Java code and data.

The Java pool is used in different ways, depending on the mode in which the Oracle server
is running. In dedicated server mode, the Java pool includes the shared part of each Java class,
which is actually used per session. These are basically the read-only parts (execution vectors,
methods, etc.) and are about 4KB to 8KB per class.

Thus, in dedicated server mode (which will most likely be the case for applications using
purely Java stored procedures), the total memory required for the Java pool is quite modest
and can be determined based on the number of Java classes you will be using. It should be
noted that none of the per-session state is stored in the SGA in dedicated server mode, as this
information is stored in the UGA and, as you will recall, the UGA is included in the PGA in
dedicated server mode.

191

152

CHAPTER 4 = MEMORY STRUCTURES

When connecting to Oracle using a shared server connection, the Java pool includes both
of the following:

¢ The shared part of each Java class.

¢ Some of the UGA used for per-session state of each session, which is allocated from the
JAVA_POOL within the SGA. The remainder of the UGA will be located as normal in the
Shared pool, or if the Large pool is configured, it will be allocated there instead.

As the total size of the Java pool is fixed in Oracle9i and before, application developers will
need to estimate the total requirement of their applications and multiply this estimate by the
number of concurrent sessions they need to support. This number will dictate the overall size
of the Java pool. Each Java UGA will grow or shrink as needed, but bear in mind that the pool
must be sized such that all UGAs combined must be able to fit in it at the same time. In Oracle
10g and above, this parameter may be modified, and the Java pool may grow and shrink over
time without the database being restarted.

Streams Pool

The Streams pool is a new SGA structure starting in Oracle 10g. Streams itself is a new database
feature as of Oracle9i Release 2 and above. It was designed as a data sharing/replication tool
and is Oracle’s stated direction going forward for data replication.

Note The statement that Streams “is Oracle’s stated direction going forward for data replication” should
not be interpreted as meaning that Advanced Replication, Oracle’s now legacy replication feature, is going
away anytime soon. Rather, Advanced Replication will continue to be supported in future releases. To learn
more about Streams itself, see the Streams Concepts Guide available on http://otn.oracle.comin the
Documentation section.

The Streams pool (or up to 10 percent of the Shared pool if no Streams pool is configured)
is used to buffer queue messages used by the Streams process as it is moving/copying data
from one database to another. Instead of using permanent disk-based queues, with the atten-
dant overhead associated with them, Streams uses in-memory queues. If these queues fill up,
they will spill over to disk eventually. If the Oracle instance with the memory queue fails for
some reason, due to an instance failure (software crash), power failure, or whatever, these
in-memory queues are rebuilt from the redo logs.

So, the Streams pool will only be important in systems using the Streams database fea-
ture. In those environments, it should be set in order to avoid “stealing” 10 percent of the
Shared pool for this feature.

Automatic SGA Memory Management

Just as there are two ways to manage PGA memory, there are two ways to manage SGA mem-
ory starting in Oracle 10g: manually, by setting all of the necessary pool and cache parameters:

CHAPTER 4 & MEMORY STRUCTURES

and automatically, by setting just a few memory parameters and a single SGA_TARGET parame-
ter. By setting the SGA_TARGET parameter, you are allowing the instance to size and resize
various SGA components.

Note In Oracle9iand before, only manual SGA memory management was available—the parameter
SGA_TARGET did not exist and the parameter SGA_MAX_SIZE was a limit, not a dynamic target.

In Oracle 10g, memory-related parameters are classified into one of two areas:

* Auto-tuned SGA parameters: Currently these are DB_CACHE_SIZE, SHARED POOL_SIZE,
LARGE_POOL_SIZE, and JAVA POOL_SIZE.

* Manual SGA parameters: These include LOG_BUFFER, STREAMS_POOL, DB_NK_CACHE_SIZE,
DB KEEP_CACHE SIZE, and DB RECYCLE_CACHE SIZE.

At any time in Oracle 10g, you may query V$SGAINFO to see which components of the SGA
are resizable.

Note To use automatic SGA memory management, the parameter STATISTICS LEVEL must be set to
TYPICAL or ALL. If statistics collection is not enabled, the database will not have the historical information
needed to make the necessary sizing decisions.

Under automatic SGA memory management, the primary parameter for sizing the auto-
tuned components is SGA_TARGET, which may be dynamically sized while the database is up
and running, up to the setting of the SGA_MAX SIZE parameter (which defaults to be equal to
the SGA_TARGET, so if you plan on increasing the SGA_TARGET, you must have set the SGA MAX
SIZE larger before starting the database instance). The database will use the SGA_TARGET value,
minus the size of any of the other manually sized components such as the DB_KEEP_CACHE _
SIZE, DB _RECYCLE CACHE SIZE, and so on, and use that amount of memory to size the default
buffer pool, Shared pool, Large pool, and Java pool. Dynamically at runtime, the instance
will allocate and reallocate memory between those four memory areas as needed. Instead of
returning an ORA-04031 “Unable to allocate N bytes of shared memory” error to a user when
the Shared pool runs out of memory, the instance could instead choose to shrink the buffer
cache by some number of megabytes (a granule size) and increase the Shared pool by that
amount.

Over time, as the memory needs of the instance are ascertained, the size of the various
SGA components would become more or less fixed in size. The database also remembers the
sizes of these four components across database startup and shutdown so that it doesn’t have
to start all over again figuring out the right size for your instance each time. It does this via
four double-underscore parameters: DB _CACHE SIZE, JAVA POOL_SIZE, LARGE POOL_SIZE,
and _ SHARED POOL_SIZE. During a normal or immediate shutdown, the database will record
these values to the stored parameter file and use them upon startup to set the default sizes of

153

154

CHAPTER 4 & MEMORY STRUCTURES

Additionally, if you know you want a certain minimum value to be used for one of the four
areas, you may set that parameter in addition to setting the SGA_TARGET. The instance will use
your setting as the lower bound, or the smallest size that particular area may be.

Summary

In this chapter, we took a look at the Oracle memory structure. We started at the process and
session level, examining the PGA and UGA, and their relationship. We saw how the mode in
which we connect to Oracle will dictate how memory is organized. A dedicated server connec-
tion implies more memory used in the server process than under a shared server connection,
but that use of a shared server connection implies there will be the need for a significantly
larger SGA. Then, we discussed the main structures of the SGA itself. We discovered the differ-
ences between the Shared pool and the Large pool, and looked at why we might want a Large
pool to “save” our Shared pool. We covered the Java pool and how it is used under various con-
ditions, and we looked at the block buffer cache and how that can be subdivided into smaller,
more focused pools.

Now we are ready to move on to the physical processes that make up the rest of an Oracle
instance.

CHAPTER 5

Oracle Processes

We’ve reached the last piece of the architecture puzzle. We've investigated the database and
the set of physical files that constitute a database. In covering the memory used by Oracle,
we've looked at one half of an instance. The last remaining architectural issue to cover is the
set of processes that constitute the other half of the instance.

Each process in Oracle will perform a particular task or set of tasks, and each will have
internal memory (PGA memory) allocated by it to perform its job. An Oracle instance has
three broad classes of processes:

e Server processes: These perform work based on a client’s request. We have already
looked at dedicated and shared servers to some degree. These are the server processes.

* Background processes: These are the processes that start up with the database and per-
form various maintenance tasks, such as writing blocks to disk, maintaining the online
redo log, cleaning up aborted processes, and so on.

* Slave processes: These are similar to background processes, but they are processes that
perform extra work on behalf of either a background or a server process.

Some of these processes, such as the database block writer (DBWn) and the log writer
(LGWR), have cropped up already, but here we’ll take a closer look at the function of each, and
what each does and why.

Note When | use the term “process” in this chapter, consider it to be synonymous with the term “thread”
on operating systems where Oracle is implemented with threads (such as Windows). In the context of this
chapter, | use the term “process” to cover both processes and threads. If you are using an implementation
of Oracle that is multiprocess, such as you see on UNIX, the term “process” is totally appropriate. If you are
using a single-process implementation of Oracle, such as you see on Windows, the term “process” will actu-
ally mean “thread within the Oracle process.” So, for example, when | talk about the DBWn process, the
equivalent on Windows is the DBWn thread within the Oracle process.

155

156

CHAPTER o = ORACLE PROCESSES

Server Processes

Server processes are those that perform work on behalf of a client session. They are the
processes that ultimately receive and act on the SQL statements our applications send to
the database.

In Chapter 2, we briefly touched on two connection types to Oracle, namely the following:

* Dedicated server, whereby you get a dedicated process on the server for your connec-
tion. There is a one-to-one mapping between a connection to the database and a server
process or thread.

e Shared server, whereby many sessions share a pool of server processes spawned and
managed by the Oracle instance. Your connection is to a database dispatcher, not to a
dedicated server process created just for your connection.

Note It is important to understand the difference between a connection and a session in Oracle terminol-
ogy. A connection is just a physical path between a client process and an Oracle instance (e.g., a network
connection between you and the instance). A session, on the other hand, is a logical entity in the database,
where a client process can execute SQL and so on. Many independent sessions can be associated with a
single connection, and these sessions can even exist independently of a connection. We will discuss this
further shortly.

Both dedicated and shared server processes have the same job: they process all of the SQL
you give to them. When you submit a SELECT * FROM EMP query to the database, an Oracle dedi-
cated/shared server process parses the query and places it into the Shared pool (or finds it in
the Shared pool already, hopefully). This process comes up with the query plan, if necessary,
and executes the query plan, perhaps finding the necessary data in the buffer cache or reading
the data from disk into the buffer cache.

These server processes are the workhorse processes. Many times, you will find these
processes to be the highest consumers of CPU time on your system, as they are the ones
that do your sorting, your summing, your joining—pretty much everything.

Dedicated Server Connections

In dedicated server mode, there will be a one-to-one mapping between a client connection
and a server process (or thread, as the case may be). If you have 100 dedicated server connec-
tions on a UNIX machine, there will be 100 processes executing on their behalf. Graphically it
looks as shown in Figure 5-1.

CHAPTER o = ORACLE PROCESSES

Client Dedicated - ~
Application Server SGA

Oracle Net
N
\:j E

Your client application will have Oracle libraries linked into it. These libraries provide the
APIs you need in order to talk to the database. These APIs know how to submit a query to the
database and process the cursor that is returned. They know how to bundle your requests into
network calls that the dedicated server will know how to unbundle. This piece of software is
called Oracle Net, although in prior releases you might have known it as SQL*Net or Net8. This
is the networking software/protocol that Oracle employs to allow for client/server processing
(even in an n-tier architecture, there is a client/server program lurking). Oracle employs this
same architecture even if Oracle Net is not technically involved in the picture. That is, even
when the client and server are on the same machine this two-process (also known as two-
task) architecture is still employed. This architecture provides two benefits:

)(

Figure 5-1. Typical dedicated server connection

e Remote execution: It is very natural for the client application to be executing on a
machine other than the database itself.

e Address space isolation: The server process has read-write access to the SGA. An errant
pointer in a client process could easily corrupt data structures in the SGA if the client
process and server process were physically linked together.

In Chapter 2, we saw how these dedicated servers are “spawned” or created by the Oracle
listener process. We won'’t cover that process again; rather, we’ll quickly look at what happens
when the listener isn’t involved. The mechanism is much the same as it was with the listener,
but instead of the listener creating the dedicated server via a fork()/exec() in UNIX or an
interprocess communication (IPC) call in Windows, the client process itself creates it.

197

158

CHAPTER o = ORACLE PROCESSES

Note There are many variants of the fork() and exec() calls, such as vfork(), execve(), and so on.
The call used by Oracle may vary by operating system and implementation, but the net effect is the same.
fork() creates a new process that is a clone of the parent process, and on UNIX this is the only way to cre-
ate a new process. exec() loads a new program image over the existing program image in memory, thus
starting a new program. So, SQL*Plus can “fork” (copy itself) and then “exec” the Oracle binary, overlaying
the copy of itself with this new program.

We can see this parent/child process creation clearly on UNIX when we run the client and
server on the same machine:

ops$tkyte@ORA10G> select a.spid dedicated server,
2 b.process clientpid
3 from v$process a, v$session b
4 where a.addr = b.paddr
5 and b.sid = (select sid from v$mystat where rownum=1)
6

DEDICATED_SE CLIENTPID

ops$tkyte@ORA10G> !/bin/ps -p 5114 5112

PID TTY STAT TIME COMMAND
5112 pts/1 R 0:00 sqlplus
5114 ? S 0:00 oracleoral0g (DESCRIPTION=(LOCAL=YES)..(PROTOCOL=beq)))

Here, I used a query to discover the process ID (PID) associated with my dedicated server
(the SPID from V$PROCESS is the operating system PID of the process that was being used dur-
ing the execution of that query).

Shared Server Connections

Let’s now take a look at the shared server process in more detail. This type of connection
mandates the use of Oracle Net even if the client and server are on the same machine—you
cannot use shared server without using the Oracle TNS listener. As described earlier, the client
application will connect to the Oracle TNS listener and will be redirected or handed off to a
dispatcher. The dispatcher acts as the conduit between the client application and the shared
server process. Figure 5-2 is a diagram of the architecture of a shared server connection to the
database.

CHAPTER o = ORACLE PROCESSES

T =—>

Network Access Memory Access

Client
Applications

e)
SGA

Dispatcher Shared
/C— Servers

Request
Queue

| |
\
Response

Queue
- @@

Z

Q00

Figure 5-2. Typical shared server connection

Here, we can see that the client applications, with the Oracle libraries linked in, will be
physically connected to a dispatcher process. We may have many dispatchers configured for
any given instance, but it is not uncommon to have just one dispatcher for hundreds—even
thousands—of users. The dispatcher is simply responsible for receiving inbound requests
from the client applications and putting them into a request queue in the SGA. The first avail-
able shared server process, which is basically the same as a dedicated server process, will
pick up the request from the queue and attach the UGA of the associated session (the boxes
labeled “S” in Figure 5-2). The shared server will process that request and place any output
from it into the response queue. The dispatcher constantly monitors the response queue for
results and transmits them back to the client application. As far as the client is concerned, it
cannot really tell if it is connected via a dedicated server or a shared connection—they appear
to be the same. Only at the database level is the difference apparent.

Connections vs. Sessions

It surprises many people to discover that a connection is not synonymous with a session. In
most people’s eyes they are the same, but the reality is they do not have to be. A connection
may have zero, one, or more sessions established on it. Each session is separate and inde-
pendent, even though they all share the same physical connection to the database. A commit
in one session does not affect any other session on that connection. In fact, each session using
that connection could use different user identities!

1599

160

CHAPTER 5 © ORACLE PROGESSES

In Oracle, a connection is simply a physical circuit between your client process and the
database instance—a network connection, most commonly. The connection may be to a dedi-
cated server process or to a dispatcher. As previously stated, a connection may have zero or
more sessions, meaning that a connection may exist with no corresponding sessions. Addi-
tionally, a session may or may not have a connection. Using advanced Oracle Net features
such as connection pooling, a physical connection may be dropped by a client, leaving the
session intact (but idle). When the client wants to perform some operation in that session, it
would reestablish the physical connection. Let’s define these terms in more detail:

* Connection: A connection is a physical path from a client to an Oracle instance. A con-
nection is established either over a network or over an IPC mechanism. A connection
is typically between a client process and either a dedicated server or a dispatcher. How-
ever, using Oracle’s Connection Manager (CMAN), a connection may be between a
client and CMAN, and CMAN and the database. Coverage of CMAN is beyond the
scope of this book, but Oracle Net Services Administrator’s Guide (freely available from
http://otn.oracle.com) covers it in some detail.

» Session: A session is a logical entity that exists in the instance. It is your session state, or
a collection of data structures in memory that represents your unique session. It is what
would come first to most people’s minds when thinking of a “database connection.” It is
your session in the server, where you execute SQL, commit transactions, and run stored
procedures.

We can use SQL*Plus to see connections and sessions in action, and also to recognize that
it could be a very common thing indeed for a connection to have more than one session. We'll
simply use the AUTOTRACE command and discover that we have two sessions. Over a single
connection, using a single process, we'll establish two sessions. Here is the first:

ops$tkyte@ORA10G> select username, sid, seriali#, server, paddr, status
2 from v$session
3 where username = USER
4 /

USERNAME SID SERIAL# SERVER PADDR STATUS

OPS$TKYTE 153 3196 DEDICATED AE4CF614 ACTIVE

Now, that shows right now that we have one session: a single dedicated server-connected
session. The PADDR column is the address of our sole dedicated server process. Now, we simply
turn on AUTOTRACE to see the statistics of statements we execute in SQL*Plus:

ops$tkyte@ORA10G> set autotrace on statistics

ops$tkyte@ORA10G> select username, sid, seriali#, server, paddr, status
2 from v$session
3 where username = USER
4 /

CHAPTER o = ORACLE PROCESSES

USERNAME ~ SID SERIAL# SERVER PADDR STATUS
OPS$TKYTE 151 1511 DEDICATED AE4CF614 INACTIVE
OPS$TKYTE 153 3196 DEDICATED AE4CF614 ACTIVE

Statistics
0 recursive calls
0 db block gets
0 consistent gets
0 physical reads
0 redo size
756 bytes sent via SOL*Net to client
508 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
2 rows processed
ops$tkyte@ORA10G> set autotrace off

In doing so, we now have two sessions, but both are using the same single dedicated
server process, as evidenced by them both having the same PADDR value. We can confirm in the
operating system that no new processes were created and that we are using a single process—
a single connection—for both sessions. Note that one of the sessions (the original session) is
ACTIVE. That makes sense: it is running the query to show this information, so of course it is
active. But that INACTIVE session—what is that one for? That is the AUTOTRACE session. Its job
is to “watch” our real session and report on what it does.

When we enable AUTOTRACE in SQL*Plus, SQL*Plus will perform the following actions
when we execute DML operations (INSERT, UPDATE, DELETE, SELECT, and MERGE):

1. It will create a new session using the current connection, if the secondary session does
not already exist.

2. It will ask this new session to query the V$SESSTAT view to remember the initial statis-
tics values for the session in which we will run the DML. This is very similar to the
function the watch_stat.sql script performed for us in Chapter 4.

3. It will run the DML operation in the original session.

4. Upon completion of that DML statement, SQL*Plus will request the other session to
query V$SESSTAT again and produce the report displayed previously showing the differ-
ence in the statistics for the session that executed the DML.

If you turn off AUTOTRACE, SQL*Plus will terminate this additional session and you will
no longer see it in V$SESSION. A question you might ask is, “Why does SQL*Plus do this trick?”
The answer is fairly straightforward. SQL*Plus does it for the same reason that we used a
second SQL*Plus session in Chapter 4 to monitor memory and temporary space usage: if we
had used a single session to monitor memory usage, we would have been using memory to
do the monitoring. By observing the statistics in a single session, we would change those

161

162

CHAPTER o = ORACLE PROCESSES

statistics. If SQL*Plus used a single session to report on the number of I/Os performed, how
many bytes were transferred over the network, and how many sorts happened, then the
queries used to find these details would be adding to the statistics themselves. They could be
sorting, performing I/0, transferring data over the network (one would assume they would!),
and so on. Hence, we need to use another session to measure correctly.

So far, we've seen a connection with one or two sessions. Now we'd like to use SQL*Plus to
see a connection with no session. That one is pretty easy. In the same SQL*Plus window used
in the previous example, simply type the “misleading” command, DISCONNECT:

ops$tkyte@ORA10G> disconnect

Disconnected from Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 -
Production

With the Partitioning, OLAP and Data Mining options

ops$tkyte@ORA10G>

Technically, that command should be called DESTROY_ALL SESSIONS instead of DISCONNECT,
since we haven't really disconnected physically.

Note The true disconnect in SQL*Plus is “exit,” as you would have to exit to completely destroy the
connection.

We have, however, closed all of our sessions. If we open another session using some other
user account and query (replacing OPS$TKYTE with your account name, of course),

Sys@ORA10G> select * from v$session where username = 'OPS$TKYTE';
no rows selected

we can see that we have no sessions—but we still have a process, a physical connection (using
the previous ADDR value):

sys@ORA10G> select username, program
2 from v$process
3 where addr = hextoraw('AE4CF614');

USERNAME PROGRAM

tkyte oracle@localhost.localdomain (TNS V1-V3)

So, here we have a “connection” with no sessions associated with it. We can use the also
misnamed SQL*Plus CONNECT command to create a new session in this existing process (the
CONNECT command might be better named CREATE_SESSION):

ops$tkyte@ORA10G> connect /
Connected.

ops$tkyte@ORA10G> select username, sid, seriali#, server, paddr, status
2 from v$session

CHAPTER o = ORACLE PROCESSES

3 where username = USER
4 /

USERNAME ~ SID SERIAL# SERVER PADDR STATUS

OPS$TKYTE 150 233 DEDICATED AE4CF614 ACTIVE

So, notice that we have the same PADDR, so we are using the same physical connection, but
that we have (potentially) a different SID. I say “potentially” because we could get assigned the
same SID—it just depends on whether other people logged in while we were logged out and
whether the original SID we had was available.

So far, these tests were performed using a dedicated server connection, so the PADDR was
the process address of our dedicated server process. What happens if we use a shared server?

Note To connect via shared server, your database instance would have to have been started with the
necessary setup. Coverage of how to configure shared server is beyond the scope of this book, but this topic
is explored in detail in Oracle Net Services Administrator's Guide.

Well, let’s log in using shared server and in that session query:

ops$tkyte@ORA10G> select a.username, a.sid, a.serial#, a.server,

2 a.paddr, a.status, b.program

3 from v§session a left join v$process b
4 on (a.paddr = b.addr)

5 where a.username = 'OPS$TKYTE'

6 /

USERNAME SID SERIAL# SERVER PADDR STATUS PROGRAM

OPS$TKYTE 150 261 SHARED AE4CF118 ACTIVE oracle@localhost(S000)

Our shared server connection is associated with a process—the PADDR is there and we can
join to V$PROCESS to pick up the name of this process. In this case, we see it is a shared server,
as identified by the text S000.

However, if we use another SQL*Plus window to query this same bit of information, while
leaving our shared server session idle, we see something like this:

Sys@ORA10G> select a.username, a.sid, a.serial#, a.server,

2 a.paddr, a.status, b.program

3 from v$session a left join v$process b
4 on (a.paddr = b.addr)

5 where a.username = 'OPS$TKYTE'

6 /

163

164

CHAPTER o = ORACLE PROCESSES

USERNAME ~ SID SERIAL# SERVER PADDR STATUS PROGRAM

OPS$TKYTE 150 261 NONE AE4CEC1C INACTIVE oracle@localhost(D000)

Notice that our PADDR is different and the name of the process we are associated with has
also changed. Our idle shared server connection is now associated with a dispatcher, D00O.
Hence we have yet another method for observing multiple sessions pointing to a single
process. A dispatcher could have hundreds, or even thousands, of sessions pointing to it.

An interesting attribute of shared server connections is that the shared server process
we use can change from call to call. If I were the only one using this system (as I am for these
tests), running that query over and over as OPS$TKYTE would tend to produce the same PADDR
of AE4CF118 over and over. However, if | were to open up more shared server connections and
start to use that shared server in other sessions, then I might notice that the shared server I
use varies.

Consider this example. I'll query my current session information, showing the shared
server I'm using. Then in another shared server session, I'll perform a long-running operation
(i.e., I'll monopolize that shared server). When I ask the database what shared server I'm using
again, I'll most likely see a different one (if the original one is off servicing the other session).
In the following example, the code in bold represents a second SQL*Plus session that was con-
nected via shared server:

ops$tkyte@ORA10G> select a.username, a.sid, a.serial#, a.server,

2 a.paddr, a.status, b.program

3 from v$session a left join v$process b
4 on (a.paddr = b.addr)

5 where a.username = 'OPS$TKYTE'

6 /

USERNAME SID SERIAL# SERVER PADDR STATUS PROGRAM

OPS$TKYTE 150 261 SHARED AE4CF118 ACTIVE oracle@localhost(S000)
sys@ORA10G> connect system/manager@shared_server.us.oracle.com

Connected.
system@ORA10G> exec dbms_lock.sleep(20)

ops$tkyte@ORA10G> select a.username, a.sid, a.serial#, a.server,

2 a.paddr, a.status, b.program

3 from v$session a left join v$process b
4 on (a.paddr = b.addr)

5 where a.username = 'OPS$TKYTE'

6 /

USERNAME ~ SID SERIAL# SERVER PADDR STATUS PROGRAM

OPS$TKYTE 150 261 SHARED AE4CF614 ACTIVE oracle@localhost(S001)

CHAPTER o = ORACLE PROCESSES

Notice how the first time I queried, I was using S000 as the shared server. Then in another
session, I executed a long-running statement that monopolized the shared server, which just
happened to be S000 this time. The first nonbusy shared server is the one that gets assigned
the work to do, and in this case no one else was asking to use the S000 shared server, so the
DBMS_LOCK command took it. Now, when I queried again in the first SQL*Plus session, I got
assigned to another shared server process, since the S000 shared server was busy.

It is interesting to note that the parse of a query (returns no rows yet) could be processed
by shared server S000, the fetch of the first row by S001, the fetch of the second row by S002,
and the closing of the cursor by S003. That is, an individual statement might be processed bit
by bit by many shared servers.

So, what we have seen in this section is that a connection—a physical pathway from a
client to a database instance—may have zero, one, or more sessions established on it. We
have seen one use case of that when using SQL*Plus’s AUTOTRACE facility. Many other tools
employ this ability as well. For example, Oracle Forms uses multiple sessions on a single con-
nection to implement its debugging facilities. The n-tier proxy authentication feature of
Oracle, used to provide end-to-end identification of users from the browser to the database,
makes heavy use of the concept of a single connection with multiple sessions, but in each ses-
sion there would use a potentially different user account. We have seen that sessions can use
many processes over time, especially in a shared server environment. Also, if we are using
connection pooling with Oracle Net, then our session might not be associated with any
process at all; the client would drop the connection after an idle time and reestablish it
transparently upon detecting activity.

In short, there is a many-to-many relationship between connections and sessions. How-
ever, the most common case, the one most of us see day to day, is a one-to-one relationship
between a dedicated server and a single session.

Dedicated Server vs. Shared Server

Before we continue to examine the rest of the processes, let’s discuss why there are two con-
nection modes and when one might be more appropriate than the other.

When to Use Dedicated Server

As noted previously, in dedicated server mode there is a one-to-one mapping between client
connection and server process. This is by far the most common method of connection to the
Oracle database for all SQL-based applications. It is the simplest to set up and provides the
easiest way to establish connections. It requires little to no configuration.

Since there is a one-to-one mapping, you do not have to be concerned that a long-running
transaction will block other transactions. Those other transactions will simply proceed via
their own dedicated processes. Therefore, it is the only mode you should consider using in a
non-OLTP environment where you may have long-running transactions. Dedicated server is
the recommended configuration for Oracle, and it scales rather nicely. As long as your server
has sufficient hardware (CPU and RAM) to service the number of dedicated server processes
your system needs, dedicated server may be used for thousands of concurrent connections.

Certain operations must be done in a dedicated server mode, such as database startup
and shutdown, so every database will have either both or just a dedicated server setup.

160

166

CHAPTER o = ORACLE PROCESSES

When to Use Shared Server

Shared server setup and configuration, while not difficult, involves an extra step beyond dedi-
cated server setup. The main difference between the two is not, however, in their setup; it is in
their mode of operation. With dedicated server, there is a one-to-one mapping between client
connections and server processes. With shared server, there is a many-to-one relationship:
many clients to a shared server.

As its name implies, shared server is a shared resource, whereas a dedicated server is not.
When using a shared resource, you must be careful to not monopolize it for long periods of
time. As you saw previously, use of a simple DBMS_LOCK.SLEEP(20) in one session would
monopolize a shared server process for 20 seconds. Monopolization of these shared server
resources can lead to a system that appears to hang.

Figure 5-2 depicts two shared servers. If I have three clients, and all of them attempt to
run a 45-second process more or less at the same time, two of them will get their response in
45 seconds and the third will get its response in 90 seconds. This is rule number one for shared
server: make sure your transactions are short in duration. They can be frequent, but they
should be short (as characterized by OLTP systems). If they are not short, you will get what
appears to be a total system slowdown due to shared resources being monopolized by a few
processes. In extreme cases, if all of the shared servers are busy, the system will appear to hang
for all users except the lucky few who are monopolizing the shared servers.

Another interesting situation that you may observe when using shared server is that of an
artificial deadlock. With shared server, a number of server processes are being “shared” by a
potentially large community of users. Consider a situation where you have five shared servers
and one hundred user sessions established. Now, at most, five of those user sessions can be
active at any point in time. Suppose one of these user sessions updates a row and does not
commit. While that user sits there and ponders his or her modification, five other user ses-
sions try to lock that same row. They will, of course, become blocked and will patiently wait for
that row to become available. Now, the user session that holds the lock on this row attempts to
commit its transaction (hence releasing the lock on the row). That user session will find that
all of the shared servers are being monopolized by the five waiting sessions. We have an artifi-
cial deadlock situation here: the holder of the lock will never get a shared server to permit the
commit, unless one of the waiting sessions gives up its shared server. But, unless the waiting
sessions are waiting for the lock with a timeout, they will never give up their shared server
(you could, of course, have an administrator “kill” their session via a dedicated server to
release this logjam).

So, for these reasons, shared server is only appropriate for an OLTP system characterized
by short, frequent transactions. In an OLTP system, transactions are executed in milliseconds—
nothing ever takes more than a fraction of a second. Shared server is highly inappropriate for a
data warehouse. Here, you might execute a query that takes one, two, five, or more minutes.
Under shared server, this would be deadly. If you have a system that is 90 percent OLTP and
10 percent “not quite OLTB” then you can mix and match dedicated servers and shared server
on the same instance. In this fashion, you can reduce the number of server processes on the
machine dramatically for the OLTP users, and make it so that the “not quite OLTP” users do
not monopolize their shared servers. In addition, the DBA can use the built-in Resource Man-
ager to further control resource utilization.

CHAPTER o = ORACLE PROCESSES

Of course, a big reason to use shared server is when you have no choice. Many advanced
connection features require the use of shared server. If you want to use Oracle Net connection
pooling, you must use shared server. If you want to use database link concentration between
databases, then you must use shared server for those connections.

Note If you are already using a connection pooling feature in your application (e.g., you are using the
J2EE connection pool), and you have sized your connection pool appropriately, using shared server will only
be a performance inhibitor. You already sized your connection pool to cater for the number of concurrent
connections that you will get at any point in time—you want each of those connections to be a direct dedi-
cated server connection. Otherwise, you just have a connection pooling feature connecting to yet another
connection pooling feature.

Potential Benefits of Shared Server

So, what are the benefits of shared server, bearing in mind that you have to be somewhat care-
ful about the transaction types you let use it? Shared server does three things for us mainly: it
reduces the number of operating system processes/threads, it artificially limits the degree of
concurrency, and it reduces the memory needed on the system. We'll discuss these points in
more detail in the sections that follow.

Reduces the Number of Operating System Processes/Threads

On a system with thousands of users, the operating system may quickly become overwhelmed
when trying to manage thousands of processes. In a typical system, only a fraction of the thou-
sands of users are concurrently active at any point in time. For example, I've worked on
systems recently with 5,000 concurrent users. At any one point in time, at most 50 were active.
This system would work effectively with 50 shared server processes, reducing the number of
processes the operating system has to manage by two orders of magnitude (100 times). The
operating system can now, to a large degree, avoid context switching.

Artificially Limits the Degree of Concurrency

Speaking as a person who has been involved in lots of benchmarks, the benefits of this are
obvious to me. When running benchmarks, people frequently ask to run as many users as pos-
sible until the system breaks. One of the outputs of these benchmarks is always a chart that
shows the number of concurrent users versus the number of transactions (see Figure 5-3).

167

168 CHAPTER 5 © ORACLE PROGESSES

Transactions/
A Second .
Maximum
Concurrency
Concurrent
Users)

Figure 5-3. Concurrent users vs. transactions per second

Initially, as you add concurrent users, the number of transactions increases. At some
point, however, adding additional users does not increase the number of transactions you
can perform per second—the graph tends to drop off. The throughput has peaked and now
response time starts to increase (you are doing the same number of transactions per second,
but the end users are observing slower response times). As you continue adding users, you will
find that the throughput will actually start to decline. The concurrent user count before this
drop-off is the maximum degree of concurrency you want to allow on the system. Beyond this
point, the system becomes flooded and queues begin forming to perform work. Much like a
backup at a tollbooth, the system can no longer keep up. Not only does response time rise dra-
matically at this point, but throughput from the system may fall as well as the overhead of
simply context switching and sharing resources between too many consumers takes addi-
tional resources itself. If we limit the maximum concurrency to the point right before this
drop, we can sustain maximum throughput and minimize the increase in response time for
most users. Shared server allows us to limit the maximum degree of concurrency on our sys-
tem to this number.

An analogy for this process could be a simple door. The width of the door and the width of
people limit the maximum people per minute throughput. At low “load,” there is no problem;
however, as more people approach, some forced waiting occurs (CPU time slice). If a lot of
people want to get through the door, we get the fallback effect—there are so many saying
“after you” and false starts that the throughput falls. Everybody gets delayed getting through.
Using a queue means the throughput increases, some people get through the door almost as
fast as if there was no queue, while others (the ones put at the end of the queue) experience
the greatest delay and might fret that “this was a bad idea.” But when you measure how fast

CHAPTER o = ORACLE PROCESSES 169

everybody (including the last person) gets through the door, the queued model (shared server)
performs better than a free-for-all approach (even with polite people; but conjure up the
image of the doors opening when a store has a large sale, with everybody pushing very hard

to get through).

Reduces the Memory Needed on the System

This is one of the most highly touted reasons for using shared server: it reduces the amount of
required memory. It does, but not as significantly as you might think, especially given the new
automatic PGA memory management discussed in Chapter 4, where work areas are allocated
to a process, used, and released—and their size varies based on the concurrent workload. So,
this was a fact that was truer in older releases of Oracle but is not as meaningful today. Also,
remember that when you use shared server, the UGA is located in the SGA. This means that
when switching over to shared server, you must be able to accurately determine your expected
UGA memory needs and allocate appropriately in the SGA, via the LARGE_POOL_SIZE parame-
ter. So, the SGA requirements for the shared server configuration are typically very large. This
memory must typically be preallocated and, thus, can only be used by the database instance.

Note It is true that with a resizable SGA, you may grow and shrink this memory over time, but for the
most part, it will be “owned” by the database instance and will not be usable by other processes.

Contrast this with dedicated server, where anyone can use any memory not allocated
to the SGA. So, if the SGA is much larger due to the UGA being located in it, where do the
memory savings come from? They comes from having that many fewer PGAs allocated. Each
dedicated/shared server has a PGA. This is process information. It is sort areas, hash areas,
and other process-related structures. It is this memory need that you are removing from the
system by using shared server. If you go from using 5,000 dedicated servers to 100 shared
servers, it is the cumulative sizes of the 4,900 PGAs (excluding their UGAs) you no longer
need that you are saving with shared server.

Dedicated/Shared Server Wrap-Up

Unless your system is overloaded, or you need to use a shared server for a specific feature, a
dedicated server will probably serve you best. A dedicated server is simple to set up (in fact,
there is no setup!) and makes tuning easier.

Note With shared server connections, a session’s trace information (SOL_TRACE=TRUE output) may be
spread across many individual trace files, and reconstructing what that session has done is made more
difficult.

170

CHAPTER 5 © ORACLE PROGESSES

If you have a very large user community and know that you will be deploying with shared
server, I would urge you to develop and test with shared server. It will increase your likelihood
of failure if you develop under just a dedicated server and never test on shared server. Stress
the system, benchmark it, and make sure that your application is well behaved under shared
server. That is, make sure it does not monopolize shared servers for too long. If you find that it
does so during development, it is much easier to fix than during deployment. You can use fea-
tures such as the Advanced Queuing (AQ) to turn a long-running process into an apparently
short one, but you have to design that into your application. These sorts of things are best
done when you are developing. Also, there have historically been differences between the
feature set available to shared server connections versus dedicated server connections. We
already discussed the lack of automatic PGA memory management in Oracle 9i, for example,
but also in the past things as basic as a hash join between two tables were not available in
shared server connections.

Background Processes

The Oracle instance is made up of two things: the SGA and a set of background processes. The
background processes perform the mundane maintenance tasks needed to keep the database
running. For example, there is a process that maintains the block buffer cache for us, writing
blocks out to the data files as needed. Another process is responsible for copying an online
redo log file to an archive destination as it fills up. Yet another process is responsible for clean-
ing up after aborted processes, and so on. Each of these processes is pretty focused on its job,
but works in concert with all of the others. For example, when the process responsible for
writing to the log files fills one log and goes to the next, it will notify the process responsible
for archiving that full log file that there is work to be done.

There is a V$ view you can use to see all of the possible Oracle background processes and
determine which ones are currently in use in your system:

ops$tkyte@ORA9IR2> select paddr, name, description
2 from v$bgprocess
3 order by paddr desc
4 /

PADDR NAME DESCRIPTION

5F162548 ARC1 Archival Process 1

5F162198 ARCO Archival Process 0

5F161A38 CJQO0 Job Queue Coordinator

5F161688 RECO distributed recovery

5F1612D8 SMON System Monitor Process

5F160F28 CKPT checkpoint

5F160B78 LGWR Redo etc.

5F1607C8 DBWO db writer process 0

5F160418 PMON process cleanup

00 DIAG diagnosibility process

00 FMON File Mapping Monitor Process

00 LMON global enqueue service monitor

CHAPTER o = ORACLE PROCESSES

00 LMDO global enqueue service daemon O
00 LMS7 global cache service process 7
00 LMS8 global cache service process 8
00 LMS9 global cache service process 9

69 rows selected.

Rows in this view with a PADDR other than 00 are processes (threads) configured and run-
ning on your system.

There are two classes of background processes: those that have a focused job to do (as
just described) and those that do a variety of other jobs (i.e., utility processes). For example,
there is a utility background process for the internal job queues accessible via the DBMS_JOB
package. This process monitors the job queues and runs whatever is inside them. In many
respects, it resembles a dedicated server process, but without a client connection. We will
examine each of these background processes now, starting with the ones that have a focused
job, and then look into the utility processes.

Focused Background Processes

Figure 5-4 depicts the Oracle background processes that have a focused purpose.

----- Shared Memory 7 Clustered
_______ Network LMDO _____(Instances
. ICkn | @ [—T " -y
Disk I/0 H _A_f =

LMON
: o]
1
[pwon J. v

Lo 6> = @) €

A 4
Redo Log]
A

Phe A :) »
1 ’
CKPT DBWn LGWR ARCn
Y Y Y
Remote Database
Database Files
Online Redo Archive
Logs

Figure 5-4. Focused background processes

You may not see all of these processes when you start your instance, but the majority of
them will be present. You will only see ARCn (the archiver) if you are in ARCHIVELOG mode and
have enabled automatic archiving. You will only see the LMDO, LCKn, LMON, and LMSn (more

mn

172

CHAPTER o = ORACLE PROCESSES

details on those processes shortly) processes if you are running Oracle RAC, a configuration of
Oracle that allows many instances on different machines in a cluster to mount and open the
same physical database.

Note For the sake of clarity, missing from Figure 5-4 are the shared server dispatcher (Dnnn) and shared
server (Snnn) processes

So, Figure 5-4 depicts roughly what you might “see” if you started an Oracle instance,
and mounted and opened a database. For example, on my Linux system, after starting the
instance, I have the following processes:

$ ps -aef | grep 'ora .* oralog$'

oralog 5892 1 0 16:17 ? 00:00:00 ora_pmon_oralOg
oralog 5894 1 0 16:17 ? 00:00:00 ora_mman_oralOg
0ralog 5896 1 0 16:17 ? 00:00:00 ora_dbw0_oralog
oralog 5898 1 0 16:17 ? 00:00:00 ora_lgwr oralog
oralog 5900 1 0 16:17 ? 00:00:00 ora_ckpt oralog
oral0g 5902 1 0 16:17 ? 00:00:00 ora_smon_oral0g
oral0g 5904 1 0 16:17 ? 00:00:00 ora_reco_oral0g
oralog 5906 1 0 16:17 ? 00:00:00 ora_cjq0_oralOg
oralog 5908 1 0 16:17 ? 00:00:00 ora_do00_orallg
oral0g 5910 1 0 16:17 ? 00:00:00 ora_s000_oral0g
oralog 5916 1 0 16:17 ? 00:00:00 ora_arcO_oralOg
oralog 5918 1 0 16:17 ? 00:00:00 ora_arcl oralOg
oral0g 5920 1 0 16:17 ? 00:00:00 ora_gmnc_oralog
oral0g 5922 1 0 16:17 ? 00:00:00 ora_mmon_oral0g
oral0g 5924 1 0 16:17 ? 00:00:00 ora_mmnl_oral0g
oralog 5939 1 0 16:28 ? 00:00:00 ora_g000_orallg

It is interesting to note the naming convention used by these processes. The process
name starts with ora_. It is followed by four characters representing the actual name of the
process, which are followed by ora10g. As it happens, my ORACLE_SID (site identifier) is
oral0g. On UNIX, this makes it very easy to identify the Oracle background processes and
associate them with a particular instance (on Windows, there is no easy way to do this, as the
backgrounds are threads in a larger, single process). What is perhaps most interesting, but not
readily apparent from the preceding code, is that they are all really the same exact binary exe-
cutable program—there is not a separate executable for each “program.” Search as hard as you
like, but you will not find the arc0 binary executable on disk anywhere. You will not find LGWR
or DBWO. These processes are all really oracle (that’s the name of the binary executable that is
run). They just alias themselves upon startup to make it easier to identify which process is
which. This enables a great deal of object code to be efficiently shared on the UNIX platform.
On Windows, this is not nearly as interesting, as they are just threads within the process, so of
course they are one big binary.

Let’s now take a look at the function performed by each process, starting with the primary
Oracle background processes.

CHAPTER o = ORACLE PROCESSES

PMON: The Process Monitor

This process is responsible for cleaning up after abnormally terminated connections. For
example, if your dedicated server “fails” or is killed for some reason, PMON is the process
responsible for fixing (recovering or undoing work) and releasing your resources. PMON will
initiate the rollback of uncommitted work, release locks, and free SGA resources allocated
to the failed process.

In addition to cleaning up after aborted connections, PMON is responsible for monitoring
the other Oracle background processes and restarting them if necessary (and if possible). If a
shared server or a dispatcher fails (crashes), PMON will step in and restart another one (after
cleaning up for the failed process). PMON will watch all of the Oracle processes and either
restart them or terminate the instance as appropriate. For example, it is appropriate to fail the
instance in the event the database log writer process, LGWR, fails. This is a serious error, and
the safest path of action is to terminate the instance immediately and let normal recovery
fix the data. (Note that this is a rare occurrence and should be reported to Oracle Support
immediately.)

The other thing PMON does for the instance is to register it with the Oracle TNS listener.
When an instance starts up, the PMON process polls the well-known port address, unless
directed otherwise, to see whether or not a listener is up and running. The well-known/default
port used by Oracle is 1521. Now, what happens if the listener is started on some different
port? In this case, the mechanism is the same, except that the listener address needs to be
explicitly specified by the LOCAL_LISTENER parameter setting. If the listener is running when
the database instance is started, PMON communicates with the listener and passes to it relevant
parameters, such as the service name and load metrics of the instance. If the listener was not
started, PMON will periodically attempt to contact it to register itself.

SMON: The System Monitor

SMON is the process that gets to do all of the “system-level” jobs. Whereas PMON was interested in
individual processes, SMON takes a system-level perspective of things and is a sort of “garbage
collector” for the database. Some of the jobs it does include the following:

* Cleans up temporary space: With the advent of “true” temporary tablespaces, the chore
of cleaning up temporary space has lessened, but it has not gone away. For example,
when building an index, the extents allocated for the index during the creation are
marked as TEMPORARY. If the CREATE INDEX session is aborted for some reason, SMON is
responsible for cleaning them up. Other operations create temporary extents that SMON
would be responsible for as well.

* Coalesces free space: If you are using dictionary-managed tablespaces, SMON is responsi-
ble for taking extents that are free in a tablespace and contiguous with respect to each
other and coalescing them into one larger free extent. This occurs only on dictionary-
managed tablespaces with a default storage clause that has pctincrease setto a
nonzero value.

* Recovers transactions active against unavailable files: This is similar to its role during
database startup. Here, SMON recovers failed transactions that were skipped during
instance/crash recovery due to a file(s) not being available to recover. For example, the
file may have been on a disk that was unavailable or not mounted. When the file does
become available, SMON will recover it.

173

174

CHAPTER o = ORACLE PROCESSES

* Performs instance recovery of a failed node in RAC: In an Oracle RAC configuration,
when a database instance in the cluster fails (e.g., the machine the instance was execut-
ing on fails), some other node in the cluster will open that failed instance’s redo log files
and perform a recovery of all data for that failed instance.

e Cleans up 0BJ$: 0BJ$ is a low-level data dictionary table that contains an entry for
almost every object (table, index, trigger, view, and so on) in the database. Many times,
there are entries in here that represent deleted objects, or objects that represent “not
there” objects, used in Oracle’s dependency mechanism. SMON is the process that
removes these rows that are no longer needed.

o Shrinks rollback segments: SMON will perform the automatic shrinking of a rollback
segment to its optimal size, if it is set.

* “Offlines” rollback segments: It is possible for the DBA to offline, or make unavailable,
arollback segment that has active transactions. It may be possible that active transac-
tions are using this offlined rollback segment. In this case, the rollback is not really
offlined; it is marked as “pending offline.” In the background, SMON will periodically try
to truly take it offline, until it succeeds.

That should give you a flavor of what SMON does. It does many other things, such as flush
the monitoring statistics that show up in the DBA_TAB_MONITORING view, the flush of the SCN
to timestamp mapping information found in the SMON_SCN_TIME table, and so on. The SMON
process can accumulate quite a lot of CPU over time, and this should be considered normal.
SMON periodically wakes up (or is woken up by the other background processes) to perform
these housekeeping chores.

RECO: Distributed Database Recovery

RECO has a very focused job: it recovers transactions that are left in a prepared state because

of a crash or loss of connection during a two-phase commit (2PC). A 2PC is a distributed pro-
tocol that allows for a modification that affects many disparate databases to be committed
atomically. It attempts to close the window for distributed failure as much as possible before
committing. In a 2PC between N databases, one of the databases—typically (but not always)
the one the client logged into initially—will be the coordinator. This one site will ask the other
N-1 sites if they are ready to commit. In effect, this one site will go to the N-1 sites and ask
them to be prepared to commit. Each of the N-1 sites reports back its “prepared state” as YES
or NO. If any one of the sites votes NO, the entire transaction is rolled back. If all sites vote YES,
then the site coordinator broadcasts a message to make the commit permanent on each of the
N-1 sites.

If after some site votes YES it is prepared to commit, but before it gets the directive from
the coordinator to actually commit the network fails or some other error occurs, the transac-
tion becomes an in-doubt distributed transaction. The 2PC tries to limit the window of time
in which this can occur, but cannot remove it. If we have a failure right then and there, the
transaction will become the responsibility of RECO. RECO will try to contact the coordinator of
the transaction to discover its outcome. Until it does that, the transaction will remain in its
uncommitted state. When the transaction coordinator can be reached again, RECO will either
commit the transaction or roll it back.

CHAPTER o = ORACLE PROCESSES

It should be noted that if the outage is to persist for an extended period of time, and you
have some outstanding transactions, you can commit/roll them back manually yourself. You
might want to do this since an in-doubt distributed transaction can cause writers to block
readers—this is the one time this can happen in Oracle. Your DBA could call the DBA of the
other database and ask her to query the status of those in-doubt transactions. Your DBA can
then commit or roll them back, relieving RECO of this task.

CKPT: Checkpoint Process

The checkpoint process doesn', as its name implies, do a checkpoint (checkpoints were dis-
cussed in Chapter 3, in the section on redo logs)—that’s mostly the job of DBWn. It simply
assists with the checkpointing process by updating the file headers of the data files. It used to
be that CKPT was an optional process, but starting with version 8.0 of the database, it is always
started, so if you do a ps on UNIX, you'll always see it there. The job of updating data files’
headers with checkpoint information used to belong to the LGWR; however, as the number of
files increased along with the size of a database over time, this additional task for LGWR became
too much of a burden. If LGWR had to update dozens, or hundreds, or even thousands of files,
there would be a good chance sessions waiting to commit these transactions would have to
wait far too long. CKPT removes this responsibility from LGWR.

DBWn: Database Block Writer

The database block writer (DBWn) is the background process responsible for writing dirty
blocks to disk. DBWn will write dirty blocks from the buffer cache, usually to make more room
in the cache (to free buffers for reads of other data) or to advance a checkpoint (to move for-
ward the position in an online redo log file from which Oracle would have to start reading,
to recover the instance in the event of failure). As we discussed in Chapter 3, when Oracle
switches log files, a checkpoint is signaled. Oracle needs to advance the checkpoint so that it
no longer needs the online redo log file it just filled up. If it hasn’t been able to do that by the
time we need to reuse that redo log file, we get the “checkpoint not complete” message and
we must wait.

Note Advancing log files is only one of many ways for checkpoint activity to occur. There are incremental
checkpoints controlled by parameters such as FAST_START MTTR_TARGET and other triggers that cause
dirty blocks to be flushed to disk.

Asyou can see, the performance of DBWn can be crucial. If it does not write out blocks fast
enough to free buffers (buffers that can be reused to cache some other blocks) for us, we will
see both the number and duration of waits on Free Buffer Waits and Write Complete Waits
start to grow.

We can configure more than one DBWn; in fact, we can configure up to 20 (DBWO . . . DBW9,
DBWa . . . DBWJ). Most systems run with one database block writer, but larger, multi-CPU sys-
tems can make use of more than one. This is generally done to distribute the workload of
keeping a large block buffer cache in the SGA “clean,” flushing the dirtied (modified) blocks
to disk.

173

176

CHAPTER o = ORACLE PROCESSES

Optimally, the DBWn uses asynchronous I/0 to write blocks to disk. With asynchronous
1/0, DBWn gathers up a batch of blocks to be written and gives them to the operating system.
DBWn does not wait for the operating system to actually write the blocks out; rather, it goes
back and collects the next batch to be written. As the operating system completes the writes,
it asynchronously notifies DBWn that it completed the writes. This allows DBWn to work much
faster than if it had to do everything serially. We'll see later in the “Slave Processes” section
how we can use I/0 slaves to simulate asynchronous I/0 on platforms or configurations that
do not support it.

I'would like to make one final point about DBWn. It will, almost by definition, write out
blocks scattered all over disk—DBWn does lots of scattered writes. When you do an update,
you’ll be modifying index blocks that are stored here and there, and data blocks that are also
randomly distributed on disk. LGWR, on the other hand, does lots of sequential writes to the
redo log. This is an important distinction and one of the reasons that Oracle has a redo log
and the LGWR process as well as the DBWn process. Scattered writes are significantly slower than
sequential writes. By having the SGA buffer dirty blocks and the LGWR process do large sequen-
tial writes that can re-create these dirty buffers, we achieve an increase in performance. The
fact that DBWn does its slow job in the background while LGWR does its faster job while the user
waits gives us better overall performance. This is true even though Oracle may technically be
doing more I/0 than it needs to (writes to the log and to the data file)—the writes to the online
redo log could in theory be skipped if, during a commit, Oracle physically wrote the modified
blocks out to disk instead. In practice, it does not happen this way: LGWR writes the redo infor-
mation to the online redo logs for every transaction, and DBWn flushes the database blocks to
disk in the background.

LGWR: Log Writer

The LGWR process is responsible for flushing to disk the contents of the redo log buffer located
in the SGA. It does this when one of the following is true:

e Every three seconds
e Whenever a commit is issued by any transaction
e When the redo log buffer is one-third full or contains 1MB of buffered data

For these reasons, having an enormous (hundreds of megabytes) redo log buffer is not
practical—Oracle will never be able to use it all. The logs are written to with sequential writes
as compared to the scattered I/0 DBWn must perform. Doing large batch writes like this is
much more efficient than doing many scattered writes to various parts of a file. This is one of
the main reasons for having a LGWR and redo logs in the first place. The efficiency in just writ-
ing out the changed bytes using sequential I/O outweighs the additional I/O incurred. Oracle
could just write database blocks directly to disk when you commit, but that would entail a lot
of scattered 1/0 of full blocks, and this would be significantly slower than letting LGWR write out
the changes sequentially.

ARCn: Archive Process

The job of the ARCn process is to copy an online redo log file to another location when LGhR fills
it up. These archived redo log files can then be used to perform media recovery. Whereas

CHAPTER o = ORACLE PROCESSES

online redo log is used to “fix” the data files in the event of a power failure (when the instance
is terminated), archived redo logs are used to “fix” data files in the event of a hard disk failure.
If we lose the disk drive containing the data file, /d01/oradata/ora10g/system.dbf, we can go
to our backups from last week, restore that old copy of the file, and ask the database to apply
all of the archived and online redo logs generated since that backup took place. This will
“catch up” that file with the rest of the data files in our database, and we can continue process-
ing with no loss of data.

ARCn typically copies online redo log files to at least two other locations (redundancy
being a key to not losing data!). These other locations may be disks on the local machine or,
more appropriately, at least one will be located on another machine altogether, in the event
of a catastrophic failure. In many cases, these archived redo log files are copied off by some
other process to some tertiary storage device, such as tape. They may also be sent to another
machine to be applied to a “standby database,” a failover option offered by Oracle. We'll dis-
cuss the processes involved in that shortly.

Remaining Focused Processes

Depending on the features of Oracle you are using, other focused processes may be visible.
They are listed here with a brief description of their function. The processes described previ-
ously are nonnegotiable—you will have them if you have an Oracle instance running. The
following processes are optional and will appear only if you make use of the specific feature.
The following processes are unique to a database instance using ASM, as discussed in
Chapter 3:

» Automatic Storage Management Background (ASMB) process: The ASMB process runs in a
database instance that is making use of ASM. It is responsible for communicating to
the ASM instance that is managing the storage, providing updated statistics to the ASM
instance, and providing a “heartbeat” to the ASM instance, letting it know that it is still
alive and functioning.

e Rebalance (RBAL) process: The RBAL process also runs in a database instance that is mak-
ing use of ASM. It is responsible for processing a rebalance request (a redistribution
request) as disks are added/removed to and from an ASM disk group.

The following processes are found in an Oracle RAC instance. RAC is a configuration of
Oracle whereby multiple instances, each running on a separate node (typically a separate
physical computer) in a cluster, may mount and open a single database. It gives you the ability
to have more than one instance accessing, in a full read-write fashion, a single set of database
files. The primary goals of RAC are twofold:

* High availability: With Oracle RAC, if one node/computer in the cluster fails due to a
software, hardware, or human error, the other nodes may continue to function. The
database will be accessible via the other nodes. You might lose some computing power,
but you won't lose access to the database.

* Scalability: Instead of buying larger and larger machines to handle an increasing work-
load (known as vertical scaling), RAC allows you to add resources in the form of more
machines in the cluster (known as horizontal scaling). Instead of trading in your 4 CPU
machine for one that can grow to 8 or 16 CPUs, RAC gives you the option of adding
another relatively inexpensive 4 CPU machine (or more than one).

177

178 CHAPTER o = ORACLE PROCESSES

The following processes are unique to a RAC environment. You will not see them
otherwise.

* Lock monitor (LMON) process: The LMON process monitors all instances in a cluster to
detect the failure of an instance. It then facilitates the recovery of the global locks held
by the failed instance. It is also responsible for reconfiguring locks and other resources
when instances leave or are added to the cluster (as they fail and come back online, or
as new instances are added to the cluster in real time).

* Lock manager daemon (LMD) process: The LMD process handles lock manager service
requests for the global cache service (keeping the block buffers consistent between
instances). It works primarily as a broker sending requests for resources to a queue that
is handled by the LMSn processes. The LMD handles global deadlock detection/resolution
and monitors for lock timeouts in the global environment.

e Lock manager server (LMSn) process: As noted earlier, in a RAC environment, each
instance of Oracle is running on a different machine in a cluster, and they all access,
in a read-write fashion, the same exact set of database files. To achieve this, the SGA
block buffer caches must be kept consistent with respect to each other. This is one of
the main goals of the LMSn process. In earlier releases of Oracle Parallel Server (OPS), this
was accomplished via a ping. That is, if a node in the cluster needed a read-consistent
view of a block that was locked in exclusive mode by another node, the exchange of
data was done via a disk flush (the block was pinged). This was a very expensive
operation just to read data. Now, with the LMSn, this exchange is done via very fast
cache-to-cache exchange over the clusters’ high-speed connection. You may have
up to ten LMSn processes per instance.

* Lock (LCKO) process: This process is very similar in functionality to the LMD process
described earlier, but it handles requests for all global resources other than database
block buffers.

e Diagnosability daemon (DIAG) process: The DIAG process is used exclusively in a RAC
environment. It is responsible for monitoring the overall “health” of the instance, and
it captures information needed in the processing of instance failures.

Utility Background Processes

These background processes are totally optional, based on your need for them. They provide
facilities not necessary to run the database day to day, unless you are using them yourself,
such as the job queues, or are making use of a feature that uses them, such as the new
Oracle 10g diagnostic capabilities.

These processes will be visible in UNIX as any other background process would be—if
you do a ps, you will see them. In my ps listing from the beginning of the Focused Background
Processes section (reproduced in part here), you can see that I have

* Job queues configured. The CJQ0 process is the job queue coordinator.

* Oracle AQ configured, as evidenced by the Q000 (AQ queue process) and QUNC
(AQ monitor process).

CHAPTER o = ORACLE PROCESSES

¢ Automatic SGA sizing enabled, as evidenced by the memory manager (MMAN) process.

¢ Oracle 10g manageability/diagnostic features enabled, as evidenced by the
manageability monitor (MMON) and manageability monitor light (MMNL) processes.

oralog 5894 1 0 16:17 ? 00:00:00 ora_mman_oralOg
0ralog 5906 1 0 16:17 ? 00:00:00 ora_cjq0_orallg
oral0g 5920 1 0 16:17 ? 00:00:00 ora_gmnc_oralog
oral0g 5922 1 0 16:17 ? 00:00:00 ora_mmon_oral0g
oral0g 5924 1 0 16:17 ? 00:00:00 ora_mmnl oral0g
oralog 5939 1 0 16:28 ? 00:00:00 ora_q000_oralOg

Let’s take a look at the various processes you might see depending on the features you are
using.

CJQO and Jnnn Processes: Job Queues

In the first 7.0 release, Oracle provided replication in the form of a database object known as a
snapshot. Job queues were the internal mechanism by which these snapshots were refreshed,
or made current.

A job queue process monitored a job table that told it when it needed to refresh various
snapshots in the system. In Oracle 7.1, Oracle Corporation exposed this facility for all to use
via a database package called DBMS_JOB. So a process that was solely the domain of the snap-
shot in 7.0 became the “job queue” in 7.1 and later versions. Over time, the parameters for
controlling the behavior of the job queue (how frequently it should be checked and how many
queue processes there should be) changed in name from SNAPSHOT REFRESH_INTERVAL and
SNAPSHOT REFRESH_PROCESSES to JOB_QUEUE_INTERVAL and JOB_QUEUE_PROCESSES, and in current
releases only the JOB_QUEUE_PROCESSES parameter is exposed as a user-tunable setting.

You may have up to 1,000 job queue processes. Their names will be J000, J001, . . ., 3999.
These processes are used heavily in replication as part of the materialized view refresh
process. Streams-based replication (new with Oracle9i Release 2) uses AQ for replication and
therefore does not use the job queue processes. Developers also frequently use the job queues
in order to schedule one-off (background) jobs or recurring jobs—for example, to send an
e-mail in the background, or process a long-running batch process in the background. By
doing some work in the background, you can make a long task seem to take much less time
to an impatient end user (he feels like it went faster, even though it might not be done yet).
This is similar to what Oracle does with LGWR and DBWn processes—they do much of their work
in the background, so you don't have to wait for them to complete all tasks in real time.

The Jnnn processes are very much like a shared server, but with aspects of a dedicated
server. They are shared in the sense that they process one job after the other, but they manage
memory more like a dedicated server would (their UGA memory is in the PGA, not the SGA).
Each job queue process will run exactly one job at a time, one after the other, to completion.
That is why we may need multiple processes if we wish to run jobs at the same time. There is
no threading or preempting of a job. Once a job is running, it will run to completion (or failure).

You will notice that the IJnnn processes come and go over time—that is, if you configure
up to 1,000 of them, you will not see 1,000 of them start up with the database. Rather, a sole
process, the job queue coordinator (CJQ0) will start up, and as it sees jobs that need to be run
in the job queue table, it will start the Jnnn processes. As the Jnnn processes complete their

179

180

CHAPTER o = ORACLE PROCESSES

work and discover no new jobs to process, they will start to exit—to go away. So, if you sched-
ule most of your jobs to run at 2:00 am when no one is around, you might well never actually
“see” these Jnnn processes.

QMNC and Qnnn: Advanced Queues

The QMNC process is to the AQ tables what the CJQ0 process is to the job table. It monitors the
advanced queues and alerts waiting message “dequeuers” that a message has become avail-
able. QMNC and Qnnn are also responsible for queue propagation—that is, the ability of a
message that was enqueued (added) in one database to be moved to a queue in another
database for dequeueing.

The Qnnn processes are to the QMNC process what the IJnnn processes are to the CJQ0
process. They are notified by the QMNC process of work that needs to be performed, and they
process the work.

The QMNC and Qnnn processes are optional background processes. The parameter
AQ_TM_PROCESSES specifies creation of up to ten of these processes named 0000, . . ., 0009, and
a single QMNC process. If AQ_TM_PROCESSES is set to 0, there will be no QMNC or Qnnn processes.
Unlike the Jnnn processes used by the job queues, the Qnnn processes are persistent. If you
set AQ_TM_PROCESSES to 10, you will see ten Qnnn processes and the QMNC process at database
startup and for the entire life of the instance.

EMNn: Event Monitor Processes

The EMNn process is part of the AQ architecture. It is used to notify queue subscribers of mes-
sages they would be interested in. This notification is performed asynchronously. There are
Oracle Call Interface (OCI) functions available to register a callback for message notification.
The callback is a function in the OCI program that will be invoked automatically whenever a
message of interest is available in the queue. The EMNn background process is used to notify
the subscriber. The EMNn process is started automatically when the first notification is issued
for the instance. The application may then issue an explicit message receive(dequeue) to
retrieve the message.

MMAN: Memory Manager

This process is new with Oracle 10g and is used by the automatic SGA sizing feature. The MMAN
process coordinates the sizing and resizing of the shared memory components (the default
buffer pool, the Shared pool, the Java pool, and the Large pool).

MMON, MMNL, and Mnnn: Manageability Monitors

These processes are used to populate the Automatic Workload Repository (AWR), a new fea-
ture in Oracle 10g. The MMNL process flushes statistics from the SGA to database tables on a
scheduled basis. The MMON process is used to “auto-detect” database performance issues and
implement the new self-tuning features. The Mnnn processes are similar to the Jnnn or Qnnn
processes for the job queues; the MMON process will request these slave processes to perform
work on its behalf. The Mnnn processes are transient in nature—they will come and go as
needed.

CHAPTER o = ORACLE PROCESSES

CTWR: Change Tracking Processes

This is a new optional process of the Oracle 10g database. The CTWR process is responsible for
maintaining the new change tracking file, as described in Chapter 3.

RVWR: Recovery Writer

This process, another new optional process of the Oracle 10g database, is responsible for
maintaining the before images of blocks in the Flash Recovery Area (described in Chapter 3)
used with the FLASHBACK DATABASE command.

Remaining Utility Background Processes

So, is that the complete list? No, there are others. For example, Oracle Data Guard has a set of
processes associated with it to facilitate the shipping of redo information from one database
to another and apply it (see the Data Guard Concepts and Administration Guide from Oracle
for details). There are processes associated with the new Oracle 10g Data Pump utility that you
will see during certain Data Pump operations. There are Streams apply and capture processes
as well. However, the preceding list covers most of the common background processes you
will encounter.

Slave Processes

Now we are ready to look at the last class of Oracle processes: the slave processes. There are
two types of slave processes with Oracle: I/O slaves and parallel query slaves.

I/0 Slaves

1/0 slaves are used to emulate asynchronous I/0 for systems or devices that do not support it.
For example, tape devices (which are notoriously slow) do not support asynchronous I/0. By
using I/0 slaves, we can mimic for tape drives what the operating system normally provides
for disk drives. Just as with true asynchronous I/0, the process writing to the device batches a
large amount of data and hands it off to be written. When the data is successfully written, the
writer (our I/0 slave this time, not the operating system) signals the original invoker, who
removes this batch of data from its list of data that needs to be written. In this fashion, we
can achieve a much higher throughput, since the I/0 slaves are the ones waiting for the slow
device, while their caller is off doing other important work getting the data together for the
next write.

I/0 slaves are used in a couple of places in Oracle. DBWn and LGWR can make use of them to
simulate asynchronous I/0, and RMAN will make use of them when writing to tape.

Two parameters control the use of I/0 slaves:

e BACKUP_TAPE_IO SLAVES: This parameter specifies whether I/0 slaves are used by RMAN
to back up, copy, or restore data to tape. Since this parameter is designed around tape
devices, and tape devices may be accessed by only one process at any time, this param-
eter is a Boolean, and not the number of slaves to use, as you might expect. RMAN will
start up as many slaves as necessary for the number of physical devices being used.

181

182

CHAPTER o = ORACLE PROCESSES

When BACKUP_TAPE_IO_SLAVES = TRUE, an I/O slave process is used to write to or read
from a tape device. If this parameter is FALSE (the default), then I/0 slaves are not used
for backups. Instead, the dedicated server process engaged in the backup will access
the tape device.

e DBWR_IO SLAVES: This parameter specifies the number of I/0 slaves used by the DBWO
process. The DBWO process and its slaves always perform the writing to disk of dirty
blocks in the buffer cache. By default, the value is 0 and I/0O slaves are not used. Note
that if you set this parameter to a nonzero value, LGWR and ARCH will use their own I/O
slaves as well—up to four I/0 slaves for LGWR and ARCH will be permitted.

The DBWR I/0 slaves appear with the name I1nn, and the LGWR I/0 slaves appear with the
name I2nn, where nn is a number.

Parallel Query Slaves

Oracle 7.1.6 introduced the parallel query capability into the database. This is the capability to
take a SQL statement such as a SELECT, CREATE TABLE, CREATE INDEX, UPDATE, and so on and cre-
ate an execution plan that consists of many execution plans that can be done simultaneously.
The outputs of each of these plans are merged together into one larger result. The goal is to do
an operation in a fraction of the time it would take if you did it serially. For example, say you
have a really large table spread across ten different files. You have 16 CPUs at your disposal,
and you need to execute an ad hoc query on this table. It might be advantageous to break the
query plan into 32 little pieces and really make use of that machine, as opposed to just using
one process to read and process all of that data serially.

When using parallel query, you will see processes named Pnnn—these are the parallel
query slaves themselves. During the processing of a parallel statement, your server process
will be known as the parallel query coordinator. Its name won’t change at the operating system
level, but as you read documentation on parallel query, when you see references to the coordi-
nator process, know that it is simply your original server process.

Summary

We've covered the files used by Oracle, from the lowly but important parameter file to data
files, redo log files, and so on. We've taken a look inside the memory structures used by Oracle,
both in the server processes and the SGA. We've seen how different server configurations, such
as shared server versus dedicated server mode for connections, will have a dramatic impact
on how memory is used by the system. Lastly, we looked at the processes (or threads, depend-
ing on the operating system) that enable Oracle to do what it does. Now we are ready to look at
the implementation of some other features of Oracle, such as locking, concurrency controls,
and transactions.

CHAPTER 6

Locking and Latching

One of the key challenges in developing multiuser, database-driven applications is to maxi-
mize concurrent access and, at the same time, ensure that each user is able to read and
modify the data in a consistent fashion. The locking mechanisms that allow this to happen are
key features of any database, and Oracle excels in providing them. However, Oracle’s imple-
mentation of these features is specific to Oracle—just as SQL Server’s implementation is to
SQL Server—and it is up to you, the application developer, to ensure that when your applica-
tion performs data manipulation, it uses these mechanisms correctly. If you fail to do so, your
application will behave in an unexpected way, and inevitably the integrity of your data will be
compromised (as was demonstrated in Chapter 1).

In this chapter, we'll take a detailed look at how Oracle locks both data (e.g., rows in tables)
and shared data structures (such as those found in the SGA). We'll investigate the granularity
to which Oracle locks data and what that means to you, the developer. When appropriate, I'll
contrast Oracle’s locking scheme with other popular implementations, mostly to dispel the
myth that row-level locking adds overhead; it adds overhead only if the implementation adds
overhead. In the next chapter, we’ll continue this discussion and investigate Oracle’s multi-
versioning techniques and how locking strategies interact with them.

What Are Locks?

Locks are mechanisms used to regulate concurrent access to a shared resource. Note how I
used the term “shared resource” and not “database row.” It is true that Oracle locks table data
at the row level, but it also uses locks at many other levels to provide concurrent access to
various resources. For example, while a stored procedure is executing, the procedure itself is
locked in a mode that allows others to execute it, but it will not permit another user to alter
it in any way. Locks are used in the database to permit concurrent access to these shared
resources, while at the same time providing data integrity and consistency.

In a single-user database, locks are not necessary. There is, by definition, only one user
modifying the information. However, when multiple users are accessing and modifying data
or data structures, it is crucial to have a mechanism in place to prevent concurrent modifica-
tion of the same piece of information. This is what locking is all about.

It is very important to understand that there are as many ways to implement locking in a
database as there are databases. Just because you have experience with the locking model of
one particular relational database management system (RDBMS) does not mean you know
everything about locking. For example, before I got heavily involved with Oracle, I used other
databases such as Sybase, Microsoft SQL Server, and Informix. All three of these databases

183

184

CHAPTER 6 = LOCKING AND LATCRING

provide locking mechanisms for concurrency control, but there are deep and fundamental
differences in the way locking is implemented in each one. To demonstrate this, I'll outline my
progression from a SQL Server developer to an Informix user and finally an Oracle developer.
This happened many years ago, and the SQL Server fans out there will tell me “But we have
row-level locking now!” It is true: SQL Server may now use row-level locking, but the way it is
implemented is totally different from the way it is done in Oracle. It is a comparison between
apples and oranges, and that is the key point.

As a SQL Server programmer, I would hardly ever consider the possibility of multiple
users inserting data into a table concurrently. It was something that just didn’t often happen
in that database. At that time, SQL Server provided only for page-level locking and, since all
the data tended to be inserted into the last page of nonclustered tables, concurrent inserts by
two users was simply not going to happen.

Note A SQL Server clustered table (a table that has a clustered index) is in some regard similar to, but
very different from, an Oracle cluster. SQL Server used to only support page (block) level locking, and if every
row inserted was to go to the “end” of the table, you would never have had concurrent inserts, concurrent
transactions in that database. The clustered index in SQL Server was used to cause rows to be inserted
all over the table, in sorted order by the cluster key, and as such was used to improve concurrency in that
database.

Exactly the same issue affected concurrent updates (since an UPDATE was really a DELETE
followed by an INSERT). Perhaps this is why SQL Server, by default, commits or rolls back
immediately after execution of each and every statement, compromising transactional
integrity in an attempt to gain higher concurrency.

So in most cases, with page-level locking, multiple users could not simultaneously
modify the same table. Compounding this was the fact that while a table modification was in
progress, many queries were also effectively blocked against that table. IfI tried to query a
table and needed a page that was locked by an update, [waited (and waited and waited). The
locking mechanism was so poor that providing support for transactions that took more than a
second was deadly—the entire database would appear to “freeze” if you did. I learned a lot of
bad habits here. I learned that transactions were “bad” and that you ought to commit rapidly
and never hold locks on data. Concurrency came at the expense of consistency. You either
wanted to get it right or get it fast. I came to believe that you couldn’t have both.

When I moved on to Informix, things were better, but not by much. As long as I remem-
bered to create a table with row-level locking enabled, then I could actually have two people
simultaneously insert data into that table. Unfortunately, this concurrency came at a high
price. Row-level locks in the Informix implementation were expensive, both in terms of time
and memory. It took time to acquire and “unacquire” or release them, and each lock consumed
real memory. Also, the total number of locks available to the system had to be computed prior
to starting the database. If you exceeded that number, then you were just out of luck. Conse-
quently, most tables were created with page-level locking anyway, and, as with SQL Server,
both row and page-level locks would stop a query in its tracks. As a result, I found that once
again I would want to commit as fast as I could. The bad habits I picked up using SQL Server

CRAPTER 6 = LOCKING AND LATCRING

were simply reinforced and, furthermore, I learned to treat a lock as a very scarce resource—
something to be coveted. I learned that you should manually escalate locks from row level to
table level to try to avoid acquiring too many of them and bringing the system down, and
bring it down I did—many times.

When I started using Oracle, I didn't really bother reading the manuals to find out how
locking worked in this particular database. After all, I had been using databases for quite a
while and was considered something of an expert in this field (in addition to Sybase, SQL
Server, and Informix, I had used Ingress, DB2, Gupta SQLBase, and a variety of other data-
bases). I had fallen into the trap of believing that I knew how things should work, so I thought
of course they would work in that way. I was wrong in a big way.

It was during a benchmark that I discovered just how wrong I was. In the early days of
these databases (around 1992/1993), it was common for the vendors to “benchmark” for really
large procurements to see who could do the work the fastest, the easiest, with the most features.

The benchmark was between Informix, Sybase, SQL Server, and Oracle. Oracle was first.
Their technical people came on-site, read through the benchmark specs, and started setting it
up. The first thing I noticed was that the technicians from Oracle were going to use a database
table to record their timings, even though we were going to have many dozens of connections
doing work, each of which would frequently need to insert and update data in this log table.
Not only that, but they were going to read the log table during the benchmark as well! Being
anice guy, I pulled one of the Oracle technicians aside to ask him if they were crazy—why
would they purposely introduce another point of contention into the system? Wouldn't the
benchmark processes all tend to serialize around their operations on this single table? Would
they jam the benchmark by trying to read from this table as others were heavily modifying it?
Why would they want to introduce all of these extra locks that they would need to manage?

I had dozens of “Why would you even consider that?”-type questions. The technical folks
from Oracle thought I was a little daft at that point. That is, until I pulled up a window into
SQL Server or Informix, and showed them the effects of two people inserting into a table, or
someone trying to query a table with others inserting rows (the query returns zero rows per
second). The differences between the way Oracle does it and the way almost every other
database does it are phenomenal—they are night and day.

Needless to say, neither the Informix nor the SQL Server technicians were too keen on the
database log table approach during their attempts. They preferred to record their timings to
flat files in the operating system. The Oracle people left with a better understanding of exactly
how to compete against SQL Server and Informix: just ask the audience “How many rows per
second does your current database return when data is locked?” and take it from there.

The moral to this story is twofold. First, all databases are fundamentally different. Second,
when designing an application for a new database platform, you must make no assumptions
about how that database works. You must approach each new database as if you had never
used a database before. Things you would do in one database are either not necessary or sim-
ply won't work in another database.

In Oracle you will learn that

» Transactions are what databases are all about. They are a “good thing.”

* You should defer committing until the correct moment. You should not do it quickly to
avoid stressing the system, as it does not stress the system to have long or large transac-
tions. The rule is commit when you must, and not before. Your transactions should only
be as small or as large as your business logic dictates.

189

186

CHAPTER 6 = LOCKING AND LATCRING

* You should hold locks on data as long as you need to. They are tools for you to use, not
things to be avoided. Locks are not a scarce resource. Conversely, you should hold locks
on data only as long as you need to. Locks may not be scarce, but they can prevent
other sessions from modifying information.

* There is no overhead involved with row-level locking in Oracle—none. Whether you
have 1 row lock or 1,000,000 row locks, the number of “resources” dedicated to locking
this information will be the same. Sure, you'll do a lot more work modifying 1,000,000
rows rather than 1 row, but the number of resources needed to lock 1,000,000 rows is
the same as for 1 row; it is a fixed constant.

* You should never escalate a lock (e.g., use a table lock instead of row locks) because it
would be “better for the system.” In Oracle, it won’t be better for the system—it will save
no resources. There are times to use table locks, such as in a batch process, when you
know you will update the entire table and you do not want other sessions to lock rows
on you. But you are not using a table lock to make it easier for the system by avoiding
having to allocate row locks.

* Concurrency and consistency can be achieved simultaneously. You can get the data
quickly and accurately, every time. Readers of data are not blocked by writers of data.
Writers of data are not blocked by readers of data. This is one of the fundamental differ-
ences between Oracle and most other relational databases.

As we cover the remaining components in this chapter and the next, I'll reinforce these
points.

Locking Issues

Before we discuss the various types of locks that Oracle uses, it is useful to look at some lock-
ing issues, many of which arise from badly designed applications that do not make correct use
(or make no use) of the database’s locking mechanisms.

Lost Updates

A lost update is a classic database problem. Actually, it is a problem in all multiuser computer
environments. Simply put, a lost update happens when the following events occur, in the
order presented here:

1. Atransaction in Session]1 retrieves (queries) a row of data into local memory and
displays it to an end user, Userl.

2. Another transaction in Session2 retrieves that same row, but displays the data to a
different end user, User2.

3. Userl, using the application, modifies that row and has the application update the
database and commit. Session1’s transaction is now complete.

4. User2 modifies that row also, and has the application update the database and
commit. Session2’s transaction is now complete.

CRAPTER 6 = LOCKING AND LATCRING

This process is referred to as a “lost update” because all of the changes made in step 3
will be lost. Consider, for example, an employee update screen that allows a user to change an
address, work number, and so on. The application itself is very simple: a small search screen
to generate a list of employees and then the ability to drill down into the details of each
employee. This should be a piece of cake. So, we write the application with no locking on
our part, just simple SELECT and UPDATE commands.

Then an end user (Userl) navigates to the details screen, changes an address on the
screen, clicks Save, and receives confirmation that the update was successful. Fine, except
that when User1 checks the record the next day to send out a tax form, the old address is still
listed. How could that have happened? Unfortunately, it can happen all too easily. In this case,
another end user (User2) queried the same record just after User1 did—after Userl read the
data, but before User1 modified it. Then after User2 queried the data, User1 performed her
update, received confirmation, and even requeried to see the change for herself. However,
User2 then updated the work telephone number field and clicked Save, blissfully unaware of
the fact that he just overwrote Userl’s changes to the address field with the old data! The rea-
son this can happen in this case is that the application developer wrote the program such that
when one particular field is updated, all fields for that record are “refreshed” (simply because
it's easier to update all the columns instead of figuring out exactly which columns changed
and only updating those).

Notice that for this to happen, User1 and User2 didn’t even need to be working on the
record at the exact same time. They simply needed to be working on the record at about the
same time.

I've seen this database issue crop up time and again when GUI programmers with little or
no database training are given the task of writing a database application. They get a working
knowledge of SELECT, INSERT, UPDATE, and DELETE and then set about writing the application.
When the resulting application behaves in the manner just described, it completely destroys
a user’s confidence in it, especially since it seems so random, so sporadic, and it is totally irre-
producible in a controlled environment (leading the developer to believe it must be a user
error).

Many tools, such as Oracle Forms and HTML DB, transparently protect you from this
behavior by ensuring the record is unchanged from the time you query it and locked before
you make any changes to it, but many others (such as a handwritten Visual Basic or Java pro-
gram) do not. What the tools that protect you do behind the scenes, or what the developers
must do themselves, is use one of two types of locking strategies: pessimistic or optimistic.

Pessimistic Locking

This locking method would be put into action the instant before a user modifies a value on
the screen. For example, a row lock would be placed as soon as the user indicates his intention
to perform an update on a specific row that he has selected and has visible on the screen (by
clicking a button on the screen, say).

Pessimistic locking is useful only in a stateful or connected environment—that is, one
where your application has a continual connection to the database and you are the only one
using that connection for at least the life of your transaction. This was the prevalent way of
doing things in the early to mid 1990s with client/server applications. Every application would
get a direct connection to the database to be used solely by that application instance. This
method of connecting, in a stateful fashion, has become less common (though it is not
extinct), especially with the advent of application servers in the mid to late 1990s.

187

188 CHAPTER 6 = LOCKING AND LATCRING

Assuming you are using a stateful connection, you might have an application that queries
the data without locking anything:

scott@ORA10G> select empno, ename, sal from emp where deptno = 10;

EMPNO ENAME SAL
7782 CLARK 2450
7839 KING 5000
7934 MILLER 1300

Eventually, the user picks a row she would like to update. Let’s say in this case, she
chooses to update the MILLER row. Our application will at that point in time (before the user
makes any changes on the screen but after the row has been out of the database for a while)
bind the values the user selected so we can query the database and make sure the data hasn’t
been changed yet. In SQL*Plus, to simulate the bind calls the application would make, we can
issue the following:

scott@ORA10G> variable empno number

scott@RA10G> variable ename varchar2(20)

scott@RA10G> variable sal number

scott@ORA10G> exec :empno := 7934; :ename := 'MILLER'; :sal := 1300;
PL/SQL procedure successfully completed.

Now in addition to simply querying the values and verifying that they have not been
changed, we are going to lock the row using FOR UPDATE NOWAIT. The application will execute
the following query:

scott@ORA10G> select empno, ename, sal
2 from emp

3 where empno = :empno

4 and ename = :ename

5 and sal = :sal

6 for update nowait

7/
EMPNO ENAME SAL
7934 MILLER 1300

The application supplies values for the bind variables from the data on the screen (in this
case 7934, MILLER, and 1300) and requeries this same row from the database, this time locking
the row against updates by other sessions; hence, this approach is called pessimistic locking.
We lock the row before we attempt to update because we doubt—uwe are pessimistic—that the
row will remain unchanged otherwise.

Since all tables should have a primary key (the preceding SELECT will retrieve at most one
record since it includes the primary key, EMPNO) and primary keys should be immutable (we
should never update them), we’ll get one of three outcomes from this statement:

CRAPTER 6 = LOCKING AND LATCRING

e If the underlying data has not changed, we will get our MILLER row back, and this row
will be locked from updates (but not reads) by others.

e If another user is in the process of modifying that row, we will get an ORA-00054 =
resource busy error. We must wait for the other user to finish with it.

e If, in the time between selecting the data and indicating our intention to update, some-
one has already changed the row, then we will get zero rows back. That implies the data
on our screen is stale. To avoid the lost update scenario previously described, the appli-
cation needs to requery and lock the data before allowing the end user to modify it.
With pessimistic locking in place, when User2 attempts to update the telephone field
the application would now recognize that the address field had been changed and
would requery the data. Thus, User2 would not overwrite Userl’s change with the old
data in that field.

Once we have locked the row successfully, the application will bind the new values, and
issue the update and commit the changes:

scott@RA10G> update emp
2 set ename = :ename, sal = :sal
3 where empno = :empno;

1 row updated.

scott@ORA10G> commit;
Commit complete.

We have now very safely changed that row. It is not possible for us to overwrite someone
else’s changes, as we verified the data did not change between when we initially read it out
and when we locked it.

Optimistic Locking
The second method, referred to as optimistic locking, defers all locking up to the point right
before the update is performed. In other words, we will modify the information on the screen
without a lock being acquired. We are optimistic that the data will not be changed by some
other user; hence, we wait until the very last moment to find out if we are right.

This locking method works in all environments, but it does increase the probability that
a user performing an update will “lose.” That is, when that user goes to update her row, she
finds that the data has been modified, and she has to start over.

One popular implementation of optimistic locking is to keep the old and new values in
the application, and upon updating the data use an update like this:

Update table

Set columnl = :new columni, column2 = :new column2,
Where primary key = :primary key

And columni = :old columni

And column2 = :old column2

189

190

CHAPTER 6 © LOCKING AND LATCRING

Here, we are optimistic that the data doesn't get changed. In this case, if our update
updates one row, we got lucky; the data didn’t change between the time we read it and the
time we got around to submitting the update. If we update zero rows, we lose; someone else
changed the data and now we must figure out what we want to do to continue in the applica-
tion. Should we make the end user rekey the transaction after querying the new values for the
row (potentially causing the user frustration, as there is a chance the row will have changed
yet again)? Should we try to merge the values of the two updates by performing update
conflict-resolution based on business rules (lots of code)?

The preceding UPDATE will, in fact, avoid a lost update, but it does stand a chance of being
blocked—hanging while it waits for an UPDATE of that row by another session to complete. If all
of your applications use optimistic locking, then using a straight UPDATE is generally OK since
rows are locked for a very short duration as updates are applied and committed. However, if
some of your applications use pessimistic locking, which will hold locks on rows for relatively
long periods of time, then you will want to consider using a SELECT FOR UPDATE NOWAIT instead,
to verify the row was not changed and lock it immediately prior to the UPDATE to avoid getting
blocked by another session.

There are many methods of implementing optimistic concurrency control. We've dis-
cussed one whereby the application will store all of the before images of the row in the
application itself. In the following sections, we'll explore three others, namely

» Using a special column that is maintained by a database trigger or application code to
tell us the “version” of the record

* Using a checksum or hash that was computed using the original data

» Using the new Oracle 10g feature ORA_ROWSCN

Optimistic Locking Using a Version Column

This is a simple implementation that involves adding a single column to each database
table you wish to protect from lost updates. This column is generally either a NUMBER or
DATE/TIMESTAMP column. It is typically maintained via a row trigger on the table, which is
responsible for incrementing the NUMBER column or updating the DATE/TIMESTAMP column
every time a row is modified.

The application you want to implement optimistic concurrency control on would need
only to save the value of this additional column, not all of the before images of the other
columns. The application would only need to verify that the value of this column in the data-
base at the point when the update is requested matches the value that was initially read out.
If these values are the same, then the row has not been updated.

Let’s look at an implementation of optimistic locking using a copy of the SCOTT.DEPT table.
We could use the following Data Definition Language (DDL) to create the table:

ops$tkyte@ORA10G> create table dept
2 (deptno number (2),
3 dname varchar2(14),
4 loc varchar2(13),
5 last_mod timestamp with time zone
6 default systimestamp

CRAPTER 6 = LOCKING AND LATCRING

not null,
constraint dept pk primary key(deptno)

O o0 N

)
10 /
Table created.

o

Then we INSERT a copy of the DEPT data into this table:

ops$tkyte@ORA10G> insert into dept(deptno, dname, loc)
2 select deptno, dname, loc
3 from scott.dept;

4 rows created.

ops$tkyte@ORA10G> commit;
Commit complete.

That code re-creates the DEPT table, but with an additional LAST_MOD column that uses the
TIMESTAMP WITH TIME ZONE datatype (available in Oracle9i and above). We have defined this
column to be NOT NULL so that it must be populated, and its default value is the current system
time

This TIMESTAMP datatype has the highest precision in Oracle, typically going down to the
microsecond (millionth of a second). For an application that involves user think time, this
level of precision on the TIMESTAMP is more than sufficient, as it is highly unlikely that the
process of the database retrieving a row and a human looking at it, modifying it, and issuing
the update back to the database could take place within a fraction of a second. The odds of
two people reading and modifying the same row in the same fraction of a second are very
small indeed.

Next, we need way of maintaining this value. We have two choices: either the application
can maintain the LAST_MOD column by setting its value to SYSTIMESTAMP when it updates a record
or a trigger/stored procedure can maintain it. Having the application maintain LAST_MOD is
definitely more performant than a trigger-based approach, since a trigger will add additional
processing on part of Oracle to the modification. However, this does mean that you are relying
on all of the applications to maintain LAST_MOD consistently in all of the places that they mod-
ify this table. So, if each application is responsible for maintaining this field, it needs to
consistently verify that the LAST_MOD column was not changed and set the LAST_MOD column to
the current SYSTIMESTAMP. For example, if an application queries the row where DEPTNO=10

ops$tkyte@ORA10G> variable deptno number

ops$tkyte@ORA10G> variable dname varchar2(14)
ops$tkyte@ORA10G> variable loc varchar2(13)
ops$tkyte@ORA10G> variable last mod varchar2(50)

ops$tkyte@ORA10G> begin

2 :deptno := 10;

3 select dname, loc, last mod
4 into :dname, :loc, :1ast mod
5 from dept

6 where deptno = :deptno;

9

192

CHAPTER 6 = LOCKING AND LATCRING

7 end;
8 /
PL/SOL procedure successfully completed.

which we can see is currently

ops$tkyte@ORA10G> select :deptno dno, :dname dname, :loc loc, :last mod 1m
2 from dual;

DNO DNAME LOC LM

10 ACCOUNTING NEW YORK 25-APR-05 10.54.00.493380 AM -04:00

it would use this next update statement to modify the information. The last line does the very
important check to make sure the timestamp has not changed and uses the built-in function
TO_TIMESTAMP TZ (TZ is short for TimeZone) to convert the string we saved in from the select
back into the proper datatype. Additionally, line 3 of the update updates the LAST_MOD column
to be the current time if the row is found to be updated:

ops$tkyte@ORA10G> update dept

2 set dname = initcap(:dname),

3 last mod = systimestamp

4 where deptno = :deptno

5 and last mod = to timestamp tz(:last mod);
1 row updated.

As you can see, one row was updated—the row of interest. We updated the row by primary
key (DEPTNO) and verified that the LAST MOD column had not been modified by any other ses-
sion between the time we read it first and the time we did the update. If we were to try to
update that same record again, using the same logic, but without retrieving the new LAST _MOD
value, we would observe the following:

ops$tkyte@ORA10G> update dept

2 set dname = upper(:dname),

3 last mod = systimestamp

4 where deptno = :deptno

5 and last mod = to_timestamp tz(:last mod);
0 rows updated.

Notice how 0 rows updated is reported this time because the predicate on LAST_MOD was
not satisfied. While DEPTNO 10 still exists, the value at the moment we wish to update no longer
matches the timestamp value at the moment we queried the row. So, the application knows,
based on the fact that no rows were modified, that the data has been changed in the database—
and it must now figure out what it wants to do about that.

You would not rely on each application to maintain this field for a number of reasons. For
one, it adds code to an application, and it is code that must be repeated and correctly imple-
mented anywhere this table is modified. In a large application, that could be in many places.
Furthermore, every application developed in the future must conform to these rules. There are
many chances to “miss” a spot in the application code and not have this field properly used.

CRAPTER 6 = LOCKING AND LATCRING

So, if the application code itself is not to be made responsible for maintaining this LAST_MOD
field, then I believe that the application should not be made responsible for checking this
LAST_MOD field either (if it can do the check, it can certainly do the update!). So, in this case, I
suggest encapsulating the update logic in a stored procedure and not allowing the application
to update the table directly at all. If it cannot be trusted to maintain the value in this field, then
it cannot be trusted to check it properly either. So, the stored procedure would take as inputs
the bind variables we used in the previous updates and do exactly the same update. Upon
detecting that zero rows were updated, the stored procedure could raise an exception back to
the client to let the client know the update had, in effect, failed.

An alternate implementation uses a trigger to maintain this LAST_MOD field, but for some-
thing as simple as this, my recommendation is to avoid the trigger and let the DML take care
of it. Triggers introduce a measurable amount of overhead, and in this case they would be
unnecessary.

Optimistic Locking Using a Checksum

This is very similar to the previous version column method, but it uses the base data itself to
compute a “virtual” version column. I'll quote the Oracle 10g PL/SQL Supplied Packages Guide
(before showing how to use one of the supplied packages!) to help explain the goal and con-
cepts behind a checksum or hash function:

A one-way hash function takes a variable-length input string, the data, and converts it
to a fixed-length (generally smaller) output string called a hash value. The hash value
serves as a unique identifier (like a fingerprint) of the input data. You can use the hash
value to verify whether data has been changed or not.

Note that a one-way hash function is a hash function that works in one direction. It is
easy to compute a hash value from the input data, but it is hard to generate data that
hashes to a particular value.

The hash value or checksum is not truly unique. It is just designed such that the probabil-
ity of a collision is sufficiently small—that is, the probability of two random strings having the
same checksum or hash is so small as to be negligible.

We can use these hashes or checksums in the same way that we used our version column.
We simply compare the hash or checksum value we obtain when we read data out of the data-
base with what we obtain before modifying the data. If someone modified the row’s values
after we read it out, but before we updated it, then the hash or checksum will almost certainly
be different.

There are many ways to compute a hash or checksum. I'll list three of these and demon-
strate one in this section. All of these methods are based on supplied database packages:

* OWA OPT_LOCK.CHECKSUM: This method is available on Oracle8i version 8.1.5 and up.
There is a function that given a string returns a 16-bit checksum, and another function
that given a ROWID will compute the 16-bit checksum of that row and lock that row at
the same time. Possibilities of collision are 1 in 65,536 strings (the highest chance of a
false positive).

193

194 CHAPTER 6 = LOCKING AND LATCRING

e DBMS_OBFUSCATION TOOLKIT.MD5: This method is available in Oracle8i version 8.1.7
and up. It computes a 128-bit message digest. The odds of a collision are about 1 in
3.4028E+38 (very small).

e DBMS_CRYPTO.HASH: This method is available in Oracle 10g Release 1 and up. It is capable
of computing a Secure Hash Algorithm 1 (SHA-1) or MD4/MD5 message digests. It is
recommended that you use the SHA-1 algorithm.

Note An array of hash and checksum functions are available in many programming languages, so there
may be others at your disposal outside the database.

The following example shows how you might use the DBMS_CRYPTO built-in package in
Oracle 10g to compute these hashes/checksums. The technique would also be applicable for
the other two listed packages; the logic would not be very much different, but the APIs you
call would be.

Here we query out the information for department 10 to be displayed in some applica-
tion. Immediately after querying the information, we compute the hash using the DBMS_CRYPTO
package. This is the “version” information that we retain in our application:

ops$tkyte@ORA10G> begin

2 for x in (select deptno, dname, loc

3 from dept

4 where deptno = 10)

5 loop

6 dbms_output.put line('Dname: ' || x.dname);
7 dbms_output.put line('Loc: " || x.loc);

8 dbms_output.put line('Hash: ' |

9 dbms_crypto.hash

10 (utl raw.cast to raw(x.deptno||'/"'||x.dname]||'/"]||x.loc),
11 dbms_crypto.hash sh1));

12 end loop;

13 end;

14 /

Dname: ACCOUNTING
Loc: NEW YORK
Hash: C44F7052661CE945D385D5C3F911E70FA99407A6

PL/SOL procedure successfully completed.

As you can see, the hash is just a big string of hex digits. The return value from DBMS_CRYPTO
is a RAW variable, and when displayed it will be implicitly converted into HEX for us. This is the
value we would want to use before updating. To update that row, we would retrieve and lock
the row in the database as it exists right now, and then compute the hash value of that
retrieved row and compare this new hash value with the hash value we computed when we
read the data out of the database. The logic for doing so could look like the following (in real
life, we would use bind variables for the literal hash values, of course):

CRAPTER 6 = LOCKING AND LATCRING

ops$tkyte@ORA10G> begin

2 for x in (select deptno, dname, loc

3 from dept

4 where deptno = 10

5 for update nowait)

6 loop

7 if (hextoraw('C44F7052661CE945D385D5C3F911E70FA99407A6") <>
8 dbms_crypto.hash

9 (utl raw.cast to raw(x.deptno||'/'||x.dname||"'/"||x.1loc),
10 dbms_crypto.hash_sh1))

11 then

12 raise_application error(-20001, 'Row was modified');

13 end if;

14 end loop;

15 update dept

16 set dname = lower(dname)

17 where deptno = 10;

18 commit;

19 end;
20 /

PL/SOL procedure successfully completed.

Upon requerying that data and computing the hash again after the update, we can see
that the hash value is very different. If someone had modified the row before we did, our hash
values would not have compared:

ops$tkyte@ORA10G> begin

2 for x in (select deptno, dname, loc

3 from dept

4 where deptno = 10)

5 loop

6 dbms_output.put line('Dname: ‘' || x.dname);
7 dbms_output.put line('Loc: " || x.loc);

8 dbms_output.put line('Hash: ' |

9 dbms_crypto.hash

10 (utl raw.cast to raw(x.deptno||'/"'||x.dname]||'/"]||x.loc),
11 dbms_crypto.hash sh1));

12 end loop;

13 end;

14 /

Dname: accounting
Loc: NEW YORK
Hash: F3DE485922D44DF598C2CEBC34C27DD2216FBIOF

PL/SOL procedure successfully completed.

19

196

CHAPTER 6 © LOCKING AND LATCRING

This example showed how to implement optimistic locking with a hash or checksum. You
should bear in mind that computing a hash or checksum is a somewhat CPU-intensive opera-
tion—it is computationally expensive. On a system where CPU is a scarce resource, you must
take this fact into consideration. However, this approach is much more “network-friendly,” as
the transmission of a relatively small hash instead of a before and after image of the row (to
compare column by column) over the network will consume much less of that resource. Our
last example will use a new Oracle 10g function, ORA_ROWSCN, which is small in size like a hash,
but not CPU intensive to compute.

Optimistic Locking Using ORA_ROWSCN

Starting with Oracle 10g Release 1, you have the option to use the built-in ORA_ROWSCN func-

tion. It works very much like the version column technique described previously, but it can

be performed automatically by Oracle—you need no extra column in the table and no extra
update/maintenance code to update this value.

ORA_ROWSCN is based on the internal Oracle system clock, the SCN. Every time you commit
in Oracle, the SCN advances (other things can advance it as well, but it only advances; it never
goes back). The concept is identical to the previous methods in that you retrieve ORA_ROWSCN
upon data retrieval, and you verify it has not changed when you go to update. The only reason
I give it more than passing mention is that unless you created the table to support the mainte-
nance of ORA_ROWSCN at the row level, it is maintained at the block level. That is, by default
many rows on a single block will share the same ORA_ROWSCN value. If you update a row on a
block with 50 other rows, then they will all have their ORA_ROWSCN advanced as well. This would
almost certainly lead to many false positives, whereby you believe a row was modified that in
fact was not. Therefore, you need to be aware of this fact and understand how to change the
behavior.

To see the behavior and then change it, we'll use the small DEPT table again:

ops$tkyte@ORA10G> create table dept

2 (deptno, dname, loc, data,

3 constraint dept pk primary key(deptno)

4)

5 as

6 select deptno, dname, loc, rpad('*',3500,'*")

7 from scott.dept;
Table created.

Now we can inspect what block each row is on (it is safe to assume in this case they are in
the same file, so a common block number indicates they are on the same block). I was using
an 8KB block size with a row width of about 3,550 bytes, so I am expecting there to be two
rows per block for this example:

ops$tkyte@ORA10G> select deptno, dname,
2 dbms_rowid.rowid block number(rowid) blockno,
3 ora_rowscn
4 from dept;

CRAPTER 6 = LOCKING AND LATCRING

DEPTNO DNAME BLOCKNO ORA ROWSCN
10 ACCOUNTING 20972 34676029
20 RESEARCH 20972 34676029
30 SALES 20973 34676029
40 OPERATIONS 20973 34676029

And sure enough, that is what we observe in this case. So, let’s update the row where
DEPTNO = 10 is on block 20972:

ops$tkyte@ORA10G> update dept
2 set dname = lower(dname)
3 where deptno = 10;

1 row updated.

ops$tkyte@ORA10G> commit;
Commit complete.

What we'll observe next shows the consequences of ORA_ROWSCN being tracked at the block
level. We modified and committed the changes to a single row, but the ORA_ROWSCN values of
both of the rows on block 20972 have been advanced:

ops$tkyte@ORA10G> select deptno, dname,
2 dbms_rowid.rowid block number(rowid) blockno,
3 ora_rowscn
4 from dept;

DEPTNO DNAME BLOCKNO ORA_ROWSCN
10 accounting 20972 34676046
20 RESEARCH 20972 34676046
30 SALES 20973 34676029
40 OPERATIONS 20973 34676029

It would appear to anyone else that had read the DEPTNO=20 row that it had been modified,
even though it was not. The rows on block 20973 are “safe’—we didn’t modify them, so they
did not advance. However, if we were to update either of them, both would advance. So the
question becomes how to modify this default behavior. Well, unfortunately, we have to
re-create the segment with ROWDEPENDENCIES enabled.

Row dependency tracking was added to the database with Oracle9i in support of
advanced replication to allow for better parallel propagation of changes. Prior to Oracle 10g,
its only use was in a replication environment, but starting in Oracle 10g we can use it to imple-
ment an effective optimistic locking technique with ORA_ROWSCN. It will add 6 bytes of overhead
to each row (so it is not a space saver compared to the do-it-yourself version column) and that
is, in fact, why it requires a table re-create and not just a simple ALTER TABLE: the physical
block structure must be changed to accommodate this feature.

Let’s rebuild our table to enable RONDEPENDENCIES. We could use the online rebuild capa-
bilities in DBMS_REDEFINITION (another supplied package) to do this, but for something so
small, we'll just start over:

197

198 CHAPTER 6 = LOCKING AND LATCRING

ops$tkyte@ORA10G> drop table dept;
Table dropped.

ops$tkyte@ORA10G> create table dept
2 (deptno, dname, loc, data,

constraint dept pk primary key(deptno)

)

ROWDEPENDENCIES

as

select deptno, dname, loc, rpad('*',3500,'*")
8 from scott.dept;

Table created.

~N oouvi B W

ops$tkyte@ORA10G> select deptno, dname,
2 dbms_rowid.rowid block number(rowid) blockno,
3 0ra_Yowscn
4 from dept;

DEPTNO DNAME BLOCKNO ORA ROWSCN
10 ACCOUNTING 21020 34676364
20 RESEARCH 21020 34676364
30 SALES 21021 34676364
40 OPERATIONS 21021 34676364

We're back where we were before: four rows on two blocks, all having the same initial
ORA_ROWSCN value. Now when we update DEPTNO=10

ops$tkyte@ORA10G> update dept
2 set dname = lower(dname)
3 where deptno = 10;

1 row updated.

ops$tkyte@ORA10G> commit;
Commit complete.

we should observe the following upon querying the DEPT table:

ops$tkyte@ORA10G> select deptno, dname,
2 dbms_rowid.rowid block number(rowid) blockno,
3 ora_rowscn
4 from dept;

DEPTNO DNAME BLOCKNO ORA_ROWSCN
10 accounting 21020 34676381
20 RESEARCH 21020 34676364
30 SALES 21021 34676364

40 OPERATIONS 21021 34676364

CRAPTER 6 = LOCKING AND LATCRING 199

The only modified ORA_ROWSCN at this point belongs to DEPTNO = 10, exactly what we
wanted. We can now rely on ORA_ROWSCN to detect row-level changes for us.

CONVERTING AN SCN TO WALL CLOCK TIME

There is another benefit of the transparent ORA_ROWSCN column: we can convert an SCN into wall clock
time approximately (within about +/-3 seconds) to discover when the row was last modified. So, for
example, | can do this:

ops$tkyte@ORA10G> select deptno, ora rowscn, scn_to timestamp(ora rowscn) ts
2 from dept;

DEPTNO ORA ROWSCN TS
10 34676381 25-APR-05 02.37.04.000000000 PM
20 34676364 25-APR-05 02.34.42.000000000 PM
30 34676364 25-APR-05 02.34.42.000000000 PM
40 34676364 25-APR-05 02.34.42.000000000 PM

Here you can see that | waited almost three minutes in between the initial creation of the table and the
update of DEPTNO = 10. However, this translation of an SCN to a wall clock time has definite limits: about
five days of database uptime. For example, if | go to an “old” table and find the oldest ORA_ROWSCN in it (note
that I've logged in as SCOTT in this case; | am not using the new table from earlier):

scott@ORA10G> select min(ora rowscn) from dept;

MIN(ORA ROWSCN)

364937

If I try to convert that SCN into a timestamp, | might find the following (depending on how old the DEPT
table is!):

scott@ORA10G> select scn to timestamp(min(ora_rowscn)) from dept;
select scn_to timestamp(min(ora_rowscn)) from dept

*
ERROR at line 1:
ORA-08181: specified number is not a valid system change number
ORA-06512: at "SYS.SCN TO TIMESTAMP", line 1
ORA-06512: at line 1

So that conversion cannot be relied on in the long term.

200

CHAPTER 6 = LOCKING AND LATCRING

Optimistic or Pessimistic Locking?

So which method is best? In my experience, pessimistic locking works very well in Oracle (but
perhaps not in other databases) and has many advantages over optimistic locking. However, it
requires a stateful connection to the database, like a client/server connection. This is because
locks are not held across connections. This single fact makes pessimistic locking unrealistic in
many cases today. In the past, with client/server applications and a couple dozen or hundred
users, it would have been my first and only choice. Today, however, optimistic concurrency
control is what I would recommend for most applications. Having a connection for the entire
duration of a transaction is just too high a price to pay.

Of the methods available, which do I use? I tend to use the version column approach with
a timestamp column. It gives me the extra information “when was this row last updated” in a
long-term sense. So it adds value in that way. It is less computationally expensive than a hash
or checksum, and it doesn’t run into the issues potentially encountered with a hash or check-
sum when processing LONG, LONG RAW, CLOB, BLOB, and other very large columns.

If I had to add optimistic concurrency controls to a table that was still being used with a
pessimistic locking scheme (e.g., the table was accessed in both client/server applications and
over the Web), I would opt for the ORA_ROWSCN approach. The reason is that the existing legacy
application might not appreciate a new column appearing, or even if we took the additional
step of hiding the extra column, we might not appreciate the overhead of the necessary trigger
to maintain it. The ORA_ROWSCN technique would be nonintrusive and lightweight in that
respect (well, after we get over the table re-creation, that is).

The hashing/checksum approach is very database independent, especially if we compute
the hashes or checksums outside of the database. However, by performing the computations
in the middle tier rather than the database, we will incur higher resource usage penalties, in
terms of CPU usage and network transfers.

Blocking

Blocking occurs when one session holds a lock on a resource that another session is request-
ing. As a result, the requesting session will be blocked—it will “hang” until the holding session
gives up the locked resource. In almost every case, blocking is avoidable. In fact, if you do find
that your session is blocked in an interactive application, then you have probably been suffer-
ing from the lost update bug as well, perhaps without realizing it. That is, your application
logic is flawed and that is the cause of the blocking.

The five common DML statements that will block in the database are INSERT, UPDATE,
DELETE, MERGE, and SELECT FOR UPDATE. The solution to a blocked SELECT FOR UPDATE is trivial:
simply add the NOWAIT clause and it will no longer block. Instead, your application will report
back to the end user that the row is already locked. The interesting cases are the remaining
four DML statements. We'll look at each of them and see why they should not block and how
to correct the situation if they do.

Blocked Inserts

There are few times when an INSERT will block. The most common scenario is when you have
a table with a primary key or unique constraint placed on it and two sessions attempt to insert
arow with the same value. One of the sessions will block until the other session either com-
mits (in which case the blocked session will receive an error about a duplicate value) or rolls

CRAPTER 6 = LOCKING AND LATCRING

back (in which case the blocked session succeeds). Another case involves tables linked
together via referential integrity constraints. An insert into a child table may become blocked
if the parent row it depends on is being created or deleted.

Blocked INSERTSs typically happen with applications that allow the end user to generate
the primary key/unique column value. This situation is most easily avoided by using a sequence
to generate the primary key/unique column value. Sequences were designed to be a highly
concurrent method of generating unique keys in a multiuser environment. In the event that
you cannot use a sequence, you can use the following technique, which avoids the issue by
using manual locks implemented via the built-in DBMS_LOCK package.

Note The following example demonstrates how to prevent a session from blocking on an insert due to a
primary key or unique constraint. It should be stressed that the “fix” demonstrated here should be consid-
ered a short-term solution while the application architecture itself is inspected. This approach adds obvious
overhead and should not be implemented lightly. A well-designed application would not encounter this issue.
This should be considered a last resort and is definitely not something you want to do to every table in your
application “just in case.”

With inserts, there’s no existing row to select and lock; there’s no way to prevent others
from inserting a row with the same value, thus blocking our session and causing us to wait
indefinitely. Here is where DBMS_LOCK comes into play. To demonstrate this technique, we will
create a table with a primary key and a trigger that will prevent two (or more) sessions from
inserting the same values simultaneously. The trigger will use DBMS_UTILITY.GET HASH VALUE
to hash the primary key into some number between 0 and 1,073,741,823 (the range of lock ID
numbers permitted for our use by Oracle). In this example, I've chosen a hash table of size
1,024, meaning we will hash our primary keys into one of 1,024 different lock IDs. Then we will
use DBMS_LOCK.REQUEST to allocate an exclusive lock based on that ID. Only one session at a
time will be able to do that, so if someone else tries to insert a record into our table with the
same primary key, then that person’s lock request will fail (and the error resource busy will
be raised):

Note To successfully compile this trigger, execute permission on DBMS_LOCK must be granted directly to
your schema. The privilege to execute DBMS_LOCK may not come from a role.

scott@ORA10G> create table demo (x int primary key);
Table created.

scott@ORA10G> create or replace trigger demo_bifer
2 before insert on demo
3 for each row
4 declare
5 1 lock_id number;

201

202

CHAPTER 6 = LOCKING AND LATCRING

6 resource busy exception;
7 pragma exception init(resource busy, -54);
8 begin
9 1 lock_id :=
10 dbms_utility.get hash value(to_char(:new.x), 0, 1024);
11 if (dbms_lock.request
12 (id => 1 lock id,
13 lockmode => dbms_lock.x_mode,
14 timeout => 0,
15 release on _commit => TRUE) <> 0)
16 then
17 raise resource busy;
18 end if;
19 end;
20 /

Trigger created.
Now, if in two separate sessions we execute the following:

scott@ORA10G> insert into demo values (1);
1 row created.

it will succeed in the first session but immediately issue the following in the second session:

scott@ORA10G> insert into demo values (1);
insert into demo values (1)
*
ERROR at line 1:
ORA-00054: resource busy and acquire with NOWAIT specified
ORA-06512: at "SCOTT.DEMO BIFER", line 14
ORA-04088: error during execution of trigger 'SCOTT.DEMO BIFER'

The concept here is to take the supplied primary key value of the table protected by the
trigger and put it in a character string. We can then use DBMS_UTILITY.GET HASH VALUE to come
up with a “mostly unique” hash value for the string. As long as we use a hash table smaller
than 1,073,741,823, we can “lock” that value exclusively using DBMS_LOCK.

After hashing, we take that value and use DBMS_LOCK to request that lock ID to be exclu-
sively locked with a timeout of ZERO (this returns immediately if someone else has locked that
value). If we timeout or fail for any reason, we raise ORA-54 Resource Busy. Otherwise, we do
nothing—it is OK to insert, we won'’t block.

Of course, if the primary key of your table is an INTEGER and you don't expect the key to go
over 1 billion, you can skip the hash and just use the number as the lock ID.

You'll need to play with the size of the hash table (1,024 in this example) to avoid artificial
resource busy messages due to different strings hashing to the same number. The size of the
hash table will be application (data)-specific, and it will be influenced by the number of con-
current insertions as well. Lastly, bear in mind that although Oracle has unlimited row-level
locking, it has a finite number of enqueue locks. If you insert lots of rows this way without
committing in your session, then you might find that you create so many enqueue locks that
you exhaust the system of enqueue resources (you exceed the maximum value set in the

CRAPTER 6 = LOCKING AND LATCRING

ENQUEUE_RESOURCES system parameter), as each row will create another enqueue (a lock). If this
does happen, you'll need to raise the value of the ENQUEUE_RESOURCES parameter. You might
also add a flag to the trigger to allow people to turn the check on and off. If I was going to
insert hundreds or thousands of records, for example, I might not want this check enabled.

Blocked Merges, Updates, and Deletes

In an interactive application—one where you query some data out of the database, allow

an end user to manipulate it, and then “put it back” into the database—a blocked UPDATE or
DELETE indicates that you probably have a lost update problem in your code (I would call it a
bug in your code if you do). You are attempting to UPDATE a row that someone else is already
updating (in other words, that someone else already has locked). You can avoid the blocking
issue by using the SELECT FOR UPDATE NOWAIT query to

 Verify the data has not changed since you queried it out (preventing lost updates).
* Lock the row (preventing the UPDATE or DELETE from blocking).

As discussed earlier, you can do this regardless of the locking approach you take. Both
pessimistic and optimistic locking may employ the SELECT FOR UPDATE NOWAIT query to verify
the row has not changed. Pessimistic locking would use that statement the instant the user
indicated her intention to modify the data. Optimistic locking would use that statement
immediately prior to updating the data in the database. Not only will this resolve the blocking
issue in your application, but also it will correct the data integrity issue.

Since a MERGE is simply an INSERT and UPDATE (and in 10g with the enhanced MERGE syntax,
it's a DELETE as well), you would use both techniques simultaneously.

Deadlocks

Deadlocks occur when you have two sessions, each of which is holding a resource that the
other wants. For example, if I have two tables, A and B in my database, and each has a single
row in it, I can demonstrate a deadlock easily. All I need to do is open two sessions (e.g., two
SQL*Plus sessions). In session A, I update table A. In session B, I update table B. Now, if I
attempt to update table A in session B, I will become blocked. Session A has this row locked
already. This is not a deadlock; it is just blocking. I have not yet deadlocked because there is
a chance that session A will commit or roll back, and session B will simply continue at that
point.

If I go back to session A and then try to update table B, I will cause a deadlock. One of the
two sessions will be chosen as a “victim” and will have its statement rolled back. For example,
the attempt by session B to update table A may be rolled back, with an error such as the
following:

update a set x = x+1
%
ERROR at line 1:
ORA-00060: deadlock detected while waiting for resource

Session A’s attempt to update table B will remain blocked—Oracle will not roll back the
entire transaction. Only one of the statements that contributed to the deadlock is rolled back.
Session B still has the row in table B locked, and session A is patiently waiting for the row to

203

204

CHAPTER 6 = LOCKING AND LATCRING

become available. After receiving the deadlock message, session B must decide whether to
commit the outstanding work on table B, roll it back, or continue down an alternate path
and commit later. As soon as this session does commit or roll back, the other blocked session
will continue on as if nothing happened.

Oracle considers deadlocks to be so rare, so unusual, that it creates a trace file on the
server each and every time one does occur. The contents of the trace file will look something
like this:

¥ 2005-04-25 15:53:01.455

k% ACTION NAME: () 2005-04-25 15:53:01.455

*%% MODULE NAME: (SQL*Plus) 2005-04-25 15:53:01.455

kkk SERVICE NAME: (SYS$USERS) 2005-04-25 15:53:01.455
kkk SESSTON ID:(145.208) 2005-04-25 15:53:01.455
DEADLOCK DETECTED

Current SQL statement for this session:

update a set x = 1

The following deadlock is not an ORACLE error. It is a
deadlock due to user error in the design of an application
or from issuing incorrect ad-hoc SQL. The following
information may aid in determining the deadlock:...

Obviously, Oracle considers these application deadlocks a self-induced error on part of
the application and, for the most part, Oracle is correct. Unlike in many other RDBMSs, dead-
locks are so rare in Oracle they can be considered almost nonexistent. Typically, you must
come up with artificial conditions to get one.

The number one cause of deadlocks in the Oracle database, in my experience, is unin-
dexed foreign keys (the number two cause is bitmap indexes on tables subject to concurrent
updates, which we’ll cover in Chapter 11). Oracle will place a full table lock on a child table
after modification of the parent table in two cases:

e If you update the parent table’s primary key (a very rare occurrence if you follow the
rule of relational databases stating that primary keys should be immutable), the child
table will be locked in the absence of an index on the foreign key.

* Ifyou delete a parent table row, the entire child table will be locked (in the absence of
an index on the foreign key) as well.

These full table locks are a short-term occurrence in Oracle9i and above, meaning they
need to be taken for the duration of the DML operation, not the entire transaction. Even so,
they can and do cause large locking issues. As a demonstration of the first point, if we have a
pair of tables set up as follows:

ops$tkyte@ORA10G> create table p (x int primary key);
Table created.

ops$tkyte@ORA10G> create table c (x references p);
Table created.

ops$tkyte@ORA10G> insert into p values (1);
1 row created.

CRAPTER 6 = LOCKING AND LATCRING

ops$tkyte@ORA10G> insert into p values (2);
1 row created.

ops$tkyte@ORA10G> commit;
Commit complete.

and then we execute the following:

ops$tkyte@ORA10G> insert into c values (2);
1 row created.

nothing untoward happens yet. But if we go into another session and attempt to delete the
first parent record

ops$tkyte@ORA10G> delete from p where x = 1;

we'll find that session gets immediately blocked. It is attempting to gain a full table lock on
table C before it does the delete. Now no other session can initiate a DELETE, INSERT, or UPDATE
of any rows in C (the sessions that had already started may continue, but no new sessions may
start to modify C).

This blocking would happen with an update of the primary key value as well. Because
updating a primary key is a huge no-no in a relational database, this is generally not an issue
with updates. Where I have seen this updating of the primary key become a serious issue is
when developers use tools that generate SQL for them, and those tools update every single
column, regardless of whether the end user actually modified that column or not. For exam-
ple, say that we use Oracle Forms and create a default layout on any table. Oracle Forms by
default will generate an update that modifies every single column in the table we choose to
display. If we build a default layout on the DEPT table and include all three fields, Oracle Forms
will execute the following command whenever we modify any of the columns of the DEPT
table:

update dept set deptno=:1,dname=:2,loc=:3 where rowid=:4

In this case, if the EMP table has a foreign key to DEPT and there is no index on the DEPTNO
column in the EMP table, then the entire EMP table will be locked during an update to DEPT. This
is something to watch out for carefully if you are using any tools that generate SQL for you.
Even though the value of the primary key does not change, the child table EMP will be locked
after the execution of the preceding SQL statement. In the case of Oracle Forms, the solution
is to set that table’s UPDATE CHANGED COLUMNS ONLY property to YES. Oracle Forms will generate
an UPDATE statement that includes only the changed columns (not the primary key).

Problems arising from deletion of a row in a parent table are far more common. As I
demonstrated, if I delete a row in table P, then the child table, C, will become locked during the
DML operation, thus preventing other updates against C from taking place for the duration of
the transaction (assuming no one else was modifying C, of course; in which case the delete will
wait). This is where the blocking and deadlock issues come in. By locking the entire table C,

I have seriously decreased the concurrency in my database to the point where no one will be
able to modify anything in C. In addition, I have increased the probability of a deadlock, since
I now “own” lots of data until I commit. The probability that some other session will become
blocked on C is now much higher; any session that tries to modify C will get blocked. Therefore,
I'll start seeing lots of sessions that hold some preexisting locks on other resources getting

200

206

CHAPTER 6 = LOCKING AND LATCRING

blocked in the database. If any of these blocked sessions are, in fact, locking a resource that
my session also needs, we will have a deadlock. The deadlock in this case is caused by my ses-
sion preventing access to many more resources (in this case, all of the rows in a single table)
than it ever needed. When someone complains of deadlocks in the database, I have them run
a script that finds unindexed foreign keys, and 99 percent of the time we locate an offending
table. By simply indexing that foreign key, the deadlocks—and lots of other contention
issues—go away. The following example demonstrates the use of this script to locate the
unindexed foreign key in table C:

ops$tkyte@ORA10G> column columns format a30 word wrapped
ops$tkyte@ORA10G> column tablename format a15 word wrapped
ops$tkyte@ORA10G> column constraint name format al5 word wrapped

ops$tkyte@ORA10G> select table name, constraint name,

2 cnamel || nvl2(cname2,',"||cname2,null) ||

3 nvl2(cname3,"',"||cname3,null) || nvl2(cname4,',"'||cname4,null) ||

4 nv12(cnames,"', " | |cname5,null) || nvl2(cname6,',"||cname6,null) ||

5 nvl2(cname7,"',"||cname7,null) || nvl2(cname8,',"||cname8,null)

6 columns

7 from (select b.table name,

8 b.constraint name,

9 max (decode(position, 1, column name, null)) cnameil,
10 max (decode(position, 2, column name, null)) cname2,
11 max (decode(position, 3, column name, null)) cname3,
12 max (decode(position, 4, column name, null)) cname4,
13 max (decode(position, 5, column name, null)) cnames,
14 max (decode(position, 6, column name, null)) cname6,
15 max (decode(position, 7, column name, null)) cname7,
16 max (decode(position, 8, column name, null)) cname8,
17 count(*) col cnt
18 from (select substr(table name,1,30) table name,

19 substr(constraint name,1,30) constraint name,
20 substr(column_name,1,30) column_name,

21 position

22 from user cons_columns) a,

23 user constraints b

24 where a.constraint _name = b.constraint name

25 and b.constraint type = 'R’

26 group by b.table name, b.constraint name

27) cons

28 where col cnt > ALL

29 (select count(*)

30 from user ind columns i

31 where i.table name = cons.table name

32 and i.column name in (cnamel, cname2, cname3, cname4,

33 cname5, cname6, cname7, cname$)

CRAPTER 6 = LOCKING AND LATCRING

34 and i.column_position <= cons.col cnt
35 group by i.index_name

36)

37 /

TABLE_NAME CONSTRAINT NAME COLUMNS
C SYS_C009485 X

This script works on foreign key constraints that have up to eight columns in them (if you
have more than that, you probably want to rethink your design). It starts by building an inline
view named CONS in the previous query. This inline view transposes the appropriate column
names in the constraint from rows into columns, with the result being a row per constraint
and up to eight columns that have the names of the columns in the constraint. Additionally,
there is a column, COL_CNT, which contains the number of columns in the foreign key con-
straint itself. For each row returned from the inline view, we execute a correlated subquery
that checks all of the indexes on the table currently being processed. It counts the columns in
that index that match columns in the foreign key constraint and then groups them by index
name. So, it generates a set of numbers, each of which is a count of matching columns in
some index on that table. If the original COL_CNT is greater than all of these numbers, then
there is no index on that table that supports that constraint. If COL_CNT is less than all of these
numbers, then there is at least one index that supports that constraint. Note the use of the
NVL2 function, which we used to “glue” the list of column names into a comma-separated list.
This function takes three arguments: A, B, and C. If argument A is not null, then it returns
argument B; otherwise, it returns argument C. This query assumes that the owner of the con-
straint is the owner of the table and index as well. If another user indexed the table or the
table is in another schema (both rare events), it will not work correctly.

So, this script shows us that table C has a foreign key on the column X, but no index. By
indexing X, we can remove this locking issue all together. In addition to this table lock, an
unindexed foreign key can also be problematic in the following cases:

* When you have an ON DELETE CASCADE and have not indexed the child table: For example,
EMP is child of DEPT. DELETE DEPTNO = 10 should CASCADE to EMP. If DEPTNO in EMP is not
indexed, you will get a full table scan of EMP for each row deleted from the DEPT table.
This full scan is probably undesirable, and if you delete many rows from the parent
table, the child table will be scanned once for each parent row deleted.

* When you query from the parent to the child: Consider the EMP/DEPT example again. It is
very common to query the EMP table in the context of a DEPTNO. If you frequently run the
following query (say, to generate a report), you'll find that not having the index in place
will slow down the queries:

e select * from dept, emp
* where emp.deptno = dept.deptno and dept.deptno = :X;

So, when do you not need to index a foreign key? The answer is, in general, when the fol-
lowing conditions are met:

207

208

CHAPTER 6 © LOCKING AND LATCRING

¢ You do not delete from the parent table.

* You do not update the parent table’s unique/primary key value (watch for unintended
updates to the primary key by tools!).

* You do notjoin from the parent to the child (like DEPT to EMP).

If you satisfy all three conditions, feel free to skip the index—it is not needed. If you meet
any of the preceding conditions, be aware of the consequences. This is the one rare instance
when Oracle tends to “overlock” data.

Lock Escalation

When lock escalation occurs, the system is decreasing the granularity of your locks. An exam-
ple would be the database system turning your 100 row-level locks against a table into a single
table-level lock. You are now using “one lock to lock everything” and, typically, you are also
locking a whole lot more data than you were before. Lock escalation is used frequently in data-
bases that consider a lock to be a scarce resource and overhead to be avoided.

Note Oracle will never escalate a lock. Never.

Oracle never escalates locks, but it does practice lock conversion or lock promotion—
terms that are often confused with lock escalation.

Note The terms “lock conversion” and “lock promotion” are synonymous. Oracle typically refers to the
process as “lock conversion.”

Oracle will take a lock at the lowest level possible (i.e., the least restrictive lock possible)
and convert that lock to a more restrictive level if necessary. For example, if you select a row
from a table with the FOR UPDATE clause, two locks will be created. One lock is placed on the
row(s) you selected (and this will be an exclusive lock; no one else can lock that specific row in
exclusive mode). The other lock, a ROW SHARE TABLE lock, is placed on the table itself. This will
prevent other sessions from placing an exclusive lock on the table and thus prevent them from
altering the structure of the table, for example. Another session can modify any other row in
this table without conflict. As many commands as possible that could execute successfully
given there is a locked row in the table will be permitted.

Lock escalation is not a database “feature.” It is not a desired attribute. The fact that a
database supports lock escalation implies there is some inherent overhead in its locking
mechanism and significant work is performed to manage hundreds of locks. In Oracle, the
overhead to have 1 lock or 1 million locks is the same: none.

CRAPTER 6 = LOCKING AND LATCRING

Lock Types

The three general classes of locks in Oracle are as follows:

* DML locks: DML stands for Data Manipulation Language. In general this means SELECT,
INSERT, UPDATE, MERGE, and DELETE statements. DML locks are the mechanism that
allows for concurrent data modifications. DML locks will be, for example, locks on a
specific row of data or a lock at the table level that locks every row in the table.

e DDL locks: DDL stands for Data Definition Language (CREATE and ALTER statements, and
so on). DDL locks protect the definition of the structure of objects.

e [nternal locks and latches: Oracle uses these locks to protect its internal data structures.
For example, when Oracle parses a query and generates an optimized query plan, it will
“latch” the library cache to put that plan in there for other sessions to use. A latch is a
lightweight, low-level serialization device employed by Oracle, similar in function to a
lock. Do not confuse or be misled by the term “lightweight”—Iatches are a common
cause of contention in the database, as you will see. They are lightweight in their imple-
mentation, but not in their effect.

We will now take a more detailed look at the specific types of locks within each of these
general classes and the implications of their use. There are more lock types than I can cover
here. The ones I cover in the sections that follow are the most common and are held for a long
duration. The other types of lock are generally held for very short periods of time.

DML Locks

DML locks are used to ensure that only one person at a time modifies a row and that no one
can drop a table upon which you are working. Oracle will place these locks for you, more or
less transparently, as you do work.

TX (Transaction) Locks

A TX lock is acquired when a transaction initiates its first change, and it is held until the
transaction performs a COMMIT or ROLLBACK. It is used as a queuing mechanism so that other
sessions can wait for the transaction to complete. Each and every row you modify or
SELECT FOR UPDATE in a transaction will “point” to an associated TX lock for that transaction.
While this sounds expensive, it is not. To understand why this is, you need a conceptual
understanding of where locks “live” and how they are managed. In Oracle, locks are stored as
an attribute of the data (see Chapter 10 for an overview of the Oracle block format). Oracle
does not have a traditional lock manager that keeps a long list of every row that is locked in
the system. Many other databases do it that way because, for them, locks are a scarce resource,
the use of which needs to be monitored. The more locks are in use, the more these systems
have to manage, so it is a concern in these systems if “too many” locks are being used.

In a database with a traditional memory-based lock manager, the process of locking a row
would resemble the following:

209

210

CHAPTER 6 = LOCKING AND LATCRING

1. Find the address of the row you want to lock.

2. Getin line at the lock manager (which must be serialized, as it is a common in-
memory structure).

3. Lock the list.

4. Search through the list to see if anyone else has locked this row.

5. Create a new entry in the list to establish the fact that you have locked the row.
6. Unlock the list.

Now that you have the row locked, you can modify it. Later, as you commit your changes
you must continue the procedure as follows:

7. Getin line again.

8. Lock the list of locks.

9. Search through the list and release all of your locks.
10. Unlock the list.

As you can see, the more locks acquired, the more time spent on this operation, both
before and after modifying the data. Oracle does not do it that way. Oracle’s process looks
like this:

1. Find the address of the row you want to lock.
2. Go to the row.

3. Lock the row (waiting for the transaction that has it locked to end if it is already locked,
unless you are using the NOWAIT option).

That's it. Since the lock is stored as an attribute of the data, Oracle does not need a tradi-
tional lock manager. The transaction will simply go to the data and lock it (if it is not locked
already). The interesting thing is that the data may appear locked when you get