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Abstract

In a previous work of ours [13], we proposed a text indexing data structure for external
memory, which we called SB-tree, that combines the best B-tree and su�x array qualities to
overcome the limitations of inverted �les, su�x arrays, su�x trees, and pre�x B-trees. In this
paper, we study the performance of SB-trees in a practical setting by running a large number
of searching and updating experiments. We obtain fast practical performance by means of a
new space-e�cient and alphabet-independent organization of SB-tree nodes and a new batch
insertion procedure that avoids thrashing.

1 Introduction

Textual data in electronic form are more available than before and range from published docu-

ments (e.g., electronic dictionaries, libraries and archives, etc.) to private databases (e.g., mar-

keting information, legal records, medical histories, etc.). Online providers of legal and newswire

texts (such as Westlaw and Lexis-Nexis) already have hundreds of text gigabytes and will have

terabytes in the near future. Many texts are sent over Internet every day in the form of email,

bulletin boards, web pages, etc.. Information overload is therefore a general problem because all

these data need to be stored, updated and fast-accessed in external storage devices (e.g., disks,

CD-ROMs) and this inevitably introduces the need to develop e�cient text indexing data struc-

tures. Text indexing also has several applications to large text collections that can change over

time and need some nontrivial search operations (e.g., data compression [34, 35, 9, 24], computer

virus detection [18], text editing, telephone directory storage [7] and software maintenance [4]).

Below, we discuss few of them:

Textual databases. In information retrieval environments, it is often necessary to deal with

large heterogeneous text collections, such as newspaper �les, dictionaries, encyclopedias, telephone

�This work is partially supported by MURST of Italy and was carried out while the authors were visiting the
AT&T Bell Laboratories, Murray Hill, NJ. Part of the results had been previously presented at the ACM-SIAM

Symposium on Discrete Algorithms, 1996.
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directories, textbook materials, etc. The keywords are assigned to the information items manually

or automatically and the queries are formulated by means of terms interconnected by boolean

operators. In this context, indexing data structures and searching engines are fundamental tools

for getting useful information from this (text) data. More in general, data structures for indexing

textual databases also relate to the problem of indexing commercial databases. In this context,

records are sequences of bytes that change over time and, consequently, a record can be interpreted

as an arbitrary long text over a 256-character alphabet. Text indexing tools can therefore be

essential for achieving e�ciency and a large range of requests in many practical applications that

handle large text collections.

Molecular biology. Industrial exploration has become a fundamental tool in biosciences. In

molecular biology, for example, DNA sequencing has proven to be reliable in analyzing genetic

information. The current volume of nucleic acid sequences in public databases amounts to approx-

imately 200 million bases. Due to the rapid increase in the 
ow of information, some signi�cant

public genome databases have been established [15]. We can say that, in general, `biocomputing'

has become essential and thus indexing data structures and searching engines will play more and

more an important role in sequence analysis research [3].

Digital libraries. A library's task is to acquire works, store them and make them available to

the reader. In a recent issue of Communication ACM [14], many of the projects that are underway

for the creation or enhancement of digital libraries are described. An example of this can be found

in project Dienst [14, pag. 47]; its method consists in distributing the indexes and in processing

the searches in parallel across each index site. Moreover, it allows users to search for documents

by their number, title, author, etc., by entering the text part to be searched or by selecting a

paragraph directly from a document with the mouse as the basis of the search. As a result, the

creation of indexing data structures and searching engines for bibliographic material adds value to

the material itself and greatly increases the accuracy and completeness of subsequent retrievals.

Consequently, there is a very large request for indexing data structures and searching engines

in those �elds. These tools di�er from the ones designed for main memory because of current

technology. Speci�cally, over the past �fteen years, disk drive access time has improved very little

while memory densities have increased at an average of 50 percent a year, and memory access times

have decreased from 30 to 80 percent a year [27]. Nevertheless, we need external storage devices

because we cannot build any main memory with an unbounded capacity and single-cycle access

time. For this reason, there is ongoing research to improve the I/O subsystem by introducing

several hardware mechanisms such as disk arrays, disk caches, etc. [27]. On the other hand, since

main memory is a high-speed electronic device and external memory is a relatively low-speed

mechanical device, all the data must be suitably arranged on disks by using e�cient (external-

memory) data structures that minimize the number of I/Os [31]. A great deal of current research

is directed at this as far as both information retrieval and web community are concerned (see

for example: http://inktomi.berkeley.edu and http://glimpse.cs.arizona.edu for some

impressive search facilities).

In this paper, we focus our attention on algorithms and data structures for searching on

arbitrarily-long text strings stored in external memory with provably good performance. This is a

hot topic nowadays, especially because there are very few e�cient methods for extracting useful

information from large (text) data. We can formalize our problem as follows:

Problem 1 Let � = f�1; : : : ; �kg be a set of text strings stored in external memory, whose total

length is N =
Pk

i=1 j�ij characters. We can change � dynamically by inserting or deleting some

2



individual strings and we can search on-line for all the occ occurrences of an arbitrary pattern

P [1; p] in �'s strings. 1

Unfortunately, the elegant external-memory data structures dealt with in current literature

either lack good searching bounds in the worst case or are unable to support e�cient dynamic

operations. For example, in the area of traditional external-memory data structures, inverted

�les [28], B-trees [5] and their variations (such as Pre�x B-trees [6, 10]), well-known and ubiquitous

tools for manipulating large data, are not as good as they could be for solving Problem 1. Inverted

�les require sublinear space but are di�cult to update. B-trees help to overcome this drawback

but they only treat bounded-length keys (usually no longer than 255 characters [32]). This can be

an excessive constraint for many practical applications in which the keys are typically long strings

with many repeated parts. As far as the �eld of classical string-matching is concerned, there

are many elegant data structures and powerful indices, such as compacted tries (in particular,

su�x trees [1, 17, 22]) and su�x arrays [16, 20], which can handle unbounded-length texts and are

characterized by very e�cient searching and updating performance for small databases �tting into

main memory. However, these tools are no longer e�cient for the large databases that can change

over time and that make considerable use of external memory. For example, su�x arrays [16, 20]

make powerful searches possible by indexing all substrings but they cannot be changed any more

easily than inverted �les and they require contiguous space. In turn, su�x trees [1, 17, 22, 33] lose

much of their e�ciency in external memory because of the thrashing caused by their unbalanced

tree topology (as we discussed in [13]). Nevertheless, since su�x trees are expected to achieve

good average performance in external memory, they have been widely studied with the aim of

�nding a space-e�cient and practical implementation for them. It has been shown that both su�x

trees and compacted tries occupy 17N bytes when implemented carefully [16]. An improvement

on this (i.e., 12N bytes) was achieved by Patricia trees [25], which are a space-e�cient variant

of compacted tries obtained by using the binary representation of each su�x and by storing only

one bit per arc. PaTries [29], PAT-trees [16] and LC-tries [2] are variants of Patricia trees in

which some heuristic is employed to further reduce the space to an average of 6N bytes. The

most e�cient implementation known is the Compact PAT-tree [8], which requires an average of

5N bytes and experimentally obtains a page �ll ratio of at least 40{50%. Some other e�cient

implementations of su�x trees have also been investigated in a probabilistic setting by using some

heuristics; their e�ciency, however, depends on the text chosen (e.g., [12, 23]).

Notice that the applications considered so far are static in the sense that their text string set

� is �xed and has been preprocessed once. However, if we allow this string set to change under

the insertion and deletion of some individual strings (as required in Problem 1), the situation

becomes more complex and the performance of all known methods degenerate dramatically [8].

In summary, all the well-known data structures for indexing large texts fail to solve Problem 1

e�ciently.

We have recently proposed a data structure, which we called SB-tree [13], that combines

the best of both B-trees and su�x arrays and that overcomes the limitations of inverted �les

(modi�ability and atomic keys), su�x arrays (modi�ability and contiguous space), su�x trees

(unbalanced tree topology) and pre�x B-trees (bounded length keys). The computational model

we use to study the SB-tree performance is the classical two-level memory machine [11], which

has a small fast main memory and a large slow external memory. This model assumes that the

external memory is partitioned into disk pages, each of which contains B atomic items (e.g.,

1In many practical applications, however, we only need to search for the pattern occurrences in �'s strings that
start at �xed positions, called index points (e.g., the beginning of words).
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integers, pointers, characters, etc.), where B is a parameter called disk page size. A single disk

access transfers one disk page into main memory. The resulting algorithmic complexity consists of

two main components: (1) the total number of disk accesses performed by the various operations,

and (2) the total number of disk pages occupied by the data structures.

SB-trees are the �rst data structure for solving Problem 1 with provably good worst-case

bounds in the two-level memory machine. These bounds are the following: Searching for all the

occ occurrences of P in the strings of � takes O(p+occ
B +logB N) worst-case disk accesses. Inserting

in or deleting a string of length m from � takes O(m logB(N +m)) worst-case disk accesses. The

space usage is �(NB ) disk pages (see [13]).

Thanks to these favorable results, the SB-trees' theoretical behavior needs to be established

experimentally. In this paper, we aim at describing an e�cient SB-tree implementation on which

we perform a large number of searching and updating experiments. We show that SB-trees are

really very e�cient in practice and thus can play an important role in the previously-mentioned

applications. Furthermore, it is worth noting that SB-trees' applicability extends beyond indexing

dynamic text collections because they are also competitive for searching on large static text

collections. Our main �ndings are the following:

� We obtain a fast search that requires approximately 2h disk accesses, where h = �(logB N)

is the SB-tree height. For example, we guarantee h � 3 for N = 2 billion indexed su�xes by using

a page size of B = 32 kilobytes. The small height does not depend on the text content (i.e., its

characters' distribution). This is not the case with su�x trees and compacted tries because their

unbalanced tree topology is caused by their internal nodes that are in correspondence with some

repeated substrings: We may therefore traverse a k-node path in them that occupies 
( k
log2 B

)

disk pages in the worst case. 2 The implementation of SB-trees is based on Patricia trees (which

help us in routing SB-tree traversal) and their compressed representation (which reduces space

and is also alphabet-independent). This allows us to achieve a large branching factor and a small

SB-tree height. We do not only provide and experiment an SB-tree implementation occupying

12:25N bytes, but we also introduce and discuss a general technique that allows us to reduce the

space usage to only slightly more than 4N bytes.

� We perform e�cient updating by means of some algorithms that di�er from the theoretically

\good ones" in [13] in order to exploit the LRU bu�ering strategy imposed by the operating system

better. The update algorithms in [13] treat one su�x at a time and avoid rescanning its characters.

In this paper, we achieve a worse theoretical performance by treating batches of su�xes but we

access disk pages in a regular way and therefore avoid making thrashing necessary. We show that

updating SB-trees with this approach is �ve times faster than updating UNIX Pre�x B-trees [32],

and SB-trees require even less space. SB-tree updating inherits all of B-trees' advantages with

respect to unbalanced trees in external memory: we control both the height and disk page �ll ratio

(which is guaranteed to be more than 90%) by using available technology for B-trees [5, 6, 10].

This makes SB-trees more appealing and e�ective than su�x trees and compacted tries when

managing large external-memory text collections.

The rest of our paper is organized as follows. In Section 2, we summarize the basic ideas and

properties underlying the design of SB-trees. In Section 3, we describe an e�cient implementation

method for SB-trees based on Patricia trees and succinct encodings that is: (a) space-e�cient and

(b) alphabet-independent . We then describe how to search for an arbitrary pattern in an SB-tree

that uses this succinct representation and how to update SB-trees under single string insertions.

In Section 4, we present a large number of searching and updating experiments that allow us to

2We noticed that, in some cases, there are some long, repeated substrings of about 104 characters | e.g., in
manuals | which are caused by some cut-and-paste operations.
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evaluate the practical performance of our SB-tree implementation. We show that SB-trees lead

to much faster searches and can be updated in a reasonable amount of time. Finally, in Section 5,

we list and discuss some topics that we believe require further investigation and experimentation.

2 The SB-tree data structure

We adopt standard terminology for a string �[1; s] and call �[1; i] a pre�x , �[j; s] a su�x and �[i; j]

a substring (for 1 � i � j � s). We say that there is an occurrence of a pattern string P in � if

we can �nd a substring �[i; i + jP j � 1] equal to P .

Let us examine our Problem 1: We let SUF (�) be the set of all the su�xes of �'s strings and

number the su�xes in SUF (�) = fS1; S2; : : : ; SNg in increasing lexicographic order, denoted by

�L. Given a pattern P , we say that P 's position in SUF (�) is j � 1 if there are j � 1 strings

lexicographically smaller than P in SUF (�). From now on we assume that P 's last character is

smaller than any other character in the strings' alphabet and that each of �'s strings is allocated

in a contiguous segment of disk pages so that the page containing its i-th character can be located

by a constant number of simple arithmetic operations on the string pointer.

The SB-tree design is based on Manber and Myers' crucial observation [20] that substring

searching in Problem 1 can be divided into two steps: (1) we retrieve P 's position in SUF (�)'s

strings in lexicographic order; (2) we list all of the pattern occurrences which are given by the

contiguous sequence of strings following the pattern's position in SUF (�) and having the pattern

as a pre�x. From this observation, it follows that any external dynamic data structure solving

Problem 1 should be designed with the aim of meeting three requirements; (a) it should occupy

optimal space, i.e., �(N=B) disk pages; (b) perform e�cient searching for a pattern's position

in SUF (�); and (c) maintain set SUF (�) lexicographically ordered under string insertions and

deletions.

SB-trees meet all three requirements above [13]. We now review the SB-trees' main features.

From a high level point of view, they are B+-trees (i.e., their keys reside in the leaves and their

internal nodes only contain some copies of those keys [10]), where the keys are the logical pointers

to SUF (�)'s strings and the order between any two keys is the �L-order among the corresponding

pointed strings. We assume that each disk page can contain up to 2b keys in which the choice

of b = �(B) depends on the disk page size B. In describing the logical organization of SB-trees,

we adopt the convention that there is no distinction between a key and its corresponding pointed

string.

The SB-tree SBT� built on string set � is de�ned as follows: Each node � is stored in a disk

page and contains an ordered string set S� � SUF (�), such that b � jS�j � 2b. We use L(�)

to denote the leftmost (resp., R(�) the rightmost) string in S�. We distribute SUF (�)'s strings

among the SB-tree nodes as follows:

� We partition SUF (�) into groups of b strings except for the last group, which can contain

from b to 2b strings. We map each group into a leaf � (and form its string set S�) in such a way

that the left-to-right scanning of the SB-tree leaves gives us SUF (�). Furthermore, we associate

the longest common pre�x length lcp(Sj; Sj+1) with each pair Sj; Sj+1 of S�'s adjacent strings.

� Each internal node � of SBT� has n(�) children �1 : : : �n(�), with
b
2
� n(�) � b (except

for the root, which has from 2 to b children). Set S� is formed by copying the leftmost and

the rightmost strings contained in �'s children. That is, S� is de�ned as the ordered string set

fL(�1); R(�1); L(�2); R(�2); : : : ; L(�n(�)); R(�n(�))g (see Figure 1).

Since the SB-tree's branching factor is �(b), its height H(N; b) is such that H(N; b) =

O(logbN) = O(logB N). We refer the reader to Figure 2 for an example of an SB-tree in which
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Figure 1: The logical organization of SB-tree internal nodes.

the keys are the logical pointers to SUF (�)'s strings and we allocate �'s strings in a contiguous

segment of disk pages.

Since SUF (�) is stored in the SB-tree leaves and considering Manber and Myers' observation,

we can conclude that pattern searching mainly consists of traversing SBT� and retrieving P 's

position in SUF (�). In fact, given the SB-tree leaf containing that position, say b�, all the occ
occurrences are obtained by the occ su�xes in SUF (�) which have P as a pre�x and are contained

in the contiguous sequence of SB-tree leaves following b� (inclusive). The algorithmic scheme of

the search operation is described in Figure 3. At this point, we introduce the following:

(a) List-occurrence(P ,S) is a procedure that starts at su�x S, scans SUF (�) rightward, and

outputs all the su�xes until one whose pre�x is not P is encountered. We can implement List-

occurrence by scanning the list of SB-tree leaves rightward starting at the leaf that contains S

and checking if P is a pre�x of a su�x in SUF (�) by means of the lcp-information contained in

each SB-tree leaf (we must have lcp � jP j).
(b) Search-pos(P ,S�) is a procedure that �nds P 's position in the string set S�. Since it is

rather di�cult to implement Search-pos(P ,S�) e�ciently, we postpone its discussion to Section 3.

We wish to point out that we could search for the pattern's position by performing a binary search

on S�'s strings and we would thus access at least log
2
b disk pages (at least one disk page for each

string examined because it is implemented by its logical pointer). However, our approach consists

of \properly" organizing set S� by means of the blind trie data structure [13] and this allows us

to reduce the number of strings examined from log
2
b to a single one !

We now discuss the pseudocode shown in Figure 3. In Steps (1)-(2), we check to see if P �L S1
or P >L SN , with O( p

B ) disk accesses. In the former case, we execute List-occurrence(P ,S1); as

far as the latter case goes, we are sure that P does not occur in �'s strings. In all the other cases

(i.e., S1 <L P �L SN ), we traverse SBT� and maintain the invariant: L(�i) <L P �L R(�i) for

each traversed node �i (at level i, with 1 � i � H(N; b)). The invariant holds for the SB-tree

root �1 because we ensured S1 < P � SN with S1 = L(�1) and SN = R(�1). In the generic ith

step, we route the SB-tree traversal by loading �i's disk page (Step (4)) and �nd out the pattern's

position j in S�i by means of Search-pos(P ,S�i) (Step (5)). In this way, we can determine two

consecutive strings Xj�1;Xj 2 S�i , such that Xj�1 <L P �L Xj . At this point, if �i is a leaf

(Step (6)), then we have found P 's position in SUF (�) and we exit the while loop and list all

of P 's occurrences by means of List-occurrence(P ,Xj) (Step (9)). If �i is not a leaf, we have to

maintain the induction by going deeper into SBT� according to two other cases. In the �rst case
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∆ = { abaac, baab, aaa, abad }

SUF(   ) = {a, aa, aaa, aab, aac, ab, abaac, abad, ac, ad, b, baab, baac, bad, c, d }∆

14 13 12 8 3 9 1 16 4 18 10 7 2 17 5 19

14

14

8 3 16

16 4

4 7 2

19

19

BT

BT

BT BT

BTBTBT

a bbbb c daaaaa aaaa
10 1716131211 20191814 15987654321

B=4

Figure 2: An example of SB-tree, where external memory is represented by a linear array with

disk page size B = 4. The numbers in the SB-tree nodes are the logical pointers to SUF (�)'s

strings (i.e., their starting positions in external memory). The black boxes in the disk pages

denote special endmarkers that prevent two su�xes of �'s strings from being equal.
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procedure Searching for P ;

(1) if P �L S1 then List-occurrence(P ,S1); return;
(2) if P >L SN then return;
(3) �1 := root; i := 1;

while true do /* Invariant: L(�i) <L P �L R(�i) */
(4) Load �i's disk page and let S�i = fX1; X2; : : : ; X2n(�i)g
(5) j := Search-pos(P ,S�i); /* Xj�1 <L P �L Xj */

(6) if �i is an SB-tree leaf then exit-while;
(7) if Xj = R(�), for a child � of �i then �i+1 := �; i := i+ 1;
(8) if Xj = L(�), for a child � of �i then move to �'s leftmost descending leaf; exit-while;

endwhile

(9) List-occurrence(P ,Xj).

Figure 3: The pseudocode for searching P in �'s strings by means of SBT�.

(Step (7)), we know that Xj�1 = L(�) and Xj = R(�), for some child � of �i, and hence we

set �i+1 := � to repeat the search in �i+1 (thus maintaining the induction). In the second case

(Step (8)), we know that Xj�1 and Xj belong to two distinct children of �i so these two strings

are adjacent in SUF (�) (because of the SB-tree's organization). Since Xj = L(�) for a child � of

�, we move to �'s leftmost descending leaf, exit the while-loop, and execute List-occurrence(P ,Xj)

in order to list all the pattern occurrences.

It is worth noting that the algorithmic structure of the pseudocode in Figure 3 is quite simple

except for the blind trie implementation of Search-pos, which we describe in detail further on.

As far as the complexity is concerned, it is possible to avoid rescanning the pattern's characters

during the SB-tree traversal in order to achieve O(p+occ
B + logB N) disk accesses (we refer the

reader to [13]).

We do not go into the details of worst-case e�cient SB-tree updates, as we discussed in [13],

because we will present in Section 3.2 a simpler approach that is very e�cient in practice.

3 A Practical Implementation of SB-Trees

We now describe an e�cient SB-tree implementation, and this can be considered as the �rst

serious step towards studying SB-trees' practical impact. From the above discussion, it follows

that the SB-tree search's e�ciency is strictly related to the e�ective blind trie implementation of

Search-pos. In Section 3.1, we therefore examine this issue and provide a blind trie implementation

based on Patricia trees and succinct encodings. The implementation is: (a) space-e�cient and

(b) alphabet-independent . These two characteristics are also important in practical applications

because the case of a large alphabet is realistic: In computational linguistics, a text is often

considered to be a list of tokens (i.e., pointers to words, q-grams, etc.) which forms the alphabet;

therefore, the alphabet can have so many characters that is not possible to encode each of them

by a single byte [7].

In Section 3.2, we explain how to search for an arbitrary pattern in an SB-tree by using the

succinct blind trie representation. We then show how to update SB-trees under string inser-

tions and provide an algorithm that takes advantage of the LRU bu�ering strategy imposed by

the underlying operating system. (Since the deletion algorithm is simpler, it is not explicitly

described.)
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Figure 4: A compacted trie (left) and its corresponding blind trie (right).

3.1 Blind trie compression and uncompression

One of the main advantages of SB-trees is that their height H(N; b) decreases exponentially as b's

value increases (with �xed N), and this consequently has a favorable in
uence on the searching

and updating performance. Value b is strictly related to the number of strings contained in each

node � because b � jS�j � 2b. Therefore, we can speed up the SB-tree operations by increasing

the number of strings able to be stu�ed into S� as much as possible. If the disk page size B

increases, we can store more su�xes in S�. However, since B is limited by the typical size of a

disk page (32 kilobytes) which is �xed a priori, we need a technique that maximizes jS�j for a
�xed B in order to squeeze as many strings as possible into one disk page. We keep this in mind

in describing blind tries.

We de�ne the blind trie BT� plugged into an SB-tree node � in three steps (see Figure 4):

(1) We build a compacted trie whose leaves store S�'s strings and whose arcs are labeled by

their substrings. (2) We label each node u by integer pos(u), which is equal to one plus the

length of the string obtained by concatenating the arc labels in the downward path leading to u.

(3) We delete all the characters in each arc label except the �rst one, which we refer to as the

branching character . The total size of BT� depends not only on jS�j but also on the alphabet's size
(because of the branching characters). Since each character in a large alphabet may require many

bytes to be represented, a straightforward storage of blind tries would be alphabet-dependent and

thus space-ine�cient. Speci�cally, let us compute the amount of space required by the internal

structure of BT� (see Figure 4). jS�j leaves store the pointers to the strings in S�, with no more

than jS�j�1 internal nodes and 2jS�j�2 arcs, and each node needs an integer for its pos-value and

each arc requires a character and a branching pointer. If we assume that the pointers and integers

occupy four bytes and each character is represented by at least one byte, a straightforward blind

trie implementation would require a total space of at least 18jS�j � 14 bytes, which is too large

compared to the su�x tree implementations discussed in the introduction.

Blind trie space reduction is therefore the �rst problem we deal with in this section to make

SB-trees really good in practice. We now show a space-e�cient and alphabet-independent imple-

mentation of blind tries based on Patricia trees [19] that requires a total of 8:25jS�j � 4:25 bytes
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Figure 5: The Patricia Tree corresponding to the blind trie in Figure 4. The bit array Z, the

array of pos-values, and the Str-array of string pointers are shown.

(see Figure 5, left). Let us examine S�'s strings in the form of binary sequences whose characters

all have a �xed-length binary representation that maintains the �L-order (we encode the string

endmarkers by a null byte followed by a four-byte counter to make sure that S�'s strings are
distinct, see Figure 2). The binary representation makes us sure that the internal node fan-out is

exactly two in BT�. Consequently, there is a total of 2jS�j � 1 nodes. We express pos(u) in bits

for each internal blind trie node u because a branching character is now a single bit (hereafter

called branching bit) and then we associate an implicit binary label to each arc (zero for each

left arc and one for each right arc). We wish to point out that this blind trie representation is

independent of the alphabet's size and therefore it matches the above requirements.

Although the blind tries' properties are very promising, we go a step further and use a simple

method for representing BT� succinctly . In this way, we save more space (i.e., we stu� more

strings into S�) when storing BT� in external memory. We exploit the property that each node of

BT� is either a leaf or an internal node having exactly two children and we design two operations:

Compress and Uncompress (see Figure 5). We use the former for producing a succinct (and

implicit) representation that can only be used for storing BT� in external memory inside �'s

disk page. We use the latter for explicitly retrieving BT� from its implicit (external-memory)

representation when � is transferred to main memory in order to perform some computation on

it. More precisely:

� Compress(BT�): This procedure represents BT� by means of three arrays: Pos; Str; Z,

which are obtained by its preorder traversal (see Figure 5, right). The �rst two arrays require a

total of 8jS�j � 4 bytes. Array Pos contains the pos-value sequence found in the internal blind

trie nodes. Array Str contains the string pointers sequence found in the blind trie leaves. Array

Z is a binary array that encodes the blind trie shape and occupies a total of
jS�j�1

4
bytes (only

one bit per arc is used). 3 We build Z by traversing BT� in preorder and by appending 0 for each

3
Z's length is 2jS�j � 2 bits but we can easily reduce it to jS�j � 2 because the arcs leading to the blind trie

10



left-branch and 1 for each right-branch. The total space used is 33

4
jS�j �

17

4
= 8:25jS� j � 4:25

bytes.

� Uncompress(�): This procedure allows us to reconstruct BT� from the three arrays stored

inside �'s disk page (and generated by Compress). First of all, BT�'s shape is reconstructed by

means of array Z as follows: Since each internal blind trie node has a fan-out of two, we scan Z

rightward using a stack ST . Let x be the node at ST 's top (at the beginning x is the blind trie's

root), and assume that i � 1 bits have already been scanned in Z. If Z[i] = 0, we create x's left

child which we push onto ST 's top only if Z[i + 1] = 0 (otherwise, it is a leaf which we do not

push onto ST ). If Z[i] = 1, we create x's right child and pop x out of ST . If Z[i + 1] = 0, then

x's right child is an internal node which we push onto ST (otherwise, it is a leaf which we do

not push onto ST ). After reconstructing BT�'s shape, we set the pos-values contained in its trie

nodes and the string pointers contained in its leaves by using the two arrays Pos and Str stored

inside �'s disk page.

We point out that �'s disk page must also keep �'s pointers to its SB-tree children because

of the SB-tree's structure and this takes 4jS�j extra bytes. In brief, the total space needed for

storing an SB-tree's node � (i.e., BT� and the SB-tree child pointers) in external memory is

12:25jS� j � 4:25 bytes. By making this quantity smaller than B (the disk page size), we make

sure that an SB-tree node can be stu�ed into only one disk page.

Lemma 1 A node � of the SB-tree can be stored in 12:25jS� j � 4:25 bytes, thus achieving a

maximum branching factor b � B
24:5

for a disk page size B.

Proof: Since b � jS�j � 2b, we only have to guarantee that 2b � B. 2

Let us now make some calculations to evaluate the SB-tree implementation better. For ex-

ample, let us �x a disk page size B = 32 kilobytes (a typical disk track size). We �ll up the

disk pages as much as possible, and achieve a branching factor b = 1336. This allows us to store

N = 2 billion su�xes in an SB-tree whose height is H(N; b) = 3 (by stu�ng 2 � 1336 strings per

SB-tree leaf). This occupies about 12:3N bytes in all. If we set B = 1 kilobytes instead, we

obtain branching factor b = 40 and store N = 2 billion su�xes in an SB-tree whose height is

H(N; b) = 6 (by stu�ng 2 � 40 strings per SB-tree leaf). Clearly, these calculations do not depend
on the text's input distribution but only on its size N . We remember that this is not true for

su�x trees and compacted tries because their heights (and performance) strictly depend on the

repeated substring lengths in the text's archive.

We believe that our SB-tree implementation deserves some further comments. If we compare

SB-tree space usage to su�x tree one (i.e., an average of 5N bytes [8]), we can see that the former

still seems too large. Nevertheless, the SB-tree structure is 
exible enough to let us obtain an

implementation taking a total of (4 + 4:25
k ) bytes (slightly more than the space usage of su�x

arrays [16, 20]), where k is a proper positive parameter to be �xed. For this purpose, we only

have to change the SB-tree leaves because the number of internal SB-tree nodes is negligible

with respect to the number of its leaves (we have a large branching factor b). Since the children

pointers in the SB-tree leaves are useless, we use their space to store some extra SUF (�)'s strings.

Moreover, we only build BT� on the subset of S�'s strings formed by taking every other kth string.
The total space taken up by the SB-tree leaves is as follows: (a) 8:25

jS� j
k

� 4:25 bytes are needed

for BT�'s compressed version which now only stores the
jS�j
k

sampled strings; (b) 4(jS�j �
jS�j
k
)

bytes are needed to store the pointers to the rest of S�'s strings (i.e., the unsampled ones). Hence,

leaves do not need to be encoded. However, this does not yield signi�cant space saving in the SB-tree.
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procedure Search-pos(P ,S�);

(1) p bit := p � char code len;
(2) u := root of BT�;

/* First Phase */
(3) while (u is not a leaf and pos(u) � p bit) do
(4) if pos(u)-th bit of P is 0 then u := left child(u) else u := right child(u);
(5) ` := one of u's descending leaves;

/* Second Phase */
(6) lcp := longest common pre�x (in bits) of P and `'s string;
(7) u := `;
(8) while (u 6= root and pos(parent(u)) > lcp) do u := parent(u);
(9) if (lcp+ 1)st bit of P is 0
(10) then j := # leaves to the left of u's leftmost descending leaf (exclusive);
(11) else j := # leaves to the left of u's rightmost descending leaf (inclusive);
(12) return j;

Figure 6: The pseudocode for �nding P 's position j in S�. We denote the number of bits encoding

an alphabet's character by char code len.

this SB-tree organization requires (4 + 4:25
k
)jS�j bytes for an SB-tree leaf � and therefore a total

of about (4 + 4:25
k
)N bytes for the entire SBT�.

This change in the SB-tree's organization slightly a�ects the search operation. When we reach

an SB-tree leaf, we can still be no more than k positions from our �nal destination. We therefore

complete the operation by means of a binary search that examines O(log
2
k) candidate strings.

We refer the reader to our conclusions regarding the time/space trade-o� achievable by using this

SB-tree organization.

3.2 Practical SB-tree searching and updating

In the following, we describe how to search and update SB-trees that use the previously mentioned

succinct representation of blind tries.

Searching. We again examine an SB-tree's node � and its blind trie BT�. Our aim is to design

a Search-pos(P ,S�) procedure that �nds P 's position in S� e�ciently and that bene�ts from the

ideas on blind tries when implemented in the form of Patricia trees. We execute the pseudocode

in Figure 6 for �nding P 's position j in S� by examining only one string of S� in the worst case.

Search-pos(P ,S�) essentially consists of two main phases that make use of the binary represen-

tation of S�'s strings. In the �rst phase (Steps (3){(5)), we trace a downward path from the root

to a leaf in BT� by only using bit comparisons to match the branching bit in each traversed arc

with the corresponding P 's bit. We stop the downward traversal either when we reach a leaf or we

cannot further branch from the current node (in the latter case, we take an arbitrary descending

leaf from that node). The leaf that we reach at the end of our traversal, say `, may not necessarily

give P 's position in S� but it has the nice property of storing one of S�'s strings that shares its

longest common pre�x with P (we can generalize the proof of Lemma 3 in [13] to Patricia trees

by using a binary alphabet). We then begin the second phase (Steps (6){(11)), in which we load

`'s string and determine its longest pre�x in common with P (let lcp be their longest common

pre�x length in bits). After that, we identify `'s ancestor u such that: either u = root of BT�
or pos(u) > lcp � pos(parent(u)), where parent(u) denotes u's parent in BT�. All of the strings
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stored in u's descending leaves share their �rst pos(u) � 1 bits and thus have P 's �rst lcp bits

as their pre�x (no other string in S� has this property). We therefore �nd P 's position in S� by

moving either to the left of u's leftmost descending leaf (if P 's (lcp+1)th bit is 0) or to the right of

u's rightmost descending leaf (if P 's (lcp+1)th bit is 1). The binary representation of S�'s strings
notably simpli�es case analysis and speeds up computation thanks to the fast bit operations. It is

clear from the above description that the name \blind trie" derives from the way we perform the

traversal: we only examine the branching characters and ignore the rest of the substrings (now

implicitly) associated with the blind trie arcs.

Let us take Figure 5 for example: we examine pattern P = aac = 01000000 01000000 11000000

(where the characters are encoded as shown in the �gure). The �rst downward phase determines

leaf `{ the third one in S�. We do not actually �nd the pattern's position but we know that `'s

string, i.e. abcabc, is one of S�'s strings that shares its longest common pre�x with P (i.e., they

share 8 bits, namely 01000000). We use the mismatch bit 0, i.e., the 9th bit in P , to retrieve the

pattern's position in S� (i.e., the leftmost one).

We only perform the disk accesses needed for computing lcp because P and the branching

bits are available in main memory together with BT�. However, the blind tries themselves do not

guarantee the bounds we claim.

Consequently, we extend the SB-tree search illustrated in Figure 3 as follows: During the

SB-tree traversal and for each visited node �i, we maintain the invariant that there is at least

one string in S�i that shares its �rst si characters with P , for a proper positive value si. This

implies that we can only examine the characters in P [si+1; p] when comparing P to `'s string in

Step (6) of Search-pos(P ,S�) (Figure 6) because of `'s string property that lcp � si �char code len.

We therefore design a new Search-pos procedure that takes three input parameters P , S� and s,

where the new input parameter s denotes the number of characters shared by P and one of

S�'s strings. The procedure now returns the pair (j; lcp char), where j is P 's position in S� (as

before) and the new output parameter lcp char is the number of P 's characters matched during

the blind search (we readily have lcp char =
j

lcp
char code len

k
). From the above considerations, it

follows that the new pseudocode for Search-pos(P ,S� ,s) can be obtained by only changing Step (6)
in the pseudocode shown in Figure 6 so that P is compared to `'s string by starting from the

(s � char code len+1)-th bit. As a result, Search-pos(P ,S� ,s) takes
l
lcp char�s

B

m
+1 disk accesses.

At this point, we also have to change the SB-tree search's pseudocode in Figure 3. We add

instruction s1 := 0 to line (3) and replace line (5) with:

(5) (j; si+1) := Search-pos(P ,S�i ,si);

The correctness of the new SB-tree search's pseudocode readily follows. Let us assume that

si satis�es the invariant, that is, at least one string in S�i shares its �rst si characters with P

(the base case for s1 = 0 trivially holds). Search-pos(P ,S�i ,si) is correctly executed on �i and

then si+1 is set to be the longest common pre�x length of P and any string in S�i because of

`'s string property (i.e., si+1 � si). The invariant on si+1 is therefore preserved because either

L(�i+1) or R(�i+1) shares the �rst si+1 characters with P since they are adjacent in S�i and
L(�i+1) �L P <L R(�i+1) (see Figure 1).

As far as the complexity of the pseudocode in Figure 3 is concerned: Step (4) takes one disk

access to retrieve �i's page and Step (5) takes d
si+1�si

B
e+1 disk accesses (see above). Consequently,

the total cost of the SB-tree search is a telescopic sum
PH(N;b)

i=1 (d si+1�siB e+ 2) (where s1 = 0 and

sH(N;b) � p) and we conclude:
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procedure Insert(i,j,�):

(1) Load �'s page and let S� = fX1; : : : ; X2n(�)g;
(2) For r := i to j do (pos[r]; lcp[r]) := Search-pos(Yr,S� ; lcp[r]);
(3) For h := 1 to 2n(�) do Kh := fYr : pos[r] = h; i � r � jg;
(4) K := K1 [ fX1g [ K2 [ fX2g [ � � � [ K2n(�) [ fX2n(�)g;
(5) if � is an SB-tree leaf then
(6) Partition K into t sets K0

1;K
0

2; � � � ;K
0

t of size between b and 2b each;
(7) For h := 1 to t do build a new node b�h and set Sb�h := K0

h;

else /* � is an internal SB-tree node with children �1; : : : ; �n(�) */

(8) For h := 1 to n(�) do
(9) If K2h�1 [ K2h is empty then

(10) Lh := fX2h�1; X2hg;
(11) else Lh := Insert(f ,g,�h) /* where K2h�1 [ K2h = fYf ; : : : ; Ygg */

(12) Build new S� := L1 [ � � � [ Ln(�) and update the children pointers accordingly;
(13) Partition S� into t sets S 01;S

0

2; : : :S
0

t of size between b and 2b each;
(14) For h := 1 to t do build a new node b�h and set Sb�h := S 0h;

endif

(15) Discard �;
(16) Return list fL(b�1); R(b�1); : : : ; L(b�t); R(b�t)g.

Figure 7: The pseudocode for inserting Yi; : : : ; Yj in the subtree rooted at �. pos[r] is Yr's position

in S� and lcp[r] is the number of Yr's characters matched.

Theorem 2 We can search pattern P [1; p] in SBT� with no more than b p
B
c+ 3H(N; b) worst-

case disk accesses. We take no more than docc
b
e disk accesses to retrieve all of the occ pattern

occurrences in �'s strings.

We have proved experimentally that the searching cost is 2H(N; b), as shown in Table 1

(typically, p << B).

Updating. Although the insertion algorithm provided in [13] is very attractive in that it

minimizes the number of disk accesses and avoids string rescanning (see the introduction), we

now propose another algorithm that is theoretically less e�cient but actually very fast in practice

because we use two e�ective heuristics with it: (a) we perform a batched su�x insertion by

keeping and sorting the su�xes of the string to be inserted in main memory before updating the

SB-tree; (b) we exploit the LRU bu�ering strategy imposed by the underlying operating system

by retrieving in preorder the SB-tree nodes involved in the updating process.

We let Y [1 : m] be the string to be inserted and we number its su�xes in lexicographic order:

Y1; : : : ; Ym. The insertion of each su�x determines a root-to-leaf path traversal in the SB-tree.

Since Y1; : : : ; Ym are sorted, these paths are traversed in preorder and make e�cient bu�ering of

their disk pages possible. Our batch insertion procedure exploits this ordering by means of the

following heuristics (not guaranteed by the procedure in [13]): each disk page storing a traversed

SB-tree node is read and written only once even though many su�xes can be routed through it.

The overall insertion procedure consists of inserting all of Y 's su�xes in batches of size s (we

assume without any loss in generality that s divides m) by executing the procedure Insert(hs +

1,(h+1)s,root) for h = 0; 1; : : : ; m
s
, whose pseudocode is given in Figure 7. Procedure Insert(i,j,�)

is de�ned recursively by inserting the ordered sequence Yi; : : : ; Yj (batch) in the subtree rooted

at the SB-tree node �. The procedure returns the list formed by all the L(�)'s and R(�)'s strings
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of the nodes that are possibly created by �'s splitting because of the su�x insertion (Step (16)).

This list is run through the recursive calls in order to maintain the SB-tree structure properly.

In particular, we use the list returned by Insert(i,j,�) to update �'s parent (if it exists) and its

children pointers. We choose the batch size s � b to guarantee that the recursive insertion creates

one new node per node traversed at most. If the execution of Insert(hs+ 1,(h+ 1)s,root) returns

more than two su�xes, the current SB-tree root has been split and so we build a new root (and

increment the SB-tree's height by one).

We now wish to make some comments on the pseudocode in Figure 7 because it is fundamental

in SB-tree updating. We use two global arrays pos[1::m] and lcp[1::m] in main memory, such

that pos[r] contains Yr's position in the string set S� of the current node � and lcp[r] is the

number of Yr's characters matched so far. We let S� = fX1; : : : ;X2n(�)g be the set of strings

in S�. We merge Yi; : : : ; Yj and S�'s strings together by performing a cumulative blind search:

we carry Search-pos(Yr,S�, lcp[r]) out for all i � r � j in Step (2) in order to exploit the SB-

tree organization and we collect the su�xes having the same position in S� (see Steps (3)). We

do this to reduce the number of disk accesses with respect to a brute-force merging method.

Let K = K1 [ fX1g [ K2 [ fX2g � � � [ fX2n(�)g denote the resulting merged sequence, where

K1;K2; : : : ;K2n(�) is a partition of fYi; : : : ; Yjg (Steps (4)). Two cases may now occur (Step (5)):

1. � is a leaf (Steps (6){(7)). We partition K into some parts, say K0
h, whose size ranges from

b to 2b and we build a new node, say b�h, for each of them. These nodes substitute � in the

SB-tree. For each K0
h, we return the pair given by its leftmost and rightmost strings (i.e.,

L(b�h) and R(b�h)). The whole list of pairs is returned in Step (16) to take into account �'s

possible splitting (because of the insertion of Yi; : : : ; Yj) and thus maintain the correctness

of the recursive calls.

2. � is an internal node (Steps (8){(14)). Due to the recursive insertion of Yi; : : : ; Yj into �, its

set S� may need to be changed in order to take �'s new children into account. We examine

all of �'s current children �1; : : : ; �n(�) and perform a recursive insertion into each of them

(if necessary, Step (9)). Let �h be the current h-th child, where 1 � h � n(�). If K2h�1[K2h

is empty, then �h is not modi�ed and thus we re
ect this by setting Lh = fX2h�1;X2hg
(Step (10)). Otherwise, set K2h�1 [K2h contains some su�xes, say Yf ; : : : ; Yg with i � f �
g � j, and thus we continue the recursive insertion of Yf ; : : : ; Yg into the subtree rooted at

�h (Step (11)). This recursive insertion into a child �h may determine its substitution by

some new nodes. In this case, we have to update S� by substituting the string pair X2h�1

and X2h (previously copied from �h into � due to the SB-tree's structure, see Figure 1)

with the strings L(�) and R(�) belonging to the nodes created by inserting Yf ; : : : ; Yg into

�h recursively. These strings are returned by the recursive insertion in �h and are stored

in list Lh (Step (11)). Consequently, new set S� := L1 [ � � � [ Ln(�) correctly re
ects these

changes on �'s children (Step (12)). After the recursive insertion, we proceed as in Case 1

where the new S� plays the role of K and we may have to split S� if it gets too large and

create some new nodes (Steps (13) and (14)). We return the list of L(�)'s and R(�)'s strings
for these nodes in Step (16) and thus maintain the correctness of the recursive calls.

Theorem 3 Let lcpi be the number of Yi's characters matched during its insertion, 1 � i � m.

We take no more than 5mH(N +m; b) +
Pm

i=1b
lcpi
B c worst-case disk accesses to insert all of Y 's

su�xes, where H(N +m; b) is the height of the resulting SB-tree.

Proof: By Theorem 2, Yi's insertion requires no more than b lcpi
B
c+ 3H(N +m; b) disk accesses.

In addition, there are no more than H(N +m; b) page splits for each path leading to an updated
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leaf and this costs no more than 2H(N +m; b) disk accesses because of the batch size s � b. The

bound follows by summing up for i = 1; : : : ;m. 2

Although the O(mH(N+m; b)) worst-case bound stated in [13] does not contain the additional

term
Pm

i=1b
lcpi
B c due to Y 's rescanning, we discovered that lcpi

B < 1 (i.e., we rarely exceeded the

disk page size in making string comparisons) and the number of page faults was actually much

lower than 2mH(N +m; b) +m. Furthermore, the number of updated disk pages was strictly

lower than m (see Table 2), and so the theoretical bound we stated in [13] is pessimistic because

our insertion procedure does not usually create many problems in practice.

4 Experimental Results

Our experiments con�rmed our theoretical predictions regarding SB-trees: (a) they lead to much

faster searches (because logbN is much smaller than log
2
N); (b) they can be updated in a

reasonable amount of time.

We compared SB-trees to a su�x array implementation that we developed in C-language and

a Pre�x-B-Tree implementation [6] available in the Unix operating system [32]. Unfortunately, no

external-memory su�x tree implementation was available and we did not develop one by ourselves

because we did not want to run the risk of underestimating the su�x tree's real performance. As

a matter of fact, recent heuristics [2, 8] for managing su�x trees in external memory are quite

complex and fully of latent details. We therefore decided to use the best-known experimental

results currently available in open literature [8] as our criteria in comparing SB-trees to su�x

trees.

We ran the experiments on varying amounts of two entirely di�erent kinds of real-world texts:

(1) an Associated Press newswire (henceforth, AP text); (2) a database of telephone numbers and

billing addresses (henceforth, AT&T phone book). The text sizes ranged from 1 to 128 megabytes

and we �xed a disk page size of B = 32 kilobytes (unless otherwise speci�ed) because it is the

standard magnetic disk track size. We used a Sun Sparc IPX with 32 megabytes of main memory

and 2 gigabytes of external memory.

4.1 Searching experiments

We begin the evaluation of the SB-trees' searching performance by comparing it with the one we

designed for su�x arrays.

Our implementation of the su�x array search is facilitated by our being able to store both

the su�x array and the text in disk pages. This allows us to retrieve B
4
= 8192 su�x pointers

or B = 32768 text characters by means of a single disk access. The search consists of a binary

search on the set of disk pages storing the su�x array by only using the leftmost and rightmost

su�x of the page we visit. As a result, the approach saves the last log
2

B
4
lookups on the su�x

array because they are all on the same page.

The search performance of both approaches was evaluated by counting the total number of

disk accesses empirically. We considered these accesses to be the sum of the accesses to the disk

pages that stored both the indexing data structure (either su�x arrays or SB-trees) and the text

(due to �L-comparisons). Speci�cally, we counted a new disk access whenever the accessed disk

page of the indexing data structure was di�erent from the previous one (both on su�x arrays and

SB-trees). We counted only one disk access per �L-comparison when dealing with su�x arrays

(even though it might take more than one in practice), while we counted the exact number of

accesses per �L-comparison when dealing with SB-trees. As a result, our evaluation of the page
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N Su�x Array SB-Tree H(N; b)

Ave Max Ave Max

1 30:770 � :176 38 3:846 � :021 4 2

2 34:244 � :187 41 3:964 � :010 4 2

4 37:325 � :166 44 5:985 � :006 6 3

8 39:861 � :177 47 5:994 � :004 6 3

16 42:474 � :180 50 5:991 � :004 6 3

32 44:913 � :172 52 5:996 � :005 6 3

64 46:948 � :176 55 5:972 � :007 6 3

128 49:797 � :182 57 5:993 � :006 6 3

Table 1: The performance of searching a pattern of length 16 on AP-news. N = millions of

indexed su�xes; Ave = average number � standard deviation of disk accesses; Max = maximum

number of disk accesses; H(N; b) = height of the SB-tree.

faults is optimistic for su�x arrays and pessimistic for SB-trees. Although the simpli�cations

we introduced are somewhat conservative, our results are de�nitely independent of the bu�ering

strategy used by the underlying operating system and allowed us to deal with the searching

performance both theoretically and experimentally, without having to introduce a lot of other

variables (such as the main memory size, the cache size, the bu�ering strategy used by the

operating system, etc.).

The search performance of both approaches was evaluated by counting the total number of

disk accesses as the sum of accesses to the disk pages storing both the indexing data structure

(either su�x arrays or SB-trees) and the text (due to �L-comparisons). We measured the total

number of disk accesses empirically by counting a new disk access whenever the accessed disk

page was di�erent from the previous one. This gave us an upper bound to the total number of

page faults executed by a common operating system according to any caching strategy. Although

this simpli�cation is somewhat conservative, it made possible for us to deal with the searching

and updating performance both theoretically and experimentally, without having to introduce a

lot of other variables (such as the main memory size, the cache size, the bu�ering strategy used

by the operating system, etc.). Our evaluation of the page faults is optimistic for su�x arrays and

pessimistic for SB-trees. Speci�cally, when dealing with su�x arrays, we counted only one disk

access per �L-comparison, even though it might take more than one in practice. When dealing

with SB-trees, we counted the number of disk accesses to the text pages exactly . Therefore,

our results are de�nitely independent of the bu�ering strategy used by the underlying operating

system.

In our experiments, we searched for some di�erent pattern lengths p (ranging from p = 2 to

p = 128 characters). Table 1 summarizes the results for AP texts with p = 16, and shows that

SB-trees can be searched much more quickly than su�x arrays, presumably because the former

contain a logb term instead of a log
2
term (b >> 2 occurs experimentally). The maximum number

of disk accesses ranges from 4 to 6 for SB-trees and from 38 to 57 for su�x arrays. There is a

gap in the SB-tree Ave-column of Table 1 when N increases from 2 megabytes to 4 megabytes

because height H(N; b) ranges from 2 to 3. The large set of searching experiments in Figure 8

clearly shows us that SB-trees achieved a 10 speed-up factor over su�x array performance.

Table 1 and Figure 8 also show that our search requires about 2H(N; b) disk accesses, where
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Figure 8: A summary of the whole set of our searching experiments. The left columns refer to

su�x arrays and the right ones to SB-trees.
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Figure 9: The average number of disk accesses (y-axis) per million indexed su�xes (x-axis).

3H(N; b) is the worst-case bound stated in Theorem 2. Since we can �t 2b = 2672 su�xes into

each node of the SB-tree (see Lemma 1), H(N; b) turns out to be very low and this in
uences the

overall searching performance. We could conjecture that six disk accesses is the searching cost

for 2 billion su�xes.

At this point, the reader may object that a smart implementation of the su�x array (binary)

search could be faster than our search. However, if we use the average-case lower bound shown

in [19], we obtain the minimum average number of disk accesses that any binary search in external

memory must perform on the text, LT = log2N , and on the su�x array, LS = log2
N

(B=4)
(see

Figure 9). It is worth noting that LT + LS is obviously smaller than the experimental number

of disk accesses for su�x arrays but is larger than the one for SB-trees. This means that every

implementation of the binary search on su�x arrays that does not make any empirical assumptions

about the text character's distribution (e.g., an interpolation search [19]) can never overcome our

SB-trees' practical performance.

At this point, some considerations are in order about our experimental results. One might

observe the fact that su�x arrays' performance is worse than SB-trees' performance is not a real

problem because current technology allows for a disk access time of about 10 milliseconds. There-

fore, each su�x array search actually takes less than a second and this is de�nitely a reasonable

waiting time for a human being. It would seem that SB-trees are a powerful theoretical tool that

turns out to be relatively unin
uential in real environments. We feel that this is not true and

support our opinion by the following example regarding network servers (seen in the light of the

growing interest in networks and searching facilities, such as http://inktomi.berkeley.edu).

A consequence of the access time reduction is that a server implementing SB-trees can provide

a bandwidth at least 10 times larger than the one achievable with su�x arrays. Hence, it can

accommodate more users in the same time interval. This makes a great di�erence in designing

powerful searching facilities in distributed environments (e.g., project Dienst [14, pag. 47]). Fur-

thermore, we should not forget that SB-trees' performance in processing text update operations
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greatly surpasses all known methods (see the next section) and therefore makes SB-trees a valid

(potential) tool for practical applications.

The last subject we deal with in this section is su�x tree implementation. As previously

mentioned, we do not have an e�cient su�x tree implementation in external memory and want

to compare su�x trees to SB-trees in a conservative way. We take Clark and Munro's [8] best

experimental results on su�x trees in external memory as our basis. The authors choose the

Oxford English Dictionary [26] (OED) as a text archive of size N � 128 million indexed su�xes

(actually its total size is half a gigabyte, but they only index word beginnings). They �x a page

size of B = 8 kilobytes and �nd that the su�x tree height is 4 (the root is kept in main memory).

This interesting result deserves a comment. The su�x tree's height and size strictly depend on the

text characters' distribution and the lengths of some \repeated substrings" (because the internal

su�x tree nodes store some substrings that occurs at least twice in the text). Moreover, the

unbalanced su�x tree topology and the heuristics used to bucket their nodes in external memory

cannot obtain more than a 43% disk-page �ll ratio [8]. Conversely, SB-trees have a guaranteed

performance that only depends on the text archive size N . Furthermore, SB-trees can achieve

a 100% disk-page �ll ratio by using current B-tree technology. This makes SB-tree performance

very predictable, even for unknown text archives. Consequently, considering the e�ects of blind

trie compression and uncompression and Lemma 1, it is very likely that the SB-tree is not higher

than the su�x tree on the OED archive. Furthermore, as we discussed in Section 3.1, the balanced

structure of SB-trees can be easily changed to require a space of slightly more than 4 bytes per

indexed su�x and this is an improvement over su�x trees. It is also worth noting that SB-tree

properties also hold in a dynamic setting where, instead, the use of su�x trees is very expensive

because we cannot be sure that the latter are always balanced.

4.2 Updating experiments

Our experiments showed that SB-trees can be updated in a reasonable amount of time and

they are at least as good as B-trees in this respect, whereas, in many other respects, they are

de�nitely much better (e.g., in searching time and space saving). In particular, we compared their

updating performance to: (1) an e�cient implementation of the Pre�x-B-Trees available in the

Unix operating system [32]; (2) a \start-over" method that builds the su�x arrays from scratch

by merging their previously sorted parts.

We studied the problem of updating an ordered set of N su�xes under the insertion of m

other su�xes drawn from a given string Y , for several values of m and N . This problem arises

in many practical applications in which signi�cant pattern occurrences start at some positions in

Y (e.g., at the beginning of words, paragraphs, etc.). We therefore let SUFm be the set of these

su�xes and took them in lexicographical order.

The �rst question was to �nd out how an SB-tree insertion behaves. We observed that, even

thoughm was �xed (i.e., m = 1 million) and N = 1; 2; : : : ; 32 millions, the insertion time increased

linearly with the number N
b
of SB-tree leaves ! (See Figure 10.) The reason was that m � N

b
,

and this caused the updating of almost all the SB-tree leaves because each leaf was expected to

contain at least one new su�x from SUFm. This basically meant rebuilding the data structure

from scratch ! This phenomenon is strictly related to the B-tree structure of SB-trees and it is

not very surprising because high m values often appear in strings, while they rarely seem to occur

in B-trees with ordinary integer keys.

Keeping this in mind, we performed the same experiment with a smaller m = 104 but ran

into the same problem (because we still had m � N
b ). We decided to change the disk page size

B from 32 kilobytes to 1 kilobyte (to increase the total number of SB-tree nodes). The number
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Figure 10: Inserting m = 1 million su�xes in a text archive of N = 1; 2; : : : ; 32 million su�xes.

#SUF % updated leaves # total leaves

1 58% 13108

2 18% 26215

4 12% 52429

8 8% 104858

16 3.5% 209716

32 1.5% 419431

Table 2: The insertion of m = 104 su�xes in #SUF million su�xes.

of SB-tree leaves ranged from about 13 thousand to 420 thousand and so m < N
b . A new set

of experiments showed that the number of updated pages was no longer proportional to N
b but

stayed in the range [4542; 8582] and turned out to be a small fraction of the total number of leaves

(see Table 2). We can therefore state that SB-trees are very useful in practice when the number

of su�xes to be inserted does not exceed the number of SB-tree leaves. Otherwise, the whole

reconstruction takes as much time as updating.

In our experiments, we also wanted to �nd out how fast the SB-tree insertion procedure was.

We therefore started out by comparing SB-trees to UNIX Pre�x B-Trees 4 and took about 240

text megabytes from the AT&T phone book. We chose m � 3:9 million su�xes and inserted the

10-grams associated with the su�xes in SUFm (i.e., their only �rst 10 characters) into an empty

SB-tree. We then performed the same insertion into an empty Pre�x B-Tree. We found out that

inserting into the SB-tree is �ve times faster than inserting into the Pre�x B-tree (approximately

30 minutes versus 2.5 hours). Moreover, our SB-tree occupied slightly less space than a Pre�x-

B-tree even in our 12:3-per-indexed-su�x implementation. The problem posed by Pre�x B-trees

regards information duplication, whereas SB-trees exploited lexicographic order better. We expect

to save much more space for larger values of q and N .

Finally, we compared SB-trees to the \start-over" solution obtained by merging two su�x

arrays which stored SUFm and all the su�xes kept in the SB-tree leaves, respectively. We set the

4We used the e�cient implementation by P. Weinberger at AT&T [32].
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page size to B = 1 kilobytes and took m = 104 with N = 32 and 64 million su�xes. In this case,

inserting into the SB-tree usually went twice as fast as merging the two su�x arrays. We expect

to save even more time for larger N 's; however, if m approaches N
b
, merging su�x arrays takes

as much time as updating SB-trees (as previously veri�ed for SB-tree reconstruction).

5 Conclusions and Further Research

In this paper, we presented an e�cient implementation of the SB-tree data structure. A large set

of experiments con�rmed our theoretical predictions: SB-trees lead to very fast searches and can

be updated in a reasonable amount of time. In the light of their good theoretical bounds and very

good practical performance, we believe that SB-trees can be a very signi�cant tool in practical

applications.

As far as further research goes, we suggest using the I/O interface provided by the Transparent

Parallel I/O Environment (TPIE) [30] to study the bu�ering strategy's in
uence on SB-trees'

overall performance. We believe that particular attention should be given to obtaining a good

tuning between the page size and the string length in order to improve insertion performance (see

Section 4.2). We also believe that the following topics deserve further study and experimentation:

� Static Text. Space saving is also important for a static text. For example, let us take a

text collection stored on a CD-ROM and assume that we want to keep its index on some other

CD-ROMs. The main problem is how to limit their number. This, in turn, involves the problem

of reducing the index space as much as possible while maintaining acceptable performance. If

the set is �xed, we can simplify the SB-tree structure a great deal as shown in Section 3.1. We

can also store the SB-tree in a heap-like fashion, and therefore make the retrieval of an internal

node's child possible by simple arithmetic operations. We suggest studying the time/space trade-

o� achievable by this simpli�ed SB-tree in order to evaluate the in
uence of parameter k on the

search and update performance (see Section 3.1).

� Databases. Text indexing data structures have a new application to databases with variable-

length records, since they e�ciently maintain the lexicographic order among byte sequences (the

record �le) under record insertions and deletions. It is possible to maintain several indices on the

same database without duplicating its (multiple) keys. This is important in compound attribute

organizations [19, Sect 6.5] for maintaining the lexicographic order of combined attributes of

records without having to make (multiple) copies of them. Our idea is to consider each variable-

length record in the database as a text string. With respect to Pre�x B-trees that introduce key

duplication, SB-trees use lexicographic order better and take advantage of the longest common

pre�x of two consecutive keys. Our experiments showed that SB-tree updating is �ve times

faster than UNIX Pre�x B-tree updating while the SB-tree takes up even less space. Commercial

databases could therefore take advantage of this new technology.

� Amortized insertion. It does not seem likely that the O(m logB(N+m)) worst-case insertion

complexity can be improved because it matches the worst-case bound achieved for inserting m

standard keys in a regular B-tree (in the worst case, each key must be stored in a distinct

leaf). However, the experimental results showed that the optimal worst-case complexity is too

pessimistic and hence, it would be very useful to devise a faster amortized solution.
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