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Abstract

We introduce a new text-indexing data structure, the String B-Tree, that can be

seen as a link between some traditional external-memory and string-matching data

structures. In a short phrase, it is a combination of B-trees and Patricia tries for

internal-node indices that is made more e�ective by adding extra pointers to speed

up search and update operations. Consequently, the String B-Tree overcomes the the-

oretical limitations of inverted �les, B-trees, pre�x B-trees, su�x arrays, compacted

tries and su�x trees. String B-trees have the same worst-case performance as B-trees

but they manage unbounded-length strings and perform much more powerful search

operations such as the ones supported by su�x trees. String B-trees are also e�ective

in main memory (RAM model) because they improve the online su�x tree search on

a dynamic set of strings. They also can be successfully applied to database indexing

and software duplication.
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1 Introduction

Large-scale heterogeneous electronic text collections are more available now than ever be-

fore and range from published documents (e.g. electronic dictionaries and encyclopedias,

libraries and archives, newspaper �les, telephone directories, textbook materials, etc.) to

private databases (e.g., marketing information, legal records, medical histories, etc.). A

great number of texts are spread over Internet every day in the form of electronic mail,

bulletin boards, World Wide Web pages, etc. Online providers of legal and newswire texts

already have hundreds of text gigabytes and will soon have terabytes. Many applications

treat large text collections that change over time, such as data compression [49, 50, 14, 35],

computer virus detection [28], genome data banks [21], telephone directory handling [12]

and software maintenance [7]. Last but not least, databases can also be considered dynamic

text collections because their records are essentially byte sequences that change over time.

In this context, indexing data structures and searching engines are fundamental tools for

storing, updating and extracting useful information from data in external storage devices

(e.g., disks or CD-ROMs). However, while main memory is a high-speed electronic device,

external memory is essentially a low-speed mechanical device. Main-memory access times

have decreased from 30 to 80 percent a year, while external-memory access times have

not improved much at all over the past twenty years [38]. Nevertheless, we need exter-

nal storage because we cannot build a main memory having an unbounded capacity and

single-cycle access time. Ongoing research is trying to improve the input/output subsystem

by introducing some hardware mechanisms such as disk arrays, disk caches, etc. [38], and

is investigating how to arrange data on disks by means of some e�cient algorithms and

data structures that minimize the number of external-memory accesses [45]. We therefore

believe that the design and analysis of external-memory text-indexing data structures is

very important from both a theoretical and a practical point of view.

Surprisingly enough, in scienti�c literature, no good worst-case bounds have been ob-

tained for algorithms and data structures manipulating arbitrarily-long strings in external

memory. As far as traditional external-memory data structures are concerned, inverted

�les [39], B-trees [9] and their variations, such as Pre�x B-trees [10, 15], are well-known

and ubiquitous tools for manipulating large data but their worst-case performance is not

e�cient enough when their keys are arbitrarily long. As far as string-matching data struc-

tures are concerned, su�x arrays [22, 33], Patricia tries [22, 36] and su�x trees [34, 48] are

particularly e�ective in handling unbounded-length strings which are small enough to �t

into main memory. However, they are no longer e�cient when the text collection becomes

large, changes over time and makes considerable use of external memory. Their worst-case

ine�ciency is mainly due to the fact that they have to be packed into the disk pages in

order to avoid that too many pages remain almost empty after a few updates. In the worst

case, this situation can seriously degenerate in external memory. In Section 5, we discuss

in detail the properties and drawbacks of these tools.

As a result, the design of external-memory text-indexing data structures whose perfor-

mance is provably good in the worst case is important. In this paper, we introduce a new

data structure, the String B-Tree 1 which achieves this goal. In a short phrase, it is a com-

1The original name of the data structure was SB-tree [18, 19]. Recently, Don Knuth pointed out the

1



bination of B-trees and Patricia tries for internal-node indices that is made more e�ective

by adding extra pointers to speed up search and update operations. In a certain sense,

String B-trees link external-memory data structures to string-matching data structures

by overcoming the theoretical limitations of inverted �les (modi�ability and atomic keys),

su�x arrays (modi�ability and contiguous space), su�x trees (unbalanced tree topology)

and pre�x B-trees (bounded-length keys). The String B-tree is the �rst external-memory

data structure that has the same worst-case performance as regular B-trees but handles

unbounded-length strings and performs much more powerful search operations such as the

ones supported by su�x trees.

We formalize our operations by means of two basic problems. We use standard termi-

nology for an s-character string X[1; s] by callingX[1; i] a pre�x , X[j; s] a su�x and X[i; j]

a substring of X, for 1 � i � j � s. We say that there is an occurrence of a pattern string

P in X if we can �nd a substring X[i; i+ jP j � 1] equal to P .

Problem 1 (Pre�x Search and Range Query). Let � = f�1; : : : ; �kg be a set of text

strings whose total length is N . We store � and keep it sorted in external memory un-

der the insertion and deletion of individual text strings. We allow for the following two

queries: (1) Pre�x Search(P ) retrieves all of �'s strings whose pre�x is pattern P ; (2) Range

Query(K 0; K 00) retrieves all of �'s strings between K 0 to K 00 in lexicographic order. We let

occ denote the number of strings retrieved by a query.

Problem 1 represents the typical indexing problem solved by B-trees, here generalized

to treat unbounded-length strings. For example, let us examine string set � = f`ace', `aid',

`atlas', `atom', `attenuate', `by', `bye', `car', `cod', `dog', `�t', `lid', `patent', `sun', `zoo'g.

Pre�x Search(`at') retrieves strings: `atlas', `atom' and `attenuate' (here, occ = 3), while

Range Query(`cap', `left') retrieves strings: `car', `cod', `dog' and `�t' (here, occ = 4).

Problem 2 (Substring Search). Let � = f�1; : : : ; �kg be a set of text strings whose

total length is N . We store � in external memory and maintain it under the insertion and

deletion of individual text strings. We allow for the query: Substring Search(P ) �nds all of

P 's occurrences in �'s strings. We denote the number of such occurrences by occ.

Problem 2 extends Problem 1 because it deals with arbitrary substrings of �'s strings.

For example, Substring Search(`at') retrieves occurrences `atlas',`atom', `attenuate' and

`patent' (here, occ = 5). This generalization inevitably complicates the update operations

because, while updating � in Problem 1 only involves a single text string, in Problem 2 it

involves all of its su�xes.

We investigate Problems 1 and 2 in the classical two-level memory model [16]. It

assumes that there is a fast and small main memory (i.e., random access memory) and a

slow and large external memory (i.e., secondary storage devices such as magnetic disks or

CD-ROMs). The external memory is assumed to be partitioned into transfer blocks, called

disk pages, each of which contains B atomic items, like integers, characters and pointers.

We call B the disk page size and a disk page reading or writing operation disk access.

According to [16], we analyze and provide asymptotical bounds for: (a) the total number

existence of a di�erent data structure named \SB-tree" [37], where the \S" stands for \sequential".
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of disk accesses performed by the various operations; (b) the total number of disk pages

occupied by the data structure.

In the scienti�c literature there are several indexing data structures that can be em-

ployed to e�ciently solve Problems 1 and 2. We discuss them in detail in Section 5. We

wish to point out here that Problem 1 can be solved by a plain combination of B-trees

and Patricia tries for internal nodes. This takes O( p
B
logB k +

occ

B
) disk accesses for Pre�x

Search(P ), and O(m
B
logB k) disk accesses for inserting or deleting a string of length m in �.

Although interesting as p=B < 1 in practical cases, this combination does not achieve the

optimal theoretical bounds as shown below. As far as Problem 2 is concerned, this combina-

tion takes O( p
B
log

B
N+ occ

B
) disk accesses for Substring Search(P ), and O((m

B
+1)m log

B
N)

disk accesses for inserting or deleting (all the su�xes of) a string of length m in �. Notice

that the latter bound is quadratic in m because a string insertion/deletion might require

to entirely rescan all of its su�xes from the beginning, thus examining overall �(m2) char-

acters. Another interesting solution is given by a single Patricia trie built on the whole

set of su�xes of �'s strings [13]. This achieves O( hp
p
+ logpN) disk accesses for Substring

Search(P ), where h � N is Patricia trie's height. Inserting or deleting a string in � costs

at least as searching for all of its su�xes individually. These two solutions are practically

attractive but do not guarantee provably good performance in the worst case.

Our main contribution is to show that the data structure resulting from the plain

combination of B-trees and Patricia tries can be further re�ned and made more e�ective

by adding extra pointers and proving new structural properties that avoid the drawbacks

previously mentioned. By means of String B-trees, we achieve the following results:

Problem 1:

� Pre�x Search(P ) takes O(p+occ
B

+ logB k) worst-case disk accesses, where p = jP j.

� Range Query(K 0; K 00) takes O(k
0+k00+occ

B
+logB k) worst-case disk accesses, where k

0 =

jK 0j and k00 = jK 00j.

� Inserting or deleting a string of lengthm in string set � takes O(m
B
+logB k) worst-case

disk accesses.

� The space usage is �( k
B
) disk pages, while the space occupied by string set � is �(N

B
)

disk pages.
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Problem 2:

� Substring Search(P ) takes O(p+occ
B

+ log
B
N) worst-case disk accesses, where p = jP j.

� Inserting or deleting a string of length m in string set � takes O(m log
B
(N + m))

worst-case disk accesses.

� The space used by both the String B-tree and string set � is �(N
B
) disk pages.

The space usage of String B-trees in Problem 1 is proportional to the number k of

�'s strings rather than to their total length N , because we represent the strings by their

logical pointers. It turns out that the space occupied is asymptotically optimal in both

Problems 1 and 2. The constants hidden in the big-Oh notation are small. Additionally,

the String B-tree operations take asymptotically optimal CPU time, i.e., O(Bd) time when

our algorithms read or write d disk pages, and they only need to keep a constant number

of disk pages loaded in main memory at any time.

1.1 Further Results in External Memory

Let us examine the parameterized pattern matching problem, introduced by [7] for identify-

ing duplication in a software system. The problem consists of �nding the program fragments

that are identical except for a systematic renaming of their parameters. In this case, the

program fragments are represented by some parameterized strings, called p-strings. A suf-

�x tree generalization, called p-su�x tree [7], allows us to search for p-strings online and

to identify p-string duplications by ignoring parameter renaming. P-su�x trees and the

other p-string algorithms [4, 26, 30] are designed to work in main memory and have to

deal with the dynamic nature of parameter renaming. We can formulate Problems 1 and 2

for p-strings and then apply String B-trees to them by means of some minor algorithmic

modi�cations. Consequently, the aforementioned theoretical results regarding strings can

be extended to p-strings. Our search bound improves the one obtained in [7, 30] for large

alphabets, even when the p-string set is static. We refer the interested reader to Section 6.1

for further details.

Let us now examine the databases that treat variable-length records (not necessarily

textual databases), and in particular, their compound attribute organization [31] and [29,

Sect 6.5], in which the lexicographic order of some records' combinations is properly main-

tained. An example of this is indexing an employee database according to the string

obtained by concatenating employee's name, o�ce and phone number. Pre�x B-trees [9]

are the most widely-used tool in managing compound attribute organizations. However,

since they work by copying some parts of the key strings, they cause data duplication and

space overhead. Conversely, String B-trees fully exploit the lexicographic order and take

advantage of the pre�x shared by any two (consecutive) key strings. As a consequence, we

can use String B-trees to support this organization without having to copy the attributes in

the data structure because we can interpret each variable-length record as a text string of

arbitrary length and so use our solution to Problem 1. The space usage of String B-trees is

proportional to the number of key strings and not to their total length; thus, String B-trees

achieve much better worst-case space saving with respect to pre�x B-trees. We refer the

interested reader to Section 6.2 for more details.
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1.2 Results in Main Memory (RAM model)

Fixing B = O(1), the String B-tree can be seen as an augmented 2{3-tree [2] that allows

us to obtain some interesting results in the standard RAM model, due to its balanced tree

topology.

� We improve the online search in su�x trees when they store a dynamic set of strings

whose characters are taken from a large alphabet [3, 25]. Speci�cally, we reduce the search-

ing time from O(p logN + occ) to O(p+ logN + occ) by using our solution to Problem 2.

This was previously achieved by [33] only for a static string set by means of su�x arrays.

� We implement dynamic su�x arrays [17] in linear O(N) space without using the

naming technique of [27]. We still obtain an alphabet-independent search and the updates

run within the same time bounds as in [17]. We refer the reader to Section 6.3.

�We obtain a tight bound, i.e., �(N+k log k), in the comparison model for the problem

of sorting �'s strings online. We start out with an empty String B-tree and then insert �'s

strings one at a time by means of the procedure used in Problem 1. This approach requires

a total of O(N + k log k) comparisons. The lower bound 
(N + k log k) holds because
we must examine all of the N input characters and output a permutation of k strings.

A straightforward use of compacted tries [29] would require O(N + k2 log k) comparisons

in the worst case. A recent optimal approach based upon ternary search trees has been

described in [11].

The rest of this paper is organized as follows. In Section 2, we introduce String B-trees

and discuss their main properties and operations. We give a formal, detailed description of

them in Sections 3 and 4. In Section 5, we review and discuss some previous work on the

most important data structures for manipulating external-memory text collections with the

aim of clarifying String B-trees' main properties and advantages. In Section 6, we study

the applicability of String B-trees. We conclude the paper with some open problems and

some suggestions for further research.

2 The String B-Tree Data Structure

We assume that each string in the input set � is stored in a contiguous sequence of disk

pages and represent the strings by their logical pointers to the external-memory addresses of

their �rst character, as shown in Figure 1. We can therefore locate the disk page containing

the i-th character of a string by performing a constant number of simple arithmetical

operations on its logical pointer. When managing keys in the form of logical pointers

to arbitrarily-long strings we are faced with two major di�culties that are not usually

encountered in other �elds, such as computational geometry [23]:

� We can group �(B) logical pointers to strings into a single disk page but, unfortu-

nately, if we only read this page, we are not able to retrieve strings' characters.

� We can compare any two strings character-by-character but this is extremely inef-

�cient if repeated several times because its worst-case cost is proportional to the

length of the two strings involved each time. We call this problem rescanning , due

to the fact that the same input characters are (re)examined several times.
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∆ = { ace, aid, atlas, atom, attenuate, by, bye, car, cod, dog, fit, lid, patent, sun, zoo }

10 1716131211 20191814 15987654321

B=8
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Figure 1. An example of storing string set � in external memory. The strings are not put in

any particular order. Disk is represented by a linear array with disk page size B = 8. The logical

pointers to �'s strings are their starting positions in external memory. For example, 48 is the

logical pointer to string `�t' and 14 is the logical pointer to su�x `nuate'. The black boxes in the

disk pages denote special endmarkers that prevent two su�xes of �'s strings from being equal.

Consequently, we believe that a proper organization of the strings and a method for avoiding

rescanning are crucial to solve Problems 1 and 2 with provably good performance in the

worst case, and we show how to do this in the rest of this section.

We begin by describing a B-tree-like data structure that helps us to solve Problem 1

by handling keys which are logical pointers to arbitrarily-long strings. Since the worst-

case bounds obtained are not the ones claimed in the introduction, we perform another

step and transform the B-tree-like data structure into a simpli�ed version of the String B-

tree by properly organizing the logical pointers inside its nodes by means of Patricia tries.

This combination is described in Section 2.1, where we introduce new structural properties

that allow us to design a search procedure which avoids the rescanning problem previously

mentioned, thus showing how to solve Problem 1 e�ciently. Finally, we show in Section 2.2

how to obtain the �nal version of the String B-tree for solving Problem 2 by adding some

extra pointers and proving further properties that are crucial to achieve our bounds.

2.1 Pre�x Search and Range Query (Problem 1)

We start out by describing a B-tree-like data structure which gives us an initial, rough

solution to Problem 1. As previously stated, we represent strings by their logical pointers.

The input is a string set � whose total number of characters is N . We denote by K =

fK1; : : : ; Kkg the set of �'s strings in lexicographic order, denoted by �L. We assume

that strings K1; : : : ; Kk reside in the B-tree leaves, which are linked together to form a

bidirectional list, and only some strings are copied in the internal nodes|we obtain the

so-called B+-tree [15]. We denote the ordered string set associated with a node � by S�,

where S� � K, and denote S�'s leftmost string by L(�) and S�'s rightmost string by R(�).
We store each node � in a single disk page and put a constraint on the number of its strings:
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π

σ1 σ σg2

Figure 2. The logical layout of a B-tree internal node � having g = n(�) children.

b � jS�j � 2b, where b = �(B) is an even integer properly chosen to let a single node �t

into a disk page. We allow the root to contain less than b strings.

We distribute the strings among the B-tree nodes as follows: We partition K into

groups of b consecutive strings each, except for the last group which can contain from b
to 2b strings. We map each group to a leaf, say �, and form its string set S� in such a

way that we can retrieve K by scanning the leaves rightwards and by concatenating their

string sets. Each internal node � has n(�) children �1; : : : ; �n(�) and its ordered string

set S� = fL(�1); R(�1); : : : ; L(�n(�)); R(�n(�))g is obtained by copying the leftmost and

rightmost strings contained in its children, as shown in Figure 2. (Actually, we could only

copy one string from each child but this would make our algorithms more complex.) Since

n(�) = jS�j
2
, each node has from b

2
to b children except for the root and the leaves, and the

resulting number of B-tree levels is H = O(log
b=2 k) = O(log

B
k). We call H its height, and

number these levels by starting from the root (level 1). See Figure 3 for an example.

Problem 1 can be solved by using the B-tree-like layout described above. We only

discuss the Pre�x Search(P ) operation in detail. It is based on an interesting observation

introduced by Manber and Myers [33]: the strings having pre�x P occupy a contiguous part

of K. In the example described in Section 1, the strings having pre�x P = `at' all range

from string `atlas' to string `attenuate'. Consequently, we only have to retrieve K's leftmost

and rightmost strings whose pre�x is P because the rest of the strings to be retrieved lie

in K between these two strings. In our case, these strings occupy a contiguous sequence

of B-tree leaves|i.e., the ones storing the logical pointers 35, 5 and 10 in Figure 3. In

another observation of theirs, Manber and Myers identify the leftmost string whose pre�x

is P : this string is adjacent to P 's position in K according to the lexicographic order �L. In

the example given in Section 1, if P = `at', its position in K is between strings `aid' and

`atlas'; in fact, `atlas' is the leftmost string we are looking for. A symmetrical observation

holds for the rightmost string and so we do not discuss it here. Since K is a dynamic set

partitioned among the B-tree leaves, we can use Manber and Myers' observations in our

B-tree-like layout. We therefore answer Pre�x Search(P ) by focusing on the retrieval of

P 's position in K. We represent P 's position in the whole set K by means of a pair (�; j),
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Figure 3. An example of B-tree-like layout (upper part) and its input string set � (lower part).

Set K = f`ace', `aid', `atlas', `atom', `attenuate', `by', `bye', `car', `cod', `dog', `�t', `lid', `patent',

`sun', `zoo'g is obtained by sorting �. The strings in K are stored in the B-tree leaves by means

of their logical pointers 56, 1, 35, 5, 10, : : :, 31.

such that � is the leaf containing this position and j � 1 is the number of S� 's strings

lexicographically smaller than P , where 1 � j � jS� j+1. We also say that j is P 's position

in set S� . In our example for P = `at', � is the leftmost leaf in Figure 3 and j = 3, where

S� is made up of the strings pointed by 56, 1, 35 and 5.

In Figure 4, we illustrate the algorithmic scheme for identifying pair (�; j), where we

denote the procedure that determines P 's position in a set S� by PT-Search(P , S�). We

begin by checking the two trivial cases in which P is either smaller than any other string

in K (Step (1)) or larger than any other string in K (Step (2)). If both checks turn out to

be false, we start out from � = root in Step (3) and perform a downward B-tree traversal

by maintaining the invariant : L(�) <L P �L R(�) for each node � visited (Steps (4){

(8)). In visiting �, we load its disk page and apply procedure PT-Search in order to �nd

P 's position j in string set S�, namely, we determine its two adjacent strings verifyingcKj�1 <L P �L
cKj. If � is a leaf, we stop the traversal. If � is an internal node, we have

the following two cases:

(1) If strings cKj�1 and cKj belong to two distinct children of �, say cKj�1 = R(�0) and

8



(1) if P �L K1 then � := leftmost leaf; j := 1; return(�; j);

(2) if P >L Kk then � := rightmost leaf; j := jS� j+ 1; return(�; j);

(3) � := root;

while true do /* Invariant: L(�) <L P �L R(�) */

(4) Load �'s page and let S� = fcK1; : : : ;cK2n(�)g;

(5) j := PT-Search(P , S�); /* cKj�1 <L P �L
cKj */

(6) if � is a leaf then � := �; return(�; j);

(7) if cKj = L(�), for a child � of � then

� := �'s leftmost descending leaf; j := 1; return(�; j);

(8) if cKj = R(�), for a child � of � then � := �;

endwhile

Figure 4. The pseudocode for identifying pair (�; j) that represents P 's position in K.

cKj = L(�) for two children �0 and �, then the two strings are adjacent in the whole

set K due to B-tree's layout. This determines P 's position in K. We therefore

choose � as the leftmost B-tree leaf that descends from � and conclude that P is

in the �rst position in S� because L(�) = L(�) = cKj.

(2) If both cKj�1 and cKj belong to the same child, say
cKj�1 = L(�) and cKj = R(�) for

a child �, then we set � := � in order to maintain the invariant and continue the

B-tree traversal on the next level recursively.

At the end of this traversal, we �nd the pair (�L; jL) that represents the position of K's

leftmost string having pre�x P . In the same way, we can determine the pair (�R; jR)

that represents the position of K's rightmost string having pre�x P . We go on to answer

Pre�x Search(P ) by scanning the linked sequence of B-tree leaves delimited by �L and �R
(inclusive) and by listing all the strings from the (jL)-th string in S�L up to the (jR� 1)-th

string in S�R .

The search described so far is similar to the one used for regular B-trees, especially if we

implement procedure PT-Search by performing a binary search of P in set S� and examining

O(log2 jS�j) = O(log2B) strings. While this binary search does not cost anything more

in regular B-trees, in this case, once we load �'s disk page, we have to pay O( p
B
+ 1)

disk accesses to load each string examined and compare it to P because we represent the

strings by their logical pointers. Consequently, a call to PT-Search takes O(( p
B
+ 1) log2B)

disk accesses in the worst case. It follows that this simple approach for Pre�x Search calls

PT-Search H times and thus takes a total of O(H ( p
B
+ 1) log2B) = O(( p

B
+ 1) log2 k)

disk accesses plus O(occ
B
) disk accesses for retrieving the strings delimited by leaves �L

and �R. This bound is the same as for the su�x array search without any auxiliary data

structures [33], and worse than the one we claimed in the introduction. Nevertheless, the

B-tree-like layout gives us a good starting point for �nding an e�cient implementation of

Pre�x Search.

We now carry out another step in the B-tree-like layout by plugging a Patricia trie [36]

into each B-tree node in order to organize its strings properly and support searches that
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Figure 5. The number labeling an internal node u denotes the length of the string spelled out

by the downward path from the root to u.

compare only one string of set S� in the worst-case rather than the log2 jS�j ones required

for a binary search. We call the resulting data structure the simpli�ed String B-tree. 2

Let us examine a node � in the String B-tree and the Patricia trie PT� plugged into

it. We can de�ne PT� in two steps: (1) We build a compacted trie [29] on S�'s strings

(see Figure 5, left). (2) We label each compacted trie node by the length of the substring

stored into it and we replace each substring labeling an arc by its �rst character only,

called branching character (see Figure 5, right). On one hand, the Patricia trie loses

some information with respect to the compacted trie because we delete all the characters

in each arc label except the branching character. On the other hand, the Patricia trie

has two important features that we discuss below: (i) it �ts �(B) strings into one B-

tree node independently of their length; (ii) it allows to perform lexicographic searches

by branching out from a node without further disk accesses. It is worth noting that a

compacted trie might satisfy feature (i) by representing the substrings labeling its arcs

via pairs of pointers to their external-memory positions; however, feature (ii) would be no

longer satis�ed because of the pairs of pointers and this would increase the number of disk

accesses taken by the search operation.

We now show how to exploit some new properties of Patricia tries for implementing the

PT-Search procedure in two phases. Due to its features, hereafter we will call this search

procedure blind search:

2We were not able to �nd any source in the research literature referring to a data structure based on

B-trees and Patricia tries for internal nodes, and resembling the simpli�ed String B-tree. Probably some

programmers know such a data structure. Nonetheless, we highlight new structural properties that are

crucial to achieve optimal worst-case bounds for Problem 1.
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Figure 6. (Left) An example of the �rst phase in blind search. The marked arcs are the traversed

ones. (Right) An example of the second phase in blind search. The hit node is circled, and the

marked arcs are the ones traversed to �nd P 's position in S�.

� In the �rst phase, we trace a downward path in PT� to locate a leaf l, which does not
necessarily identify P 's position in S�. We start out from the root and only compare

some of P 's characters with the branching characters found in the arcs traversed until

we either reach a leaf, say l, or no further branching is possible. In the latter case,

we choose l to be a descending leaf from the last node traversed.

� In the second phase, we load l's string and compare it to P in order to determine

their common pre�x. We prove a useful property (Lemma 3.5): Leaf l stores one

of S�'s strings that share the longest common pre�x with P . We use this common

pre�x in two ways: we �rst determine l's shallowest ancestor (the hit node) whose

label is an integer equal to, or greater than, the common pre�x length of l's string

and P . We then �nd P 's position by using P 's mismatching character to choose a

proper Patricia trie leaf descending from the hit node.

We give an example of PT-Search(P , S�) in Figure 6, where P = `bcbabcba'. In partic-

ular, Figure 6(left) depicts the �rst phase in which l represents the rightmost leaf. It is

worth noting that l does not identify P 's position in S� because we do not compare P 's

mismatching character (i.e., P [4] = `a') and thus we induce a \mistake." We determine

P 's correct position in the second phase, illustrated in Figure 6(right). We start out by

determining the common pre�x of l's string and P (i.e., `bcb') and then we �nd l's shal-
lowest ancestor (the hit node) whose label is greater than j`bcb'j = 3. After that, we use

mismatching character P [4] = `a' to identify P 's correct position j = 4 by traversing the
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marked arcs in Figure 6(right). It is worth noting that we only load the disk pages that

store pre�x `bcbc' in l's string because the Patricia trie is stored in �'s disk page, thus

making the branching characters available. In this way, we do not take more than O( p
B
+1)

disk accesses to execute PT-Search.

It is now clear that putting Patricia tries and the previously described B-tree layout

together, we avoid the binary search in the nodes traversed and thus reduce the overall com-

plexity from O(( p
B
+1) log2 k) to O((

p

B
+1)H) = O(( p

B
+1) logB k) disk accesses. However,

this bound is yet not satisfactory and does not match the one claimed in the introduction.

The reason is that at each visited node we are rescanning P from the beginning. We avoid

rescanning and obtain the �nal optimal bound by designing an improved PT-Search proce-

dure that derives directly from the previous one but exploits the String B-tree layout and

the Patricia trie properties better. It takes three input parameters (P;S�; `), where the

additional input parameter ` satis�es the property that there is a string in S� whose �rst `

characters are equal to P 's. PT-Search(P;S�; `) returns pair (j; lcp), where j is P 's position

in S� (as before) and the additional output parameter lcp is the common pre�x length of

l's string and P computed in the blind search. A comment is in order at this point. We can

show that lcp � ` (see Lemma 3.6) and can therefore design a fast incremental PT-Search

that compares P to l's string by only loading and examining the characters in positions

` + 1; : : : ; lcp + 1. As a result, PT-Search now only takes d lcp�`
B
e + 1 disk accesses (see

Theorem 3.8).

We now go back to the algorithmic scheme for �nding P 's position in the whole set

K. The above considerations allow us to modify the pseudocode in Figure 4 by adding

instruction ` := 0 to Step (3) and by replacing Step (5) with:

(5) (j; `) := PT-Search(P , S�, `)

We are now ready to analyze Pre�x Search's complexity. As previously mentioned,

we have to search for K's leftmost and rightmost strings having pre�x P by identifying

the pairs (�L; jL) and (�R; jR). We do this by means of our modi�ed pseudocode which

traverses a sequence of nodes, say �1; �2; : : : ; �H . The cost of examining �i is dominated

by Step (5), which takes di = d
`i�`i�1

B
e + 1 �

`i�`i�1

B
+ O(1) disk accesses because we

execute PT-Search with ` = `i�1 to compute lcp = `i. The total cost of this traversal

is
P

H

i=1 di =
`H�`0
B

+ O(H) = O( p
B
+ log

B
k) disk accesses. We use the fact that it is a

telescopic sum, where `0 = 0, `H � p and H = O(logB k). Subsequently, we retrieve K's

strings having pre�x P by examining the leaves of the String B-tree delimited by �L and

�R in O(occ
B
) disk accesses. The total cost of Pre�x Search(P ) is therefore O(p+occ

B
+ logB k)

disk accesses. We refer the reader to Section 4.1 for a detailed, formal discussion of this

result.

The simpli�ed String B-tree layout has the considerable advantage of being dynamic

without requiring any contiguous space. A new string K can be inserted into � like regular

B-trees, that is, by inserting K into K in lexicographic order. We identify K's position in

K by computing its pair (�; j). We then insert K into string set S� at position j. If L(�)

or R(�) change in � , then we extend the change to � 's ancestors. After that, if � gets full

(i.e., it contains more than 2b strings), we say that a split occurs. We create a new leaf �

and install it as an adjacent sibling of � . We then split string set S� into two roughly equal

parts of at least b strings each, in order to obtain � 's and �'s new string sets. We copy
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strings L(�); R(�); L(�) and R(�) in their parent node in order to replace the old strings

L(�) and R(�). If � 's parent also gets full because it has two more strings, we split it. In

the worst case, the splitting can extend up to the String B-tree's root and the resulting

String B-tree's height can increase by one.

The deletion of a string from � is similar to its insertion, except that we are faced with

a leaf that gets half-full because it has less than b strings. In this case, we say that a merge

occurs and we join this leaf and an adjacent sibling leaf together: we merge their string sets

and propagate the merging to their ancestors. In the worst case, the merging can extend

up to the String B-tree's root and so the height can decrease by one.

The cost for inserting or deleting a string is given by its searching cost plus the O(log
B
k)

rebalancing cost. We can prove the following result:

Theorem 2.1 (Problem 1). Let � be a set of k strings whose total length is N . Pre-

�x Search(P ) takes O(p+occ
B

+ log
B
k) worst-case disk accesses, where p = jP j. Range

Query(K 0; K 00) takes O(k
0+k00+occ

B
+ log

B
k) worst-case disk accesses, where k0 = jK 0j and

k00 = jK 00j. Inserting or deleting a string of length m takes O(m
B
+ logB k) worst-case disk

accesses. The space occupied by the String B-tree built on � is �( k
B
) disk pages and the

space required by string set � is �(N
B
) disk pages.

2.2 Substring Search (Problem 2)

We now show how solve Problem 2, in which the input is a string set � = f�1; : : : ; �kg
whose total number of characters is N =

P
k

h=1 j�hj. We denote the su�x set by SUF (�) =

f�[i; j�j] : 1 � i � j�j and � 2 �g, which therefore contains N lexicographically ordered

su�xes. As previously mentioned, Problem 2 concerns with a more powerful Substring

Search(P ) operation that searches for P 's occurrences in �'s strings, i.e., it �nds all the

length-p substrings equal to P . Since each of these occurrences corresponds to a su�x

whose pre�x is P|i.e., �[i; i+p�1] = P if and only if P is a pre�x of �[i; j�j] 2 SUF (�)|

our problem is actually to retrieve all of SUF (�)'s strings having pre�x P . We therefore

turn a Substring Search(P ) on string set � into a Pre�x Search(P ) on su�x set SUF (�).

For example, let us examine the String B-tree shown in Figure 7 and search for P = `at'.

We have to retrieve occ = 5 occurrences: `atlas',`atom', `attenuate' and `patent'. The

su�xes having pre�x P and corresponding to these occurrences have their logical pointers

(i.e., 16, 25, 35, 5 and 10) stored in a contiguous sequence of leaves in Figure 7. As a result,

we can set the string set K = SUF (�) and its size k = N and execute Pre�x Search(P ).

The total cost of answering Substring Search(P ) is therefore O(p+occ
B

+ log
B
N) worst-case

disk accesses by Theorem 2.1.

Although this transformation notably simpli�es the search operation, it introduces some

updating problems that represent the most challenging part of solving Problem 2. We

wish to point out that the insertion of an individual string Y into string set �, where

m = jY j, consists of inserting all of its m su�xes into su�x set SUF (�) in lexicographic

order. Consequently, we could consider inserting one su�x at a time, say Y [i;m], with

di = O( jY [i;m]j
B

+log
B
N) disk accesses by Theorem 2.1 with K = SUF (�) and k = N . The

total insertion cost would be
P

m

i=1 di = O(m (m
B
+1)+m log

B
(N+m)) disk accesses and this

is worse than the O(m logB(N+m)) worst-case bound we claimed in the introduction. The
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Figure 7. An example of an String B-tree layout for solving Problem 2 on string set � =

f`aid', `atlas', `atom', `attenuate', `car', `patent', `zoo'g. Here, b = 4 and K = f`aid',`ar',`as', : : :,

`uate',`zoo' g.

problem here is that we treat the m inserted su�xes like arbitrary strings and this causes

the rescanning problem. The solution lies in the fact that they are all part of the same

string. Consequently, we augment the simpli�ed String B-tree by introducing two types of

auxiliary pointers which help us to avoid rescanning in the updating process: One type is

the standard parent pointer de�ned for each node; the other is the succ pointer de�ned for

each string in SUF (�) as follows. The succ pointer for �[i; j�j] 2 SUF (�) leads to String

B-tree's leaf containing �[i+ 1; j�j]. If i = j�j, then we let succ be a self-loop pointer to its

own leaf, i.e., the leaf containing �[i; j�j]. We only describe the logic behind Y 's insertion
here because its deletion is simpler, and treat the subject formally in Sections 4.2{4.5.

We insert Y 's su�xes into the String B-tree storing SUF (�) at the beginning, going

from the longest to the shortest one. We proceed by induction on i = 1; 2; : : : ; m and make

sure that we satisfy the following two conditions after Y [i;m]'s insertion:

(a) Su�xes Y [j;m] are stored in the String B-tree, for all 1 � j � i, and Y [i;m] shares

its �rst hi characters with one of its adjacent strings in the String B-tree.

(b) All the succ pointers are correctly set for the strings in the String B-tree except for

Y [i;m]. This means that succ(Y [i;m]) is the only dangling pointer, unless i = m,

in which case it is a self-loop pointer to its own leaf.

We refer the reader to the self-explanatory pseudocode illustrated in Figure 8 for further

details. We assume that Conditions (a) and (b) are satis�ed for i � 1. By executing
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procedure SB-Insert(Y );

m := jY j;

for i = 1; 2; : : : ;m do

(1) �nd the leaf �i that contains Y [i;m]'s position;

(2) insert Y [i;m] into �i;

(3) if a split occurs then rebalance the String B-tree;

redirect some succ and parent pointers;

(4) succ(Y [i� 1;m]) := leaf containing Y [i;m];

(5) if i = m then succ(Y [i;m]) := succ(Y [i� 1;m]); /* self-loop pointer */

endfor

Figure 8. The insertion algorithm.

Steps (1){(5), we make succ(Y [i;m]) be the new dangling pointer and satisfy Conditions (a)

and (b) for i. We therefore go on by setting i := i + 1 and repeat the insertion for the

next su�x of Y . The two main problems arising in the implementation of the insertion

procedure are:

� Step (1): We have to �nd Y [i;m]'s position without any rescanning.

� Step (3): We have to rebalance the updated String B-tree by redirecting some succ
and parent pointers e�ciently.

We now examine the problem of �nding Y [i;m]'s position (Step (1)). For i = 1, we �nd

Y [1; m]'s position by traversing the String B-tree analogously to Pre�x Search(Y [1; m]). We

take a di�erent approach for the rest of Y 's su�xes (i > 1) to avoid rescanning and induc-

tively exploit Conditions (a) and (b) for i� 1. When �nding Y [i;m]'s position, instead of

starting out from the root, we traverse the String B-tree from the last leaf visited in the

String B-tree (i.e., the one containing Y [i � 1; m]). Since Y [i � 1; m] = Y [i � 1]Y [i;m],

we would be tempted to use the succ(Y [i � 1; m]) pointer to identify Y [i;m]'s position

directly but cannot because the pointer is dangling by Condition (b). However, we know

that Y [i � 1; m] shares its �rst hi�1 characters with one of its adjacent strings by Condi-

tion (a). We therefore take the succ-pointer of this adjacent string, which is correctly set

by Condition (b), and reach a leaf which veri�es the following property: it contains a string

that shares the �rst maxf0; hi�1 � 1g characters with Y [i;m] (Lemma 4.8). We continue

the insertion by performing an upward and downward String B-tree traversal leading to

leaf �i, which contains Y [i;m]'s position. Since we can prove that hi � maxf0; hi�1 � 1g

(Corollary 4.9), our algorithm avoids rescanning by only examining Y 's characters in posi-

tions i +maxf0; hi�1 � 1g; : : : ; i + hi. We show that this \double" String B-tree traversal

correctly identi�es �i with
hi�maxf0;hi�1�1g

B
+O(log

B
(N +m)) disk accesses (Lemma 4.10).

After Y [i;m]'s insertion in its leaf, we have to rebalance the String B-tree if a split

occurs (Step (3)). A straightforward handling of parent and succ pointers would take

O(B log
B
(N +m)) worst-case disk accesses per inserted su�x because: (i) each node split

operation can redirect �(B) of these pointers from possibly distinct nodes; (ii) there can
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be H = O(logB(N +m)) split operations per inserted su�x. In Section 4.5, we show how

to obtain an O(log
B
(N +m)) amortized cost per su�x and then devise a general strategy

based on node clusters to achieve O(log
B
(N +m)) in the worst case.

As far as the worst-case complexity of Y [i;m]'s insertion is concerned, we take di =
hi�maxf0;hi�1�1g

B
+O(logB(N +m)) disk accesses, where h0 = 0 and hi � m. As a result, a

total of
P

m

i=1 di = O(m
B
+m log

B
(N +m)) = O(m log

B
(N +m)) disk accesses are required

for inserting Y into �. It is worth noting that we achieve the same worst-case performance

as for the insertion of m integer keys into a regular B-tree; but additionally, our bound

is proportional to the number of inserted su�xes rather than their total length, which

is bounded by �(m2). We give a formal, detailed discussion of the update operations in

Sections 4.2{4.5 and prove the following result:

Theorem 2.2 (Problem 2). Let � be a set of strings whose total length is N . Substring

Search(P ) takes O(p+occ
B

+ log
B
N) worst-case disk accesses, where p = jP j. Inserting a

string of length m in � or deleting it takes O(m logB(N + m)) worst-case disk accesses.

The space occupied by both the String B-tree and the string set � amounts to �(N
B
) disk

pages.

We begin our formal discussion with a technical description of the Patricia trie data

structure and its operations (Section 3). We then give a technical description of the String

B-tree data structure and discuss its operations in detail (Section 4).

3 A Technical Description of Patricia Tries

We let � denote an ordered alphabet and �L denote the lexicographic order among the

strings whose characters are taken from �. Given two strings X and Y that are not

each other's pre�x, we de�ne lcp(X; Y ) to be their longest common pre�x length, i.e.,

lcp(X; Y ) = k i� X[1; k] = Y [1; k] and X[k+1] 6= Y [k+1]. This de�nition can be extended
to the case in which X is Y 's pre�x (or vice versa) by appending a special endmarker to

both strings. The following fact illustrates the relationship between the lexicographic order

�L and the lcp value:

Fact 3.1. For any strings X1; X2; Y such that either X1 �L X2 �L Y or Y �L X2 �L X1:

lcp(X1; Y ) � lcp(X2; Y ).

Let us now consider an ordered string set S = fX1; : : : ; Xdg and assume that any

two strings in S are not each other's pre�x. We use the shorthand max lcp(Y;S) to

indicate the maximum among the lcp-values of Y and S's strings, i.e., max lcp(Y;S) =

maxX2S lcp(Y;X). We say that an integer j is Y 's position in set S if exactly (j � 1)

strings in S are lexicographically smaller than Y , where 1 � j � d+ 1. The following fact

illustrates the relationship between the max lcp value and S's strings near Y 's position:

Fact 3.2. If j is Y 's position in S, then

max lcp(Y;S) =

8><
>:

lcp(Y;X1) if j = 1

maxflcp(Xj�1; Y ); lcp(Y;Xj)g if 2 � j � d

lcp(Xd; Y ) if j = d+ 1.
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We introduce a de�nition of Patricia tries that is slightly di�erent from the one in [36],

but it is suitable for our purposes. A Patricia trie PTS built on S satis�es the following

conditions (see Figure 5):

(1) Each arc is labeled by a branching character taken from � and each internal node

has at least two outgoing arcs labeled with di�erent characters. The arcs are ordered

according to their branching characters and only the root can have one child.

(2) There is a distinct leaf v associated with each string in S. We denote this string by

W (v). Leaf v also stores its string length len(v) = jW (v)j.

(3) If node u is the lowest common ancestor of two leaves l and f , then it is labeled

by integer len(u) = lcp(W (l);W (f)) (and we let len(root) = 0). Speci�cally,

leaf l (resp., f) descends from u's outgoing arc whose branching character is the

(len(u) + 1)-st character in string W (l) (resp., W (f)).

Let us now consider an internal node u in PTS and denote u's parent by parent(u); we let
f be one of u's descending leaves. Property (3) suggests that we denote the string implicitly
stored in node u by W (u), that is, W (u) is equal to the �rst len(u) characters of W (f).

Arc (parent(u); u) implicitly corresponds to a substring of length (len(u)� len(parent(u)))
having its �rst character equal to the branching character W (f)[len(parent(u)) + 1] and

the other characters equal to W (f)'s characters in positions len(parent(u))+2; : : : ; len(u).
We can now introduce the de�nition of hit node that is the analog of the extended locus

notion in compacted tries [34]:

De�nition 3.3. The hit node for a pair (f; `), such that f is a leaf and 0 < ` � len(f),

is f 's ancestor u satisfying: len(u) � ` > len(parent(u)). If ` = 0, the hit node is the root.

Patricia tries do not take up very much space: PTS has d leaves and no more than d
internal nodes because only the root can have one child. Therefore, the total space required

is O(d) even if the total length of S's strings can be much more than d.

3.1 Blind Searching in Patricia Tries: PT-Search procedure

We propose a search method that makes use of Patricia trie PTS to e�ciently retrieve the

position of an arbitrary string P in an ordered set S. We stated the intuition and logic

behind it in Section 2.1 (PT-Search procedure). PT-Search's input is a triplet (P;S; `),
where ` � lcp(P;X) for a string X 2 S. The output is a pair (j; lcp) in which j is P 's

position in S and lcp = max lcp(P;S). Let us introduce a special character $ smaller than

any other character in � and let us assume without any loss in generality that P [i] = $

when i > jP j. We implicitly use the following fact to identify S's leftmost string whose

pre�x is P (we can also determine its rightmost one by letting $ be larger than any other

alphabet character).

Fact 3.4. There is a mismatch between P and any other string and, if any of S's strings

have pre�x P [1; jP j], then P 's position in S is to their immediate left.

There are two main phases in our procedure:
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First Phase: Downward Traversal. We locate a leaf, say l, by traversing PTS down-

wards. We start out from its root and compare P 's characters with the branching characters

of the arcs traversed. If u is the currently visited node and has an outgoing arc (u; v) whose

branching character is equal to P [len(u) + 1], then we move from u to its child v and set

u := v. We go on like this until we either reach a leaf, which is l, or we cannot branch any

further and then choose l as one of u's descending leaves. Leaf l stores one of S's strings

that satisfy the following useful property:

Lemma 3.5. If we let lcp denote lcp(W (l); P ), then lcp = max lcp(P;S).

Proof: By way of contradiction, we assume that there is another string X in S, such

that X 6= W (l) and lcp(X;P ) > lcp, and show that we cannot reach leaf l. We have

lcp(W (l); X) = lcp. Let u denote the lowest common ancestor of l and the leaf storing

X. From Property (3) of the Patricia tries, it follows that len(u) = lcp(W (l); X) and

P [len(u)+1] = X[len(u)+1] 6= W (l)[len(u)+1] (because lcp(X;P ) > lcp). Consequently,
W (u) is a proper pre�x of P and we can branch further out from u to its child v by matching

P [len(u) + 1] with branching character X[len(u) + 1]. Since the branching character is

di�erent fromW (l)[len(u)+1], we obtain the contradiction that v is not one of l's ancestors

and therefore l cannot be reached at the end of the downward traversal.

It is worth noting that we retrieve leaf l without performing any disk accesses because

we only use the branching characters stored in PTS 's disk page. Furthermore, l's position

does not necessarily correspond to P 's position in S (see Figure 6(left)).

Second Phase: Retrieval of P 's position in S. We compute lcp = lcp(W (l); P ) and

the two mismatching characters c = P [lcp+1] and c0 = W (l)[lcp+1] (which are well-de�ned
by Fact 3.4) by exploiting the following result:

Lemma 3.6. lcp � `.

Proof: We know that there is a string X 2 S, such that lcp(P;X) � `. Moreover,

max lcp(P;S) � lcp(P;X) by de�nition. Since lcp = max lcp(P;S) by Lemma 3.5, we

deduce that lcp � `.

From Lemma 3.6, we deduce that the �rst ` characters in P and W (l) are de�nitely

equal. We therefore compute lcp; c and c0 by starting out from the (`+1)-st characters in P

and W (l) rather than from their beginning . Consequently, we only retrieve d lcp�`
B
e+1 disk

pages, namely the ones storing substring W (l)[`+1; lcp+1]. We then detect the hit node,

say u, for the pair (l; lcp) by traversing the Patricia trie upwards and �nd P 's position j

in S by using the property that all of S's strings having pre�x P [1; lcp] are stored in u's

descending leaves.

Lemma 3.7. We can compute P 's position j without any further disk accesses.
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Proof: We already have lcp; c and c0 in main memory. We handle two cases on hit node u

and derive their correctness from the Patricia trie properties:

(1) Case len(u) = lcp. We let c1; : : : ; ck be the branching characters in u's outgoing

arcs. None of them match character c. If c <L c1, then we move to u's leftmost descending

leaf z and let j � 1 be the number of leaves to z's left (z excluded). If ck <L c, then we

move to u's rightmost descending leaf z and let j � 1 be the number of leaves to z's left

(z included). In all other cases, we determine two branching characters, say ci and ci+1,

such that ci <L c <L ci+1. We move to the leftmost leaf z that is reachable through the

arc labeled ci+1 and let j � 1 be the number of leaves to z's left (z excluded).

(2) Case len(u) > lcp. We can infer that all the strings stored in u's descending leaves

share the same pre�x of length len(u) and we know that len(u) > lcp > len(parent(u)).

The (lcp+1)-st character of them all is equal to c0 because l is one of u's descending leaves.

If c <L c0, then we move to u's leftmost descending leaf z and let j � 1 be the number of

leaves to z's left (z excluded). If c0 <L c, then we move to u's rightmost descending leaf z
and let j � 1 be the number of leaves to z's left (z included).

It is worth noting that the computation of lcp; c and c0 is the only expensive step in the

second phase. We can therefore state the following, basic result:

Theorem 3.8. Let us assume that Patricia trie PTS is already in main memory and let

` be a non-negative integer such that ` � lcp(X;P ) for a string X 2 S. PT-Search(P;S; `)

returns the pair (j; lcp) in which j is P 's position in S and lcp = max lcp(P;S). It does

not cost more than d lcp�`
B
e+ 1 disk accesses.

Proof: The correctness follows from Lemmas 3.5 and 3.7. We now analyze the total number

of disk accesses. In the �rst phase, we do not make any disk accesses and we perform no

more than 2d character comparisons, as this is the number of branching characters in PTS.

In the second phase, we do not require any more than d lcp�`
B
e+1 disk accesses to compute

lcp; c; c0 and O(lcp�`+1) character comparisons. Finally, we do not have to make any more

disk accesses or more than d character comparisons to determine hit node u and position

j.

3.2 Dynamic operations on Patricia Tries

We now describe how to maintain Patricia tries under concatenate, split, insert and delete

operations. These operations will be useful to us further on.

PT-Concatenate(PTS1; PTS2; lcp; c; c
0)

We let S1 and S2 be two ordered string sets, such that S1's strings are lexicographically

smaller than S2's strings. IfX is S1's rightmost string and Y is S2's leftmost string, then the

last three input parameters must satisfy lcp = lcp(X; Y ), c = X[lcp+1] and c0 = Y [lcp+1]

(with c <L c0). We use PT-Concatenate to concatenate Patricia tries PTS1 and PTS2 in

order to create a single Patricia trie PTS1[S2 whose ordered set S1 [ S2 is obtained by

appending S2's strings to S1's. We build PTS1[S2 by merging PTS1's rightmost path with

PTS2's leftmost path.
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Lemma 3.9. PT-Concatenate makes no disk accesses if its input parameters are in main

memory.

Proof: For technical reasons, we assume that PTS1 and PTS2 have a dummy root (with

len(dummy) = �1) connected to their original roots by a dummy arc labeled with a

null character. We examine the nodes on PTS1's rightmost path, say �1; : : : ; �j, in which

W (�j) = X, and the nodes on PTS2's leftmost path, say �1; : : : ; �i, in which W (�i) = Y .

We let �k+1 be the hit node for (�j; lcp) and �h+1 be the hit node for (�i; lcp), where

k 2 [1; j�1] and h 2 [1; i�1] (see De�nition 3.3). We deduce that the �rst lcp characters in

strings X; Y;W (�k+1) and W (�h+1) are equal. Consequently, stringsW (�r) and W (�s) are

one the other's pre�x for every r 2 [1; k] and s 2 [1; h], and thus the (branching) characters

in positions len(�r) + 1 and len(�s) + 1 are equal in strings W (�k+1) and W (�h+1) (since

len(�k) < lcp and len(�h) < lcp by De�nition 3.3). We base the concatenation of PTS1 to

PTS2 on this and merge paths �1; : : : ; �j and �1; : : : ; �i in the following two steps:

In the �rst step, we concentrate on the sequence [�1; c
0
1] : : : [�k; c

0
k
], in which each pair

consists of a node �r and the branching character c
0
r
labeling arc (�r; �r+1), for r = 1; : : : ; k.

We also consider the similarly-de�ned sequence [�1; c
00
1] : : : [�h; c

00
h
]. We merge these two

sequences into a new one, say � = [1; c1]; : : : ; [m; cm] (where m � k+h), according to the
integers len(�r) and len(�s) (r = 1; : : : ; k and s = 1; : : : ; h). If we get a tie while merging
(i.e., len(�r) = len(�s)), we turn �r and �s into a single node i in � because they must

also have the same branching character (see above). We then build a path in �nal tree

PTS1[S2 by scanning sequence �: For each pair [i; ci], we connect i to i+1 by means of

an arc (i; i+1), whose label is ci. We then concatenate all of i's children (except child

i+1) taken from PTS1 or PTS2 (or maybe both). For the last pair [m; cm] in �, we create

a dangling arc e whose label is cm and then go on to the second step.

In the second step, we treat hit nodes �k+1 and �h+1. We create a node u that is attached
to e and we set len(u) = lcp. We make u be the parent of both �k+1 and �h+1 and label their

two incoming arcs with characters c and c0, respectively. We make a last check to make sure

that there are no one-child nodes. That is, we check to see if len(u) = len(�k+1). If this

relation holds, then arc (u; �k+1) is contracted by uniting u and �k+1 (and their children).

We make the same check for �h+1.

The correctness derives from Patricia trie's properties and from the fact that S1 and

S2 are ordered string sets. The whole computation requires O(d) character comparisons

(because jS1j and jS2j are O(d)) and no disk accesses because PTS1 and PTS2 are assumed
to be already in main memory.

PT-Split(PTS; Xj)

The input is a Patricia trie PTS and a string Xj 2 S, where S = fX1; : : : ; Xdg. The

output is given by two Patricia tries PT l

S and PT r

S built on string sets fX1; : : : ; Xjg and

fXj+1; : : : ; Xdg, respectively. A split can be considered as the inverse operation of PT-

Concatenate(PT l

S ; PT
r

S; : : :).

Lemma 3.10. PT-Splitmakes no disk accesses if its input parameters are in main memory.
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Proof: We identify PTS's leaf z such that W (z) = Xj and duplicate PTS by creating two

temporary copies PT l

S and PT r

S . We then start out from z and walk upwards in PT l

S in

such a way that, for each node u visited, we delete all the nodes that descend from u's right

siblings. If we produce one-child nodes, then we contract their arcs. A similar computation

is performed in PT r

S, except that we delete both u and all the nodes descending from u's

left siblings. The two resulting trees are the Patricia tries built on string sets fX1; : : : ; Xjg

and fXj+1; : : : ; Xdg. The whole computation requires O(d) character comparisons because

jSj = O(d). We make no disk accesses because PTS is assumed to be already in main

memory.

PT-Insert(X;PTS; Z; lcp; cX; cZ)

PT-Insert adds string X to string set S by maintaining its lexicographic order. We create

a leaf f , such that W (f) = X, and install f in PTS to the left of the leaf storing the input

string Z 2 S. The last three input parameters must satisfy lcp = lcp(X;Z), cX = X[lcp+1]
and cZ = Z[lcp+ 1].

Lemma 3.11. PT-Insert makes no disk accesses if its input parameters are in main mem-

ory.

Proof: We identify leaf l, such that W (l) = Z, and hit node u for (l; lcp). If len(u) = lcp,

we install leaf f as a child of u and label arc (u; f) with character cX . If lcp < len(u), then
we remove arc (parent(u); u) and its branching character, say bc. We create another node

v and set len(v) = lcp. We install v as a child of parent(u) and label (parent(u); v) with
bc. Then we make f and u be v's children and label arcs (v; f) and (v; u) with cX and cZ ,
respectively. Each arc is installed according to its branching character's order. We make

no disk accesses because PTS is assumed to be already in main memory.

PT-Delete(X;PTS)

PT-Delete removes stringX from set S by identifying the leaf f 2 PTS such thatW (f) = X

and by removing f and maybe its parent, if f becomes its only child. The operation makes

no disk accesses if its input parameters are in main memory.

Theorem 3.12. Let us assume that the Patricia tries and the other input parameters are

already in main memory: PT-Concatenate, PT-Split, PT-Insert and PT-Delete require O(d)
character comparisons but no disk accesses.

4 A Technical Description of the String B-Tree

We now go into the technical details concerning the String B-tree data structure (see

Section 2 for our introductory concepts and notation, and Figure 2). Speci�cally, we let

K = fK1; : : : ; Kkg denote the set of �'s strings in increasing lexicographic order. As

previously stated, we represent K's strings by their logical pointers and we obtain K from

string set � in Problem 1 and from su�x set SUF (�) in Problem 2. We prevent any two
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strings in K from being each other's pre�x by appending a distinct endmarker to each of

them. This makes sure that we can correctly build the Patricia trie on any subset S� of

K's strings. We denote S�'s leftmost and rightmost strings by L(�) and R(�), respectively.

Each leaf � of the String B-tree stores an ordered string set S� � K (where b � jS�j �

2b) and the Patricia trie PT� built on S�. We recall here that S� is obtained by partitioning

K among the leaves in such a way that a left-to-right scanning of them gives the whole set

K. Leaf � is augmented with the following information:

(a) Two pointers next(�) and prev(�) to de�ne the doubly-linked list of leaves in the

String B-tree.

(b) The longest common pre�x length ofR(prev(�)) and L(�) and ofR(�) and L(next(�))

together with their mismatching characters.

(c) The succ pointers and their inverse succ�1 pointers for S�'s strings and the parent
pointer for �. This information is only introduced for solving Problem 2, when

K is obtained from SUF (�). We remember that succ(�[i; j�j]) points to the leaf

containing su�x �[i + 1; j�j]. If i = j�j then succ points to � itself, hence it is a

self-loop pointer.

Each internal node � of the String B-tree has n(�) children �1; : : : ; �n(�) and contains

an ordered string set S� = fL(�1); R(�1); : : : ; L(�n(�)); R(�n(�))g obtained by copying the

leftmost and the rightmost strings from its children (actually, we could copy only one string

from each child but this would make our algorithms more complex). Since n(�) = jS�j
2
,

each node has from b

2
to b children (except for the root, in which 2 � n(root) � b). Node �

also contains the Patricia trie PT� built on S� and, when treating Problem 2, it contains:

(c') The parent pointer for �.

We have to make sure that a node of the String B-tree (containing Patricia trie, pointers,

etc.) can be stu�ed into a single disk page so that the occupied space does not exceed disk

page size B. We therefore choose a proper value for b = �(B) and the resulting height is

H = O(log
B
k). The following simple, useful properties hold:

Property 4.1. Among �'s descending leaves, L(�) is the lexicographically smallest string
and R(�) is the lexicographically largest string.

Proof: If � is a leaf, the property clearly follows. Otherwise, we use induction and the

fact that �'s leftmost (resp., rightmost) child � satis�es L(�) = L(�) (resp., R(�) = R(�)).

See Figure 2.

Property 4.2. For any two adjacent strings Ki and Ki+1 in K, we have their longest

common pre�x length lcp(Ki; Ki+1) and their two mismatching characters.
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Proof: If both strings belong to the same string set of a leaf in the String B-tree, say

�, we take their two corresponding Patricia trie leaves l1; l2 2 PT� and �nd their lowest

common ancestor u. By Property (3) of Patricia tries (Section 3), we deduce that len(u) =

lcp(Ki; Ki+1) and the mismatching characters are the two branching characters belonging

to u's outgoing arcs that lead to l1 and l2, respectively. On the contrary, if both two

strings belong to distinct leaves in the String B-tree, say � and �, we obtain that Ki =

R(�), Ki+1 = L(�) and next(�) = �. We therefore �nd lcp(Ki; Ki+1) in �'s page (or �'s

page) because � stores lcp(R(�); L(next(�))) together with their mismatching characters

by Points (a) and (b) at the beginning of this section.

4.1 Searching in String B-trees

We use the String B-tree built on string set K = fK1; : : : ; Kkg for searching an arbitrary

pattern string. We stated the intuition behind String B-tree searching in Section 2.1 and

described its algorithmic scheme in Figure 4. The input is a pattern P , where p = jP j,
and the output is the pair (�; j) identifying P 's position in the whole set K, where � is the

leaf of the String B-tree containing this position and j is P 's position in string set S� . We

now extend this scheme by means of a more powerful searching tool, which will be also

used in String B-tree updating. Speci�cally, we provide a procedure SB-Search-Down(P , �,
`) whose input parameters satisfy Condition-A below and whose output is a triplet (� , j,
lcp), such that (�; j) identi�es P 's position in K (as before) and the extra output parameter

lcp = max lcp(P;K) is the length of P 's longest pre�x in common with any of K's strings.

We have:

Condition-A(P; �; `): Let � be a node of the String B-tree and ` be a non-negative

integer:

(A1) There is de�nitely one of �'s strings whose �rst ` characters are equal to P 's. That
is, ` � lcp(X;P ) for a string X 2 S�.

(A2) One of �'s descending leaves contains P 's position in K. That is, L(�) <L P �L

R(�).

Condition-A1(P; �; `) helps us to avoid rescanning. Condition-A2(P; �; `) states that

P 's position in K cannot be to L(�)'s left or to R(�)'s right (Fact 3.1) so that SB-Search-

Down can �nd (� , j) by traversing the String B-tree downward from �. The pseudocode of
SB-Search-Down is illustrated in Figure 9 and easily derives from the one shown in Figure 4.

We can prove that:

Lemma 4.3. Let us take a node � of the String B-tree and an integer ` � 0 that satisfy

Condition-A(P; �; `). SB-Search-Down(P , �, `) returns triplet (� , j, lcp), where � is the leaf

containing P 's position in K, j is P 's position in string set S� and lcp = max lcp(P;K). It
costs lcp�`

B
+O(log

B
k) disk accesses.
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procedure SB-Search-Down(P , �, `);

while true do

(1) Load �'s disk page and let S� = fcK1; : : : ;cK2n(�)g;

(2) (j; `) := PT-Search(P , S�, `); /* cKj�1 <L P �L
cKj */

(3) if � is a leaf then � := �; lcp := `; return (� , j, lcp);

(4) if cKj = L(�), for a child � of � then

� := �'s leftmost descending leaf; j := 1; lcp := `; return (� , j, lcp);

(5) if cKj = R(�), for a child � of � then � := �;

endwhile

Figure 9. The pseudocode for �nding triplet (�; j; `) when Condition-A(P; �; `) holds.

Proof: Without any loss in generality, we assume that P [i] = $ when i > p, so that

Fact 3.4 holds for K (i.e., there is de�nitely a mismatch between P and any other string

and if some of K's strings have a pre�x P [1; p], then P 's position is to their left.) We refer

to the algorithmic scheme given in Figure 9. We �rst prove that, in Steps (1){(5), we either

identify triplet (� , j, lcp) or �nd a child � of � that maintains Condition-A. In the latter

case, we go deeper into the String B-tree by setting � := �.
Let us examine string set S� and number its strings in lexicographic order: S� =

fcK1; : : : ; cK2n(�)g. We can considerK's strings to be partitioned into three intervals (�1; cK1),

[cK1; cK2n(�)] and (cK2n(�);1), where intervals (�1; cK1) and (cK2n(�);1) contain all of K's

strings that are strictly smaller than cK1 or larger than
cK2n(�), and interval [

cK1; cK2n(�)] con-

tains the strings stored in �'s descending leaves. Since we know that cK1 <L P �L
cK2n(�) by

Condition-A2(P; �; `), P 's position in K is inside [cK1; cK2n(�)] and � is one of �'s descending
leaves.

When we load �'s page in Step (1), we can re�ne the partition of K's strings into

intervals

(�1; cK1); [cK1; cK2]; [cK3; cK4]; : : : ; [cK2n(�)�1; cK2n(�)]; (cK2n(�);1)

by Property 4.1. Since Patricia trie PT� is available in �'s disk page, we use Condition-

A1(P; �; `) and execute the blind search in S� by means of PT-Search(P;S�; `) (in Step (2)).
This procedure returns P 's position j in S� (i.e., its two adjacent strings verifying cKj�1 <L

P �L
cKj) and integer max lcp(P;S�) assigned to ` (by Theorem 3.8). At this point, we

feel that a comment is in order. Since Fact 3.2 states that equality max lcp(P;S�) =

maxflcp(cKj�1; P ); lcp(cKj; P )g holds, we can deduce that max lcp(P;S�) = max lcp(P;K)

when strings cKj�1 and cKj are also adjacent in K. In this situation, we can safely set

lcp := ` because ` = max lcp(P;S�) and we want parameter lcp to be max lcp(P;K) by
de�nition.

In this way, if � is a leaf (Step (3)), we stop searching because S� is a contiguous part

of K and thus � := � and lcp := `.

If � is an internal node, instead, we have to examine two other cases:

(a) cKj = L(�) for a child � of � (Step (4)). We deduce that P 's position is just between

intervals [cKj�2; cKj�1] and [cKj; cKj+1] and thus we set � to be �'s leftmost descending
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leaf because of Property 4.1. We know that P 's position in S� is the �rst one because

L(�) = L(�) = cKj. We can set j := 1 and lcp := `.

(b) cKj = R(�) for a child � of � (Step (5)). This implies that cKj�1 = L(�) and so P 's

position in K is inside interval [cKj�1;
cKj]. We can reduce K's partition to only three

intervals (�1; cKj�1); [cKj�1; cKj]; (cKj;1) and therefore make Condition-A2(P; �; `)

hold. Condition-A1(P; �; `) also holds: We know that cKj�1 and
cKj belong to both

S� and S� because of the String B-tree layout (see Figure 2) and we must have

` = lcp(X;P ) for an X 2 fcKj�1; cKjg � S�. We can therefore set � := � and go on

in the while loop because Condition-A(P; �; `) holds.

We eventually reach leaf � by a simple induction on � = �i; �i+1; : : : ; �H , where i is �'s

level in the String B-tree and H is the height of the String B-tree.

We now analyze the total number of disk pages retrieved. As we go deeper into the

String B-tree, we extend P 's matched pre�x without rescanning its previously examined

characters. Consequently, the sequence of values, say `i � `i+1 � � � � � `H , computed by

PT-Search in Step (2) is non-decreasing because of Lemma 3.6. In a generic String B-tree

level s � i, we only need one disk access to retrieve node �s from external memory, and no

more than d `s�`s�1

B
e + 1 disk accesses to execute PT-Search(P;S�s; `s�1) and compute pair

(�; j) by Theorem 3.8. Since `i�1 is input parameter ` and `H is output parameter lcp of

SB-Search-Down, its total number of disk accesses does not exceed
P

H

s=i(d
`s�`s�1

B
e + 2) �

`H�`i�1

B
+ 3H �

lcp�`
B

+O(logB k).

We are now ready to state our �rst result:

Theorem 4.4. Pre�x Search(P ) can be implemented with O(p+occ
B

+ log
B
k) worst-case

disk accesses.

Proof: We recall that K is the sorted sequence of �'s strings. We performed the Pre�x

Search operation in Section 2.1 by a two-phase procedure in which we �rst retrieved the

leaves �L and �R, containing respectively K's leftmost and rightmost strings whose pre�x

was P , and then scanned all of the leaves lying between them by using the next-pointers.

We can now implement Pre�x Search(P ) by only retrieving �L and therefore avoid traversing

the String B-tree twice.

First of all, we �nd P 's position inK. We check the two trivial cases in which either P �L

K1 or Kk <L P with O( p
B
) disk accesses by a direct character-by-character comparison. In

the former case, we set � as the leftmost leaf in the String B-tree, j := 1 and lcp as the

longest pre�x matched by direct comparison; in the latter case, we stop searching because

there are no occurrences. If both conditions are false (i.e., K1 <L P �L Kk), we execute

SB-Search-Down(P; root; 0). Since Condition-A(P; root; 0) trivially holds, SB-Search-Down

correctly returns triplet (� , j, lcp) and takes O( p
B
+ log

B
k) disk accesses (because lcp � p;

see Lemma 4.3).

We then list all of K's strings whose pre�x is P . Let Kpos be the string in K that

occupies position j in S� . We check to see if lcp � p (otherwise, there are no occurrences,
by Fact 3.1). If it does, then Kpos is an occurrence and so we examine Kpos; : : : ; Kpos+occ�1
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by verifying that the common pre�x length of two adjacent strings Ki and Ki+1 is at least

p. We do not need to make any direct comparisons because lcp(Ki; Ki+1) is available in

the current disk page (Property 4.2). We only access a contiguous part of leaves in the

String B-tree and retrieve all the occ occurrences with O(occ
B
) disk accesses because at least

b = �(B) su�xes are contained in each accessed leaf (except the �rst and the last one).

Corollary 4.5. Range Query(K 0; K 00) takes O(k
0+k00+occ

B
+logB k) worst-case disk accesses,

where k0 = jK 0j and k00 = jK 00j. Substring Search(P ) takes O(p+occ
B

+ log
B
N) worst-case

disk accesses, where p = jP j.

Proof: Range Query(K 0; K 00) can be implemented by searching the positions of K 0 and

K 00 in set K with O(k
0+k00

B
+ log

B
k) disk accesses (by Lemma 4.3) and by listing all of K's

strings lying between K 0 and K 00. It costs O(occ
B
) disk accesses.

Substring Search(P ) can be implemented by letting K = SUF (�) and k = N and by

executing Pre�x Search(P ) (by Theorem 4.4).

The search bounds stated in Theorem 4.4 and Corollary 4.5 are asymptotically optimal

for a large alphabet � whose characters can only be accessed by comparisons. We prove

the lower bound for the Pre�x Search(P ) operation by using the external-memory pointer

machine, introduced in [42] with the aim of generalizing the pointer machine [43] to external

memory. This also holds for Range Query and Substring Search operations. In the external-

memory pointer machine, a data structure is seen as a graph with a source vertex s. Each
vertex is a disk page of size B, which contains no more than B items (i.e., characters,

polynomially-bounded integers, or pointers) and can be linked to no more than B vertices.

Given a pattern P , a searching algorithmmust start from s and traverse the graph according
to the following restrictions: (a) Any vertex except s can be accessed only if a vertex

leading to it has already been accessed. (b) For each occurrence, at least one vertex has

to be accessed. (c) A link among accessed vertices can be changed dynamically, provided

that the number of outgoing links in a vertex does not exceed B.

Lemma 4.6. For a large alphabet � whose characters can only be accessed by compar-

isons, searching for a pattern P and listing all of its occ occurrences in K's strings requires


( p
B
+maxfocc

B
; log

B
kg) worst-case disk accesses in external memory.

Proof: We examine the case in which P contains p distinct characters and each of these

characters appears at least once in one of K's strings. We deduce that at least d p

B
e pages

must be accessed to verify that P is actually an occurrence by a simple adversary argument.

As a result, the occurrences must all be stored somewhere explicitly and the total number

of accessed pages to list all of them has to be at least docc
B
e because a page can maintain

no more than B items. Finally, searching for P is at least as di�cult as �nding its �rst

character P [1]. Since � is general, the retrieval of the strings whose �rst character is P [1]

requires 
(log
B
j�j) disk accesses because the graph has maximum vertex degree B. The

lower bound follows by letting � verify log j�j = 
(log k).
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procedure SB-Search-Up-Down(P , �, `);

/* upward traversal */

(1) first := 1; /* �rst position */

while true do

(2) load �'s page;

(3) last := jS�j+ 1; /* last position in S� */

(4) (j; `) := PT-Search(P;S�; `);

(5) if j = first and L(�) = K1 then

(6) � := the leftmost leaf in the String B-tree; lcp := `; return (� , j, lcp);

(7) else if j = last and R(�) = Kk then

(8) � := the rightmost leaf in the String B-tree; lcp := `; return (� , j, lcp);

(9) else if first < j < last then exit-while;

(10) � := parent(�);

endwhile

/* downward traversal */

(11) (�; j; lcp) := SB-Search-Down(P; �; `);

(12) return (� , j, lcp).

Figure 10. The pseudocode for �nding triplet (� , j, lcp) when only Condition-A1(P; �; `) holds.

4.2 More About Searching

SB-Search-Down(P; �; `) is the fundamental procedure for searching in String B-trees and

is based on Condition-A(P; �; `). We now discuss what happens if we remove Condition-A2

(i.e., L(�) <L P �L R(�)) and use only Condition-A1 (i.e., there is an integer `, such that

` � lcp(X;P ) for a string X 2 S�). In other words, when we load �'s page, we assume that
we know that the �rst ` characters of P are shared by one of S�'s strings, but we are no

longer sure that P 's position is in one of �'s descending leaves in the String B-tree. The

investigation of this case will be useful to us when we design the insertion procedure for

Problem 2.

We extend procedure SB-Search-Down(P; �; `) to a new procedure which we call SB-

Search-Up-Down(P , �, `), whose input parameters satisfy Condition-A1(P; �; `) only and

whose output is the same triplet (� , j, lcp) as SB-Search-Down's, where pair (�; j) identi�es
P 's position in K and lcp = max lcp(P;K). The main feature is that we now traverse

the String B-tree twice: �rst we go upwards by means of a new search procedure and by

only maintaining Condition-A1. We stop this traversal as soon as Condition-A2 is satis�ed

and then we traverse the String B-tree downwards by executing SB-Search-Down because

Condition-A holds. The pseudocode is illustrated in Figure 10 where K = fK1; : : : ; Kkg is

the ordered string set.

Lemma 4.7. Let us take a node � in the String B-tree and an integer ` � 0, such that

Condition-A1(P; �; `) is satis�ed. SB-Search-Up-Down(P , �, `) returns the triplet (� , j,

lcp), where � is the leaf in the String B-tree containing P 's position in K, j is P 's position

in string set S� and lcp = max lcp(P;K). It costs lcp�`
B

+O(log
B
k) disk accesses.
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Proof: The aim of the two-phase String B-tree traversal (Figure 10) is to increase the

number of P 's matched characters without having to perform rescanning. Let us assume

that P �L R(�) without any loss in generality (the case L(�) <L P is identical); thus, leaf

� is to the left of � (included).

In the �rst phase (Steps (2){(10)), we start from � and traverse the String B-tree

upwards until we detect a node that is the lowest common ancestor of � (known) and �

(unknown). We prove the correctness of this phase by showing that thewhile loop preserves

both Condition-A1(P; �; `) and disequality P �L R(�) when we assign the new values to �

and `. Indeed, Steps (2){(4) �nd P 's position j in S� and compute value ` = max lcp(P;S�)

to keep track of the number of P 's characters matched by the PT-Search procedure (by

Theorem 3.8). At this point, we are faced with the problem of deciding if we have to move

upwards in the String B-tree or if the current node � is the lowest common ancestor we are

looking for (if so, we begin the second phase). We check a condition in Steps (5) and (6)

that represents the \border" case in which we can readily �nd (� ,j,lcp): If j = first and
L(�) = K1 (i.e, P is smaller than any of K's strings), then we return the leftmost leaf in

the String B-tree as � and safely set lcp = ` (by Theorem 3.8 and Fact 3.1). Otherwise, we

decide according to the following possibilities: 3

� Step (9): j > first. We infer that L(�) <L P �L R(�) and conclude that � is the

�rst ancestor of � that we meet in our upward traversal (by Property 4.1). We then

exit the while loop and begin the second phase (described below). At this point, we

are sure that both Condition-A1 and Condition-A2 are satis�ed.

� Step (10): j = first and L(�) 6= K1. Both Condition-A1(P; parent(�); `) and P �L

R(parent(�)) are satis�ed. Speci�cally, we verify the former by choosing X = L(�)
because lcp(P; L(�)) = ` (where j = first; see Fact 3.2) and L(�) also belongs to

parent(�)'s string set (by the String B-tree layout, see Figure 2). We verify the latter

condition because P �L R(�) �L R(parent(�)) holds by the String B-tree layout.

We repeat the while loop and move to �'s parent by setting � := parent(�), which
exists because L(�) 6= K1 and so � 6= root.

In the second phase (Steps (11) and (12)), we trace a downward path starting from

node � down to leaf � . Since Condition-A(P; �; `) holds at the beginning of the second

phase (by Step (9)), we can execute SB-Search-Down(P , �, `) to traverse the String B-tree

downwards by starting from �. We eventually retrieve triplet (� , j, lcp) (by Lemma 4.3)

and return it.

We now analyze the complexity of SB-Search-Up-Down. In the worst case, we execute

both the upward and downward String B-tree traversals. During the upward traversal,

we take one disk access to load �'s page and no more than d
`
0�`
B
e + 1 disk accesses to

execute PT-Search(P ,S�,`) by Theorem 3.8, where `0 is the new value assigned to ` (i.e.,
`0 = max lcp(P;S�) � `). If we let `up be the last ` value in the upward traversal, the total

cost of this traversal is a telescopic sum equal to
`up�`
B

+O(H), where H = O(logB k) is the

String B-tree height. During the downward traversal, we take
lcp�`up

B
+O(H) disk accesses

3Note that Steps (7) and (8) are not executed because j < last, due to our assumption that P �L R(�).

Similarly, Steps (5) and (6) are not executed when we assume L(�) <L P because j > first.
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(by Lemma 4.3) because Condition-A(P; �; `up) is satis�ed and lcp is the �nal value of `

(i.e., the total number of P 's characters examined). If we sum the upward and downward

traversal costs, we obtain lcp�`
B

+O(log
B
k) worst-case disk accesses.

4.3 String Insertion

We discussed this operation for Problem 1 in Section 2.1 and we saw that its implementation

is the most challenging task we have to face to solve Problem 2 (i.e., when K is obtained

from SUF (�)). We now treat this problem by describing how to update the String B-tree

built on SUF (�) when adding a new string Y [1; m] to �. The resulting String B-tree

is obtained by inserting all of Y 's su�xes into K = SUF (�) in lexicographic order. In

Section 2.2, we discussed the problems that arise when we insert Y 's su�xes (i.e., the

elimination of rescanning) and explained the algorithmic structure and logic behind our

approach. We now go on to formalize these ideas and give a detailed description of the

insertion procedure.

Without any loss in generality, we assume that Y [m] is a distinct endmarker; therefore,

no two su�xes in SUF (� [ fY g) are each other's pre�x. For a �xed i, let us number
the strings in SUF (�) [ fY [1; m]; : : : ; Y [i;m]g in lexicographic order and denote them by

SUFi = fS1; S2; : : : ; SN+ig (we let SUF0 = SUF (�)). We make sure that the String B-tree

storing the string set SUFi satis�es the following condition:

Condition-B(i):

(B1) Su�xes Y [j;m] are stored in the String B-tree, for all 1 � j � i, and Y [i;m]

shares its �rst hi = max lcp(Y [i;m]; SUFi�1) characters with one of its adjacent

strings.

(B2) All the succ pointers of SUFi's strings are correctly set except for su�x Y [i;m]

whose succ pointer is still dangling. If i = m, then succ(Y [i;m]) is a self-loop

pointer to its own leaf.

We let Condition-B(0) hold by convention. We insert Y 's su�xes going from its longest to

its shortest one by executing the pseudocode illustrated in Figure 8. For i = 1; 2; : : : ; m, we

insert Y [i;m] into the String B-tree storing SUFi�1 and satisfying Condition-B(i� 1) by

means of Steps (1){(5) in Figure 8. We obtain the String B-tree storing SUFi and satisfying

Condition-B(i). When i = m, we have the �nal String B-tree built on SUF (� [ fY g).

In the rest of this section we show how to insert su�x Y [i;m] and only discuss Steps (1){

(3), because Steps (4) and (5) are self-explanatory.

Step (1): We aim at computing triplet (�i; ji; hi), where pair (�i; ji) identi�es Y [i;m]'s

position in SUFi�1 (i.e., �i is the leaf in the String B-tree containing this position and ji
is Y [i;m]'s position in S�i) and hi = max lcp(Y [i;m]; SUFi�1) is the length of Y [i;m]'s

longest pre�x in common with any of SUFi�1's strings. We begin by identifying a crucial

node � as follows:

� If i = 1, then � is the root of the String B-tree and we safely set h0 = 0.
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� If i > 1, we know by Condition-B1(i�1) that a string Sl 2 SUFi�1 denotes su�x Y [i�

1; m] and its �rst hi�1 characters are shared with one of its two adjacent strings. We

therefore examine either Sl�1 (when lcp(Sl�1; Sl) = hi�1) or Sl+1 (when lcp(Sl; Sl+1) =

hi�1). Let us assume that we examine Sl�1 by accessing its leaf in the String B-tree.

We let � be the leaf pointed to by succ(Sl�1), correctly set by Condition-B2(i � 1)

because Sl�1 is not Y [i� 1; m].

At this point, we need the following observation about �'s string set:

Lemma 4.8. There is a string X in set S� that shares at least its �rst maxf0; hi�1 � 1g

characters with Y [i;m], i.e., lcp(Y [i;m]; X) � maxf0; hi�1 � 1g.

Proof: The lemma trivially holds when 0 � hi�1 � 1 because every string X satis-

�es lcp(Y [i;m]; X) � 0 = maxf0; hi�1 � 1g. We therefore assume that hi�1 > 1, so

maxf0; hi�1 � 1g = hi�1 � 1 � 1. If we let X denote the string obtained by removing

Sl�1's �rst character (i.e., X is Sl�1's second su�x), we can deduce that X must belong to

S� because succ(Sl�1) = �. Moreover, X and Y [i;m] share their �rst hi�1 � 1 characters

because the �rst hi�1 characters in Sl�1 and Y [i� 1; m] are equal by the above hypothesis.

We can therefore conclude that lcp(Y [i;m]; X) � maxf0; hi�1 � 1g.

Corollary 4.9. hi � maxf0; hi�1 � 1g.

Proof: Since hi = max lcp(Y [i;m]; SUFi�1) (by Condition-B1) and since there is a string

X 2 S� � SUFi�1 that shares the �rst lcp(Y [i;m]; X) � maxf0; hi�1 � 1g characters with

Y [i;m] (by Lemma 4.8), we can conclude that hi � maxf0; hi�1 � 1g.

Lemma 4.8 and Corollary 4.9 suggest that we can start out from node � and only

examine Y 's characters in positions i + maxf0; hi�1 � 1g; : : : ; i + hi to perform searching.

Namely, we execute SB-Search-Up-Down(Y [i;m], �, maxf0; hi�1 � 1g). We can prove:

Lemma 4.10. If Condition-B(i � 1) holds, then we can �nd triplet (�i; ji; hi) by using
hi�maxf0;hi�1�1g

B
+O(logB(N +m)) worst-case disk accesses, where 1 � i � m.

Proof: For i = 1, Condition-A1(Y [1; m]; root; 0) is trivially satis�ed for P = Y [1; m],

� = root and maxf0; h0 � 1g = 0. Consequently, we �nd triplet (�1; j1; h1) by executing

SB-Search-Up-Down(Y [1; m], root, 0) (by Lemma 4.7). It costs h1

B
+O(logB N) disk accesses,

as (�1; j1; h1) = (�; j; lcp), K = SUF0 and k = N in Lemma 4.7.

For i > 1, we use Condition-B(i � 1). We know by Condition-B1(i� 1) that a string

Sl 2 SUFi�1 denotes su�x Y [i�1; m] and either lcp(Sl�1; Sl) = hi�1 or lcp(Sl; Sl+1) = hi�1.
We can check if the former or the latter condition holds because we store lcp(Sl�1; Sl) and

lcp(Sl; Sl+1) in the leaves of the String B-tree (by Property 4.2). Condition-B2(i�1) makes

us sure that the succ pointers for Sl�1 and Sl+1 are set and we can always reach node � by

following one of them. We only need O(1) disk accesses for this computation. After that,

since we satisfy Condition-A1(Y [i;m]; �;maxf0; hi�1 � 1g) in node � (by Lemma 4.8), we

can execute SB-Search-Up-Down(Y [i;m], �, maxf0; hi�1� 1g) in order to obtain the triplet

(�i; ji; hi) (by Lemma 4.7). We know that hi � maxf0; hi�1 � 1g by Corollary 4.9 and so

it costs
hi�maxf0;hi�1�1g

B
+ O(logB(N +m)) disk accesses (by letting (�i; ji; hi) = (�; j; lcp),

K = SUFi�1 and k � N +m in Lemma 4.7).

30



Step (2): We take triplet (�i; ji; hi) and insert su�x Y [i;m] into S�i before its ji-th string

by means of the PT-Insert procedure. We prove:

Lemma 4.11. Y [i;m]'s insertion in �i's string set requires one disk access.

Proof: Let Sr be the string in SUFi�1 that corresponds to the (ji)-th string in S�i . Since

Y [i;m] has to be inserted to Sr's left, we execute PT-Insert(Y [i;m]; PT�i; Sr; lcp; Y [i +

lcp]; c), where the parameters lcp = lcp(Y [i;m]; Sr) and c = Sr[lcp + 1] are determined as

follows: If r = 1, then lcp = hi by Fact 3.2. If r > 1, then we know lcp(Sr�1; Sr) and

their mismatching characters, say cr�1 and cr (by Property 4.2). If lcp(Sr�1; Sr) � hi,

then we are sure that lcp = hi by Fact 3.2, because r is Y [i;m]'s position in SUFi�1. If

lcp(Sr�1; Sr) < hi, we know that either lcp = hi (if cr = Y [i + lcp(Sr�1; Sr)]) or lcp =

lcp(Sr�1; Sr) (if cr 6= Y [i + lcp(Sr�1; Sr)]). We then access Sr to set c = Sr[lcp+ 1].

We can prove another version of Lemma 4.11 in which no disk accesses are needed to

insert Y [i;m]. However, this would involve a more complex case analysis without improving

its overall complexity.

Step (3): If a split occurs after Y [i;m]'s insertion (i.e., jS�ij > 2b), we rebalance the

String B-tree and possibly redirect some succ and parent pointers. This rebalancing oper-
ation, called SB-Split(�i), cannot be handled in a straightforward way and so we postpone

a detailed discussion of it to Section 4.5. We are now able to state our main result on Y 's

insertion:

Lemma 4.12. We can insert a new string Y [1; m] into the String B-tree (i.e., all of Y 's
su�xes into SUF (�)) with O(m log

B
(N +m)) disk accesses plus m calls to SB-Split in the

worst case.

Proof: We refer to the pseudocode shown in Figure 8. Its correctness follows by induction

on Condition-B(i), for i = 1; 2; : : : ; m. We assume that Condition-B(i � 1) holds (this is

true by convention for i = 1). We �nd triplet (�i; ji; hi) in Step (1) (by Lemma 4.10) and

know that Y [i;m] shares its �rst hi characters with one of its two adjacent strings (by

Fact 3.2). We then insert Y [i;m] into �i with one disk access in Step (2) (by Lemma 4.11)

and maybe handle a split by means of an SB-Split call in Step (3). Consequently, we satisfy

Condition-B1(i). In Steps (4) and (5), we set succ(Y [i�1; m]) and let succ(Y [i;m]) be the

only dangling pointer (unless i = m) in order to satisfy Condition-B2(i). We conclude that

Condition-B(i) holds after Steps (1){(5). At the end of the insertion process, the validity of

Condition-B(m) implies that we have correctly built the String B-tree on SUF (� [ fY g).

As far as its complexity is concerned, Step (1) requires di =
hi�maxf0;hi�1�1g

B
+O(log

B
(N+

m)) disk accesses by Lemma 4.10. Step (2) takes one disk accesses by Lemma 4.11. Step (3)

makes one call to SB-Split. Steps (4) and (5) do not take any disk accesses if we leave Y [i�

1; m]'s page in main memory for another iteration. The total cost is therefore O(
P

m

i=1 di) =

O(hm�h0
B

+ m log
B
(N + m)), plus m calls to SB-Split. As previously stated, h0 = 0 and

hm � m, and so the whole insertion process takes a total of O(m log
B
(N+m)) disk accesses,

plus m calls to SB-Split in the worst case.
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4.4 String Deletion

We can update the String B-tree by deleting a string Y [1; m] from �. We delete all of Y 's

su�xes from K = SUF (�) going from the longest to the shortest one. We �rst locate leaf

�1, which contains su�x Y [1; m], by means of SB-Search-Up-Down(Y [1; m]; root; 0), using

O(m
B
+ log

B
(N +m)) disk accesses (by Lemma 4.10). For i > 1, we locate leaf �i, which

contains su�x Y [i;m], by simply following the succ(Y [i� 1; m]) pointer. This takes us no

more than O(1) disk accesses.

When we load �i's page, we delete Y [i;m] from its string set S�i by executing PT-

Delete(Y [i;m]; PT�i). If a merge occurs after Y [i;m]'s deletion (i.e., jS�ij < b), then we

rebalance the String B-tree by means of SB-Merge(�i). We postpone our discussion of SB-

Merge to Section 4.5. It is worth noting that no succ pointers are dangling after a deletion.

We obtain:

Lemma 4.13. We can delete a string Y [1; m] from the String B-tree (i.e., all of Y 's

su�xes from SUF (�)) in O(m+ logB(N +m)) disk accesses plus m calls to SB-Merge in

the worst case.

4.5 Handling SB-Split and SB-Merge operations

We �rst describe a solution for SB-Split and SB-Merge that takes O(B logB(N +m)) worst-

case disk accesses per operation by a straightforward pointer-handling approach. We then

improve this solution by means of an accounting method that takes O(log
B
(N +m)) amor-

tized disk accesses per operation. Finally, we show how to obtainO(logB(N+m)) worst-case

disk accesses per operation by means of a clustering technique. We introduce the �rst two

methods to explain the third one (based upon clustering) better. We say that a node � is

full after an insertion if its string set size jS�j becomes larger than 2b; a node � is half-full

after a deletion if jS�j becomes smaller than b.

First method: Pointer handling. Let us �rst examine SB-Split(�), where � is a full

leaf. We split set S� by the PT-Split operation applied to PT� in order to produce two

smaller Patricia tries, say PT1 and PT2 (where PT2 stores b strings). Patricia trie PT1
takes the place of PT� inside �'s page, while PT2 is put into a new leaf �'s disk page. We

let � be �'s right sibling and update the node information as follows: we properly set �'s

and �'s pointers (i.e., prev, next and parent) and determine the longest common pre�x

length of strings R(�) and L(�) and their mismatching characters, by Property 4.2.

We update the b pointers succ leading to the strings moved from � to � (they must now

point to � instead of �) and use the inverse succ�1 pointers to determine their locations.

Moreover, we maintain the String B-tree structure by inserting strings R(�) and L(�) into

set Sparent(�). This insertion may cause parent(�) to split; if so, b

2
parent pointers in its

children have to change and point to parent(�)'s new sibling. When an ancestor becomes

full, it makes us insert two strings in its parent and so the splitting process can continue

and involve many of �'s ancestors until either a non-full ancestor is encountered or a new

root is created. In the latter case the height of the String B-tree is increased by one.

The SB-Merge(�) operation (in which � is a half-full leaf) a�ects one of �'s adjacent

siblings, say �. Without any loss in generality, we assume that � is on �'s right. We
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move �'s two leftmost strings into �, so that � is no longer half-full. However, if � also

becomes half-full, we merge � and � together by executing a PT-Concatenate operation on

their corresponding Patricia tries PT� and PT� (see Section 3.2; the other input parameters

lcp; c and c0 can be obtained by Property 4.2). Analogously to the SB-Split case, we redirect

no more than b pointers succ from � to � and deallocate �'s disk page. PT-Concatenate

can also cause both the merging of �'s and �'s parents because we delete R(�) and L(�)

from them, respectively, and the updating of no more than b

2
parent pointers in parent(�)'s

children. The merging process can continue and involve many of �'s ancestors until either

a non-half-full ancestor is encountered or the root is removed. In the latter case, the height

of the String B-tree is decreased by one.

It follows that we need O(1) disk accesses to handle each node except for the updating of

its incoming succ and parent pointers, which do not exceed b in number and can be stored

in di�erent disk pages. Therefore, their updating takes a total of O(bH) = O(B log
B
(N +

m)) worst-case disk accesses, while the other operations involved only require O(H) disk

accesses. This analysis makes it clear that updating succ and parent pointers is our major
obstacle in achieving an e�cient String B-tree update. We focus on this part of the updating

process in the rest of this section.

Second method: Amortized accounting. We use the accounting method [44] for

our amortized analysis and show how to achieve the O(logB(N +m)) amortized bound per

operation. 4 Without any loss in generality, we assume that we have to redirect exactly

b pointers (succ or parent) for every node splitting or merging and we deal with pairs

of strings in every insertion or deletion operation (the latter assumption is motivated by

the String B-tree layout, see Figure 2). At the beginning, we let each newly-created node

contain 3b
2
strings and we assign an account of zero credits to it. We choose a partitioning

of SUF (�)'s strings among the nodes of the String B-tree such that they contain 3b
2
strings

each at �rst. If the root or the rightmost node in a level contains fewer strings, we add

some dummy strings. When a node becomes either half-full or full, we show that it has

accumulated a su�ciently large number of credits to pay for the �(b) disk accesses needed

for the updating of its succ or parent pointers. We say that a node is a�ected by a split

(resp., merge) operation, if it is the updated leaf or one of its children is split (resp.,

merged).

Let us examine SB-Split and a node � a�ected by the corresponding splitting process.

Its string set size jS�j is increased by two because we treat pairs of strings. If � is full (i.e.,

jS�j = 2b+2), then we take one of �'s adjacent siblings, say �, and we assume without any

loss in generality that � is on �'s right. We move �'s two rightmost strings to �. If � also

becomes full, we create a new node � and distribute the 4b+2 strings in S� [S� as follows:

� contains the �rst 3b
2
strings, � gets the next b + 2 strings and � contains the remaining

3b
2
strings. Finally, we redirect the b+2 succ pointers which previously led to nodes � and

�, in order to point to new node � .

Let us now examine SB-Merge and a node � a�ected by the corresponding merging

process. Its string set size jS�j is decreased by two because we treat pairs of strings. If � is

4A similar approach was presented in [32]. We treat the problem in detail here in order to make the

subsequent discussion of the worst-case solution clearer.
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half-full (i.e., jS�j = b� 2), we take one of �'s adjacent siblings, say �, and assume without

any loss in generality that � is on �'s right. We move �'s two leftmost strings to �. If �

also becomes half-full, we put all of �'s strings into � and thus form a set of 2b� 2 strings

and deallocate �'s disk page. Finally, we redirect b pointers from � to �.

We can charge the cost for the redirection of the succ and parent pointers to the previous

update operations to achieve the following amortized bound:

Lemma 4.14. A given string Y [1; m] can be inserted into � or deleted from it with

O(m log
B
(N +m)) amortized disk accesses.

Proof: Since we use Lemmas 4.12 and 4.13, we do not need any more than O(m logB(N +

m)) disk accesses, plus m calls to either SB-Split or SB-Merge. We show that we have

enough credits to pay for redirecting the succ and parent pointers in each a�ected node.

We maintain the invariant that, if s is a node's string set size, its account balance must have

at least BL(s) = 3
���s� 3b

2

��� credits. Consequently, we can use BL(b) = BL(2b) = 3b
2
credits

for updating the pointers. We now show how to manage these accounts and maintain the

invariant on BL.
We assign 6H credits to each SB-Split or SB-Merge call, where H = O(log

B
(N +m)) is

the current height of the String B-tree. Each a�ected node (there are no more than H of

them) increases or decreases its string set size by two and so we always assign 6 credits to

its balance in order to maintain the invariant on BL. We employ the accumulated credits

as follows (we assume that b and 3b
2
are even integers and b � 4, because each node has at

least two children):

Let us consider the splitting of a node �. If � is full, we move two strings and 6 credits to

�'s account after deleting them from �'s account, which now has at least BL(2b+2)� 6 =

BL(2b) credits. If � also becomes full, then it has at least BL(2b) + 6 = BL(2b + 2)

credits. We handle �'s and �'s splitting by using the credits in their accounts and these, in

turn, satisfy the invariant on BL. We have at least BL(2b) + BL(2b + 2) � 3b credits for
distributing strings in �; � and �: we give 3b

2
�6 credits to � 's balance (because jS� j = b+2

and BL(b + 2) = 3b
2
� 6) and zero credits to �'s and �'s balance (because jS�j = jS�j =

3b
2

and BL(3b
2
) = 0). We spend the remaining 3b

2
+ 6 credits for updating the b + 2 pointers

redirected to � (because 3b
2
+ 6 > b+ 2 for b � 4).

Let us consider the merging of a node �. If � is half-full, we move two strings to �
and safely add 6 credits to �'s account after deleting them from �'s account. This is sure

to maintain the invariant on BL for �'s account. In this way, �'s account has at least
BL(b � 2) � 6 = BL(b) credits on it. If � also becomes half-full, then it has at least

BL(b � 2) credits because of the invariant on �'s account. We therefore have at least

BL(b)+BL(b�2) � 3b credits for concatenating strings in � and �: we leave 3b
2
�6 credits

in �'s new balance (so that BL(2b � 2) = 3b
2
� 6) and we spend the remaining credits (at

least 3b
2
) to update the b pointers redirected to �.

In conclusion, we always have enough credits for updating the succ and parent pointers

and each operation takes O(H) amortized disk accesses.

Third method: Worst-case clustering. We move some strings in pairs between two

adjacent sibling nodes in a lazy fashion to obtain our worst-case bounds. The main idea
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underlying this approach is that SB-Split and SB-Merge cannot be executed on the same

node too frequently. We can distribute their cost incrementally over the other operations

that involve the node between any two consecutive SB-Split or SB-Merge operations.

In the previously-described amortized method, when we split a node �, we take one

of its adjacent siblings, say �, and create a node � between � and �. We then distribute

S�[S�'s strings among nodes �, � and � by using the credits accumulated (see Lemma 4.14's

proof). At this point, instead, we delay the distribution process on the subsequent update

operations by keeping a pointer from nodes � and � to node � and by marking the b + 2

strings to be moved to � . The three nodes form a cluster, called split-cluster . We move four

marked strings and their corresponding succ or parent pointers from � and � to � every

time we access the split-cluster (i.e., one of its three nodes) to perform some subsequent

update operations (insertions or deletions).

When merging a node � with one of its adjacent siblings, say �, we set a pointer to

link them and thus form a merge-cluster . We mark the b strings to be moved from � to �.
We move four marked strings and their corresponding succ or parent pointers every time

we access the merge-cluster (i.e., one of its two nodes) to perform some subsequent update

operations (insertions or deletions).

We also introduce the notion of singleton clusters, which are the nodes not involved

in split or merge operations. We follow the rule that after moving the last marked string

of a split- or merge-cluster, we transform it into three or less singleton clusters with O(1)
disk accesses. It is worth noting that our strategy does not a�ect our search, insert and

delete algorithms because we can ignore the underlying clustering in the whole String B-tree

structure (except when handling SB-Split and SB-Merge as discussed below).

We now deal with the problem of managing half-full and full nodes in terms of half-full

and full clusters. We have to �x the total number of strings (both marked and unmarked)

that can be stored in a cluster. A singleton cluster can contain from b to 2b strings (3b
2
at

the beginning). A split-cluster can store from 3b to 6b strings (4b + 2 at the beginning).

A merge-cluster can have from b to 4b strings (2b � 2 at the beginning). We say that a

cluster is inconsistent if its number of strings is either below the minimum or above the

maximum allowed (depending on the type of cluster). We prove the fundamental property

that we only use singleton clusters when forming non-singleton clusters. In other words,

all the marked strings (and their succ and parent pointers) in a non-singleton cluster have

been moved to form three or less singleton clusters before any other clustering involving

them can occur. We can now prove the following result:

Lemma 4.15. If a cluster is inconsistent, it is a singleton cluster.

Proof: As stated above, after moving the last marked string in a cluster, we transform

the cluster into three or less singleton clusters. By contradiction, let us now assume that a

split-cluster is inconsistent. At the beginning, it contains 4b+ 2 strings (b+ 2 of them are

marked) so the cluster is accessed at least b

2
times before becoming inconsistent because

we only treat strings in pairs. Since at least 4 b
2
� b + 2 marked strings and pointers are

moved, we can conclude that all marked strings are moved and the cluster is decomposed

into three or less singleton clusters before becoming inconsistent again. An analogous

argument holds when we assume that a merge-cluster is inconsistent. At the beginning, it
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contains 2b�2 strings (b of them are marked) and so it is accessed at least b�2
2

times before

becoming inconsistent. Since at least 4 b�2
2
� b marked strings (b � 4) are moved, we can

conclude that all the marked strings are moved and the cluster is decomposed into three

or less singleton clusters before becoming inconsistent again. Consequently, only singleton

clusters can become inconsistent.

Theorem 4.16. A given string Y [1; m] can be inserted into � or deleted from it with

O(m logB(N +m)) worst-case disk accesses.

Proof: An SB-Split a�ects a leaf-to-root path � of H nodes and only allows the insertion

of two or less strings into each node in � in the worst case, where H is the current height of

the String B-tree. We therefore access H clusters in the worst case and maybe move four

marked strings and pointers in some of them. Let us now examine a cluster containing a

node � in path � and let C� be its cluster. Two cases occur:

(a) C� is a singleton cluster. If C� is not inconsistent, we have enough room for the new

strings. Otherwise (i.e., C� is inconsistent), we have to move two strings from � to one of

its two adjacent siblings, say � (let C� be its cluster). If C� also becomes inconsistent, it is

a singleton cluster (Lemma 4.15) and so we create a new split-cluster made up of � and �.

If C� does not become inconsistent, it has enough room for �'s moved strings. If C� is also

a non-singleton cluster, we move four marked strings internally in it, and create three or

less singleton clusters from it, if it does not contain any marked strings. This computation

takes O(1) disk accesses.

(b) C� is a non-singleton cluster. We insert the new strings in C� because it cannot

be inconsistent (by Lemma 4.15) and we move four marked strings internally in C�. After

that, if C� does not contain any marked strings, we create three or less singleton clusters.

This computation takes O(1) disk accesses, too.

We conclude that we need a total of O(H) worst-case disk accesses to handle an SB-Split.

As far as SB-Merge is concerned, we can perform an analogous analysis to show that we

spend O(H) worst-case disk accesses in this case, too. In brief, updating the String B-tree

under the insertion or deletion of a string Y [1; m] requires O(m) SB-Split and SB-Merge

operations, and each operation makes O(H) = O(log
B
(N +m)) disk accesses in the worst

case. Consequently, the bound we claim follows from Lemma 4.12 and 4.13.

Remark 4.17. The substring searching and updating described in Problem 2 can be

solved within the bounds claimed in Theorem 2.2. The relative search bounds are proved

in Theorem 4.4, while the update bounds are proved in Theorem 4.16.

5 Previous Work

Several elegant and well-known data structures can be used for solving Problems 1 and 2

mentioned in the introduction. Some of them have good average-case behavior and are good

tools in some practical cases. However, they do not support good worst-case searching and

updating operations. Their ine�ciency is mainly due to the methods they use for packing

a lot of data into the disk pages in order to avoid that many pages are almost empty after a
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few updates. This can make their worst-case performance seriously degenerate in external

memory.

We go on to survey the most popular tools used for manipulating external-memory text

strings and we point out their theoretical limitations when applied to our two problems.

These tools can be grouped into two main classes: One kind is explicitly designed to work

in external memory and contains inverted �les [39], B-trees [9] and their variants, known

as pre�x B-trees [10, 15]. The other kind is useful for indexing a text in main memory

with the aim of performing string matching. It contains compacted tries [22, 36], su�x

trees [3, 25, 34, 48] and su�x arrays [22, 33]. They can easily be adapted for use in external

memory but at the price of worsening their good performance in main memory.

� Inverted �les are an important indexing technique for secondary key retrieval [24,

29, 39], in which the roles of records and attributes are reversed. This means that we list the

records having a given attribute instead of listing the attributes of a given record. Inverted

�le's components are called inverted lists and occupy very little space (sublinear in many

practical cases). We can use inverted �les for solving Problems 1 and 2 by interpreting

the records as arbitrarily-long texts and the attributes as text substrings (e.g., words, q-

grams, etc.). Unfortunately, it is rather di�cult to obtain the attributes when treating

unformatted texts (e.g., DNA sequences) and to allow for arbitrary substring searches

without introducing a lot of duplicate information and signi�cant space overhead. With

regard to Problem 2, it turns out that inverted �les support very poor queries and updates

because they take unnecessary disk accesses in the worst case.

� Pre�x B-trees are B-tree variations whose leaves contain all the keys and whose

internal nodes contain copies of some keys for routing the B-tree traversal. Since the keys

are arbitrarily-long strings, we cannot always stu� a group of them into a single pre�x

B-tree node, which is stored in one disk page of bounded capacity B, because a string can

be possibly longer than B. This problem can be overcome by representing the key strings

by their logical pointers and employing the so-called separators to implement the routing

keys in the internal B-tree nodes [10]. Speci�cally, the separator of keys `computer' and

`machine' can either be one of them or any short string between them in lexicographic

order (such as `f' or `do'). It goes without saying that the shortest separators [15] are

chosen to save as much space as possible. Two popular, empirical strategies have been

devised to keep separators short after a few updates. The �rst one [10] uses the shortest

unique pre�x of a key as its separator but it can fail because separator's length can be

proportional to key's length and therefore it introduces a lot of duplicate information. This

often happens in practice because the keys with a common pre�x are adjacent to each

other in lexicographic order. The second strategy uses a compression scheme to store the

keys in the internal nodes, as in the Unix pre�x B-trees [47]. That is, if a key begins

with the same n characters as its immediate predecessor, the key is stored with its �rst

n characters replaced by integer n. This approach saves space but it does not prevent a

key from having a lot of characters in the rest of its positions n + 1; n + 2; : : :. In brief,

the worst-case performance of pre�x B-trees is very good only for bounded-length keys (i.e.,

no more than 255 characters long [47]) because they can exploit B-tree power to solve

Problem 1: searching takes O(occ
B

+ log
B
k) disk accesses and updating takes O(log

B
k)

disk accesses. However, this performance becomes poor in the worst case when treating
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unbounded-length keys, as it occurs in Problem 2.

� Su�x arrays and PAT-arrays [22] allow for fast searches whose cost does not de-

pend on the alphabet's size [33]. A su�x array essentially stores all the text su�xes in

lexicographic order by means of their logical pointers. Thanks to their simplicity, these

data structures can be adapted for use in external memory by partitioning them into con-

tiguous disk pages. There is no limit on key length and searching takes O( p
B
log2N + occ

B
)

disk accesses [22]. From a practical point of view, su�x arrays are the most space-e�cient

indexing data structures available because only a pointer per su�x is stored. Nonetheless,

su�x arrays cannot be modi�ed any more than inverted �les can be and so the contiguous

space needed for storing them can become too constraining when the text strings get longer.

A dynamic version for main memory of su�x arrays has been recently proposed in [17].

It can be extended to work in external memory at the price of losing its space optimality

(i.e., occupying O(N log
2
N

B
) disk pages) and achieving a worse searching bound.

� Su�x trees and compacted tries in general are elegant, powerful data structures

widely employed in string matching problems [6]. The su�x tree is a compacted trie built

on all of the text su�xes: Each arc is labeled by a text substring, where triple (X; i; j) is
used to denote a substring X[i; j], and the sibling arcs are ordered according to their �rst

characters, which are distinct. There are no nodes having only one child except the root

and each node has associated the string obtained by concatenating the labels found along

the downward path from the root to the node. By appending an end-marker to the text, the

leaves have a one-to-one correspondence to the text su�xes so each leaf stores a distinct

su�x. Su�x trees are also augmented by means of some special node-to-node pointers,

called su�x links [34], which turn out to be crucial for the e�ciency of the searching and

updating operations. The su�x link from a node storing a nonempty string, say aY for a

character a, leads to the node storing Y and this node always exists. There can be �(j�j)

su�x links leading to a node, where � denotes the alphabet, because we can have one su�x

link for each possible character a 2 �. Su�x trees require linear space and are sometimes

called generalized su�x trees when treating a string set � [3, 25]. Searching for a pattern

P [1; p] in �'s strings requires O(p log j�j + occ) time, where occ is the number of pattern
occurrences. Inserting a string X[1; m] into � or deleting from it takes O(m log j�j) time.

Since su�x trees are powerful data structures, it would seem appropriate to use them

in external memory. To our surprise, however, they lose their good searching and updating

worst-case performance when used for indexing large text collections that do not �t into

main memory. This is due to the following reasons:

a. Su�x trees have an unbalanced topology that is text-dependent because their internal

nodes are in correspondence to some repeated substrings. Consequently, these trees

inevitably inherit the drawbacks pointed out in scienti�c literature with regard to

paging unbalanced trees in external memory. There are some good average-case

solutions to this problem that group �(B) nodes per page under node insertions

only [29, Sect.6.2.4] (deletions make the analysis extremely di�cult [41]), but they

cannot avoid storing a downward path of k nodes in 
(k) distinct pages in the worst

case.

b. Since the outdegree of a node can be �(j�j), its pointers to children might not �t into
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O(1) disk pages so they would have to be stored in a separate B-tree. This causes an

O(log
B
j�j) disk access overhead for each branch out of a node.

c. Branching from a node to one of its children requires further disk accesses in order to

retrieve the disk pages containing the substring that labels the traversed arc because

labels are pointers in order to occupy constant space.

d. Updating su�x trees under string insertions or deletions [3, 25] requires the insertion

or deletion of some nodes in their unbalanced structure. This operation inevitably

relies on merging and splitting disk pages in order to occupy �(N
B
) of them. This

approach is very expensive: splitting or merging a disk page can take O(Bj�j) disk

accesses because �(B) nodes can move from one page to another. The �(j�j) su�x

links leading to each node moved must be redirected and they can be contained in

di�erent pages.

We can conclude that adapting su�x trees to solve Problems 1 and 2 is not e�cient

in the worst case. Searching for a pattern of length p takes O(p logB j�j + occ) worst-case
disk accesses in both problems according to Points a{c. Inserting or deleting an m-length

string takes O(m log
B
j�j + Bj�j) disk accesses in Problem 1 because there can be O(1)

page splits or merges as described in Point d; and O(mBj�j) disk accesses in Problem 2

because there can be �(m) page splits or merges.

From an average-case-analysis point of view, compact trie's performance in external

memory is heuristic and usually con�rmed by experimentation [5, 22, 40]. Recently, Clark

and Munro [13] have obtained an e�cient implementation of su�x trees in external memory

by compactly representing them via Patricia tries. This data structure allows to solve

Problem 2 with O( hp
p
+ log

p
N) disk accesses for Substring Search(P ), where h � N is

Patricia trie's height. Inserting or deleting a string in � costs at least as searching for all

of its su�xes individually. The solution is practically attractive but does not guarantee

provably good performance in the worst case.

6 Some Applications

6.1 P-strings and Software Duplication

The parameterized pattern matching problem was introduced in [7] with the aim of �nding

the program fragments in a software system that are identical except for their systematic

change of parameters. The program fragments are in the form of token sequences produced

by a lexical analyzer and encoded by some parameterized strings, called p-strings. From a

formal point of view, p-strings are sequences of characters taken from two disjoint ordered

alphabets � and �, where � contains the �xed symbols (i.e., the �xed tokens) and � contains

the parameter symbols (i.e., identi�ers and constants). A p-match of two p-strings occurs

when one p-string can be transformed into the other by one-to-one parameter renaming. For

example, let us take � = fa; bg and � = fx; y; zg. There is a p-match of p-strings axxbyxa

and ayybzya by simultaneously replacing x with y and y with z. Given two p-strings X
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and Y , there is a p-occurrence of X in Y , if there is a p-match of X and Y [i; i + jXj � 1]

for an integer i (e.g., there is a p-occurrence of zbxz in axxbyxa for i = 3).

A su�x tree generalization to p-strings, called p-su�x tree, was introduced in [7] and

subsequently improved in [30], to perform online pattern matching on p-strings e�ciently.

Some other algorithms that were designed for this new paradigm also had to deal properly

with the dynamic nature of parameter renaming in p-strings [4, 8, 26]. The main problem

in designing e�cient p-string algorithms is concerned with Properties (1) and (2), which

hold for any ordinary two strings S and T , while Property (2) does not hold for p-strings [7]:

(1) Common Pre�x Property: If aS = bT , then S = T .

(2) Distinct Right Context Property: If aS = bT and aSc 6= bTd, then Sc 6= Td.

Since Property (2) is used for de�ning su�x links of su�x tree nodes, it creates some

problems for p-su�x tree construction. Since String B-trees only need Property (1) in

Lemma 4.8, they work for p-strings after undergoing some slight changes. We let � denote

alphabet � [ IN, where IN is the set of non-negative integers disjoint from �. We de�ne

an operation prev(X) that transforms a p-string X into a string in �� according to [7]:

A constant symbol in � is mapped into itself. A parameter occurrence in � is mapped

into 0 if it is the leftmost one. Otherwise, the parameter occurrence is mapped into the

integer that denotes the distance from its previous occurrence's position. For example,

prev(axxbyxa) = prev(ayybzya) = a01b03a. Any two p-strings X; Y have a p-match if

prev(X) = prev(Y ). As stated in [7], given prev(Y ) and one of Y 's su�xes, say Y [j;m], an

arbitrary character in prev(Y [j;m]) can be computed by a constant number of arithmetic

operations.

Let us now examine the natural extension of Problems 1 and 2 to p-strings. We let

Problem 2 stand for both and show in Theorem 6.1 below that String B-trees can be

extended to solve the problem without any loss in e�ciency. Set � is made up of some p-

strings whose total length is N ; set SUF (�) is made up of the strings obtained by applying
prev to the su�xes of �'s p-strings, i.e., SUF (�) = fprev(�[i; j�j]) : 1 � i � j�j and � 2 �g.

It is worth noting that these su�xes are sorted according to a new order �P

L
, where X �P

L
Y

if and only if prev(X) �L prev(Y ). We now examine the String B-tree built on SUF (�).
In searching for p-strings, we have to transform the pattern p-string into a pattern string

in �� by means of prev. We then search for the pattern string in the String B-tree by using

the string procedure in Section 4.1. Inserting a p-string Y [1; m] in � consists of inserting

su�x prev(Y [i;m]) into the current String B-tree, for i = 1; 2; : : : ; m. Our considerations

in Section 4.3 extend to this case because we only use Property (1). For example, we let

prev(Sl�1) be a string of SUF (�) that shares its �rst hi�1 characters with prev(Y [i�1; m]),

as required by Condition-B(i � 1). We identify node � by means of succ(Sl�1), which is

also well-de�ned for p-strings due to Lemma 4.8 and Property (1). Finally, we execute

SB-Search-Up-Down(prev(Y [i� 1; m]), �, maxf0; hi�1 � 1g) and continue as in Section 4.3.

A p-string deletion can be performed by the procedure described in Section 4.4. We can

now state the following result:

Theorem 6.1. Let � be a set of p-strings whose total length is N . The String B-tree

built on � occupies �(N=B) disk pages. Searching for all the pocc occurrences of a p-

string P [1; p] in �'s p-strings takes O(p+pocc
B

+logB N) worst-case disk accesses. Inserting a

p-string Y [1; m] into set � or deleting it takes O(m log
B
(N +m)) worst-case disk accesses.
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We can use String B-trees on p-strings in main memory by letting B = O(1). When

the alphabet is large (i.e., either j�j = O(N) or j�j = O(N)), we achieve an alphabet-

independent search that requires O(p+logN+pocc) time and improves the O(p logN+pocc)

searching bound in [7, 30]. With a large alphabet, String B-tree construction requires the

same O(N logN) time complexity as the p-su�x tree's. For a constant size alphabet, the

bounds in [7, 30] are better than ours.

6.2 Database Indexing

We can maintain several indices on the same database without copying the (multiple) key

strings in the indices but we use our solution to Problem 1. This is important in compound

attribute organizations [29, Sect 6.5] to maintain the lexicographic order of the records'

combined attributes without having to make any copies. As a result, String B-trees turn

out to be a powerful tool for indexing databases.

Let us consider a database (not necessarily a text database) with variable-length records

D = fR1; R2; : : : ; Rkg and an alphabet � (e.g., � is made up of the ASCII characters).

We introduce an indexing function f : D ! �� that transforms a record Ri into a string

Ki = f(Ri), such that Ri � Rj if and only if Ki �L Kj, where 1 � i; j � k and �L is

the lexicographic order. For example, when Ri is an employee's record, Ki is the birthday

in the string format `YYYYMMDD', where `YYYY' is the year, `MM' is the month and

`DD' is the day, or Ki is the string concatenation of some �elds in Ri, such as employee's

name, o�ce, phone number and so on. Since f maps the records into some strings, we

allow f to be powerful enough to handle any kind of string manipulations on the original

records' �elds (e.g., we take some substrings, concatenate them, reverse them, etc.). That

is, Ki = f(Ri) is a \virtual string" because it does not necessarily appear in Ri. In this

case, the logical pointer for Ki leads to Ri, which we have to apply f to.

We use Problem 1 on string set K = fK1; : : : ; Kkg and provide an index that only

requires O(k) space whatever the total string length is (Theorem 2.1). We recompute f(Ri)

every time we need to (compare) access a string Ki. Even though f(Ri)'s computation

might be expensive in some cases, we load and compare only one string per level of the

String B-tree because of the Patricia trie layout in the nodes of the String B-tree, as shown

in Section 3.1. Consequently, our approach actually requires very few string computations

and allows us to keep D's records ordered according to a general-purpose indexing function

f under the insertion and deletion of individual records (Theorem 2.1).

We can compare our solution to the one obtained by pre�x B-trees. They introduce

string duplication and require O(
P

k

i=1 jKij) space (usually much larger than k) because they

need to store the strings explicitly in the index by means of some heuristics (see Section 5).

Conversely, String B-trees exploit lexicographic order better and take advantage of the

longest common pre�x of any two strings. For example, let � be the longest common pre�x

of two strings Ki = �c� and Kj = �c0� 0, with arbitrarily-long strings �; �; � 0 and single

characters c 6= c0. Pre�x B-trees [10] store string Ki entirely and string Kj as integer j�j

and su�x c0� 0, while String B-trees only use Ki and Kj logical pointers, together with j�j; c

and c0 in the Patricia trie. Consequently, String B-trees' space usage is proportional to the

number of strings involved and not to their total length. We achieve a signi�cant worst-case

space saving with respect to pre�x B-trees and maintain a very competitive cost.
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6.3 Dynamic Su�x Arrays

Dynamic su�x arrays [17] are a dynamic version of su�x arrays [33] and we implement

them in linear space without using the naming technique of [27]. This allows us to obtain

better performance than su�x trees for large alphabets because we can reduce searching

time from O(p logN + occ) to O(p+ logN + occ). This alphabet-independent time bound

was previously obtained only for a static string set by means of su�x arrays.

The dynamic su�x array data structure DSA� combines the exibility of su�x trees

with the lexicographic order of su�x arrays. It is a balanced search tree whose leaves store

SUF (�)'s strings, in �L-order. We let DSUF (�) � SUF (�) be a set of su�xes logically

deleted from SUF (�). The dynamic su�x array supports the following operations:

DSA-Search(P ): We �nd the sublist of the su�xes in SUF (�)�DSUF (�) whose pre�x

is P .

DSA-Insert(Y ): We insert all of Y 's su�xes into SUF (�).

DSA-Delete(S): We mark a su�x S 2 SUF (�) as logically removed and insert it into

DSUF (�).

DSA-Undelete(S): We unmark a su�x S 2 DSUF (�) and remove it from DSUF (�).

We go on to implement the above operations. We let B = O(1) and use the String

B-tree data structure in main memory. It is now a balanced search tree that satis�es the

additional constraint that each leaf contains exactly one string. The leaves containing the

strings in SUF (�) � DSUF (�) are double-linked in a separate list LS. This list is kept
with another list, lcp(LS), that contains the longest common pre�x length of any two

adjacent strings in LS. The leaves containing DSUF (�)'s strings are marked as logically

deleted and each internal node is also marked if all its descendants are marked recursively.

It clearly follows:

Fact 6.2. Given a leaf s of the String B-tree, the nearest non-marked leaf s0 2 SUF (�)�

DSUF (�) ON its left (resp., right) can be identi�ed in O(logN) time.

The update operations on DSA� can be implemented in a straightforward way by

using the corresponding update operations on String B-trees in Sections 4.3 and 4.4. The

implementation of DSA-Search(P ) is slightly di�erent from the one described in Section 4.1

because it has to take into account the fact that a su�x in SUF (�) having pre�x P might

be marked as deleted and therefore should not be listed because it belongs to DSUF (�).

Our aim now is to �nd the sublist dLS of LS that contains all the su�xes having pre�x P

within a time complexity that does not depend on DSUF (�)'s size, when these su�xes

belong to SUF (�)�DSUF (�). We design the search procedure in such a way that if dLS
is not empty, it returns two leaves vL and vR that delimit dLS. In this way, dLS's size does
not inuence total time complexity.

We �nd leaves vL and vR by searching for the leaf v that stores su�x Xv, such that

Xv = maxfX 2 SUF (�) : X <L Pg according to Theorem 4.4's proof. We then apply

Fact 6.2 to leaf v and retrieve vL by identifying the leftmost unmarked leaf on v's right
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(inclusive). Leaf vR can be found symmetrically by means of leaf w, such that Xw =

minfX 2 SUF (�) : P <L Xg. We know that vL and vR are between v and w if and only

if dLS is not empty, and this condition can be checked in O(logN) time. Moreover, when

v = vL = vR or vL = vR = w, we can check to see if P is a pre�x of Xv or Xw, respectively.

We have:

Theorem 6.3. The dynamic su�x array DSA� for a string set � whose total length is

N can be implemented by an augmented String B-tree that occupies optimal �(N) space.

DSA-Search(P ) requires O(p + logN) time; DSA-Delete and DSA-Undelete take O(logN)

time; DSA-Insert applied on an m-length string takes O(m log(N +m)) time.

7 Conclusions

In this paper, we have proposed an external-memory data structure, the String B-tree, that

e�ciently implements operations such as Pre�x Search, Range Query, Substring Search, and

string insertions and deletions, on a collection of arbitrary-long strings. While its bounds

are provably good in the worst case like the ones of regular B-trees, its supported operations

are more powerful because it manages strings of arbitrary length. String B-trees can be

also successfully applied to several other interesting problems, such as the ones discussed in

the introduction and Section 6, and the ones presented in [20]. They also e�ciently work in

the parallel-disk model [1, 46] by performing disk clustering with the so-called disk-striping

technique (see [38] for its description).

Considering their good theoretical bounds, it would be interesting to investigate the

practical behavior of String B-trees in order to validate the general approach and single

out the theoretical re�nements that are also e�ective in a practical setting. A preliminary

set of experiments carried out in [19] have shown that String B-trees are promising: String

B-trees lead to fast searches and can be updated in a reasonable amount of time.
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