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Neural Networks
Neural networks are composed of simple elements operating in parallel. These 
elements are inspired by biological nervous systems. As in nature, the network 
function is determined largely by the connections between elements. We can 
train a neural network to perform a particular function by adjusting the values 
of the connections (weights) between elements.

Commonly neural networks are adjusted, or trained, so that a particular input 
leads to a specific target output. Such a situation is shown below. There, the 
network is adjusted, based on a comparison of the output and the target, until 
the network output matches the target. Typically many such input/target pairs 
are used, in this supervised learning, to train a network.

Neural networks have been trained to perform complex functions in various 
fields of application including pattern recognition, identification, classification, 
speech, vision and control systems. A list of applications is given later in this 
chapter.

Today neural networks can be trained to solve problems that are difficult for 
conventional computers or human beings. Throughout the toolbox emphasis is 
placed on neural network paradigms that build up to or are themselves used in 
engineering, financial and other practical applications.

The supervised training methods are commonly used, but other networks can 
be obtained from unsupervised training techniques or from direct design 
methods. Unsupervised networks can be used, for instance, to identify groups 
of data. Certain kinds of linear networks and Hopfield networks are designed 

Neural Network 
including connections 
(called weights) 
between neurons Input Output

Target

Adjust 
weights

Compare



Neural Networks
directly. In summary, there are a variety of kinds of design and learning 
techniques that enrich the choices that a user can make.

The field of neural networks has a history of some five decades but has found 
solid application only in the past fifteen years, and the field is still developing 
rapidly. Thus, it is distinctly different from the fields of control systems or 
optimization where the terminology, basic mathematics, and design 
procedures have been firmly established and applied for many years. We do not 
view the Neural Network Toolbox as simply a summary of established 
procedures that are known to work well. Rather, we hope that it will be a useful 
tool for industry, education and research, a tool that will help users find what 
works and what doesn’t, and a tool that will help develop and extend the field 
of neural networks. Because the field and the material are so new, this toolbox 
will explain the procedures, tell how to apply them, and illustrate their 
successes and failures with examples. We believe that an understanding of the 
paradigms and their application is essential to the satisfactory and successful 
use of this toolbox, and that without such understanding user complaints and 
inquiries would bury us. So please be patient if we include a lot of explanatory 
material. We hope that such material will be helpful to you.

This chapter includes a few comments on getting started with the Neural 
Network Toolbox. It also describes the new graphical user interface, and new 
algorithms and architectures; and it explains the increased flexibility of the 
Toolbox due to its use of modular network object representation. 

Finally this chapter gives a list of some practical neural network applications 
and describes a new text, Neural Network Design. This book presents the 
theory of neural networks as well as their design and application, and makes 
considerable use of MATLAB® and the Neural Network Toolbox.
1-3
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Getting Started

Basic Chapters
Chapter 2 contains basic material about network architectures and notation 
specific to this toolbox. Chapter 3 includes the first reference to basic functions 
such as init and adapt. Chapter 4 describes the use of the functions designd 
and train, and discusses delays. Chapter 2, 3 and 4 should be read before going 
to later chapters

Help and Installation
The Neural Network Toolbox is contained in a directory called nnet. Type help 
nnet for a listing of help topics.

A number of demonstrations are included in the Toolbox. Each example states 
a problem, shows the network used to solve the problem and presents the final 
results. Lists of the neural network demonstration and application scripts that 
are discussed in this guide can be found by typing help nndemos

Instructions for installing the Neural Network Toolbox are found in one of two 
MATLAB documents, the Installation Guide for MS-Windows and Macintosh or 
the Installation Guide for UNIX.



Whats New in 3.0
Whats New in 3.0
A few of the new features and improvements introduced with this version of the 
Neural Network Toolbox are listed below.

Reduced Memory Levenberg-Marquardt Algorithm

The Neural Network Toolbox version 2.0 introduced the Levenberg-Marquardt 
(LM) algorithm which is faster than other algorithms by a factor of from 10 to 
100. Now version 3.0 introduces the Reduced Memory Levenberg-Marquardt 
algorithm, which allows for a time/memory trade off. This means that the LM 
algorithm can now be used in much larger problems, with perhaps only a slight 
increase in running time.

Other New Algorithms and Functions
Conjugate gradient and R-Prop algorithms have been added, as have 
Probabilistic, and Generalized Regression Networks. Automatic 
regularization, new training options and a method for early stopping of 
training have also been included here for the first time. New training options, 
including training on variations of mean square error for better generalization, 
training against a validation set, and training until the gradient of the error 
reaches a minimum are now available. Finally, various pre and post processing 
function have been included.

Modular Network Representation
The modular representation in the Toolbox version 3.0 allows a great deal of 
flexibility for the design of one’s own custom networks. Virtually any 
combination of neurons and layers, with delays if required, can be trained in 
any one of Other New Networks, Algorithms and Improvements.

Simulink® Simulation Support
You can now generate network simulation blocks for use with Simulink.

General Toolbox Improvements
This toolbox is simpler but more powerful than ever. It has fewer functions but 
each of them, including INIT (initialization), SIM (simulation), TRAIN, 
(training) and ADAPT (adaptive learning) can be applied to a broad variety of 
networks.
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Reduced Memory Levenberg-Marquardt Algorithm
A low-memory-use Levenberg-Marquardt algorithm has been developed by 
Professor Martin Hagan of Oklahoma State University for the Neural Network 
Toolbox. This algorithm achieves nearly the same speed of the original very 
fast Levenberg-Marquardt algorithm, but uses less memory required by the 
original. (See Neural Network Toolbox Version 2.0 and Hagan, M.T., and M. 
Menhaj, “Training Feedforward Networks with the Marquardt Algorithm,” 
IEEE Transactions on Neural Networks, vol. 5, no. 6, 1994.)

There is a drawback to using memory reduction. A significant computational 
overhead is associated with computing the Jacobian in submatrices. If you 
have enough memory available, then it is better to set mem_reduc to 1 and to 
compute the full Jacobian. If you have a large training set, and you are running 
out of memory, then you should set mem_reduc to 2, and try again. If you still 
run out of memory, continue to increase mem_reduc. 

Even if you use memory reduction, the Levenberg-Marquardt algorithm will 
always compute the approximate Hessian matrix, which has dimensions . 
If your network is very large, then you may run out of memory. If this is the 
case, then you will want to try trainoss, trainrp, or one of the conjugate 
gradient algorithms.

n n×
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Other New Networks, Algorithms and Improvements

Resilient Backpropagation (Rprop)
The resilient backpropagation (Rprop) training algorithm eliminates the 
harmful effect of having a small slope at the extreme ends of sigmoid squashing 
transfer functions. Only the sign of the derivative of the transfer function is 
used to determine the direction of the weight update; the magnitude of the 
derivative has no effect on the weight update. Rprop is generally much faster 
than the standard steepest descent algorithm. It also has the nice property that 
it requires only a modest increase in memory requirements. 

Conjugate Gradient Algorithms
Various forms of a conjugate gradient backprop algorithm have been added. In 
the conjugate gradient algorithms a search is performed along conjugate 
directions, which produces generally faster convergence than steepest descent 
directions. This is a well know, highly efficient algorithm that gives good 
results on a broad spectrum of problems.

Quasi-Newton Algorithms
Quasi-Newton (or secant) methods are based on Newton’s method but don’t 
require calculation of second derivatives. They update an approximate Hessian 
matrix at each iteration of the algorithm. The update is computed as a function 
of the gradient. Two quasi-newton algorithms are included in the Neural 
Network Toolbox.

BFGS Quasi Newton Algorithm
This algorithm requires more computation in each iteration and more storage 
than the conjugate gradient methods, although it generally converges in fewer 
iterations. For very large networks it may be better to use Rprop or one of the 
conjugate gradient algorithms. For smaller networks, however, trainbfg can 
be an efficient training function.

A One Step Secant Algorithm 
This algorithm requires less storage and computation per epoch than the BFGS 
algorithm. It requires slightly more storage and computation per epoch than 
the conjugate gradient algorithms. It can be considered a compromise between 
full quasi-Newton algorithms and conjugate gradient algorithms.
1-7
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Speed Comparison
The following table gives some example convergence times for the various 
algorithms on one particular regression problem. In this problem a 1-10-1 
network was trained on a data set with 41 input/output pairs until a mean 
square error performance of 0.01 was obtained. Twenty different test runs were 
made for each training algorithm on a Macintosh Powerbook 1400 to obtain the 
average numbers shown in the table. These numbers should be used with 
caution, since the performances shown here may not be typical for these 
algorithms on other types of problems. (You may notice that there is not a clear 
relationship between the number of floating point operations and the time 
required to reach convergence. This is because some of the algorithms can take 
advantage of efficient built-in MATLAB functions. This is especially true for the 
Levenberg-Marquardt algorithm.)

For most situations, we recommend that you try the Levenberg-Marquardt 
algorithm first. If this algorithm requires too much memory, then try the BFGS 
algorithm trainbfg, or one of the conjugate gradient methods. The Rprop 
algorithm trainrp is also very fast, and has relatively small memory 
requirements.

Radial basis networks can be designed very quickly, typically in less time than 
it takes the Levenberg-Marquardt algorithm to be trained. You might also 

Function Technique Time Epochs Mflops

traingdx Variable Learning Rate 57.71 980 2.50

trainrp Rprop 12.95 185 0.56

trainscg Scaled Conj. Grad. 16.06 106 0.70

traincgf Fletcher-Powell CG 16.40 81 0.99

traincgp Polak-Ribiére CG 19.16 89 0.75

traincgb Powell-Beale CG 15.03 74 0.59

trainoss One-Step-Secant 18.46 101 0.75

trainbfg BFGS quasi-Newton 10.86 44 1.02

trainlm Levenberg-Marquardt 1.87 6 0.46



Other New Networks, Algorithms and Improvements
consider them. However, they have the disadvantage that, once designed, the 
computation associated with their use may be greater than that for 
conventional feedforward networks.

Improving Generalization
One of the problems that occurs during neural network training is called 
overfitting. The error on the training set is driven to a very small value, but 
when new data is presented to the network the error is large. The network has 
memorized the training examples, but it has not learned to generalize to new 
situations. Two solutions to the overfitting problem are presented here.

Regularization
Regularization involves modifying the performance function, which is normally 
chosen to be the sum of squares of the network errors on the training set. We 
have included two routines which will automatically set the optimal 
performance function to achieve the best generalization.

Regularization helps take the mystery out of how to pick the number of 
neurons in a network and consistently leads to good networks that are not 
overtrained.

Early Stopping With Validation
Early stopping is a technique based on dividing the data into three subsets. The 
first subset is the training set used for computing the gradient and updating 
the network weights and biases. The second subset is the validation set. The 
error on the validation set is monitored during the training process. The 
validation error will normally decrease during the initial phase of training, as 
does the training set error. However, when the network begins to overfit the 
data, the error on the validation set will typically begin to rise. When the 
validation error increases for a specified number of iterations, the training is 
stopped, and the weights and biases at the minimum of the validation error are 
returned.

Pre and Post Processing
Neural network training can be made more efficient if certain preprocessing 
steps are performed on the network inputs and targets. Thus, we have included 
the following functions.
1-9
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Scale Minimum and Maximum 
The function premnmx can be used to scale inputs and targets so that they fall 
in the range [-1,1]. 

Scale Mean and Standard Deviation
The function prestd normalizes the mean and standard deviation of the 
training set.

Principal Component Analysis
The principle components analysis program prepca can be used to reduce the 
dimensions of the input vectors.

Post-training Analysis
We have included a post training function postreg that performs a regression 
analysis between the network response and the corresponding targets. 

New Training Options
In this toolbox we can not only minimize mean squared error as before, but we 
can also:

• Minimize with variations of mean squared error for better generalization. 
Such training simplifies the problem of picking the number of hidden 
neurons and produces good networks that are not overtrained.

• Train with validation to achieve appropriately early stopping. Here the 
training result is checked against a validation set of input output data to 
make sure that overtraining has not occurred.

• Stop training when the error gradient reaches a minimum. This avoids 
wasting computation time when further training is having little effect.

• The low memory use Levenberg Marquardt algorithm has been incorporated 
into both new and old algorithms.
0



Other New Networks, Algorithms and Improvements
Probabilistic Neural Networks
Probabilistic neural networks can be used for classification problems. Their 
design is straightforward and does not depend on training. These networks 
generalize well.

Generalized Regression Networks
A generalized regression neural network (GRNN) is often used for function 
approximation. Given a sufficient number of hidden neurons, GRNNs can 
approximate a continuous function to an arbitrary accuracy.
1-11
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Modular Network Representation
The modular representation in the Toolbox version 3.0 allows a great deal of 
flexibility, including the following options: 

• Networks can have any number of sets of inputs, layers.

• Any input or layer can be connected to any layer with a weight.

• Each layer can have a bias or not.

• Each layer can be a network output or not.

• Weights can have tapped delays.

• Weights can be partially connected 

• Each layer can have a target or not
2



Better Simulink Support
Better Simulink Support
The Neural Network Toolbox Version 3.0 can now generate network simulation 
blocks for use with Simulink. The Neural Network Toolbox version 2.0 
provided transfer function blocks but didn't help import entire networks. We 
can do that now.
1-13
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General Toolbox Improvements

Simpler and More Extensible Toolbox
The new Toolbox has fewer functions, but each of them does more than the old 
ones. For instance, the following functions can be applied to a broad variety of 
networks.

• init – initialization

• sim – simulation

• train – training

• adapt – adaptive learning 

Now the Neural Network Toolbox Version 3.0 is more extensible in the 
following ways:

• Network properties can be altered.

• Custom properties can be added to a network object.
4



General Toolbox Improvements
Custom Functions
The toolbox allows you to create and use many kinds of functions, giving you a 
great deal of control over the algorithms used to initialize, simulate, and train, 
your networks. The following sections indicate the kinds of functions you can 
create:

• Simulation functions

- transfer

- net input

- weight

• Initialization functions

- network initialization

- layer initialization

- weight and bias initialization

• Learning functions

- network training

- network adapt

- network performance

- weight and bias learning

• Self-organizing map functions

- topology

- distance
1-15
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Neural Network Applications 
The 1988 DARPA Neural Network Study [DARP88] lists various neural 
network application, s beginning in about 1984 with the adaptive channel 
equalizer. This device, which is an outstanding commercial success, is a single- 
neuron network used in long distance telephone systems to stabilize voice 
signals. The DARPA report goes on to list other commercial applications, 
including a small word recognizer, a process monitor, a sonar classifier, and a 
risk analysis system.

Neural networks have been applied in many other fields since the DARPA 
report was written. A list of some applications mentioned in the literature 
follows:

Aerospace
• High performance aircraft autopilot, flight path simulation, aircraft control 

systems, autopilot enhancements, aircraft component simulation, aircraft 
component fault detection

Automotive
• Automobile automatic guidance system, warranty activity analysis

Banking
• Check and other document reading, credit application evaluation

Defense
• Weapon steering, target tracking, object discrimination, facial recognition, 

new kinds of sensors, sonar, radar and image signal processing including 
data compression, feature extraction and noise suppression, signal/image 
identification

Electronics
• Code sequence prediction, integrated circuit chip layout, process control, 

chip failure analysis, machine vision, voice synthesis, nonlinear modeling
6



Neural Network Applications
Entertainment
• Animation, special effects, market forecasting

Financial
• Real estate appraisal, loan advisor, mortgage screening, corporate bond 

rating, credit line use analysis, portfolio trading program, corporate 
financial analysis, currency price prediction 

Insurance
• Policy application evaluation, product optimization

Manufacturing
• Manufacturing process control, product design and analysis, process and 

machine diagnosis, real-time particle identification, visual quality 
inspection systems, beer testing, welding quality analysis, paper quality 
prediction, computer chip quality analysis, analysis of grinding operations, 
chemical product design analysis, machine maintenance analysis, project 
bidding, planning and management, dynamic modeling of chemical process 
system

Medical
• Breast cancer cell analysis, EEG and ECG analysis, prosthesis design, 

optimization of transplant times, hospital expense reduction, hospital 
quality improvement, emergency room test advisement

Oil and Gas
• Exploration

Robotics
• Trajectory control, forklift robot, manipulator controllers, vision systems
1-17



1 Introduction

1-1
Speech
• Speech recognition, speech compression, vowel classification, text to speech 

synthesis

Securities
• Market analysis, automatic bond rating, stock trading advisory systems

Telecommunications
• Image and data compression, automated information services, real-time 

translation of spoken language, customer payment processing systems

Transportation
• Truck brake diagnosis systems, vehicle scheduling, routing systems

Summary
The list of additional neural network applications, the money that has been 
invested in neural network software and hardware, and the depth and breadth 
of interest in these devices have been growing rapidly. It is hoped that this 
toolbox will be useful for neural network educational and design purposes 
within a broad field of neural network applications.

A variety of neural network applications are described in Chapter 10.
8



Neural Network Design Book
Neural Network Design Book
Professor Martin Hagan of Oklahoma State University, and Neural Network 
Toolbox authors Howard Demuth and Mark Beale have written a textbook, 
Neural Network Design, published by PWS Publishing Company in 1996 (ISBN 
0-534-94332-2). The book presents the theory of neural networks as well as 
their design and application, and makes considerable use of MATLAB and the 
Neural Network Toolbox. Demonstration programs from the book are used in 
various chapters of this Guide. The book has a instructor’s manual containing 
problem solutions (ISBN 0-534-95049-3), and overheads for class use. (The 
overheads, in hard copy form, come one to a page for instructor use and three 
to a page for student use.) For information about obtaining this text, please 
contact International Thomson Publishing Customer Service, phone 
1-800-347-7707. 
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Basic Chapters
The Neural Network Toolbox is written so that if you read Chapter 2, 3 and 4 
you can proceed to a later chapter, read it and use its functions without 
difficulty. To make this possible, Chapter 2 presents the fundamentals of the 
neuron model, the architectures of neural networks. It also will discuss 
notation used in the architectures. All of this is basic material. It is to your 
advantage to understand this Chapter 2 material thoroughly.

The neuron model and the architecture of a neural network describe how a 
network transforms its input into an output. This transformation can be 
viewed as a computation. The model and the architecture each place 
limitations on what a particular neural network can compute. The way a 
network computes its output must be understood before training methods for 
the network can be explained.

Notation

Mathematical Notation
The basic notation used here for equations and figures is given below.

• Scalars-small italic letters.....a,b,c

• Vectors - small bold non-italic letters.....a,b,c

• Matrices - capital BOLD non-italic letters.....A,B,C

• Vector means a column of numbers.

Mathematical and Code Equivalents
The transition from mathematical to code notation or vice versa can be made 
with the aid of a few rules. They are listed here for future reference.



Basic Chapters
To change from Mathematical notation to MATLAB notation the user needs to:

• Change superscripts to cell array indices

For example, 

• Change subscripts to parentheses indices

For example, , and 

• Change parentheses indices to a second cell array index

For example, 

• Change mathematics operators to MATLAB operators and toolbox functions

For example, 

See Appendix B for additional information on notation in this Toolbox.

p1 p 1{ }→

p2 p 2( )→ p2
1 p 1{ } 2( )→

p1 k 1–( ) p 1 k 1–,{ }→

ab a*b→
2-3
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Neuron Model

Simple Neuron
A neuron with a single scalar input and no bias is shown on the left below. 

The scalar input p is transmitted through a connection that multiplies its 
strength by the scalar weight w, to form the product wp, again a scalar. Here 
the weighted input wp is the only argument of the transfer function f, which 
produces the scalar output a. The neuron on the right has a scalar bias, b. You 
may view the bias as simply being added to the product wp as shown by the 
summing junction or as shifting the function f to the left by an amount b. The 
bias is much like a weight, except that it has a constant input of 1. The transfer 
function net input n, again a scalar, is the sum of the weighted input wp and 
the bias b. This sum is the argument of the transfer function f. (Chapter 6 
discusses a different way to form the net input n.) Here f is a transfer function, 
typically a step function or a sigmoid function, that takes the argument n and 
produces the output a. Examples of various transfer functions are given in the 
next section. Note that w and b are both adjustable scalar parameters of the 
neuron. The central idea of neural networks is that such parameters can be 
adjusted so that the network exhibits some desired or interesting behavior. 
Thus, we can train the network to do a particular job by adjusting the weight 
or bias parameters, or perhaps the network itself will adjust these parameters 
to achieve some desired end.

All of the neurons in this toolbox have provision for a bias, and a bias is used 
in many of our examples and will be assumed in most of this toolbox. However, 
you may omit a bias in a neuron if you wish.

Input - Title -

- Exp -

anp w

AA
AA f

Neuron without bias

a = f (wp )

Input - Title -

- Exp -

anp

AA
AA f

Neuron with bias

a = f (wp + b)

b

1

w

AA
AA



Neuron Model
As noted above, the bias b is an adjustable (scalar) parameter of the neuron. It 
is not an input. However, the constant 1 that drives the bias is an input and 
must be treated as such when considering the linear dependence of input 
vectors in Chapter 4.

Transfer Functions 

Many transfer functions have been included in this toolbox. A complete list of 
them can be found in “Transfer Function Graphs” in Chapter 13. Three of the 
most commonly used functions are shown below. 

The hard limit transfer function shown above limits the output of the neuron 
to either 0, if the net input argument n is less than 0, or 1, if n is greater than 
or equal to 0. We will use this function in Chapter 3 “Perceptrons” to create 
neurons that make classification decisions.

The Toolbox has a function, hardlim, to realize the mathematical hard limit 
transfer function shown above. Your might try the code shown below.

n = -5:0.1:5;
plot(n,hardlim(n),'c+:');

It produces a plot of the function hardlim over the range -5 to +5.

All of the mathematical transfer functions in the toolbox can be realized with 
a function having the same name.

AA
a = hardlim(n)

Hard Limit Transfer Function

-1

n
0

+1
a
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The linear transfer function is shown below. 

Neurons of this type are used as linear approximators in “Adaptive Linear 
Filters” in Chapter 4.

The sigmoid transfer function shown below takes the input, which may have 
any value between plus and minus infinity, and squashes the output into the 
range 0 to 1.

This transfer function is commonly used in backpropagation networks, in part 
because it is differentiable.

The symbol in the square to the right of each transfer function graph shown 
above represents the associated transfer function. These icons will replace the 
general f in the boxes of network diagrams to show the particular transfer 
function that is being used.

For a complete listing of transfer functions and their icons, see the “Transfer 
Function Graphs” in Chapter 13. You can also specify your own transfer 
functions. You are not limited to the transfer functions listed in Chapter 13. 

You can experiment with a simple neuron and various transfer functions by 
running the demonstration program nnd2n1.

n
0

-1

+1

AA
AA

a = purelin(n)

Linear Transfer Function

a

-1

n
0

+1

AA
AA

a 

Log-Sigmoid Transfer Function

a = logsig(n)



Neuron Model
Neuron With Vector Input
A neuron with a single R-element input vector is shown below. Here the 
individual element inputs 

are multiplied by weights

 and the weighted values are fed to the summing junction. Their sum is simply 
Wp, the dot product of the (single row) matrix W and the vector p.

The neuron has a bias b, which is summed with the weighted inputs to form 
the net input n. This sum, n, is the argument of the transfer function f.

This expression can, of course, be written in MATLAB code as:

n = W*p + b

However, the user will seldom be writing code at this low level, for such code is 
already built into functions to define and simulate entire networks.

The figure of a single neuron shown above contains a lot of detail. When we 
consider networks with many neurons and perhaps layers of many neurons, 
there is so much detail that the main thoughts tend to be lost. Thus, the 
authors have devised an abbreviated notation for an individual neuron. This 

p1, p2,... pR

w1 1, , w1 2, ,...w1 R,

Input

p
1

an
p

2p
3

p
R

w
1,

 
R

w
1,1

A
A f

b

1

Where...

R = # Elements
in input vector

Neuron w Vector Input 

A
A

a = f(Wp +b)

n w1 1, p1 w1 2, p2 ... w1 R, pR b+ + + +=
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notation, which will be used later in circuits of multiple neurons, is illustrated 
in the diagram shown below. 

Here the input vector p is represented by the solid dark vertical bar at the left. 
The dimensions of p are shown below the symbol p in the figure as Rx1. (Note 
that we will use a capital letter, such as R in the previous sentence, when 
referring to the size of a vector.) Thus, p is a vector of R input elements. These 
inputs post multiply the single row, R column matrix W. As before, a constant 
1 enters the neuron as an input and is multiplied by a scalar bias b. The net 
input to the transfer function f is n, the sum of the bias b and the product Wp. 
This sum is passed to the transfer function f to get the neuron’s output a, which 
in this case is a scalar. Note that if we had more than one neuron, the network 
output would be a vector.

A layer of a network is defined in the figure shown above. A layer includes the 
combination of the weights, the multiplication and summing operation (here 
realized as a vector product Wp), the bias b, and the transfer function f. The 
array of inputs, vector p, will not be included in or called a layer.

Each time this abbreviated network notation is used, the size of the matrices 
will be shown just below their matrix variable names. We hope that this 
notation will allow you to understand the architectures and follow the matrix 
mathematics associated with them.

p a

1

nAA
AA

W

AA
AAb

R x 1
1 x R

1 x 1

1 x 1

1  x  1

Input

R 1

AA
AA
AA
AA

f

Where...

R = # of elements
       in input vector

Neuron

a = f(Wp +b)



Neuron Model
As discussed previously, when a specific transfer function is to be used in a 
figure, the symbol for that transfer function will replace the f shown above. 
Here are some examples.

You can experiment with a 2 element neuron by running the demonstration 
program nnd2n2.

AA
AA
AA

A
A
A

AA
AA
AA

purelinhardlim logsig
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Network Architectures
Two or more of the neurons shown above may be combined in a layer, and a 
particular network might contain one or more such layers. First consider a 
single layer of neurons.

A Layer of Neurons
A one layer network with R input elements and S neurons is shown below.

In this network, each element of the input vector p is connected to each neuron 
input through the weight matrix W. The ith neuron has a summer that gathers 
its weighted inputs and bias to form its own scalar output n(i). The various n(i) 
taken together form an S-element net input vector n. Finally, the neuron layer 
outputs form a column vector a. We show the expression for a at the bottom of 
the figure.

Note that it is common for the number of inputs to a layer to be different from 
the number of neurons (i.e. R ¦ S). A layer is not constrained to have the 
number of its inputs equal to the number of its neurons.

You can create a single (composite) layer of neurons having different transfer 
functions simply by putting two of the networks shown above in parallel. Both 

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S, 

 
R

w
1,

 
1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1
AA
AA

AA
AA

AA
AA
AA
AA

f

AA
AA

f

AA
AAf

Layer of Neurons

Where...

 
 

R = # of elements 
      in input vector 

S = # Neurons 
      in Layer

a= f (Wp + b)
0



Network Architectures
networks would have the same inputs, and each network would create some of 
the outputs.

The input vector elements enter the network through the weight matrix W.

Note that the row indices on the elements of matrix W indicate the destination 
neuron of the weight and the column indices indicate which source is the input 
for that weight. Thus, the indices in say that the strength of the signal 
from the second input element to the first (and only) neuron is . 

The S neuron R input one layer network also can be drawn in abbreviated 
notation.

Here p is an R length input vector, W is an SxR matrix, and a and b are S 
length vectors. As defined previously, the neuron layer includes the weight 
matrix, the multiplication operations, the bias vector b, the summer, and the 
transfer function boxes.

Inputs and Layers
We are about to discuss networks having multiple layers so we will need to 
extend our notation to talk about such networks. Specifically, we need to make 
a distinction between weight matrices that are connected to inputs and weight 

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=

w1 2,
w1 2,

a= f (Wp + b)

p a

1

nAAW

AA
AA

b

R x 1
S x R

S x 1

S  x  1

Input Layer of Neurons

R SAA
AA
AA

f

Where...

 
 

R = # of elements 
      in input vector 

S = # Neurons 
      in Layer

S x 1
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matrices that are connected between layers. We also need to identify the source 
and destination for the weight matrices.

We will call weight matrices connected to inputs, input weights, and we will call 
weight matrices coming from layer outputs layer weights. Further, we will use 
superscripts to identify the source (second index) and the destination (first 
index) for the various weights and other elements of the network. To illustrate, 
we have re-drawn the one layer multiple input network shown above in 
abbreviated form below. 

As you can see, we have labeled the weight matrix connected to the input vector 
p as an Input Weight matrix (IW1,1) having a source 1 (second index) and a 
destination 1 (first index). Also, elements of layer one, such as its bias, net 
input and output have a superscript 1 to say that they are associated with the 
first layer.

In the next section we will use Layer Weight (LW) matrices as well as Input 
Weight (IW) matrices.

You might recall from the notation section at the beginning of this chapter that 
conversion of the layer weight matrix from math to code for a particular 
network called net is: 

Thus, we could write the code to obtain the net input to the transfer function as:

n{1} = net.IW{1,1}*p + net.b{1};

p a1

1

n1
S 1 x R 

S 1 x 1

S 1  x 1

S 1 x  1

Input 

AA
AA
IW1,1

AA
AAb1

Layer 1

S1AA
AA
AA
AA

f1

R

Where...

 = # of elements
       in input 

= # Neurons in 
       layer 1

S1

a1 = f1(IW1,1p +b1)

R

S 1 x 1

R  x 1

IW1 1, net.IW 1 1,{ }→
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Network Architectures
Multiple Layers of Neurons
A network can have several layers. Each layer has a weight matrix W, a bias 
vector b, and an output vector a. To distinguish between the weight matrices, 
output vectors, etc., for each of these layers in our figures, we will append the 
number of the layer as a superscript to the variable of interest. You can see the 
use of this layer notation in the three layer network shown below, and in the 
equations below the figure. 

The network shown above has R1 inputs, S1 neurons in the first layer, S2 

neurons in the second layer, etc. It is common for different layers to have 
different numbers of neurons. A constant input 1 is fed to the biases for each 
neuron.

Note that the outputs of each intermediate layer are the inputs to the following 
layer. Thus layer 2 can be analyzed as a one layer network with S1 inputs, S2 
neurons, and an S1xS2 weight matrix W2. The input to layer 2 is a1, the output 
is a2. Now that we have identified all the vectors and matrices of layer 2 we can 
treat it as a single layer network on its own. This approach can be taken with 
any layer of the network.

a1 = f1 (IW1,1p +b1) a2 = f2 (LW2,1a1 +b2) a3 =f3 (LW3,2 a2 + b3)

First Layer Second Layer Third Layer
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The layers of a multilayer network play different roles. A layer that produces 
the network output is called an output layer. All other layers are called hidden 
layers. The three layer network shown above has one output layer (layer 3) and 
two hidden layers (layer 1 and layer 2). Some authors refer to the inputs as a 
fourth layer. We will not use that designation.

The same three layer network discussed previously also can be drawn using 
our abbreviated notation. 

Multiple layer networks are quite powerful. For instance, a network of two 
layers, where the first layer is sigmoid and the second layer is linear, can be 
trained to approximate any function (with a finite number of discontinuities) 
arbitrarily well. This kind of two-layer network is used extensively in Chapter 
5, “Backpropagation.”

Note that we have labeled the output of the a3 layer as y. We will use this 
notation to specify the output of such networks.

p a1 a2

1 1

n1 n2

a3 = y

n3

1

S 2 x S 1

S 2 x 1

S 2 x 1

 S 2 x 1
S 3x S 2

S 3 x 1

S 3 x 1

S 3 x 1 R x 1

S 1 x R 

 S 1 x 1

 S 1 x 1

S 1 x 1

Input 
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AAb1
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AAb2
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AAAb3
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R S3S1 S2

A
A
A
A
f2
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AA
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AA

f3

First Layer Second Layer Third Layer

a1 = f1 (IW1,1p +b1) a2 = f2 (LW2,1 a1 +b2) a3 =f3 (LW3,2a2 +b3)

a3 =f3 (LW3,2 f2 (LW2,1f1 (IW1,1p +b1)+ b2)+ b3   =  y

AA
AA
AA
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f1
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Data Structures
Data Structures
This section will discuss how the format of input data structures effects the 
simulation of networks. We will begin with static networks and then move to 
dynamic networks.

We will be concerned about two basic types of input vectors: those that occur 
concurrently (at the same time, or in no particular time sequence) and those 
that occur sequentially in time. For sequential vectors, the order in which the 
vectors appear is important. For concurrent vectors, the order is not important, 
and if we had a number of networks running in parallel we could present one 
input vector to each of the networks.

Simulation With Concurrent Inputs in a Static 
Network
The simplest situation for simulating a network occurs when the network to be 
simulated is static (has no feedback or delays). In this case we do not have to 
be concerned about whether or not the input vectors occur in a particular time 
sequence, so we can treat the inputs as concurrent. In addition, to make the 
problem even simpler, we will begin by assuming that the network has only one 
input vector. We will use the following network as an example.

To set up this feedforward network we can use the following command.

net = newlin([-1 1;-1 1],1);

For simplicity we will assign the weight matrix and bias to be

, .

p
1 an

Inputs

bp
2 w

1,2

w
1,1

1
a = purelin (Wp + b)

Linear Neuron

AA

W 1 2= b 0=
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The commands for these assignments are

net.IW{1,1} = [1 2];
net.b{1} = 0;

Suppose that the network simulation data set consists of Q = 4 concurrent 
vectors:

, , , 

Concurrent vectors are presented to the network as a single matrix:

P = [1 2 2 3; 2 1 3 1];

We can now simulate the network:

A = sim(net,P)
A =
     5     4     8     5

A single matrix of concurrent vectors is presented to the network and the 
network produces a single matrix of concurrent vectors as output. The result 
would be the same if there were four networks operating in parallel and each 
network received one of the input vectors and produced one of the outputs. The 
ordering of the input vectors is not important as they do not interact with each 
other.

Simulation With Sequential Inputs in a Dynamic 
Network
When a network contains delays, the input to the network would normally be 
a sequence of input vectors which occur in a certain time order. To illustrate 
this case we will use a simple network which contains one delay.

p1
1
2

= p2
2
1

= p3
2
3

= p4
3
1

=
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Data Structures
The following commands will create this network:

net = newlin([-1 1],1,[0 1]);
net.biasConnect = 0;

Assign the weight matrix to be

.

The command is

net.IW{1,1} = [1 2];

Suppose that the input sequence is

, , , 

Sequential inputs are presented to the network as elements of a cell array:

P = {1 2 3 4};

We can now simulate the network:

A = sim(net,P)
A = 
    [1]    [4]    [7]    [10]

We input a cell array containing a sequence of inputs, and the network 
produced a cell array containing a sequence of outputs. Note that the order of 
the inputs is important when they are presented as a sequence. In this case the 
current output is obtained by multiplying the current input by 1 and the 

a(t)n(t)

Inputs

w
1,1

AA
AA

D w
1,2

Linear Neuron

AA
AA

p(t)

a(t) = w
1 1

p(t) + w
1 2

p(t - 1)

AA
AA

W 1 2=

p 1( ) 1= p 2( ) 2= p 3( ) 3= p 4( ) 4=
2-17



2 Neuron Model and Network Architectures

2-1
preceding input by 2 and summing the result. If we were to change the order of 
the inputs it would change the numbers we would obtain in the output.

Simulation With Concurrent Inputs in a Dynamic 
Network
If we were to apply the same inputs from the previous example as a set of 
concurrent inputs instead of a sequence of inputs we would obtain a completely 
different response. (Although it is not clear why we would want to do this with 
a dynamic network.) It would be as if each input were applied concurrently to 
a separate parallel network. For the previous example, if we use a concurrent 
set of inputs we have

, , , ,

which can be created with the following code:

P = [1 2 3 4];

When we simulate with concurrent inputs we obtain

A = sim(net,P)
A =
     1     2     3     4

The result is the same as if we had concurrently applied each one of the inputs 
to a separate network and computed one output. Note that since we did not 
assign any initial conditions to the network delays they were assumed to be 
zero. For this case the output will simply be 1 times the input, since the weight 
which multiplies the current input is 1.

In certain special cases we might want to simulate the network response to 
several different sequences at the same time. In this case we would want to 
present the network with a concurrent set of sequences. For example, let’s say 
we wanted to present the following two sequences to the network:

, , , ,

, , , .

The input P should be a cell array, where each element of the array contains 
the two elements of the two sequences which occur at the same time:

P = {[1 4] [2 3] [3 2] [4 1]};

p1 1= p2 2= p3 3= p4 4=

p1 1( ) 1= p1 2( ) 2= p1 3( ) 3= p1 4( ) 4=

p2 1( ) 4= p2 2( ) 3= p2 3( ) 2= p2 4( ) 1=
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Data Structures
We can now simulate the network:

A = sim(net,P);

The resulting network output would be

A = {[ 1 4] [4 11] [7 8] [10 5]}

As you can see, the first column of each matrix makes up the output sequence 
produced by the first input sequence, which was the one we used in an earlier 
example. The second column of each matrix makes up the output sequence 
produced by the second input sequence. There is no interaction between the 
two concurrent sequences. It is as if they were each applied to separate 
networks running in parallel.

The following diagram shows the general format for the input P to the sim 
function when we have Q concurrent sequences of TS time steps. It covers all 
cases where there is a single input vector. Each element of the cell array is a 
matrix of concurrent vectors which correspond to the same point in time for 
each sequence. If there are multiple input vectors there will be multiple rows 
of matrices in the cell array.

In this section we have applied sequential and concurrent inputs to dynamic 
networks. In the previous section we applied concurrent inputs to static 
networks. It is also possible to apply sequential inputs to static networks. It 
will not change the simulated response of the network, but it can affect the way 
in which the network is trained. This will become clear in the next section.

p1 1( ) p2 1( ) … pQ 1( ), , ,[ ] p1 2( ) p2 2( ) … pQ 2( ), , ,[ ]· … p1 TS( ) p2 TS( ) … pQ TS( ), , ,[ ], , ,{ }

First Sequence

Qth Sequence
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Training Styles
In this section we will describe two different styles of training. In incremental 
training the weights and biases of the network are updated each time an input 
is presented to the network. In batch training the weights and biases are only 
updated after all of the inputs have been presented.

Incremental Training (of Adaptive and Other 
Networks)
Incremental training can be applied to both static and dynamic networks, 
although it is more commonly used with dynamic networks, such as adaptive 
filters. In this section we will demonstrate how incremental training can be 
performed on both static and dynamic networks.

Incremental Training with Static Networks
Consider again the static network we used for our first example. We want to 
train it incrementally, so that the weights and biases will be updated after each 
input is presented. In this case we use the function adapt, and we present the 
inputs and targets as sequences.

Suppose we want to train the network to create the linear function 

.

Then for the previous inputs we used,

, , , ,

the targets would be

, , , .

We will first set up the network with zero initial weights and biases. We will 
also set the learning rate to zero initially, in order to show the effect of the 
incremental training.

net = newlin([-1 1;-1 1],1,0,0);
net.IW{1,1} = [0 0];
net.b{1} = 0;

t 2p1 p2+=

p1
1
2

= p2
2
1

= p3
2
3

= p4
3
1

=

t1 4= t2 5= t3 7= t4 7=
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Training Styles
For incremental training we want to present the inputs and targets as 
sequences:

P = {[1;2] [2;1] [2;3] [3;1]};
T = {4 5 7 7};

Recall from the earlier discussion that for a static network the simulation of the 
network will produce the same outputs whether the inputs are presented as a 
matrix of concurrent vectors or as a cell array of sequential vectors. This is not 
true when training the network, however. When using the adapt function, if 
the inputs are presented as a cell array of sequential vectors, then the weights 
will be updated as each input is presented (incremental mode). As we will see 
in the next section, if the inputs are presented as a matrix of concurrent 
vectors, then the weights will be updated only after all inputs have been 
presented (batch mode).

We are now ready to train the network incrementally.

[net,a,e,pf] = adapt(net,P,T);

The network outputs will remain zero, since the learning rate is zero, and the 
weights are not updated. The errors will be equal to the targets:

a = [0]    [0]    [0]    [0]
e = [4]    [5]    [7]    [7]

If we now set the learning rate to 0.1 we can see how the network is adjusted 
as each input is presented:

net.inputWeights{1,1}.learnParam.lr=0.1;
net.biases{1,1}.learnParam.lr=0.1;
[net,a,e,pf] = adapt(net,P,T);
a = [0]    [2]    [6.0]    [5.8]
e = [4]    [3]    [1.0]    [1.2]

The first output is the same as it was with zero learning rate, since no update 
is made until the first input is presented. The second output is different, since 
the weights have been updated. The weights continue to be modified as each 
error is computed. If the network is capable and the learning rate is set 
correctly, the error will eventually be driven to zero.
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Incremental Training With Dynamic Networks
We can also train dynamic networks incrementally. In fact, this would be the 
most common situation. Let’s take the linear network with one delay at the 
input that we used in a previous example. We will initialize the weights to zero 
and set the learning rate to 0.1.

net = newlin([-1 1],1,[0 1],0.1);
net.IW{1,1} = [0 0];
net.biasConnect = 0;

To train this network incrementally we will present the inputs and targets as 
elements of cell arrays. 

Pi = {1};
P = {2 3 4};
T = {3 5 7};

Here we are attempting to train the network to sum the current and previous 
inputs to create the current output. This is the same input sequence we used 
in the previous example of using sim, except that we are assigning the first 
term in the sequence as the initial condition for the delay. We are now ready to 
sequentially train the network using adapt.

[net,a,e,pf] = adapt(net,P,T,Pi);
a = [0] [2.4] [ 7.98]
e = [3] [2.6] [-1.98]

The first output is zero, since the weights have not yet been updated. The 
weights change at each subsequent time step.

Batch Training
Batch training, in which weights and biases are only updated after all of the 
inputs and targets have been presented, can be applied to both static and 
dynamic networks. We will discuss both types of networks in this section.

Batch Training With Static Networks
Batch training can be done using either adapt or train, although train is 
generally the best option, since it typically has access to more efficient training 
algorithms. Incremental training can only be done with adapt; train can only 
perform batch training.
2



Training Styles
Let’s begin with the static network we used in previous examples. The learning 
rate will be set to 0.1.

net = newlin([-1 1;-1 1],1,0,0.1);
net.IW{1,1} = [0 0];
net.b{1} = 0;

For batch training of a static network with adapt, the input vectors must be 
placed in one matrix of concurrent vectors.

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

When we call adapt it will invoke adaptwb, which is the default adaptation 
function for the linear network, and learnwh is the default learning function 
for the weights and biases. Therefore, Widrow-Hoff learning will be used.

[net,a,e,pf] = adapt(net,P,T);
a = 0 0 0 0
e = 4 5 7 7

Note that the outputs of the network are all zero, because the weights are not 
updated until all of the training set has been presented. If we display the 
weights we find:

»net.IW{1,1}
ans = 4.9000    4.1000

»net.b{1}
ans =

    2.3000

This is different that the result we had after one pass of adapt with 
incremental updating.

Now let’s perform the same batch training using train. Since the Widrow-Hoff 
rule can be used in incremental or batch mode, it can be invoked by adapt or 
train. There are several algorithms which can only be used in batch mode (e.g., 
Levenberg-Marquardt), and so these algorithms can only be invoked by train.

The network will be set up in the same way.

net = newlin([-1 1;-1 1],1,0,0.1);
net.IW{1,1} = [0 0];
net.b{1} = 0;
2-23



2 Neuron Model and Network Architectures

2-2
For this case the input vectors can either be placed in a matrix of concurrent 
vectors or in a cell array of sequential vectors. Within train any cell array of 
sequential vectors would be converted to a matrix of concurrent vectors. This 
is because the network is static, and because train always operates in the 
batch mode. Concurrent mode operation is generally used whenever possible, 
because it has a more efficient MATLAB implementation.

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

Now we are ready to train the network. We will train it for only one epoch, since 
we used only one pass of adapt. The default training function for the linear 
network is trainwb, and the default learning function for the weights and 
biases is learnwh, so we should get the same results that we obtained using 
adapt in the previous example, where the default adaptation function was 
adaptwb.

net.inputWeights{1,1}.learnParam.lr = 0.1;
net.biases{1}.learnParam.lr = 0.1;
net.trainParam.epochs = 1;
net = train(net,P,T);

If we display the weights after one epoch of training we find:

»net.IW{1,1}
ans = 4.9000    4.1000

»net.b{1}
ans =

    2.3000

This is the same result we had with the batch mode training in adapt. With 
static networks the adapt function can implement incremental or batch 
training depending on the format of the input data. If the data is presented as 
a matrix of concurrent vectors batch training will occur. If the data is presented 
as a sequence, incremental training will occur. This is not true for train, which 
always performs batch training, regardless of the format of the input.

Batch Training With Dynamic Networks
Training static networks is relatively straightforward. If we use train the 
network will be trained in the batch mode and the inputs will be converted to 
concurrent vectors (columns of a matrix), even if they are originally passed as 
a sequence (elements of a cell array). If we use adapt, the format of the input 
4



Training Styles
will determine the method of training. If the inputs are passed as a sequence, 
then the network will be trained in incremental mode. If the inputs are passed 
as concurrent vectors, then batch mode training will be used.

With dynamic networks batch mode training would typically be done with 
train only, especially if only one training sequence exists. To illustrate this, 
let’s consider again the linear network with a delay. We will use a learning rate 
of 0.02 for the training. (When using a gradient descent algorithm, we will 
typically use a smaller learning rate for batch mode training than incremental 
training, because all of the individual gradients are summed together before 
determining the step change to the weights.)

net = newlin([-1 1],1,[0 1],0.02);
net.IW{1,1}=[0 0];
net.biasConnect=0;
net.trainParam.epochs = 1;
Pi = {1};
P = {2 3 4};
T = {3 5 6};

We want to train the network with the same sequence we used for the 
incremental training earlier, but this time we want to update the weights only 
after all of the inputs have been applied (batch mode). The network will be 
simulated in sequential mode because the input is a sequence, but the weights 
will be updated in batch mode.

net=train(net,P,T,Pi);

The weights after one epoch of training are

»net.IW{1,1}
ans = 0.9000    0.6200

These are different weights than we would obtain using incremental training, 
where the weights would have been updated three times during one pass 
through the training set. For batch training the weights are only updated once 
in each epoch.
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Summary
The inputs to a neuron include its bias and the sum of its weighted inputs 
(using the inner product). The output of a neuron depends on the neuron’s 
inputs and on its transfer function. There are many useful transfer functions.

A single neuron cannot do very much. However, several neurons can be 
combined into a layer or multiple layers that have great power. Hopefully this 
toolbox makes it easy to create and understand such large networks. 

The architecture of a network consists of a description of how many layers a 
network has, the number of neurons in each layer, each layer’s transfer 
function, and how the layers are connected to each other. The best architecture 
to use depends on the type of problem to be represented by the network.

A network effects a computation by mapping input values to output values. The 
particular mapping problem to be performed fixes the number of inputs as well 
as the number of outputs for the network.

Aside from the number of neurons in a network’s output layer, the number of 
neurons in each layer is up to the designer. Except for purely linear networks, 
the more neurons in a hidden layer the more powerful the network.

If a linear mapping needs to be represented linear neurons should be used. 
However, linear networks cannot perform any nonlinear computation. Use of a 
nonlinear transfer function makes a network capable of storing nonlinear 
relationships between input and output.

A very simple problem may be represented by a single layer of neurons. 
However, single layer networks cannot solve certain problems. Multiple 
feed-forward layers give a network greater freedom. For example, any 
reasonable function can be represented with a two layer network: a sigmoid 
layer feeding a linear output layer.

Networks with biases can represent relationships between inputs and outputs 
more easily than networks without biases. (For example, a neuron without a 
bias will always have a net input to the transfer function of zero when all of its 
inputs are zero. However, a neuron with a bias can learn to have any net 
transfer function input under the same conditions by learning an appropriate 
value for the bias.)

Feed-forward networks cannot perform temporal computation. More complex 
networks with internal feedback paths are required for temporal behavior.
6



Summary
If several input vectors are to be presented to a network, they may be presented 
sequentially or concurrently. Batching of concurrent inputs is computationally 
more efficient and may be what is desired in any case. The matrix notation 
used in MATLAB makes batching simple. 
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Figures and Equations
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Summary
Log Sigmoid Transfer Function
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Single Neuron Using Abbreviated Notation
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Summary
Three Layers of Neurons
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Layer of Neurons, Abbreviated Notation

Layer of Neurons Showing Indices
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Summary
Three Layers of Neurons 
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2-3
Linear Neuron With Two Element Vector Input.

Dynamic Network With One Delay.
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Introduction
This chapter has a number of objectives. First we want to introduce you to 
learning rules, methods of deriving the next changes that might be made in a 
network, and training, a procedure whereby a network is actually adjusted to 
do a particular job. Along the way we will discuss a toolbox function to create a 
simple perceptron network, and we will also cover functions to initialize and 
simulate such networks. We will use the perceptron as a vehicle for tying these 
concepts together.

Rosenblatt [Rose61] created many variations of the perceptron. One of the 
simplest was a single layer network whose weights and biases could be trained 
to produce a correct target vector when presented with the corresponding input 
vector. The training technique used is called the perceptron learning rule. The 
perceptron generated great interest due to its ability to generalize from its 
training vectors and learn from initially randomly distributed connections. 
Perceptrons are especially suited for simple problems in pattern classification. 
They are fast and reliable networks for the problems they can solve. In 
addition, an understanding of the operations of the perceptron provides a good 
basis for understanding more complex networks. 

In this chapter we will define what we mean by a learning rule, explain the 
perceptron network and its learning rule, and tell you how to initialize and 
simulate perceptron networks.

The discussion of perceptron in this chapter is necessarily brief. You may wish 
to read a more thorough discussion such as that given in Chapter 4 “Perceptron 
Learning Rule,” of [HDB1996]. This Chapter discusses the use of multiple 
layers of perceptrons to solve more difficult problems beyond the capability of 
one layer.

You also may want to refer to the original book on the perceptron, Rosenblatt, 
F., Principles of Neurodynamics, Washington D.C.: Spartan Press, 1961. 
[Rose61].



Introduction
Important Perceptron Functions
Entering help percept at the MATLAB command line displays all the 
functions which are related to perceptrons.

Perceptron networks can be created with the function newp. These networks 
can be initialized and simulated with the init and sim. The following material 
describes how perceptrons work and introduces these functions.
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Neuron Model
A perceptron neuron, which uses the hard limit transfer function hardlim, is 
shown below.

Each external input is weighted with an appropriate weight w1j, and the sum 
of the weighted inputs is sent to the hard limit transfer function, which also 
has an input of 1 transmitted to it through the bias. The hard limit transfer 
function, which returns a 0 or a 1, is shown below. 

The perceptron neuron produces a 1 if the net input into the transfer function 
is equal to or greater than 0, otherwise it produces a 0.

The hard limit transfer function gives a perceptron the ability to classify input 
vectors by dividing the input space into two regions. Specifically, outputs will 
be 0 if the net input n is less than 0, or 1 if the net input n is 0 or greater. The 
input space of a 2-input hard limit neuron with the weights 

 and a bias , is shown below.
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Neuron Model
Two classification regions are formed by the decision boundary line L at 
. This line is perpendicular to the weight matrix W and shifted 

according to the bias b. Input vectors above and to the left of the line L will 
result in a net input greater than 0, and therefore cause the hard limit neuron 
to output a 1. Input vectors below and to the right of the line L cause the neuron 
to output 0. The dividing line can be oriented and moved anywhere to classify 
the input space as desired by picking the weight and bias values.

Hard limit neurons without a bias will always have a classification line going 
through the origin. Adding a bias allows the neuron to solve problems where 
the two sets of input vectors are not located on different sides of the origin. The 
bias allows the decision boundary to be shifted away from the origin as shown 
in the plot above.

You may wish to run the demonstration program nnd4db. With it you can move 
a decision boundary around, pick new inputs to classify, and see how the 
repeated application of the learning rule yields a network that does classify the 
input vectors properly.
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Perceptron Architecture
The perceptron network consists of a single layer of S perceptron neurons 
connected to R inputs through a set of weights wi,j as shown below in two 
forms. As before, the network indices i and j indicate that wi,j is the strength 
of the connection from the jth input to the ith neuron. 

The perceptron learning rule that we will describe shortly is capable of training 
only a single layer. Thus, here we will consider only one layer networks. This 
restriction places limitations on the computation a perceptron can perform. 
The types of problems that perceptrons are capable of solving are discussed 
later in this chapter in the “Limitations and Cautions” section.
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Creating a Perceptron (NEWP)
Creating a Perceptron (NEWP)
A perceptron can be created with the function newp.

net = newp(PR, S)

where the input arguments are:

PR is an Rx2 matrix of minimum and maximum values for R input elements.

S is the Number of neurons.

Commonly the hardlim function is used in perceptrons, so it is the default.

The code below creates a peceptron network with a single one-element input 
vector and one neuron. The range for the single element of the single input 
vector is [0 2].

net = newp([0 2],1);

We can see what network has been created by executing the following code:

inputweights = net.inputweights{1,1}

which yields:

inputweights = 
        delays: 0
       initFcn: 'initzero'
         learn: 1
      learnFcn: 'learnp'
    learnParam: []
          size: [1 1]
      userdata: [1x1 struct]
     weightFcn: 'dotprod'

Note that the default learning function is learnp, which will be discussed later 
in this chapter. The net input to the hardlim transfer function is dotprod, 
which generates the product of the input vector and weight matrix and adds 
the bias to compute the net input.

Also note that the default initialization function, initzero, is used to set the 
initial values of the weights to zero. 

Similarly, 

biases = net.biases{1}
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gives

biases = 
       initFcn: 'initzero'
         learn: 1
      learnFcn: 'learnp'
    learnParam: []
          size: 1
      userdata: [1x1 struct].

We can see that the default initialization for the bias is also 0.

Simulation (SIM)
To show how sim works we will examine a simple problem.

Suppose we take a perceptron with a single two element input vector, like that 
discussed in the decision boundary figure. We define the network with:

net = newp([-2 2;-2 +2],1);

As noted above, this will give us zero weights and biases, so if we want a 
particular set other than zeros, we will have to create them. We can set the two 
weights and the one bias to -1, 1 and 1 as they were in the decision boundary 
figure with the following two lines of code.

net.IW{1,1}= [-1 1];
net.b{1} = [1];

To make sure that these parameters were set correctly, we will check them 
with:

net.IW{1,1}
ans =
    -1     1
net.b{1}
ans =
     1



Creating a Perceptron (NEWP)
Now let us see if the network responds to two signals, one on each side of the 
perceptron boundary.

p1 = [1;1];
a1 = sim(net,p1)
a1 =
     1

and for 

p2 = [1;-1]
a2 = sim(net,p2)
a2 =
     0

Sure enough, the perceptron has classified the two inputs correctly. 

Note that we could have presented the two inputs in a sequence and gotten the 
outputs in a sequence as well.

p3 = {[1;1] [1;-1]};
a3 = sim(net,p3)
a3 = 
    [1]    [0]

Initialization (INIT)
You can use the function init to reset the network weights and biases to their 
original values. Suppose, for instance that you start with the network:

net = newp([-2 2;-2 +2],1);

Now check its weights with

wts = net.IW{1,1}

which gives, as expected, 

wts =
     0     0

In the same way, you can verify that the bias is 0 with

bias = net.b{1}
3-9
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which gives 

bias =
     0.

Now set the weights to the values 3 and 4 and the bias to the value 5 with 

net.IW{1,1} = [3,4];
net.b{1} = 5;

Recheck the weights and bias as shown above to verify that the change has 
been made. Sure enough, 

wts =
     3     4

bias =
     5.

Now use init to reset the weights and bias to their original values.

net = init(net);

We can check as shown above to verify that:

wts =
     0     0
bias =
     0.

We can change the as way that a perceptron is initialized with init. For 
instance, suppose that we define the network input weights and bias initFcns 
as rands and then apply init as shown below.

net.inputweights{1,1}.initFcn = 'rands';
net.biases{1}.initFcn = 'rands';
net = init(net);

Now check on the weights and bias.

wts =
    0.2309    0.5839
biases =
   -0.1106

We can see that the weights and bias have been given random numbers.
0



Learning Rules
Learning Rules
We will define a learning rule as a procedure for modifying the weights and 
biases of a network. (This procedure may also be referred to as a training 
algorithm.) The learning rule is applied to train the network to perform some 
particular task. Learning rules in this toolbox fall into two broad categories: 
supervised learning and unsupervised learning. 

In supervised learning, the learning rule is provided with a set of examples (the 
training set) of proper network behavior:

where  is an input to the network, and  is the corresponding correct 
(target) output. As the inputs are applied to the network, the network outputs 
are compared to the targets. The learning rule is then used to adjust the 
weights and biases of the network in order to move the network outputs closer 
to the targets. The perceptron learning rule falls in this supervised learning 
category. 

In unsupervised learning, the weights and biases are modified in response to 
network inputs only. There are no target outputs available. Most of these 
algorithms perform clustering operations. They categorize the input patterns 
into a finite number of classes. This is especially useful in such applications as 
vector quantization.

As noted, the perceptron discussed in this chapter is trained with supervised 
learning. Hopefully, a network that produces the right output for a particular 
input will be obtained.

p1 t 1{ , } p2 t 2{ , } … pQ tQ{ , }, , ,

pq tq
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Perceptron Learning Rule (LEARNP)
Perceptrons are trained on examples of desired behavior. The desired behavior 
can be summarized by a set of input, output pairs.

where p is an input to the network and t is the corresponding correct (target) 
output. The objective is to reduce the error, e which is the difference  
between the neuron response a, and the target vector t. The perceptron 
learning rule learnp calculates desired changes to the perceptron’s weights 
and biases given an input vector p, and the associated error e. The target 
vector t must contain values of either 0 or 1, as perceptrons (with hardlim 
transfer functions) can only output such values.

Each time learnp is executed, the perceptron will have a better chance of 
producing the correct outputs. The perceptron rule has been proven to converge 
on a solution in a finite number of iterations if a solution exists.

If a bias is not used, learnp works to find a solution by altering only the weight 
vector w to point toward input vectors to be classified as 1, and away from 
vectors to be classified as 0. This results in a decision boundary that is 
perpendicular to w and which properly classifies the input vectors.

There are three conditions that can occur for a single neuron once an input 
vector p is presented and the network’s response a is calculated:

CASE 1. If an input vector is presented and the output of the neuron is correct 
(a = t, and e = t – a = 0), then the weight vector w is not altered.

CASE 2. If the neuron output is 0 and should have been 1 (a = 0 and t = 1, and 
e = t – a = 1) the input vector p is added to the weight vector w. This makes 
the weight vector point closer to the input vector, increasing the chance that 
the input vector will be classified as a 1 in the future.

CASE 3. If the neuron output is 1 and should have been 0 (a = 0 and t = 1, and 
e = t – a = –1) the input vector p is subtracted from the weight vector w. This 
makes the weight vector point farther away from the input vector, increasing 
the chance that the input vector will be classified as a 0 in the future.

The perceptron learning rule can be written more succinctly in terms of the 
error e = t – a, and the change to be made to the weight vector ∆w:

p1t1,p2t1,..., pQtQ

t a–
2



Perceptron Learning Rule (LEARNP)
CASE 1. If e = 0, then make a change ∆w equal to 0.

CASE 2. If e = 1, then make a change ∆w equal to pT.

CASE 3. If e = –1, then make a change ∆w equal to –pT.

All three cases can then be written with a single expression:

We can get the expression for changes in a neuron’s bias by noting that the bias 
is simply a weight which always has an input of 1:

For the case of a layer of neurons we have:

 and

The Perceptron Learning Rule can be summarized as follows:

 and 

where .

Now let us try a simple example. We will start with a single neuron having a 
input vector with just two elements.

net = newp([-2 2;-2 +2],1);

To simplify matters we will set the bias equal to 0 and the weights to 1 and -0.8.

net.biases{1}.value =  [0];
w = [1 -0.8];
net.IW{1,1}.value = w;

The input target pair is given by:

p = [1; 2];
t = [1];

∆w t a–( )pT epT= =

∆b t a–( ) 1( ) e= =

∆W t a–( ) p( )T e p( )T= =

∆b t a–( ) E= =

Wnew Wold epT
+=

bnew bold e+=

e t a–=
3-13



3 Perceptrons

3-1
We can compute the output and error with

a = sim(net,p)
a =
     0
e = t-a
e =
     1

and finally use the function learnp to find the change in the weights.

dw = learnp(w,p,[],[],[],[],e,[],[],[])
dw =
     1     2.

The new weights, then, are obtained as

w = w + dw
w =
    2.0000    1.2000

The process of finding new weights (and biases) can be repeated until there are 
no errors. Note that the perceptron learning rule is guaranteed to converge in 
a finite number of steps for all problems that can be solved by a perceptron. 
These include all classification problems that are “linearly separable.” The 
objects to be classified in such cases can be separated by a single line.

You might want to try demo nnd4pr. It allows you to pick new input vectors and 
apply the learning rule to classify them.
4



Adaptive Training (ADAPT)
Adaptive Training (ADAPT)
If sim and learnp are used repeatedly to present inputs to a perceptron, and to 
change the perceptron weights and biases according to the error, the 
perceptron will eventually find weight and bias values which solve the 
problem, given that the perceptron can solve it. Each traverse through all of the 
training input and target vectors is called a pass. 

The function adapt carries out such a loop of calculation. In each pass the 
function adapt will proceed through the specified sequence of inputs, 
calculating the output, error and network adjustment for each input vector in 
the sequence as the inputs are presented. 

Note that adapt does not guarantee that the resulting network does its job. 
The new values of W and b must be checked by computing the network output 
for each input vector to see if all targets are reached. If a network does not 
perform successfully it can be trained further by again calling adapt with the 
new weights and biases for more training passes, or the problem can be 
analyzed to see if it is a suitable problem for the perceptron. Problems which 
are not solvable by the perceptron network are discussed in the “Limitations 
and Cautions” section.

To illustrate the adaptation procedure, we will work through a simple problem. 
Consider a one neuron perceptron with a single vector input having two 
elements.

This network, and the problem we are about to consider are simple enough that 
you can follow through what is done with hand calculations if you wish. The 
problem discussed below follows that found in [HDB1996].
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Let us suppose we have the following classification problem and would like to 
solve it with our single vector input, 2 element perceptron network.

Use the initial weights and bias. We denote the variables at each step of this 
calculation by using a number in parentheses after the variable. Thus, above, 
we have the initial values, W(0) and b(0).

We start by calculating the perceptron’s output a for the first input vector p1, 
using the initial weights and bias.

The output a does not equal the target value t1, so we use the perceptron rule 
to find the incremental changes to the weights and biases based on the error.

You can calculate the new weights and bias using the Perceptron update rules 
shown previously. 
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= t1 0=,
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Adaptive Training (ADAPT)
Now present the next input vector, p2. The output is calculated below.

On this occasion, the target is 1, so the error is zero. Thus there are no changes 
in weights or bias so  and 

We can continue in this fashion, presenting p3 next, calculating an output and 
the error, and making changes in the weights and bias, etc. After making one 
pass through all of the four inputs, you will get the values:  
and . To determine if we have obtained a satisfactory solution, we 
must make one pass through all input vectors to see if they all produce the 
desired target values. This is not true for the 4th input, but the algorithm does 
converge on the 6th presentation of an input. The final values are:

 and . 

This concludes our hand calculation. Now, how can we do this using the adapt 
function?

The following code defines a perceptron like that shown in the previous figure, 
with initial weights and bias values of 0. 

net = newp([-2 2;-2 +2],1);

Let us first consider the application of a single input. We will define the first 
input vector and target as sequences (cell arrays in curly brackets).

p = {[2; 2]};
t = {0}

Now set passes to 1, so that adapt will go through the input vectors (only one 
here) just one time.

net.adaptParam.passes = 1;
[net,a,e] = adapt(net,p,t);

a hardlim W 1( )p2 b 1( )+( )

hardlim 2– 2–
2–

2–
1–

 
 
 

hardlim 1( ) 1

=

= = =

W 2( ) W 1( ) 2– 2–= = p 2( ) p 1( ) 1–= =

W 4( ) 3– 1–=
b 4( ) 0=

W 6( ) 2– 3–= b 6( ) 1=
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The output and error that are returned are:

a = 
    [1]
e = 
    [-1]

The new weights and bias are:

twts = net.IW{1,1}
twts =
    -2    -2
tbiase = net.b{1}
tbiase =
    -1

Thus, the initial weights and bias are 0, and after training on just the first 
vector they have the values [-2 -2] and -1, just as we hand calculated.

We now apply the second input vector . The output is 1, as it will be until the 
weights and bias are changed, but now the target is 1, the error will be 0 and 
the change will be zero. We could proceed in this way, starting from the 
previous result and applying a new input vector time after time. But we can do 
this job automatically with adapt.

Now let’s apply adapt for one pass through the sequence of all four input 
vectors. Start with the network definition.

net = newp([-2 2;-2 +2],1);
net.trainParam.passes = 1;

The input vectors and targets are:

p = {[2;2] [1;-2] [-2;2] [-1;1]}
t = {0 1 0 1}.

Now train the network with:

[net,a,e] = adapt(net,p,t);

p2
8



Adaptive Training (ADAPT)
The output and error that are returned are:

a = 
    [1]    [1]    [0]    [0]
e = 
    [-1]    [0]    [0]    [1]

Note that these outputs and errors are the values obtained when each input 
vector is applied to the network as it existed at the time.

The new weights and bias are:

twts =
    -3    -1
tbias =
     0

Finally simulate the trained network for each of the inputs.

a1 = sim(net,p)
a1 = 
    [0]    [0]    [1]    [1]

The outputs do not yet equal the targets, so we need to train the network for 
more than one pass. This time let us run the problem again for two passes. We 
get the weights

twts =
    -2    -3
tbiase =
     1

and the simulated output and errors for the various inputs is:

a1 = 
    [0]    [1]    [0]    [1]

The second pass does the job. The network has converged and produces the 
correct outputs for the four input vectors. To check we can find the error for 
each of the inputs.

error = {a1{1}-t{1} a1{2}-t{2} a1{3}-t{3} a1{4}-t{4}}
error = 
    [0]    [0]    [0]    [0]

Sure enough, all of the inputs are correctly classified.
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Note that adapt uses the perceptron learning rule in its pure form, in that 
corrections to the weights and bias are made after each presentation of an 
input vector. Thus, adapt will converge in a finite number of steps unless the 
problem presented can not be solved with a simple perceptron.

The function adapt can be used in various ways by other networks as well. You 
might type help adapt to read more about this basic function.

You may wish to try various demonstration programs. For instance, demop1 
illustrates classification and training of a simple perceptron. 
0



Limitations and Cautions
Limitations and Cautions
Perceptron networks should be trained with adapt, which presents the input 
vectors to the network one at a time and makes corrections to the network 
based on the results of each presentation. Use of adapt in this way guarantees 
that any linearly separable problem will be solved in a finite number of 
training presentations. Perceptrons can also be trained with the function 
train, which is presented in the next chapter. When train is used for 
perceptrons, it presents the inputs to the network in batches, and makes 
corrections to the network based on the sum of all the individual corrections. 
Unfortunately, there is no proof that such a training algorithm converges for 
perceptrons. On that account the use of train for perceptrons is not 
recommended.

Perceptron networks have several limitations. First, the output values of a 
perceptron can take on only one of two values (0 or 1) due to the hard limit 
transfer function. Second, perceptrons can only classify linearly separable sets 
of vectors. If a straight line or a plane can be drawn to separate the input 
vectors into their correct categories, the input vectors are linearly separable. If 
the vectors are not linearly separable, learning will never reach a point where 
all vectors are classified properly. Note, however, that it has been proven that 
if the vectors are linearly separable, perceptrons trained adaptively will always 
find a solution in finite time. You might want to try demop6. It shows the 
difficulty of trying to classify input vectors that are not linearly separable.

It is only fair, however, to point out that networks with more than one 
perceptron can be used to solve more difficult problems. For instance, suppose 
that you have a set of four vectors that you would like to classify into distinct 
groups, and that in fact, two lines can be drawn to separate them. A two neuron 
network can be found such that its two decision boundaries classify the inputs 
into four categories. For additional discussion about perceptrons and to 
examine more complex perceptron problems, see [HDB1996].

Outliers and the Normalized Perceptron Rule
Long training times can be caused by the presence of an outlier input vector 
whose length is much larger or smaller than the other input vectors. Applying 
the perceptron learning rule involves adding and subtracting input vectors 
from the current weights and biases in response to error. Thus, an input vector 
with large elements can lead to changes in the weights and biases that take a 
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long time for a much smaller input vector to overcome. You might wish to try 
demop4 to see how an outlier effects the training.

By changing the perceptron learning rule slightly, training times can be made 
insensitive to extremely large or small outlier input vectors. 

Here is the original rule for updating weights: 

As shown above, the larger an input vector p, the larger its effect on the weight 
vector w. Thus, if an input vector is much larger than other input vectors, the 
smaller input vectors must be presented many times to have an effect.

The solution is to normalize the rule so that effect of each input vector on the 
weights is of the same magnitude: 

The normalized perceptron rule is implemented with the function learnpn 
which is called exactly like learnpn. The normalized perceptron rule function 
learnpn takes slightly more time to execute, but reduces number of epochs 
considerably if there are outlier input vectors. You might try demop5 to see how 
this normalized training rule works.
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Summary
Summary
Perceptrons are useful as classifiers. They can classify linearly separable input 
vectors very well. Convergence is guaranteed in a finite number of steps 
providing the perceptron can solve the problem.

The design of a perceptron network is constrained completely by the problem 
to be solved. Perceptrons have a single layer of hard limit neurons. The number 
of network inputs and the number of neurons in the layer are constrained by 
the number of inputs and outputs required by the problem.

Training time is sensitive to outliers, but outlier input vectors do not stop the 
network from finding a solution.

Single-layer perceptrons can solve problems only when data is linearly 
separable. This is seldom the case. One solution to this difficulty is to use a 
preprocessing method that results in linearly separable vectors. Or you might 
use multiple perceptrons in multiple layers. Alternatively, you can use other 
kinds of networks such as linear networks or backpropagation networks, which 
can classify nonlinearly separable input vectors.

Figures and Equations
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Perceptron Transfer Function, hardlim 
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Summary
Perceptron Architecture

The Perceptron Learning Rule 
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One Perceptron Neuron

New Functions
This chapter introduces the following new functions:

Function Description

hardlim A hard limit transfer function

initzero Zero weight/bias initialization function

dotprod Dot product weight function

newp Creates a new perceptron network.

sim Simulates a neural network.

init Initializes a neural network

learnp Perceptron learning function

adapt Trains a network using a sequence of inputs

learnpn Normalized perceptron learning function
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Introduction
The ADALINE (Adaptive Linear Neuron networks) networks discussed in this 
chapter are similar to the perceptron, but their transfer function is linear 
rather than hard-limiting. This allows their outputs to take on any value, 
whereas the perceptron output is limited to either 0 or 1. Both the ADALINE 
and the perceptron can only solve linearly separable problems. However, here 
we will make use of a so called LMS (Least Mean Squares) learning rule which 
is much more powerful that the perceptron learning rule. The LMS or 
Widrow-Hoff learning rule minimizes the mean square error and thus moves 
the decision boundaries as far as it can from the training patterns.

First we will design a linear network that, when presented with a set of given 
input vectors, produces outputs of corresponding target vectors. For each input 
vector we can calculate the network’s output vector. The difference between an 
output vector and its target vector is the error. We would like to find values for 
the network weights and biases such that the sum of the squares of the errors 
is minimized or below a specific value. This problem is manageable because 
linear systems have a single error minimum. In most cases we can calculate a 
linear network directly, such that its error is a minimum for the given input 
vectors and targets vectors. In other cases numerical problems prohibit direct 
calculation. Fortunately, we can always train the network to have a minimum 
error by using the Widrow-Hoff learning rule.

Later we will design an adaptive linear system that responds to changes in its 
environment as it is operating. Linear networks which are adjusted at each 
time step based on new input and target vectors can find weights and biases 
which minimize the network’s sum-squared error for recent input and target 
vectors. Networks of this sort are often used in error cancellation, signal 
processing and control systems.

The pioneering work in this field was done by Widrow and Hoff, who gave the 
name ADALINE to adaptive linear elements. The basic reference on this 
subject is: Widrow B. and S. D. Sterns, Adaptive Signal Processing, New York: 
Prentice-Hall 1985.



Introduction
Important Linear Network Functions
This chapter introduces the newlin, a function that creates a linear layer, the 
function newlind that designs a linear layer, the function learnwh, the 
Widrow-Hoff weight/bias learning rule, the function train, that trains a neural 
network and finally, the function adapt, that changes the weights and biases 
of a network incrementally during training.

You might type help linnet to see a list of linear network functions, 
demonstrations, and applications.
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Neuron Model
A linear neuron with R inputs is shown below.

This network has the same basic structure as the perceptron. The only 
difference is that the linear neuron uses a linear transfer function which we 
will give the name purelin. 

The linear transfer function calculates the neuron’s output by simply returning 
the value passed to it.

This neuron can be trained to learn an affine function of its inputs, or to find a 
linear approximation to a nonlinear function. A linear network cannot, of 
course, be made to perform a nonlinear computation.
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Network Architecture
Network Architecture
The linear network shown below has one layer of S neurons connected to R 
inputs through a matrix of weights W.

This network is sometimes called a MADALINE for Many ADALINES. Note 
that the figure on the right defines an S-length output vector a.

The Widrow-Hoff rule can only train single-layer linear networks. This is not 
much of a disadvantage, however, as single-layer linear networks are just as 
capable as multi-layer linear networks. For every multi-layer linear network, 
there is an equivalent single-layer linear network.
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Single ADALINE (NEWLIN)
Consider a single ADALINE with two inputs. The diagram for this network is 
shown below.

The weight matrix W in this case has only one row. The network output is:

 or 

Like the perceptron, the ADALINE has a decision boundary which is 
determined by the input vectors for which the net input n is zero. For  
the equation  specifies such a decision boundary as shown below 
(adapted with thanks from [HDB96]).

Input vectors in the upper right gray area will lead to an output greater than 
0. Input vectors in the lower left white area will lead to an output less than 0. 
Thus, the ADALINE can be used to classify objects into two categories. 
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Network Architecture
However, it can classify in this way only if the objects are linearly separable. 
Thus, the ADALINE has the same limitation as the perceptron.

We can create a network like that shown above with the command:

net = newlin( [-1 1; -1 1],1);

The first matrix of arguments specify the range of the two scalar inputs. The 
last argument, 1, says that the network has a single output. 

The network weights and biases are set to zero by default. You can see the 
current values with the commands:

W = net.IW{1,1}
W =
     0     0

and 

b= net.b{1}
b =
     0

However, you can give the weights any value that you wish, such as 2 and 3 
respectively, with:

net.IW{1,1} = [2 3];
W = net.IW{1,1}
W =
     2     3

The bias can be set and checked in the same way.

net.b{1} =[-4];
b = net.b{1}
b =
     -4

You can simulate the ADALINE for a particular input vector. Let us try

p = [5;6];
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Now you can find the network output with the function sim.

a = sim(net,p)
a =
    24

To summarize, you can create an ADALINE network with newlin, adjust its 
elements as you wish and simulate it with sim. You can find more about newlin 
by typing help newlin.



Mean Square Error
Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS) 
algorithm is an example of supervised training, in which the learning rule is 
provided with a set of examples of desired network behavior:

Here  is an input to the network, and  is the corresponding target output. 
As each input is applied to the network, the network output is compared to the 
target. The error is calculated as the difference between the target output and 
the network output. We want to minimize the average of the sum of these 
errors.

The LMS algorithm adjusts the weights and biases of the ADALINE so as to 
minimize this mean square error. 

Fortunately, the mean square error performance index for the ADALINE 
network is a quadratic function. Thus, the performance index will either have 
one global minimum, a weak minimum or no minimum, depending on the 
characteristics of the input vectors. Specifically, the characteristics of the 
input vectors determine whether or not a unique solution exists.

You can find more about this topic in Ch. 10 of [HDB96].
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Linear System Design (NEWLIND)
Unlike most other network architectures, linear networks can be designed 
directly if all input/target vector pairs are known. Specific network values for 
weights and biases can be obtained to minimize the mean square error by using 
the function newlind.

Suppose that the inputs and targets are:

P = [1 2 3];
T= [2.0 4.1 5.9];

Now you can design a network.

net = newlind(P,T);

You can simulate the network behavior to check that the design was done 
properly.

Y = sim(net,P)
Y =
    2.0500    4.0000    5.9500

Note that the network outputs are quite close to the desired targets.

You might try demolin1. It shows error surfaces for a particular problem, 
illustrates the design and plots the designed solution.

Next we will discuss the LMS algorithm. We can use it to train a network to 
minimize the mean square error.
0



LMS Algorithm (LEARNWH)
LMS Algorithm (LEARNWH)
The LMS algorithm or Widrow-Hoff learning algorithm, is based on an 
approximate steepest descent procedure. Here again, linear networks are 
trained on examples of correct behavior. 

Widrow and Hoff had the insight that they could estimate the mean square 
error by using the squared error at each iteration. If we take the partial 
derivative of the squared error with respect to the weights and biases at the kth 
iteration we have:

for  and

Next look at the partial derivative with respect to the error.

 or 
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Finally, the change to the weight matrix and the bias will be:

 and . These two equations form the basis of the 
Widrow-Hoff (LMS) learning algorithm. 

These results can be extended to the case of multiple neurons, and written in 
matrix form as:

.

Here the error e and the bias b are vectors and  is a learning rate. If  is 
large, learning occurs quickly, but if it is too large it may lead to instability and 
errors may even increase. To ensure stable learning, the learning rate must be 
less than the reciprocal of the largest eigenvector of the correlation matrix 

 of the input vectors.

You might want to read some of Chapter 10 of [HDB96] for more information 
about the LMS algorithm and its convergence.

Fortunately we have a toolbox function learnwh that does all of the calculation 
for us. It calculates the change in weights as 

dw = lr*e*p' 

and the bias change as 

db = lr*e.

The constant 2 shown a few lines above has been absorbed into the code 
learning rate lr. The function maxlinlr calculates this maximum stable 
learning rate lr as 0.999 * P'*P. 

Type help learnwh and help maxlinlr for more details about these two 
functions.
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Linear Classification (TRAIN)
Linear Classification (TRAIN)
Linear networks can be trained to perform linear classification with the 
function train. This function applies each vector of a set of input vectors and 
calculates the network weight and bias increments due to each of the inputs 
according to learnp. Then the network is adjusted with the sum of all these 
corrections. We will call each pass through the input vectors an epoch. This 
contrasts with adapt, which adjusts weights for each input vector as it is 
presented.

Finally, train applies the inputs to the new network, calculates the outputs, 
compares them to the associated targets, and calculates a mean square error. 
If the error goal is met, or if the maximum number of epochs is reached, the 
training is stopped and train returns the new network and a training record. 
Otherwise train goes through another epoch. Fortunately, the LMS algorithm 
converges when this procedure is executed. 

To illustrate this procedure, we will work through a simple problem. Consider 
the ADALINE network introduced earlier in this chapter.

Next suppose we have the classification problem presented in Chapter 3 on 
perceptrons.

Here we have four input vectors, and we would like a network that produces 
the output corresponding to each input vector when that vector is presented.
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We will use train to get the weights and biases for a network that produces 
the correct targets for each input vector. The initial weights and bias for the 
new network will be 0 by default. We will set the error goal to 0.1 rather than 
accept its default of 0.

P = [2 1 -2 -1;2 -2 2 1];
t = [0 1 0 1];
net = newlin( [-2 2; -2 2],1);
net.trainParam.goal= 0.1;
[net, tr] = train(net,P,t); 

The problem runs, producing the following training record.

TRAINWB, Epoch 0/100, MSE 0.5/0.1.
TRAINWB, Epoch 25/100, MSE 0.181122/0.1.
TRAINWB, Epoch 50/100, MSE 0.111233/0.1.
TRAINWB, Epoch 64/100, MSE 0.0999066/0.1.
TRAINWB, Performance goal met.

Thus, the performance goal is met in 64 epochs. The new weights and bias are:

weights = net.iw{1,1}
weights =
   -0.0615   -0.2194
bias = net.b(1)
bias =
    [0.5899]

We can simulate the new network as shown below.

A = sim(net, p)
A =
    0.0282    0.9672    0.2741    0.4320,

We also can calculate the error.

err = t - sim(net,P)
err =
   -0.0282    0.0328   -0.2741    0.5680

Note that the targets are not realized exactly. The problem would have run 
longer in an attempt to get perfect results had we chosen a smaller error goal, 
but in this problem it is not possible to obtain a goal of 0. The network is limited 
4



Linear Classification (TRAIN)
in its capability. See demolin4 in “Limitations and Cautions” at the end of this 
chapter for an example of this limitation.

This demonstration program demolin2 shows the training of a linear neuron, 
and plots the weight trajectory and error during training

You also might try running the demonstration program nnd10lc. It addresses 
a classic and historically interesting problem, shows how a network can be 
trained to classify various patterns, and how the trained network responds 
when noisy patterns are presented.
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Adaptive Filtering (ADAPT)
The ADALINE network, much like the perceptron, can only solve linearly 
separable problems. Nevertheless, the ADALINE has been and is today one of 
the most widely used neural networks found in practical applications. Adaptive 
filtering is one of its major application areas. 

Tapped Delay Line
We need a new component, the tapped delay line, to make full use of the 
ADALINE network. Such a delay line is shown below. There the input signal 
enters from the left, and passes through N-1 delays.The output of the tapped 
delay line (TDL) is an N-dimensional vector, made up of the input signal at the 
current time, the previous input signal, etc.
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Adaptive Filtering (ADAPT)
Adaptive Filter
We can combine a tapped delay line with an ADALINE network to create the 
adaptive filter shown below.

The output of the filter is given by

The network shown above is referred to in the digital signal processing field as 
a finite impulse response (FIR) filter [WiSt85]. Let us take a look at the code 
that we will use to generate and simulate such an adaptive network.
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Adaptive Filter Example
First we will define a new linear network using newlin.

Assume that the input values have a range from 0 to 10. We can now define our 
single output network.

net = newlin([0,10],1);

We can specify the delays in the tapped delay line with

net.inputWeights{1,1}.delays = [0 1 2];

This says that the delay line is connected to the network weight matrix through 
delays of 0, 1 and 2 time units. (You can specify as many delays as you wish, 
and can omit some values if you like. They must be in ascending order.)

We can give the various weights and the bias values with:

net.IW{1,1} = [7 8 9];
net.b{1} = [0];

Finally we will define the initial values of the outputs of the delays as:

pi ={1 2}

Note that these are ordered from left to right to correspond to the delays taken 
from top to bottom in the figure. This concludes the setup of the network. Now 
how about the input?
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Adaptive Filtering (ADAPT)
We will assume that the input scalars arrive in a sequence, first the value 3, 
then the value 4, next the value 5 and finally the value 6. We can indicate this 
sequence by defining the values as elements of a cell array. (Note the curly 
brackets.)

p = {3 4 5 6}

Now we have a network and a sequence of inputs. We can simulate the network 
to see what its output is as a function of time.

[a,pf] = sim(net,p,pi);

This yields an output sequence 

a = 
    [46]    [70]    [94]    [118]

and final values for the delay outputs of

pf = 
    [5]    [6].

The example is sufficiently simple that you can check it by hand to make sure 
that you understand the inputs, initial values of the delays, etc.

The network that we have defined can be trained with the function adapt to 
produce a particular output sequence. Suppose, for instance, we would like the 
network to produce the sequence of values 10, 20, 30, and 40. 

T = {10 20 30 40}

We can train our defined network to do this, starting from the initial delay 
conditions that we used above. We will specify ten passes through the input 
sequence with:

net.adaptParam.passes = 10;

Then we can do the training with:

[net,y,E pf,af] = adapt(net,p,T,pi);
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This code returns final weights, bias and output sequence shown below.

wts = net.IW{1,1}
wts =
    0.5059    3.1053    5.7046
bias = net.b{1}
bias =
   -1.5993
y = 
    [11.8558]    [20.7735]    [29.6679]    [39.0036]

Presumably if we had run for additional passes the output sequence would 
have been even closer to the desired values of 10, 20, 30 and 40.

Thus, adaptive networks can be specified, simulated and finally trained with 
adapt. However, the outstanding value of adaptive networks lies in their use 
to perform a particular function, such as or prediction or noise cancellation.

Prediction Example
Suppose that we would like to use an adaptive filter to predict the next value 
of a stationary random process, p(t). We will use the network shown below to 
do this.

The signal to be predicted, p(t), enters from the left into a tapped delay line. 
The previous two values of p(t) are available as outputs from the tapped delay 
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Adaptive Filtering (ADAPT)
line. The network uses adapt to change the weights on each time step so as to 
minimize the error e(t) on the far right. If this error is zero, then the network 
output a(t) is exactly equal to p(t), and the network has done its prediction 
properly.

A detailed analysis of this network is not appropriate here, but we can state the 
main points. Given the autocorrelation function of the stationary random 
process p(t), the error surface, the maximum learning rate, and the optimum 
values of the weights can be calculated. Commonly, of course, one does not have 
detailed information about the random process, so these calculations cannot be 
performed. But this lack does not matter to the network. The network, once 
initialized and operating, adapts at each time step to minimize the error and 
in a relatively short time is able to predict the input p(t). 

Chapter 10 of [HDB96] presents this problem, goes through the analysis, and 
shows the weight trajectory during training. The network finds the optimum 
weights on its own without any difficulty whatsoever. 

You also might want to try demonstration program nnd10nc to see an adaptive 
noise cancellation program example in action. This demonstration allows you 
to pick a learning rate and momentum, (see Chapter 5), and shows the learning 
trajectory, and the original and cancellation signals verses time.

Noise Cancellation Example
Consider a pilot in an airplane. When the pilot speaks into as microphone, the 
engine noise in the cockpit is added to the voice signal, and the resultant signal 
heard by passengers would be of low quality. We would like to obtain a signal 
which contains the pilot’s voice but not the engine noise. We can do this with 
an adaptive filter if we can obtain a sample of the engine noise and apply it as 
the input to the adaptive filter.
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Here we will adaptively train the neural linear network to predict the 
combined pilot/engine signal m from an engine signal n. Notice that the engine 
signal n does not tell the adaptive network anything about the pilot’s voice 
signal contained in m. However, the engine signal n. does give the network 
information it can use to predict the engine’s contribution to the pilot/engine 
signal m. The network will do its best to adaptively output m. However, in this 
case, the network can only predict the engine interference noise in the pilot/
engine signal m. The network error e will be equal to m, the pilot/engine signal, 
minus the predicted contaminating engine noise signal. Thus e contains only 
the pilot’s voice! Our linear adaptive network adaptively learns to cancel the 
engine noise. Note, in closing, that such adaptive noise canceling generally 
does a better job than a classical filter because the noise here is subtracted from 
rather than filtered out of the signal m.
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Noise Path
    Filter
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Contaminating
Noise       

Pilot’s Voice 
Contaminated with 
Engine Noise

"Error"

Restored Signal
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Adaptive Filter Adjusts to Minimize Error. 
This removes the engine noise from contaminated 
signal, leaving the pilot’s voice as the “error.”
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Adaptive Filtering (ADAPT)
Multiple Neuron Adaptive Filters
We may want to use more than one neuron in an adaptive system, so we need 
some additional notation. A tapped delay line can be used with an S linear 
neurons as shown below.

Alternatively, we can show this same network in abbreviated form.

a2(k)n2(k)

wS, N

w1,1

b2

b1

bS

a1(k)n1(k)

1

1

1

A
A

A

A
A

A
Ap(k)

AA
AAD

AA
AAD

p(k - 1)

N

TDL

A

A
A

Linear Layer

pd1(k)

pdN (k)

pd2(k)

nS (k) aS (k)

pd(k) a(k)

1

p(k)

n(k)Q
 
x

 
1 (Q*N)

 
x

 
1

S x
 
(Q*N)

S 
 
x

 
1

S 
 
x

 
1

S 
 
x

 
1

N

Linear Layer of S Neurons

AAAW

AAA
AAAb

AA
TDL

SAA
AA
AA
4-23



4 Adaptive Linear Filters

4-2
If we want to show more of the detail of the tapped delay line and there are not 
too many delays we can use the following notation.

Here we have a tapped delay line that sends the current signal, the previous 
signal and the signal delayed before that to the weight matrix. We could have 
a longer list, and some delay values could be omitted if desired. The only 
requirement is that the delays are shown in increasing order as they go from 
top to bottom.
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Limitations and Cautions
Limitations and Cautions
ADALINEs may only learn linear relationships between input and output 
vectors. Thus ADALINEs cannot find solutions to some problems. However, 
even if a perfect solution does not exist, the ADALINE will minimize the sum 
of squared errors if the learning rate lr is sufficiently small. The network will 
find as close a solution as is possible given the linear nature of the network’s 
architecture. This property holds because the error surface of a linear network 
is a multi-dimensional parabola. Since parabolas have only one minimum, a 
gradient descent algorithm (such as the LMS rule) must produce a solution at 
that minimum.

ADALINES have other various limitations. Some of them are discussed below.

Overdetermined Systems
Linear networks have a number of limitations. For instance, the system may 
be overdetermined. Suppose that we have a network to be trained with four 
1-element input vectors and four targets. A perfect solution to  for 
each of the inputs may not exist, for there are four constraining equations and 
only one weight and one bias to adjust. However, the LMS rule will still 
minimize the error. You might try demolin4 to see how this is done.

Underdetermined Systems
Consider a single linear neuron with one input. This time, in demolin5, we will 
train it on only one 1-element input vector and its 1-element target vector:

P = [+1.0];
T = [+0.5];

Note that while there is only one constraint arising from the single input/target 
pair, there are two variables, the weight and the bias. Having more variables 
than constraints results in an underdetermined problem with an infinite 
number of solutions. You might wish to try demoin5 to explore this topic.

Linearly Dependent Vectors 
Normally it is a straightforward job to determine whether or not a linear 
network can solve a problem. Commonly, if a linear network has at least as 
many degrees of freedom (S*R+S = number of weights and biases) as 
constraints (Q = pairs of input/target vectors), then the network can solve the 

wp b+ t=
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problem. This is true except when the input vectors are linearly dependent and 
they are applied to a network without biases. In this case, as shown with 
demonstration script demolin6, the network cannot solve the problem with 
zero error. You might want to try demolin6.

Too Large a Learning Rate 
A linear network can always be trained with the Widrow-Hoff rule to find the 
minimum error solution for its weights and biases, as long as the learning rate 
is small enough. Demonstration script demolin7 shows what happens when a 
neuron with one input and a bias is trained with a learning rate larger than 
that recommended by maxlinlr. The network is trained with two different 
learning rates to show the results of using too large a learning rate.
6



Summary
Summary
Single-layer linear networks can perform linear function approximation or 
pattern association.

Single-layer linear networks can be designed directly or trained with the 
Widrow-Hoff rule to find a minimum error solution. In addition, linear 
networks can be trained adaptively allowing the network to track changes in 
its environment.

The design of a single-layer linear network is constrained completely by the 
problem to be solved. The number of network inputs and the number of 
neurons in the layer are determined by the number of inputs and outputs 
required by the problem.

Multiple layers in a linear network do not result in a more powerful network 
so the single layer is not a limitation. However, linear networks can solve only 
linear problems.

Nonlinear relationships between inputs and targets cannot be represented 
exactly by a linear network. The networks discussed in this chapter make a 
linear approximation with the minimum sum-squared error.

If the relationship between inputs and targets is linear or a linear 
approximation is desired then linear networks are made for the job. Otherwise, 
backpropagation may be a good alternative.

Adaptive linear filters have many practical applications such as noise 
cancellation and prediction in control and communication systems.
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Figures and Equations
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Decision Boundary
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Summary
Tapped Delay Line
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Adaptive Filter

Adaptive Filter Example
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Summary
Prediction Example
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Noise Cancellation Example
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Multiple Neuron Adaptive Filter

Abbreviated Form of Adaptive Filter
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Specific Small Adaptive Filter

New Functions
This chapter introduces the following new functions:

Function Description

newlin Creates a linear layer.

newlind Design a linear layer.

learnwh Widrow-Hoff weight/bias learning rule.

purelin A hard limit transfer function.

train Trains a neural network.
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Overview
Backpropagation was created by generalizing the Widrow-Hoff learning rule to 
multiple-layer networks and nonlinear differentiable transfer functions. Input 
vectors and the corresponding output vectors are used to train a network until 
it can approximate a function, associate input vectors with specific output 
vectors, or classify input vectors in an appropriate way as defined by you. 
Networks with biases, a sigmoid layer, and a linear output layer are capable of 
approximating any function with a finite number of discontinuities.

Standard backpropagation is a gradient descent algorithm, as is the 
Widrow-Hoff learning rule. The term backpropagation refers to the manner in 
which the gradient is computed for nonlinear multilayer networks. There are 
a number of variations on the basic algorithm which are based on other 
standard optimization techniques, such as conjugate gradient and Newton 
methods. The Neural Network Toolbox implements a number of these 
variations. This chapter will explain how to use each of these routines and will 
discuss the advantages and disadvantages of each.

Properly-trained backpropagation networks tend to give reasonable answers 
when presented with inputs that they have never seen. Typically, a new input 
will lead to an output similar to the correct output for input vectors used in 
training that are similar to the new input being presented. This generalization 
property makes it possible to train a network on a representative set of input/
target pairs and get good results without training the network on all possible 
input/output pairs. There are two features of the Neural Network Toolbox 
which are designed to improve network generalization - regularization and 
early stopping. These features and their use will be discussed later in this 
chapter.

This chapter will also discuss preprocessing and postprocessing techniques 
which can improve the efficiency of network training.

Before beginning this chapter you may want to read a basic reference on 
backpropagation, such as D.E Rumelhart, G.E. Hinton, R.J. Williams, 
“Learning internal representations by error propagation,”, D. Rumelhart and 
J. McClelland, editors. Parallel Data Processing, Vol.1, Chapter 8, the M.I.T. 
Press, Cambridge, MA 1986 pp. 318-362. This subject is also covered in detail 
in Chapters 11 and 12 of M.T. Hagan, H.B. Demuth, M.H. Beale, Neural 
Network Design, PWS Publishing Company, Boston, MA 1996.



Fundamentals
Fundamentals

Architecture
In this section we want to present the architecture of the network which is most 
commonly used with the backpropagation algorithm - the multilayer 
feedforward network. The routines in the Neural Network Toolbox can be used 
to train more general networks, some of these will be briefly discussed in later 
chapters.

Neuron Model (TANSIG, LOGSIG, PURELIN)
An elementary neuron with R inputs is shown below. Each input is weighted 
with an appropriate w. The sum of the weighted inputs and the bias forms the 
input to the transfer function f. Neurons may use any differentiable transfer 
function f to generate their output.

Multilayer networks often use the log-sigmoid transfer function logsig.
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The function logsig generates outputs between 0 and 1 as the neuron’s net 
input goes from negative to positive infinity.

Alternatively, multilayer networks may use the tan-sigmoid transfer function 
tansig.

Occasionally, the linear transfer function purelin is used in backpropagation 
networks. 

If the last layer of a multilayer network has sigmoid neurons, then the outputs 
of the network are limited to a small range. If linear output neurons are used 
the network outputs can take on any value.

In backpropagation it is important to be able to calculate the derivatives of any 
transfer functions used. Each of the transfer functions above, tansig, logsig, 
and purelin, have a corresponding derivative function: dtansig, dlogsig and 
dpurelin. To get the name of a transfer function’s associated derivative 
function, call the transfer function with the string 'deriv'.

tansig('deriv')
ans = dtansig
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Fundamentals
The three transfer functions described here are the most commonly used 
transfer functions for backpropagation, but other differentiable transfer 
functions can be created and used with backpropagation if desired. See 
Chapter 11, “Advanced Topics” for more information.

Feedforward Network
A single-layer network of S logsig neurons having R inputs is shown below in 
full detail on the left and with a layer diagram on the right. 

Feedforward networks often have one or more hidden layers of sigmoid 
neurons followed by an output layer of linear neurons. Multiple layers of 
neurons with nonlinear transfer functions allow the network to learn nonlinear 
and linear relationships between input and output vectors. The linear output 
layer lets the network produce values outside the range –1 to +1.

On the other hand, if it is desirable to constrain the outputs of a network (such 
as between 0 and 1) then the output layer should use a sigmoid transfer 
function (such as logsig).

As noted in Chapter 2, for multiple-layer networks we use the number of the 
layers to determine the superscript on the weight matrices. The appropriate 
notation is used in the two-layer tansig/purelin network shown next.
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This network can be used as a general function approximator. It can 
approximate any function with a finite number of discontinuities, arbitrarily 
well, given sufficient neurons in the hidden layer.

Creating a Network (NEWFF). The first step in training a feedforward network is to 
create the network object. The function newff creates a trainable feedforward 
network. It requires four inputs and returns the network object. The first input 
is an R by 2 matrix of minimum and maximum values for each of the R 
elements of the input vector. The second input is an array containing the sizes 
of each layer. The third input is a cell array containing the names of the 
transfer functions to be used in each layer. The final input contains the name 
of the training function to be used.

For example, the following command will create a two-layer network. There 
will be one input vector with two elements, three neurons in the first layer and 
one neuron in the second (output) layer. The transfer function in the first layer 
will be tan-sigmoid, and the output layer transfer function will be linear. The 
values for the first element of the input vector will range between -1 and 2, the 
values of the second element of the input vector will range between 0 and 5, and 
the training function will be traingd (which will be described in a later 
section).

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingd');

This command creates the network object and also initializes the weights and 
biases of the network; therefore the network is ready for training. There are 
times when you may wish to re-initialize the weights, or to perform a custom 
initialization. The next section explains the details of the initialization process.
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Fundamentals
Initializing Weights (INIT, INITNW, RANDS). Before training a feedforward network, 
the weights and biases must be initialized. The initial weights and biases are 
created with the command init. This function takes a network object as input 
and returns a network object with all weights and biases initialized. Here is 
how a network is initialized:

net = init(net);

The specific technique which is used to initialize a given network will depend 
on how the network parameters net.initFcn and net.layers{i}.initFcn are 
set. The parameter net.initFcn is used to determine the overall initialization 
function for the network. The default initialization function for the feedforward 
network is initlay, which allows each layer to use its own initialization 
function. With this setting for net.initFcn, the parameters 
net.layers{i}.initFcn are used to determine the initialization method for 
each layer. 

For feedforward networks there are two different layer initialization methods 
which are normally used: initwb and initnw. The initwb function causes the 
initialization to revert to the individual initialization parameters for each 
weight matrix (net.inputWeights{i,j}.initFcn) and bias. For the 
feedforward networks the weight initialization is usually set to rands, which 
sets weights to random values between -1 and 1. It is normally used when the 
layer transfer function is linear. 

The function initnw is normally used for layers of feedforward networks where 
the transfer function is sigmoid. It is based on the technique of Nguyen and 
Widrow [NgWi90] and generates initial weight and bias values for a layer so 
that the active regions of the layer's neurons will be distributed roughly evenly 
over the input space. It has several advantages over purely random weights 
and biases: (1) few neurons are wasted (since the active regions of all the 
neurons are in the input space), (2) training works faster (since each area of the 
input space has active neuron regions).

The initialization function init is called by newff, therefore the network is 
automatically initialized with the default parameters when it is created, and 
init does not have to be called separately. However, the user may want to 
re-initialize the weights and biases, or to use a specific method of initialization.

For example, in the network that we just created, using newff, the default 
initialization for the first layer would be initnw. If we wanted to re-initialize 
5-7



5 Backpropagation

5-8
the weights and biases in the first layer using the rands function, we would 
issue the following commands:

net.layers{1}.initFcn = 'initwb';
net.inputWeights{1,1}.initFcn = 'rands';
net.biases{1,1}.initFcn = 'rands';
net.biases{2,1}.initFcn = 'rands';
net = init(net);

Simulation (SIM)
The function sim simulates a network. sim takes the network input p, and the 
network object net, and returns the network outputs a. Here is how simuff can 
be used to simulate the network we created above for a single input vector:

p = [1;2];
a = sim(net,p)
a =
   -0.1011

(If you try these commands, your output may be different, depending on the 
state of your random number generator when the network was initialized.) 
Below, sim is called to calculate the outputs for a concurrent set of three input 
vectors.

p = [1 3 2;2 4 1];
a=sim(net,p)
a =

-0.1011   -0.2308    0.4955

Training
Once the network weights and biases have been initialized, the network is 
ready for training. The network can be trained for function approximation 
(nonlinear regression), pattern association, or pattern classification. The 
training process requires a set of examples of proper network behavior - 
network inputs p and target outputs t. During training the weights and biases 
of the network are iteratively adjusted to minimize the network performance 
function net.performFcn. The default performance function for feedforward 
networks is mean square error mse - the average squared error between the 
network outputs a and the target outputs t.



Fundamentals
The remainder of this chapter will describe several different training 
algorithms for feedforward networks. All of these algorithms use the gradient 
of the performance function to determine how to adjust the weights to 
minimize performance. The gradient is determined using a technique called 
backpropagation, which involves performing computations backwards through 
the network. The backpropagation computation is derived using the chain rule 
of calculus and is described in Chapter 11 of [HDB96]. The basic 
backpropagation training algorithm, in which the weights are moved in the 
direction of the negative gradient, is described in the next section. Later 
sections will describe more complex algorithms that increase the speed of 
convergence.

Backpropagation Algorithm
There are many variations of the backpropagation algorithm, several of which 
will be discussed in this chapter. The simplest implementation of 
backpropagation learning updates the network weights and biases in the 
direction in which the performance function decreases most rapidly - the 
negative of the gradient. One iteration of this algorithm can be written

,

where  is a vector of current weights and biases,  is the current gradient, 
and  is the learning rate.

There are two different ways in which this gradient descent algorithm can be 
implemented: incremental mode and batch mode. In the incremental mode, the 
gradient is computed and the weights are updated after each input is applied 
to the network. In the batch mode all of the inputs are applied to the network 
before the weights are updated. The next section will describe the incremental 
training, and the following section will describe batch training.

Incremental Training(ADAPT)

The function adapt is used to train networks in the incremental mode. This 
function takes the network object and the inputs and the targets from the 
training set, and returns the trained network object and the outputs and errors 
of the network for the final weights and biases. 

There are several network parameters which must be set in order guide the 
incremental training. The first is net.adaptFcn, which determines which 
incremental mode training function is to be used. The default for feedforward 

xk 1+ xk αkgk–=

xk gk
αk
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networks is adaptwb, which allows each weight and bias to assign its own 
function. These individual learning functions for the weights and biases are set 
by the parameters net.biases{i,j}.learnFcn, 
net.inputWeights{i,j}.learnFcn, and net.layerWeights{i,j}.learnFcn. 

Gradient Descent (LEARDGD). For the basic steepest (gradient) descent algorithm, 
the weights and biases are moved in the direction of the negative gradient of 
the performance function. For this algorithm, the individual learning function 
parameters for the weights and biases are set to 'learngd'. The following 
commands illustrate how these parameters are set for the feedforward network 
we created earlier.

net.biases{1,1}.learnFcn = 'learngd';
net.biases{2,1}.learnFcn = 'learngd';
net.layerWeights{2,1}.learnFcn = 'learngd';
net.inputWeights{1,1}.learnFcn = 'learngd';

The function learngd has one learning parameter associated with it - the 
learning rate lr. The changes to the weights and biases of the network are 
obtained by multiplying the learning rate times the negative of the gradient.

The larger the learning rate, the bigger the step. If the learning rate is made 
too large the algorithm will become unstable. If the learning rate is set too 
small, the algorithm will take a long time to converge. See page 12-8 of 
[HDB96] for a discussion of the choice of learning rate.

The learning rate parameter is set to the default value for each weight and bias 
when the learnFcn is set to learngd, as in the code above, although you can 
change its value if you desire. The following command demonstrates how you 
can set the learning rate to 0.2 for the layer weights. The learning rate can be 
set separately for each weight and bias.

net.layerWeights{2,1}.learnParam.lr= 0.2;

The final parameter to be set for sequential training is 
net.adaptParam.passes, which determines the number of passes through the 
training set during training. Here we set the number of passes to 200.

net.adaptParam.passes = 200;
0
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We are now almost ready to train the network. It remains to set up the training 
set. Here is a simple set of inputs and targets which we will use to illustrate 
the training procedure:

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];

If we want the learning algorithm to update the weights after each input 
pattern is presented, we need to convert the matrices of inputs and targets into 
cell arrays, with a cell for each input vector and target:

p = num2cell(p,1);
t = num2cell(t,1);

We are now ready to perform the incremental training using the adapt 
function:

[net,a,e]=adapt(net,p,t);

After the training is complete we can simulate the network to test the quality 
of the training.

a = sim(net,p)
a = 

[-0.9995]    [-1.0000]    [1.0001]    [1.0000]

Gradient Descent With Momentum (LEARDGDM). In addition to learngd, there is 
another incremental learning algorithm for feedforward networks that often 
provides faster convergence - learngdm, steepest descent with momentum. 
Momentum allows a network to respond not only to the local gradient, but also 
to recent trends in the error surface. Acting like a low pass filter, momentum 
allows the network to ignore small features in the error surface. Without 
momentum a network may get stuck in a shallow local minimum. With 
momentum a network can slide through such a minimum. See page 12-9 of 
[HDB96] for a discussion of momentum.

Momentum can be added to backpropagation learning by making weight 
changes equal to the sum of a fraction of the last weight change and the new 
change suggested by the backpropagation rule. The magnitude of the effect 
that the last weight change is allowed to have is mediated by a momentum 
constant, mc, which can be any number between 0 and 1. When the momentum 
constant is 0 a weight change is based solely on the gradient. When the 
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momentum constant is 1 the new weight change is set to equal the last weight 
change and the gradient is simply ignored. 

The learngdm function is invoked using the same steps shown above for the 
learngd function, except that both the mc and lr learning parameters can be 
set. Different parameter values can be used for each weight and bias, since 
each weight and bias has its own learning parameters.

The following commands will cause the previously created network to be 
incrementally trained using learngdm with the default learning parameters.

net.biases{1,1}.learnFcn = 'learngdm';
net.biases{2,1}.learnFcn = 'learngdm';
net.layerWeights{2,1}.learnFcn = 'learngdm';
net.inputWeights{1,1}.learnFcn = 'learngdm';
[net,a,e]=adapt(net,p,t);

Batch Training (TRAIN). The alternative to incremental training is batch training, 
which is invoked using the function train. In batch mode the weights and 
biases of the network are updated only after the entire training set has been 
applied to the network. The gradients calculated at each training example are 
added together to determine the change in the weights and biases. For a 
discussion of batch training with the backpropagation algorithm see page 12-7 
of [HDB96].

Batch Gradient Descent (TRAINGD). The batching equivalent of the incremental 
function learngd is traingd, which implements the batching form of the 
standard steepest descent training function. The weights and biases are 
updated in the direction of the negative gradient of the performance function. 
If you wish to train a network using batch steepest descent, you should set the 
network trainFcn to traingd and then call the function train. Unlike the 
learning functions in the previous section, which were assigned separately to 
each weight matrix and bias vector in the network, there is only one training 
function associated with a given network. 

There are seven training parameters associated with traingd: epochs, show, 
goal, time, min_grad, max_fail, and lr. The learning rate lr has the same 
meaning here as it did for learngd - it is multiplied times the negative of the 
gradient to determine the changes to the weights and biases. The training 
status will be displayed every show iterations of the algorithm. The other 
parameters determine when the training is stopped. The training will stop if 
the number of iterations exceeds epochs, if the performance function drops 
2
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below goal, if the magnitude of the gradient is less than mingrad, or if the 
training time is longer than time seconds. We will discuss max_fail, which is 
associated with the early stopping technique, in the section on improving 
generalization.

The following code will recreate our earlier network, and then train it using 
batch steepest descent. (Note that for batch training all of the inputs in the 
training set are placed in one matrix.)

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingd');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINGD, Epoch 0/300, MSE 1.59423/1e-05, Gradient 2.76799/
1e-10

TRAINGD, Epoch 50/300, MSE 0.00236382/1e-05, Gradient 
0.0495292/1e-10

TRAINGD, Epoch 100/300, MSE 0.000435947/1e-05, Gradient 
0.0161202/1e-10

TRAINGD, Epoch 150/300, MSE 8.68462e-05/1e-05, Gradient 
0.00769588/1e-10

TRAINGD, Epoch 200/300, MSE 1.45042e-05/1e-05, Gradient 
0.00325667/1e-10

TRAINGD, Epoch 211/300, MSE 9.64816e-06/1e-05, Gradient 
0.00266775/1e-10

TRAINGD, Performance goal met.
a = sim(net,p)
a =
   -1.0010   -0.9989    1.0018    0.9985

Try the Neural Network Design Demonstration nnd12sd1[HDB96] for an 
illustration of the performance of the batch gradient descent algorithm.

Batch Gradient Descent With Momentum (TRAINGDM). The batch form of gradient 
descent with momentum is invoked using the training function traingdm. This 
algorithm is equivalent to learngdm, with two exceptions. First, the gradient is 
computed by summing the gradients calculated at each training example, and 
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the weights and biases are only updated after all training examples have been 
presented. Second, if the new performance function on a given iteration 
exceeds the performance function on a previous iteration by more than a 
predefined ratio max_perf_inc (typically 1.04), the new weights and biases are 
discarded, and the momentum coefficient mc is set to zero. 

In the following code we recreate our previous network and retrain it using 
gradient descent with momentum. The training parameters for traingdm are 
the same as those for traingd, with the addition of the momentum factor mc 
and the maximum performance increase max_perf_inc. (The training 
parameters are reset to the default values whenever net.trainFcn is set to 
traingdm.)

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingdm');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINGDM, Epoch 0/300, MSE 3.6913/1e-05, Gradient 4.54729/
1e-10

TRAINGDM, Epoch 50/300, MSE 0.00532188/1e-05, Gradient 
0.213222/1e-10

TRAINGDM, Epoch 100/300, MSE 6.34868e-05/1e-05, Gradient 
0.0409749/1e-10

TRAINGDM, Epoch 114/300, MSE 9.06235e-06/1e-05, Gradient 
0.00908756/1e-10

TRAINGDM, Performance goal met.
a = sim(net,p)
a =

 -1.0026   -1.0044    0.9969    0.9992
4
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Note that since we re-initialized the weights and biases before training, we 
obtain a different mean square error than we did using traingd. If we were to 
re-initialize and train again using traingdm, we would get yet a different mean 
square error. The random choice of initial weights and biases will affect the 
performance of the algorithm. If you wish to compare the performance of 
different algorithms, you should test each using several different sets of initial 
weights and biases.

Try the Neural Network Design Demonstration nnd12mo [HDB96] for an 
illustration of the performance of the batch momentum algorithm.
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Faster Training
The previous section presented two backpropagation training algorithms: 
gradient descent and gradient descent with momentum. These two methods 
are often too slow for practical problems. In this section we will discuss several 
high performance algorithms which can converge from ten to one hundred 
times faster than the algorithms discussed previously. All of the algorithms in 
this section operate in the batch mode and are invoked using train.

These faster algorithms fall into two main categories. The first category uses 
heuristic techniques, which were developed from an analysis of the 
performance of the standard steepest descent algorithm. One heuristic 
modification is the momentum technique, which was presented in the previous 
section. This section will discuss two more heuristic techniques: variable 
learning rate backpropagation, traingda, and resilient backpropagation 
trainrp.

The second category of fast algorithms uses standard numerical optimization 
techniques. (See Chapter 9 of [HDB96] for a review of basic numerical 
optimization.) Later in this section we will present three types of numerical 
optimization techniques for neural network training: conjugate gradient 
(traincgf, traincgp, traincgb, trainscg), quasi-Newton (trainbfg, 
trainoss), and Levenberg-Marquardt (trainlm).

Variable Learning Rate (TRAINGDA, TRAINGDX)
With standard steepest descent, the learning rate is held constant throughout 
training. The performance of the algorithm is very sensitive to the proper 
setting of the learning rate. If the learning rate is set too high, the algorithm 
may oscillate and become unstable. If the learning rate is too small, the 
algorithm will take too long to converge. It is not practical to determine the 
optimal setting for the learning rate before training, and, in fact, the optimal 
learning rate changes during the training process, as the algorithm moves 
across the performance surface.

The performance of the steepest descent algorithm can be improved if we allow 
the learning rate to change during the training process. An adaptive learning 
rate will attempt to keep the learning step size as large as possible while 
keeping learning stable. The learning rate is made responsive to the 
complexity of the local error surface.
6
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An adaptive learning rate requires some changes in the training procedure 
used by traingd. First, the initial network output and error are calculated. At 
each epoch new weights and biases are calculated using the current learning 
rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a 
predefined ratio max_perf_inc (typically 1.04), the new weights and biases are 
discarded. In addition, the learning rate is decreased (typically by multiplying 
by lr_dec = 0.7). Otherwise the new weights, etc., are kept. If the new error is 
less than the old error, the learning rate is increased (typically by multiplying 
by lr_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the 
network can learn without large error increases. Thus a near optimal learning 
rate is obtained for the local terrain. When a larger learning rate could result 
in stable learning, the learning rate is increased. When the learning rate is too 
high to guarantee a decrease in error, it gets decreased until stable learning 
resumes.

Try the Neural Network Design Demonstration nnd12vl [HDB96] for an 
illustration of the performance of the variable learning rate algorithm.
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Backpropagation training with an adaptive learning rate is implemented with 
the function traingda which is called just like traingd except for the 
additional training parameters max_perf_inc, lr_dec, and lr_inc. Here is 
how it is called to train our previous two-layer network:

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingda');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINGDA, Epoch 0/300, MSE 1.71149/1e-05, Gradient 2.6397/
1e-06

TRAINGDA, Epoch 44/300, MSE 7.47952e-06/1e-05, Gradient 
0.00251265/1e-06

TRAINGDA, Performance goal met.
a = sim(net,p)
a =

-1.0036   -0.9960    1.0008    0.9991

The function traingdx combines adaptive learning rate with momentum 
training. It is invoked in the same way as traingda, except that it has the 
momentum coefficient mc as an additional training parameter.

Resilient Backpropagation (TRAINRP)
Multilayer networks typically use sigmoid transfer functions in the hidden 
layers. These functions are often called squashing functions, since they 
compress an infinite input range into a finite output range. Sigmoid functions 
are characterized by the fact that their slope must approach zero as the input 
gets large. This causes a problem when using steepest descent to train a 
multilayer network with sigmoid functions, since the gradient can have a very 
small magnitude, and therefore cause small changes in the weights and biases, 
even though the weights and biases are far from their optimal values. 

The purpose of the resilient backpropagation (Rprop) training algorithm is to 
eliminate these harmful effects of the magnitudes of the partial derivatives. 
Only the sign of the derivative is used to determine the direction of the weight 
8



Faster Training
update; the magnitude of the derivative has no effect on the weight update. The 
size of the weight change is determined by a separate update value. The update 
value for each weight and bias is increased by a factor delt_inc whenever the 
derivative of the performance function with respect to that weight has the 
same sign for two successive iterations. The update value is decreased by a 
factor delt_dec whenever the derivative with respect that weight changes sign 
from the previous iteration. If the derivative is zero, then the update value 
remains the same. Whenever the weights are oscillating the weight change will 
be reduced. If the weight continues to change in the same direction for several 
iterations, then the magnitude of the weight change will be increased. A 
complete description of the Rprop algorithm is given in [ReBr93].

In the following code we recreate our previous network and train it using the 
Rprop algorithm. The training parameters for trainrp are epochs, show, goal, 
time, min_grad, max_fail, delt_inc, delt_dec, delta0, deltamax. We have 
previously discussed the first eight parameters. The last two are the initial step 
size and the maximum step size, respectively. The performance of Rprop is not 
very sensitive to the settings of the training parameters. For the example below 
we leave most of the training parameters at the default values. We do reduce 
show below our previous value, because Rprop generally converges much faster 
than the previous algorithms.

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'trainrp');
net.trainParam.show = 10;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINRP, Epoch 0/300, MSE 0.469151/1e-05, Gradient 1.4258/
1e-06

TRAINRP, Epoch 10/300, MSE 0.000789506/1e-05, Gradient 
0.0554529/1e-06

TRAINRP, Epoch 20/300, MSE 7.13065e-06/1e-05, Gradient 
0.00346986/1e-06

TRAINRP, Performance goal met.
a = sim(net,p)
a =

-1.0026   -0.9963    0.9978    1.0017
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Rprop is generally much faster than the standard steepest descent algorithm. 
It also has the nice property that it requires only a modest increase in memory 
requirements. We do need to store the update values for each weight and bias, 
which is equivalent to storage of the gradient.

Conjugate Gradient Algorithms
The basic backpropagation algorithm adjusts the weights in the steepest 
descent direction (negative of the gradient). This is the direction in which the 
performance function is decreasing most rapidly. It turns out that, although 
the function decreases most rapidly along the negative of the gradient, this 
does not necessarily produce the fastest convergence. In the conjugate gradient 
algorithms a search is performed along conjugate directions, which produces 
generally faster convergence than steepest descent directions. In this section 
we will present four different variations of conjugate gradient algorithms.

See page 12-14 of [HDB96] for a discussion of conjugate gradient algorithms 
and their application to neural networks.

In most of the training algorithms that we have discussed up to this point, a 
learning rate is used to determine the length of the weight update (step size). 
In most of the conjugate gradient algorithms the step size is adjusted at each 
iteration. A search is made along the conjugate gradient direction to determine 
the step size which will minimize the performance function along that line. 
There are five different search functions that are included in the toolbox, and 
these will be discussed at the end of this section. Any of these search functions 
can be used interchangeably with a variety of the training functions described 
in the remainder of this chapter. Some search functions are best suited to 
certain training functions, although the optimum choice can vary according to 
the specific application. An appropriate default search function is assigned to 
each training function, but this can be modified by the user.

Fletcher-Reeves Update (TRAINCGF)
All of the conjugate gradient algorithms start out by searching in the steepest 
descent direction (negative of the gradient) on the first iteration.

p0 g0–=
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A line search is then performed to determine the optimal distance to move 
along the current search direction:

Then the next search direction is determined so that it is conjugate to previous 
search directions. The general procedure for determining the new search 
direction is to combine the new steepest descent direction with the previous 
search direction:

The various versions of conjugate gradient are distinguished by the manner in 
which the constant  is computed. For the Fletcher-Reeves update the 
procedure is 

.

This is the ratio of the norm squared of the current gradient to the norm 
squared of the previous gradient.

See [FlRe64] or [HDB96] for a discussion of the Fletcher-Reeves conjugate 
gradient algorithm.

In the following code we re-initialize our previous network and retrain it using 
the Fletcher-Reeves version of the conjugate gradient algorithm. The training 
parameters for traincgf are epochs, show, goal, time, min_grad, max_fail, 
srchFcn, scal_tol, alpha, beta, delta, gama, low_lim, up_lim, maxstep, 
minstep, bmax. We have previously discussed the first six parameters. The 
parameter srchFcn is the name of the line search function. It can be any of the 
functions described later in this section (or a user-supplied function). The 
remaining parameters are associated with specific line search routines and are 
described later in this section. The default line search routine srchcha is used 
in this example. traincgf generally converges in fewer iterations than 
trainrp (although there is more computation required in each iteration).
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net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traincgf');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINCGF-srchcha, Epoch 0/300, MSE 2.15911/1e-05, Gradient 
3.17681/1e-06

TRAINCGF-srchcha, Epoch 5/300, MSE 0.111081/1e-05, Gradient 
0.602109/1e-06

TRAINCGF-srchcha, Epoch 10/300, MSE 0.0095015/1e-05, Gradient 
0.197436/1e-06

TRAINCGF-srchcha, Epoch 15/300, MSE 0.000508668/1e-05, 
Gradient 0.0439273/1e-06

TRAINCGF-srchcha, Epoch 17/300, MSE 1.33611e-06/1e-05, 
Gradient 0.00562836/1e-06

TRAINCGF, Performance goal met.
a = sim(net,p)
a =

-1.0001   -1.0023    0.9999    1.0002

The conjugate gradient algorithms are usually much faster than variable 
learning rate backpropagation, and are sometimes faster than trainrp, 
although the results will vary from one problem to another. The conjugate 
gradient algorithms require only a little more storage than the simpler 
algorithms, so they are often a good choice for networks with a large number of 
weights.

Try the Neural Network Design Demonstration nnd12cg [HDB96] for an 
illustration of the performance of a conjugate gradient algorithm.

Polak-Ribiére Update (TRAINCGP)
Another version of the conjugate gradient algorithm was proposed by Polak 
and Ribiére. As with the Fletcher-Reeves algorithm, the search direction at 
each iteration is determined by

.pk gk– βkpk 1–+=
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For the Polak-Ribiére update, the constant  is computed by

.

This is the inner product of the previous change in the gradient with the 
current gradient divided by the norm squared of the previous gradient. See 
[FlRe64] or [HDB96] for a discussion of the Polak-Ribiére conjugate gradient 
algorithm. 

In the following code we recreate our previous network and train it using the 
Polak-Ribiére version of the conjugate gradient algorithm. The training 
parameters for traincgp are the same as those for traincgf. The default line 
search routine srchcha is used in this example. The parameters show and 
epoch are set to the same values as they were for traincgf.

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traincgp');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINCGP-srchcha, Epoch 0/300, MSE 1.21966/1e-05, Gradient 
1.77008/1e-06

TRAINCGP-srchcha, Epoch 5/300, MSE 0.227447/1e-05, Gradient 
0.86507/1e-06

TRAINCGP-srchcha, Epoch 10/300, MSE 0.000237395/1e-05, 
Gradient 0.0174276/1e-06

TRAINCGP-srchcha, Epoch 15/300, MSE 9.28243e-05/1e-05, 
Gradient 0.00485746/1e-06

TRAINCGP-srchcha, Epoch 20/300, MSE 1.46146e-05/1e-05, 
Gradient 0.000912838/1e-06

TRAINCGP-srchcha, Epoch 25/300, MSE 1.05893e-05/1e-05, 
Gradient 0.00238173/1e-06

TRAINCGP-srchcha, Epoch 26/300, MSE 9.10561e-06/1e-05, 
Gradient 0.00197441/1e-06

TRAINCGP, Performance goal met.
a = sim(net,p)
a =

-0.9967   -1.0018    0.9958    1.0022
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The traincgp routine has performance similar to traincgf. It is difficult to 
predict which algorithm will perform best on a given problem. The storage 
requirements for Polak-Ribiére (four vectors) are slightly larger than for 
Fletcher-Reeves (three vectors).

Powell-Beale Restarts (TRAINCGB)
For all conjugate gradient algorithms, the search direction will be periodically 
reset to the negative of the gradient. The standard reset point occurs when the 
number of iterations is equal to the number of network parameters (weights 
and biases), but there are other reset methods which can improve the efficiency 
of training. One such reset method was proposed by Powell [Powe77], based on 
an earlier version proposed by Beale [Beal72]. For this technique we will 
restart if there is very little orthogonality left between the current gradient and 
the previous gradient. This is tested with the following inequality:

.

If this condition is satisfied, the search direction is reset to the negative of the 
gradient.

In the following code we recreate our previous network and train it using the 
Powell-Beale version of the conjugate gradient algorithm. The training 
parameters for traincgb are the same as those for traincgf. The default line 
search routine srchcha is used in this example. The parameters show and 
epoch are set to the same values as they were for traincgf.

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traincgb');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINCGB-srchcha, Epoch 0/300, MSE 2.5245/1e-05, Gradient 
3.66882/1e-06

TRAINCGB-srchcha, Epoch 5/300, MSE 4.86255e-07/1e-05, Gradient 
0.00145878/1e-06

TRAINCGB, Performance goal met.
a = sim(net,p)
a =

-0.9997   -0.9998    1.0000    1.0014
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The traincgb routine has performance which is somewhat better than 
traincgp for some problems, although performance on any given problem is 
difficult to predict. The storage requirements for the Powell-Beale algorithm 
(six vectors) are slightly larger than for Polak-Ribiére (four vectors).

Scaled Conjugate Gradient (TRAINSCG)
Each of the conjugate gradient algorithms which we have discussed so far 
require a line search at each iteration. This line search is computationally 
expensive, since it requires that the network response to all training inputs be 
computed several times for each search. The scaled conjugate gradient 
algorithm (SCG), developed by Moller [Moll93], was designed to avoid the time 
consuming line search.This algorithm is too complex to explain in a few lines, 
but the basic idea is to combine the model-trust region approach, which is used 
in the Levenberg-Marquardt algorithm described later, with the conjugate 
gradient approach. See {Moll93] for a detailed explanation of the algorithm.

In the following code we re-initialize our previous network and retrain it using 
the scaled conjugate gradient algorithm. The training parameters for trainscg 
are epochs, show, goal, time, min_grad, max_fail, sigma, lambda. We have 
previously discussed the first six parameters. The parameter sigma determines 
the change in the weight for the second derivative approximation. The 
parameter lambda regulates the indefiniteness of the Hessian. The parameters 
show and epoch are set to 10 and 300, respectively.

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'trainscg');
net.trainParam.show = 10;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINSCG, Epoch 0/300, MSE 4.17697/1e-05, Gradient 5.32455/
1e-06

TRAINSCG, Epoch 10/300, MSE 2.09505e-05/1e-05, Gradient 
0.00673703/1e-06

TRAINSCG, Epoch 11/300, MSE 9.38923e-06/1e-05, Gradient 
0.0049926/1e-06

TRAINSCG, Performance goal met.
a = sim(net,p)
a =

-1.0057   -1.0008    1.0019    1.0005
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The trainscg routine may require more iterations to converge than the other 
conjugate gradient algorithms, but the number of computations in each 
iteration is significantly reduced because no line search is performed. The 
storage requirements for the scaled conjugate gradient algorithm are about the 
same as those of Fletcher-Reeves.

Line Search Routines
Several of the conjugate gradient and quasi-Newton algorithms require that a 
line search be performed. In this section we describe five different line searches 
which can be used. In order to use any of these search routines you simply set 
the training parameter srchFcn equal to the name of the desired search 
function, as has been described in previous sections. It is often difficult to 
predict which of these routines will provide the best results for any given 
problem, but we have set the default search function to an appropriate initial 
choice for each training function, so you may never need to modify this 
parameter.

Golden Section Search (SRCHGOL)
The golden section search srchgol is a linear search which does not require the 
calculation of the slope. This routine begins by locating an interval in which the 
minimum of the performance occurs. This is accomplished by evaluating the 
performance at a sequence of points, starting at a distance of delta and 
doubling in distance each step, along the search direction. When the 
performance increases between two successive iterations, a minimum has been 
bracketed. The next step is to reduce the size of the interval containing the 
minimum. Two new points are located within the initial interval. The values of 
the performance at these two points determines a section of the interval which 
can be discarded, and a new interior point is placed within the new interval. 
This procedure is continued until the interval of uncertainty is reduced to a 
width of tol, which is equal to delta/scale_tol.

See [HDB96], starting on page 12-16, for a complete description of the golden 
section search. Try the Neural Network Design Demonstration nnd12sd1 
[HDB96] for an illustration of the performance of the golden section search in 
combination with a conjugate gradient algorithm.
6
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Brent’s Search (SRCHBRE)
Brent’s search is a linear search which is a hybrid combination of the golden 
section search and a quadratic interpolation. Function comparison methods, 
like the golden section search, have a first-order rate of convergence, while 
polynomial interpolation methods have an asymptotic rate which is faster than 
superlinear. On the other hand, the rate of convergence for the golden section 
search starts when the algorithm is initialized, whereas the asymptotic 
behavior for the polynomial interpolation methods may take many iterations 
to become apparent. Brent’s search attempts to combine the best features of 
both approaches.

For Brent’s search we begin with the same interval of uncertainty that we used 
with the golden section search, but some additional points are computed. A 
quadratic function is then fitted to these points and the minimum of the 
quadratic function is computed. If this minimum is within the appropriate 
interval of uncertainty, it is used in the next stage of the search and a new 
quadratic approximation is performed. If the minimum falls outside the known 
interval of uncertainty, then a step of the golden section search is performed.

See [Bren73] for a complete description of this algorithm. This algorithm has 
the advantage that it does not require computation of the derivative. The 
derivative computation requires a backpropagation through the network, 
which involves more computation than a forward pass. However, the algorithm 
may require more performance evaluations than algorithms which use 
derivative information.

Hybrid Bisection-Cubic Search (SRCHHYB)
Like Brent’s search, srchhyb is a hybrid algorithm. It is a combination of 
bisection and cubic interpolation. For the bisection algorithm, one point is 
located in the interval of uncertainty and the performance and its derivative 
are computed. Based on this information, half of the interval of uncertainty is 
discarded. In the hybrid algorithm, a cubic interpolation of the function is 
obtained by using the value of the performance and its derivative at the two 
end points. If the minimum of the cubic interpolation falls within the known 
interval of uncertainty, then it is used to reduce the interval of uncertainty. 
Otherwise, a step of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic search. 
This algorithm does require derivative information, so it performs more 
computations at each step of the algorithm than the golden section search or 
Brent’s algorithm.
5-27



5 Backpropagation

5-2
Charalambous’ Search (SRCHCHA)
The method of Charalambous srchcha was designed to be used in combination 
with a conjugate gradient algorithm for neural network training. Like the 
previous two methods, it is a hybrid search. It uses a cubic interpolation, 
together with a type of sectioning. 

See [Char92] for a description of Charalambous’ search. We have used this 
routine as the default search for most of the conjugate gradient algorithms, 
since it appears to produce excellent results for many different problems. It 
does require the computation of the derivatives (backpropagation) in addition 
to the computation of performance, but it overcomes this limitation by locating 
the minimum with fewer steps. This is not true for all problems, and you may 
want to experiment with other line searches.

Backtracking (SRCHBAC)
The backtracking search routine srchbac is best suited to use with the 
quasi-Newton optimization algorithms. It begins with a step multiplier of 1 and 
then backtracks until an acceptable reduction in the performance is obtained. 
On the first step it uses the value of performance at the current point and at a 
step multiplier of 1, and also the derivative of performance at the current point, 
to obtain a quadratic approximation to the performance function along the 
search direction. The minimum of the quadratic approximation becomes a 
tentative optimum point (under certain conditions) and the performance at this 
point is tested. If the performance is not sufficiently reduced, a cubic 
interpolation is obtained and the minimum of the cubic interpolation becomes 
the new tentative optimum point. This process is continued until a sufficient 
reduction in the performance is obtained.

The backtracking algorithm is described in [DeSc83]. It was used as the default 
line search for the quasi-Newton algorithms, although it may not be the best 
technique for all problems.
8
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Quasi-Newton Algorithms

BFGS Algorithm (TRAINBFG)
Newton’s method is an alternative to the conjugate gradient methods for fast 
optimization. The basic step of Newton’s method is

,

where  is the Hessian matrix (second derivatives) of the performance index 
at the current values of the weights and biases. Newton’s method often 
converges faster than conjugate gradient methods. Unfortunately, it is complex 
and expensive to compute the Hessian matrix for feedforward neural networks. 
There is a class of algorithms that are based on Newton’s method but which 
don’t require calculation of second derivatives. These are called quasi-Newton 
(or secant) methods. They update an approximate Hessian matrix at each 
iteration of the algorithm. The update is computed as a function of the 
gradient. The quasi-Newton method which has been most successful in 
published studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 
update. This algorithm has been implemented in the trainbfg routine.

In the following code we re-initialize our previous network and retrain it using 
the BFGS quasi-Newton algorithm. The training parameters for trainbfg are 
the same as those for traincgf. The default line search routine srchbac is used 
in this example. The parameters show and epoch are set to 5 and 300, 
respectively.

xk 1+ xk Ak
1– gk–=

Ak
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net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'trainbfg');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINBFG-srchbac, Epoch 0/300, MSE 0.492231/1e-05, Gradient 
2.16307/1e-06

TRAINBFG-srchbac, Epoch 5/300, MSE 0.000744953/1e-05, Gradient 
0.0196826/1e-06

TRAINBFG-srchbac, Epoch 8/300, MSE 7.69867e-06/1e-05, Gradient 
0.00497404/1e-06

TRAINBFG, Performance goal met.
a = sim(net,p)
a =

-0.9995   -1.0004    1.0008    0.9945

The BFGS algorithm is described in [DeSc83]. This algorithm requires more 
computation in each iteration and more storage than the conjugate gradient 
methods, although it generally converges in fewer iterations. The approximate 
Hessian must be stored, and its dimension is , where n is equal to the 
number of weights and biases in the network. For very large networks it may 
be better to use Rprop or one of the conjugate gradient algorithms. For smaller 
networks, however, trainbfg can be an efficient training function.

One Step Secant Algorithm (TRAINOSS)
Since the BFGS algorithm requires more storage and computation in each 
iteration than the conjugate gradient algorithms, there is need for a secant 
approximation with smaller storage and computation requirements. The one 
step secant (OSS) method is an attempt to bridge the gap between the 
conjugate gradient algorithms and the quasi-Newton (secant) algorithms. This 
algorithm does not store the complete Hessian matrix; it assumes that at each 
iteration the previous Hessian was the identity matrix. This has the additional 
advantage that the new search direction can be calculated without computing 
a matrix inverse.

In the following code we re-initialize our previous network and retrain it using 
the one step secant algorithm. The training parameters for trainoss are the 
same as those for traincgf. The default line search routine srchbac is used in 

n
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n
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this example. The parameters show and epoch are set to 10 and 300, 
respectively.

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'trainoss');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINOSS-srchbac, Epoch 0/300, MSE 0.665136/1e-05, Gradient 
1.61966/1e-06

TRAINOSS-srchbac, Epoch 5/300, MSE 0.000321921/1e-05, Gradient 
0.0261425/1e-06

TRAINOSS-srchbac, Epoch 7/300, MSE 7.85697e-06/1e-05, Gradient 
0.00527342/1e-06

TRAINOSS, Performance goal met.
a = sim(net,p)
a =

-1.0035   -0.9958    1.0014    0.9997

The one step secant method is described in [Batt92]. This algorithm requires 
less storage and computation per epoch than the BFGS algorithm. It requires 
slightly more storage and computation per epoch than the conjugate gradient 
algorithms. It can be considered a compromise between full quasi-Newton 
algorithms and conjugate gradient algorithms.

Levenberg-Marquardt (TRAINLM)
Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was 
designed to approach second-order training speed without having to compute 
the Hessian matrix. When the performance function has the form of a sum of 
squares (as is typical in training feedforward networks), then the Hessian 
matrix can be approximated as

,

and the gradient can be computed as

H JTJ=

g JTe=
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where  is the Jacobian matrix, which contains first derivatives of the network 
errors with respect to the weights and biases, and e is a vector of network 
errors. The Jacobian matrix can be computed through a standard 
backpropagation technique (see [HaMe94]) that is much less complex than 
computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian 
matrix in the following Newton-like update:

.

When the scalar µ is zero, this is just Newton’s method, using the approximate 
Hessian matrix. When µ is large, this becomes gradient descent with a small 
step size. Newton’s method is faster and more accurate near an error 
minimum, so the aim is to shift towards Newton’s method as quickly as 
possible. Thus, µ is decreased after each successful step (reduction in 
performance function) and is increased only when a tentative step would 
increase the performance function. In this way, the performance function will 
always be reduced at each iteration of the algorithm.

In the following code we re-initialize our previous network and retrain it using 
the Levenberg-Marquardt algorithm. The training parameters for trainlm are 
epochs, show, goal, time, min_grad, max_fail, mu, mu_dec, mu_inc, mu_max, 
mem_reduc. We have discussed the first six parameters earlier. The parameter 
mu is the initial value for µ. This value is multiplied by mu_dec whenever the 
performance function is reduced by a step. It is multiplied by mu_inc whenever 
a step would increase the performance function. If mu becomes larger than 
mu_max, the algorithm is stopped. The parameter mem_reduc is used to control 

J
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the amount of memory used by the algorithm. It will be discussed in the next 
section. The parameters show and epoch are set to 5 and 300, respectively.

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'trainlm');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

TRAINLM, Epoch 0/300, MSE 2.7808/1e-05, Gradient 7.77931/1e-10
TRAINLM, Epoch 4/300, MSE 3.67935e-08/1e-05, Gradient 

0.000808272/1e-10
TRAINLM, Performance goal met.

a = sim(net,p)
a =

-1.0000   -1.0000    1.0000    0.9996

The original description of the Levenberg-Marquardt algorithm is given in 
[Marq63]. The application of Levenberg-Marquardt to neural network training 
is described in [HaMe94] and starting on page 12-19 of [HDB96]. This 
algorithm appears to be the fastest method for training moderate-sized 
feedforward neural networks (up to several hundred weights). It also has a 
very efficient MATLAB implementation, since the solution of the matrix 
equation is a built-in function, so its attributes become even more pronounced 
in a MATLAB setting.

Try the Neural Network Design Demonstration nnd12m [HDB96] for an 
illustration of the performance of the batch gradient descent algorithm.

Reduced Memory Levenberg-Marquardt (TRAINLM)
The main drawback of the Levenberg-Marquardt algorithm is that it requires 
the storage of some matrices which can be quite large for certain problems. The 
size of the Jacobian matrix is , where Q is the number of training sets and 
n is the number of weights and biases in the network. It turns out that this 
matrix does not have to be computed and stored as a whole. For example, if we 
were to divide the Jacobian into two equal submatrices we could compute the 
approximate Hessian matrix as follows:

Q n×
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.

Therefore the full Jacobian does not have to exist at one time. The approximate 
Hessian can be computed by summing a series of subterms. Once one subterm 
has been computed, the corresponding submatrix of the Jacobian can be 
cleared.

When using the training function trainlm, the parameter mem_reduc is used to 
determine how many rows of the Jacobian are to be computed in each 
submatrix. If mem_reduc is set to 1, then the full Jacobian is computed, and no 
memory reduction is achieved. If mem_reduc is set to 2, then only half of the 
Jacobian will be computed at one time. This saves half of the memory used by 
the calculation of the full Jacobian.

There is a drawback to using memory reduction. A significant computational 
overhead is associated with computing the Jacobian in submatrices. If you 
have enough memory available, then it is better to set mem_reduc to 1 and to 
compute the full Jacobian. If you have a large training set, and you are running 
out of memory, then you should set mem_reduc to 2, and try again. If you still 
run out of memory, continue to increase mem_reduc. 

Even if you use memory reduction, the Levenberg-Marquardt algorithm will 
always compute the approximate Hessian matrix, which has dimensions . 
If your network is very large, then you may run out of memory. If this is the 
case, then you will want to try trainoss, trainrp, or one of the conjugate 
gradient algorithms.
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Speed and Memory Comparison
Speed and Memory Comparison
It is very difficult to know which training algorithm will be the fastest for a 
given problem. It will depend on many factors, including the complexity of the 
problem, the number of data points in the training set, the number of weights 
and biases in the network, and the error goal. In general, on networks which 
contain up to a few hundred weights the Levenberg-Marquardt algorithm will 
have the fastest convergence. This advantage is especially noticeable if very 
accurate training is required. The quasi-Newton methods are often the next 
fastest algorithms on networks of moderate size. The BFGS algorithm does 
require storage of the approximate Hessian matrix, but is generally faster than 
the conjugate gradient algorithms. Of the conjugate gradient algorithms, the 
Powell-Beale procedure requires the most storage, but usually has the fastest 
convergence. Rprop and the scaled conjugate gradient algorithm do not require 
a line search and have small storage requirements. They are reasonably fast, 
and are very useful for large problems. The variable learning rate algorithm is 
usually much slower than the other methods, and has about the same storage 
requirements as Rprop, but it can still be useful for some problems. There are 
certain situations in which it is better to converge more slowly. For example, 
when using early stopping you may have inconsistent results if you use an 
algorithm which converges too quickly. You may overshoot the point at which 
the error on the validation set is minimized.

For most situations, we recommend that you try the Levenberg-Marquardt 
algorithm first. If this algorithm requires too much memory, then try the BFGS 
algorithm, or one of the conjugate gradient methods. The Rprop algorithm is 
also very fast, and has relatively small memory requirements.

The following table gives some example convergence times for the various 
algorithms on one particular regression problem. In this problem a 1-10-1 
network was trained on a data set with 41 input/output pairs until a mean 
square error performance of 0.01 was obtained. Twenty different test runs were 
made for each training algorithm on a Macintosh Powerbook 1400 to obtain the 
average numbers shown in the table. These numbers should be used with 
caution, since the performances shown here may not be typical for these 
algorithms on other types of problems. 
5-35



5 Backpropagation

5-3
You may notice that there is not a clear relationship between the number of 
floating point operations and the time required to reach convergence. This is 
because some of the algorithms can take advantage of efficient built-in 
MATLAB functions. This is especially true for the Levenberg-Marquardt 
algorithm.

Function Technique Time Epochs Mflops

traingdx Variable Learning Rate 57.71 980 2.50

trainrp Rprop 12.95 185 0.56

trainscg Scaled Conj. Grad. 16.06 106 0.70

traincgf Fletcher-Powell CG 16.40 81 0.99

traincgp Polak-Ribiére CG 19.16 89 0.75

traincgb Powell-Beale CG 15.03 74 0.59

trainoss One-Step-Secant 18.46 101 0.75

trainbfg BFGS quasi-Newton 10.86 44 1.02

trainlm Levenberg-Marquardt 1.87 6 0.46
6



Improving Generalization
Improving Generalization
One of the problems that occurs during neural network training is called 
overfitting. The error on the training set is driven to a very small value, but 
when new data is presented to the network the error is large. The network has 
memorized the training examples, but it has not learned to generalize to new 
situations. 

The following figure shows the response of a 1-20-1 neural network which has 
been trained to approximate a noisy sine function. The underlying sine 
function is shown by the dotted line, the noisy measurements are given by the 
‘+’ symbols, and the neural network response is given by the solid line. Clearly 
this network has overfit the data and will not generalize well.

One method for improving network generalization is to use a network which is 
just large enough to provide an adequate fit. The larger a network you use, the 
more complex the functions that the network can create. If we use a small 
enough network, it will not have enough power to overfit the data. Run the 
Neural Network Design Demonstration nnd11gn [HDB96] to investigate how 
reducing the size of a network can prevent overfitting.

The problem is that it is difficult to know beforehand how large a network 
should be for a specific application. There are two other methods for improving 
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generalization which are implemented in the Neural Network Toolbox: 
regularization and early stopping. The next few subsections will describe these 
two techniques, and the routines to implement them.

Regularization
The first method for improving generalization is called regularization. This 
involves modifying the performance function, which is normally chosen to be 
the sum of squares of the network errors on the training set. The next 
subsection will explain how the performance function can be modified, and the 
following subsection will describe two routines which will automatically set the 
optimal performance function to achieve the best generalization.

Modified Performance Function
The typical performance function that is used for training feedforward neural 
networks is the mean sum of squares of the network errors:

.

It is possible to improve generalization if we modify the performance function 
by adding a term that consists of the mean of the sum of squares of the network 
weights and biases:

,

where  is the performance ratio, and 

.

Using this performance function will cause the network to have smaller 
weights and biases, and this will force the network response to be smoother and 
less likely to overfit.

In the following code we re-initialize our previous network and retrain it using 
the BFGS algorithm with the regularized performance function. Here we set 
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Improving Generalization
the performance ratio to 0.5, which gives equal weight to the mean square 
errors and the mean square weights.

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'trainbfg');
net.performFcn = 'msereg';
net.performParam.ratio = 0.5;
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=train(net,p,t);

The problem with regularization is that it is difficult to determine the optimum 
value for the performance ratio parameter. If we make this parameter too 
large, we may get overfitting. If the ratio is too small, the network will not 
adequately fit the training data. In the next section we will describe two 
routines which automatically set the regularization parameters.

Automated Regularization (TRAINBR)
It is desirable to determine the optimal regularization parameters in an 
automated fashion. One approach to this process is the Bayesian framework of 
David MacKay [MacK92]. In this framework the weights and biases of the 
network are assumed to be random variables with specified distributions. The 
regularization parameters are related to the unknown variances associated 
with these distributions. We can then estimate these parameters using 
statistical techniques.

A detailed discussion of Bayesian regularization is beyond the scope of this 
users guide. A detailed discussion of the use of Bayesian regularization, in 
combination with Levenberg-Marquardt training, can be found in [FoHa97].
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Bayesian regularization has been implemented in the function trainbr. The 
following code shows how we can train a 1-20-1 network using this function to 
approximate the noisy sine wave shown earlier in this section.

net=newff([-1 1],[20,1],{'tansig','purelin'},'trainbr');
net.trainParam.show = 10;
net.trainParam.epochs = 50;
randn('seed',192736547);
p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));
net = init(net);
net=train(net,p,t);
TRAINBR, Epoch 0/50, SSE 107.962/0, Gradient 9.51e+01/1.00e-10, 
#Par 6.10e+01/61
TRAINBR, Epoch 10/50, SSE 20.5/0, Gradient 1.88e-01/1.00e-10, 
#Par 1.82e+01/61
TRAINBR, Epoch 20/50, SSE 20.5/0, Gradient 4.07e-02/1.00e-10, 
#Par 1.65e+01/61
TRAINBR, Epoch 30/50, SSE 20.5/0, Gradient 5.57e-01/1.00e-10, 
#Par 1.55e+01/61
TRAINBR, Epoch 40/50, SSE 20.5/0, Gradient 2.76e-01/1.00e-10, 
#Par 1.48e+01/61
TRAINBR, Epoch 50/50, SSE 20.5/0, Gradient 4.05e-01/1.00e-10, 
#Par 1.42e+01/61

One feature of this algorithm is that it provides a measure of how many 
network parameters (weights and biases) are being effectively used by the 
network. In this case, the final trained network uses approximately 14 
parameters (indicated by #Par in the printout), out of the 61 total weights and 
biases in the 1-20-1 network. This effective number of parameters should 
remain the same, no matter how large the total number of parameters in the 
network becomes.

The following figure shows the response of the network. In contrast to the 
previous figure, in which a 1-20-1 network overfit the data, here we see that 
the network response is very close to the underlying sine function (dotted line), 
and, therefore, the network will generalize well to new inputs. We could have 
tried an even larger network, but the network response would never overfit the 
data. This eliminates the guesswork required in determining the optimum 
network size.
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Improving Generalization
Early Stopping
Another method for improving generalization is called early stopping. In this 
technique the available data is divided into three subsets. The first subset is 
the training set which is used for computing the gradient and updating the 
network weights and biases. The second subset is the validation set. The error 
on the validation set is monitored during the training process. The validation 
error will normally decrease during the initial phase of training, as does the 
training set error. However, when the network begins to overfit the data, the 
error on the validation set will typically begin to rise. When the validation error 
increases for a specified number of iterations, the training is stopped, and the 
weights and biases at the minimum of the validation error are returned.

The test set error is not used during the training, but it is used to compare 
different models. It is also useful to plot the test set error during the training 
process. If the error in the test set reaches a minimum at a significantly 
different iteration number than the validation set error, this may indicate a 
poor division of the data set.

Early stopping can be used with any of the training functions which were 
described earlier in this chapter. You simply need to pass the validation data 
to the training function. The following sequence of commands demonstrates 
how to use the early stopping function. 
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First we will create a simple test problem. For our training set we will generate 
a noisy sine wave with input points ranging from -1 to 1 at steps of 0.05.

p = [-1:0.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

Next we will generate the validation set. The inputs will range from -1 to 1, as 
in the test set, but we will offset them slightly. To make the problem more 
realistic, we also add a different noise sequence to the underlying sine wave. 
Notice that the validation set is contained in a structure which contains both 
the inputs and the targets.

v.P = [-0.975:.05:0.975];
v.T = sin(2*pi*v.P)+0.1*randn(size(v.P));

We will now create a 1-20-1 network, as in our previous example with 
regularization, and train it. (Notice that the validation structure is passed to 
train after the initial input and layer conditions, which are null vectors in this 
case since the network contains no delays.) For this example we will use the 
training function traingdx, although early stopping can be used with any of 
the other training functions we have discussed in this chapter.

net=newff([-1 1],[20,1],{'tansig','purelin'},'traingdx');
net.trainParam.show = 25;
net.trainParam.epochs = 300;
net = init(net);
[net,tr]=train(net,p,t,[],[],v);
TRAINGDX, Epoch 0/300, MSE 9.39342/0, Gradient 17.7789/1e-06
TRAINGDX, Epoch 25/300, MSE 0.312465/0, Gradient 0.873551/1e-06
TRAINGDX, Epoch 50/300, MSE 0.102526/0, Gradient 0.206456/1e-06
TRAINGDX, Epoch 75/300, MSE 0.0459503/0, Gradient 0.0954717/1e-06
TRAINGDX, Epoch 100/300, MSE 0.015725/0, Gradient 0.0299898/1e-06
TRAINGDX, Epoch 125/300, MSE 0.00628898/0, Gradient 0.042467/
1e-06
TRAINGDX, Epoch 131/300, MSE 0.00650734/0, Gradient 0.133314/
1e-06
TRAINGDX, Validation stop.
2



Improving Generalization
In the following figure we have a graph of the network response. We can see 
that the network did not overfit the data, as in the earlier example, although 
the response is not extremely smooth, as when using regularization. This is 
characteristic of early stopping.
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Preprocessing and Postprocessing
Neural network training can be made more efficient if certain preprocessing 
steps are performed on the network inputs and targets. In this section we 
describe several preprocessing routines which can be used. 

Min and Max (PREMNMX, POSTMNMX, TRAMNMX)
Before training, it is often useful to scale the inputs and targets so that they 
always fall within a specified range. The function premnmx can be used to scale 
inputs and targets so that they fall in the range [-1,1]. The following code 
illustrates the use of this function.

[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
net=train(net,pn,tn);

The original network inputs and targets are given in the matrices p and t. The 
normalized inputs and targets, pn and tn, that are returned will all fall in the 
interval [-1,1]. The vectors minp and maxp contain the minimum and maximum 
values of the original inputs, and the vectors mint and maxt contain the 
minimum and maximum values of the original targets. After the network has 
been trained, these vectors should be used to transform any future inputs 
which are applied to the network. They effectively become a part of the 
network, just like the network weights and biases. 

If premnmx is used to scale both the inputs and targets, then the output of the 
network will be trained to produce outputs in the range [-1,1]. If you want to 
convert these outputs back into the same units which were used for the original 
targets, then you should use the routine postmnmx. In the following code we 
simulate the network which was trained in the previous code and then convert 
the network output back into the original units.

an = sim(net,pn);
a = postmnmx(an,mint,maxt);

The network output an will correspond to the normalized targets tn. The 
un-normalized network output a is in the same units as the original targets t.

If premnmx is used to preprocess the training set data, then whenever the 
trained network is used with new inputs they should be preprocessed with the 
minimum and maximums which were computed for the training set. This can 
4



Preprocessing and Postprocessing
be accomplished with the routine tramnmx. In the following code we apply a new 
set of inputs to the network we have already trained.

pnewn = tramnmx(pnew,minp,maxp);
anewn = sim(net,pnewn);
anew = postmnmx(anewn,mint,maxt);

Mean and Stand. Dev. (PRESTD, POSTSTD, TRASTD)
Another approach for scaling network inputs and targets is to normalize the 
mean and standard deviation of the training set. This procedure is 
implemented in the function prestd. It normalizes the inputs and targets so 
that they will have zero mean and unity standard deviation. The following code 
illustrates the use of prestd.

[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);

The original network inputs and targets are given in the matrices p and t. The 
normalized inputs and targets, pn and tn, that are returned will have zero 
means and unity standard deviation. The vectors meanp and stdp contain the 
mean and standard deviations of the original inputs, and the vectors meant and 
stdt contain the means and standard deviations of the original targets. After 
the network has been trained, these vectors should be used to transform any 
future inputs which are applied to the network. They effectively become a part 
of the network, just like the network weights and biases. 

If prestd is used to scale both the inputs and targets, then the output of the 
network will be trained to produce outputs with zero mean and unity standard 
deviation. If you want to convert these outputs back into the same units which 
were used for the original targets, then you should use the routine poststd. In 
the following code we simulate the network which was trained in the previous 
code and then convert the network output back into the original units.

an = sim(net,pn);
a = poststd(an,meant,stdt);

The network output an will correspond to the normalized targets tn. The 
un-normalized network output a is in the same units as the original targets t.

If prestd is used to preprocess the training set data, then whenever the trained 
network is used with new inputs they should be preprocessed with the means 
and standard deviations which were computed for the training set. This can be 
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accomplished with the routine trastd. In the following code we apply a new set 
of inputs to the network we have already trained.

pnewn = trastd(pnew,meanp,stdp);
anewn = sim(net,pnewn);
anew = poststd(anewn,meant,stdt);

Principal Component Analysis (PREPCA, TRAPCA)
In some situations the dimension of the input vector is large, but the 
components of the vectors are highly correlated (redundant). It is useful in this 
situation to reduce the dimension of the input vectors. An effective procedure 
for performing this operation is principal component analysis. This technique 
has three effects: it orthogonalizes the components of the input vectors (so that 
they are uncorrelated with each other); it orders the resulting orthogonal 
components (principal components) so that those with the largest variation 
come first; and it eliminates those components which contribute the least to the 
variation in the data set. The following code illustrates the use of prepca, 
which performs a principal component analysis.

[pn,meanp,stdp] = prestd(p);
[ptrans,transMat] = prepca(pn,0.02);

Note that we first normalize the input vectors, using prestd, so that they have 
zero mean and unity variance. This is a standard procedure when using 
principal components. In this example, the second argument passed to prepca 
is 0.02. This means that prepca will eliminate those principal components 
which contribute less than 2% to the total variation in the data set. The matrix 
ptrans contains the transformed input vectors. The matrix transMat contains 
the principal component transformation matrix. After the network has been 
trained, this matrix should be used to transform any future inputs which are 
applied to the network. It effectively becomes a part of the network, just like 
the network weights and biases. If you multiply the normalized input vectors 
pn by the transformation matrix transMat, you will obtain the transformed 
input vectors ptrans. 

If prepca is used to preprocess the training set data, then whenever the trained 
network is used with new inputs they should be preprocessed with the 
transformation matrix which was computed for the training set. 
6
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This can be accomplished with the routine trapca. In the following code we 
apply a new set of inputs to a network we have already trained.

pnewn = trastd(pnew,meanp,stdp);
pnewtrans = trapca(pnewn,transMat);
a = sim(net,pnewtrans);

Post-training Analysis (POSTREG)
The performance of a trained network can be measured to some extent by the 
errors on the training, validation and test sets, but it is often useful to 
investigate the network response in more detail. One option is to perform a 
regression analysis between the network response and the corresponding 
targets. The routine postreg is designed to perform this analysis. 

The following commands illustrate how we can perform a regression analysis 
on the network which we previously trained in the early stopping section. 

a = sim(net,p);
[m,b,r] = postreg(a,t)
m =
    0.9874
b =
   -0.0067
r =
    0.9935

Here we pass the network output and the corresponding targets to postreg. It 
returns three parameters. The first two, m and b, correspond to the slope and 
the y-intercept of the best linear regression relating targets to network 
outputs. If we had a perfect fit (outputs exactly equal to targets), the slope 
would be 1, and the y-intercept would be 0. In this example we can see that the 
numbers are very close. The third variable returned by postreg is the 
correlation coefficient (R-value) between the outputs and targets. It is a 
measure of how well the variation in the output is explained by the targets. If 
this number is equal to 1, then there is perfect correlation between targets and 
outputs. In our example here the number is very close to 1, which indicates a 
good fit.

The following figure illustrates the graphical output provided by postreg. The 
network outputs are plotted versus the targets as open circles. The best linear 
fit is indicated by a dashed line. The perfect fit (output equal to targets) is 
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indicated by the solid line. In this example it is difficult to distinguish the best 
linear fit line from the perfect fit line, because the fit is so good.
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Sample Training Session
We have covered a number of different concepts in this chapter. At this point it 
might be useful to put some of these ideas together with an example of how a 
typical training session might go.

For this example we are going to use data from a medical application [PuLu92]. 
We want to design an instrument which can determine serum cholesterol levels 
from measurements of spectral content of a blood sample. We have a total of 
264 patients for which we have measurements of 21 wavelengths of the 
spectrum. For the same patients we also have measurements of hdl, ldl and 
vldl cholesterol levels, based on serum separation. The first step is to load the 
data into the workspace and perform a principal component analysis.

load choles_all
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
[ptrans,transMat] = prepca(pn,0.001);

Here we have conservatively retained those principal components which 
account for 99.9% of the variation in the data set. Let’s check the size of the 
transformed data.

[R,Q] = size(ptrans)
R =

4
Q =

264

There was apparently significant redundancy in the data set, since the 
principal component analysis has reduced the size of the input vectors from 21 
to 4.

The next step is to divide the data up into training, validation and test subsets. 
We will take one fourth of the data for the validation set, one fourth for the test 
set and one half for the training set. We will pick the sets as equally spaced 
points throughout the original data.

iitst = 2:4:Q;
iival = 4:4:Q;
iitr = [1:4:Q 3:4:Q];
v.P = ptrans(:,iival); v.T = tn(:,iival);
t.P = ptrans(:,iitst); t.V = tn(:,iitst);
ptr = ptrans(:,iitr); ttr = tn(:,iitr);
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We are now ready to create a network and train it. For this example we will try 
a two-layer network, with tan-sigmoid transfer function in the hidden layer 
and a linear transfer function in the output layer. This is a useful structure for 
function approximation (or regression) problems. As an initial guess, we will 
use five neurons in the hidden layer. The network should have three output 
neurons since there are three targets. We will use the Levenberg-Marquardt 
algorithm for training.

net = newff(minmax(ptr),[5 3],{'tansig' 'purelin'},'trainlm');
[net,tr]=train(net,ptr,ttr,[],[],v,t);
TRAINLM, Epoch 0/100, MSE 3.11023/0, Gradient 804.959/1e-10
TRAINLM, Epoch 15/100, MSE 0.330295/0, Gradient 104.219/1e-10
TRAINLM, Validation stop.

The training stopped after 15 iterations because the validation error increased. 
It is a useful diagnostic tool to plot the training, validation and test errors to 
check the progress of training. We can do that with the following commands.

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)
legend('Training','Validation','Test',-1);
ylabel('Squared Error'); xlabel('Epoch')

The result is shown in the following figure. The result here is reasonable, since 
the test set error and the validation set error have similar characteristics, and 
it doesn’t appear that any significant overfitting has occurred. 
0



Sample Training Session
The next step is to perform some analysis of the network response. We will put 
the entire data set through the network (training, validation and test) and will 
perform a linear regression between the network outputs and the 
corresponding targets. First we will need to un-normalize the network outputs.

an = sim(net,ptrans);
a = poststd(an,meant,stdt);
for i=1:3
  figure(i)
  [m(i),b(i),r(i)] = postreg(a(i,:),t(i,:));
end

In this case we have three outputs, so we perform three regressions. The 
results are shown in the following figures. 
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Sample Training Session
The first two outputs seem to track the targets reasonably well (this is a 
difficult problem), and the R-values are almost 0.9. The third output (vldl 
levels) is not well modeled. We probably need to work more on that problem. 
We might go on to try other network architectures (more hidden layer 
neurons), or to try Bayesian regularization instead of early stopping for our 
training technique. Of course there is also the possibility that vldl levels cannot 
be accurately computed based on the given spectral components.
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Limitations and Cautions
The gradient descent algorithm is generally very slow, because it requires 
small learning rates for stable learning. The momentum variation is usually 
faster than simple gradient descent, since it allows higher learning rates while 
maintaining stability, but it is still too slow for many practical applications. 
These two methods would normally be used only when incremental training is 
desired. You would normally use Levenberg-Marquardt training if you have 
enough memory available. If memory is a problem, then there are a variety of 
other fast algorithms available.

Multi-layered networks are capable of performing just about any linear or 
nonlinear computation, and can approximate any reasonable function 
arbitrarily well. Such networks overcome the problems associated with the 
perceptron and linear networks. However, while the network being trained 
may be capable theoretically of performing correctly, backpropagation and its 
variations may not always find a solution. See page 12-8 of [HDB96] for a 
discussion of convergence to local minimum points.

Picking the learning rate for a nonlinear network is a challenge. As with linear 
networks, a learning rate that is too large leads to unstable learning. 
Conversely, a learning rate that is too small results in incredibly long training 
times. Unlike linear networks, there is no easy way of picking a good learning 
rate for nonlinear multilayer networks. See page 12-8 of [HDB96] for examples 
of choosing the learning rate. With the faster training algorithms, the default 
parameter values will normally perform adequately.

The error surface of a nonlinear network is more complex than the error 
surface of a linear network. To understand this complexity see the figures on 
pages 12-5 to 12-7 of [HDB96], which show three different error surfaces for a 
multilayer network. The problem is that nonlinear transfer functions in 
multilayer networks introduce many local minima in the error surface. As 
gradient descent is performed on the error surface it is possible for the network 
solution to become trapped in one of these local minima. This may happen 
depending on the initial starting conditions. Settling in a local minimum may 
be good or bad depending on how close the local minimum is to the global 
minimum and how low an error is required. In any case, be cautioned that 
although a multilayer backpropagation network with enough neurons can 
implement just about any function, backpropagation will not always find the 
correct weights for the optimum solution. You may wish to re-initialize the 
network and retrain several times to guarantee that you have the best solution. 
4



Limitations and Cautions
Networks are also sensitive to the number of neurons in their hidden layers. 
Too few neurons can lead to underfitting. Too many neurons can contribute to 
overfitting, in which all training points are well fit, but the fitting curve takes 
wild oscillations between these points. Ways of dealing with various of these 
issues have been discussed in the section on improving generalization. This 
topic is also discussed starting on page 11-21 of [HDB96].
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Summary
Backpropagation can train multilayer feed-forward networks with 
differentiable transfer functions to perform function approximation, pattern 
association, and pattern classification. (Other types of networks can be trained 
as well, although the multilayer network is most commonly used.) The term 
backpropagation refers to the process by which derivatives of network error, 
with respect to network weights and biases, can be computed. This process can 
be used with a number of different optimization strategies.

The architecture of a multilayer network is not completely constrained by the 
problem to be solved. The number of inputs to the network is constrained by 
the problem, and the number of neurons in the output layer is constrained by 
the number of outputs required by the problem. However, the number of layers 
between network inputs and the output layer and the sizes of the layers are up 
to the designer. 

The two-layer sigmoid/linear network can represent any functional 
relationship between inputs and outputs if the sigmoid layer has enough 
neurons.

There are several different backpropagation training algorithms. They have a 
variety of different computation and storage requirements, and no one 
algorithm is best suited to all locations. The following list summarizes the 
training algorithms included in the toolbox.

Function Description

traingd Basic gradient descent. Slow response, can be used in 
incremental mode training.

traingdm Gradient descent with momentum. Generally faster than 
traingd. Can be used in incremental mode training.

traingdx Adaptive learning rate. Faster training than traingd, but 
can only be used in batch mode training.

trainrp Resilient backpropagation. Simple batch mode training 
algorithm with fast convergence and minimal storage 
requirements. 
6



Summary
One problem which can occur when training neural networks is that the 
network can overfit on the training set and not generalize well to new data 
outside the training set. This can be prevented by training with trainbr, but 
it can also be prevented by using early stopping with any of the other training 
routines. This requires that the user pass a validation set to the training 
algorithm, in addition to the standard training set.

traincgf Fletcher-Reeves conjugate gradient algorithm. Has 
smallest storage requirements of the conjugate gradient 
algorithms.

traincgp Polak-Ribiére conjugate gradient algorithm. Slightly larger 
storage requirements than traincgf. Faster convergence 
on some problems.

traincgb Powell-Beale conjugate gradient algorithm. Slightly larger 
storage requirements than traincgp. Generally faster 
convergence.

trainscg Scaled conjugate gradient algorithm. The only conjugate 
gradient algorithm that requires no line search.

trainbfg BFGS quasi-Newton method. Requires storage of 
approximate Hessian matrix and has more computation in 
each iteration than conjugate gradient algorithms, but 
usually converges in fewer iterations.

trainoss One step secant method. Compromise between conjugate 
gradient methods and quasi-Newton methods.

trainlm Levenberg-Marquardt algorithm. Fastest training 
algorithm for networks of moderate size. Has memory 
reduction feature for use when the training set is large.

trainbr Bayesian regularization. Modification of the 
Levenberg-Marquardt training algorithm to produce 
networks which generalize well. Reduces the difficulty of 
determining the optimum network architecture.

Function Description
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In order to produce the most efficient training, it is often helpful to preprocess 
the data before training. It is also helpful to analyze the network response after 
training is complete. The toolbox contains a number of routines for pre- and 
post-processing. They are summarized in the following table.

Function Description

premnmx Normalize data to fall in the range [-1,1].

postmnmx Inverse of premnmx. Used to convert data back to standard 
units.

tramnmx Normalize data using previously computed minimums and 
maximums. Used to preprocess new inputs to networks 
which have been trained with data normalized with premnmx.

prestd Normalize data to have zero mean and unity standard 
deviation.

poststd Inverse of prestd. Used to convert data back to standard 
units.

trastd Normalize data using previously computed means and 
standard deviations. Used to preprocess new inputs to 
networks which have been trained with data normalized 
with prestd.

prepca Principal component analysis. Reduces dimension of input 
vector and un-correlates components of input vectors.

trapca Preprocess data using previously computed principal 
component transformation matrix. Used to preprocess new 
inputs to networks which have been trained with data 
transformed with prepca.

postreg Linear regression between network outputs and targets. 
Used to determine the adequacy of network fit.
8
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Introduction
Radial basis networks may require more neurons than standard feed-forward 
backpropagation networks, but often they can be designed in a fraction of the 
time it takes to train standard feed-forward networks. They work best when 
many training vectors are available. 

You may want to consult the following paper on this subject:

Chen, S., C.F.N. Cowan, and P. M. Grant, “Orthogonal Least Squares Learning 
Algorithm for Radial Basis Function Networks,” IEEE Transactions on Neural 
Networks, vol. 2, no. 2, March 1991, pp. 302-309.

This chapter discusses two variants of radial basis networks, Generalized 
Regression networks (GRNN) and Probabilistic neural networks (PNN). You 
may wish to read about them in P.D. Wasserman, Advanced Methods in Neural 
Computing, New York: Van Nostrand Reinhold, 1993 on pp. 155-61, and pp. 
35-55 respectively.

Important Radial Basis Functions
Radial basis networks can be designed with either newrbe or newrb. GRNN and 
PNN can be designed with newgrnn and newpnn respectively.

Type help radbasis to see a listing of all functions and demonstrations related 
to radial basis networks.



Radial Basis Functions
Radial Basis Functions

Neuron Model
Here is a radial basis network with R inputs.

Notice that the expression for the net input of a radbas neuron is different from 
that of neurons in previous chapters. Here the net input to the radbas transfer 
function is the vector distance between its weight vector w and the input vector 
p, multiplied by the bias b. (The  box in this figure accepts the input 
vector p and the single row input weight matrix, and produces the dot product 
of the two.)

The transfer function for a radial basis neuron is:

Here is a plot of the radbas transfer function.
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The radial basis function has a maximum of 1 when its input is 0. As the 
distance between w and p decreases, the output increases. Thus a radial basis 
neuron acts as a detector which produces 1 whenever the input p is identical to 
its weight vector p.

The bias b allows the sensitivity of the radbas neuron to be adjusted. For 
example, if a neuron had a bias of 0.1 it would output 0.5 for any input vector 
p at vector distance of 8.326 (0.8326/b) from its weight vector w. 

Network Architecture
Radial basis networks consist of two layers: a hidden radial basis layer of S1 
neurons and an output linear layer of S2 neurons.

The  box in this figure accepts the input vector p and the input weight 
matrix IW1,1, and produces a vector having S1 elements. The elements are the 
distances between the input vector and vectors iIW1,1 formed from the rows of 
the input weight matrix. 

The bias vector b1 and the output of  are combined with the MATLAB 
operation .* , which does element-by-element multiplication.

The output of the first layer for a feed forward network net can be obtained with 
the following code:

a{1} = radbas(netprod(dist(net.IW{1,1},p),net.b{1}))

a2
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Radial Basis Functions
Fortunately, you won’t have to write such lines of code. All of the details of 
designing this network are built into design functions newrbe and newrb, and 
their outputs can be obtained with sim.

We can understand how this network behaves by following an input vector p 
through the network to the output a2. If we present an input vector to such a 
network, each neuron in the radial basis layer will output a value according to 
how close the input vector is to each neuron’s weight vector.

Thus, radial basis neurons with weight vectors quite different from the input 
vector p will have outputs near zero. These small outputs will have only a 
negligible effect on the linear output neurons.

In contrast, a radial basis neuron with a weight vector close to the input vector 
p will produce a value near 1. If a neuron has an output of 1 its output weights 
in the second layer pass their values to the linear neurons in the second layer.

In fact, if only one radial basis neuron had an output of 1, and all others had 
outputs of 0’s (or very close to 0), the output of the linear layer would be the 
active neuron’s output weights. This would, however, be an extreme case. 
Typically several neurons are always firing, to varying degrees.

Now let us look in detail at how the first layer operates. Each neuron's 
weighted input is the distance between the input vector and its weight vector, 
calculated with dist. Each neuron's net input is the element by element 
product of its weighted input with its bias, calculated with netprod. Each 
neurons' output is its net input passed through radbas. If a neuron's weight 
vector is equal to the input vector (transposed) its weighted input will be 0, its 
net input will be 0, and its output will be 1. If a neuron's weight vector is a 
distance of spread from the input vector, its weighted input will be spread, its 
net input will be sqrt(-log(.5)) (or 0.8326), therefore its output will be 0.5.

Exact Design (NEWRBE)
Radial basis networks can be designed with the function newrbe. This function 
can produce a network with zero error on training vectors. It is called in the 
following way

net = newrbe(P,T,SPREAD)

The function newrbe takes matrices of input vectors P and target vectors T, and 
a spread constant SPREAD for the radial basis layer, and returns a network with 
weights and biases such that the outputs are exactly T when the inputs are P.
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This function newrbe creates as many radbas neurons as there are input 
vectors in P, and sets the first layer weights to P'. Thus, we have a layer of 
radbas neurons in which each neuron acts as a detector for a different input 
vector. If there are Q input vectors, then there will be Q neurons.

Each bias in the first layer is set to 0.8326/SPREAD. This gives radial basis 
functions that cross 0.5 at weighted inputs of +/- SPREAD. This determines the 
width of an area in the input space to which each neuron responds. If SPREAD 
is 4, then each radbas neuron will respond with 0.5 or more to any input vectors 
within a vector distance of 4 from their weight vector. As we shall see, SPREAD 
should be large enough that neurons respond strongly to overlapping regions 
of the input space.

The second layer weights IW 2,1 (or in code, IW{2,1}) and biases b2 (or in code, 
b{2}) are found by simulating the first layer outputs a1 (A{1}), and then solving 
the following linear expression: 

[W{2,1} b{2}] * [A{1}; ones] = T

We know the inputs to the second layer (A{1}) and the target (T), and the layer 
is linear. We can use the following code to calculate the weights and biases of 
the second layer to minimize the sum-squared error.

Wb = T/[P; ones(1,Q)]

Here Wb contains both weights and biases, with the biases in the last column. 
The sum-squared error will always be 0, as explained below.

We have a problem with C constraints (input/target pairs) and each neuron has 
C +1 variables (the C weights from the C radbas neurons, and a bias). A linear 
problem with C constraints and more than C variables has an infinite number 
of zero error solutions! 

Thus newrbe creates a network with zero error on training vectors. The only 
condition we have to meet is to make sure that SPREAD is large enough so that 
the active input regions of the radbas neurons overlap enough so that several 
radbas neurons always have fairly large outputs at any given moment. This 
makes the network function smoother and results in better generalization for 
new input vectors occurring between input vectors used in the design. 
(However, SPREAD should not be so large that each neuron is effectively 
responding in the same, large, area of the input space.)



Radial Basis Functions
The drawback to newrbe is that it produces a network with as many hidden 
neurons as there are input vectors. For this reason, newrbe does not return an 
acceptable solution when many input vectors are needed to properly define a 
network, as is typically the case.

More Efficient Design (NEWRB)
The function newrb iteratively creates a radial basis network one neuron at a 
time. Neurons are added to the network until the sum-squared error falls 
beneath an error goal or a maximum number of neurons has been reached. The 
call for this function is:

net = newrb(P,T,GOAL,SPREAD)

The function newrb takes matrices of input and target vectors, P and T, and 
design parameters GOAL and, SPREAD, and returns the desired network.

The design method of newrb is similar to that of newrbe. The difference is that 
newrb creates neurons one at a time. At each iteration the input vector which 
will result in lowering the network error the most, is used to create a radbas 
neuron. The error of the new network is checked, and if low enough newrb is 
finished. Otherwise the next neuron is added. This procedure is repeated until 
the error goal is met, or the maximum number of neurons is reached.

As with newrbe, it is important that the spread parameter be large enough that 
the radbas neurons respond to overlapping regions of the input space, but not 
so large that all the neurons respond in essentially the same manner.

Why not always use a radial basis network instead of a standard feed-forward 
network? Radial basis networks, even when designed efficiently with newrbe, 
tend to have many times more neurons than a comparable feed-forward 
network with tansig or logsig neurons in the hidden layer.

This is because sigmoid neurons can have outputs over a large region of the 
input space, while radbas neurons only respond to relatively small regions of 
the input space. The result is that the larger the input space (in terms of 
number of inputs, and the ranges those inputs vary over) the more radbas 
neurons required.

On the other hand, designing a radial basis network often takes much less time 
than training a sigmoid/linear network, and can sometimes result in fewer 
neurons being used, as can be seen in the next demonstration.
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Demonstrations
The demonstration script demorb1 shows how a radial basis network is used to 
fit a function. Here the problem is solved with only five neurons.

Demonstration scripts demorb3 and demorb4 examine how the spread constant 
affects the design process for radial basis networks.

In demorb3, a radial basis network is designed to solve the same problem as in 
demorb1. However, this time the spread constant used is 0.01. Thus, each 
radial basis neuron returns 0.5 or lower, for any input vectors with a distance 
of 0.01 or more from its weight vector.

Because the training inputs occur at intervals of 0.1, no two radial basis 
neurons have a strong output for any given input.

In demorb3, it was demonstrated that having too small a spread constant can 
result in a solution which does not generalize from the input/target vectors 
used in the design. This demonstration, demorb4, shows the opposite problem. 
If the spread constant is large enough, the radial basis neurons will output 
large values (near 1.0) for all the inputs used to design the network.

If all the radial basis neurons always output 1, any information presented to 
the network becomes lost. No matter what the input, the second layer outputs 
ones. The function newrb will attempt to find a network, but will not be able to 
do so because to numerical problems that arise in this situation.

The moral of the story is, choose a spread constant larger than the distance 
between adjacent input vectors, so as to get good generalization, but smaller 
than the distance across the whole input space.

For this problem that would mean picking a spread constant greater than 0.1, 
the interval between inputs, and less than 2, the distance between the left most 
and right most inputs.



Generalized Regression Networks
Generalized Regression Networks
A generalized regression neural network (GRNN) is often used for function 
approximation. As discussed below, it has a radial basis layer and a special 
linear layer.

Network Architecture 
The architecture for the GRNN is shown below. It is similar to the radial basis 
network, but has a slightly different second layer.

Here the nprod box shown above (code function normprod) produces S2 
elements in vector n2. Each element is the dot product of a row of LW2,1 and 
the input vector a1, all normalized by the sum of the elements of a1. For 
instance, suppose that:

LW{1,2}= [1 -2;3 4;5 6];
a{1} = [7; -8;

Then

aout = normprod(LW{1,2},a{1})
aout =
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The first layer is just like that for newrbe networks. It has as many neurons as 
there are input/ target vectors in P. Specifically, the first layer weights are set 
to P'. The bias b1 is set to a column vector of 0.8326/SPREAD. The user chooses 
SPREAD, the distance an input vector must be from a neuron’s weight vector to 
be 0.5.

Again, the first layer operates just like the newbe radial basis layer described 
previously. Each neuron's weighted input is the distance between the input 
vector and its weight vector, calculated with dist. Each neuron's net input is 
the product of its weighted input with its bias, calculated with netprod. Each 
neurons' output is its net input passed through radbas. If a neuron's weight 
vector is equal to the input vector (transposed), its weighted input will be 0, its 
net input will be 0, and its output will be 1. If a neuron's weight vector is a 
distance of spread from the input vector, its weighted input will be spread, and 
its net input will be sqrt(-log(.5)) (or 0.8326). Therefore its output will be 0.5.

The second layer also has as many neurons as input/target vectors, but here 
LW{2,1} is set to T.

Suppose we have an input vector p close to pi, one of the input vectors among 
the input vector/target pairs used in designing layer one weights. This input p 
produces a layer 1 ai output close to 1. This leads to a layer 2 output close to ti, 
one of the targets used forming layer 2 weights.

A larger spread leads to a large area around the input vector where layer 1 
neurons will respond with significant outputs.Therefore if spread is small the 
radial basis function is very steep so that the neuron with the weight vector 
closest to the input will have a much larger output than other neurons. The 
network will tend to respond with the target vector associated with the nearest 
design input vector.

As spread gets larger the radial basis function's slope gets smoother and 
several neuron's may respond to an input vector. The network then acts like it 
is taking a weighted average between target vectors whose design input 
vectors are closest to the new input vector. As spread gets larger more and 
more neurons contribute to the average with the result that the network 
function becomes smoother.
0



Generalized Regression Networks
Design (NEWGRNN)
You can use the function newgrnn to create a GRNN. For instance, suppose that 
three input and three target vectors are defined as:

P = [4 5 6];
T = [1.5 3.6 6.7];

We can now obtain a GRNN with:

net = newgrnn(P,T);

and simulate it with:

P = 4.5;
v = sim(net,P)

You might want to try demogrn1. It shows how to approximate a function with 
a GRNN.
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Probabilistic Neural Networks
Probabilistic neural networks can be used for classification problems. When an 
input is presented, the first layer computes distances from the input vector to 
the training input vectors, and produces a vector whose elements indicate how 
close the input is to a training input. The second layer sums these contributions 
for each class of inputs to produce as its net output a vector of probabilities. 
Finally, a compete transfer function on the output of the second layer picks the 
maximum of these probabilities, and produces a one for that class and a 0 for 
the other classes. The architecture for this system is shown below.

Network Architecture

It is assumed that there are Q input vector/target vector pairs. Each target 
vector has K elements. One of these element is one and the rest is zero. Thus, 
each input vector is associated with one of K classes.

The first layer input weights, IW1,1 (net.IW{1,1}) are set to the transpose of 
the matrix formed from the Q training pairs, P'. When an input is presented 
the ||dist|| box produces a vector whose elements indicate how close the 
input is to the vectors of the training set. These elements are multiplied, 
element by element, by the bias and sent the radbas transfer function. An input 
vector close to a training vector will be represented by a number close to one in 
the output vector a1. If an input is close to several training vectors of a single 
class, it will be represented by several elements of a1 that are close to one.
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Probabilistic Neural Networks
The second layer weights, LW1,2 (net.LW{2,1}), are set to the matrix T of 
target vectors. Each vector has a one only in the row associated with that 
particular class of input, and zeros elsewhere. (A function ind2vec is used to 
create the proper vectors.) The multiplication Ta1 sums the elements of a1 due 
to each of the K input classes. Finally, the second layer transfer function, 
compete, produces a one corresponding to the largest element of n2, and zeros 
elsewhere. Thus, the network has classified the input vector into a specific one 
of K classes because that class had the maximum probability of being correct. 

Design (NEWPNN)
You can use the function newpnn to create a PNN. For instance, suppose that 
seven input vectors and their corresponding targets are:

P = [0 0;1 1;0 3;1 4;3 1;4 1;4 3]'

which yields

P =
     0     1     0     1     3     4     4
     0     1     3     4     1     1     3
Tc = [1 1 2 2 3 3 3];

Which yields 

Tc =
     1     1     2     2     3     3     3

We need a target matrix with ones in the right place. We can get it with the 
function ind2vec. It gives a matrix with zeros except at the correct spots. So 
execute 

T = ind2vec(Tc) 

which gives

T =
   (1,1)        1
   (1,2)        1
   (2,3)        1
   (2,4)        1
   (3,5)        1
   (3,6)        1
   (3,7)        1
6-13
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Now we can create a network and simulate it, using the input P to make sure 
that it does produce the correct classifications. We will use the function 
vec2ind to convert the output Y into a row Yc to make the classifications clear.

net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Finally we get

Yc =
     1     1     2     2     3     3     3

We might try classifying vectors other than those that were used to design the 
network. We will try to classify the vectors shown below in P2.

P2 = [1 4;0 1;5 2]'

P2 =
     1     0     5
     4     1     2

Can you guess how these vectors will be classified? If we run the simulation 
and plot the vectors as we did before we get:

Yc =
     2     1     3

These results look good, for these test vectors were quite close to members of 
classes 2, 1 and 3 respectively. The network has managed generalize its 
operation to properly classify vectors other than those used to design the 
network.

You might want to try demopnn1. It shows how to design a PNN, and how the 
network can successfully classify a vector not used in the design.
4



Summary
Summary
Radial basis networks can be designed very quickly in two different ways.

The first design method, newrbe, finds an exact solution. The function newrbe 
creates radial basis networks with as many radial basis neurons as there are 
input vectors in the training data.

The second method, newrb, finds the smallest network that can solve the 
problem within a given error goal. Typically, far fewer neurons are required by 
newrb than are returned newrbe. However, because the number of radial basis 
neurons is proportional to the size of the input space, and the complexity of the 
problem, radial basis networks can still be larger than backpropagation 
networks.

A generalized regression neural network (GRNN) is often used for function 
approximation. It has been shown that, given a sufficient number of hidden 
neurons, GRNNs can approximate a continuous function to an arbitrary 
accuracy.

Probabilistic neural networks can be used for classification problems. Their 
design is straightforward and does not depend on training. A PNN is 
guaranteed to converge to a Bayesian classifier providing it is given enough 
training data. These networks generalize well. 

The GRNN and PNN have many advantages, but they both suffer from one 
major disadvantage. They are slower to operate because they use more 
computation than other kinds of networks to do their function approximation 
or classification.
6-15
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Radial Basis Network Architecture
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Probabilistic Neural Network Architecture
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Summary
New Functions
This chapter introduces the following new functions:

Function Description

newrb Design a radial basis network.

newrbe Design an exact radial basis network.

newgrnn Design a generalized regression neural network.

newpnn Design a probabilistic neural network.

dist Euclidean distance weight function.

negdist Negative euclidean distance weight function

dotprod Dot product weight function.

normprod Normalized dot product weight function.

netprod Product net input function.

compet Competitive transfer function.

radbas Radial basis transfer function.

ind2vec Convert indices to vectors.

vec2ind Convert vectors to indices.
6-19
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Introduction
Self-organizing in networks is one of the most fascinating topics in the neural 
network field. Such networks can learn to detect regularities and correlations 
in their input and adapt their future responses to that input accordingly. The 
neurons of competitive networks learn to recognize groups of similar input 
vectors. Self-organizing maps learn to recognize groups of similar input vectors 
in such a way that neurons physically close together in the neuron layer 
respond to similar input vectors. A basic reference is:

Kohonen, T. Self-Organization and Associative Memory, 2nd Edition, Berlin: 
Springer-Verlag, 1987.

Important Self-Organizing Functions
Competitive layers and self organizing maps can be created with newc and 
newsom respectively.

A listing of all self-organizing functions and demonstrations can be found by 
typing help selforg.



Competitive Learning
Competitive Learning
The neurons in a competitive layer distribute themselves to recognize 
frequently presented input vectors. 

Architecture
The architecture for a competitive network is shown below.

The  box in this figure accepts the input vector p and the input weight 
matrix IW1,1, and produces a vector having S1 elements. The elements are the 
negative of the distances between the input vector and vectors iIW1,1 formed 
from the rows of the input weight matrix.

The net input n1 of a competitive layer is computed by finding the negative 
distance between input vector p and the weight vectors and adding the biases 
b. If all biases are zero, the maximum net input a neuron can have is 0. This 
occurs when the input vector p equals that neuron’s weight vector.

The competitive transfer function accepts a net input vector for a layer and 
returns neuron outputs of 0 for all neurons except for the winner, the neuron 
associated with the most positive element of net input n1. The winner’s output 
is 1. If all biases are 0 then the neuron whose weight vector is closest to the 
input vector has the least negative net input, and therefore wins the 
competition to output a 1.

Reasons for using biases with competitive layers are introduced in a later 
section on training.
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Creating a Competitive Neural Network (NEWC)
A competitive neural network can be created with the function newc. We will 
show how this works with a simple example.

Suppose that we wish to divide the following four two element vectors into two 
classes.

p = [.1 .8  .1 .9; .2 .9 .1 .8]
p =
    0.1000    0.8000    0.1000    0.9000
    0.2000    0.9000    0.1000    0.8000

Thus, we have two vectors near the origin and two vectors near (1,1).

First create a two neuron layer is created with two input elements ranging 
from 0 to 1. The first argument gives the range of the two input vectors and the 
second argument says that there are to be 2 neurons.

net = newc([0 1; 0 1],2);

The weights will be initialized to the center of the input ranges with the 
function midpoint. We can check to see these initial values as follows:

wts = net.IW{1,1}
wts =
    0.5000    0.5000
    0.5000    0.5000

These weights are indeed the values at the midpoint of the range (0 to 1) of the 
inputs, as we would expect when using midpoint for initialization.

The biases are computed by initcon, which gives

biases =
    5.4366
    5.4366

Now we have a network, but we need to train it to do the classification job.

Recall that each neuron competes to respond to an input vector p. If the biases 
are all 0, the neuron whose weight vector is closest to p gets the highest net 
input and therefore wins the competition and outputs 1. All other neurons 
output 0. We would like to adjust the winning neuron so as to move it closer to 
the input. A learning rule to do this is discussed in the next section.



Competitive Learning
Kohonen Learning Rule (LEARNK)
The weights of the winning neuron (a row of the input weight matrix) are 
adjusted with the Kohonen learning rule. Supposing that the ith neuron wins, 
the ith row of the input weight matrix are adjusted as shown below.

The Kohonen rule allows the weights of a neuron to learn an input vector, and 
because of this it is useful in recognition applications. 

Thus, the neuron whose weight vector was closest to the input vector is 
updated to be even closer. The result is that the winning neuron is more likely 
to win the competition the next time a similar vector is presented, and less 
likely to win when a very different input vector is presented. As more and more 
inputs are presented, each neuron in the layer closest to a group of input 
vectors soon adjusts its weight vector toward those input vectors. Eventually, 
if there are enough neurons, every cluster of similar input vectors will have a 
neuron which outputs 1 when a vector in the cluster is presented, while 
outputting a 0 at all other times. Thus the competitive network learns to 
categorize the input vectors it sees.

The function learnk is used to perform the Kohonen learning rule in this 
toolbox.

Bias Learning Rule (LEARNCON)
One of the limitations of competitive networks is that some neurons may not 
always get allocated. In other words, some neuron weight vectors may start out 
far from any input vectors and never win the competition, no matter how long 
the training is continued. The result is that their weights do not get to learn 
and they never win. These unfortunate neurons, referred to as dead neurons, 
never perform a useful function.

To stop this from happening, biases are used to give neurons that only win the 
competition rarely (if ever) an advantage over neurons which win often. A 
positive bias, added to the negative distance, makes a distant neuron more 
likely to win. 

IW1 1,
q( )i IW1 1,

q 1–( )i α p q( ) IW1 1,
q 1–( )i–( )+=
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To do this job a running average of neuron outputs is kept. It is equivalent to 
the percentages of times each output is 1. This average is used to update the 
biases with the learning function learncon so that the biases of frequently 
active neurons will get smaller, and biases of infrequently active neurons will 
get larger.

The learning rates for learncon are typically set an order of magnitude or more 
smaller than for learnk. Doing this helps make sure that the running average 
is accurate. 

The result is that biases of neurons which haven’t responded very frequently 
will increase vs. biases of neurons that have responded frequently. As the 
biases of infrequently active neurons increase the input space to which that 
neuron responds increases. As that input space increases the infrequently 
active neuron responds and moves toward more input vectors. Eventually the 
neuron will respond to an equal number of vectors as other neurons.

This has two good effects. First, if a neuron never wins a competition because 
its weights are far from any of the input vectors, its bias will eventually get 
large enough so that it will be able to win. When this happens it will move 
toward some group of input vectors. Once the neuron’s weights have moved 
into a group of input vectors and the neuron is winning consistently its bias will 
decrease to 0. Thus the problem of dead neurons is resolved.

The second advantage of biases is that they force each neuron to classify 
roughly the same percentage of input vectors. Thus, if a region of the input 
space is associated with a larger number of input vectors than another region, 
the more densely filled region will attract more neurons and be classified into 
smaller subsections.

Training
Now train the network for 500 epochs. Either train or adapt can be used.

net.trainParam.epochs = 500
net = train(net,p);

 Note that train for competitive networks uses the training function trainwb1. 
You can verify this by executing the following code after creating the network. 

net.trainFcn



Competitive Learning
This code produces

ans =
trainwb1

Thus, during each epoch, a single vector is chosen randomly and presented to 
the network and weight and bias values are updated accordingly.

Next supply the original vectors as input to the network, simulate the network 
and finally convert its output vectors to class indices.

a = sim(net,p)
ac = vec2ind(a)

This yields 

ac =
     1     2     1     2

We see that the network has been trained to classify the input vectors into two 
groups, those near the origin, class 1, and those near (1,1), class 2.

It might be interesting to look at the final weights and biases. They are

wts =
    0.8208    0.8263
    0.1348    0.1787
biases =
    5.3699
    5.5049

(You may get different answers if you run this problem, as a random seed is 
used to pick the order of the vectors presented to the network for training.) 
Note that the first vector (formed from the first row of the weight matrix) is 
near the input vectors close to (1,1), while the vector formed from the second 
row of the weight matrix is close to the input vectors near the origin. Thus, the 
network has been trained, just by exposing it to the inputs, to classify them.

During training each neuron in the layer closest to a group of input vectors 
adjusts its weight vector toward those input vectors. Eventually, if there are 
enough neurons, every cluster of similar input vectors will have a neuron which 
outputs 1 when a vector in the cluster is presented, while outputting a 0 at all 
other times. Thus the competitive network learns to categorize the input.
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Graphical Example
Competitive layers can be understood better when their weight vectors and 
input vectors are shown graphically. The diagram below shows forty-eight 
two-element input vectors represented as with ‘+’ markers. 

The input vectors above appear to fall into clusters. A competitive network of 
eight neurons will be used to classify the vectors into such clusters.
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Competitive Learning
The following plot shows the weights after training.

Note that seven of the weight vectors found clusters of input vectors to classify. 
The eighth neuron’s weight vector is still in the middle of the input vectors. 
Continued training of the layer would eventually cause this last neuron to 
move toward some input vectors.

You might try democ1 to see a dynamic example of competitive learning.
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Self-Organizing Maps
Self-organizing feature maps (SOFM) learn to classify input vectors according 
to how they are grouped in the input space. They differ from competitive layers 
in that neighboring neurons in the self-organizing map learn to recognize 
neighboring sections of the input space. Thus self-organizing maps learn both 
the distribution (as do competitive layers) and topology of the input vectors 
they are trained on.

The neurons in the layer of an SOFM are arranged originally in physical 
positions according to a topology function. The functions gridtop, hextop or 
randtop can arrange the neurons in a grid, hexagonal, or random topology. 
Distances between neurons are calculated from their positions with a distance 
function. There are four distance functions, dist, boxdist, linkdist and 
mandist. Link distance is the most common. These topology and distance 
functions are described in detail later in this section.

Here a self-organizing feature map network identifies a winning neuron  
using the same procedure as employed by a competitive layer. However, 
instead of updating only the winning neuron, all neurons within a certain 
neighborhood of the winning neuron are updated using the Kohonen 
rule. Specifically, we will adjust all such neurons  as follows

 or 

Here the neighborhood  contains the indices for all of the neurons that 
lie within a radius  of the winning neuron :

Thus, when a vector  is presented, the weights of the winning neuron and its 
close neighbors will move towards . Consequently, after many presentations, 
neighboring neurons will have learned vectors similar to each other.
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Self-Organizing Maps
To illustrate the concept of neighborhoods, consider the figure given below. The 
left diagram shows a two-dimensional neighborhood of radius  around 
neuron . The right diagram shows a neighborhood of radius . 

These neighborhoods could be written as:

 and 

Note that the neurons in an SOFM do not have to be arranged in a 
two-dimensional pattern. You use a one-dimensional arrangement, or even 
three or more dimensions. For a one-dimensional SOFM, a neuron will only 
have two neighbors within a radius of 1 (or a single neighbor if the neuron is at 
the end of the line).You can also define distance in different ways, by using 
rectangular and hexagonal arrangements of neurons and neighborhoods for 
instance. The performance of the network is not sensitive to the exact shape of 
the neighborhoods.
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Topologies (GRIDTOP, HEXTOP, RANDTOP)
You can specify different topologies for the original neuron locations with the 
functions gridtop, hextop or randtop. 

The gridtop topology starts with neurons in a rectangular grid similar to that 
shown in the previous figure. For example, suppose that you want a 2 by 3 
array of six neurons You can get this with:

pos = gridtop(2,3)
pos =
     0     1     0     1     0     1
     0     0     1     1     2     2

Here neuron 1 has the position (0,0), neuron 2 has the position (1,0), neuron 3 
had the position (0,1), etc.

Note that had we asked for a gridtop with the arguments reversed we would 
have gotten a slightly different arrangement.

pos = gridtop(3,2)
pos =
     0     1     2     0     1     2
     0     0     0     1     1     1
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Self-Organizing Maps
An 8x10 set of neurons in a gridtop topology can be created and plotted with 
the code shown below

pos = gridtop(8,10);
plotsom(pos)

to give the following graph.

As shown, the neurons in the gridtop topology do indeed lie on a grid.

The hextop function creates a similar set of neurons but they are in a 
hexagonal pattern. A 2 by 3 pattern of hextop neurons is generated as follows:

pos = hextop(2,3)
pos =
         0    1.0000    0.5000    1.5000         0    1.0000
         0         0    0.8660    0.8660    1.7321    1.7321 
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Note that hextop is the default pattern for SOFM networks generated with 
newsom.

An 8x10 set of neurons in a hextop topology can be created and plotted with the 
code shown below

pos = hextop(8,10);
plotsom(pos)

to give the following graph.

Note the positions of the neurons in a hexagonal arrangement.
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Self-Organizing Maps
Finally, the randtop function creates neurons in an N dimensional random 
pattern. The following code generates a random pattern of neurons.

pos = randtop(2,3)
pos =
         0    0.7787    0.4390    1.0657    0.1470    0.9070
         0    0.1925    0.6476    0.9106    1.6490    1.4027

An 8x10 set of neurons in a randtop topology can be created and plotted with 
the code shown below

pos = randtop(8,10);
plotsom(pos)

to give the following graph.

You might take a look at the help for these topology functions. They contain a 
number of examples.
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Distance Functions (DIST, LINKDIST, MANDIST, 
BOXDIST)
In this toolbox there are four distinct ways to calculate distances from a 
particular neuron to its neighbors. Each calculation method is implemented 
with a special function.

The dist function has been discussed before. It calculates the Euclidean 
distance from a home neuron to any other neuron. Suppose we have three 
neurons:

pos2 = [ 0 1 2; 0 1 2]
pos2 =
     0     1     2
     0     1     2

We will find the distance from each neuron to the other with:

D2 = dist(pos2)
D2 =
         0    1.4142    2.8284
    1.4142         0    1.4142
    2.8284    1.4142         0

Thus, the distance from neuron 1 to itself is 0, the distance from neuron 1 to 
neuron 2 is 1.414, etc. These are indeed the Euclidean distances as we know 
them.

The graph below shows a home neuron in a two-dimensional (gridtop) layer of 
neurons. The home neuron has neighborhoods of increasing diameter 
surrounding it. A neighborhood of diameter 1 includes the home neuron and its 
6



Self-Organizing Maps
immediate neighbors. The neighborhood of diameter 2 includes the diameter 1 
neurons and their immediate neighbors. 

As for the dist function, all the neighborhoods for an S neuron layer map are 
represented by an SxS matrix of distances. The particular distances shown 
above, 1 in the immediate neighborhood, 2 in neighborhood 2, etc., are 
generated by the function boxdist. Suppose that we have 6 neurons in a 
gridtop configuration.

pos = gridtop(2,3)
pos =
     0     1     0     1     0     1
     0     0     1     1     2     2

Then the box distances are:

d = boxdist(pos)
d =
     0     1     1     1     2     2
     1     0     1     1     2     2
     1     1     0     1     1     1
     1     1     1     0     1     1
     2     2     1     1     0     1
     2     2     1     1     1     0

The distance from neuron 1 to 2, 3 and 4 is just 1, for they are in the immediate 
neighborhood. The distance from neuron 1 to both 5 and 6 is 2. The distance 
from both 3 and 4 to all other neurons is just 1.
7-17
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The link distance from one neuron is just the number of links, or steps, that 
must be taken to get to the neuron under consideration. Thus if we calculate 
the distances from the same set of neurons with linkdist we get:

dlink =
     0     1     1     2     2     3
     1     0     2     1     3     2
     1     2     0     1     1     2
     2     1     1     0     2     1
     2     3     1     2     0     1
     3     2     2     1     1     0

The Manhattan distance between two vectors x and y is calculated as: 

D = sum(abs(x-y))

Thus if we have 

W1 = [ 1 2; 3 4; 5 6]
W1 =
     1     2
     3     4
     5     6

and 

P1= [1;1]
P1 =
     1
     1

then we get for the distances

Z1 = mandist(W1,P1)
Z1 =
     1
     5
     9

The distances calculated with mandist do indeed follow the mathematical 
expression given above.
8



Self-Organizing Maps
Architecture
The architecture for this SOFM is shown below.

This architecture is like that of a competitive network, except no bias is used 
here. The competitive transfer function produces a 1 for output element a1

i 
corresponding to ,the winning neuron. All other output elements in a1 are 0.

Now, however, as described above, neurons close to the winning neuron are 
updated along with the winning neuron. As described previously, one can chose 
from various topologies of neurons. Similarly, one can choose from various 
distance expressions to calculate neurons that are close to the winning neuron.
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Creating a Self Organizing MAP Neural Network 
(NEWSOM)
You can create a new SOFM network with the function newsom. This function 
defines variables used in two phases of learning:

•  Ordering phase learning rate

•  Ordering phase steps

•  Tuning phase learning rate

•  Tuning phase neighborhood distance

These values are used for training and adapting. 

Consider the following example.

Suppose that we wish to create a network having input vectors with two 
elements that fall in the range 0 to 2 and 0 to 1 respectively. Further suppose 
that we want to have six neurons in a hexagonal 2 by 3 network. The code to 
obtain this network is: 

net = newsom([0 2; 0 1] , [2 3]);

Suppose also that the vectors to train on are:

P = [.1 .3 1.2 1.1 1.8 1.7 .1 .3 1.2 1.1 1.8 1.7;...
0.2 0.1 0.3 0.1 0.3 0.2 1.8 1.8 1.9 1.9 1.7 1.8]

We can plot all of this with 

plot(P(1,:),P(2,:),'.g','markersize',20)
hold on
plotsom(net.iw{1,1},net.layers{1}.distances)
hold off
0



Self-Organizing Maps
to give

The various training vectors are seen as fuzzy gray spots around the perimeter 
of this figure. The initialization for newsom is midpoint. Thus, the initial 
network neurons are all concentrated at the black spot at (1, 0.5). 

When simulating a network, the negative distances between each neuron's 
weight vector and the input vector are calculated (negdist) to get the weighted 
inputs. The weighted inputs are also the net inputs (netsum). The net inputs 
compete (compete) so that only the neuron with the most positive net input will 
output a 1.
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Training (LEARNSOM)
Learning in a self organizing feature map occurs for one vector at a time 
independent of whether the network is trained directly (trainwb1) or whether 
it is trained adaptively (adaptwb). In either case, learnsom is the 
self-organizing map weight learning function.

First the network identifies the winning neuron. Then the weights of the 
winning neuron, and the other neurons in its neighborhood, are moved closer 
to the input vector at each learning step using the self-organizing map learning 
function learnsom. The winning neuron's weights are altered proportional to 
the learning rate. The weights of neurons in its neighborhood are altered 
proportional to half the learning rate. The learning rate and the neighborhood 
distance used to determine which neurons are in the winning neuron's 
neighborhood are altered during training through two phases.

Phase 1: Ordering Phase
This phase lasts for the given number of steps. The neighborhood distance 
starts as the maximum distance between two neurons, and decreases to the 
tuning neighborhood distance. The learning rate starts at the ordering phase 
learning rate and decreases until it reaches the tuning phase learning rate. As 
the neighborhood distance and learning rate decrease over this phase the 
neuron's of the network will typically order themselves in the input space with 
the same topology which they are ordered physically. 

Phase 2: Tuning Phase 
This phase lasts for the rest of training or adaption. The neighborhood distance 
stays at the tuning neighborhood distance (should include only close neighbors, 
i.e. typically 1.0). The learning rate continues to decrease from the tuning 
phase learning rate, but very slowly. The small neighborhood and slowly 
decreasing learning rate fine tune the network, while keeping the ordering 
learned in the previous phase stable. The number of epochs for the tuning part 
of training (or time steps for adaption) should be much larger than the number 
of steps in the ordering phase, because the tuning phase usually takes much 
longer.

Now let us take a look at some of the specific values commonly used in these 
networks.
2



Self-Organizing Maps
Learning occurs according to learnsom's learning parameter, shown here with 
its default value.

learnsom calculates the weight change dW for a given neuron from the neuron's 
input P, activation A2, and learning rate LR:

dw =  lr*a2*(p'-w)

where the activation A2 is found from the layer output A and neuron distances 
D and the current neighborhood size ND:

a2(i,q) = 1,   if a(i,q) = 1
 = 0.5, if a(j,q) = 1 and D(i,j) <= nd
 = 0,   otherwise

The learning rate LR and neighborhood size NS are altered through two phases: 
an ordering phase and a tuning phase.

The ordering phase lasts as many steps as LP.order_steps. During this phase 
LR is adjusted from LP.order_lr down to LP.tune_lr, and ND is adjusted from 
the maximum neuron distance down to 1. It is during this phase that neuron 
weights are expected to order themselves in the input space consistent with the 
associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr and ND is always 
set to LP.tune_nd. During this phase the weights are expected to spread out 
relatively evenly over the input space while retaining their topological order 
found during the ordering phase.

Thus, the neuron’s weight vectors initially take large steps all together toward 
the area of input space where input vectors are occurring. Then as the 
neighborhood size decreases to 1, the map tends to order itself topologically 
over the presented input vectors. Once the neighborhood size is 1, the network 
should be fairly well ordered and the learning rate is slowly decreased over a 
longer period to give the neurons time to spread out evenly across the input 
vectors.

LP.order_lr 0.9 Ordering phase learning rate.

LP.order_steps 1000 Ordering phase steps.

LP.tune_lr 0.02 Tuning phase learning rate.

LP.tune_nd 1 Tuning phase neighborhood distance.
7-23



7 Self-Organizing Networks

7-2
As with competitive layers, the neurons of a self-organizing map will order 
themselves with approximately equal distances between them if input vectors 
appear with even probability throughout a section of the input space. Also, if 
input vectors occur with varying frequency throughout the input space, the 
feature map layer will tend to allocate neurons to an area in proportion to the 
frequency of input vectors there.

Thus, feature maps, while learning to categorize their input, also learn both 
the topology and distribution of their input.

We can train the network for 1000 epochs with

net.trainParam.epochs = 1000;
net = train(net,P);

This training produces the following plot.
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Self-Organizing Maps
We can see that the neurons have started to move toward the various training 
groups. Additional training will be required to get the neurons closer to the 
various groups.

As noted previously, self-organizing maps differ from conventional competitive 
learning in terms of which neurons get their weights updated. Instead of 
updating only the winner, feature maps update the weights of the winner and 
its neighbors. The result is that neighboring neurons tend to have similar 
weight vectors and to be responsive to similar input vectors.

Examples
Two examples are described briefly below. You might try the demonstration 
scripts demosm1 and demosm2 to see similar examples.

One-Dimensional Self-Organizing Map
Consider 100 two-element unit input vectors spread evenly between 0° and 90°.

angles = 0:0.5∗pi/99:0.5∗pi;

Here is a plot of the data

P = [sin(angles); cos(angles)];
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We will define a a self-organizing map as a one-dimensional layer of 10 
neurons. This map is to be trained on these input vectors shown above. 
Originally these neurons will be at the center of the figure.

Of course, since all the weight vectors start in the middle of the input vector 
space, all you see now is a single circle.

As training starts the weight vectors move together toward the input vectors. 
They also become ordered as the neighborhood size decreases. Finally the layer 
has adjusted its weights so that each neuron responds strongly to a region of 
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Self-Organizing Maps
the input space occupied by input vectors. The placement of neighboring 
neuron weight vectors also reflects the topology of the input vectors. 

Note that self-organizing maps are trained with input vectors in a random 
order, so starting with the same initial vectors does not guarantee identical 
training results.

Two-Dimensional Self-Organizing Map
This example shows how a two-dimensional self-organizing map can be 
trained.

First some random input data is created with the following code.

P = rands(2,1000);
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Here is a plot of these 1000 input vectors.

A two-dimensional map of 30 neurons is used to classify these input vectors. 
The two-dimensional map is five neurons by six neurons, with distances 
calculated according to the Manhattan distance neighborhood function 
mandist. 

The map is then trained for 5000 presentation cycles, with displays every 20 
cycles.
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Self-Organizing Maps
Here is what the self-organizing map looks like after 40 cycles.

The weight vectors, shown with circles, are almost randomly placed. However, 
even after only 40 presentation cycles, neighboring neurons, connected by 
lines, have weight vectors close together.

Here is the map after 120 cycles.
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After 120 cycles the map has begun to organize itself according to the topology 
of the input space which constrains input vectors.

The following plot, after 500 cycles, shows the map is more evenly distributed 
across the input space. 

Finally, after 5000 cycles, the map is rather evenly spread across the input 
space. In addition, the neurons are very evenly spaced reflecting the even 
distribution of input vectors in this problem.
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Self-Organizing Maps
Thus a two-dimensional self-organizing map has learned the topology of its 
inputs’ space.

It is important to note that while a self-organizing map does not take long to 
organize itself so that neighboring neurons recognize similar inputs, it can take 
a long time for the map to finally arrange itself according to the distribution of 
input vectors.
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Summary and Conclusions
A competitive network learns to categorize the input vectors presented to it. If 
a neural network only needs to learn to categorize its input vectors, then a 
competitive network will do. Competitive networks also learn the distribution 
of inputs by dedicating more neurons to classifying parts of the input space 
with higher densities of input.

A self-organizing map learns to categorize input vectors. It also learns the 
distribution of input vectors. Feature maps allocate more neurons to recognize 
parts of the input space where many input vectors occur and allocate fewer 
neurons to parts of the input space where few input vectors occur.

Self-organizing maps also learn the topology of their input vectors. Neurons 
next to each other in the network learn to respond to similar vectors. The layer 
of neurons can be imagined to be a rubber net which is stretched over the 
regions in the input space where input vectors occur. 

Self-organizing maps allow neurons that are neighbors to the winning neuron 
to output values. Thus the transition of output vectors is much smoother than 
that obtained with competitive layers, where only one neuron has an output at 
a time.

Figures
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Summary and Conclusions
Self Organizing Feature Map Architecture

New Functions
This chapter introduces the following new functions:

Function Description

newc Create a competitive layer.

newsom Create a self-organizing map.

learncon Conscience bias learning function.

boxdist Distance between two position vectors.

dist Euclidean distance weight function.

linkdist Link distance function

mandist Manhattan distance weight function.

gridtop Gridtop layer topology function

hextop Hexagonal layer topology function.

randtop Random layer topology function.
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Introduction
Learning vector quantization (LVQ) is a method for training competitive layers 
in a supervised manner. A competitive layer will automatically learn to classify 
input vectors. However, the classes that the competitive layer finds are 
dependent only on the distance between input vectors. If two input vectors are 
very similar, the competitive layer probably will put them into the same class. 
There is no mechanism in a strictly competitive layer design to say whether or 
not any two input vectors are in the same class or different classes.

LVQ networks, on the other hand, learn to classify input vectors into target 
classes chosen by the user.

You might consult the following reference:

Kohonen, T. Self-Organization and Associative Memory, 2nd Edition, Berlin: 
Springer-Verlag, 1987.

Important LVQ Functions
An LVQ network can be created with the function newlvq.

For a list of all LVQ functions and demonstrations type help lvq.



Network Architecture
Network Architecture
The LVQ network architecture is shown below.

An LVQ network has a first competitive layer and a second linear layer. The 
competitive layer learns to classify input vectors in much the same way as the 
competitive layers of Chapter 7. The linear layer transforms the competitive 
layer’s classes into target classifications defined by the user. We will refer to 
the classes learned by the competitive layer as subclasses and the classes of the 
linear layer as target classes.

Both the competitive and linear layers have one neuron per (sub or target) 
class. Thus, the competitive layer can learn up to S1 subclasses. These, in turn 
will be combined by the linear layer to form S2 target classes. (S1 will always 
be larger than S2.)

For example, suppose neurons 1, 2, and 3 in the competitive layer all learn 
subclasses of the input space which belong to the linear layer target class #2. 
Then competitive neurons 1, 2, and 3, will have LW2,1 weights of 1.0 to neuron 
n2 in the linear layer, and weights of 0 to all other linear neurons. Thus, the 
linear neuron produces a 1 if any of the three competitive neurons (1,2, and 3) 
win the competition and output a 1. This is how the subclasses of the 
competitive layer are combined into target classes in the linear layer.

In short, a 1 in the ith row of a1 (the rest to the elements of a1 will be zero) 
effectively picks the ith column of LW2,1 as the network output. Each such 
column contains a single 1, corresponding to a specific class. Thus, subclass 1s 
out of layer 1 get put into various classes, by the LW2,1a1 multiplication in 
layer 2.
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We know ahead of time what fraction of the layer one neurons should be 
classified into the various class outputs of layer 2, so we can specify the 
elements of LW2,1 at the start. However, we will have to go through a training 
procedure to get the first layer to produce the correct subclass output for each 
vector of the training set. We will discuss this training shortly. First consider 
how to create the original network.



Creating an LVQ Network (NEWLVQ)
Creating an LVQ Network (NEWLVQ)
An LVQ network can be created with the function newlvq. 

net = newlvq(PR,S1,PC,LR,LF)

where

• PR is an Rx2 matrix of min and max values for R input elements, 

• S1 is the number of first layer hidden neurons, and 

• PC is an S2 element vector of typical class percentages.

The learning default is 0.01 and the default learning function is 'learnlv2'.

Suppose we have ten input vectors. We will create a network that assigns each 
of these input vectors to one of four subclasses. Thus, we have four neurons in 
the first competitive layer. These subclasses are then to be assigned to one of 
two output classes by the two neurons in layer 2. The input vectors and targets 
are specified by :

P = [-3 -2 -2  0  0  0  0 +2 + 2 +3; ...
0 +1 -1 +2 +1 -1 -2 +1 -1  0]

and 

Tc = [1 1 1 2 2 2 2 1 1 1];

It may help to show the details of what we get from these two lines of code.

P =
    -3    -2    -2     0     0     0     0     2     2     3
     0     1    -1     2     1    -1    -2     1    -1     0
Tc =
     1     1     1     2     2     2     2     1     1     1
8-5
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A plot of the input vectors follows.

As you can see, there are four sub-classes of input vectors. We would like a 
network that will classify p1, p2, p3, p8, p9, and p10 to produce an output of 1 
and that will classify vectors p4, p5, p6 and p7 to produce an output of 2. Note 
that this problem is nonlinearly separable, and so could not be solved by a 
perceptron, but an LVQ network will have no difficulty.

Next we convert the Tc matrix to target vectors.

T = ind2vec(Tc)

This gives a sparse matrix T that can be displayed in full with:

targets = full(T)

which gives

targets =
     1     1     1     0     0     0     0     1     1     1
     0     0     0     1     1     1     1     0     0     0

This looks right. It says, for instance, that if we have the first column of P as 
input, we should get the first column of targets as an output, and that output 
says the input falls in class 1, which is correct. Now we are ready to call newlvq.
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Creating an LVQ Network (NEWLVQ)
We will call newlvq with the proper arguments so that it will create a network 
with four neurons in the first layer and two neurons in the second layer. The 
first layer weights will be initialized to the center of the input ranges with the 
function midpoint. The second layer weights will have 60% (6 of the 10 in Tc 
above) of its columns with a 1 in the first row, corresponding to class 1, and 40% 
of its columns will have a 1 in the second row, corresponding to class 2. 

net = newlvq(range(P),4,[.6 .4]);

We can check to see the initial values of the first layer weight matrix:

net.IW{1,1}
ans =
     0     0
     0     0
     0     0
     0     0

These zero weights are indeed the values at the midpoint of the range (-3 to +3) 
of the inputs, as we would expect when using midpoint for initialization.

We can look at the second layer weights with 

net.LW{2,1}
ans =
     1     1     0     0
     0     0     1     1

This makes sense too. It says that if the competitive layer produces a 1 as the 
first or second element, the input vector will be classified as class 1. Otherwise 
it will be in class 2.

You may notice that the first two competitive neurons are connected to the first 
linear neuron (with weights of 1), while the second two competitive neurons are 
connected to the second linear neuron. All other weights between the 
competitive neurons and linear neurons have values of 0. Thus, each of the two 
target classes (the linear neurons) is in fact, the union of two subclasses (the 
competitive neurons).
8-7
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We can simulate the network with sim. We will use the original P matrix as 
input just to see what we get.

Y = sim(net,P);
Y = vec2ind(Yb4t)
Y =
     1     1     1     1     1     1     1     1     1     1

The network classifies all inputs into class 1. This is not what we want of 
course. We will have to train the network, adjusting the weights of layer 1 only, 
before we can expect a good result. We will look at the training process shortly, 
but first will discuss the LVQ learning rule.



LVQ Learning Rule(LEARNLV2)
LVQ Learning Rule(LEARNLV2)
LVQ learning in the competitive layer is based on a set of input/target pairs.

Each target vector has a single 1. The rest of its elements are 0. The 1 tells the 
proper classification of the associated input. For instance, consider the 
following training pair.

Here we have input vectors of three elements, and each input vector is to be 
assigned to one of four classes. The network is to be trained so that it will 
classify the input vector shown above into the third of four classes.

To train the network an input vector p is presented, and the distance from p to 
each row of the input weight matrix IW1,1 is computed with the function ndist. 
The hidden neurons of layer 1 compete. Let us suppose that the ith element of 
n1 is most positive, and neuron i* wins the competition. Then the competitive 
transfer function produces a 1 as the i*th element of a1. All other elements of 
a1 will be 0. 

When a1 is multiplied by the layer 2 weights LW2,1, the single 1 in a1 selects 
the class, k* associated with the input. Thus, the network has assigned the 
input vector p to class k*.

Of course, this assignment may be a good one or a bad one. We will adjust the 
i*th row of IW1,1 in such a way as to move this row closer to the input vector p 
if the assignment is correct, and to move the row away from p if the assignment 
is incorrect. So if p is classified correctly, 

we will compute the new value of the i*th row of IW1,1 as:
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On the other hand, if p is classified incorrectly,

,

we will compute the new value of the i*th row of IW1,1 as:

Such corrections move the hidden neuron towards vectors that fall into the 
class for which it forms a subclass, and away from vectors which fall into other 
classes.

The default learning function that implements these changes in the layer 1 
weights in LVQ networks is learnlv2. It will be applied during training.

ak∗
2 1 tk∗≠ 0= =( )

IW1 1,
i∗ q( ) IW1 1,

i∗ q 1–( )  α p q( ) IW1 1,
i∗ q 1–( )–( )–     =
0



Training
Training
Next we need to train the network to obtain first layer weights that will lead 
to the correct classification of input vectors. We will do this with train as 
shown below. First set the training epochs to 1000 and the learning rate to 
0.05. Then use train.

net.trainParam.epochs = 1000;
net.trainParam.lr = 0.05;
net = train(net,P,T);

Now check on the first layer weights.

net.IW{1,1}
ans =
   -2.2506   -0.0948
    2.2432   -0.0623
   -0.0023    1.3048
         0   -1.2692

The following plot shows that these weights are fairly close to their respective 
classification groups.
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To check to see that these weights do indeed lead to the correct classification, 
take the matrix P as input and simulate the network. Then see what 
classifications are produced by the network.

Y = sim(net,P)
Yc = vec2ind(Y)

This gives

Yc =
     1     1     1     2     2     2     2     1     1     1

which is what we expected. As a last check, try an input close to a vector that 
was used in training.

pchk1 = [0; 0.5];
Y = sim(net,pchk1);
Yc1 = vec2ind(Y)

Which gives

Yc1 =
     2

This looks right, for pchk1 is close to other vectors classified as 2. Similarly,

pchk2 = [1; 0];
Y = sim(net,pchk2);
Yc2 = vec2ind(Y)

gives

Yc2 =
     1

This looks right too, for pchk2 is close to other vectors classified as 1s.

You might try demolvq1 to see an LVQ network problem.

Note that you get about the same results by running adapt for 100 epochs 
through the10 vectors. This will give us 1000 vector presentations just the 
same as was done when using train. First set the epochs to 100.

net.adaptparam.passes = 100;
2



Training
Recall that the input vectors for adapt are to be in a cell array, so create such 
an array from the original input signals with the following code.

Pseq = con2seq(P)
Tseq = con2seq(T)

Now apply adapt, and check on the results.

net = adapt(net,Pseq,Tseq);
wtsl1b = net.IW{1,1}
wtsl1b =
   -2.2157   -0.0032
    2.2221   -0.0027
   -0.0027    1.2955
   -0.0027   -1.2999

Now test the network with our original input vectors as we did before.

Y = sim(net,P);
Yc = vec2ind(Y);
Yc =
     1     1     1     2     2     2     2     1     1     1

Here adapt and train give nearly the same results in about the same running 
time. You may recall that when train is used for competitive networks, it 
selects the input vectors in random order, and for that reason might give a 
better result than adapt in some problems. In the problem studied here the 
results given by train and adapt are about the same. Of course, one could 
generate 1000 randomly ordered vectors from the 10 input vectors with the 
following code.

TS = 1000;
ind = floor(rand(1,TS)*size(P,2))+1;
Pseq = con2seq(P(:,ind));
Tseq = con2seq(T(:,ind));

Finally then, we would need to make only one pass.

net.adaptparam.passes = 1;
net = adapt(net,Pseq,Tseq);

This code gives a network much like those from train and adapt that were 
described previously.
8-13
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Summary 
LVQ networks classify input vectors into target classes by using a competitive 
layer to find subclasses of input vectors, and then combining them into the 
target classes.

Unlike perceptrons, LVQ networks can classify any set of input vectors, not 
just linearly separable sets of input vectors. The only requirement is that the 
competitive layer must have enough neurons, and each class must be assigned 
enough competitive neurons.

To insure that each class is assigned an appropriate amount of competitive 
neurons, it is important that the target vectors used to initialize the LVQ 
network have the same distributions of targets as the training data the 
network will be trained on. If this is done, target classes with more vectors will 
be the union of more subclasses.

Figures

LVQ Architecture

New Functions
This chapter introduces the following new functions:
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Function Description

newlvq Create a learning vector quantization network.

learnlv2 LVQ2 weight learning function.
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Introduction
Recurrent networks is a topic of considerable interest. This chapter covers two 
recurrent networks: Elman and Hopfield networks.

Elman networks are two-layer backpropagation networks, with the addition of 
a feedback connection from the output of the hidden layer to its input. This 
feedback path allows Elman networks to learn to recognize and generate 
temporal patterns, as well as spatial patterns. The best paper on the Elman 
network is:

Elman, J. L., “Finding structure in time,” Cognitive Science, vol. 14, 1990, pp. 
179-211.

The Hopfield network is used to store one or more stable target vectors. These 
stable vectors can be viewed as memories which the network recalls when 
provided with similar vectors which act as a cue to the network memory. You 
may want to pursue a basic paper in this field: 

Li, J., A. N. Michel, and W. Porod, “Analysis and synthesis of a class of neural 
networks: linear systems operating on a closed hypercube,” IEEE Transactions 
on Circuits and Systems, vol. 36, no. 11, November 1989, pp. 1405-1422.

Important Recurrent Network Functions
Elman networks can be created with the function newelm.

Hopfield networks can be created with the function newhop.

Type help elman or help hopfield to see a list of function and demonstrations 
related to either of these networks.



Elman Networks
Elman Networks

Architecture
The Elman network commonly is a two-layer network with feedback from the 
first layer output to the first layer input. This recurrent connection allows the 
Elman network to both detect and generate time-varying patterns. A two layer 
Elman network is shown below.

The Elman network has tansig neurons in its hidden (recurrent) layer, and 
purelin neurons in its output layer. This combination is special in that 
two-layer networks with these transfer functions can approximate any 
function (with a finite number of discontinuities) with arbitrary accuracy. The 
only requirement is that the hidden layer must have enough neurons. More 
hidden neurons are needed as the function being fit increases in complexity.

Note that the Elman network differs from conventional two-layer networks in 
that the first layer has a recurrent connection. The delay in this connection 
stores values from the previous time step, which can be used in the current 
time step.

Thus, even if two Elman networks, with the same weights and biases, are given 
identical inputs at a given time step, their outputs can be different due to 
different feedback states.
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Because the network can store information for future reference it is able to 
learn temporal patterns as well as spatial patterns. The Elman network can be 
trained to respond to, and to generate, both kinds of patterns.

Creating an Elman Network (NEWELM)
An Elman network with two or more layers can be created with the function 
newelm. The hidden layers commonly have tansig transfer functions, so that is 
the default for newelm. As shown in the architecture diagram, purelin is 
commonly the output layer transfer function.

The default backpropagation training function is trainbfg. One might use 
trainlm, but it tends to proceed so rapidly that it does not necessarily do well 
in the Elman network. The backprop weight/bias learning function default is 
learngdm, and the default performance function is mse.

When the network is created, each layers weights and biases are initialized 
with the Nguyen-Widrow layer initialization method implemented in the 
function initnw.

Now consider an example. Suppose that we have a sequence of single element 
input vectors in the range from 0 to 1. Suppose further that we want to have 
five hidden layer tansig neurons and a single logsig output layer. The following 
code creates the desired network.

net = newelm([0 1],[5 1],{'tansig','logsig'});

Simulation
Suppose that we would like to find the response of this network to an input 
sequence of eight digits which are either 0 or 1.

P = round(rand(1,8))
P =
     0     1     0     1     1     0     0     0

Recall that a sequence to be presented to a network is to be in cell array form. 
We can convert P to this form with

Pseq = con2seq(P)
Pseq = 
    [0]    [1]    [0]    [1]    [1]    [0]    [0]    [0]



Elman Networks
Now we can find the output of the network with the function sim.

Y = sim(net,Pseq)
Y = 
Columns 1 through 5
    [1.9875e-04]    [0.1146]    [5.0677e-05]    [0.0017]    [0.9544]
Columns 6 through 8
    [0.0014]    [5.7241e-05]    [3.6413e-05]

We will convert this back to concurrent form with

z = seq2con(Y);

and can finally display the output in concurrent form with 

z{1,1}
ans =
  Columns 1 through 7 
    0.0002    0.1146    0.0001    0.0017    0.9544    0.0014    0.0001
Column 8 
    0.0000

Thus, once the network is created and the input specified, one need only 
call sim.
9-5
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Training an Elman Network
Elman networks can be trained with either of two functions, train or adapt.

When using the function train to train an Elman network the following occurs.

At each epoch:

1 The entire input sequence is presented to the network, and its outputs are 
calculated and compared with the target sequence to generate an error 
sequence.

2 For each time step the error is backpropagated to find gradients of errors for 
each weight and bias. This gradient is actually an approximation since the 
contributions of weights and biases to errors via the delayed recurrent 
connection are ignored. 

3 This gradient is then used to update the weights with the backprop training 
function chosen by the user. The function traingdx is recommended. 

When using the function adapt to train an Elman network the following occurs.

At each time step:

1 Input vectors are presented to the network, and it generates an error. 

2 The error is backpropagated to find gradients of errors for each weight and 
bias. This gradient is actually an approximation since the contributions of 
weights and biases to the error, via the delayed recurrent connection are 
ignored. 

3 This approximate gradient is then used to update the weights with the 
learning function chosen by the user. The function learngdm is 
recommended. 

Elman network's are not as reliable as some other kinds of networks because 
both training and adaption happen using an approximation of the error 
gradient.

For an Elman to have the best chance at learning a problem it needs more 
hidden neurons in its hidden layer than are actually required for a solution by 
another method, for while a solution may be available with fewer neurons, the 



Elman Networks
Elman network is less able to find the most appropriate weights for hidden 
neurons since the error gradient is approximated. Therefore having a fair 
number of neurons to begin with makes it more likely that the hidden neurons 
will start out dividing up the input space in useful ways. 

The function train trains an Elman network to generate a sequence of target 
vectors when it is presented with a given sequence of input vectors. The input 
vectors and target vectors are passed to train as matrices P and T. Train takes 
these vectors and the initial weights and biases of the network, trains the 
network using backpropagation with momentum and an adaptive learning 
rate, and returns new weights and biases.

Let us continue with the example of the previous section, and suppose that we 
wish to train a network with an input P and targets T as defined below.

P = round(rand(1,8))
P =
     1     0     1     1     1     0     1     1

and

T = [0 (P(1:end-1)+P(2:end) == 2)]
T =
     0     0     0     1     1     0     0     1

Here T is defined to be 0 except when two ones occur in P, in which case T will 
be 1.

As noted previously, our network will have five hidden neurons in the first 
layer.

net = newelm([0 1],[5 1],{'tansig','logsig'});

We will use trainbfg as the training function and train for 100 epochs. After 
training we will simulate the network with the input P and calculate the 
difference between the target output and the simulated network output.

net = train(net,Pseq,Tseq); 
Y = sim(net,Pseq);
z = seq2con(Y);
z{1,1};
diff1 = T - z{1,1}
9-7
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Note that the difference between the target and the simulated output of the 
trained network is very small. Thus, the network have been trained to produce 
the desired output sequence on presentation of the input vector P.

See Chapter 10 for an application of the Elman network to the detection of 
wave amplitudes.



Hopfield Network
Hopfield Network

Fundamentals
The goal here is to design a network that stores a specific set of equilibrium 
points such that, when an initial condition is provided, the network eventually 
comes to rest at such a design point. The network is recursive in that the output 
is fed back as the input once the network is in operation. Hopefully the network 
output will settle on one of the original design points

The design method that we present is not perfect in that the designed network 
may have undesired spurious equilibrium points in addition to the desired 
ones. However, the number of these undesired points is made as small as 
possible by the design method. Further, the domain of attraction of the 
designed equilibrium points is as large as possible.

The design method is based on a system of first-order linear ordinary 
differential equations that are defined on a closed hypercube of the state space. 
The solutions exist on the boundary of the hypercube. These systems have the 
basic structure of the Hopfield model but are easier to understand and design 
than the Hopfield model.

The material in this section is based on the following paper: Jian-Hua Li, 
Anthony N. Michel and Wolfgang Porod, “Analysis and synthesis of a class of 
neural networks: linear systems operating on a closed hypercube,” IEEE 
Trans. on Circuits and Systems vol 36, no. 11, pp. 1405-22, November 1989.

You may wish to read Chapter 18 of [HDB96] for further information on 
Hopfield networks.

Architecture
The architecture of the network that we will use follows. 
9-9
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As noted, the input p to this network merely supplies the initial conditions.

The Hopfield network uses the saturated linear transfer function satlins.

For inputs less than -1 satlins produces -1. For inputs in the range -1 to +1 it 
simply returns the input value. For inputs greater than +1 it produces +1. 

This network can be tested with one or more input vectors which are presented 
as initial conditions to the network. After the initial conditions are given, the 
network produces an output which is then fed back to become the input. This 
process is repeated over and over until the output stabilizes. Hopefully, each 
output vector eventually converges to one of the design equilibrium point 
vectors that is closest to the input that provoked it.
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Design(NEWHOP)
Li et. al. [LiMi89] have studied a system that has the basic structure of the 
Hopfield network but is, in Li’s own words, “easier to analyze, synthesize and 
implement than the Hopfield model.” The authors are enthusiastic about the 
reference article, as it has many excellent points and is one of the most 
readable in the field. However, the design is mathematically complex, and even 
a short justification of it would burden this guide. Thus, we present the Li 
design method, with thanks to Li et al., as a recipe that is found in the function 
newhop.

Given a set of target equilibrium points represented as a matrix T of vectors, 
newhop returns weights and biases for a recursive network. The network is 
guaranteed to have stable equilibrium points at the target vectors, but it may 
contain other spurious equilibrium points as well. The number of these 
undesired points is made as small as possible by the design method. 

Once the network has been designed, it can be tested with one or more input 
vectors. Hopefully those input vectors close to target equilibrium points will 
find their targets. As suggested by the network figure, an array of input vectors 
may be presented at one time or in a batch. The network proceeds to give 
output vectors which are fed back as inputs. These output vectors can be can 
be compared to the target vectors to see how the solution is proceeding.

The ability to run batches of trial input vectors quickly allows you to check the 
design in a relatively short time. First you might check to see that the target 
equilibrium point vectors are indeed contained in the network. Then you could 
try other input vectors to determine the domains of attraction of the target 
equilibrium points and the locations of spurious equilibrium points if they are 
present.

Consider the following design example. Suppose that we wish to design a 
network with two stable points in a three dimensional space.

T = [-1 -1 1; 1 -1 1]'
T =
    -1     1
    -1    -1
     1     1

We can execute the design with 

net = newhop(T);
9-11



9 Recurrent Networks

9-1
Next we might check to make sure that the designed network is at these two 
points. We can do this as follows. (Since Hopfield networks have no inputs, the 
second argument to sim below is Q = 2 when using matrix notation).

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y

This gives us

Y =
    -1     1
    -1    -1
     1     1

Thus, the network has indeed been designed to be stable at its design points. 
Next we might try another input condition that is not a design point, such as:

Ai = {[-0.9; -0.8; 0.7]}

which gives 

Ai =
   -0.9000
   -0.8000
    0.7000

.This point is reasonably close to the first design point, so one might anticipate 
that the network would converge to that first point. To see if this happens, we 
will run the following code. Note, incidentally, that we specified the original 
point in cell array form. This allows us to run the network for more than one 
step.

[Y,Pf,Af] = sim(net,{1 5},{},Ai);
Y{1}

We get

Y =
    -1
    -1
     1

Thus, an original condition close to a design point did converge to that point.
2
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This is, of course, our hope for all such inputs. Unfortunately, even the best 
known Hopfield designs occasionally include undesired spurious stable points 
that attract the solution.

Example 
Consider a Hopfield network with just two neurons. Each neuron has a bias 
and weights to accommodate two element input vectors weighted. We define 
the target equilibrium points to be stored in the network as the two columns of 
the matrix T.

T = [1 -1; -1 1]'
T =
     1    -1
    -1     1

Here is a plot of the Hopfield state space with the two stable points labeled 
with ‘*’ markers.

These target stable points are given to newhop to obtain weights and biases of 
a Hopfield network. 

net = newhop(T);
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The design returns a set of weights and a bias for each neuron. The results are 
obtained from:

W= net.LW{1,1}

which gives

W =
    0.6925   -0.4694
   -0.4694    0.6925

and from 

b = net.b{1,1}

which gives

b =
   1.0e-16 *
    0.6900
    0.6900

Next the design is tested with the target vectors T to see if they are stored in 
the network. The targets are used as inputs for the simulation function sim.

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y =
     1    -1
    -1     1

As hoped, the new network outputs are the target vectors. The solution stays 
at its initial conditions after a single update, and therefore will stay there for 
any number of updates.
4
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Now you might wonder how the network performs with various random input 
vectors. Here is a plot showing the paths that the network took through its 
state space, to arrive at a target point.

This plot show the trajectories of the solution for various starting points. You 
might try the demonstration demohop1 to see more of this kind of network 
behavior.

Hopfield networks can be designed for an arbitrary number of dimensions. You 
might try demohop3 to see a three dimensional design.

Unfortunately, Hopfield networks may have both unstable equilibrium points 
and spurious stable points. You might try demonstration programs demohop2 
and demohop4 to investigate these issues.
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Summary
Elman networks, by having an internal feedback loop, are capable of learning 
to detect and generate temporal patterns. This makes Elman networks useful 
in such areas as signal processing and prediction where time plays a dominant 
role.

Because Elman networks are an extension of the two-layer sigmoid/linear 
architecture, they inherit the ability to fit any input/output function with a 
finite number of discontinuities. They are also able to fit temporal patterns, but 
may need many neurons in the recurrent layer to fit a complex function.

Hopfield networks can act as error correction or vector categorization 
networks. Input vectors are used as the initial conditions to the network, which 
recurrently updates until it reaches a stable output vector.

Hopfield networks are interesting from a theoretical standpoint, but are 
seldom used in practice. Even the best Hopfield designs may have spurious 
stable points that lead to incorrect answers. More efficient and reliable error 
correction techniques, such as backpropagation, are available.
6
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New Functions
This chapter introduces the following new functions:

Function Description

newelm Create an Elman backpropagation network.

newhop Create a Hopfield recurrent network.

satlins Symmetric saturating linear transfer function.
8
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Introduction
Today, problems of economic importance that could not be approached 
previously in any practical way can now be solved with neural networks. Some 
of the recent neural network applications are discussed in this chapter. See 
Chapter 1 for a list of many areas where neural networks already have been 
applied.

The rest of this chapter describes applications that are practical and make 
extensive use of the neural network functions described in this User’s Guide. 

Application Scripts
The linear network applications are contained in scripts applin1 through 
applin4.

The Elman network amplitude detection application is contained in the script 
appelm1.

The control system applications are contained in scripts appcs1 and appcs2.

The character recognition application is in appcr1.

Type help nndemos to see a listing of all neural network demonstrations or 
applications.
2
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Applin1: Linear Design

Problem Definition
Here is the definition of a signal T which lasts five seconds, and is defined at a 
sampling rate of 40 samples per second.

time = 0:0.025:5;
T = sin(time*4*pi);

At any given time step, the network is given the last five values of the signal t, 
and expected to give the next value. The inputs P are found by delaying the 
signal T from one to five time steps.

P = zeros(5,Q);
P(1,2:Q) = T(1,1:(Q-1));
P(2,3:Q) = T(1,1:(Q-2));
P(3,4:Q) = T(1,1:(Q-3));
P(4,5:Q) = T(1,1:(Q-4));
P(5,6:Q) = T(1,1:(Q-5));

Here is a plot of the signal T.
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Network Design
Because the relationship between past and future values of the signal is not 
changing, the network can be designed directly from examples using newlind.

The problem as defined above has five inputs, the five delayed signal values, 
and one output, the next signal value. Thus the network solution must consist 
of a single neuron with five inputs.

Here newlind finds the weights and biases, for the neuron above, that 
minimize the sum-squared error for this problem.

net = newlind(P,T);

The resulting network can now be tested.

Network Testing
To test the network, its output a is computed for the five delayed signals P and 
compared with the actual signal T.

a = sim(net,P);

Here is a plot of a compared to T.
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Applin1: Linear Design
The network’s output a and the actual signal t appear to match up perfectly. 
Just to be sure, let us plot the error e = T – a.

The network did have some error for the first few time steps. This occurred 
because the network did not actually have five delayed signal values available 
until the fifth time step. However, after the fifth time step error was negligible. 
The linear network did a good job. Run the script applin1 to see these plots.
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Thoughts and Conclusions
While newlind is not able to return a zero error solution for nonlinear 
problems, it does minimize the sum-squared error. In many cases the solution, 
while not perfect, may model a nonlinear relationship well enough to meet the 
application specifications. Giving the linear network many delayed signal 
values gives it more information with which to find the lowest error linear fit 
for a nonlinear problem.

Of course, if the problem is very nonlinear and/or the desired error is very low, 
backpropagation or radial basis networks would be more appropriate.
6



Applin2: Adaptive Prediction
Applin2: Adaptive Prediction 
In application script applin2, a linear network is trained incrementally with 
adapt to predict a time series. Because the linear network is trained 
incrementally, it can respond to changes in the relationship between past and 
future values of the signal.

Problem Definition
The signal T to be predicted lasts six seconds with a sampling rate of 20 
samples per second. However, after four seconds the signal’s frequency 
suddenly doubles. 

time1 = 0:0.05:4;
time2 = 4.05:0.024:6;
time = [time1 time2];
T = [sin(time1*4*pi) sin(time2*8*pi)];

Since we will be training the network incrementally, we will change t to a 
sequence.

T = con2seq(T);

Here is a plot of this signal:
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The input to the network is the same signal which makes up the target:

P = T;

Network Initialization
The network has only one neuron, as only one output value of the signal T is 
being generated at each time step. This neuron has five inputs, the five delayed 
values of the signal T.

The function newlin creates the network shown above. We will use a learning 
rate of 0.1 for incremental training.

lr = 0.1;
delays = [1 2 3 4 5];
net = newlin(minmax(cat(2,P{:})),1,delays,lr);
[w,b] = initlin(P,t)

Network Training
The above neuron will be trained incrementally with adapt. Here is the code to 
train the network on input/target signals P and T.

[net,a,e]=adapt(net,P,T);

Network Testing
Once the network has been adapted, we can plot its output signal and compare 
it to the target signal.

pd(k) a(k)

A
AW

Ab1

p(k)

n(k)1
 
x

 
1 5

 
x

 
1

1
 
x

 
3

1
 
x

 
1

1
 
x

 
1

1
 
x

 
1

AA
AA
AA

Linear Layer

AA
AA
AA
AATDL

1

2

3

4

5

8



Applin2: Adaptive Prediction
Initially, it takes the network a second and a half (30 samples) to track the 
target signal. Then the predictions are accurate until the fourth second when 
the target signal suddenly changes frequency. However, the adaptive network 
learns to track the new signal in an even shorter interval as it has already 
learned a behavior (a sine wave) similar to the new signal.

A plot of the error signal makes these effects easier to see.
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Thoughts and Conclusions
The linear network was able to adapt very quickly to the change in the target 
signal. The 30 samples required to learn the wave form are very impressive 
when one considers that in a typical signal processing application a signal may 
be sampled at 20 kHz. At such a sampling frequency 30 samples go by in 1.5 
milliseconds.
10



Applin3: Linear System Identification
Applin3: Linear System Identification
Linear networks may be used to model real systems. If the real system is linear 
or near linear then the linear network can act as a zero, or low, error model.

Problem Definition
Here is an input signal x which is given to a finite impulse response linear 
system over a period of five seconds at 25 msec intervals.

time = 0:0.025:5;
X = sin(sin(time).*time*10);

Here is a plot of this input signal.

Here are the measured outputs T of the system.

T = filter([1 0.5 –1.5],1,X);

Here is a plot of the systems output T.
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The network attempts to predict the system’s output T given the current and 
previous two input signals P from X. 

P = zeros(3,Q);
P(1,1:Q) = X(1,1:Q);
P(2,2:Q) = X(1,1:(Q-1));
P(3,3:Q) = X(1,1:(Q-2));

Network Design
The network required to solve this problem has only one neuron because the 
system has only one output. That neuron has to have three inputs to receive 
the current and two delayed values of the input signal.

The function newlind designs such a neuron for us.

net = newlind(P,T);

Network Testing
Once the weights and biases are obtained, the network can be tested. Here the 
linear network computes its approximation a of the system output T given the 
current and delayed values of the system input.

a = sim(net,P);
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Applin3: Linear System Identification
The system output T and the network output a are compared in the following 
plot.

The network appears to do a perfect job of modeling the system.

Here is a plot of the difference between network and system outputs.

Sure enough, the difference is incredibly small (less than 1e–15).
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Thoughts and Conclusions
As with linear predictors, linear system models can be used to model linear 
systems with zero error, and nonlinear systems with minimum sum-squared 
error.

Giving the linear network many delayed values from the system’s input signal 
will allow newlind to minimize the error associated with modeling a nonlinear 
system. However, if the system is highly nonlinear, a backpropagation or radial 
basis network would be more appropriate.
14



Applin4: Adaptive System Identification
Applin4: Adaptive System Identification
Demonstration applin4 shows how to train a linear network to adaptively 
model a linear system. By training the network incrementally, it can change its 
behavior as the system it is modeling changes.

Problem Definition
Here is the input signal X to the system over a period of six seconds with a 
sampling rate of 200 samples per second.

time1 = 0:0.005:4;
time2 = 4.005:0.005:6;
time = [time1 time2];
X = sin(sin(time*4).*time*8);

The input signal X to the system is plotted below.

Here is the output signal T of the system. Note that the system acts differently 
in the intervals before and after the fourth second.

steps1 = length(time1);
[T1,state] = filter([1 –0.5],1,X(1:steps1));
steps2 = length(time2);
T2 = filter([0.9 –0.6],1,x((1:steps2) + steps1),state);
T = [T1 T2];
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Here is a plot of the system’s outputs. Note that due to the complexity of the 
signal, it is not apparent that the system changed at four seconds.

The input to the network P is the system input signal X. The network must 
estimate the system’s output T from the last two values of the input signal. We 
need to convert the input and output to sequences, so that the training can be 
done incrementally.

T = con2seq(T);
P = con2seq(X);

Network Initialization
The network is created with newlin, which generates the weights and biases 
for the two-input linear neuron required for this problem. There will be a 
tapped delay line with two delays at the input of the network. The last two 
values of the input signal will be used to predict the system’s output.

lr = 0.5;
delays = [0 1];
net = newlin(minmax(cat(2,P{:})),1,delays,lr);
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Applin4: Adaptive System Identification
Network Training
These weights and biases can now be trained incrementally on the signal with 
adapt using the learning rate of 0.5, which was set by newlin.

[net,a,e]=adapt(net,P,T);

Network Testing
To see how well the network did, we could plot the network’s estimate a of the 
system’s output against the actual output T. It turns out that the signals are 
complex enough that this plot is not of much help. (You can run applin4 to 
see it.)

Instead we can take a look at the error between the network output and the 
system output. This plot is easier to interpret.

The error plot shows that the network took 2.5 seconds to track the model with 
a very high accuracy. Then at four seconds, when the system changed abruptly, 
another 0.2 seconds were required for network to properly model it again.

Thoughts and Conclusions
Besides being interesting, an adaptive linear model of a system can be used to 
obtain a great deal of information. For example, the adaptive model can be 
analyzed at any given time to determine characteristics of the actual system. 
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For example, the adaptive network might be monitored so as to give a warning 
its constants were nearing values that would result in instability.

Another use for an adaptive linear model is suggested by its ability to find a 
minimum sum-squared error linear estimate of a nonlinear system’s behavior. 
An adaptive linear model will be highly accurate as long as the nonlinear 
system stays near a given operating point. If the nonlinear system moves to a 
different operating point, the adaptive linear network will change to model it 
at the new point.

The sampling rate should be high to obtain the linear model of the nonlinear 
system at its current operating point in the shortest amount of time. However, 
there is a minimum amount of time that must occur for the network to see 
enough of the system’s behavior to properly model it. To minimize this time, a 
small amount of noise can be added to the input signals of the nonlinear 
system. This allows the network to adapt faster as more of the operating points 
dynamics will be expressed in a shorter amount of time. Of course, this noise 
should be small enough so it does not affect the system’s usefulness.
18



Appelm1: Amplitude Detection
Appelm1: Amplitude Detection
Elman networks can be trained to recognize and produce both spatial and 
temporal patterns. An example of a problem where temporal patterns are 
recognized and classified with a spatial pattern is amplitude detection.

Amplitude detection requires that a wave form be presented to a network 
through time, and that the network output the amplitude of the wave form. 
This is not a difficult problem, but it demonstrates the Elman network design 
process.

The following material describes code which is contained in the demonstration 
script appelm1.

Problem Definition
The following code defines two sine wave forms, one with an amplitude of 1.0, 
the other with an amplitude of 2.0:

p1 = sin(1:20);
p2 = sin(1:20)*2;

The target outputs for these wave forms will be their amplitudes.

t1 = ones(1,20);
t2 = ones(1,20)*2;

These wave forms can be combined into a sequence where each wave form 
occurs twice. These longer wave forms will be used to train the Elman network.

p = [p1 p2 p1 p2];
t = [t1 t2 t1 t2];

We want the inputs and targets to be considered a sequence, so we need to 
make the conversion from the matrix format.

Pseq = con2seq(p);
Tseq = con2seq(t);
10-19
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Network Initialization
This problem requires that the Elman network detect a single value (the 
signal), and output a single value (the amplitude), at each time step. Therefore 
the network must have one input element, and one output neuron.

R = 1;% 1 input eleement
S2 = 1;% 1 layer 2 output neuron

The recurrent layer can have any number of neurons. However, as the 
complexity of the problem grows, more neurons are needed in the recurrent 
layer for the network to do a good job.

This problem is fairly simple, so only 10 recurrent neurons will be used in the 
first layer.

S1 = 10;% 10 recurrent neurons in the first layer

Now the function newelm can be used to create initial weight matrices and bias 
vectors for a network with one input which can vary between –2 and +2. We 
will use variable learning rate (traingdx) for this example.

net = newelm([-2 2],[S1 S2],{'tansig','purelin'},'traingdx');

Network Training
Now call train.

[net,tr] = train(net,Pseq,Tseq);

As this function finishes training at 500 epochs, it displays the following plot 
of errors.
20



Appelm1: Amplitude Detection
The final mean-squared error was about 1.8e-2. We can test the network to see 
what this means.

Network Testing
To test the network, the original inputs are presented, and its outputs are 
calculated with simuelm.

a = sim(net,Pseq);

Here is the plot:
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The network does a good job. New wave amplitudes are detected with a few 
samples. More neurons in the recurrent layer and longer training times would 
result in even better performance.

The network has successfully learned to detect the amplitudes of incoming sine 
waves.

Network Generalization
Of course, even if the network detects the amplitudes of the training wave 
forms, it may not detect the amplitude of a sine wave with an amplitude it has 
not seen before.

The following code defines a new wave form made up of two repetitions of a sine 
wave with amplitude 1.6 and another with amplitude 1.2.

p3 = sin(1:20)*1.6;
t3 = ones(1,20)*1.6;
p4 = sin(1:20)*1.2;
t4 = ones(1,20)*1.2;
pg = [p3 p4 p3 p4];
tg = [t3 t4 t3 t4];
pgseq = con2seq(pg);

The input sequence pg and target sequence tg will be used to test the ability of 
our network to generalize to new amplitudes.
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Appelm1: Amplitude Detection
Once again the function sim is used to simulate the Elman network and the 
results are plotted.

a = sim(net,pgseq);

This time the network did not do as well. It seems to have a vague idea as to 
what it should do, but is not very accurate!

Improved generalization could be obtained by training the network on more 
amplitudes than just 1.0 and 2.0. The use of three or four different wave forms 
with different amplitudes can result in a much better amplitude detector.

Improving Performance
Run appelm1 to see plots similar to those above. Then make a copy of this file 
and try improving the network by adding more neurons to the recurrent layer, 
using longer training times, and giving the network more examples in its 
training data.
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Appcs1: Nonlinear System Identification 
Application script appcs1 demonstrates how to perform system identification 
on the following inverted pendulum system: 

Here the antenna arm angle Ø is controlled by applying a current to a dc motor 
which is attached to the pendulum. This system may be represented by the 
following equations: 

Nonlinear System Model (NSM)

where:

and u is the force applied to the pendulum by a motor. A positive force tends to 
turn the pendulum clockwise. The 9.81sin x1 term is the force of gravity on the 
pendulum and the –2x2 term is viscous friction acting against the velocity.

Ø(t)

u(t) 180º

0º

d
dt
-----

x1

x2

x2

9.81 x1sin 2x2+u–
=

x1 ∅=

x2
d∅
dt
--------=
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Appcs1: Nonlinear System Identification
The inverted pendulum system is summarized with the function pmodel which 
takes the current time t, pendulum angle, pendulum velocity, and the current, 
and returns the derivatives of angle, velocity, and force.

x = [angle; vel; force];
dx = pmodel(t,x)

Because the current is an input to the system, its derivative is always returned 
as 0.

We can simulate the pendulum from 0 to 0.05 seconds using ode23.

[time,X] = ode23(‘pmodel’,[0 0.05],x)

This function returns a row vector of times, and the matrix X of state vectors 
associated with those times.

The problem is, given only the behavior of this pendulum, create a network 
model that behaves in an identical manner.

Problem Definition
Examples of pendulum behavior must be created so that the network can be 
trained. The following lines of code define several different pendulum angles, 
pendulum velocities, and forces.

deg2rad = pi/180;
angle = [–20:40:200]*deg2rad;
vel = [–90:36:90]*deg2rad;
force = –30:6:30;

By taking all possible combinations of these values, and also a set of steady 
state conditions at various angles, we get a matrix Pm of 749 pendulum state/
input conditions, where the pendulum’s state is its angle and velocity, and its 
input is the current.

angle2 = [-20:10:200]*deg2rad;
Pm = [combvec(angle,vel,force);

[angle2; zeros(2,length(angle2))]];

Next each of these 749 initial state/input conditions are applied to the 
pendulum, and its next state, 0.05 seconds later is measured. The next state 
consists of the pendulum angle and velocity after 0.05 seconds. The result is a 
matrix Tm of the 749 2-element next states. (Actually, we will use the difference 
10-25



10 Applications

10-
between the next state and the current state as the target. The neural network 
model will learn to predict the change in state over 0.05 seconds. This is done 
because the state does not change by a large amount in this period of time, and 
we can improve the performance of the model if we predict only the change in 
state. If we need to know the actual state we simply need to add the change to 
the previous state.)

Network Initialization
The network must transform the pendulum state and input into a next state 
(or change in state). As there are two states (angle and velocity) and one input, 
the network requires three inputs and one output.

The function initff is used to create a two-layer tansig/purelin network with 
these number of inputs and outputs and eight hidden neurons.

S1 = 8;
[S2,Q] = size(Tm);
mnet = newff(minmax(Pm),[S1 S2],{'tansig' 'purelin'},'trainlm');

We use this network to model the nonlinear pendulum system.

Network Training
The Levenberg-Marquardt training function trainlm is used to obtain a 
solution in the minimum amount of time. The network is trained for up to 500 
epochs, displaying progress every epoch, and with a typical error of 0.0037 
radians (0.25 degrees) for the 749 training vectors and the network’s two 
outputs.

mnet.trainParam.goal = (0.0037^2);
mnet = train(mnet,Pm,Tm);

Network Testing
The network is tested by simulating its response for the following initial 
conditions and comparing the results to the pendulum response.

angle = 5*deg2rad;
vel = 0*deg2rad;
force = 0;
x = [angle; vel; force];
26



Appcs1: Nonlinear System Identification
The following plots may be viewed by running appcs1b. This script loads a 
previously trained model network.

Here is a plot of the pendulum’s response to those initial conditions.

As can be seen, the pendulum starts out with a slightly positive angle (leaning 
slightly to the right), but quickly falls. After an oscillation it approaches an 
angle of 180 degrees, pointing straight down.

The network is first simulated in an open loop fashion. This means that at each 
time step the network computes its estimate of the pendulum’s next state. This 
estimate then becomes the input to the network for the next time step. The 
network never receives feedback from the real system. The open loop network 
response is compared to the pendulum in the following plot. 
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Note that errors build as the network uses its own estimates as inputs, but the 
results are still very accurate.

To get a better idea of how accurate the model network is, we simulate it in a 
closed loop manner. At each time step the network is given the actual 
pendulum state and is required to estimate the pendulum’s next state. Thus, 
the network’s estimates are not fed back into the network. Here is a plot of the 
pendulum response and the network closed loop response.
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Appcs1: Nonlinear System Identification
The network response (shown with solid line) is so accurate that it perfectly 
overlaps the pendulum response (‘+’ markers).

Thoughts and Conclusions
This example demonstrates how to use a nonlinear network (a two-layer 
tansig/purelin network) to identify a nonlinear system. Note that the model 
was obtained in almost the same way as in applin3, where a linear model was 
created. The only difference is that a linear network was being designed in 
applin3, so the network could be designed instead of trained.
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Appcs2: Model Reference Control
The script appcs2 shows how a neural network can be trained to act as a model 
reference controller, if a neural network model is available for the system. In 
this script a neural controller is created for the inverted pendulum using the 
neural model created in appcs1. For model reference control we want to control 
a system so that its output follows the output of a reference model. In this 
application we will train a neural network controller which will drive the 
antenna arm system to follow a linear reference model.

Mathematical Model
Consider the antenna arm system for which a neural model was created in 
appcs1:

Here the antenna arm angle Ø is to be controlled by applying a current to a dc 
motor which is attached to the pendulum. We represent this system by the 
following equations:

Nonlinear System Model (NSM)

where:

Ø(t)

u(t) 180º

0º

d
dt
-----

x1

x2

x2

9.81 x1sin 2x2+u–
=

x1 ∅=

x2
d∅
dt
--------=
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Appcs2: Model Reference Control
and u is the force applied to the pendulum by a motor. A positive force turns 
the pendulum clockwise. The 9.81sin x1 term is the force of gravity on the 
pendulum and the –2x2 term is viscous friction acting against the velocity. 

Suppose that we would like the closed loop system to respond with the 
dynamics given by the Linear Reference Model (LRM).

where r is the desired output angle.

Now let us train a neural network to help perform this model reference control.

Neural Design
A neural controller can be created for the case where the mathematical model 
is not available. All that is required is a neural model of the original system 
(which is created in appcs1) and a model of our desired system.

The desired linear reference model, described mathematically above, is 
available in the function plinear. It takes the current time t, pendulum angle, 
pendulum velocity, and the demand angle, and returns the derivatives of angle, 
velocity, and demand.

x = [angle; vel; demand];
dx = pmodel(t,x)

Because the demand is an input to the system, its derivative is always returned as 0.

We can simulate the desired linear reference model from 0 to 0.05 seconds 
using ode23.

[time,X] = ode23('plinear',0,0.05,x)

This function returns a row vector of times, and the matrix X of state vectors 
associated with those times.

We would like to find a controller network which takes the current pendulum 
angle, velocity, and the demand angle as inputs, and outputs a current which 
can be applied to the pendulum. This current value should make the 
pendulum’s next state (in 0.05 seconds) identical to that defined by the desired 
linear reference model.

d
dt
-----

x1

x2

x2

9x1– 6x2–

0
9r

+=
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Problem Definition
Before the controller can be trained, examples of initial states and desired next 
states must be created.

The following lines of code define several different pendulum angles, pendulum 
velocities, and demand angles.

deg2rad = pi/180;
angle = [–200:40:200]*deg2rad;
vel = [–90:36:90]*deg2rad;
demand = –180:40:180*deg2rad;

By taking all possible combinations of these values in addition to a set of steady 
state initial conditions (velocity = 0, demand = angle) we get a matrix P of 381 
pendulum state/input conditions, where the pendulum’s state is its angle and 
velocity, and its input is the current.

angle2 = [-10:10:190]*deg2rad;
Pc = [combvec(anglevel,demand)

[angle2; angle2*0; angle2]];

Next each of these 381 initial state/input conditions are applied to the desired 
linear model, and its next state, 0.05 seconds later is measured. The next state 
consists of the desired pendulum angle and velocity after 0.05 seconds. The 
result is a matrix Tc of the 381 two-element target next states. (As in the 
identification problem appcs1, we will actually use the difference between the 
next state and the current state as the target. The neural network model 
learned to predict the change in state over 0.05 seconds. This was done because 
the state does not change by a large amount in this period of time, and we can 
improve the performance of the model if we predict only the change in state. If 
we need to know the actual state we simply need to add the change to the 
previous state.)

Network Initialization
The neural controller, like the neural pendulum model, is a 
tansig/purelin network. Here newff creates such a network for the controller 
which will have eight hidden neurons, and one output (the current to the 
pendulum).

S1 = 8;
cnet = newff(minmax(Pc),[S1 1],{'tansig' 'purelin'});
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Network Training
First, take a look at the following diagram of the entire neural controller/
pendulum system.

We would like the pendulum to respond with target states Tc once 0.05 seconds 
has passed since the pendulum was in the initial state Pc. The problem is that 
the error between the actual pendulum behavior and the desired linear 
behavior occurs on the outputs of the pendulum. How can these errors be used 
to adjust the controller?

The trick is to replace the pendulum with its neural model, for purposes of 
training the controller. Here is a diagram of the neural controller/model 
system.

Now the error occurs at the output of the model network. The derivatives of this 
error can be backpropagated through the model network to the control 
network. The derivatives are then backpropagated through the controller and 
used to adjust its weights and biases. (The neural model’s weights and biases 
are not changed.) Thus the control network must learn how to control the 
pendulum (represented temporarily by the model network) so that it behaves 
like the linear reference model.

In the following code we will set up a combination network that includes both 
the model network and the controller network. There will be two different 
inputs to this total network, the state and the demand, and there will be four 
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layers. (The following code uses advanced features of the Neural Network 
Toolbox. You may want to look through Chapter 11 and Chapter 12 before 
reviewing the rest of this application.)

numInputs = 2;
numLayers = 4;
tnet = network(numInputs,numLayers);

We next need to set up the network connections.

tnet.biasConnect = [1 1 1 1]';
tnet.inputConnect = [1 0 1 0; 1 0 0 0]';
tnet.layerConnect = [0 0 0 0; 1 0 0 0; 0 1 0 0; 0 0 1 0];
tnet.outputConnect = [0 0 0 1];
tnet.targetConnect = [0 0 0 1];

Now we define the input and layer parameters. The first input corresponds to 
the states, and the second input is the demand.

tnet.inputs{1}.range = minmax(Pc(1:2,:));
tnet.inputs{2}.range = minmax(Pc(3,:));

Next we define the size of each layer and the transfer functions.

tnet.layers{1}.size = S1;
tnet.layers{1}.transferFcn = 'tansig';
tnet.layers{2}.size = 1;
tnet.layers{2}.transferFcn = 'purelin';
tnet.layers{3}.size = 8;
tnet.layers{3}.transferFcn = 'tansig';
tnet.layers{4}.size = 2;
tnet.layers{4}.transferFcn = 'purelin';

We will use the quasi-Newton training function trainbfg to train the network 
to minimize the mean square error.

tnet.performFcn = 'mse';
tnet.trainFcn = 'trainbfg';
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Appcs2: Model Reference Control
We now set the initial weights and biases in the total network that correspond 
to the controller network. These will be adjusted during the training process, 
so the learn parameter is set to 1.

tnet.IW{1,1} = cnet.IW{1,1}(:,1:2);
tnet.inputWeights{1,1}.learn = 1;
tnet.IW{1,2} = cnet.IW{1,1}(:,3);
tnet.inputWeights{1,2}.learn = 1;
tnet.b{1} = cnet.b{1};
tnet.biases{1}.learn = 1;
tnet.b{2} = cnet.b{2}; 
tnet.biases{2}.learn = 1;
tnet.LW{2,1} = cnet.LW{2,1};
tnet.layerWeights{2,1}.learn = 1;

Finally, we set the weights and biases in the total network that correspond to 
the model network. These will not be adjusted during the training process, so 
the learn parameter is set to 0.

tnet.IW{3,1} = mnet.IW{1,1}(:,1:2);
tnet.inputWeights{3,1}.learn = 0;
tnet.LW{3,2} = mnet.IW{1,1}(:,3);
tnet.layerWeights{3,2}.learn = 0;
tnet.b{3} = mnet.b{1};
tnet.biases{3}.learn = 0;
tnet.LW{4,3} = mnet.LW{2,1};
tnet.layerWeights{4,3}.learn = 0;
tnet.b{4} = mnet.b{2};
tnet.biases{4}.learn = 0;

Here train is called to do this training for us. The controller will be trained for 
up to 600 epochs, displaying progress every 5 epochs, to a typical error of 0.002 
radians (0.11 degrees) for each of the 381 training vectors for each of the 2 
model network outputs.

tnet.trainParam.show = 5;
tnet.trainParam.epochs = 600;
tnet.trainParam.goal = (0.002^2);
[tnet,tr] = train(tnet,{Pc(1:2,:);  Pc(3,:)},{Tc});

The network contains the weights and biases of both the controller and model 
networks, but the model weights do not change. Only the controller weights are 
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updated. Now we want to place the new controller weights and biases back into 
the controller network.

cnet.IW{1,1}(:,1:2) = tnet.IW{1,1};
cnet.IW{1,1}(:,3) = tnet.IW{1,2};
cnet.b{1} = tnet.b{1};
cnet.b{2} = tnet.b{2}; 
cnet.LW{2,1} = tnet.LW{2,1};

Network Testing
To test the control network, the neural controller/pendulum system is 
simulated and its response compared to the linear reference model. Run 
appcs2b to see the following plots.

Here are the results of simulating the linear reference model from an initial 
angle of 10 degrees with a velocity of 0 degrees/second, and a constant demand 
angle of 90 degrees.

The linear reference model quickly moves to 90 degrees, and then holds there.
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Appcs2: Model Reference Control
Here are the results found by simulating the controlled pendulum:

The network does a near perfect job of making the nonlinear pendulum system 
(solid line) act like the linear reference model (‘+’ markers).

Thoughts and Conclusions
A neural network can be used to control a nonlinear system so that the system 
output follows the response of a desired reference model. It is first necessary to 
develop a neural network model of the nonlinear system, which is then used in 
the training process for the neural network controller.
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Appcr1: Character Recognition
It is often useful to have a machine perform pattern recognition. In particular, 
machines which can read symbols are very cost effective. A machine that reads 
banking checks can process many more checks than a human being in the same 
time. This kind of application saves time and money, and eliminates the 
requirement that a human perform such a repetitive task. The script appcr1 
demonstrates how character recognition can be done with a backpropagation 
network.

Problem Statement
A network is to be designed and trained to recognize the 26 letters of the 
alphabet. An imaging system that digitizes each letter centered in the system’s 
field of vision is available. The result is that each letter is represented as a 5 by 
7 grid of boolean values.

For example, here is the letter A:
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Appcr1: Character Recognition
However, the imaging system is not perfect and the letters may suffer from 
noise:

Perfect classification of ideal input vectors is required, and reasonably accurate 
classification of noisy vectors.

The twenty-six 35-element input vectors are defined in the function prprob as 
a matrix of input vectors called alphabet. The target vectors are also defined 
in this file with a variable called targets. Each target vector is a 26-element 
vector with a 1 in the position of the letter it represents, and 0’s everywhere 
else. For example, the letter A is to be represented by a 1 in the first element 
(as A is the first letter of the alphabet), and 0’s in elements two through 
twenty-six.

Neural Network
The network will receive the 35 boolean values as a 35-element input vector. It 
will then be required to identify the letter by responding with a 26-element 
output vector. The 26 elements of the output vector each represent a letter. To 
operate correctly the network should respond with a 1 in the position of the 
letter being presented to the network. All other values in the output vector 
should be 0.

In addition, the network should be able to handle noise. In practice the network 
will not receive a perfect boolean vector as input. Specifically, the network 
should make as few mistakes as possible when classifying vectors with noise of 
mean 0 and standard deviation of 0.2 or less.
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Architecture
The neural network needs 35 inputs and 26 neurons in its output layer to 
identify the letters. The network is a two-layer log-sigmoid/log-sigmoid 
network. The log-sigmoid transfer function was picked because its output 
range (0 to 1) is perfect for learning to output boolean values.

The hidden (first) layer has 10 neurons. This number was picked by guesswork 
and experience. If the network has trouble learning, then neurons can be added 
to this layer.

The network is trained to output a 1 in the correct position of the output vector 
and to fill the rest of the output vector with 0’s. However, noisy input vectors 
may result in the network not creating perfect 1’s and 0’s. After the network 
has been trained the output will be passed through the competitive transfer 
function compet. This makes sure that the output corresponding to the letter 
most like the noisy input vector takes on a value of 1 and all others have a value 
of 0. The result of this post-processing is the output that is actually used.

Initialization
The two layer network is created with newff.

S1 = 10; S2 = 26;
net = newff(minmax(P),[S1 S2],{'logsig' 'logsig'},'traingdx');

Training
To create a network that can handle noisy input vectors it is best to train the 
network on both ideal and noisy vectors. To do this the network will first be 
trained on ideal vectors until it has a low sum-squared error.
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Then the network will be trained on 10 sets of ideal and noisy vectors. The 
network is trained on two copies of the noise-free alphabet at the same time as 
it is trained on noisy vectors. The two copies of the noise-free alphabet are used 
to maintain the network’s ability to classify ideal input vectors.

Unfortunately, after the training described above the network may have 
learned to classify some difficult noisy vectors at the expense of properly 
classifying a noise free vector. Therefore, the network will again be trained on 
just ideal vectors. This ensures that the network will respond perfectly when 
presented with an ideal letter. 

All training is done using backpropagation with both adaptive learning rate 
and momentum with the function trainbpx.

Training Without Noise
The network is initially trained without noise for a maximum of 5000 epochs 
or until the network sum-squared error falls beneath 0.1.

P = alphabet;
T = targets;
net.performFcn = 'sse';
net.trainParam.goal = 0.1;
net.trainParam.show = 20;
net.trainParam.epochs = 5000;
net.trainParam.mc = 0.95;
[net,tr] = train(net,P,T);

Training With Noise
To obtain a network not sensitive to noise, we trained with two ideal copies and 
two noisy copies of the vectors in alphabet. The target vectors consist of four 
copies of the vectors in target. The noisy vectors have noise of mean 0.1 and 
0.2 added to them. This forces the neuron to learn how to properly identify 
noisy letters, while requiring that it can still respond well to ideal vectors.
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To train with noise the maximum number of epochs is reduced to 300 and the 
error goal is increased to 0.6, reflecting that higher error is expected due to 
more vectors, including some with noise, are being presented.

netn = net;
netn.trainParam.goal = 0.6;
netn.trainParam.epochs = 300;
T = [targets targets targets targets];
for pass = 1:10
P = [alphabet, alphabet, ...
      (alphabet + randn(R,Q)*0.1), ...
      (alphabet + randn(R,Q)*0.2)];
[netn,tr] = train(netn,P,T);
end

Training Without Noise Again
Once the network has been trained with noise it makes sense to train it without 
noise once more to ensure that ideal input vectors are always classified 
correctly. Therefore the network is again trained with code identical to the 
"Training Without Noise" section.

System Performance
The reliability of the neural network pattern recognition system is measured 
by testing the network with hundreds of input vectors with varying quantities 
of noise. The script file appcr1 tests the network at various noise levels and 
then graphs the percentage of network errors vs. noise. Noise with mean of 0 
and standard deviation from 0 to 0.5 are added to input vectors. At each noise 
level 100 presentations of different noisy versions of each letter are made and 
the network’s output is calculated. The output is then passed through the 
competitive transfer function so that only one of the 26 outputs, representing 
the letters of the alphabet, has a value of 1.
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The number of erroneous classifications are then added and percentages are 
obtained: 

The solid line on the graph shows the reliability for the network trained with 
and without noise. The reliability of the same network when it had only been 
trained without noise is shown with a dashed line. Thus, training the network 
on noisy input vectors greatly reduced its errors when it had to classify noisy 
vectors.

The network did not make any errors for vectors with noise of mean 0.00 or 
0.05. When noise of mean 0.2 was added to the vectors both networks began to 
make errors. 

If a higher accuracy is needed the network could be trained for a longer time or 
retrained with more neurons in its hidden layer. Also, the resolution of the 
input vectors could be increased to say, a 10 by 14 grid. Finally, the network 
could be trained on input vectors with greater amounts of noise if greater 
reliability were needed for higher levels of noise.
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To test the system a letter with noise can be created and presented to the 
network.

noisyJ = alphabet(:,10)+randn(35,1) ∗ 0.2;
plotchar(noisyJ);
A2 = sim(net,noisyJ);
A2 = compet(A2);
answer = find(compet(A2) == 1);
plotchar(alphabet(:,answer));

Here is the noisy letter and the letter the network picked (correctly): 

Summary
This problem demonstrates how a simple pattern recognition system can be 
designed. Note that the training process did not consist of a single call to a 
training function. Instead, the network was trained several times on various 
input vectors. 

In this case training a network on different sets of noisy vectors forced the 
network to learn how to deal with noise, a common problem in the real world.
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Custom Networks
The Neural Network Toolbox was designed to allow for many kinds of 
networks. This makes it possible for many functions to use the same network 
object data type. 

Here are all the standard toolbox network creation functions:

This flexibility is possible because we have an object oriented representation 
for networks. The representation allows various architectures to be defined 
and allows various algorithms to be assigned to those architectures.

New Networks 

newc Create a competitive layer.

newcf Create a cascade-forward backpropagation network.

newelm Create an Elman backpropagation network.

newff Create a feed-forward backpropagation network.

newfftd Create a feed-forward input-delay backprop network.

newgrnn Design a generalized regression neural network.

newhop Create a Hopfield recurrent network.

newlin Create a linear layer.

newlind Design a linear layer.

newlvq Create a learning vector quantization network

newp Create a perceptron.

newpnn Design a probabilistic neural network.

newrb Design a radial basis network.

newrbe Design an exact radial basis network.

newsom Create a self-organizing map.
2



Custom Networks
To create custom networks, start with an empty network (obtained with the 
network function) and set its properties as desired.

network  - Create a custom neural network.

The network object consists of many properties that you can set to specify the 
structure and behavior of your network. See Chapter 12, "Network Object 
Reference" for descriptions of all network properties.

The following sections demonstrate how to create a custom network by using 
these properties.
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Custom Network
Before you can build a network you need to know what it looks like. For 
dramatic purposes (and to give the toolbox a work out) this section will lead you 
through the creation of the wild and complicated network shown below.

Each of the two elements of the first network input is to accept values ranging 
between 0 and 10. Each of the five elements of the second network input will 
range from -2 to 2.

Before you can complete your design of this network, the algorithms it employs 
for initialization and training must be specified.

We will agree here that each layer’s weights and biases will be initialized with 
the Nguyen-Widrow layer initialization method (initnw). Also, the network is 
to be trained with the Levenberg-Marquardt backpropagation (trainlm), so 
that, given example input vectors, the outputs of the third layer will learn to 
match the associated target vectors with minimal mean squared error (mse).
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Custom Networks
Network Definition
The first step is to create a new network. Type in the following code to create a 
network and view its many properties.

net = network

Architecture Properties
The first group of properties displayed are labeled architecture properties. 
These properties allow you to select of the number of inputs and layers, and 
their connections.

Number of Inputs and Layers. The first two properties displayed are numInputs 
and numLayers. These properties allow us to select how many inputs and layers 
we would like our network to have.

net =

Neural Network object:

    architecture:

         numInputs: 0
         numLayers: 0

Note that the network has no inputs or layers at this time.

Change that by setting these properties to the number of inputs and number of 
layers in our custom network diagram.

net.numInputs = 2;
net.numLayers = 3;

Note that net.numInputs is the number of input sources, not the number of 
elements in an input vector (net.inputs{i}.size).

…
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Bias Connections. Type net and hit return to view its properties again. The 
network now has two inputs and three layers.

net =

Neural Network object:

    architecture:

         numInputs: 2
         numLayers: 3

Now look at the next five properties.

biasConnect: [0; 0; 0]
      inputConnect: [0 0; 0 0; 0 0]
      layerConnect: [0 0 0; 0 0 0; 0 0 0]
     outputConnect: [0 0 0]
     targetConnect: [0 0 0]

These matrices of 1’s and 0’s represent the presence or absence of bias, input 
weight, layer weight, output, and target connections. They are currently all 
zeros indicating that the network does not have any such connections.

Note that the bias connection matrix is a  vector. To create a bias 
connection to the ith layer you can set net.biasConnect(i) to 1. Specify that 
the first and third layer’s are to have bias connections, as our wacky diagram 
indicates, by typing in the following code.

net.biasConnect(1) = 1;
net.biasConnect(3) = 1;

Note that you could also define those connections with a single line of code.

net.biasConnect = [1; 0; 1];

Input and Layer Weight Connections. The input connection matrix is , 
representing the presence of connections from 2 sources (the two inputs) to 3 
destinations (the three layers). Thus net.inputConnect(i,j) represents the 
presence of an input weight connection going to the ith layer from the jth input.

3 1×

3 2×
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Connect the first input to the first and second layers, and the second input to 
the second layer (as is indicated by the custom network diagram) by typing in 
the following three lines of code,

net.inputConnect(1,1) = 1;
net.inputConnect(2,1) = 1;
net.inputConnect(2,2) = 1;

or this single line of code:

net.inputConnect = [1 0; 1 1; 0 0];

Similarly, net.layerConnect(i.j) represents the presence of a layer weight 
connection going to the ith layer from the jth layer. Connect layers 1, 2 and 3 
to layer 3 as follows.

net.layerConnect = [0 0 0; 0 0 0; 1 1 1];

Output and Target Connections. Both the output and target connection matrices 
are  matrices, indicating that they connect to one destination (the 
external world) from three sources (the three layers).

Connect layers 2 and 3 to network outputs with this line of code.

net.outputConnect = [0 1 1];

Type another line of code to give layer 3 a target connection.

net.targetConnect = [0 0 1];

The layer 3 target will be compared to the output of layer 3 to generate an error 
to be used when measuring the performance of the network, or when updating 
the network during training or adaption.

Number of Outputs and Targets
Type net and hit Enter to view the updated properties. The final four 
architecture properties are read-only values, which means their values are 
determined by the choices we make for other properties. The first two read-only 
properties have the following values.

numOutputs: 2  (read-only)
        numTargets: 1  (read-only)

1 3×
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By defining output connections from layers 2 and 3, and a target connection 
from layer 3, you have specified that the network has two outputs and one 
target.

Subobject Properties
The next group of properties are as follows.

subobject structures:

inputs: {2x1 cell} of inputs
layers: {3x1 cell} of layers

outputs: {1x3 cell} containing 2 outputs
targets: {1x3 cell} containing 1 target
biases: {3x1 cell} containing 2 biases

inputWeights: {3x2 cell} containing 3 input weights
layerWeights: {3x3 cell} containing 3 layer weights

Inputs
When you set the number of inputs (net.numInputs) to 2, the inputs property 
became a cell array of two input structures. Each ith input structure 
(net.inputs{i}) contains addition properties associated with the ith input.

Type this line of code to see how the input structures are arranged.

net.inputs
ans = 

    [1x1 struct]
    [1x1 struct]

Type the following line of code to see the properties associated with the first 
input.

net.inputs{1}

The properties should appear as follows.

ans = 

range: [0 1]
        size: 1
    userdata: [1x1 struct]
8



Custom Networks
Note that the range property only has one row. This indicates that the input 
has only one element, which varies from 0 to 1. The size property also 
indicates that this input has just 1 element.

The first input vector of the custom network is to have two elements ranging 
from 0 to 10. Specify this by altering the range property of the first input as 
follows.

net.inputs{1}.range = [0 10; 0 10];

If we examine the first input’s structure again, we will see that it now has the 
correct size which was inferred from the new range values.

ans = 

       range: [2x2 double]
        size: 2
    userdata: [1x1 struct]

Set the second inputs ranges to be from -2 to 2 for five elements as follows.

net.inputs{2}.range = [-2 2; -2 2; -2 2; -2 2; -2 2];

Layers. When we set the number of layers (net.numLayers) to 3, the layers 
property became a cell array of three layer structures. Type the following line 
of code to see the properties associated with the first layer.

net.layers{1}

ans = 

     dimensions: 1
    distanceFcn: 'dist'
      distances: 0
        initFcn: 'initwb'
    netInputFcn: 'netsum'
      positions: 0
           size: 1
    topologyFcn: 'hextop'
    transferFcn: 'purelin'
       userdata: [1x1 struct]
11-9
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Type the following three lines of code to change the first layer’s size to 4 
neurons, its transfer function to tansig, and its initialization function to the 
Nguyen-Widrow function as required for the custom network diagram.

net.layers{1}.size = 4;
net.layers{1}.transferFcn = ’tansig’;
net.layers{1}.initFcn = ’initnw’;

The second layer is to have 3 neurons, the logsig transfer function, and be 
initialized with initnw. Thus, set the second layer’s properties to the desired 
values as follows.

net.layers{2}.size = 3;
net.layers{2}.transferFcn = ’logsig’;
net.layers{2}.initFcn = ’initnw’;

The third layer’s size and transfer function properties don’t need to be changed 
since the defaults match those shown in the network diagram. You only need 
to set its initialization function as follows.

net.layers{3}.initFcn = ’initnw’;

Output and Targets. Take a look at how the outputs property is arranged with 
this line of code.

net.outputs
ans = 

     []    [1x1 struct]    [1x1 struct]

Note that outputs contains two output structures, one for layer 2 and one for 
layer 3. This arrangement occurred automatically when net.outputConnect 
was set to [0 1 1].

View the second layer’s output structure with the following expression.

net.outputs{2}
ans = 

        size: 3
    userdata: [1x1 struct]

The size was automatically set to 3 when the second layer’s size 
(net.layers{2}.size) was set to that value. Take a look at the third layer’s 
output structure if you want to verify that it also has the correct size.
10
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Similarly, targets contains one structure representing the third layer’s target. 
Type these two lines of code to see how targets is arranged and to view the 
third layer’s target properties.

net.targets

ans = 
     []    []    [1x1 struct]

net.targets{3}
ans = 
        size: 1
    userdata: [1x1 struct]

Biases, Input Weights and Layer Weights. Enter the following lines of code to see how 
bias and weight structures are arranged.

net.biases
net.inputWeights
net.layerWeights

Here are the results for typing net.biases:

ans = 
    [1x1 struct]
              []
    [1x1 struct]

If you examine the results you will note that each contains a structure where 
the corresponding connections (net.biasConnect, net.inputConnect, and 
net.layerConnect) contain a 1.

Take a look at their structures with these lines of code.

net.biases{1}
net.biases{3}
net.inputWeights{1,1}
net.inputWeights{2,1}
net.inputWeights{2,2}
net.layerWeights{3,1}
net.layerWeights{3,2}
net.layerWeights{3,3}
11-11
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For example, typing net.biases{1} results in the following output:

ans = 
       initFcn: ''
         learn: 1
      learnFcn: ''
    learnParam: ''
          size: 4
      userdata: [1x1 struct]

Specify the weights tap delay lines in accordance with the network diagram, by 
setting each weights delays property.

net.inputWeights{2,1}.delays = [0 1];
net.inputWeights{2,2}.delays = 1;
net.layerWeights{3,3}.delays = 1;

Network Functions
Type net and press return again to see the next set of properties.

functions:

adaptFcn: (none)
           initFcn: (none)
        performFcn: (none)
          trainFcn: (none)

Each of these properties defines a function for a basic network operation.

Set the initialization function to initlay so the network will initialize itself 
according to the layer initialization functions which we have already set to 
initnw the Nguyen-Widrow initialization function.

net.initFcn = 'initlay';

This meets the initialization requirement of our network.

Set the performance function to mse (mean squared error) and the training 
function to trainlm (Levenberg-Marquardt backpropagation) to meet the final 
requirement of the custom network.

net.performFcn = 'mse';
net.trainFcn = 'trainlm';
12
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Weight and Bias Values
Before initializing and training the network, take a look at the final group of 
network properties (aside from the userdata property)

weight and bias values:

                IW: {3x2 cell} containing 3 input weight matrices
                LW: {3x3 cell} containing 3 layer weight matrices
                 b: {3x1 cell} containing 2 bias vectors

These cell arrays contain weight matrices and bias vectors in the same 
positions that the connection properties (net.inputConnect, 
net.layerConnect, net.biasConnect) contain 1’s and the subobject properties 
(net.inputWeights, net.layerWeights, net.biases) contain structures.

Evaluating each of the following lines of code reveals that all the bias vectors 
and weight matrices are set to zeros.

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.IW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

Each input weight net.IW{i,j}, layer weight net.LW{i,j}, and bias vector 
net.b{i} has as many rows as the size of the ith layer (net.layers{i}.size). 

Each input weight net.IW{i,j} has as many columns as the size of the jth 
input (net.inputs{j}.size) multiplied by the number of its delay values 
(length(net.inputWeights{i,j}.delays)).

Likewise, each layer weight has as many columns as the size of the jth layer 
(net.layers{j}.size) multiplied by the number of its delay values 
(length(net.layerWeights{i,j}.delays)).
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Network Behavior

Initialization
Initialize your network with the following line of code.

net = init(net)

Reference the network’s biases and weights again to see how they have 
changed.

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.IW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

For example:

net.IW{1,1}

ans =
   -0.3040    0.4703
   -0.5423   -0.1395
    0.5567    0.0604
    0.2667    0.4924

Training
Define the following cell array of two input vectors (one with two elements, one 
with five) for two time steps (i.e. two columns).

P = {[0; 0] [2; 0.5]; [2; -2; 1; 0; 1] [-1; -1; 1; 0; 1]}

We would like the network to respond with the following target sequence.

T = {1 -1}

Before training we can simulate the network to see whether the initial 
network’s response Y is close to the target T.

Y = sim(net,P)

Y = 

    [3x1 double]    [3x1 double]
    [    0.0456]    [    0.2119]
14
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The second row of the cell array Y is the output sequence of the second network 
output, which is also the output sequence of the third layer. The values you got 
for the second row may differ from those shown due to different initial weights 
and biases. However, they will almost certainly not be equal to our targets T, 
which is also true of the values shown.

The next task is to prepare the training parameters. The following line of code 
displays the default Levenberg-Marquardt training parameters (which were 
defined when we set net.trainFcn to trainlm).

net.trainParam

The following properties should be displayed.

ans = 

       epochs: 100
         goal: 0
     max_fail: 5
    mem_reduc: 1
     min_grad: 1.0000e-10
           mu: 1.0000e-03
       mu_dec: 0.1000
       mu_inc: 10
       mu_max: 1.0000e+10
         show: 25
         time: ×

Change the performance goal to 1e-10.

net.trainParam.goal = 1e-10;

Next, train the network with the following call.

net = train(net,P,T);

Below is a typical training plot.
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After training you can simulate the network to see if it has learned to respond 
correctly.

Y = sim(net,P)

Y = 

    [3x1 double]    [3x1 double]
    [    1.0000]    [   -1.0000]

Note that the second network output (i.e. the second row of the cell array Y), 
which is also the third layer’s output, does match the target sequence T.
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Additional Toolbox Functions
Most toolbox functions are explained in chapters dealing with networks that 
use them. However, some functions are not used by toolbox networks, but are 
included as they may be useful to you in creating custom networks.

Each of these is documented in Chapter 13, "Reference," however the notes 
below may also prove to be helpful.

Initialization Functions

randnc
This weight initialization function generates random weight matrices whose 
columns are normalized to a length of 1.

randnr
This weight initialization function generates random weight matrices whose 
rows are normalized to a length of 1.

Transfer Functions

satlin
This transfer function is similar to satlins, but has a linear region going from 
0 to 1 (instead of -1 to 1) and minimum and maximum values of 0 and 1 (instead 
of -1 and 1).

softmax
This transfer function is a softer version of the hard competitive transfer 
function compet. The neuron with the largest net input will get an output 
closest to one, while other neurons will have outputs close to zero.

tribas
The triangular basis transfer function is similar to the radial basis transfer 
function radbas, but has a simpler shape.
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Learning Functions

learnh
The Hebb weight learning function increases weights in proportion to the 
product the weights input and the neuron’s output. This allows neurons to 
learn associations between their inputs and outputs.

learnhd
The Hebb-with-decay learning function is similar to the Hebb function, but 
adds a term which decreases weights each time step exponentially. This weight 
decay allows neurons to forget associations which are not reinforced regularly, 
and solves the problem that the Hebb function has with weights growing 
without bound.

learnis
The instar weight learning function moves a neuron’s weight vector towards 
the neuron’s input vector with steps proportional to the neuron’s output. This 
function allows neurons to learn association between input vectors and their 
outputs.

learnos
The outstar weight learning function acts in the opposite way as the instar 
learning rule. The outstar rule moves the weight vector coming from an input 
toward the output vector of a layer of neurons with step sizes proportional to 
the input value. This allows inputs to learn to recall vectors when stimulated.
18
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Custom Functions
The toolbox allows you to create and use many kinds of functions, giving you a 
great deal of control over the algorithms used to initialize, simulate, train, and 
allow adaption for you networks.

The following sections describe how to create your own versions of these kinds 
of functions:

• Simulation functions

- transfer functions

- net input functions

- weight functions

• Initialization functions

- network initialization functions

- layer initialization functions

- weight and bias initialization functions

• Learning functions

- network training functions

- network adapt functions

- network performance functions

- weight and bias learning functions

• Self-organizing map functions

- topology functions

- distance functions
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Simulation Functions
You can create three kinds of simulation functions: transfer, net input, and 
weight functions. You can also provide associated derivative functions to 
enable backpropagation learning with your functions.

Transfer Functions
Transfer functions calculate a layer’s output vector (or matrix) A given its net 
input vector (or matrix) N. The only constraint on the relationship between the 
output and net input is that the output must have the same dimensions as the 
input.

Once defined you can assign your transfer function to any layer of a network. 
For example, the following line of code assigns the transfer function yourtf to 
the second layer of a network.

net.layers{2}.transferFcn = 'yourtf';

Your transfer function will then be used whenever you simulate your network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

To be a valid transfer function your function must calculate outputs A from net 
inputs N as follows,

A = yourtf(N)

where:

• N is an SxQ matrix of Q net input (column) vectors.

• A is an SxQ matrix of Q output (column) vectors.

Your transfer function must also provide information about itself using this 
calling format,

info = yourtf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

• 'output' - Returns the output range.

• 'active' - Returns the active input range.
20
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The toolbox contains an example custom transfer function called mytf. Enter 
the following lines of code to see how it is used.

help mytf
n = -5:.1:5;
a = mytf(n);
plot(n,a)
mytf('deriv')

Enter the following command to see how mytf is implemented.

type mytf

You can use mytf as a template to create your own transfer function.

Transfer Derivative Functions. If you want to use backpropagation with your custom 
transfer function you will need to create a custom derivative function for it. The 
function will need to calculate the derivative of the layer’s output with respect 
to its net input,

dA_dN = yourdtf(N,A)

where:

• N is an  matrix of Q net input (column) vectors.

• A is an  matrix of Q output (column) vectors.

• dA_dN is the  derivative dA/dN.

This will only work for transfer functions whose output elements are 
independent. In other words, where for each A(i) is only a function of N(i). 
Otherwise a three dimensional array is required to store the derivatives in the 
case of multiple vectors (instead of a matrix as defined above). Such 3-D 
derivatives are not supported at this time.

To see how the example custom transfer derivative function mydtf works type 
in these lines of code.

help mydtf
da_dn = mydtf(n,a)
subplot(2,1,1), plot(n,a)
subplot(2,1,2), plot(n,dn_da)

S Q×
S Q×

S Q×
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Use this command to see how mydtf was implemented.

type mydtf

You can use mydtf as a template to create your own transfer derivative 
functions.

Net Input Functions
Net input functions calculate a layer’s net input vector (or matrix) N given its 
weighted input vectors (or matrices) Zi. The only constraints on the 
relationship between the net input and the weighted inputs are that the net 
input must have the same dimensions as the weighted inputs, and that the 
function cannot be sensitive to the order of the weight inputs.

Once defined you can assign your net input function to any layer of a network. 
For example, the following line of code assigns the transfer function yournif to 
the second layer of a network.

net.layers{2}.netInputFcn = 'yournif';

Your net input function will then be used whenever you simulate your network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

To be a valid net input function your function must calculate outputs A from 
net inputs N as follows,

N = yournif(Z1,Z2,...)

where:

• Zi is the ith  matrix of Q weighted input (column) vectors.

• N is an  matrix of Q net input (column) vectors.

Your net input function must also provide information about itself using this 
calling format,

info = yournif(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

S Q×
S Q×
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The toolbox contains an example custom net input function called mynif. Enter 
the following lines of code to see how it is used.

help mynif
z1 = rand(4,5);
z2 = rand(4,5);
z3 = rand(4,5);
n = mynif(z1,z2,z3)
mynif('deriv')

Enter the following command to see how mynif is implemented.

type mynif

You can use mynif as a template to create your own net input function.

Net Input Derivative Functions. If you want to use backpropagation with your 
custom net input function you will need to create a custom derivative function 
for it. It will need to calculate the derivative of the layer’s net input with 
respect to any of its weighted inputs,

dN_dZ = dtansig(Z,N)

where:

• Z is one of the  matrices of Q weighted input (column) vectors.

• N is an  matrix of Q net input (column) vectors.

• dN_dZ is the  derivative dN/dZ.

To see how the example custom net input derivative function mydtf works type 
these lines of code.

help mydnif
dn_dz1 = mydnif(z1,n)
dn_dz2 = mydnif(z1,n)
dn_dz3 = mydnif(z1,n)

Use this command to see how mydtf was implemented.

type mydnif

You can use mydnif as a template to create your own net input derivative 
functions.

S Q×
S Q×

S Q×
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Weight Functions
Weight functions calculate a weighted input vector (or matrix) Z given an input 
vector (or matrices) P and a weight matrix W.

Once defined you can assign your weight function to any input weight or layer 
weight of a network. For example, the following line of code assigns the weight 
function yourwf to the weight going to the second layer from the first input of 
a network.

net.inputWeights{2,1}.weightFcn = 'yourwf';

Your weight function will then be used whenever you simulate your network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

To be a valid weight function your function must calculate weight inputs Z from 
inputs P and a weight matrix W as follows,

Z = yourwf(W,P)

where:

• W is an  weight matrix.

• P is an  matrix of Q input (column) vectors.

• Z is an  matrix of Q weighted input (column) vectors.

Your net input function must also provide information about itself using this 
calling format,

info = yourwf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

The toolbox contains an example custom weight called mywf. Enter the 
following lines of code to see how it is used.

help mywf
w = rand(1,5);
p = rand(5,1);
z = mywf(w,p);
mywf('deriv')

S R×
R Q×
S Q×
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Enter the following command to see how mywf is implemented.

type mywf

You can use mywf as a template to create your own weight functions.

Weight Derivative Functions. If you want to use backpropagation with your custom 
weight function you will need to create a custom derivative function for it. It 
will need to calculate the derivative of the weight inputs with respect to both 
the input and weight,

dZ_dP = mydwf('p',W,P,Z)
dZ_dW = mydwf('w',W,P,Z)

where:

• W is an  weight matrix.

• P is an  matrix of Q input (column) vectors.

• Z is an  matrix of Q weighted input (column) vectors.

• dZ_dP is the  derivative dZ/dP.

• dZ_dW is the  derivative dZ/dW.

This will only work for weight functions whose output consists of a sum of i 
term, where each ith term is a function of only W(i) and P(i). Otherwise a 
three dimensional array is required to store the derivatives in the case of 
multiple vectors (instead of a matrix as defined above). Such 3-D derivatives 
are not supported at this time.

To see how the example custom net input derivative function mydwf works type 
in these lines of code.

help mydwf
dz_dp = mydwf('p',w,p,z)
dz_dw = mydwf('w',w,p,z)

Use this command to see how mydwf was implemented.

type mydwf

You can use mydwf as a template to create your own net input derivative 
function.

S R×
R Q×
S Q×

S R×
R Q×
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Initialization Functions
You can create three kinds of initialization functions: network, layer, and 
weight/bias initialization functions.

Network Initialization Functions
The most general kind of initialization function is the network initialization 
function which sets all the weights and biases of a network to values suitable 
as a starting point for training or adaption.

Once defined you can assign your network initialization function to a network.

net.initFcn = 'yournif';

Your network initialization function will then be used whenever you initialize 
your network.

net = init(net)

To be a valid network initialization function your function must take and 
return a network.

net = yournif(net)

Your function can then set the network’s weight and bias values in any way you 
see fit. However, you should be careful not to alter any other properties, or to 
set the weight matrices and bias vectors of the wrong size. For performance 
reasons, init turns off the normal type checking for network properties before 
calling your initialization function. So if you set a weight matrix to the wrong 
size it won’t immediately generate an error, but will cause problems later when 
you try to simulate or train the network.

You can examine the implementation of the toolbox function initlay if you are 
interested in creating your own network initialization function.

Layer Initialization Functions
The second kind of initialization function is the layer initialization function 
which sets all the weights and biases of a layer to values suitable as a starting 
point for training or adaption. 
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Once defined you can assign your layer initialization function to a layer of a 
network. For example, the following line of code assigns the layer initialization 
function yourlif to the second layer of a network.

net.layers{2}.initFcn = 'yourlif';

Layer initialization functions are only called to initialize a layer if the network 
initialization function (net.initFcn) is set to the toolbox function initlay. If 
this is the case, then your function will be used to initialize the layer whenever 
you initialize your network with init.

net = init(net)

To be a valid layer initialization function your function must take a network 
and a layer index i, and return the network after initializing the ith layer.

net = yournif(net,i)

Your function can then set the ith layer’s weight and bias values in any way 
you see fit. However, you should be careful not to alter any other properties, or 
to set the weight matrices and bias vectors to the wrong size.

You can examine the implementations of the toolbox functions initwb and 
initnw if you are interested in creating your own layer initialization function.

Weight and Bias Initialization Functions
The third kind of initialization function is the weight and bias initialization 
function which sets all the weights and biases of a weight or bias to values 
suitable as a starting point for training or adaption.

Once defined you can assign your initialization function to any weight and bias 
in a network. For example, the following lines of code assign the weight and 
bias initialization function yourwbif to the second layer’s bias, and the weight 
coming from the first input to the second layer.

net.biases{2}.initFcn = 'yourwbif';
net.inputWeights{2,1}.initFcn = 'yourwbif';

Weight and bias initialization functions are only called to initialize a layer if 
the network initialization function (net.initFcn) is set to the toolbox function 
initlay and the layer’s initialization function (net.layers{i}.initFcn) is set 
to the toolbox function initwb. If this is the case, then your function be used to 
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initialize the weight and biases it is assigned to whenever you initialize your 
network with init.

net = init(net)

To be a valid weight and bias initialization function your function must take a 
the number of neurons in a layer S, and a two column matrix PR of R rows 
defining the minimum and maximum values of R inputs and return a new 
weight matrix W,

W = rands(S,PR)

where:

• S is the number of neurons in the layer.

• PR is an  matrix defining the minimum and maximum values of R 
inputs.

• W is a new  weight matrix.

Your function also needs to generate a new bias vector as follows,

b = rands(S)

where:

• S is the number of neurons in the layer.

• b is a new  bias vector.

To see how an example custom weight and bias initialization function works 
type in these lines of code.

help mywbif
W = mywbif(4,[0 1; -2 2])
b = mywbif(4,[1 1])

Use this command to see how mywbif was implemented.

type mywbif

You can use mywbif as a template to create your own weight and bias 
initialization function.

R 2×

S R×

S 1×
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Learning Functions
You can create three kinds of initialization functions: training, adaption, 
performance, and weight/bias learning functions.

Training Functions
One kind of general learning function is a network training function. Training 
functions repeatedly apply a set of input vectors to a network, updating the 
network each time, until some stopping criteria is met. Stopping criteria can 
consists of a maximum number of epochs, a minimum error gradient, an error 
goal, etc.

Once defined you can assign your training function to a network.

net.trainFcn = 'yourtf';

Your network initialization function will then be used whenever you train your 
network.

[net,tr] = train(NET,P,T,Pi,Ai)

To be a valid training function your function must take and return a network,

[net,tr] = yourtf(net,Pd,Tl,Ai,Q,TS,VV,TV)

where:

• Pd is an  cell array of tap delayed inputs.

- Each Pd{i,j,ts} is the  delayed input matrix to the weight 
going to the ith layer from the jth input at time step ts. (Pd{i,j,ts} is 
an empty matrix [] if the ith layer doesn’t have a weight from the jth 
input.)

• Tl is an  cell array of layer targets.

- Each Tl{i,ts} is the  target matrix for the ith layer. (Tl{i,ts} is 
an empty matrix if the ith layer doesn’t have a target.)

• Ai is an  cell array of initial layer delay states.

- Each Ai{l,k} is the  delayed ith layer output for time step ts = 
k-LD, where ts goes from 0 to LD-1.

• Q is the number of concurrent vectors.
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• TS is the number of time steps.

• VV and TV are optional structures defining validation and test vectors in the 
same form as the training vectors above are defined: Pd, Tl, Ai, Q, and TS. 
Note that the validation and testing Q and TS values can be different from 
each other and those used by the training vectors.

The dimensions above have the following definitions:

•  is the number of network layers (net.numLayers).

•  is the number of network inputs (net.numInputs).

•  is the size of the jth input (net.inputs{j}.size).

•  is the size of the ith layer (net.layers{i}.size)

• LD is the number of layer delays (net.numLayerDelays).

•  is the number of delay lines associated with the weight going to the ith 
layer from the jth input (length(net.inputWeights{i,j}.delays)).

Your training function must also provide information about itself using this 
calling format,

info = yourtf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'pdefaults' - Returns a structure of default training parameters.

When you set the network training function (net.trainFcn) to be your 
function, the network’s training parameters (net.trainParam) will 
automatically get set to your default structure. Those values can then be 
altered or not before training.

Your function can update the network’s weight and bias values in any way you 
see fit. However, you should be careful not to alter any other properties, or to 
set the weight matrices and bias vectors of the wrong size. For performance 
reasons, train turns off the normal type checking for network properties before 
calling your training function. So if you set a weight matrix to the wrong size 
it won’t immediately generate an error, but will cause problems later when you 
try to simulate or adapt the network.

You can examine the implementations of toolbox functions such as trainwb 
and trainwb1 if you are interested in creating your own training function. The 
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help for each of these utility functions lists the input and output arguments 
they take.

Utility Functions. If you examine training functions such as trainwb, traingd, 
and trainlm, you will note that they use a set of utility functions found in the 
nnet/nnutils directory.

These functions are not listed in Chapter 13 because they may be altered in the 
future. However, you can use these functions if you are willing to take the risk 
that you will have to update your functions for future versions of the toolbox. 
Use help on each function to view the function’s input and output arguments.

These two functions are useful for creating a new training record and 
truncating it once the final number of epochs is known:

• newtr - New training record with any number of optional fields.

• cliptr - Clip training record to the final number of epochs.

These three functions calculate network signals going forward, errors, and 
derivatives of performance coming back.

• calca - Calculate network outputs and other signals.

• calcerr - Calculates matrix or cell array errors.

• calcgrad - Calculate bias and weight performance gradients.

These two functions get and set a network’s weight and bias values with single 
vectors. Being able to treat all these adjustable parameters as a single vector 
is often useful for implementing optimization algorithms.

• getx - Get all network weight and bias values as a single vector.

• setx - Set all network weight and bias values with a single vector.

These next three functions are also useful for implementing optimization 
functions. One calculates all network signals going forward, including errors 
and performance. One backpropagates to find the derivatives of performance 
as a single vector. The third function backpropagates to find the Jacobian of 
performance. This latter function is used by advanced optimization techniques 
like Levenberg-Marquardt.

• calcperf - Calculate network outputs, signals, and performance.

• calcgx - Calculate weight and bias performance gradient as a single vector.

• calcjx - Calculate weight and bias performance Jacobian as a single matrix.
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Adapt Functions
The other kind of the general learning functions is a network adapt function. 
Adapt functions simulate a network, while updating them for each time step of 
the input before continuing the simulation to the next input.

Once defined you can assign your training function to a network.

net.adaptFcn = 'youraf';

Your network initialization function will then be used whenever you adapt 
your network.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid training function your function must take and return a network,

[net,Ac,El] = youraf(net,Pd,Tl,Ai,Q,TS)

where:

• Pd is an  cell array of tap delayed inputs.

- Each Pd{i,j,ts} is the  delayed input matrix to the weight 
going to the ith layer from the jth input at time step ts. (Pd{i,j,ts} is 
an empty matrix [] if the ith layer doesn’t have a weight from the jth 
input.)

• Tl is an  cell array of layer targets.

- Each Tl{i,ts} is the  target matrix for the ith layer. (Tl{i,ts} is 
an empty matrix if the ith layer doesn’t have a target.)

• Ai is an  cell array of initial layer delay states.

- Each Ai{l,k} is the  delayed ith layer output for time step ts = 
k-LD, where ts goes from 0 to LD-1.

• Q is the number of concurrent vectors.

• TS is the number of time steps.
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The dimensions above have the following definitions:

•  is the number of network layers (net.numLayers).

•  is the number of network inputs (net.numInputs).

•  is the size of the jth input (net.inputs{j}.size).

•  is the size of the ith layer (net.layers{i}.size)

• LD is the number of layer delays (net.numLayerDelays).

•  is the number of delay lines associated with the weight going to the ith 
layer from the jth input (length(net.inputWeights{i,j}.delays)).

Your adapt function must also provide information about itself using this 
calling format,

info = youraf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'pdefaults' - Returns a structure of default adapt parameters.

When you set the network adapt function (net.adaptFcn) to be your function, 
the network’s adapt parameters (net.adaptParam) will automatically get set to 
your default structure. Those values can then be altered or not before adapting.

Your function can update the network’s weight and bias values in any way you 
see fit. However, you should be careful not to alter any other properties, or to 
set the weight matrices and bias vectors of the wrong size. For performance 
reasons, adapt turns off the normal type checking for network properties before 
calling your adapt function. So if you set a weight matrix to the wrong size it 
won’t immediately generate an error, but will cause problems later when you 
try to simulate or train the network.

You can examine the implementations of toolbox functions such as trainwb 
and trainwb1 if you are interested in creating your own training function.

Utility Functions. If you examine the toolbox’s only adapt function adaptwb, you 
will note that they use a set of utility functions found in the nnet/nnutils 
directory. The help for each of these utility functions lists the input and output 
arguments they take.

Nl

Ni

Rj

Si

Di
ij
11-33



11 Advanced Topics

11-
These functions are not listed in Chapter 13 because they may be altered in the 
future. However, you can use these functions if you are willing to take the risk 
that you will have to update your functions for future versions of the toolbox.

These two functions are useful for simulating a network, and calculating its 
derivatives of performance.

• calca1 - New training record with any number of optional fields.

• calce1 - Clip training record to the final number of epochs.

• calcgrad - Calculate bias and weight performance gradients.

Performance Functions
Performance functions allow a network’s behavior to be graded. This is useful 
for many algorithms, such as backpropagation, which operate by adjusting 
network weights and biases to improve performance.

Once defined you can assign your training function to a network.

net.performFcn = 'yourpf';

Your network initialization function will then be used whenever you train your 
adapt your network.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid performance function your function must be called as follows,

perf = yourpf(E,X,PP)

where:

• E is either an  matrix or an  cell array of layer errors.

- Each E{i,ts} is the  target matrix for the ith layer. (Tl(i,ts) is an 
empty matrix if the ith layer doesn’t have a target.)

• X is an  vector of all the network’s weights and biases.

• PP is a structure of network performance parameters.

If E is a cell array you can convert it to a matrix as follows.

E = cell2mat(E);

S Q× Nl TS×
Si Q×
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Alternatively, your function must also be able to be called as follows,

perf = yourpf(E,net)

where you can get X and PP (if needed) as follows.

X = getx(net);
PP = net.performParam;

Your performance function must also provide information about itself using 
this calling format,

info = yourpf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

• 'pdefaults' - Returns a structure of default performance parameters.

When you set the network performance function (net.performFcn) to be your 
function, the network’s adapt parameters (net.performParam) will 
automatically get set to your default structure. Those values can then be 
altered or not before training or adaption.

To see how an example custom performance function works type in these lines 
of code.

help mypf
e = rand(4,5);
x = rand(12,1);
pp = mypf('pdefaults')
perf = mypf(e,x,pp)

Use this command to see how mypf was implemented.

type mypf

You can use mypf as a template to create your own weight and bias 
initialization function.

Performance Derivative Functions. If you want to use backpropagation with your 
performance function you will need to create a custom derivative function for 
11-35



11 Advanced Topics

11-
it. It will need to calculate the derivative of the network’s errors and combined 
weight and bias vector with respect to performance,

dPerf_dE = dmsereg('e',E,X,perf,PP)
dPerf_dX = dmsereg('x',E,X,perf,PP)

where:

• E is an  cell array of layer errors.

- Each E{i,ts} is the  target matrix for the ith layer. (Tl(i,ts) is an 
empty matrix if the ith layer doesn’t have a target.)

• X is an  vector of all the network’s weights and biases.

• PP is a structure of network performance parameters.

• dPerf_dE is the  cell array of derivatives dPerf/dE.

- Each E{i,ts} is the  derivative matrix for the ith layer. (Tl(i,ts) 
is an empty matrix if the ith layer doesn’t have a target.)

• dPerf_dX is the  derivative dPerf/dX.

To see how the example custom performance derivative function mydpf works 
type in these lines of code.

help mydpf
e = {e};
dperf_de = mydpf('e',e,x,perf,pp)
dperf_dx = mydpf('x',e,x,perf,pp)

Use this command to see how mydpf was implemented.

type mydpf

You can use mydpf as a template to create your own performance derivative 
functions.

Weight and Bias Learning Functions
The most specific kind of learning function is a weight and bias learning 
function. These functions are used to update individual weights and biases 
during learning with some training and adapt functions.

Once defined you can assign your learning function to any weight and bias in 
a network. For example, the following lines of code assign the weight and bias 
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learning function yourwblf to the second layer’s bias, and the weight coming 
from the first input to the second layer.

net.biases{2}.learnFcn = 'yourwblf';
net.inputWeights{2,1}.learnFcn = 'yourwblf';

Weight and bias initialization functions are only called to update weights and 
biases if the network training function (net.trainFcn) is set to either toolbox 
function trainwb or trainwb1, or if the network adapt function (net.adaptFcn) 
is set to adaptwb. If this is the case, then your function will be used to update 
the weight and biases it is assigned to whenever you train or adapt your 
network with train or adapt.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid weight and bias learning function your function must be callable 
as follows,

[dW,LS] = yourwblf(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

where:

• W is an  weight matrix.

• P is an  matrix of Q input (column) vectors.

• Z is an  matrix of Q weighted input (column) vectors.

• N is an  matrix of Q net input (column) vectors.

• A is an  matrix of Q layer output (column) vectors.

• T is an  matrix of Q target (column) vectors.

• E is an  matrix of Q error (column) vectors.

• gW is an  gradient of W with respect to performance.

• gA is an  gradient of A with respect to performance.

• D is an  matrix of neuron distances.

• LP is a a structure of learning parameters.

• LS is a structure of the learning state which is updated each call. (Use a null 
matrix [] the first time.)

• dW is the resulting  weight change matrix.
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Your function will be called as follows to update bias vector.

[db,LS] = yourwblf(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

where:

• S is the number of neurons in the layer.

• b is a new  bias vector.

Your learning function must also provide information about itself using this 
calling format,

info = yourwblf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

• 'pdefaults' - Returns a structure of default performance parameters.

To see how an example custom weight and bias initialization function works 
type in the example in the following help.

help mywblf

Use this command to see how mywbif was implemented.

type mywblf

You can use mywblf as a template to create your own weight and bias learning 
function.

S 1×
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Self-Organizing Map Functions
There are two kinds of functions which control how neurons in self-organizing 
maps respond. They are topology and distance functions.

Topology Functions
Topology functions calculate the positions of a layer’s neurons given its 
dimensions.

Once defined you can assign your topology function to any layer of a network. 
For example, the following line of code assigns the topology function yourtopf 
to the second layer of a network.

net.layers{2}.topologyFcn = 'yourtopf';

Your topology function will then be used whenever your network is trained or 
adapts.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid topology function your function must calculate positions pos from 
dimensions dim as follows,

pos = yourtopf(dim1,dim2,...,dimN)

where:

• dimi is the number of neurons along the ith dimension of the layer.

• pos is an  matrix of S position vectors, where S is the total number of 
neurons which is defined by the product dim1*dim1*...*dimN.

The toolbox contains an example custom topology function called mytopf. Enter 
the following lines of code to see how it is used.

help mytopf
pos = mytopf(20,20);
plotsom(pos)

N S×
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If you type in that code you will get the following plot.

Enter the following command to see how mytf is implemented.

type mytopf

You can use mytopf as a template to create your own topology function.

Distance Functions
Distance functions calculate the distances of a layer’s neurons given their 
position.

Once defined you can assign your distance function to any layer of a network. 
For example, the following line of code assigns the topology function yourdistf 
to the second layer of a network.

net.layers{2}.distanceFcn = 'yourdistf';
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Your distance function will then be used whenever your network is trained or 
adapts.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid distance function your function must calculate distances d from 
position pos as follows,

pos = yourtopf(dim1,dim2,...,dimN)

where:

• pos is an  matrix of S neuron position vectors.

• d is an  matrix of neuron distances.

The toolbox contains an example custom distance function called mydistf. 
Enter the following lines of code to see how it is used.

help mydistf
pos = gridtop(4,5);
d = mydistf(pos)

Enter the following command to see how mytf is implemented.

type mydistf

You can use mydistf as a template to create your own distance function.

N S×
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Network Properties
The properties define the basic features of a network. A later section, 
“Subobject Properties” describes properties which define network details.

Architecture
These properties determine the number of network subobjects (which include 
inputs, layers, outputs, targets, biases, and weights), and how they are 
connected.

numInputs
This property defines the number of inputs a network receives.

net.numInputs

It can be set to 0 or a positive integer.

Clarification. The number of network inputs and the size of a network input are 
not the same thing. The number of inputs defines how many sets of vectors the 
network receives as input. The size of each input (i.e. the number of elements 
in each input vector) is determined by the input size (net.inputs{i}.size).

Most networks have only one input, whose size is determined by the problem.

Side Effects. Any change to this property results in a change in the size of the 
matrix defining connections to layers from inputs, (net.inputConnect) and the 
size of the cell array of input subobjects (net.inputs). 

numLayers
This property defines the number of layers a network has.

net.numLayers

It can be set to 0 or a positive integer.
2
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Side Effects. Any change to this property changes the size of each of these 
boolean matrices that define connections to and from layers,

net.biasConnect
net.inputConnect
net.layerConnect
net.outputConnect
net.targetConnect

and changes the size each cell array of subobject structures whose size depends 
on the number of layers,

net.biases
net.inputWeights
net.layerWeights
net.outputs
net.targets

and also changes the size of each of the network’s adjustable parameters 
properties.

net.IW
net.LW
net.b

biasConnect
This property defines which layers have biases.

net.biasConnect

It can be set to any  matrix of boolean values, where  is the number 
of network layers (net.numLayers). The presence (or absence) of a bias to the 
ith layer is indicated by a 1 (or 0) at:

net.biasConnect(i)

Side Effects. Any change to this property will alter the presence or absence of 
structures in the cell array of biases (net.biases) and in the presence or 
absence of vectors in the cell array of bias vectors (net.b).

Nl 1× Nl
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inputConnect
This property defines which layers have weights coming from inputs.

net.inputConnect

It can be set to any  matrix of boolean values, where  is the number 
of network layers (net.numLayers), and  is the number of network inputs 
(net.numInputs). The presence (or absence) of a weight going to the ith layer 
from the jth input is indicated by a 1 (or 0) at:

net.inputConnect(i,j)

Side Effects. Any change to this property will alter the presence or absence of 
structures in the cell array of input weight subobjects (net.inputWeights) and 
in the presence or absence of matrices in the cell array of input weight matrices 
(net.IW).

layerConnect
This property defines which layers have weights coming from other layers.

net.layerConnect

It can be set to any  matrix of boolean values, where  is the number 
of network layers (net.numLayers). The presence (or absence) of a weight going 
to the ith layer from the jth layer is indicated by a 1 (or 0) at:

net.layerConnect(i,j)

Side Effects. Any change to this property will alter the presence or absence of 
structures in the cell array of layer weight subobjects (net.layerWeights) and 
in the presence or absence of matrices in the cell array of layer weight matrices 
(net.LW).

outputConnect
This property defines which layers generate network outputs.

net.outputConnect

It can be set to any  matrix of boolean values, where  is the number 
of network layers (net.numLayers). The presence (or absence) of a network 
output from the ith layer is indicated by a 1 (or 0) at:

net.outputConnect(i)

Nl Ni× Nl
Ni
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Side Effects. Any change to this property will alter the number of network 
outputs (net.numOutputs) and the presence or absence of structures in the cell 
array of output subobjects (net.outputs).

targetConnect
This property defines which layers have associated targets.

net.targetConnect

It can be set to any  matrix of boolean values, where  is the number 
of network layers (net.numLayers). The presence (or absence) of a target 
associated with the ith layer is indicated by a 1 (or 0) at:

net.targetConnect(i)

Side Effects. Any change to this property will alter the number of network 
targets (net.numTargets) and the presence or absence of structures in the cell 
array of target subobjects (net.targets).

numOutputs (read-only)
This property indicates how many outputs the network has.

net.numOutputs

It is always set to the number 1’s in the matrix of output connections.

numOutputs = sum(net.outputConnect)

numTargets (read-only)
This property indicates how many targets the network has.

net.numTargets

It is always set to the number of 1’s in the matrix of target connections.

numTargets = sum(net.targetConnect)

numInputDelays (read-only)
This property indicates the number of time steps of past inputs that must be 
supplied to simulate the network.

net.numInputDelays

1 Nl× Nl
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It is always set to the maximum delay value associated any of the network’s 
input weights.

numInputDelays = 0;
for i=1:net.numLayers

for j=1:net.numInputs
if net.inputConnect(i,j)

numInputDelays = max( ...
[numInputDelays net.inputWeights{i,j}.delays]);

end
end

end

numLayerDelays (read-only)
This property indicates the number of time steps of past layer outputs that 
must be supplied to simulate the network.

net.numLayerDelays

It is always set to the maximum delay value associated any of the network’s 
layer weights.

numLayerDelays = 0;
for i=1:net.numLayers

for j=1:net.numLayers
if net.layerConnect(i,j)

numLayerDelays = max( ...
[numLayerDelays net.layerWeights{i,j}.delays]);

end
end

end

Subobject Structures
These properties consist of cell arrays of structures which define each of the 
network’s inputs, layers, outputs, targets, biases, and weights.

The properties for each kind of subobject are described in the “Subobject 
Properties” section which follows this “Network Properties” section.
6
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inputs
This property holds structures of properties for each of the network’s inputs.

net.inputs

It is always an  cell array of input structures, where  is the number 
of network inputs (net.numInputs).

The structure defining the properties of the ith network input is located at:

net.inputs{i}

Input Properties. See “Inputs” in the “Subobject Properties” section for 
descriptions of input properties.

layers
This property holds structures of properties for each of the network’s layers.

net.layers

It is always an  cell array of input structures, where  is the number 
of network layers (net.numLayers).

The structure defining the properties of the ith layer is located at:

net.layers{i}

Layer Properties. See “Layers” in the “Subobject Properties” section for 
descriptions of layer properties.

outputs
This property holds structures of properties for each of the network’s outputs.

net.outputs

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The structure defining the properties of the output from the ith layer (or a null 
matrix []) is located at:

net.outputs{i}

Ni 1× Ni

Nl 1× Nl

Nl 1× Nl
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if the corresponding output connection is 1 (or 0).

net.outputConnect(i)

Output Properties. See “Outputs” in the “Subobject Properties” section for 
descriptions of output properties.

targets
This property holds structures of properties for each of the network’s targets.

net.targets

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The structure defining the properties of the target associated with the ith layer 
(or a null matrix []) is located at:

net.targets{i}

if the corresponding target connection is 1 (or 0).

net.targetConnect(i)

Target Properties. See “Targets” in the “Subobject Properties” section for 
descriptions of target properties.

biases
This property holds structures of properties for each of the network’s biases.

net.biases

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The structure defining the properties of the bias associated with the ith layer 
(or a null matrix []) is located at:

net.biases{i}

if the corresponding bias connection is 1 (or 0).

net.biasConnect(i)

Nl 1× Nl

Nl 1× Nl
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Network Properties
Bias Properties. See “Biases” in the “Subobject Properties” section for 
descriptions of bias properties.

inputWeights
This property holds structures of properties for each of the network’s input 
weights.

net.inputWeights

It is always an  cell array, where  is the number of network layers 
(net.numLayers) and  is the number of network inputs (net.numInputs).

The structure defining the properties of the weight going to the ith layer from 
the jth input (or a null matrix []) is located at:

net.inputWeights{i,j}

if the corresponding input connection is 1 (or 0).

net.inputConnect(i,j)

Input Weight Properties. See “Input Weights” in the “Subobject Properties” section 
for descriptions of input weight properties.

layerWeights
This property holds structures of properties for each of the network’s layer 
weights.

net.layerWeights

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The structure defining the properties of the weight going to the ith layer from 
the jth layer (or a null matrix []) is located at:

net.layerWeights{i,j}

if the corresponding layer connection is 1 (or 0).

net.layerConnect(i,j)

Layer Weight Properties. See “LayerWeights” in the “Subobject Properties” section 
for descriptions of layer weight properties.

Nl Ni× Nl
Ni

Nl Nl× Nl
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Functions
These properties define the algorithms to use when a network is to adapt, is to 
be initialized, is to have its performance measured, or is to be trained.

adaptFcn
This property defines the function to be used when the network adapts.

net.adaptFcn

It can be set to the name of any network adapt function, including this toolbox 
function:

adaptwb  - By-weight-and-bias network adaption function.

The network adapt function is used to perform adaption whenever adapt is 
called.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom adapt functions.

Side Effects. Whenever this property is altered the network’s adaption 
parameters (net.adaptParam) are set to contain the parameters and default 
values of the new function.

initFcn
This property defines the function used to initialize the network’s weight 
matrices and bias vectors.

net.initFcn

It can be set to the name of any network initialization function, including this 
toolbox function.

initlay  - Layer-by-layer network initialization function.

The initialization function is used to initialize the network whenever init is 
called.

net = init(net)
10



Network Properties
Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom initialization functions.

Side Effects. Whenever this property is altered the network’s initialization 
parameters (net.initParam) are set to contain the parameters and default 
values of the new function.

performFcn
This property defines the function used to measure the network’s performance.

net.performFcn

It can be set to the name of any performance function, including these toolbox 
functions:

The performance function is used to calculate network performance during 
training whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

Custom functions. See Chapter 11, “Advanced Topics” for information on creating 
custom performance functions.

Side Effects. Whenever this property is altered the network’s performance 
parameters (net.performParam) are set to contain the parameters and default 
values of the new function.

trainFcn
This property defines the function used to train the network.

net.trainFcn

Performance Functions

mae Mean absolute error performance function.

mse Mean squared error performance function.

msereg Mean squared error w/reg performance function.

sse Sum squared error performance function.
12-11
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It can be set to the name of any training function, including these toolbox 
functions:

The training function is used to train the network whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom training functions.

Side Effects. Whenever this property is altered the network’s training 
parameters (net.trainParam) are set to contain the parameters and default 
values of the new function.

Training Functions

trainbfg BFGS quasi-Newton backpropagation.

trainbr Bayesian regularization.

traincgb Powell-Beale conjugate gradient backpropagation.

traincgf Fletcher-Powell conjugate gradient backpropagation.

traincgp Polak-Ribiere conjugate gradient backpropagation.

traingd Gradient descent backpropagation.

traingda Gradient descent w/adaptive lr backpropagation.

traingdm Gradient descent w/momentum backpropagation.

traingdx Gradient descent w/momentum & adaptive lr backprop.

trainlm Levenberg-Marquardt backpropagation.

trainoss One step secant backpropagation.

trainrp Resilient backpropagation (Rprop)

trainscg Scaled conjugate gradient backpropagation.

trainwb By-weight-and-bias network training function.

trainwb1 By-weight-&-bias 1-vector-at-a-time training function.
12



Network Properties
Parameters

adaptParam
This property defines the parameters and values of the current adapt function.

net.adaptParam

The fields of this property depend on the current adapt function 
(net.adaptFcn). Evaluate the above reference to see the fields of the current 
adapt function.

Call help on the current adapt function to get a description of what each field 
means.

help(net.adaptFcn)

initParam
This property defines the parameters and values of the current initialization 
function.

net.initParam

The fields of this property depend on the current initialization function 
(net.initFcn). Evaluate the above reference to see the fields of the current 
initialization function.

Call help on the current initialization function to get a description of what each 
field means.

help(net.initFcn)

performParam
This property defines the parameters and values of the current performance 
function.

net.performParam

The fields of this property depend on the current performance function 
(net.performFcn). Evaluate the above reference to see the fields of the current 
performance function.
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Call help on the current performance function to get a description of what each 
field means.

help(net.performFcn)

trainParam
This property defines the parameters and values of the current training 
function.

net.trainParam

The fields of this property depend on the current training function 
(net.trainFcn). Evaluate the above reference to see the fields of the current 
training function.

Call help on the current training function to get a description of what each field 
means.

help(net.trainFcn)

Weight and Bias Values
These properties define the network’s adjustable parameters: its weight 
matrices and bias vectors.

IW
This property defines the weight matrices of weights going to layers from 
network inputs.

net.IW

It is always an  cell array, where  is the number of network layers 
(net.numLayers) and  is the number of network inputs (net.numInputs).

The weight matrix for the weight going to the ith layer from the jth input (or a 
null matrix []) is located at:

net.IW{i,j}

if the corresponding input connection is 1 (or 0).

net.inputConnect(i,j)

Nl Ni× Nl
Ni
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Network Properties
The weight matrix will have as many rows as the size of the layer it goes to 
(net.layers{i}.size). It will have as many columns as the product of the 
input size with the number of delays associated with the weight.

net.inputs{j}.size * length(net.inputWeights{i,j}.delays)

These dimensions can also be obtained from the input weight properties.

net.inputWeights{i,j}.size

LW
This property defines the weight matrices of weights going to layers from other 
layers.

net.LW

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The weight matrix for the weight going to the ith layer from the jth layer (or a 
null matrix []) is located at:

net.LW{i,j}

if the corresponding layer connection is 1 (or 0).

net.layerConnect(i,j)

The weight matrix will have as many rows as the size of the layer it goes to 
(net.layers{i}.size). It will have as many columns as the product of the size 
of the layer it comes from with the number of delays associated with the 
weight.

net.layers{j}.size * length(net.layerWeights{i,j}.delays)

These dimensions can also be obtained from the layer weight properties.

net.layerWeights{i,j}.size

Nl Nl× Nl
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b
This property defines the bias vectors for each layer with a bias.

net.b

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The bias vector for the ith layer (or a null matrix []) is located at:

net.b{i}

if the corresponding bias connection is 1 (or 0).

net.biasConnect(i)

The number of elements in the bias vector is always equal to the size of the 
layer it is associated with (net.layers{i}.size).

This dimension can also be obtained from the bias properties.

net.biases{i}.size

Other
The only other property is a user data property.

userdata
This property provides a place for users to add custom information to a network 
object.

net.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.userdata.note

Please keep this information confidential.

Nl 1× Nl
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Subobject Properties
Subobject Properties
These properties define the details of a network’s inputs, layers, outputs, 
targets, biases, and weights.

Inputs
These properties define the details of each ith network input.

net.inputs{i}

range
This property defines the ranges of each element of the ith network input.

net.inputs{i}.range

It can be set to any  matrix, where  is the number of elements in the 
input (net.inputs{i}.size) and each element in column 1 is less than the 
element next to it in column 2.

Each jth row defines the minimum and maximum values of the jth input 
element, in that order:

net.inputs{i}(j,:)

Uses. Some initialization functions use input ranges to find appropriate initial 
values for input weight matrices.

Side Effects. Whenever the number of rows in this property is altered, the 
layers’s size (net.inputs{i}.size) will change to remain consistent. The size 
of any weights coming from this input (net.inputWeights{:,i}.size) and the 
dimensions of their weight matrices (net.IW{:,i}) will also change size.

size
This property defines the number of elements in the ith network input.

net.inputs{i}.size

It can be set to 0 or a positive integer.

Side Effects. Whenever this property is altered, the input’s ranges 
(net.inputs{i}.ranges), any input weights (net.inputWeights{:,i}.size) 
and their weight matrices (net.IW{:,i}) will change size to remain consistent.

Ri 2× Ri
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userdata
This property provides a place for users to add custom information to the ith 
network input.

net.inputs{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.inputs{i}.userdata.note

Layers
These properties define the details of each ith network layer.

net.layers{i}

dimensions
This property defines the physical dimensions of the ith layer’s neurons. Being 
able to arrange a layer’s neurons in a multi-dimensional manner is important 
for self-organizing maps.

net.layers{i}.dimensions

It can be set to any row vector of 0 or positive integer elements, where the 
product of all the elements will become the number of neuron’s in the layer 
(net.layers{i}.size).

Uses. Layer dimensions are used to calculate the neuron positions within the 
layer (net.layers{i}.positions) using the layer’s topology function 
(net.layers{i}.topologyFcn).

Side Effects. Whenever this property is altered, the layers’s size 
(net.layers{i}.size) will change to remain consistent. The layer’s neuron 
positions (net.layers{i}.positions) and the distances between the neurons 
(net.layers{i}.distances) will also be updated.
18



Subobject Properties
distanceFcn
This property defines the function used to calculate distances between neurons 
in the ith layer (net.layers{i}.distances) from the neuron positions 
(net.layers{i}.positions). Neuron distances are used by self-organizing 
maps.

net.layers{i}.distanceFcn

It can be set to the name of any distance function, including these toolbox 
functions:

Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom distance functions.

Side Effects. Whenever this property is altered, the distance between the layer’s 
neurons (net.layers{i}.distances) will be updated.

distances (read-only)
This property defines the distances between neurons in the ith layer. These 
distances are used by self-organizing maps.

net.layers{i}.distances

It is always set to the result of applying the layer’s distance function 
(net.layers{i}.distanceFcn) to the positions of the layers neurons 
(net.layers{i}.positions).

Distance Functions

boxdist Distance between two position vectors

dist Euclidean distance weight function.

linkdist Link distance function.

mandist Manhattan distance weight function.
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initFcn
This property defines the initialization function used to initialize the ith layer, 
if the network initialization function (net.initFcn) is initlay.

net.layers{i}.initFcn

It can be set to the name of any layer initialization function, including these 
toolbox functions:

If the network initialization is set to initlay, then the function indicated by 
this property will be used to initialize the layer’s weights and biases when init 
is called.

net = init(net)

Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom initialization functions.

netInputFcn
This property defines the net input function use to calculate the ith layer’s net 
input, given the layer’s weighted inputs and bias.

net.layers{i}.netInputFcn

It can be set to the name of any net input function, including these toolbox 
functions:

The net input function is used to simulate the network when sim is called.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Layer Initialization Functions

initnw Nguyen-Widrow layer initialization function.

initwb By-weight-and-bias layer initialization function

Net Input Functions

netprod Product net input function.

netsum Sum net input function.
20



Subobject Properties
Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom net input functions.

positions (read-only)
This property defines the positions of neurons in the ith layer. These positions 
are used by self-organizing maps.

net.layers{i}.positions

It is always set to the result of applying the layer’s topology function 
(net.layers{i}.topologyFcn) to the positions of the layer’s dimensions 
(net.layers{i}.dimensions).

Plotting. Use plotsom to plot the positions of a layer’s neurons.

For instance, if the first layer neurons of a network are arranged with 
dimensions (net.layers{1}.dimensions) of [4 5] and the topology function 
(net.layers{1}.topologyFcn) is hextop, the neuron’s positions can be plotted 
as shown below.

plotsom(net.layers{1}.positions)
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size
This property defines the number of neurons in the ith layer.

net.layers{i}.size

It can be set to 0 or a positive integer.

Side Effects. Whenever this property is altered, the sizes of any input weights 
going to the layer (net.inputWeights{i,:}.size) and any layer weights going 
to the layer (net.layerWeights{i,:}.size) or coming from the layer 
(net.inputWeights{i,:}.size), and the layer’s bias (net.biases{i}.size) 
will change.

The dimensions of the corresponding weight matrices (net.IW{i,:}, 
net.LW{i,:}, net.LW{:,i}) and biases (net.b{i}) will also change.

Changing this property also changes the size of the layer’s output 
(net.outputs{i}.size) and target (net.targets{i}.size) if they exist.

Finally, when this property is altered the dimensions of the layer’s neurons 
(net.layers{i}.dimension) are set to the same value. (This results in a 
one-dimensional arrangement of neurons. If another arrangement is required 
set the dimensions property directly instead of using size).

topologyFcn
This property defines the function used to calculate the ith layer’s neuron 
positions (net.layers{i}.positions) from the layer’s dimensions 
(net.layers{i}.dimensions).

net.topologyFcn

It can be set to the name of any topology function, including these toolbox 
functions:

Custom functions. See Chapter 11, “Advanced Topics” for information on creating 
custom topology functions.

Topology Functions

gridtop Gridtop layer topology function.

hextop Hexagonal layer topology function.

randtop Random layer topology function.
22



Subobject Properties
Side Effects. Whenever this property is altered, the positions of the layer’s 
neurons (net.layers{i}.positions) will be updated.

Plotting. Use plotsom to plot the positions of a layer’s neurons.

For instance, if the first layer neurons of a network are arranged with 
dimensions (net.layers{1}.dimensions) of [8 10] and the topology function 
(net.layers{1}.topologyFcn) is randtop, the neuron’s positions will be 
arranged something like those shown in the plot below.

plotsom(net.layers{1}.positions)

transferFcn
This function defines the transfer function use to calculate the ith layer’s 
output, given the layer’s net input.

net.layers{i}.transferFcn
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It can be set to the name of any transfer function, including these toolbox 
functions:

The transfer function is used to simulate the network when sim is called.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom functions. See Chapter 11, “Advanced Topics” for information on creating 
custom transfer functions.

userdata
This property provides a place for users to add custom information to the ith 
network layer.

net.layers{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.layers{i}.userdata.note

Transfer Functions

compet Competitive transfer function.

hardlim Hard limit transfer function.

hardlims Symmetric hard limit transfer function.

logsig Log sigmoid transfer function.

poslin Positive linear transfer function.

purelin Hard limit transfer function.

radbas Radial basis transfer function.

satlin Saturating linear transfer function.

satlins Symmetric saturating linear transfer function.

softmax Soft max transfer function.

tansig Hyperbolic tangent sigmoid transfer function.

tribas Triangular basis transfer function
24



Subobject Properties
Outputs

size (read-only)
This property defines the number of elements in the ith layer’s output.

net.outputs{i}.size

It is always set to the size of the ith layer (net.layers{i}.size).

userdata
This property provides a place for users to add custom information to the ith 
layer’s output.

net.outputs{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.outputs{i}.userdata.note

Targets

size (read-only)
This property defines the number of elements in the ith layer’s target.

net.targets{i}.size

It is always set to the size of the ith layer (net.layers{i}.size).

userdata
This property provides a place for users to add custom information to the ith 
layer’s target.

net.targets{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.targets{i}.userdata.note
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Biases

initFcn
This property defines the function used to initialize the ith layer’s bias vector, 
if the network initialization function is initlay, and the ith layer’s 
initialization function is initwb.

net.biases{i}.initFcn

This function can be set to the name of any bias initialization function, 
including the toolbox functions:

This function will be used to calculate an initial bias vector for the ith layer 
(net.b{i}) when init is called, if the network initialization function 
(net.initFcn) is initlay, and the ith layer’s initialization function 
(net.layers{i}.initFcn) is initwb.

net = init(net)

Custom functions. See Chapter 11, “Advanced Topics” for information on creating 
custom initialization functions.

learn
This property defines whether the ith bias vector is to be altered during 
training and adaption.

net.biases{i}.learn

It can be set to 0 or 1.

It enables or disables the bias’ learning during calls to either adapt or train.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

 Bias Initialization Functions

initcon Conscience bias initialization function.

initzero Zero weight/bias initialization function.

rands Symmetric random weight/bias initialization function.
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Subobject Properties
learnFcn
This property defines the function used to update the ith layer’s bias vector 
during training, if the network training function is trainwb or trainwb1, or 
during adaption, if the network adapt function is adaptwb.

net.biases{i}.learnFcn

It can be set to the name of any bias learning function, including these toolbox 
functions:

The learning function will update the ith bias vector (net.b{i}) during calls to 
train, if the network training function (net.trainFcn) is trainwb or trainwb1, 
or during calls to adapt, if the network adapt function (net.adaptFcn) is 
adaptwb.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

Custom functions. See Chapter 11, “Advanced Topics” for information on creating 
custom learning functions.

Side Effects. Whenever this property is altered the biases’s learning parameters 
(net.biases{i}.learnParam) are set to contain the fields and default values of 
the new function.

learnParam
This property defines the learning parameters and values for the current 
learning function of the ith layer’s bias.

net.biases{i}.learnParam

Learning Functions

learncon Conscience bias learning function.

learngd Gradient descent weight/bias learning function

learngdm Grad. descent w/momentum weight/bias learning function

learnp Perceptron weight/bias learning function.

learnpn Normalized perceptron weight/bias learning function.

learnwh Widrow-Hoff weight/bias learning rule
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The fields of this property depend on the current learning function 
(net.biases{i}.learnFcn). Evaluate the above reference to see the fields of 
the current learning function.

Call help on the current learning function to get a description of what each field 
means.

help(net.biases{i}.learnFcn)

size (read-only)
This property defines the size of the ith layer’s bias vector.

net.biases{i}.size

It is always set to the size of the ith layer (net.layers{i}.size).

userdata
This property provides a place for users to add custom information to the ith 
layer’s bias.

net.biases{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.biases{i}.userdata.note

Input Weights

delays
This property defines a tapped delay line between the jth input and its weight 
to the ith layer.

net.inputWeights{i,j}.delays

It must be set to a row vector of increasing 0 or positive integer values.

Side Effects. Whenever this property is altered the weight’s size 
(net.inputWeights{i,j}.size) and the dimensions of its weight matrix 
(net.IW{i,j}) are updated.
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initFcn
This property defines the function used to initialize the weight matrix going to 
the ith layer from the jth input, if the network initialization function is 
initlay, and the ith layer’s initialization function is initwb.

net.inputWeights{i,j}.initFcn

This function can be set to the name of any weight initialization function, 
including these toolbox functions:

This function will be used to calculate an initial weight matrix for the weight 
going to the ith layer from the jth input (net.IW{i,j}) when init is called, if 
the network initialization function (net.initFcn) is initlay, and the ith 
layer’s initialization function (net.layers{i}.initFcn) is initwb.

net = init(net)

Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom initialization functions.

learn
This property defines whether the weight matrix to the ith layer from the jth 
input is to be altered during training and adaption.

net.inputWeights{i,j}.learn

It can be set to 0 or 1.

It enables or disables the weights learning during calls to either adapt or 
train.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

Weight Initialization Functions

initzero Zero weight/bias initialization function.

midpoint Midpoint weight initialization function.

randnc Normalized column weight initialization function.

randnr Normalized row weight initialization function.

rands Symmetric random weight/bias initialization function.
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learnFcn
This property defines the function used to update the weight matrix going to 
the ith layer from the jth input during training, if the network training function 
is trainwb or trainwb1, or during adaption, if the network adapt function is 
adaptwb.

net.inputWeights{i,j}.learnFcn

It can be set to the name of any weight learning function, including these 
toolbox functions:

The learning function will update the weight matrix of the ith layer form the 
jth input (net.IW{i,j}) during calls to train, if the network training function 
(net.trainFcn) is trainwb or trainwb1, or during calls to adapt, if the network 
adapt function (net.adaptFcn) is adaptwb.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

Weight Learning Functions

learngd Gradient descent weight/bias learning function

learngdm Grad. descent w/momentum weight/bias learning function

learnh Hebb weight learning function.

learnhd Hebb with decay weight learning function.

learnis Instar weight learning function.

learnk Kohonen weight learning function.

learnlv1 LVQ1 weight learning function.

learnlv2 LVQ2 weight learning function.

learnos Outstar weight learning function.

learnp Perceptron weight/bias learning function.

learnpn Normalized perceptron weight/bias learning function.

learnsom Self-organizing map weight learning function.

learnwh Widrow-Hoff weight/bias learning rule
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Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom learning functions.

learnParam
This property defines the learning parameters and values for the current 
learning function of the ith layer’s weight coming from the jth input.

net.inputWeights{i,j}.learnParam

The fields of this property depend on the current learning function 
(net.inputWeights{i,j}.learnFcn). Evaluate the above reference to see the 
fields of the current learning function.

Call help on the current learning function to get a description of what each field 
means.

help(net.inputWeights{i,j}.learnFcn)

size (read-only)
This property defines the dimensions of the ith layer’s weight matrix from the 
jth network input.

net.inputWeights{i,j}.size

It is always set to a two element row vector indicating the number of rows and 
columns of the associated weight matrix (net.IW{i,j}). The first element is 
equal to the size of the ith layer (net.layers{i}.size). The second element is 
equal to the product of the length of the weights delay vectors with the size of 
the jth input:

length(net.inputWeights{i,j}.delays) * net.inputs{j}.size

userdata
This property provides a place for users to add custom information to the (i,j)th 
input weight.

net.inputWeights{i,j}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.inputWeights{i,j}.userdata.note
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weightFcn
This property defines the function used to apply the ith layer’s weight from the 
jth input to that input.

net.inputWeights{i,j}.weightFcn

It can be set to the name of any weight function, including these toolbox 
functions:

The weight function is used when sim is called to simulate the network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom functions. See Chapter 11, “Advanced Topics” for information on creating 
custom weight functions.

LayerWeights

delays
This property defines a tapped delay line between the jth layer and its weight 
to the ith layer.

net.layerWeights{i,j}.delays

It must be set to a row vector of increasing 0 or positive integer values.

initFcn
This property defines the function used to initialize the weight matrix going to 
the ith layer from the jth layer, if the network initialization function is 
initlay, and the ith layer’s initialization function is initwb.

net.layerWeights{i,j}.initFcn

Weight Functions

dist Conscience bias initialization function.

dotprod Zero weight/bias initialization function.

mandist Manhattan distance weight function.

negdist Normalized column weight initialization function.

normprod Normalized row weight initialization function.
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Subobject Properties
This function can be set to the name of any weight initialization function, 
including the toolbox functions:

This function will be used to calculate an initial weight matrix for the weight 
going to the ith layer from the jth layer (net.LW{i,j}) when init is called, if 
the network initialization function (net.initFcn) is initlay, and the ith 
layer’s initialization function (net.layers{i}.initFcn) is initwb.

net = init(net)

Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom initialization functions.

learn
This property defines whether the weight matrix to the ith layer from the jth 
layer is to be altered during training and adaption.

net.layerWeights{i,j}.learn

It can be set to 0 or 1.

It enables or disables the weights learning during calls to either adapt or 
train.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

learnFcn
This property defines the function used to update the weight matrix going to 
the ith layer from the jth layer during training, if the network training function 

Weight and Bias Initialization Functions

initzero Zero weight/bias initialization function.

midpoint Midpoint weight initialization function.

randnc Normalized column weight initialization function.

randnr Normalized row weight initialization function.

rands Symmetric random weight/bias initialization function.
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is trainwb or trainwb1, or during adaption, if the network adapt function is 
adaptwb.

net.layerWeights{i,j}.learnFcn

It can be set to the name of any weight learning function, including these 
toolbox functions:

The learning function will update the weight matrix of the ith layer form the 
jth layer (net.LW{i,j}) during calls to train, if the network training function 
(net.trainFcn) is trainwb or trainwb1, or during calls to adapt, if the network 
adapt function (net.adaptFcn) is adaptwb.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom learning functions.

Learning Functions

learngd Gradient descent weight/bias learning function

learngdm Grad. descent w/momentum weight/bias learning function

learnh Hebb weight learning function.

learnhd Hebb with decay weight learning function.

learnis Instar weight learning function.

learnk Kohonen weight learning function.

learnlv1 LVQ1 weight learning function.

learnlv2 LVQ2 weight learning function.

learnos Outstar weight learning function.

learnp Perceptron weight/bias learning function.

learnpn Normalized perceptron weight/bias learning function.

learnsom Self-organizing map weight learning function.

learnwh Widrow-Hoff weight/bias learning rule
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Subobject Properties
learnParam
This property defines the learning parameters fields and values for the current 
learning function of the ith layer’s weight coming from the jth layer.

net.layerWeights{i,j}.learnParam

The sub-fields of this property depend on the current learning function 
(net.layerWeights{i,j}.learnFcn). Evaluate the above reference to see the 
fields of the current learning function.

Get help on the current learning function to get a description of what each field 
means.

help(net.layerWeights{i,j}.learnFcn)

size (read-only)
This property defines the dimensions of the ith layer’s weight matrix from the 
jth layer.

net.layerWeights{i,j}.size

It is always set to a two element row vector indicating the number of rows and 
columns of the associated weight matrix (net.LW{i,j}). The first element is 
equal to the size of the ith layer (net.layers{i}.size). The second element is 
equal to the product of the length of the weights delay vectors with the size of 
the jth layer:

length(net.layerWeights{i,j}.delays) * net.layers{j}.size

userdata
This property provides a place for users to add custom information to the (i,j)th 
layer weight.

net.layerWeights{i,j}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.layerWeights{i,j}.userdata.note
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12-
weightFcn
This property defines the function used to apply the ith layer’s weight from the 
jth layer to that layer’s output.

net.layerWeights{i,j}.weightFcn

It can be set to the name of any weight function, including these toolbox 
functions:

The weight function is used when sim is called to simulate the network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom Functions. See Chapter 11, “Advanced Topics” for information on creating 
custom weight functions.

Weight Functions

dist Euclidean distance weight function.

dotprod Dot product weight function.

mandist Manhattan distance weight function.

negdist Dot product weight function.

normprod Normalized dot product weight function.
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Functions Listed by Network Type

Function and type

assoclr Associative learning rules

backprop Backpropagation networks

elman Elman recurrent networks

hopfield Hopfield recurrent networks

linnet Linear networks

lvq Learning vector quantization

percept Perceptrons

radbasis Radial basis networks

selforg Self-organizing networks
2



Functions by Class
Functions by Class

 Adapt Function

adaptwb By-weight-and-bias network adaption function.

Analysis Functions

errsurf Error surface of a single input neuron.

maxlinr Maximum learning rate for a linear neuron.

Distance Functions

boxdist Distance between two position vectors

dist Euclidean distance weight function.

linkdist Link distance function.

mandist Manhattan distance weight function.

Layer Initialization Functions

initnw Nguyen-Widrow layer initialization function.

initwb By-weight-and-bias layer initialization function
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Learning Functions

learncon Conscience bias learning function.

learngd Gradient descent weight/bias learning function

learngdm Grad. descent w/momentum weight/bias learning function

learnh Hebb weight learning function.

learnhd Hebb with decay weight learning function.

learnis Instar weight learning function.

learnk Kohonen weight learning function.

learnlv1 LVQ1 weight learning function.

learnlv2 LVQ2 weight learning function.

learnos Outstar weight learning function.

learnp Perceptron weight/bias learning function.

learnpn Normalized perceptron weight/bias learning function.

learnsom Self-organizing map weight learning function.

learnwh Widrow-Hoff weight/bias learning rule

Line Search Functions

srchbac Backtracking search.

srchbre Brent's combination golden section/quadratic interpolation.

srchcha Charalambous' cubic interpolation.

srchgol Golden section search.

srchhyb Hybrid bisection/cubic search.
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Functions by Class
Net Input Derivative Functions

dnetprod Product net input derivative function.

dnetsum Sum net input derivative function.

Net Input Functions

netprod Product net input function.

netsum Sum net input function.

Network Initialization Functions

initlay Layer-by-layer network initialization function.

Network Use

sim Simulate a neural network.

init Initialize a neural network.

adapt Allow a neural network to adapt.

train Train a neural network.

disp Display a neural network's properties.

display Display a neural network variable's name and properties.
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New Networks 

network Create a custom neural network.

newc Create a competitive layer.

newcf Create a cascade-forward backpropagation network.

newelm Create an Elman backpropagation network.

newff Create a feed-forward backpropagation network.

newfftd Create a feed-forward input-delay backprop network.

newgrnn Design a generalized regression neural network.

newhop Create a Hopfield recurrent network.

newlin Create a linear layer.

newlind Design a linear layer.

newlvq Create a learning vector quantization network

newp Create a perceptron.

newpnn Design a probabilistic neural network.

newrb Design a radial basis network.

newrbe Design an exact radial basis network.

newsom Create a self-organizing map.

Performance Derivative Functions

dmae Mean absolute error performance derivatives function.

dmse Mean squared error performance derivatives function.

dmsereg Mean squared error w/reg performance derivative function.

dsse Sum squared error performance derivative function.
6



Functions by Class
Performance Functions

mae Mean absolute error performance function.

mse Mean squared error performance function.

msereg Mean squared error w/reg performance function.

sse Sum squared error performance function.

Plotting Functions

hinton Hinton graph of weight matrix.

hintonwb Hinton graph of weight matrix and bias vector.

plotep Plot weight and bias position on error surface.

plotes Plot error surface of single input neuron.

plotpc Plot classification line on perceptron vector plot.

plotperf Plot network performance.

plotpv Plot perceptron input/target vectors.

plotsom Plot self-organizing map. 

plotv Plot vectors as lines from the origin.

plotvec Plot vectors with different colors.
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Pre and Post Processing

postmnmx Unnormalize data which has been norm. by PREMNMX.

postreg Post-training regression analysis.

poststd Unnormalize data which has been normalized by PRESTD.

premnmx Normalize data for maximum of 1 and minimum of -1.

prepca Principal component analysis on input data.

prestd Normalize data for unity standard deviation and zero mean.

tramnmx Transform data with precalculated minimum and max.

trapca Transform data with PCA matrix computed by PREPCA.

trastd Transform data with precalc. mean & standard deviation.

Simulink Support

gensim Generate a Simulink block for neural network simulation.

Topology Functions

gridtop Gridtop layer topology function.

hextop Hexagonal layer topology function.

randtop Random layer topology function.
8



Functions by Class
Training Functions

trainbfg BFGS quasi-Newton backpropagation.

trainbr Bayesian regularization.

traincgb Powell-Beale conjugate gradient backpropagation.

traincgf Fletcher-Powell conjugate gradient backpropagation.

traincgp Polak-Ribiere conjugate gradient backpropagation.

traingd Gradient descent backpropagation.

traingda Gradient descent w/adaptive lr backpropagation.

traingdm Gradient descent w/momentum backpropagation.

traingdx Gradient descent w/momentum & adaptive lr backprop.

trainlm Levenberg-Marquardt backpropagation.

trainoss One step secant backpropagation.

trainrp Resilient backpropagation (Rprop)

trainscg Scaled conjugate gradient backpropagation.

trainwb By-weight-and-bias network training function.

trainwb1 By-weight-&-bias 1-vector-at-a-time training function.

Transfer Derivative Functions

dhardlim Hard limit transfer derivative function.

dhardlms Symmetric hard limit transfer derivative function.

dlogsig Log sigmoid transfer derivative function.

dposlin Positive linear transfer derivative function.
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dpurelin Hard limit transfer derivative function.

dradbas Radial basis transfer derivative function.

dsatlin Saturating linear transfer derivative function.

dsatlins Symmetric saturating linear transfer derivative function.

dtansig Hyperbolic tangent sigmoid transfer derivative function.

dtribas Triangular basis transfer derivative function

Transfer Functions

compet Competitive transfer function.

hardlim Hard limit transfer function.

hardlims Symmetric hard limit transfer function.

logsig Log sigmoid transfer function.

poslin Positive linear transfer function.

purelin Hard limit transfer function.

radbas Radial basis transfer function.

satlin Saturating linear transfer function.

satlins Symmetric saturating linear transfer function.

softmax Soft max transfer function.

tansig Hyperbolic tangent sigmoid transfer function.

tribas Triangular basis transfer function

Transfer Derivative Functions
10



Functions by Class
Vectors

cell2mat Combines cell array of matrices into one matrix.

combvec Create all combinations of vectors.

concur Create concurrent bias vectors.

con2seq Converts concurrent vectors to sequential vectors.

copy Copy matrix or cell array.

ind2vec Convert indices to vectors.

mat2cell Break matrix up into cell array of matrices.

minmax Ranges of matrix rows.

normc Normalize columns of matrix.

normr Normalize rows of matrix.

pnormc Pseudo-normalize columns of matrix.

quant Discretize value as multiple of a quantity.

seq2con Converts sequential vectors to concurrent vectors.

sumsqr Sum squared elements of matrix.

vec2ind Convert vectors to indices.

Weight and Bias Initialization Functions

initcon Conscience bias initialization function.

initzero Zero weight/bias initialization function.

midpoint Midpoint weight initialization function.

randnc Normalized column weight initialization function.

randnr Normalized row weight initialization function.

rands Symmetric random weight/bias initialization function.
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Weight Derivative Functions

ddotprod Dot product weight derivative function.

Weight Functions

dist Euclidean distance weight function.

dotprod Dot product weight function.

mandist Manhattan distance weight function.

negdist Dot product weight function.

normprod Normalized dot product weight function.
12



Transfer Functions
Transfer Functions

Transfer Function

compet Competitive transfer function.

hardlim Hard limit transfer function.

hardlims Symmetric hard limit transfer function

logsig Log sigmoid transfer function.

poslin Positive linear transfer function

purelin Linear transfer function.

radbas Radial basis transfer function.

satlin Saturating linear transfer function.

satlins Symmetric saturating linear transfer function

softmax Soft max transfer function.

tansig Hyperbolic tangent sigmoid transfer function.

tribas Triangular basis transfer function.
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Transfer Function Graphs
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Transfer Function Graphs
Transfer Function Graphs (continued)
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Transfer Function Graphs (continued)
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Transfer Function Graphs
Transfer Function Graphs (continued)
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Reference Page Headings
Following is a list of headings used in this section. Not every function will have 
all this material, but the material that is included will be ordered as shown.

- Purpose

- Graph and 
Symbol

- Syntax

- To Get Help

- Description

- Properties

- Examples

- Network Use

- Algorithm

- Limitations

- Notes

- See Also

- References
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adapt
adaptPurpose Allow a neural network to adapt

Syntax [net,Y,E,Pf,Af] = adapt(net,P,T,Pi,Ai)

To Get Help Type help network/adapt

Description [net,Y,E,Pf,Af] = adapt(net,P,T,Pi,Ai) takes,

net - Network.

P   - Network inputs.

T   - Network targets, default = zeros.

Pi  - Initial input delay conditions, default = zeros.

Ai  - Initial layer delay conditions, default = zeros.

and returns the following after applying the adapt function net.adaptFcn with 
the adaption parameters net.adaptParam:

net - Updated network.

Y - Network outputs.

E   - Network errors.

Pf  - Final input delay conditions.

Af  - Final layer delay conditions.

Note that T is optional and only needs to be used for networks that require 
targets. Pi and Pf are also optional and only needs to be used for networks that 
have input or layer delays.

adapt's signal arguments can have two formats: cell array or matrix.
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The cell array format is easiest to describe. It is most convenient to be used for 
networks with multiple inputs and outputs, and allows sequences of inputs to 
be presented:

P  - Ni x TS cell array, each element P{i,ts} is an Ri x Q matrix.

T  - Nt x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Pi - Ni x ID cell array, each element Pi{i,k} is an Ri x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

Y - NO x TS cell array, each element Y{i,ts} is a Ui x Q matrix.

Pf - Ni x ID cell array, each element Pf{i,k} is an Ri x Q matrix.

Af - Nl x LD cell array, each element Af{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

No = net.numOutputs

Nt = net.numTargets

ID = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps

Q  = Batch size
Ri = net.inputs{i}.size

Si = net.layers{i}.size

Ui = net.outputs{i}.size

Vi = net.targets{i}.size

The columns of Pi, Pf, Ai, and Af are ordered from oldest delay condition to 
most recent:

Pi{i,k} = input i at time ts = k-ID.

Pf{i,k} = input i at time ts = TS+k-ID.

Ai{i,k} = layer output i at time ts = k-LD.

Af{i,k} = layer output i at time ts = TS+k-LD.

The matrix format can be used if only one time step is to be simulated (TS = 1). 
It is convenient for network's with only one input and output, but can be used 
with networks that have more. 
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Each matrix argument is found by storing the elements of the corresponding 
cell array argument in a single matrix:

P  - (sum of Ri) x Q matrix

T  - (sum of Vi) x Q matrix

Pi - (sum of Ri) x (ID*Q) matrix.

Ai - (sum of Si) x (LD*Q) matrix.

Y - (sum of Ui) x Q matrix.

Pf - (sum of Ri) x (ID*Q) matrix.

Af - (sum of Si) x (LD*Q) matrix.

Examples Here two sequences of 12 steps (where T1 is known to depend on P1) are used 
to define the operation of a filter.

p1 = {-1  0 1 0 1 1 -1  0 -1 1 0 1};
t1 = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};

Here newlin is used to create a layer with an input range of [-1 1]), one 
neuron, input delays of 0 and 1, and a learning rate of 0.5. The linear layer is 
then simulated.

net = newlin([-1 1],1,[0 1],0.5);

Here the network adapts for one pass through the sequence.

The network's mean squared error is displayed. (Since this is the first call of 
adapt the default Pi is used.)

[net,y,e,pf] = adapt(net,p1,t1);
mse(e)

Note the errors are quite large. Here the network adapts to another 12 time 
steps (using the previous Pf as the new initial delay conditions.)

p2 = {1 -1 -1 1 1 -1  0 0 0 1 -1 -1};
t2 = {2  0 -2 0 2  0 -1 0 0 1  0 -1};
[net,y,e,pf] = adapt(net,p2,t2,pf);
mse(e)
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Here the network adapts for 100 passes through the entire sequence.

p3 = [p1 p2];
t3 = [t1 t2];
net.adaptParam.passes = 100;
[net,y,e] = adapt(net,p3,t3);
mse(e)

The error after 100 passes through the sequence is very small. The network has 
adapted to the relationship between the input and target signals.

Algorithm adapt calls the function indicated by net.adaptFcn, using the adaption 
parameter values indicated by net.adaptParam.

Given an input sequence with TS steps the network is updated as follows. Each 
step in the sequence of inputs is presented to the network one at a time. The 
network's weight and bias values are updated after each step, before the next 
step in the sequence is presented. Thus the network is updated TS times.

See Also sim, init, train
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adaptwbPurpose By-weight-and-bias network adaption function

Syntax [net,Ac,El] = adaptwb(net,Pd,Tl,Ai,Q,TS)

info = adaptwb(code)

Description adaptwb is a network function which updates each weight and bias according 
to its learning function.

adaptwb takes these inputs,

net - Neural network.

Pd - Delayed inputs.

Tl  - Layer targets.

Ai  - Initial input conditions.

Q   - Batch size.

TS  - Time steps.

After training the network with its weight and bias the learning functions 
returns,

net - Updated network.

Ac  - Collective layer outputs.

El  - Layer errors.

Adaption occurs according to the adaptwb's training parameter, shown here 
with its default value:

net.adaptparam.passes  1  Number of passes through sequence

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Zij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix or [].

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

Ac - Nl x (LD+TS) cell array, each element Ac{i,k} is an Si x Q matrix.

El - Nl x TS cell array, each element El{i,k} is an Si x Q matrix or [].
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where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Zij = Ri * length(net.inputWeights{i,j}.delays)

adaptwb(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Network Use You can create a standard network that uses adaptwb by calling newp or 
newlin.

To prepare a custom network to adapt with adaptwb:

1 Set net.adaptfcn to 'adaptwb'. (This will set net.adaptparam to adaptwb's 
default parameters.)

2 Set each net.inputweights{i,j}.learnfcn to a learning function. Set each 
net.layerweights{i,j}.learnfcn to a learning function. Set each 
net.biases{i}.learnfcn to a learning function. (Weight and bias learning 
parameters will automatically be set to default values for the given learning 
function.)

To allow the network to adapt:

1 Set net.adaptparam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call adapt.

See newp and newlin for adaption examples.

Algorithm Each weight and bias is updated according to its learning function after each 
step in the input sequence.

See Also newp, newlin, train
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boxdist
boxdistPurpose Box distance function

Syntax d = boxdist(pos);

Description boxdist is a layer distance function that is used to find the distances between 
the layer's neurons, given their positions.

boxdist(pos) takes one argument,

pos - N x S matrix of neuron positions.

and returns the S x S matrix of distances.

boxdist is most commonly used in conjunction with layers whose topology 
function is gridtop.

Examples Here we define a random matrix of positions for 10 neurons arranged in 
three-dimensional space and then find their distances.

pos = rand(3,10);
d = boxdist(pos)

Network Use You can create a standard network that uses boxdist as a distance function by 
calling newsom.

To change a network so that a layer's topology uses boxdist, set 
net.layers{i}.distanceFcn to 'boxdist'.

In either case, call sim to simulate the network with boxdist. See newsom for 
training and adaption examples.

Algorithm The box distance D between two position vectors Pi and Pj from a set of S 
vectors is:

Dij = max(abs(Pi-Pj))

See Also sim, dist, mandist, linkdist
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cell2matPurpose Combines a cell array of matrices into one matrix

Syntax m = cell2mat(c)

Description m = cell2mat(C)

C - Cell array of matrices: {M11 M12... ; M21 M22... ; ...}

returns

M - Single matrix: [M11 M12 ...; M21 M22... ; ...]

Examples Examples 

c = {[1 2] [3]; [4 5; 6 7] [8; 9]};
m = cell2mat(c)

See Also mat2cell
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combvecPurpose Create all combinations of vectors

Syntax combvec(a1,a2)

Description combvec(A1,A2) takes two inputs,

A1 - Matrix of N1 (column) vectors.

A2 - Matrix of N2 (column) vectors.

and returns a matrix of N1*N2 column vectors, where the columns consist of all 
possibilities of A2 vectors, appended to A1 vectors.

Examples a1 = [1 2 3; 4 5 6];
a2 = [7 8; 9 10];
a3 = combvec(a1,a2)
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competPurpose Competitive transfer function

Syntax A = compet(N)

info = compet(code)

Description compet is a transfer function. Transfer functions calculate a layer's output from 
its net input. 

compet(N) takes one input argument,

N - S x Q matrix of net input (column) vectors.

and returns output vectors with 1 where each net input vector has its 
maximum value, and 0 elsewhere.

compet(code) returns information about this function.

These codes are defined:

'deriv'  - Name of derivative function.

'name'   - Full name.

'output' - Output range.

'active' - Active input range. 

compet does not have a derivative function.

In many network paradigms it is useful to have a layer whose neurons compete 
for the ability to output a 1. In biology this is done by strong inhibitory 
connections between each of the neurons in a layer. The result is that the only 
neuron that can respond with appreciable output is the neuron whose net input 
is the highest. All other neurons are inhibited so strongly by the winning 
neuron that their output’s are negligible. 

To model this type of layer efficiently on a computer, a competitive transfer 
function is often used. Such a function transforms the net input vector of a 
layer of neurons so that the neuron receiving the greatest net input has an 
output of 1 and all other neurons have outputs of 0.
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Examples Here we define a net input vector N, calculate the output, and plot both with 
bar graphs. 

n = [0; 1; -0.5; 0.5];
a = compet(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Network Use You can create a standard network that uses compet by calling newc or newpnn.

To change a network so a layer uses compet, set 
net.layers{i,j}.transferFcn to 'compet'. 

In either case, call sim to simulate the network with compet.

See newc or newpnn for simulation examples.

See Also sim, softmax
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con2seqPurpose Convert concurrent vectors to sequential vectors

Syntax s = con2seq(b)

Description The neural network toolbox arranges concurrent vectors with a matrix, and 
sequential vectors with a cell array (where the second index is the time step).

con2seq and seq2con allow concurrent vectors to be converted to sequential 
vectors, and back again.

con2seq(b)takes one input,

b - R x TS matrix.

and returns one output,

S - 1 x TS cell array of R x 1 vectors.

con2seq(b,TS) can also convert multiple batches,

b - N x 1 cell array of matrices with M*TS columns.

TS - Time steps.

and will return,

S - N x TS cell array of matrices with M columns.

Examples Here a batch of three values is converted to a sequence.

p1 = [1 4 2]
p2 = con2seq(p1)

Here two batches of vectors are converted to two sequences with two time steps.

p1 = {[1 3 4 5; 1 1 7 4]; [7 3 4 4; 6 9 4 1]}
p2 = con2seq(p1,2)

See Also seq2con, concur
13-30



concur
concurPurpose Create concurrent bias vectors

Syntax concur(b,q)

Description concur(B,Q)

B - S x 1 bias vector (or Nl x 1 cell array of vectors).

Q - Concurrent size.

Returns an S x B matrix of copies of B (or Nl x 1 cell array of matrices).

Examples Here concur creates three copies of a bias vector.

b = [1; 3; 2; -1];
concur(b,3)

Network Use To calculate a layer's net input, the layer's weighted inputs must be combined 
with its biases. The following expression calculates the net input for a layer 
with the netsum net input function, two input weights, and a bias:

n = netsum(z1,z2,b)

The above expression works if Z1, Z2, and B are all S x 1 vectors. However, if 
the network is being simulated by sim (or adapt or train) in response to Q 
concurrent vectors, then Z1 and Z2 will be S x Q matrices. Before B can be 
combined with Z1 and Z2 we must make Q copies of it.

n = netsum(z1,z2,concur(b,q))

See Also netsum, netprod, sim, seq2con, con2seq
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ddotprodPurpose Dot product weight derivative function

Syntax dZ_dP = ddotprod('p',W,P,Z)

dZ_dW = ddotprod('w',W,P,Z)

Description ddotprod is a weight derivative function.

ddotprod('p',W,P,Z) takes three arguments,

W - S x R weight matrix.

P - R x Q Inputs.

Z - S x Q weighted input.

and returns the S x R derivative dZ/dP.

ddotprod('w',W,P,Z) returns the R x Q derivative dZ/dW.

Examples Here we define a weight W and input P for an input with 3 elements and a layer 
with 2 neurons.

W = [0 -1 0.2; -1.1 1 0];
P = [0.1; 0.6; -0.2];

Here we calculate the weighted input with dotprod, then calculate each 
derivative with ddotprod.

Z = dotprod(W,P)
dZ_dP = ddotprod('p',W,P,Z)
dZ_dW = ddotprod('w',W,P,Z)

Algorithm The derivative of a product of two elements with respect to one element is the 
other element.

dZ/dP = W
dZ/dW = P

See Also dotprod
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dhardlimPurpose Derivative of hard limit transfer function

Syntax dA_dN = dhardlim(N,A)

Description dhardlim is the derivative function for hardlim.

dhardlim(N,A) takes two arguments,

N - S x Q net input.

A - S x Q output.

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 hardlim neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer's output A with hardlim and then the derivative of A 
with respect to N.

A = hardlim(N)
dA_dN = dhardlim(N,A)

Algorithm The derivative of hardlim is calculated as follows:

d = 0

See Also hardlim
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dhardlmsPurpose Derivative of symmetric hard limit transfer function

Syntax dA_dN = dhardlms(N,A)

Description dhardlms is the derivative function for hardlims.

dhardlms(N,A) takes two arguments,

N - S x Q net input.

A - S x Q output.

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 hardlims neurons.

N = [0.1; 0.8; -0.7];
We calculate the layer's output A with hardlims and then the derivative of A 
with respect to N.

A = hardlims(N)
dA_dN = dhardlms(N,A)

Algorithm The derivative of hardlims is calculated as follows: 

d = 0

See Also hardlims
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dispPurpose Display a neural network's properties

Syntax disp(net)

To Get Help Type help network/disp

Description disp(net) displays a network's properties.

Examples Here a perceptron is created and displayed.

net = newp([-1 1; 0 2],3);
disp(net)

See Also display, sim, init, train, adapt
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displayPurpose Display the name and properties of a neural network variables

Syntax display(net)

To Get Help Type help network/disp

Description display(net) displays a network variable's name and properties.

Examples Here a perceptron variable is defined and displayed.

net = newp([-1 1; 0 2],3);
display(net)

display is automatically called as follows:

net

See Also disp, sim, init, train, adapt
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distPurpose Euclidean distance weight function

Syntax Z = dist(W,P)

df = dist('deriv')

D = dist(pos)

Description dist is the Euclidean distance weight function. Weight functions apply 
weights to an input to get weighted inputs.

 dist (W,P) takes these inputs,

W - S x R weight matrix.

P - R x Q matrix of Q input (column) vectors.

and returns the S x Q matrix of vector distances.

dist('deriv') returns '' because dist does not have a derivative function.

dist is also a layer distance function which can be used to find the distances 
between neurons in a layer.

dist(pos) takes one argument,

pos - N x S matrix of neuron positions.

and returns the S x S matrix of distances.

Examples Here we define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dist(W,P)

Here we define a random matrix of positions for 10 neurons arranged in three 
dimensional space and find their distances.

pos = rand(3,10);
D = dist(pos)
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Network Use You can create a standard network that uses dist by calling newpnn or 
newgrnn.

To change a network so an input weight uses dist, set 
net.inputWeight{i,j}.weightFcn to 'dist'. 

For a layer weight set net.inputWeight{i,j}.weightFcn to 'dist'.

To change a network so that a layer's topology uses dist, set 
net.layers{i}.distanceFcn to 'dist'.

In either case, call sim to simulate the network with dist. 

See newpnn or newgrnn for simulation examples.

Algorithm The Euclidean distance d between two vectors X and Y is:

d = sum((x-y).^2).^0.5

See Also sim, dotprod, negdist, normprod, mandist, linkdist
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dlogsigPurpose Log sigmoid transfer derivative function

Syntax dA_dN = dlogsig(N,A)

Description dlogsig is the derivative function for logsig.

dlogsig(N,A) takes two arguments,

N - S x Q net input.

A - S x Q output.

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 tansig neurons.

N = [0.1; 0.8; -0.7];
We calculate the layer's output A with logsig and then the derivative of A with 
respect to N.

A = logsig(N)
dA_dN = dlogsig(N,A)

Algorithm The derivative of logsig is calculated as follows:

d = a * (1 - a)

See Also logsig, tansig, dtansig
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dmaePurpose Mean absolute error performance derivative function

Syntax dPerf_dE = dmae('e',E,X,perf,PP)

dPerf_dX = dmae('x',E,X,perf,PP)

Description dmae is the derivative function for mae.

dmae('d',E,X,PERF,PP) takes these arguments,

E    - Matrix or cell array of error vector(s).

X    - Vector of all weight and bias values.

perf - Network performance (ignored).

PP   - Performance parameters (ignored).

and returns the derivative dPerf/dE.

dmae('x',E,X,PERF,PP) returns the derivative dPerf/dX.

Examples Here we define E and X for a network with one 3-element output and six weight 
and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here we calculate the network's mean absolute error performance, and 
derivatives of performance.

perf = mae(E)
dPerf_dE = dmae('e',E,X)
dPerf_dX = dmae('x',E,X)

Note that mae can be called with only one argument and dmae with only three 
arguments because the other arguments are ignored. The other arguments 
exist so that mae and dmae conform to standard performance function argument 
lists.

See Also mae
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dmsePurpose Mean squared error performance derivatives function

Syntax dPerf_dE = dmse('e',E,X,perf,PP)

dPerf_dX = dmse('x',E,X,perf,PP)

Description dmse is the derivative function for mse.

dmse('d',E,X,PERF,PP) takes these arguments,

E    - Matrix or cell array of error vector(s).

X    - Vector of all weight and bias values.

perf - Network performance (ignored).

PP   - Performance parameters (ignored).

and returns the derivative dPerf/dE.

dmse('x',E,X,PERF,PP) returns the derivative dPerf/dX.

Examples Here we define E and X for a network with one 3-element output and six weight 
and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here we calculate the network's mean squared error performance, and 
derivatives of performance.

perf = mse(E)
dPerf_dE = dmse('e',E,X)
dPerf_dX = dmse('x',E,X)

Note that mse can be called with only one argument and dmse with only three 
arguments because the other arguments are ignored. The other arguments 
exist so that mse and dmse conform to standard performance function argument 
lists.

See Also mse
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dmseregPurpose Mean squared error w/reg performance derivative function

Syntax dPerf_dE = dmsereg('e',E,X,perf,PP)

dPerf_dX = dmsereg('x',E,X,perf,PP)

Description dmsereg is the derivative function for msereg.

dmsereg('d',E,X,PERF,PP) takes these arguments,

E    - Matrix or cell array of error vector(s).

X    - Vector of all weight and bias values.

perf - Network performance (ignored).

PP   - mse performance parameter.

where PP defines one performance parameters, 

PP.ratio - Relative importance of errors vs. weight and bias values.

and returns the derivative dPerf/dE.

dmsereg('x',E,X,perf) returns the derivative dPerf/dX.

mse has only one performance parameter.

Examples Here we define an error E and X for a network with one 3-element output and 
six weight and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here the ratio performance parameter is defined so that squared errors are 5 
times as important as squared weight and bias values.

pp.ratio = 5/(5+1);

Here we calculate the network's performance, and derivatives of performance.

perf = msereg(E,X,pp)
dPerf_dE = dmsereg('e',E,X,perf,pp)
dPerf_dX = dmsereg('x',E,X,perf,pp)

See Also msereg
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dnetprodPurpose Derivative of net input product function

Syntax dN_dZ = dnetprod(Z,N)

Description dnetprod is the net input derivative function for netprod.

dnetprod takes two arguments,

Z - S x Q weighted input.

N - S x Q net input.

and returns the S x Q derivative dN/dZ.

Examples Here we define two weighted inputs for a layer with three neurons.

Z1 = [0; 1; -1];
Z2 = [1; 0.5; 1.2];

We calculate the layer's net input N with netprod and then the derivative of N 
with respect to each weighted input.

N = netprod(Z1,Z2)
dN_dZ1 = dnetprod(Z1,N)
dN_dZ2 = dnetprod(Z2,N)

Algorithm The derivative a product with respect to any element of that product is the 
product of the other elements.

See Also netsum, netprod, dnetsum
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dnetsumPurpose Sum net input derivative function

Syntax dN_dZ = dnetsum(Z,N)

Description dnetsum is the net input derivative function for netsum.

dnetsum takes two arguments,

Z - S x Q weighted input.

N - S x Q net input.

and returns the S x Q derivative dN/dZ.

Examples Here we define two weighted inputs for a layer with three neurons.

Z1 = [0; 1; -1];
Z2 = [1; 0.5; 1.2];

We calculate the layer's net input N with netsum and then the derivative of N 
with respect to each weighted input.

N = netsum(Z1,Z2)
dN_dZ1 = dnetsum(Z1,N)
dN_dZ2 = dnetsum(Z2,N)

Algorithm The derivative of a sum with respect to any element of that sum is always a 
ones matrix that is the same size as the sum.

See Also netsum, netprod, dnetprod
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dotprodPurpose Dot product weight function

Syntax Z = dotprod(W,P)

df = dotprod('deriv')

Description dotprod is the dot product weight function. Weight functions apply weights to 
an input to get weighted inputs.

dotprod(W,P) takes these inputs,

W - S x R weight matrix.

P - R x Q matrix of Q input (column) vectors.

and returns the S x Q dot product of W and P.

Examples Here we define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dotprod(W,P)

Network Use You can create a standard network that uses dotprod by calling newp or 
newlin.

To change a network so an input weight uses dotprod, set 
net.inputWeight{i,j}.weightFcn to 'dotprod’.  For a layer weight, set 
net.inputWeight{i,j}.weightFcn to 'dotprod’.

In either case, call sim to simulate the network with dotprod.

See newp and newlin for simulation examples.

See Also sim, ddotprod, dist, negdist, normprod
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dposlinPurpose Derivative of positive linear transfer function

Syntax dA_dN = dposlin(N,A)

Description dposlin is the derivative function for poslin.

dposlin(N,A) takes two arguments, and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 poslin neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer's output A with poslin and then the derivative of A with 
respect to N.

A = poslin(N)
dA_dN = dposlin(N,A)

Algorithm The derivative of poslin is calculated as follows:

d = 1, if 0 <= n; 0, Otherwise..

See Also poslin
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dpurelinPurpose Linear transfer derivative function

Syntax dA_dN = dpurelin(N,A)

Description dpurelin is the derivative function for logsig.

dpurelin(N,A) takes two arguments,

N - S x Q net input.

A - S x Q output.

and returns the S x Q derivative dA_dN.

Examples Here we define the net input N for a layer of 3 purelin neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer's output A with purelin and then the derivative of A 
with respect to N.

A = purelin(N)
dA_dN = dpurelin(N,A)

Algorithm The derivative of purelin is calculated as follows:

D(i,q) = 1

See Also purelin
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dradbasPurpose Derivative of radial basis transfer function

Syntax dA_dN = dradbas(N,A)

Description dradbas is the derivative function for radbas.

dradbas(N,A) takes two arguments,

N - S x Q net input.

A - S x Q output.

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 radbas neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer's output A with radbas and then the derivative of A with 
respect to N.

A = radbas(N)

Algorithm The derivative of radbas is calculated as follows:

d = -2*n*a

See Also radbas
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dsatlinPurpose Derivative of saturating linear transfer function

Syntax dA_dN = dsatlin(N,A)

Description dsatlin is the derivative function for satlin.

dsatlin(N,A) takes two arguments,

N - S x Q net input.

A - S x Q output.

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 satlin neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer's output A with satlin and then the derivative of A with 
respect to N.

A = satlin(N)
dA_dN = dsatlin(N,A)

Algorithm The derivative of satlin is calculated as follows:

d = 1, if 0 <= n <= 1; 0, Otherwise..

See Also satlin
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dsatlinsPurpose Derivative of symmetric saturating linear transfer function

Syntax dA_dN = dsatlins(N,A)

Description dsatlins is the derivative function for satlins.

dsatlins(N,A) takes two arguments,

N - S x Q net input.

A - S x Q output.

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 satlins neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer's output A with satlins and then the derivative of A 
with respect to N.

A = satlins(N)
dA_dN = dsatlins(N,A)

Algorithm The derivative of satlins is calculated as follows:

d = 1, if -1 <= n <= 1; 0, Otherwise.

See Also satlins
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dssePurpose Sum squared error performance derivative function

Syntax dPerf_dE = dsse('e',E,X,perf,PP)

dPerf_dX = dsse('x',E,X,perf,PP)

Description dsse is the derivative function for sse.

dsse('d',E,X,perf,PP) takes these arguments,

E - Matrix or cell array of error vector(s).

X - Vector of all weight and bias values.

perf - Network performance (ignored).

PP - Performance parameters (ignored).

and returns the derivative dPerf_dE.

dsse('x',E,X,perf,PP)returns the derivative dPerf_dX.

Examples Here we define an error E and X for a network with one 3-element output and 
six weight and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here we calculate the network's sum squared error performance, and 
derivatives of performance.

perf = sse(E)
dPerf_dE = dsse('e',E,X)
dPerf_dX = dsse('x',E,X)

Note that sse can be called with only one argument and dsse with only three 
arguments because the other arguments are ignored. The other arguments 
exist so that sse and dsse conform to standard performance function argument 
lists.

See Also sse
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dtansigPurpose Hyperbolic tangent sigmoid transfer derivative function

Syntax dA_dN = dtansig(N,A)

Description dtansig is the derivative function for tansig.

dtansig(N,A) takes two arguments,

N - S x Q net input.

A - S x Q output.

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 tansig neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer's output A with tansig and then the derivative of A with 
respect to N.

A = tansig(N)
dA_dN = dtansig(N,A)

Algorithm The derivative of tansig is calculated as follows:

d = 1-a^2

See Also tansig, logsig, dlogsig
13-52



dtribas
dtribasPurpose Derivative of triangular basis transfer function

Syntax dA_dN = dtribas(N,A)

Description dtribas is the derivative function for tribas.

dtribas(N,A) takes two arguments,

N - S x Q net input.

A - S x Q output.

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 tribas neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer's output A with tribas and then the derivative of A with 
respect to N.

A = tribas(N)
dA_dN = dtribas(N,A)

Algorithm The derivative of tribas is calculated as follows:

d = 1, if -1 <= n < 0; -1, if 0 < n <= 1; 0, Otherwise.

See Also tribas
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errsurfPurpose Error surface of single input neuron

Syntax errsurf(p,t,wv,bv,f)

Description errsurf(p,t,wv,bv,f) takes these arguments,

P  - 1 x Q matrix of input vectors.

T  - 1 x Q matrix of target vectors.

WV - Row vector of values of W.

BV - Row vector of values of B.

F  - Transfer function (string).

and returns a matrix of error values over WV and BV.

Examples p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
wv = -1:.1:1; bv = -2.5:.25:2.5;
es = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])

See Also plotes
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gensimPurpose Generate a simulink block for neural network simulation

Syntax gensim(net,st)

To Get Help Type help network/gensim

Description gensim(net,st) creates a simulink system containing a block which simulates 
neural network net.

gensim(net,st) takes these inputs,

net - Neural network.

st - Sample time (default = 1).

and creates a Simulink system containing a block which simulates neural 
network net with a sampling time of st.

If net has no input or layer delays (net.numInputDelays and 
net.numLayerDelays are both 0) then you can use -1 for st to get a 
continuously sampling network. 

Examples net = newff([0 1],[5 1]);
gensim(net)
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gridtopPurpose Grid layer topology function

Syntax pos = gridtop(dim1,dim2,...,dimN)

Description gridtop calculates neuron positions for layers whose neurons are arranged in 
an N dimensional grid.

gridtop(dim1,dim2,...,dimN) takes N arguments,

dimi - Length of layer in dimension i.

and returns an N x S matrix of N coordinate vectors where S is the product of 
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons 
arranged in a 8x5 grid.

pos = gridtop(8,5); plotsom(pos)

This code plots the connections between the same neurons, but shows each 
neuron at the location of its weight vector. The weights are generated randomly 
so the layer is very disorganized as is evident in the following plot.

W = rands(40,2); plotsom(W,dist(pos))

See Also hextop, randtop
13-56



hardlim
hardlimPurpose Hard limit transfer function

Graph and 
Symbol

Syntax A = hardlim(N)

info = hardlim(code)

Description The hard limit transfer function forces a neuron to output a 1 if its net input 
reaches a threshold, otherwise it outputs 0. This allows a neuron to make a 
decision or classification. It can say yes or no. This kind of neuron is often 
trained with the perceptron learning rule.

hardlim is a transfer function. Transfer functions calculate a layer's output 
from its net input.

hardlim(N) takes one input,

N - S x Q matrix of net input (column) vectors.

and returns 1 where N is positive, 0 elsewhere.

hardlim(code) returns useful information for each code string,

'deriv'  - Name of derivative function.

'name'   - Full name.

'output' - Output range.

'active' - Active input range.

Examples Here is the code to create a plot of the hardlim transfer function.

n = -5:0.1:5;
a = hardlim(n);
plot(n,a)

AA
a = hardlim(n)

Hard Limit Transfer Function

-1

n
0

+1
a
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Network Use You can create a standard network that uses hardlim by calling newp.

To change a network so that a layer uses hardlim, set 
net.layers{i}.transferFcn to 'hardlim'.

In either case call sim to simulate the network with hardlim.

See newp for simulation examples.

Algorithm hardlim(n) = 1, if n >= 0; 0 otherwise.

See Also sim, hardlims
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hardlimsPurpose Symmetric hard limit transfer function

Graph and 
Symbol 

Syntax A = hardlims(N)

info = hardlims(code)

Description The symmetric hard limit transfer function forces a neuron to output a 1 if its 
net input reaches a threshold. Otherwise it outputs -1. Like the regular hard 
limit function, this allows a neuron to make a decision or classification. It can 
say yes or no.

hardlims is a transfer function. Transfer functions calculate a layer's output 
from its net input.

hardlims(N) takes one input,

N - S x Q matrix of net input (column) vectors.

and returns 1 where N is positive, -1 elsewhere.

hardlims(code) return useful information for each code string:

'deriv'  - Name of derivative function.

'name'   - Full name.

'output' - Output range.

'active' - Active input range.

Examples Here is the code to create a plot of the hardlims transfer function.

n = -5:0.1:5;
a = hardlims(n);
plot(n,a)

AA
AA

a = hardlims(n)

Symmetric Hard Limit Trans. Funct.

-1

n
0

+1
a
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Network Use You can create a standard network that uses hardlims by calling newp.

To change a network so that a layer uses hardlims, set 
net.layers{i}.transferFcn to 'hardlims'.

In either case call sim to simulate the network with hardlims.

See newp for simulation examples.

Algorithm hardlim(n) = 1, if n >= 0; -1 otherwise.

See Also sim, hardlim
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hextopPurpose Hexagonal layer topology function

Syntax pos = hextop(dim1,dim2,...,dimN)

Description hextop calculates the neuron positions for layers whose neurons are arranged 
in a N dimensional hexagonal pattern.

hextop(dim1,dim2,...,dimN) takes N arguments,

dimi - Length of layer in dimension i.

and returns an N x S matrix of N coordinate vectors where S is the product of 
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons 
arranged in a 8x5 hexagonal pattern.

pos = hextop(8,5); plotsom(pos)

This code plots the connections between the same neurons, but shows each 
neuron at the location of its weight vector. The weights are generated randomly 
so that the layer is very disorganized, as is evident in the following plot.

W = rands(40,2); plotsom(W,dist(pos))

See Also gridtop, randtop
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hintonwPurpose Hinton graph of weight matrix

Syntax hintonw(W,maxw,minw)

Description hintonw(W,maxw,minw) takes these inputs,

W - S x R weight matrix

maxw - Maximum weight, default = max(max(abs(W))).

minw - Minimum weight, default = M1/100.

and displays a weight matrix represented as a grid of squares.

Each square's area represents a weight’s magnitude. Each square's projection 
(color) represents a weight’s sign; inset (red) for negative weights, projecting 
(green) for positive.

Examples W = rands(4,5);

The following code displays the matrix graphically.

hintonw(W)

See Also hintonwb
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hintonwbPurpose Hinton graph of weight matrix and bias vector

Syntax hintonwb(W,b,maxw,minw)

Description hintonwb(W,B,maxw,minw) takes these inputs, 

W - S x R weight matrix.

B - S x 1 bias vector.

maxw - Maximum weight, default = max(max(abs(W))).

minw - Minimum weight, default = M1/100.

and displays a weight matrix and a bias vector represented as a grid of squares.

Each square's area represents a weight’s magnitude. Each square's projection 
(color) represents a weight’s sign; inset (red) for negative weights, projecting 
(green) for positive. The weights are shown on the left.

Examples The following code produces the result shown below.

W = rands(4,5);
b = rands(4,1);
hintonwb(W,b)

See Also hintonw
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ind2vecPurpose Convert indices to vectors

Syntax vec = ind2vec(ind)

Description ind2vec and vec2ind allow indices to either be represented by themselves, or 
as vectors containing a 1 in the row of the index they represent.

ind2vec(ind) takes one argument,

ind - Row vector of indices.

and returns a sparse matrix of vectors, with one 1 in each column, as indicated 
by ind.

Examples Here four indices are defined and converted to vector representation.

ind = [1 3 2 3]
vec = ind2vec(ind)

See Also vec2ind
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initPurpose Initialize a neural network

Syntax net = init(net)

To Get Help Type help network/init

Description init(net) returns neural network net with weight and bias values updated 
according to the network initialization function, indicated by net.initFcn, 
and the parameter values, indicated by net.initParam.

Examples Here a perceptron is created with a 2-element input (with ranges of 0 to 1, and 
-2 to 2) and 1 neuron. Once it is created we can display the neuron’s weights 
and bias.

net = newp([0 1;-2 2],1);
net.iw{1,1}
net.b{1}

Training the perceptron alters its weight and bias values.

P = [0 1 0 1; 0 0 1 1];
T = [0 0 0 1];
net = train(net,P,T);
net.iw{1,1}
net.b{1}

init reinitializes those weight and bias values.

net = init(net);
net.iw{1,1}
net.b{1}

The weights and biases are zeros again, which are the initial values used by 
perceptron networks (see newp).

Algorithm init calls net.initFcn to initialize the weight and bias values according to the 
parameter values net.initParam. 

Typically, net.initFcn is set to 'initlay' which initializes each layer's 
weights and biases according to its net.layers{i}.initFcn. 
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Backpropagation networks have net.layers{i}.initFcn set to 'initnw', 
which calculates the weight and bias values for layer i using the 
Nguyen-Widrow initialization method.

Other networks have net.layers{i}.initFcn set to 'initwb', which initializes 
each weight and bias with its own initialization function. The most common 
weight and bias initialization function is rands, which generates random 
values between -1 and 1.

See Also sim, adapt, train, initlay, initnw, initwb, rands
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initconPurpose Conscience bias initialization function

Syntax b = initcon(s,pr)

Description initcon is a bias initialization function that initializes biases for learning with 
the learncon learning function.

initcon (S,PR) takes two arguments,

S  - Number of rows (neurons).

PR - R x 2 matrix of R = [Pmin Pmax], default = [1 1].

and returns an S x 1 bias vector.

Note that for biases R is always 1. initcon could also be used to initialize 
weights, but it is not recommended for that purpose.

Examples Here initial bias values are calculated for a 5 neuron layer.

b = initcon(5)

Network Use You can create a standard network that uses initcon to initialize weights by 
calling newc.

To prepare the bias of layer i of a custom network to initialize with initcon:

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become 
initlay's default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set net.biases{i}.initFcn to 'initcon'.

To initialize the network call init. See newc for initialization examples.

Algorithm learncon updates biases so that each bias value b(i) is a function of the 
average output c(i) of the neuron i associated with the bias.

initcon gets initial bias values by assuming that each neuron has responded 
to equal numbers of vectors in the "past".

See Also initwb, initlay, init, learncon
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initlayPurpose Layer-by-layer network initialization function

Syntax net = initlay(net)

info = initlay(code)

Description initlay is a network initialization function which initializes each layer i 
according to its own initialization function net.layers{i}.initFcn.

initlay(net) takes,

net - Neural network.

and returns the network with each layer updated. initlay(code) returns 
useful information for each code string:

'pnames' - Names of initialization parameters.

'pdefaults' - Default initialization parameters.

initlay does not have any initialization parameters.

Network Use You can create a standard network that uses initlay by calling newp, newlin, 
newff, newcf, and many other new network functions.

To prepare a custom network to be initialized with initlay:

1 Set net.initFcn to 'initlay'. (This will set net.initParam to the empty 
matrix [ ] since initlay has no initialization parameters.)

2 Set each net.layers{i}.initFcn to a layer initialization function. 
(Examples of such functions are initwb and initnw).

To initialize the network call init. See newp and newlin for initialization 
examples.

Algorithm The weights and biases of each layer i are initialized according to 
net.layers{i}.initFcn.

See Also initwb, initnw, init
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initnwPurpose Nguyen-Widrow layer initialization function

Syntax net = initnw(net,i)

Description initnw is a layer initialization function which initializes a layer's weights and 
biases according to the Nguyen-Widrow initialization algorithm. This 
algorithm chooses values in order to distribute the active region of each neuron 
in the layer evenly across the layer's input space.

initnw(net,i) takes two arguments,

net - Neural network.

i - Index of a layer.

and returns the network with layer i's weights and biases updated.

Network Use You can create a standard network that uses initnw by calling newff or newcf.

To prepare a custom network to be initialized with initnw:

1 Set net.initFcn to 'initlay'. (This will set net.initParam to the empty 
matrix [ ] since initlay has no initialization parameters.)

2 Set net.layers{i}.initFcn to 'initnw'.

To initialize the network call init. See newff and newcf for training examples.

Algorithm The Nguyen-Widrow method generates initial weight and bias values for a 
layer, so that the active regions of the layer's neurons will be distributed 
roughly evenly over the input space.

Advantages over purely random weights and biases are:

1 Few neurons are wasted (since all the neurons are in the input space).

2 Training works faster (since each area of the input space has neurons). The 
Nguyen-Widrow method can only be applied to layers...
- with a bias,

- with weights whose "weightFcn" is dotprod,

- with "netInputFcn" set to netsum.

If these conditions are not met then initnw uses rands to initialize the layer's 
weights and biases.

See Also initwb, initlay, init
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initwbPurpose By-weight-and-bias layer initialization function

Syntax net = initwb(net,i)

Description initwb is a layer initialization function with initializes a layer's weights and 
biases according to their own initialization functions.

initwb(net,i) takes two arguments,

net - Neural network.

i - Index of a layer.

and returns the network with layer i's weights and biases updated.

Network Use You can create a standard network that uses initwb by calling newp or newlin.

To prepare a custom network to be initialized with initwb:

1 Set net.initFcn to 'initlay'. (This will set net.initParam to the empty 
matrix [ ] since initlay has no initialization parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.learnFcn to a weight initialization 
function. Set each net.layerWeights{i,j}.learnFcn to a weight 
initialization function. Set each net.biases{i}.learnFcn to a bias 
initialization function. (Examples of such functions are rands and 
midpoint.)

To initialize the network call init.

See newp and newlin for training examples.

Algorithm Each weight (bias) in layer i is set to new values calculated according to its 
weight (bias) initialization function.

See Also initnw, initlay, init
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initzeroPurpose Zero weight/bias initialization function

Syntax W = initzero(S,PR)

b = initzero(S,[1 1])

Description initzero(S,PR) takes two arguments,

S - Number of rows (neurons).

PR - R x 2 matrix of input value ranges = [Pmin Pmax].

and returns an S x R weight matrix of zeros.

initzero(S,[1 1]) returns S x 1 bias vector of zeros.

Examples Here initial weights and biases are calculated for a layer with two inputs 
ranging over [0 1] and [-2 2], and 4 neurons.

W = initzero(5,[0 1; -2 2])
b = initzero(5,[1 1])

Network Use You can create a standard network that uses initzero to initialize its weights 
by calling newp or newlin.

To prepare the weights and the bias of layer i of a custom network to be 
initialized with midpoint:

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become 
initlay's default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'initzero'. Set each 
net.layerWeights{i,j}.initFcn to 'initzero'. Set each 
net.biases{i}.initFcn to 'initzero'.

To initialize the network call init.

See newp or newlin for initialization examples.

See Also initwb, initlay, init
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learnconPurpose Conscience bias learning function

Syntax [dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learncon(code)

Description learncon is the conscience bias learning function used to increase the net input 
to neurons which have the lowest average output until each neuron responds 
roughly an equal percentage of the time.

learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

B  - S x 1 bias vector.

P  - 1x Q ones vector.

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].
and returns

dB - S x 1 weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learncon's learning parameter, shown here with 
its default value.

LP.lr - 0.001 - Learning rate.

learncon(code) returns useful information for each code string,

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.
'needg' - Returns 1 if this function uses gW or gA.

NNT 2.0 compatibility: The LP.lr described above equals 1 minus the bias time 
constant used by trainc in NNT 2.0.
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Examples Here we define a random output A, and bias vector W for a layer with 3 neurons.  
We also define the learning rate LR.

a = rand(3,1);
b = rand(3,1);
lp.lr = 0.5;

Since learncon only needs these values to calculate a bias change (see 
algorithim below), we will use them to do so.

dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the bias of layer i of a custom network to learn with learncon:

1 Set net.trainFcn to 'trainwb1'. (net.trainParam will automatically 
become adaptwb's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
adaptwb's default parameters.)

3 Set net.inputWeights{i}.learnFcn to 'learncon'. Set each 
net.layerWeights{i,j}.learnFcn to 'learncon'. (Each weight learning 
parameter property will automatically be set to learncon's default 
parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learncon calculates the bias change db for a given neuron by first updating 
each neuron's conscience, i.e. the running average of its output:

c = (1-lr)*c + lr*a

The conscience is then used to compute a bias for the neuron that is greatest 
for smaller conscience values.

b = exp(1-log(c)) - b

(Note that learncon is able to recover C each time it is called from the bias 
values.)

See Also learnk, learnos, adaptwb, trainwb, adapt, train
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learngdPurpose Gradient descent weight/bias learning function

Syntax [dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

[db,LS] = learngd(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

info = learngd(code)

Description learngd is the gradient descent weight/bias learning function.

learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learngd's learning parameter shown here with 
its default value.

LP.lr - 0.01 - Learning rate.

learngd(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a random gradient gW for a weight going to a layer with 3 
neurons, from an input with 2 elements. We also define a learning rate of 0.5.

gW = rand(3,2);
lp.lr = 0.5;

Since learngd only needs these values to calculate a weight change (see 
algorithim below), we will use them to do so.

dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])

Network Use You can create a standard network that uses learngd with newff, newcf, or 
newelm. To prepare the weights and the bias of layer i of a custom network to 
adapt with learngd:

1 Set net.adaptFcn to 'adaptwb'. net.adaptParam will automatically become 
trainwb's default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngd'. Set each 
net.layerWeights{i,j}.learnFcn to 'learngd'. Set 
net.biases{i}.learnFcn to 'learngd'. Each weight and bias learning 
parameter property will automatically be set to learngd's default 
parameters.

To allow the network to adapt:

1 Set net.adaptParam properties to desired values.

2 Call adapt with the network.

See newff or newcf for examples.

Algoritm learngd calculates the weight change dW for a given neuron from the neuron's 
input P and error E, and the weight (or bias) learning rate LR, according to the 
gradient descent: dw = lr*gW.

See Also learngdm, newff, newcf, adaptwb, trainwb, adapt, train
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learngdmPurpose Gradient descent w/ momentum weight/bias learning function

Syntax [dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

[db,LS] = learngdm(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

info = learngdm(code)

Description learngdm is the gradient descent with momentum weight/bias learning 
function.

learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learngdm's learning parameters, shown here with 
their default values.

LP.lr - 0.01 - Learning rate.

LP.mc - 0.9  - Momentum constant.
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learngdm(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.

Examples Here we define a random gradient G for a weight going to a layer with 3 
neurons, from an input with 2 elements. We also define a learning rate of 0.5 
and momentum constant of 0.8;

gW = rand(3,2);
lp.lr = 0.5;
lp.mc = 0.8;

Since learngdm only needs these values to calculate a weight change (see 
algorithim below), we will use them to do so. We will use the default initial 
learning state.

ls = [];
[dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)

learngdm returns the weight change and a new learning state.

Network Use You can create a standard network that uses learngdm with newff, newcf, or newelm.

To prepare the weights and the bias of layer i of a custom network to adapt 
with learngdm:

1 Set net.adaptFcn to 'adaptwb'. net.adaptParam will automatically become 
trainwb's default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngdm'. Set each 
net.layerWeights{i,j}.learnFcn to 'learngdm'. Set 
net.biases{i}.learnFcn to 'learngdm'. Each weight and bias learning 
parameter property will automatically be set to learngdm's default 
parameters.

To allow the network to adapt:

1 Set net.adaptParam properties to desired values.

2 Call adapt with the network.

See newff or newcf for examples.
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Algorithm learngdm calculates the weight change dW for a given neuron from the neuron's 
input P and error E, the weight (or bias) W, learning rate LR, and momentum 
constant MC, according to gradient descent with momentum:

dW = mc*dWprev + (1-mc)*lr*gW

The previous weight change dWprev is stored and read from the learning 
state LS.

See Also learngd, newff, newcf, adaptwb, trainwb, adapt, train
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learnhPurpose Hebb weight learning rule

Syntax [dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnh(code)

Description learnh is the Hebb weight learning function.

learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learnh's learning parameter, shown here with its 
default value.

LP.lr - 0.01 - Learning rate.

learnh(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a random input P and output A for a layer with a 2-element 
input and 3 neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
lp.lr = 0.5;

Since learnh only needs these values to calculate a weight change (see 
algorithim below), we will use them to do so.

dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with 
learnh:

1 Set net.trainFcn to 'trainwb'. (net.trainParam will automatically become 
trainwb's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
trainwb's default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnh'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnh'. Each weight learning 
parameter property will automatically be set to learnh's default 
parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnh calculates the weight change dW for a given neuron from the neuron's 
input P, output A, and learning rate LR according to the Hebb learning rule:

dw =  lr*a*p'

See Also learnhd, adaptwb, trainwb, adapt, train

References Hebb, D.O., The Organization of Behavior, New York: Wiley, 1949.
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learnhdPurpose Hebb with decay weight learning rule

Syntax [dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnhd(code)

Description learnhd is the Hebb weight learning function.

learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learnhd's learning parameters shown here with 
default values.

LP.dr - 0.01 - Decay rate.

LP.lr - 0.1  - Learning rate.

learnhd(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a random input P, output A, and weights W for a layer with a 
2-element input and 3 neurons. We also define the decay and learning rates.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.dr = 0.05;
lp.lr = 0.5;

Since learnhd only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with 
learnhd:

1 Set net.trainFcn to 'trainwb'. (net.trainParam will automatically become 
trainwb's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
trainwb's default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnhd'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnhd'. (Each weight learning 
parameter property will automatically be set to learnhd's default 
parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnhd calculates the weight change dW for a given neuron from the neuron's 
input P, output A, decay rate DR, and learning rate LR according to the Hebb 
with decay learning rule:

dw =  lr*a*p' - dr*w

See Also learnh, adaptwb, trainwb, adapt, train
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learnisPurpose Instar weight learning function

Syntax [dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnis(code)

Description learnis is the instar weight learning function.

learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learnis's learning parameter, shown here with 
its default value.

LP.lr - 0.01 - Learning rate.

learnis(code) return useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a random input P, output A, and weight matrix W for a layer with 
a 2-element input and 3 neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Since learnis only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network so that it 
can learn with learnis:

1 Set net.trainFcn to 'trainwb'. (net.trainParam will automatically become 
trainwb's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
trainwb's default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnis'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnis'. (Each weight learning 
parameter property will automatically be set to learnis's default 
parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnis calculates the weight change dW for a given neuron from the neuron's 
input P, output A, and learning rate LR according to the instar learning rule:

dw =  lr*a*(p'-w)

See Also learnk, learnos, adaptwb, trainwb, adapt, train

References Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland: Reidel 
Press, 1982.
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learnkPurpose Kohonen weight learning function

Syntax [dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnk(code)

Description learnk is the Kohonen weight learning function.

learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learnk's learning parameter, shown here with its 
default value.

LP.lr - 0.01 - Learning rate.

learnk(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a random input P, output A, and weight matrix W for a layer with 
a 2-element input and 3 neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Since learnk only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights of layer i of a custom network to learn with learnk:

1 Set net.trainFcn to 'trainwb1'. (net.trainParam will automatically 
become trainwb1's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
trainwb1's default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnk'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnk'. (Each weight learning 
parameter property will automatically be set to learnk's default 
parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learnk calculates the weight change dW for a given neuron from the neuron's 
input P, output A, and learning rate LR according to the Kohonen learning rule:

dw = lr*(p'-w), if a ~= 0; =  0, otherwise.

See Also learnis, learnos, adaptwb, trainwb, adapt, train 

References Kohonen, T., Self-Organizing and Associative Memory, New York: 
Springer-Verlag, 1984.
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learnlv1Purpose LVQ1 weight learning function

Syntax [dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnlv1(code)

Description learnlv1 is the LVQ1 weight learning function.

learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R weight gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x R neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learnlv1's learning parameter shown here with 
its default value.

LP.lr - 0.01 - Learning rate.

learnlv1(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a random input P, output A, weight matrix W, and output 
gradient gA for a layer with a 2-element input and 3 neurons.

We also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
a = compet(negdist(w,p));
gA = [-1;1; 1];
lp.lr = 0.5;

Since learnlv1 only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])

Network Use You can create a standard network that uses learnlv1 with newlvq. To prepare 
the weights of layer i of a custom network to learn with learnlv1:

1 Set net.trainFcn to trainwb1'. (net.trainParam will automatically become 
trainwb1's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
trainwb1's default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv1'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnlv1'. (Each weight learning 
parameter property will automatically be set to learnlv1's default 
parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learnlv1 calculates the weight change dW for a given neuron from the neuron's 
input P, output A, output gradient gA and learning rate LR, according to the 
LVQ1 rule, given i the index of the neuron whose output a(i) is 1:

dw(i,:) = +lr*(p-w(i,:)) if gA(i) = 0;= -lr*(p-w(i,:)) if gA(i) = -1

See Also learnlv2, adaptwb, trainwb, adapt, train
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learnlv2Purpose LVQ2 weight learning function

Syntax [dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnlv2(code)

Description learnlv2 is the LVQ2 weight learning function.

learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R weight gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learnlv1's learning parameter, shown here with 
its default value.

LP.lr - 0.01 - Learning rate.

learnlv2(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a sample input P, output A, weight matrix W, and output 
gradient gA for a layer with a 2-element input and 3 neurons.

We also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
n = negdist(w,p);
a = compet(n);
gA = [-1;1; 1];
lp.lr = 0.5;

Since learnlv2 only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])

Network Use You can create a standard network that uses learnlv2 with newlvq.

To prepare the weights of layer i of a custom network to learn with learnlv2:

1 Set net.trainFcn to 'trainwb1'. (net.trainParam will automatically 
become trainwb1's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
trainwb1's default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv2'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnlv2'. (Each weight learning 
parameter property will automatically be set to learnlv2's default 
parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learnlv2 calculates the weight change dW for a given neuron from the neuron's 
input P, output A, output gradient gA and learning rate LR according to the LVQ2 
rule, given i the index of the neuron whose output a(i) is 1:

dw(i,:) = +lr*(p-w(i,:)) if gA(i) = 0; = -lr*(p-w(i,:)) 
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If gA(i) = -1; if gA(i) is -1 then the index j is found of the neuron with the 
greatest net input n(k), from the neurons whose gA(k) is 1. This neuron's 
weights are updated as follows:

dw(j,:) = +lr*(p-w(i,:))

See Also learnlv1, adaptwb, trainwb, adapt, train
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learnosPurpose Outstar weight learning function

Syntax [dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnos(code)

Description learnos is the outstar weight learning function.

learnos(W,P,Z,N,A,T,E,G,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R weight gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learnos's learning parameter, shown here with 
its default value.

LP.lr - 0.01 - Learning rate.

learnos(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a random input P, output A, and weight matrix W for a layer with 
a 2-element input and 3 neurons.  We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Since learnos only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with 
learnos:

1 Set net.trainFcn to 'trainwb'. (net.trainParam will automatically become 
trainwb's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
trainwb's default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnos'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnos'. (Each weight learning 
parameter property will automatically be set to learnos's default 
parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnos calculates the weight change dW for a given neuron from the neuron's 
input P, output A, and learning rate LR according to the outstar learning rule:

dw =  lr*(a-w)*p'

See Also learnis, learnk, adaptwb, trainwb, adapt, train

References Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland: Reidel 
Press, 1982.
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learnpPurpose Perceptron weight/bias learning function

Syntax [dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

[db,LS] = learnp(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnp(code)

Description learnp is the perceptron weight/bias learning function.

learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R weight gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

learnp(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a random input P and error E to a layer with a 2-element input 
and 3 neurons.

p = rand(2,1);
e = rand(3,1);

Since learnp only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])

Network Use You can create a standard network that uses learnp with newp.

To prepare the weights and the bias of layer i of a custom network to learn with 
learnp:

1 Set net.trainFcn to 'trainwb'. (net.trainParam will automatically become 
trainwb's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
trainwb's default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnp'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnp'. Set 
net.biases{i}.learnFcn to 'learnp'. (Each weight and bias learning 
parameter property will automatically become the empty matrix since 
learnp has no learning parameters.) 

To train the network (or enable it to adapt):

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

See newp for adaption and training examples.

Algorithm learnp calculates the weight change dW for a given neuron from the neuron's 
input P and error E according to the perceptron learning rule:

dw =  0,  if e =  0
=  p', if e =  1
= -p', if e = -1
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This can be summarized as:

dw = e*p'

See Also learnpn, newp, adaptwb, trainwb, adapt, train

References Rosenblatt, F., Principles of Neurodynamics, Washington D.C.: Spartan Press, 
1961.
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learnpnPurpose Normalized perceptron weight/bias learning function

Syntax [dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnpn(code)

Description learnpn is a weight/bias learning function. It can result in faster learning than 
learnp when input vectors have widely varying magnitudes.

learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R weight gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

learnpn(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a random input P and error E to a layer with a 2-element input 
and 3 neurons.

p = rand(2,1);
e = rand(3,1);

Since learnpn only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])

Network Use You can create a standard network that uses learnpn with newp.

To prepare the weights and the bias of layer i of a custom network to learn with 
learnpn:

1 Set net.trainFcn to 'trainwb'. (net.trainParam will automatically become 
trainwb's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
trainwb's default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnpn'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnpn'. Set 
net.biases{i}.learnFcn to 'learnpn'. (Each weight and bias learning 
parameter property will automatically become the empty matrix since 
learnpn has no learning parameters.) 

To train the network (or enable it to adapt):

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

See newp for adaption and training examples.

Algorithm learnpn calculates the weight change dW for a given neuron from the neuron's 
input P and error E according to the normalized perceptron learning rule:

pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)
dw =  0,   if e =  0
=  pn', if e =  1
= -pn', if e = -1
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The expression for dW can be summarized as:

dw = e*pn'

Limitations Perceptrons do have one real limitation. The set of input vectors must be 
linearly separable if a solution is to be found. That is, if the input vectors with 
targets of 1 cannot be separated by a line or hyperplane from the input vectors 
associated with values of 0, the perceptron will never be able to classify them 
correctly.

See Also learnp, newp, adaptwb, trainwb, adapt, train
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learnsomPurpose Self-organizing map weight learning function

Syntax [dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnsom(code)

Description learnsom is the self-organizing map weight learning function.

learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R weight gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learnsom's learning parameter, shown here with 
its default value.

LP.order_lr 0.9 Ordering phase learning rate.

LP.order_steps 1000 Ordering phase steps.

LP.tune_lr 0.02 Tuning phase learning rate.

LP.tune_nd 1  Tuning phase neighborhood distance.
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learnpn(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.

Examples Here we define a random input P, output A, and weight matrix W, for a layer 
with a 2-element input and 6 neurons. We also calculate positions and 
distances for the neurons which are arranged in a 2x3 hexagonal pattern. Then 
we define the four learning parameters.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp.order_lr = 0.9;
lp.order_steps = 1000;
lp.tune_lr = 0.02;
lp.tune_nd = 1;

Since learnsom only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

ls = [];
[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)

Network Use You can create a standard network that uses learnsom with newsom.

1 Set net.trainFcn to 'trainwb1'. (net.trainParam will automatically 
become trainwb1's default parameters.)

2 Set net.adaptFcn to 'adaptwb'. (net.adaptParam will automatically become 
trainwb1's default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnsom'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnsom'. Set 
net.biases{i}.learnFcn to 'learnsom'. (Each weight learning parameter 
property will automatically be set to learnsom's default parameters.)
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To train the network (or enable it to adapt):

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnsom calculates the weight change dW for a given neuron from the neuron's 
input P, activation A2, and learning rate LR:

dw =  lr*a2*(p'-w)

where the activation A2 is found from the layer output A and neuron distances 
D and the current neighborhood size ND:

a2(i,q) = 1,   if a(i,q) = 1
 = 0.5, if a(j,q) = 1 and D(i,j) <= nd
 = 0,   otherwise

The learning rate LR and neighborhood size NS are altered through two phases: 
an ordering phase and a tuning phase.

The ordering phases lasts as many steps as LP.order_steps. During this 
phase LR is adjusted from LP.order_lr down to LP.tune_lr, and ND is adjusted 
from the maximum neuron distance down to 1. It is during this phase that 
neuron weights are expected to order themselves in the input space consistent 
with the associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr and ND is always 
set to LP.tune_nd. During this phase the weights are expected to spread out 
relatively evenly over the input space while retaining their topological order 
found during the ordering phase.

See Also adaptwb, trainwb, adapt, train
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learnwhPurpose Widrow-Hoff weight/bias learning function

Syntax [dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
[db,LS] = learnwh(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnwh(code)

Description learnwh is the Widrow-Hoff weight/bias learning function, and is also known 
as the delta or least mean squared (LMS) rule.

learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  - S x R weight matrix (or S x 1 bias vector).

P  - R x Q input vectors (or ones(1,Q)).

Z  - S x Q weighted input vectors.

N  - S x Q net input vectors.

A  - S x Q output vectors.

T  - S x Q layer target vectors.

E  - S x Q layer error vectors.

gW - S x R weight gradient with respect to performance.

gA - S x Q output gradient with respect to performance.

D  - S x S neuron distances.

LP - Learning parameters, none, LP = [].

LS - Learning state, initially should be = [].

and returns,

dW - S x R weight (or bias) change matrix.

LS - New learning state.

Learning occurs according to learnwh's learning parameter shown here with 
its default value.

LP.lr - 0.01 - Learning rate.

learnwh(code) returns useful information for each code string:

'pnames' - Names of learning parameters.

'pdefaults' - Default learning parameters.

'needg' - Returns 1 if this function uses gW or gA.
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Examples Here we define a random input P and error E to a layer with a 2-element input 
and 3 neurons. We also define the learning rate LR learning parameter.

p = rand(2,1);
e = rand(3,1);
lp.lr = 0.5;

Since learnwh only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])

Network Use You can create a standard network that uses learnwh with newlin.

To prepare the weights and the bias of layer i of a custom network to learn with 
learnwh:

1 Set net.trainFcn to 'trainwb'. net.trainParam will automatically become 
trainwb's default parameters.

2 Set net.adaptFcn to 'adaptwb'. net.adaptParam will automatically become 
trainwb's default parameters.

3 Set each net.inputWeights{i,j}.learnFcn to 'learnwh'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnwh'. Set 
net.biases{i}.learnFcn to 'learnwh'.

 Each weight and bias learning parameter property will automatically be set to 
learnwh's default parameters.

To train the network (or enable it to adapt):

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train(adapt).

See newlin for adaption and training examples.

Algorithm learnwh calculates the weight change dW for a given neuron from the neuron's 
input P and error E, and the weight (or bias) learning rate LR, according to the 
Widrow-Hoff learning rule:

dw = lr*e*pn'
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See Also newlin, adaptwb, trainwb, adapt, train

References Widrow, B., and M. E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON 
Convention Record, New York IRE, pp. 96-104, 1960.

Widrow B. and S. D. Sterns, Adaptive Signal Processing, New York: 
Prentice-Hall, 1985.
13-105



linkdist
linkdistPurpose Link distance function

Syntax d = linkdist(pos)

Description linkdist is a layer distance function used to find the distances between the 
layer's neurons given their positions.

linkdist(pos) takes one argument,

pos - N x S matrix of neuron positions.

and returns the S x S matrix of distances.

Examples Here we define a random matrix of positions for 10 neurons arranged in three 
dimensional space and find their distances.

pos = rand(3,10);
D = linkdist(pos)

Network Use You can create a standard network that uses linkdist as a distance function 
by calling newsom.

To change a network so that a layer's topology uses linkdist, set 
net.layers{i}.distanceFcn to 'linkdist’.

In either case, call sim to simulate the network with dist. See newsom for 
training and adaption examples.

Algorithm The link distance D between two position vectors Pi and Pj from a set of S 
vectors is:

Dij = 0, if i==j
= 1, if (sum((Pi-Pj).^2)).^0.5 is <= 1
= 2, if k exists, Dik = Dkj = 1
= 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1.
= N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1
= S, if none of the above conditions apply.

See Also sim, dist, mandist
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logsigPurpose Log sigmoid transfer function

Graph and 
Symbol 

Syntax A = logsig(N)

info = logsig(code)

Description logsig is a transfer function. Transfer functions calculate a layer's output from 
its net input.

logsig(N) takes one input,

N - S x Q matrix of net input (column) vectors.

and returns each element of N squashed between 0 and 1.

logsig(code) returns useful information for each code string:

'deriv'  - Name of derivative function.

'name'   - Full name.

'output' - Output range.

'active' - Active input range.

Examples Here is the code to create a plot of the logsig transfer function.

n = -5:0.1:5;
a = logsig(n);
plot(n,a)

Network Use You can create a standard network that uses logsig by calling newff or newcf.

-1

n
0

+1

AA
AA

a 

Log-Sigmoid Transfer Function

a = logsig(n)
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To change a network so a layer uses logsig set net.layers{i}.transferFcn 
to 'logsig'.

In either case, call sim to simulate the network with purelin.

See newff or newcf for simulation examples.

Algorithm logsig(n) = 1 / (1 + exp(-n))

See Also sim, dlogsig, tansig
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maePurpose Mean absolute error performance function

Syntax perf = mae(e,x,pp)

perf = mae(e,net,pp)

info = mae(code)

Description mae is a network performance function.

mae(E,X,PP) takes from one to three arguments,

E - Matrix or cell array of error vector(s).

X  - Vector of all weight and bias values (ignored).

PP - Performance parameters (ignored).

and returns the mean absolute error.

The errors E can be given in cell array form,

E - Nt x TS cell array, each element E{i,ts} is a Vi x Q matrix or[].

or as a matrix,

E - (sum of Vi) x Q matrix

where

Nt = net.numTargets

TS = Number of time steps

Q  = Batch size

Vi = net.targets{i}.size

mae(E,net,PP) can take an alternate argument to X, 

net - Neural network from which X can be obtained (ignored).

mae(code) returns useful information for each code string:

'deriv' - Name of derivative function.

'name' - Full name.

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.
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Examples Here a perceptron is created with a 1-element input ranging from -10 to 10, and 
one neuron.

net = newp([-10 10],1);

Here the network is given a batch of inputs P. The error is calculated by 
subtracting the output A from target T. Then the mean absolute error is 
calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)
e = t-y
perf = mae(e)

Note that mae can be called with only one argument because the other 
arguments are ignored. mae supports those arguments to conform to the 
standard performance function argument list.

Network Use You can create a standard network that uses mae with newp.

To prepare a custom network to be trained with mae, set net.performFcn to 
'mae'. This will automatically set net.performParam to the empty matrix [], as 
mae has no performance parameters.

In either case, calling train or adapt will result in mae being used to calculate 
performance.

See newp for examples.

See Also mse, msereg, dmae
13-110



mandist
mandistPurpose Manhattan distance weight function

Syntax Z = mandist(W,P)

df = mandist('deriv')

D = mandist(pos);

Description mandist is the Manhattan distance weight function. Weight functions apply 
weights to an input to get weighted inputs.

mandist(W,P) takes these inputs,

W - S x R weight matrix.

P - R x Q matrix of Q input (column) vectors.

and returns the S x Q matrix of vector distances.

mandist('deriv') returns '' because mandist does not have a derivative 
function.

mandist is also a layer distance function which can be used to find the distances 
between neurons in a layer.

mandist(pos) takes one argument,

pos - An S row matrix of neuron positions.

and returns the S x S matrix of distances.

Examples Here we define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = mandist(W,P)

Here we define a random matrix of positions for 10 neurons arranged in three 
dimensional space and then find their distances.

pos = rand(3,10);
D = mandist(pos)

Network Use You can create a standard network that uses mandist as a distance function by 
calling newsom.
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To change a network so an input weight uses mandist, set 
net.inputWeight{i,j}.weightFcn to 'mandist’. For a layer weight set 
net.inputWeight{i,j}.weightFcn to 'mandist'.

To change a network so a layer's topology uses mandist, set 
net.layers{i}.distanceFcn to 'mandist'.

In either case, call sim to simulate the network with dist. See newpnn or 
newgrnn for simulation examples.

Algorithm The Manhattan distance D between two vectors X and Y is:

D = sum(abs(x-y))

See Also sim, dist, linkdist
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mat2cellPurpose Break matrix up into a cell array of matrices

Syntax mat2cell(M,R,C);

Description mat2cell(M,R,C) takes three arguments,

M - row x col matrix.

R - Vector of row sizes (should sum to row).

C - Vector of col sizes (should sum to col).

and returns a cell array of matrices, found using R and C.

Examples M = [1 2 3 4; 5 6 7 8; 9 10 11 12];
C = mat2cell(M,[1 2],[2 2])

See Also cell2mat
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maxlinlrPurpose Maximum learning rate for a linear layer

Syntax lr = maxlinlr(P)
lr = maxlinlr(P,'bias')

Description maxlinlr is used to calculate learning rates for newlin.

maxlinlr(P) takes one argument,

P - R x Q matrix of input vectors.

and returns the maximum learning rate for a linear layer without a bias that 
is to be trained only on the vectors in P.

maxlinlr(P,'bias') returns the maximum learning rate for a linear layer 
with a bias.

Examples Here we define a batch of 4 2-element input vectors and find the maximum 
learning rate for a linear layer with a bias.

P = [1 2 -4 7; 0.1 3 10 6];
lr = maxlinlr(P,'bias')

See Also linnet, newlin, newlind
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midpointPurpose Midpoint weight initialization function

Syntax W = midpoint(S,PR)

Description midpoint is a weight initialization function that sets weight (row) vectors to 
the center of the input ranges.

midpoint(S,PR) takes two arguments,

S  - Number of rows (neurons).

PR - R x 2 matrix of input value ranges = [Pmin Pmax].

and returns an S x R matrix with rows set to (Pmin+Pmax)'/2.

Examples Here initial weight values are calculated for a 5 neuron layer with input 
elements ranging over [0 1] and [-2 2].

W = midpoint(5,[0 1; -2 2])

Network Use You can create a standard network that uses midpoint to initialize weights by 
calling newc.

To prepare the weights and the bias of layer i of a custom network to initialize 
with midpoint:

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become 
initlay's default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'midpoint'. Set each 
net.layerWeights{i,j}.initFcn to 'midpoint';

To initialize the network call init.

See Also initwb, initlay, init
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minmaxPurpose Ranges of matrix rows

Syntax pr = minmax(P)

Description minmax(P) takes one argument,

PR - R x Q matrix.

and returns the R x 2 matrix PR of minimum and maximum values for each row 
of M.

Examples p = [0 1 2; -1 -2 -0.5]
pr = minmax(p)
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msePurpose Mean squared error performance function

Syntax perf = mse(e,x,pp)

perf = mse(e,net,pp)

info = mse(code)

Description mse is a network performance function. It measures the network’s performance 
according to the mean of squared errors.

mse(E,X,PP) takes from one to three arguments,

E  - Matrix or cell array of error vector(s).

X  - Vector of all weight and bias values (ignored).

PP - Performance parameters (ignored).

and returns the mean squared error.

mse(E,net,PP) can take an alternate argument to X, 

net - Neural network from which X can be obtained (ignored).

mse(code) returns useful information for each code string:

'deriv' - Name of derivative function.

'name' - Full name.

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here a two layer feed-forward network is created with a 1-element input 
ranging from -10 to 10, four hidden tansig neurons, and one purelin output 
neuron.

net = newff([-10 10],[4 1],{'tansig','purelin'});
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Here the network is given a batch of inputs P. The error is calculated by 
subtracting the output A from target T. Then the mean squared error is 
calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)
e = t-y
perf = mse(e)

Note that mse can be called with only one argument because the other 
arguments are ignored. mse supports those ignored arguments to conform to 
the standard performance function argument list.

Network Use You can create a standard network that uses mse with newff, newcf, or newelm.

To prepare a custom network to be trained with mse, set net.performFcn to 
'mse'. This will automatically set net.performParam to the empty matrix [], as 
mse has no performance parameters.

In either case, calling train or adapt will result in mse being used to calculate 
performance.

See newff or newcf for examples.

See Also msereg, mae, dmse
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mseregPurpose Mean squared error w/reg performance function

Syntax perf = mse(e,x,pp)

perf = mse(e,net,pp)

info = mse(code)

Description msereg is a network performance function. It measures network performance 
as the weight sum of two factors: the mean squared error and the mean 
squared weight and bias values.

msereg(E,X,PP) takes from three arguments,

E  - Matrix or cell array of error vector(s).

X  - Vector of all weight and bias values.

PP - Performance parameter.

where PP defines one performance parameters, 

PP.ratio - Relative importance of errors vs. weight and bias values.

and returns the sum of mean squared errors (times PP.ratio) with the mean 
squared weight and bias values (times 1-PP.ratio).

The errors E can be given in cell array form,

E - Nt x TS cell array, each element E{i,ts} is an Vi x Q matrix or [].

or as a matrix,

E - (sum of Vi) x Q matrix

where

Nt = net.numTargets

TS = Number of time steps

Q  = Batch size

Vi = net.targets{i}.size

mse(E,net) takes an alternate argument to X and PP,

net - Neural network from which X and PP can be obtained.
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mse(code) returns useful information for each code string:

'deriv' - Name of derivative function.

'name' - Full name.

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here a two layer feed-forward is created with a 1-element input ranging from 
-2 to 2, four hidden tansig neurons, and one purelin output neuron.

net = newff([-2 2],[4 1]
{'tansig','purelin'},'trainlm','learngdm','msereg');

Here the network is given a batch of inputs P. The error is calculated by 
subtracting the output A from target T. Then the mean squared error is 
calculated using a ratio of 20/(20+1). (Errors are 20 times as important as 
weight and bias values).

p = [-2 -1 0 1 2];
t = [0 1 1 1 0];
y = sim(net,p)
e = t-y
net.performParam.ratio = 20/(20+1);
perf = msereg(e,net)

Network Use You can create a standard network that uses msereg with newff, newcf, or 
newelm.

To prepare a custom network to be trained with msereg, set net.performFcn 
to 'msereg'. This will automatically set net.performParam to msereg's default 
performance parameters.

In either case, calling train or adapt will result in msereg being used to 
calculate performance.

See newff or newcf for examples.

See Also mse, mae, dmsereg
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negdistPurpose Negative distance weight function

Syntax Z = negdist(W,P)

df = negdist('deriv')

Description negdist is a weight function. Weight functions apply weights to an input to get 
weighted inputs.

negdist(W,P) takes these inputs,

W - S x R weight matrix.

P - R x Q matrix of Q input (column) vectors.

and returns the S x Q matrix of negative vector distances.

negdist('deriv') returns '' because negdist does not have a derivative 
function.

Examples Here we define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = negdist(W,P)

Network Use You can create a standard network that uses negdist by calling newc or 
newsom.

To change a network so an input weight uses negdist, set 
net.inputWeight{i,j}.weightFcn to 'negdist’. For a layer weight set 
net.inputWeight{i,j}.weightFcn to 'negdist’.

In either case, call sim to simulate the network with negdist. See newc or 
newsom for simulation examples.

Algorithm negdist returns the negative Euclidean distance:

z = -sqrt(sum(w-p)^2)

See Also sim, dotprod, dist
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netprodPurpose Product net input function

Syntax N = netprod(Z1,Z2,...)

df = netprod('deriv')

Description netprod is a net input function. Net input functions calculate a layer's net 
input by combining its weighted inputs and biases.

netprod(Z1,Z2,...,Zn)takes,

Zi - S x Q matrices.

and returns an element-wise sum of Zi's.

netprod('deriv') returns netprod's derivative function.

Examples Here netprod combines two sets of weighted input vectors (which we have 
defined ourselves).

z1 = [1 2 4;3 4 1];
z2 = [-1 2 2; -5 -6 1];
n = netprod(z1,z2)

Here netprod combines the same weighted inputs with a bias vector. Because 
Z1 and Z2 each contain three concurrent vectors, three concurrent copies of B 
must be created with concur so that all sizes match up.

b = [0; -1];
n = netprod(z1,z2,concur(b,3))

Network Use You can create a standard network that uses netprod by calling newpnn or 
newgrnn.

To change a network so that a layer uses netprod, set 
net.layers{i}.netInputFcn to 'netprod'.

In either case, call sim to simulate the network with netprod. See newpnn or 
newgrnn for simulation examples.

See Also sim, dnetprod, netsum, concur.
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netsumPurpose Sum net input function

Syntax N = netsum(Z1,Z2,...)

df = netsum('deriv')

Description netsum is a net input function. Net input functions calculate a layer's net input 
by combining its weighted inputs and biases.

netsum(Z1,Z2,...,Zn) takes any number of inputs,

Zi - S x Q matrices,

and returns N, the element-wise sum of Zi's.

netsum('deriv') returns netsum's derivative function.

Examples Here netsum combines two sets of weighted input vectors (which we have 
defined ourselves).

z1 = [1 2 4;3 4 1];
z2 = [-1 2 2; -5 -6 1];
n = netsum(z1,z2)

Here netsum combines the same weighted inputs with a bias vector. Because 
Z1 and Z2 each contain three concurrent vectors, three concurrent copies of B 
must be created with concur so that all sizes match up.

b = [0; -1];
n = netsum(z1,z2,concur(b,3))

Network Use You can create a standard network that uses netsum by calling newp or newlin.

To change a network so a layer uses netsum, set net.layers{i}.netInputFcn 
to 'netsum'.

In either case, call sim to simulate the network with netsum. See newp or 
newlin for simulation examples.

See Also sim, dnetprod, netprod, concur
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networkPurpose Create a custom neural network

Syntax net = network

net = network(numInputs,numLayers,biasConnect,inputConnect, 
layerConnect,outputConnect,targetConnect)

To Get Help Type help network/network

Description network creates new custom networks. It is used to create networks that are 
then customized by functions such as newp, newlin, newff, etc.

network takes these optional arguments (shown with default values):

numInputs     - Number of inputs, 0.

numLayers     - Number of layers, 0.

biasConnect   - numLayers-by-1 Boolean vector, zeros.

inputConnect  - numLayers-by-numInputs Boolean matrix, zeros.

layerConnect  - numLayers-by-numLayers Boolean matrix, zeros.

outputConnect - 1-by-numLayers Boolean vector, zeros.

targetConnect - 1-by-numLayers Boolean vector, zeros.

and returns,

net - New network with the given property values.
13-124



network
Properties Architecture properties:

net.numInputs: 0 or a positive integer.

Number of inputs.

net.numLayers: 0 or a positive integer.

Number of layers.

net.biasConnect: numLayer-by-1 Boolean vector.

If net.biasConnect(i) is 1 then the layer i has a bias and net.biases{i} 
is a structure describing that bias.

net.inputConnect: numLayer-by-numInputs Boolean vector.

If net.inputConnect(i,j) is 1 then layer i has a weight coming from 
input j and net.inputWeights{i,j} is a structure describing that weight.

net.layerConnect: numLayer-by-numLayers Boolean vector.

If net.layerConnect(i,j) is 1 then layer i has a weight coming from 
layer j and net.layerWeights{i,j} is a structure describing that weight.

net.outputConnect: 1-by-numLayers Boolean vector.

If net.outputConnect(i) is 1 then the network has an output from layer 
i and net.outputs{i} is a structure describing that output.

net.targetConnect: 1-by-numLayers Boolean vector.

If net.outputConnect(i) is 1 then the network has a target from layer i 
and net.targets{i} is a structure describing that target.

net.numOutputs: 0 or a positive integer. Read only.

Number of network outputs according to net.outputConnect.

net.numTargets: 0 or a positive integer. Read only.

Number of targets according to net.targetConnect.

net.numInputDelays: 0 or a positive integer. Read only.

Maximum input delay according to all net.inputWeight{i,j}.delays.

net.numLayerDelays: 0 or a positive number. Read only.

Maximum layer delay according to all net.layerWeight{i,j}.delays.
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Subobject structure properties:

net.inputs: numInputs-by-1 cell array.

net.inputs{i} is a structure defining input i:

net.layers: numLayers-by-1 cell array.

net.layers{i} is a structure defining layer i:

net.biases: numLayers-by-1 cell array.

If net.biasConnect(i) is 1, then net.biases{i} is a structure defining 
the bias for layer i.

net.inputWeights: numLayers-by-numInputs cell array.

If net.inputConnect(i,j) is 1, then net.inputWeights{i,j} is a 
structure defining the weight to layer i from input j.

net.layerWeights: numLayers-by-numLayers cell array.

If net.layerConnect(i,j) is 1, then net.layerWeights{i,j} is a 
structure defining the weight to layer i from layer j.

net.outputs: 1-by-numLayers cell array.

If net.outputConnect(i) is 1, then net.outputs{i} is a structure 
defining the network output from layer i.

net.targets: 1-by-numLayers cell array.

If net.targetConnect(i) is 1, then net.targets{i} is a structure 
defining the network target to layer i.

Function properties:

net.adaptFcn: name of a network adaption function or ''.

net.initFcn: name of a network initialization function or ''.

net.performFcn: name of a network performance function or ''.

net.trainFcn: name of a network training function or ''.

Parameter properties:

net.adaptParam: network adaption parameters.

net.initParam: network initialization parameters.

net.performParam: network performance parameters.

net.trainParam: network training parameters.
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Weight and bias value properties:

net.IW: numLayers-by-numInputs cell array of input weight values.

net.LW: numLayers-by-numLayers cell array of layer weight values.

net.b: numLayers-by-1 cell array of bias values.

Other properties:

net.userdata: structure you can use to store useful values.

Examples Here is the code to create a network without any inputs and layers, and then 
set its number of inputs and layer to 1 and 2 respectively.

net = network
net.numInputs = 1
net.numLayers = 2

Here is the code to create the same network with one line of code.

net = network(1,2)

Here is the code to create a 1 input, 2 layer, feed-forward network. Only the 
first layer will have a bias. An input weight will connect to layer 1 from input 
1. A layer weight will connect to layer 2 from layer 1. Layer 2 will be a network 
output, and have a target.

net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1],[0 1])

We can then see the properties of subobjects as follows:

net.inputs{1}
net.layers{1}, net.layers{2}
net.biases{1}
net.inputWeights{1,1}, net.layerWeights{2,1}
net.outputs{2}
net.targets{2}

We can get the weight matrices and bias vector as follows:

net.iw.{1,1}, net.iw{2,1}, net.b{1}
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We can alter the properties of any of these subobjects. Here we change the 
transfer functions of both layers:

net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'logsig';

Here we change the number of elements in input 1 to 2, by setting each 
element’s range:

net.inputs{1}.range = [0 1; -1 1];

Next we can simulate the network for a 2-element input vector:

p = [0.5; -0.1];
y = sim(net,p)

See Also sim
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newcPurpose Create a competitive layer

Syntax net = newc(PR,S,KLR,CLR)

Description Competitive layers are used to solve classification problems.

net = newc(PR,S,KLR,CLR) takes these inputs,

PR - R x 2 matrix of min and max values for R input elements.

S  - Number of neurons.

KLR - Kohonen learning rate, default = 0.01.

CLR - Conscience learning rate, default = 0.001.

and returns a new competitive layer.

Properties Competitive layers consist of a single layer with the negdist weight function, 
netsum net input function, and the compet transfer function.

The layer has a weight from the input, and a bias.

Weights and biases are initialized with midpoint and initcon.

Adaption and training are done with adaptwb and trainwb1, which both update 
weight and bias values with the learnk and learncon learning functions.

Examples Here is a set of four two-element vectors P.

P = [.1 .8  .1 .9; .2 .9 .1 .8];

To competitive layer can be used to divide these inputs into two classes. First 
a two neuron layer is created with two input elements ranging from 0 to 1, then 
it is trained.

net = newc([0 1; 0 1],2);
net = train(net,P);

The resulting network can then be simulated and its output vectors converted 
to class indices.

Y = sim(net,P)
Yc = vec2ind(Y)

See Also sim, init, adapt, train, adaptwb, trainwb1
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newcfPurpose Trainable cascade-forward backpropagation network

Syntax net = newcf(Pr,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description newcf(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,

PR  - R x 2 matrix of min and max values for R input elements.

Si  - Size of ith layer, for Nl layers.

TFi - Transfer function of ith layer, default = 'tansig'.

BTF - Backprop network training function, default = 'traingd'.

BLF - Backprop weight/bias learning function, default = 'learngdm'.

PF  - Performance function, default = 'mse'.

and returns an N layer cascade-forward backprop network.

The transfer functions TFi can be any differentiable transfer function such as 
tansig, logsig, or purelin.

The training function BTF can be any of the backprop training functions such 
as trainlm, trainbfg, trainrp, traingd, etc.

WARNING: trainlm is the default training function because it is very fast, but 
it requires a lot of memory to run.  If you get an out-of-memory error when 
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting 
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd, or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5 6 7 8 9 10];
T = [0 1 2 3 4 3 2 1 2 3 4];
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Here a two-layer cascade-forward network is created. The network's input 
ranges from [0 to 10]. The first layer has five tansig neurons, the second layer 
has one purelin neuron. The trainlm network training function is to be used.

net = newcf([0 10],[5 1],{'tansig' 'purelin'});

Here the network is simulated and its output plotted against the targets.

Y = sim(net,P);
plot(P,T,P,Y,'o')

Here the network is trained for 50 epochs. Again the network's output is 
plotted.

net.trainParam.epochs = 50;
net = train(net,P,T);
Y = sim(net,P);
plot(P,T,P,Y,'o')

Algorithm Cascade-forward networks consist of Nl layers using the dotprod weight 
function, netsum net input function, and the specified transfer functions.

The first layer has weights coming from the input. Each subsequent layer has 
weights coming from the input and all previous layers. All layers have biases. 
The last layer is the network output.

Each layer's weights and biases are initialized with initnw.

Adaption is done with adaptwb which updates weights with the specified 
learning function. Training is done with the specified training function. 
Performance is measured according to the specified performance function.

See Also newff, newelm, sim, init, adapt, train
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newelmPurpose Create an Elman backpropagation network

Syntax net = newelm(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description newelm(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes several 
arguments,

PR  - R x 2 matrix of min and max values for R input elements.

Si  - Size of ith layer, for Nl layers.

TFi - Transfer function of ith layer, default = 'tansig'.

BTF - Backprop network training function, default = 'traingdx'.

BLF - Backprop weight/bias learning function, default = 'learngdm'.

PF  - Performance function, default = 'mse'.

and returns an Elman network.

The training function BTF can be any of the backprop training functions such 
as trainlm, trainbfg, trainrp, traingd, etc.

WARNING: trainlm is the default training function because it is very fast, but 
it requires a lot of memory to run.  If you get an "out-of-memory" error when 
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting 
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd, or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.

Examples Here is a series of Boolean inputs P, and another sequence T, which is 1 
wherever P has had two 1's in a row.

P = round(rand(1,20));
T = [0 (P(1:end-1)+P(2:end) == 2)];
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We would like the network to recognize whenever two 1's occur in a row. First 
we arrange these values as sequences.

Pseq = con2seq(P);
Tseq = con2seq(T);

Next we create an Elman network whose input varies from 0 to 1, and has five 
hidden neurons and 1 output.

net = newelm([0 1],[10 1],{'tansig','logsig'});

Then we train the network with a mean squared error goal of 0.1, and simulate 
it.

net = train(net,Pseq,Tseq);
Y = sim(net,Pseq)

Algorithm Elman networks consist of Nl layers using the dotprod weight function, netsum 
net input function, and the specified transfer functions.

The first layer has weights coming from the input. Each subsequent layer has 
a weight coming from the previous layer. All layers except the last have a 
recurrent weight. All layers have biases. The last layer is the network output.

Each layer's weights and biases are initialized with initnw.

Adaption is done with adaptwb which updates weights with the specified 
learning function. Training is done with the specified training function. 
Performance is measured according to the specified performance function.

See Also newff, newcf, sim, init, adapt, train
13-133



newff
newffPurpose Create a feed-forward backpropagation network

Syntax net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,

PR  - R x 2 matrix of min and max values for R input elements.

Si  - Size of ith layer, for Nl layers.

TFi - Transfer function of ith layer, default = 'tansig'.

BTF - Backprop network training function, default = 'traingdx'.

BLF - Backprop weight/bias learning function, default = 'learngdm'.

PF  - Performance function, default = 'mse'.

and returns an N layer feed-forward backprop network.

The transfer functions TFi can be any differentiable transfer function such as 
tansig, logsig, or purelin.

The training function BTF can be any of the backprop training functions such 
as trainlm, trainbfg, trainrp, traingd, etc.

WARNING: trainlm is the default training function because it is very fast, but 
it requires a lot of memory to run.  If you get an "out-of-memory" error when 
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting 
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd, or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5 6 7 8 9 10];
T = [0 1 2 3 4 3 2 1 2 3 4];
13-134



newff
Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has five tansig neurons, the second layer has one 
purelin neuron. The trainlm network training function is to be used.

net = newff([0 10],[5 1],{'tansig' 'purelin'});

Here the network is simulated and its output plotted against the targets.

Y = sim(net,P);
plot(P,T,P,Y,'o')

Here the network is trained for 50 epochs. Again the network's output is 
plotted.

net.trainParam.epochs = 50;
net = train(net,P,T);
Y = sim(net,P);
plot(P,T,P,Y,'o')

Algorithm Feed-forward networks consist of Nl layers using the dotprod weight function, 
netsum net input function, and the specified transfer functions.

The first layer has weights coming from the input. Each subsequent layer has 
a weight coming from the previous layer. All layers have biases. The last layer 
is the network output.

Each layer's weights and biases are initialized with initnw.

Adaption is done with adaptwb which updates weights with the specified 
learning function. Training is done with the specified training function. 
Performance is measured according to the specified performance function.

See Also newcf, newelm, sim, init, adapt, train
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newfftdPurpose Create a feed-forward input-delay backprop network

Syntax net = newfftd(PR,ID,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description newfftd(PR,ID,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,

PR  - R x 2 matrix of min and max values for R input elements.

ID  - Input delay vector.

Si  - Size of ith layer, for Nl layers.

TFi - Transfer function of ith layer, default = 'tansig'.

BTF - Backprop network training function, default = 'traingdx'.

BLF - Backprop weight/bias learning function, default = 'learngdm'.

PF  - Performance function, default = 'mse'.

and returns an N layer feed-forward backprop network.

The transfer functions TFi can be any differentiable transfer function such as 
tansig, logsig, or purelin.

The training function BTF can be any of the backprop training functions such 
as trainlm, trainbfg, trainrp, traingd, etc.

WARNING: trainlm is the default training function because it is very fast, but 
it requires a lot of memory to run.  If you get an "out-of-memory" error when 
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting 
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd, or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.
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Examples Here is a problem consisting of an input sequence P and target sequence T that 
can be solved by a network with one delay.

P = {1  0 0 1 1  0 1  0 0 0 0 1 1  0 0 1};
T = {1 -1 0 1 0 -1 1 -1 0 0 0 1 0 -1 0 1};

Here a two-layer feed-forward network is created with input delays of 0 and 1. 
The network's input ranges from [0 to 1]. The first layer has five tansig 
neurons, the second layer has one purelin neuron. The trainlm network 
training function is to be used.

net = newfftd([0 1],[0 1],[5 1],{'tansig' 'purelin'});

Here the network is simulated.

Y = sim(net,P)

Here the network is trained for 50 epochs. Again the network's output is 
calculated.

net.trainParam.epochs = 50;
net = train(net,P,T);
Y = sim(net,P)

Algorithm Feed-forward networks consist of Nl layers using the dotprod weight function, 
netsum net input function, and the specified transfer functions.

The first layer has weights coming from the input with the specified input 
delays. Each subsequent layer has a weight coming from the previous layer. All 
layers have biases. The last layer is the network output.

Each layer's weights and biases are initialized with initnw.

Adaption is done with adaptwb which updates weights with the specified 
learning function. Training is done with the specified training function. 
Performance is measured according to the specified performance function.

See Also newcf, newelm, sim, init, adapt, train
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newgrnnPurpose Design a generalized regression neural network

Syntax net = newgrnn(P,T,spread)

Description Generalized regression neural networks are a kind of radial basis network that 
is often used for function approximation.  grnn’s can be designed very quickly.

newgrnn(P,T,spread) takes three inputs,

P - R x Q matrix of Q input vectors.

T - S x Q matrix of Q target class vectors.

spread - Spread of radial basis functions, default = 1.0.

and returns a new generalized regression neural network.

The larger the spread, is the smoother the function approximation will be. To 
fit data very closely, use a spread smaller than the typical distance between 
input vectors. To fit the data more smoothly, use a larger spread.

Properties newgrnn creates a two layer network. The first layer has radbas neurons, 
calculates weighted inputs with dist and net input with netprod. The second 
layer has purelin neurons, calculates weighted input with normprod and net 
inputs with netsum. Only the first layer has biases.

newgrnn sets the first layer weights to P', and the first layer biases are all set 
to 0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted 
inputs of +/- spread. The second layer weights W2 are set to T.

Examples Here we design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newgrnn(P,T);

Here the network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

See Also sim, newrb, newrbe, newpnn

References Wasserman, P.D., Advanced Methods in Neural Computing, New York: Van 
Nostrand Reinhold, pp. 155-61, 1993.
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newhopPurpose Create a Hopfield recurrent network

Syntax net = newhop(T)

Description Hopfield networks are used for pattern recall.

newhop(T) takes one input argument,

T - R x Q matrix of Q target vectors. (Values must be +1 or -1.)

and returns a new Hopfield recurrent neural network with stable points at the 
vectors in T.

Properties Hopfield networks consist of a single layer with the dotprod weight function, 
netsum net input function, and the satlins transfer function.

The layer has a recurrent weight from itself and a bias.

Examples Here we create a Hopfield network with two three-element stable points T.

T = [-1 -1 1; 1 -1 1]';
net = newhop(T);

Below we check that the network is stable at these points by using them as 
initial layer delay conditions. If the network is stable we would expect that the 
outputs Y will be the same. (Since Hopfield networks have no inputs, the second 
argument to sim is Q = 2 when using matrix notation).

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y

To see if the network can correct a corrupted vector, run the following code 
which simulates the Hopfield network for five timesteps. (Since Hopfield 
networks have no inputs, the second argument to sim is {Q TS} = [1 5] when 
using cell array notation.)

Ai = {[-0.9; -0.8; 0.7]};
[Y,Pf,Af] = sim(net,{1 5},{},Ai);
Y{1}

If you run the above code, Y{1} will equal T(:,1) if the network has managed 
to convert the corrupted vector Ai to the nearest target vector.
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Algorithm Hopfield networks are designed to have stable layer outputs as defined by user 
supplied targets. The algorithm minimizes the number of unwanted stable 
points.

See Also sim, satlins

References Li, J., A. N. Michel, and W. Porod, "Analysis and synthesis of a class of neural 
networks: linear systems operating on a closed hypercube," IEEE Transactions 
on Circuits and Systems, vol. 36, no. 11, pp. 1405-1422, November 1989.
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newlinPurpose Create a linear layer

Syntax net = newlin(PR,S,ID,LR)

new = newlin

Description Linear layers are often used as adaptive filters for signal processing and 
prediction.

newlin(PR,S,ID,LR) takes these arguments,

PR - R x 2 matrix of min and max values for R input elements.

S  - Number of elements in the output vector.

ID - Input delay vector, default = [0].

LR - Learning rate, default = 0.01.

and returns a new linear layer.

net = newlin(PR,S,0,P) takes an alternate argument,

P  - Matrix of input vectors.

and returns a linear layer with the maximum stable learning rate for learning 
with inputs P.

Call newlin without input arguments to define the network's attributes in a 
dialog window.

Examples This code creates a single input (range of [-1 1] linear layer with one neuron, 
input delays of 0 and 1, and a learning rate of 0.01. It is simulated for an input 
sequence P1.

net = newlin([-1 1],1,[0 1],0.01);
P1 = {0 -1 1 1 0 -1 1 0 0 1};
Y = sim(net,P1)

Here targets T1 are defined and the layer adapts to them. (Since this is the first 
call to adapt, the default input delay conditions are used.)

T1 = {0 -1 0 2 1 -1 0 1 0 1};
[net,Y,E,Pf] = adapt(net,P1,T1); Y
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Here the linear layer continues to adapt for a new sequence using the previous 
final conditions PF as initial conditions.

P2 = {1 0 -1 -1 1 1 1 0 -1};
T2 = {2 1 -1 -2 0 2 2 1 0};
[net,Y,E,Pf] = adapt(net,P2,T2); Y

Here we initialize the layer's weights and biases to new values.

net = init(net);

Here we train the newly initialized layer on the entire sequence for 200 epochs 
to an error goal of 0.1.

P3 = [P1 P2];
T3 = [T1 T2];
net.trainParam.epochs = 200;
net.trainParam.goal = 0.1;
net = train(net,P3,T3);
Y = sim(net,[P1 P2])

Algorithm Linear layers consist of a single layer with the dotprod weight function, netsum 
net input function, and purelin transfer function.

The layer has a weight from the input and a bias.

Weights and biases are initialized with initzero.

Adaption and training are done with adaptwb and trainwb, which both update 
weight and bias values with learnwh. Performance is measured with mse.

See Also newlind, sim, init, adapt, train
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newlindPurpose Design a linear layer

Syntax net = newlind(P,T)

new = newlind

Description newlind(P,T) takes two input arguments,

P - R x Q matrix of Q input vectors.

T - S x Q matrix of Q target class vectors.

and returns a linear layer designed to output T (with minimum sum square 
error) given input P.

Call newlind without input arguments to define the network's attributes in a 
dialog window.

Examples We would like a linear layer that outputs T given P for the following definitions.

P = [1 2 3];
T = [2.0 4.1 5.9];

Here we use newlind to design such a network and check its response.

net = newlind(P,T);
Y = sim(net,P)

Algorithm newlind calculates weight W and bias B values for a linear layer from inputs P 
and targets T by solving this linear equation in the least squares sense:

[W b] * [P; ones] = T

See Also sim, newlin
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newlvqPurpose Create a learning vector quantization network

Syntax net = newlvq(PR,S1,PC,LR,LF)

Description LVQ networks are used to solve classification problems.

net = newlvq(PR,S1,PC,LR,LF) takes these inputs,

PR - R x 2 matrix of min and max values for R input elements.

S1 - Number of hidden neurons.

PC - S2 element vector of typical class percentages.

LR - Learning rate, default = 0.01.

LF - Learning function, default = 'learnlv2'.

returns a new LVQ network.

The learning function LF can be learnlv1 or learnlv2.

Properties newlvq creates a two layer network. The first layer uses the compet transfer 
function, calculates weighted inputs with negdist, and net input with netsum. 
The second layer has purelin neurons, calculates weighted input with dotprod 
and net inputs with netsum. Neither layer has biases.

First layer weights are initialized with midpoint. The second layer weights are 
set so that each output neuron i has unit weights coming to it from PC(i) 
percent of the hidden neurons.

Adaption and training are done with adaptwb and trainwb1, which both update 
the first layer weights with the specified learning functions.

Examples The input vectors P and target classes Tc below define a classification problem 
to be solved by an LVQ network.

P = [-3 -2 -2  0  0  0  0 +2 +2 +3; ...
0 +1 -1 +2 +1 -1 -2 +1 -1  0];
Tc = [1 1 1 2 2 2 2 1 1 1];
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The target classes Tc are converted to target vectors T. Then, an LVQ network 
is created (with inputs ranges obtained from P, 4 hidden neurons, and class 
percentages of 0.6 and 0.4) and is trained.

T = ind2vec(Tc);
net = newlvq(minmax(P),4,[.6 .4]);
net = train(net,P,T);

The resulting network can be tested.

Y = sim(net,P)
Yc = vec2ind(Y)

See Also sim, init, adapt, train, adaptwb, trainwb1, learnlv1, learnlv2
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newpPurpose Create a perceptron

Syntax net = newp(pr,s,tf,lf)

Description Perceptrons are used to solve simple (i.e. linearly separable) classification 
problems.

net = newp(PR,S,TF,LF) takes these inputs,

PR - R x 2 matrix of min and max values for R input elements.

S  - Number of neurons.

TF - Transfer function, default = 'hardlim'.

LF - Learning function, default = 'learnp'.

and returns a new perceptron.

The transfer function TF can be hardlim or hardlims. The learning function LF 
can be learnp or learnpn.

Call newp without input arguments to define the network's attributes in a 
dialog window.

Properties Perceptrons consist of a single layer with the dotprod weight function, the 
netsum net input function, and the specified transfer function.

The layer has a weight from the input and a bias.

Weights and biases are initialized with initzero.

Adaption and training are done with adaptwb and trainwb, which both update 
weight and bias values with the specified learning function. Performance is 
measured with mae.

Examples This code creates a perceptron layer with one 2-element input (ranges [0 1] and 
[-2 2]) and one neuron. (Supplying only two arguments to newp results in the 
default perceptron learning function learnp being used.)

net = newp([0 1; -2 2],1);

Here we simulate the network to a sequence of inputs P.

P1 = {[0; 0] [0; 1] [1; 0] [1; 1]};
Y = sim(net,P1)
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Here we define a sequence of targets T (together P and T define the operation of 
an AND gate), and then let the network adapt for 10 passes through the 
sequence. We then simulate the updated network.

T1 = {0 0 0 1};
net.adaptParam.passes = 10;
net = adapt(net,P1,T1);
Y = sim(net,P1)

Now we define a new problem, an OR gate, with batch inputs P and targets T.

P2 = [0 0 1 1; 0 1 0 1];
T2 = [0 1 1 1];

Here we initialize the perceptron (resulting in new random weight and bias 
values), simulate its output, train for a maximum of 20 epochs, and then 
simulate it again.

net = init(net);
Y = sim(net,P2)
net.trainParam.epochs = 20;
net = train(net,P2,T2);
Y = sim(net,P2)

Notes Perceptrons can classify linearly separable classes in a finite amount of time. 
If input vectors have a large variance in their lengths, the learnpn can be 
faster than learnp.

See Also sim, init, adapt, train, hardlim, hardlims, learnp, learnpn
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newpnnPurpose Design a probabilistic neural network

Syntax net = newpnn(P,T,spread)

Description Probabilistic neural networks are a kind of radial basis network suitable for 
classification problems.

net = newpnn(P,T,spread)takes two or three arguments,

P - R x Q matrix of Q input vectors.

T - S x Q matrix of Q target class vectors.

spread - Spread of radial basis functions, default = 0.1.

and returns a new probabilistic neural network.

If spread is near zero the network will act as a nearest neighbor classifier. As 
spread becomes larger the designed network will take into account several 
nearby design vectors.

Examples Here a classification problem is defined with a set of inputs P and class indices 
Tc.

P = [1 2 3 4 5 6 7];
Tc = [1 2 3 2 2 3 1];

Here the class indices are converted to target vectors, and a PNN is designed 
and tested.

T = ind2vec(Tc)
net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Algorithm newpnn creates a two layer network. The first layer has radbas neurons, and 
calculates its weighted inputs with dist, and its net input with netprod. The 
second layer has compet neurons, and calculates its weighted input with 
dotprod and its net inputs with netsum. Only the first layer has biases.

newpnn sets the first layer weights to P', and the first layer biases are all set to 
0.8326/spread resulting in radial basis functions that cross 0.5 at weighted 
inputs of +/- spread. The second layer weights W2 are set to T.
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See Also sim, ind2vec, vec2ind, newrb, newrbe, newgrnn

References Wasserman, P.D., Advanced Methods in Neural Computing, New York: Van 
Nostrand Reinhold, pp. 35-55, 1993.
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newrbPurpose Design a radial basis network

Syntax net = newrb(P,T,goal,spread)

Description Radial basis networks can be used to approximate functions. newrb adds 
neurons to the hidden layer of a radial basis network until it meets the 
specified mean squared error goal.

newrb(P,T,goal,spread) takes two to four arguments,

P - R x Q matrix of Q input vectors.

T - S x Q matrix of Q target class vectors.

goal - Mean squared error goal, default = 0.0.

spread - Spread of radial basis functions, default = 1.0.

and returns a new radial basis network.

The larger that spread is, the smoother the function approximation will be. Too 
large a spread means a lot of neurons will be required to fit a fast changing 
function. Too small a spread means many neurons will be required to fit a 
smooth function, and the network may not generalize well. Call newrb with 
different spreads to find the best value for a given problem.

Examples Here we design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrb(P,T);

Here the network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithm newrb creates a two layer network. The first layer has radbas neurons, and 
calculates its weighted inputs with dist, and its net input with netprod. The 
second layer has purelin neurons, and calculates its weighted input with 
dotprod and its net inputs with netsum. Both layers have biases.
13-150



newrb
Initially the radbas layer has no neurons. The following steps are repeated 
until the network's mean squared error falls below goal.

1 The network is simulated.

2 The input vector with the greatest error is found.

3 A radbas neuron is added with weights equal to that vector.

4 The purelin layer weights are redesigned to minimize error.

See Also sim, newrbe, newgrnn, newpnn
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newrbePurpose Design an exact radial basis network

Syntax net = newrbe(P,T,spread)

Description Radial basis networks can be used to approximate functions. newrbe very 
quickly designs a radial basis network with zero error on the design vectors.

newrbe(P,T,spread) takes two or three arguments,

P - R x Q matrix of Q input vectors.

T - S x Q matrix of Q target class vectors.

spread - Spread of radial basis functions, default = 1.0.

and returns a new exact radial basis network.

The larger the spread is, the smoother the function approximation will be. Too 
large a spread can cause numerical problems.

Examples Here we design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrbe(P,T);

Here the network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithm newrbe creates a two layer network. The first layer has radbas neurons, and 
calculates its weighted inputs with dist, and its net input with netprod. The 
second layer has purelin neurons, and calculates its weighted input with 
dotprod and its net inputs with netsum. Both layers have biases.

newrbe sets the first layer weights to P', and the first layer biases are all set to 
0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted 
inputs of +/- spread.

The second layer weights IW{2,1} and biases b{2} are found by simulating the 
first layer outputs A{1}, and then solving the following linear expression:

[W{2,1} b{2}] * [A{1}; ones] = T

See Also sim, newrb, newgrnn, newpnn
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newsomPurpose Create a self-organizing map

Syntax net = newsom(PR,[d1,d2,...],tfcn,dfcn,olr,osteps,tlr,tnd)

Description Competitive layers are used to solve classification problems.

net = newsom (PR,[D1,D2,...],TFCN,DFCN,OLR,OSTEPS,TLR,TND) takes,

PR - R x 2 matrix of min and max values for R input elements.

I - Size of ith layer dimension, defaults = [5 8].

TFCN - Topology function, default ='hextop'.

DFCN - Distance function, default ='linkdist'.

OLR - Ordering phase learning rate, default = 0.9.

OSTEPS - Ordering phase steps, default = 1000.

TLR - Tuning phase learning rate, default = 0.02;

TND - Tuning phase neighborhood distance, default = 1.

and returns a new self-organizing map.

The topology function TFCN can be hextop, gridtop, or randtop. The distance 
function can be linkdist, dist, or mandist.

Properties Simms consist of a single layer with the negdist weight function, netsum net 
input function, and the compet transfer function.

The layer has a weight from the input, but no bias. The weight is initialized 
with midpoint.

Adaption and training are done with adaptwb and trainwb1, which both update 
the weight with learnsom.

Examples The input vectors defined below are distributed over an 2-dimension input 
space varying over [0 2] and [0 1]. This data will be used to train a SOM with 
dimensions [3 5].

P = [rand(1,400)*2; rand(1,400)];
net = newsom([0 2; 0 1],[3 5]);
plotsom(net.layers{1}.positions)
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Here the SOM is trained and the input vectors are plotted with the map which 
the SOM's weights have formed.

net = train(net,P);
plot(P(1,:),P(2,:),'.g','markersize',20)
hold on
plotsom(net.iw{1,1},net.layers{1}.distances)
hold off

See Also sim, init, adapt, train, adaptwb, trainwb1
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nncopyPurpose Copy matrix or cell array

Syntax nncopy(x,m,n)

Description nncopy(X,M,N) takes two arguments,

X - R x C matrix (or cell array).

M - Number of vertical copies.

N - Number of horizontal copies.

and returns a new (R*M) x (C*N) matrix (or cell array).

Examples x1 = [1 2 3; 4 5 6];
y1 = nncopy(x1,3,2)
x2 = {[1 2]; [3; 4; 5]}
y2 = nncopy(x2,2,3)
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nnt2cPurpose Update NNT 2.0 competitive layer to NNT 3.0

Syntax net = nnt2c(pr,w,klr,clr)

Description nnt2c(PR,W,KLR,CLR) takes these arguments,

PR  - R x 2 matrix of min and max values for R input elements.

W   - S x R weight matrix.

KLR - Kohonen learning rate, default = 0.01.

CLR - Conscience learning rate, default = 0.001.

and returns a competitive layer.

Once a network has been updated it can be simulated, initialized, or trained 
with sim, init, adapt, and train.

See Also newc
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nnt2elmPurpose Update NNT 2.0 Elman backpropagation network to NNT 3.0

Syntax net = nnt2elm(pr,w1,b1,w2,b2,btf,blf,pf)

Description nnt2elm(PR,W1,B1,W2,B2,BTF,BLF,PF) takes these arguments,

PR - R x 2 matrix of min and max values for R input elements.

W1 - S1 x (R+S1) weight matrix.

B1 - S1 x 1 bias vector.

W2 - S2 x S1 weight matrix.

B2 - S2 x 1 bias vector.

BTF - Backprop network training function, default = 'traingdx'.

BLF - Backprop weight/bias learning function, default = 'learngdm'.

PF  - Performance function, default = 'mse'.

and returns a feed-forward network.

The training function BTF can be any of the backprop training functions such 
as traingd, traingdm, traingda, and traingdx. Large step-size algorithms, 
such as trainlm, are not recommended for Elman networks.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.

Once a network has been updated it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newelm
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nnt2ffPurpose Update NNT 2.0 feed-forward network to NNT 3.0

Syntax net = nnt2ff(pr,{w1 w2 ...},{b1 b2 ...},{tf1 tf2 ...},btf,blr,pf)

Description nnt2ff(PR,{W1 W2 ...},{B1 B2 ...},{TF1 TF2 ...},BTF,BLR,PF) takes 
these arguments,

PR - R x 2 matrix of min and max values for R input elements.

Wi  - Weight matrix for the ith layer.

Bi  - Bias vector for the ith layer.

TFi - Transfer function of ith layer, default = 'tansig'.

BTF - Backprop network training function, default = 'traingdx'.

BLF - Backprop weight/bias learning function, default = 'learngdm'.

PF  - Performance function, default = 'mse'.

and returns a feed-forward network.

The training function BTF can be any of the backprop training functions such 
as traingd, traingdm, traingda, traingdx or trainlm.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.

Once a network has been updated it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newff, newcf, newfftd, newelm
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nnt2hopPurpose Update NNT 2.0 Hopfield recurrent network to NNT 3.0

Syntax net = nnt2p(w,b)

Description nnt2hop (W,B) takes these arguments,

W - S x S weight matrix.

B - S x 1 bias vector

and returns a perceptron.

Once a network has been updated it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newhop
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nnt2linPurpose Update NNT 2.0 linear layer to NNT 3.0

Syntax net = nnt2lin(pr,w,b,lr)

Description nnt2lin(PR,W,B) takes these arguments,

PR - R x 2 matrix of min and max values for R input elements.

W  - S x R weight matrix.

B  - S x 1 bias vector

LR - Learning rate, default = 0.01;

and returns a linear layer.

Once a network has been updated it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newlin
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nnt2lvqPurpose Update NNT 2.0 learning vector quantization network to NNT 3.0

Syntax net = nnt2lvq(pr,w1,w2,lr,lf)

Description nnt2lvq(PR,W1,W2,LR,LF) takes these arguments,

PR - R x 2 matrix of min and max values for R input elements.

W1 - S1 x R weight matrix.

W2 - S2 x S1 weight matrix.

LR - Learning rate, default = 0.01.

LF - Learning function, default = 'learnlv2'.

and returns a radial basis network.

The learning function LF can be learnlv1 or learnlv2.

Once a network has been updated it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newlvq
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nnt2pPurpose Update NNT 2.0 perceptron to NNT 3.0

Syntax net = nnt2p(pr,w,b,tf,lf)

Description nnt2p(PR,W,B,TF,LF) takes these arguments,

PR - R x 2 matrix of min and max values for R input elements.

W - S x R weight matrix.

B - S x 1 bias vector.

TF - Transfer function, default = 'hardlim'.

LF - Learning function, default = 'learnp'.

and returns a perceptron.

The transfer function TF can be hardlim or hardlims. The learning function LF 
can be learnp or learnpn.

Once a network has been updated it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newp
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nnt2rbPurpose Update NNT 2.0 radial basis network to NNT 3.0

Syntax net = nnt2rb(pr,w1,b1,w2,b2)

Description nnt2rb(PR,W1,B1,W2,B2) takes these arguments,

PR - R x 2 matrix of min and max values for R input elements.

W1 - S1 x R weight matrix.

B1 - S1 x 1 bias vector.

W2 - S2 x S1 weight matrix.

B2 - S2 x 1 bias vector.

and returns a radial basis network.

Once a network has been updated it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newrb, newrbe, newgrnn, newpnn
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nnt2somPurpose Update NNT 2.0 self-organizing map to NNT 3.0

Syntax net = nnt2som(pr,[d1 d2 ...],w,olr,osteps,tlr,tnd)

Description nnt2som(PR,[D1,D2,...],W,OLR,OSTEPS,TLR,TND) takes these arguments,

PR - R x 2 matrix of min and max values for R input elements.

Di - Size of ith layer dimension.

W - S x R weight matrix.

OLR - Ordering phase learning rate, default = 0.9.

OSTEPS - Ordering phase steps, default = 1000.

TLR - Tuning phase learning rate, default = 0.02;

TND - Tuning phase neighborhood distance, default = 1.

and returns a self-organizing map.

nnt2som assumes that the self-organizing map has a grid topology (gridtop) 
using link distances (linkdist). This corresponds with the nbman neighborhood 
function in NNT 2.0.

The new network will only output 1 for the neuron with the greatest net input. 
In NNT 2.0 the network would also output 0.5 for that neuron's neighbors.

Once a network has been updated it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newsom
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normcPurpose Normalize the columns of a matrix

Syntax normc(M)

Description normc(M) normalizes the columns of M to a length of 1.

Examples m = [1 2; 3 4];
normc(m)
ans =

0.3162 0.4472
0.9487 0.8944

See Also normr
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normprodPurpose Normalized dot product weight function

Syntax Z = normprod(W,P)

df = normprod('deriv')

Description normprod is a weight function. Weight functions apply weights to an input to 
get weighted inputs.

normprod(W,P) takes these inputs,

W - S x R weight matrix.

P - R x Q matrix of Q input (column) vectors.

and returns the S x Q matrix of normalized dot products.

normprod('deriv') returns '' because normprod does not have a derivative 
function.

Examples Here we define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = normprod(W,P)

Network Use You can create a standard network that uses normprod by calling newgrnn.

To change a network so an input weight uses normprod, set 
net.inputWeight{i,j}.weightFcn to 'normprod’. For a layer weight set 
net.inputWeight{i,j}.weightFcn to 'normprod’.

In either case call sim to simulate the network with normprod. See newgrnn for 
simulation examples.

Algorithm normprod returns the dot product normalized by the sum of the input vector 
elements.

z = w*p/sum(p)

See Also sim, dotprod, negdist, dist
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normrPurpose Normalize the rows of a matrix

Syntax normr(M)

Description normr(M) normalizes the columns of M to a length of 1.

Examples m = [1 2; 3 4];
normr(m)
ans =

 0.4472 0.8944
0.6000 0.8000

See Also normc
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plotepPurpose Plot a weight-bias position on an error surface

Syntax h = plotep(w,b,e)
h = plotep(w,b,e,h)

Description plotep is used to show network learning on a plot already created by plotes.

plotep(W,B,E) takes these arguments,

W - Current weight value.

B - Current bias value.

E - Current error.

and returns a vector H, containing information for continuing the plot.

plotep(W,B,E,H) continues plotting using the vector H returned by the last call 
to plotep.

H contains handles to dots plotted on the error surface, so they can be deleted 
next time, as well as points on the error contour, so they can be connected.

See Also errsurf, plotes
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plotesPurpose Plot the error surface of a single input neuron

Syntax plotes(wv,bv,es,v)

Description plotes(WV,BV,ES,V) takes these arguments,

WV - 1 x N row vector of values of W.

BV - 1 x M row vector of values of B.

ES - M x N matrix of error vectors.

V  - View, default = [-37.5, 30].

and plots the error surface with a contour underneath.

Calculate the error surface ES with errsurf.

Examples p = [3 2];
t = [0.4 0.8];
wv = -4:0.4:4; bv = wv;
ES = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])

See Also errsurf
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plotpcPurpose Plot a classification line on a perceptron vector plot

Syntax plotpc(W,b)

Description plotpc(W,B) takes these inputs,

W - S x R weight matrix (R must be 3 or less).

B - S x 1 bias vector.

and returns a handle to a plotted classification line.

plotpc(W,B,H) takes these inputs,

H - Handle to last plotted line.

and deletes the last line before plotting the new one.

This function does not change the current axis and is intended to be called after 
plotpv.

Examples The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)

The following code creates a perceptron with inputs ranging over the values in 
P, assigns values to its weights and biases, and plots the resulting classification 
line.

net = newp(minmax(p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})

See Also plotpv
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plotperfPurpose Plot network performance

Syntax plotperf(tr,goal,name,epoch)

Description plotperf(TR,goal,name,epoch) takes these inputs,

TR - Training record returned by train.

goal - Performance goal, default = NaN.

name - Training function name, default = ''.

epoch - Number of epochs, default = length of training record.

and plots the training performance, and if available, the performance goal, 
validation performance, and test performance.

Examples Here are 8 input values P and associated targets T, plus a like number of 
validation inputs VV.P and targets VV.T.

P = 1:8; T = sin(P);
VV.P = P; VV.T = T+rand(1,8)*0.1;

The code below creates a network and trains it on this problem.

net = newff(minmax(P),[4 1],{'tansig','tansig'});
[net,tr] = train(net,P,T,[],[],VV);

During training plotperf was called to display the training record. You can 
also call plotperf directly with the final training record TR, as shown below.

plotperf(tr)
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plotpvPurpose Plot perceptron input/target vectors

Syntax plotpv(p,t)

Description plotpv(P,T) take these inputs,

P - R x Q matrix of input vectors (R must be 3 or less).

T - S x Q matrix of binary target vectors (S must be 3 or less).

and plots column vectors in P with markers based on T.

plotpv(P,T,V) takes an additional input,

V - Graph limits = [x_min x_max y_min y_max]

and plots the column vectors with limits set by V.

Examples The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)

The following code creates a perceptron with inputs ranging over the values in 
P, assigns values to its weights and biases, and plots the resulting classification 
line.

net = newp(minmax(p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})

See Also plotpc
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plotvPurpose Plot vectors as lines from the origin

Syntax plotv(m,t)

Description plotv(M,T) takes two inputs,

M - R x Q matrix of Q column vectors with R elements.

T - (optional) the line plotting type, default = '-'.

and plots the column vectors of M.

R must be 2 or greater. If R is greater than two, only the first two rows of M are 
used for the plot.

Examples plotv([-.4 0.7 .2; -0.5 .1 0.5],'-')
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plotvecPurpose Plot vectors with different colors

Syntax plotvec(x,c,m)

Description plotvec(X,C,M) takes these inputs,

X - Matrix of (column) vectors.

C - Row vector of color coordinate.

M - Marker, default = '+'.

and plots each ith vector in X with a marker M and using the ith value in C as 
the color coordinate.

plotvec(X) only takes a matrix X and plots each ith vector in X with marker 
'+' using the index i as the color coordinate.

Examples x = [0 1 0.5 0.7; -1 2 0.5 0.1];
c = [1 2 3 4];
plotvec(x,c)
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pnormcPurpose Pseudo-normalize columns of a matrix

Syntax pnormc(x,r)

Description pnormc(M,R) takes these arguments,

X - M x N matrix.

R - (optional) radius to normalize columns to, default = 1.

and returns X with an additional row of elements, which results in new column 
vector lengths of R.

WARNING: For this function to work properly, the columns of X must 
originally have vector lengths less than R.

Examples x = [0.1 0.6; 0.3 0.1];
y = pnormc(x)

See Also normc, normr
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poslinPurpose Positive linear transfer function

Graph and 
Symbol

Syntax A = poslin(N)

info = poslin(code)

Description poslin is a transfer function. Transfer functions calculate a layer's output from 
its net input.

poslin(N) takes one input,

N - S x Q matrix of net input (column) vectors.

and returns the maximum of 0 and each element of N.

poslin(code) returns useful information for each code string:

'deriv' - Name of derivative function.

'name' - Full name.

'output' - Output range.

'active' - Active input range.

Examples Here is the code to create a plot of the poslin transfer function.

n = -5:0.1:5;
a = poslin(n);
plot(n,a)

n
0

-1

+1

a = poslin(n)

Positive Linear Transfer Funct.

a

AA
AA1
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Network Use To change a network so that a layer uses poslin, set 
net.layers{i}.transferFcn to 'poslin'.

Call sim to simulate the network with poslin.

Algorithm poslin(n) = n, if n >= 0; = 0, if n <= 0.

See Also sim, purelin, satlin, satlins
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postmnmxPurpose Postprocess data which has been preprocessed by premnmx

Syntax [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)

[p] = postmnmx(pn,minp,maxp)

Description postmnmx postprocesses the network training set which was preprocessed by 
premnmx. It converts the data back into unnormalized units.

postmnmx takes these inputs,

PN  - R x Q matrix of normalized input vectors.

minp- R x 1 vector containing minimums for each P.

maxp- R x 1 vector containing maximums for each P.

TN  - S x Q matrix of normalized target vectors.

mint- S x 1 vector containing minimums for each T.

maxt- S x 1 vector containing maximums for each T.

and returns,

P - R x Q matrix of input (column) vectors.

T - R x Q matrix of target vectors.

Examples In this example we normalize a set of training data with premnmx, create and 
train a network using the normalized data, simulate the network, unnormalize 
the output of the network using postmnmx, and perform a linear regression 
between the network outputs (unnormalized) and the targets to check the 
quality of the network training.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);
an = sim(net,pn);
[a] = postmnmx(an,mint,maxt);
[m,b,r] = postreg(a,t);

Algorithm p = 0.5(pn+1)*(maxp-minp) + minp;

See Also premnmx, prepca, poststd
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postregPurpose Postprocess the trained network response with a linear regression

Syntax [m,b,r] = postreg(A,T)

Description postreg postprocesses the network training set by performing a linear 
regression between each element of the network response and the 
corresponding target.

postreg(A,T) takes these inputs,

A - 1 x Q array of network outputs. One element of the network output.

T - 1 x Q array of targets. One element of the target vector.

and returns,

M - Slope of the linear regression.

B - Y intercept of the linear regression.

R - Regression R-value.  R=1 means perfect correlation.

Examples In this example we normalize a set of training data with prestd, perform a 
principal component transformation on the normalized data, create and train 
a network using the pca data, simulate the network, unnormalize the output 
of the network using poststd, and perform a linear regression between the 
network outputs (unnormalized) and the targets to check the quality of the 
network training.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
[ptrans,transMat] = prepca(pn,0.02);
net = newff(minmax(ptrans),[5 1],{'tansig''purelin'},'trainlm');
net = train(net,ptrans,tn);
an = sim(net,ptrans);
a = poststd(an,meant,stdt);
[m,b,r] = postreg(a,t);

Algorithm Performs a linear regression between the network response and the target, and 
then computes the correlation coefficient (R-value) between the network 
response and the target.

See Also premnmx, prepca
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poststdPurpose Postprocess data which has been preprocessed by prestd

Syntax [p,t] = poststd(pn,meanp,stdp,tn,meant,stdt)

[p] = poststd(pn,meanp,stdp)

Description poststd postprocesses the network training set which was preprocessed by 
prestd. It converts the data back into unnormalized units.

poststd takes these inputs,

PN - R x Q matrix of normalized input vectors.

meanp - R x 1 vector containing standard deviations for each P.

stdp - R x 1 vector containing standard deviations for each P.

TN - S x Q matrix of normalized target vectors.

meant - S x 1 vector containing standard deviations for each T.

stdt  - S x 1 vector containing standard deviations for each T.

and returns,

P - R x Q matrix of input (column) vectors.

T - S x Q matrix of target vectors.

Examples In this example we normalize a set of training data with prestd, create and 
train a network using the normalized data, simulate the network, unnormalize 
the output of the network using poststd, and perform a linear regression 
between the network outputs (unnormalized) and the targets to check the 
quality of the network training.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);
an = sim(net,pn);
a = poststd(an,meant,stdt);
[m,b,r] = postreg(a,t);

Algorithm p = stdp*pn + meanp;

See Also premnmx, prepca, postmnmx, prestd
13-180



premnmx
premnmxPurpose Preprocess data so that minimum is -1 and maximum is 1

Syntax [pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)

[pn,minp,maxp] = premnmx(p)

Description premnmx preprocesses the network training set by normalizing the inputs and 
targets so that they fall in the interval [-1,1].

premnmx(P,T) takes these inputs,

P - R x Q matrix of input (column) vectors.

T - S x Q matrix of target vectors.

and returns,

PN  - R x Q matrix of normalized input vectors.

minp- R x 1 vector containing minimums for each P.

maxp- R x 1 vector containing maximums for each P.

TN  - S x Q matrix of normalized target vectors.

mint- S x 1 vector containing minimums for each T.

maxt- S x 1 vector containing maximums for each T.

Examples Here is the code to normalize a given data set so that the inputs and targets 
will fall in the range [-1,1].

p = [-10 -7.5 -5 -2.5 0 2.5 5 7.5 10];
t = [0 7.07 -10 -7.07 0 7.07 10 7.07 0];
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);

If you just want to normalize the input,

[pn,minp,maxp] = premnmx(p);

Algorithm pn = 2*(p-minp)/(maxp-minp) - 1;

See Also prestd, prepca, postmnmx
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prepcaPurpose Principal component analysis

Syntax [ptrans,transMat] = prepca(P,min_frac)

Description prepca preprocesses the network input training set by applying a principal 
component analysis. This analysis transforms the input data so that the 
elements of the input vector set will be uncorrelated. In addition, the size of the 
input vectors may be reduced by retaining only those components which 
contribute more than a specified fraction (min_frac) of the total variation in 
the data set.

prepca(p,min_frac) takes these inputs

P - R x Q matrix of centered input (column) vectors.

min_frac - Minimum fraction variance component to keep.

and returns

ptrans - Transformed data set.

transMat - Transformation matrix.

Examples Here is the code to perform a principal component analysis and retain only 
those components which contribute more than 2 percent to the variance in the 
data set. prestd is called first to create zero mean data, which are needed for 
prepca.

p=[-1.5 -0.58 0.21 -0.96 -0.79; -2.2 -0.87 0.31 -1.4  -1.2];
[pn,meanp,stdp] = prestd(p);
[ptrans,transMat] = prepca(pn,0.02);

Since the second row of p is almost a multiple of the first row, this example will 
produce a transformed data set which contains only one row.

Algorithm This routine uses singular value decomposition to compute the principal 
components. The input vectors are multiplied by a matrix whose rows consist 
of the eigenvectors of the input covariance matrix. This produces transformed 
input vectors whose components are uncorrelated and ordered according to the 
magnitude of their variance. 
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Those components which contribute only a small amount to the total variance 
in the data set are eliminated. It is assumed that the input data set has already 
been normalized so that it has a zero mean. The function prestd can be used 
to normalize the data.

See Also prestd, premnmx

References Jolliffe, I.T.,Principal Component Analysis, New York: Springer-Verlag, 1986.
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prestdPurpose Preprocess data so that its mean is 0 and the standard deviation is 1

Syntax [pn,meanp,stdp,tn,meant,stdt] = prestd(p,t)

[pn,meanp,stdp] = prestd(p)

Description prestd preprocesses the network training set by normalizing the inputs and 
targets so that they have means of zero and standard deviations of 1.

prestd(p,t) takes these inputs,

p - R x Q matrix of input (column) vectors.

t - S x Q matrix of target vectors.

and returns,

pn - R x Q matrix of normalized input vectors.

meanp - R x 1 vector containing standard deviations for each P.

stdp  - R x 1 vector containing standard deviations for each P.

tn - S x Q matrix of normalized target vectors.

meant - S x 1 vector containing standard deviations for each T.

stdt - S x 1 vector containing standard deviations for each T.

Examples Here is the code to normalize a given data set so that the inputs and targets 
will have means of zero and standard deviations of 1.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);

If you just want to normalize the input,

[pn,meanp,stdp] = prestd(p);

Algorithm pn = (p-meanp)/stdp;

See Also premnmx, prepca
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purelinPurpose Linear transfer function

Syntax A = purelin(N)
info = purelin(code)

Description purelin is a transfer function. Transfer functions calculate a layer's output 
from its net input.

purelin(N) takes one input,

N - S x Q matrix of net input (column) vectors.

and returns N.

purelin(code) returns useful information for each code string:

'deriv'  - Name of derivative function.

'name' - Full name.

'output' - Output range.

'active' - Active input range.

Examples Here is the code to create a plot of the purelin transfer function.

n = -5:0.1:5;
a = purelin(n);
plot(n,a)

Network Use You can create a standard network that uses purelin by calling newlin or 
newlind.

To change a network so a layer uses purelin, set 
net.layers{i}.transferFcn to 'purelin'.

In either case, call sim to simulate the network with purelin. See newlin or 
newlind for simulation examples.

Algorithm purelin(n) = n

See Also sim, dpurelin, satlin, satlins
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quantPurpose Discretize values as multiples of a quantity

Syntax quant(X,q)

Description quant(X,q) takes two inputs,

X - Matrix, vector or scalar.

Q - Minimum value.

and returns values in X rounded to nearest multiple of Q.

Examples x = [1.333 4.756 -3.897];
y = quant(x,0.1)
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radbasPurpose Radial basis transfer function

Syntax A = radbas(N)
info = radbas(code)

Description radbas is a transfer function. Transfer functions calculate a layer's output from 
its net input.

radbas(N) takes one input,

N - S x Q matrix of net input (column) vectors.

and returns each element of N passed through a radial basis function.

radbas(code) returns useful information for each code string:

'deriv'  - Name of derivative function.

'name'   - Full name.

'output' - Output range.

'active' - Active input range.

Examples Here we create a plot of the radbas transfer function.

n = -5:0.1:5;
a = radbas(n);
plot(n,a)

Network Use You can create a standard network that uses radbas by calling newpnn or 
newgrnn.

To change a network so that a layer uses radbas, set 
net.layers{i}.transferFcn to 'radbas'.

In either case, call sim to simulate the network with radbas. See newpnn or 
newgrnn for simulation examples.

Algorithm radbas(N) calculates its output with according to:

a = exp(-n2)

See Also sim, tribas, dradbas
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randncPurpose Normalized column weight initialization function

Syntax W = randnc(S,PR)
W = randnc(S,R)

Description randnc is a weight initialization function.

randnc(S,P) takes two inputs,

S  - Number of rows (neurons).

PR - R x 2 matrix of input value ranges = [Pmin Pmax].

and returns an S x R random matrix with normalized columns.

Can also be called as randnc(S,R).

Examples A random matrix of four normalized three-element columns is generated:

M = randnc(3,4)
M =

–0.6007   –0.4715   –0.2724    0.5596
–0.7628   –0.6967   –0.9172    0.7819
–0.2395    0.5406   –0.2907    0.2747

See Also randnr
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randnrPurpose Normalized row weight initialization function

Syntax W = randnr(S,PR)
W = randnr(S,R)

Description randnr is a weight initialization function.

randnr(S,P) takes two inputs,

S  - Number of rows (neurons).

PR - R x 2 matrix of input value ranges = [Pmin Pmax].

and returns an S x R random matrix with normalized rows.

Can also be called as randnr(S,R).

Examples A matrix of three normalized four-element rows is generated:

M = randnr(3,4)
M =

0.9713 0.0800 –0.1838 –0.1282
0.8228 0.0338 0.1797 0.5381
–0.3042 –0.5725 0.5436 0.5331

See Also randnc
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randsPurpose Symmetric random weight/bias initialization function

Syntax W = rands(S,PR)
M = rands(S,R)
v = rands(S);

Description rands is a weight/bias initialization function.

rands(S,PR) takes,

S  - Number of neurons.

PR - R x 2 matrix of R input ranges.

and returns an S-by-R weight matrix of random values between -1 and 1.

rands(S,R) returns an S-by-R matrix of random values. rands(S) returns an 
S-by-1 vector of random values.

Examples Here three sets of random values are generated with rands.

rands(4,[0 1; -2 2])
rands(4)
rands(2,3)

Network Use To prepare the weights and the bias of layer i of a custom network to be 
initialized with rands:

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become 
initlay's default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'rands'. Set each 
net.layerWeights{i,j}.initFcn to 'rands'. Set each 
net.biases{i}.initFcn to 'rands'.

To initialize the network call init.

See Also randnr, randnc, initwb, initlay, init
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randtopPurpose Random layer topology function

Syntax pos = randtop(dim1,dim2,...,dimN)

Description randtop calculates the neuron positions for layers whose neurons are arranged 
in an N dimensional random pattern.

randtop(dim1,dim2,...,dimN)) takes N arguments,

dimi - Length of layer in dimension i.

and returns an N x S matrix of N coordinate vectors, where S is the product of 
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 192 neurons 
arranged in a 16x12 random pattern.

pos = randtop(16,12); plotsom(pos)

This code plots the connections between the same neurons, but shows each 
neuron at the location of its weight vector. The weights are generated randomly 
so that the layer is very unorganized, as is evident in the plot.

W = rands(192,2); plotsom(W,dist(pos))

See Also gridtop, hextop
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satlinPurpose Saturating linear transfer function

Syntax A = satlin(N)
info = satlin(code)

Description satlin is a transfer function. Transfer functions calculate a layer's output from 
its net input.

satlin(N)  takes one input,

N - S x Q matrix of net input (column) vectors,

and returns values of N truncated into the interval [-1, 1].

satlin(code) returns useful information for each code string:

'deriv'  - Name of derivative function.

'name'   - Full name.

'output' - Output range.

'active' - Active input range.

Examples Here is the code to create a plot of the satlin transfer function.

n = -5:0.1:5;
a = satlin(n);
plot(n,a)

Network Use To change a network so that a layer uses satlin, set 
net.layers{i}.transferFcn to 'satlin'.

Call sim to simulate the network with satlin. See newhop for simulation 
examples.

Algorithm satlin(n) = 0, if n <= 0; n, if 0 <= n <= 1; 1, if 1 <= n.

See Also sim, poslin, satlins, purelin
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satlinsPurpose Symmetric saturating linear transfer function

Syntax A = satlins(N)
info = satlins(code)

Description satlins is a transfer function. Transfer functions calculate a layer's output 
from its net input.

satlins(N)  takes one input,

N - S x Q matrix of net input (column) vectors.

and returns values of N truncated into the interval [-1, 1].

satlins(code) returns useful information for each code string:

'deriv'  - Name of derivative function.

'name'   - Full name.

'output' - Output range.

'active' - Active input range.

Examples Here is the code to create a plot of the satlins transfer function.

n = -5:0.1:5;
a = satlins(n);
plot(n,a)

Network Use You can create a standard network that uses satlins by calling newhop.

To change a network so that a layer uses satlins, set 
net.layers{i}.transferFcn to 'satlins'.

In either case, call sim to simulate the network with satlins. See newhop for 
simulation examples.

Algorithm satlins(n) = -1, if n <= -1; n, if -1 <= n <= 1; 1, if 1 <= n.

See Also sim, satlin, poslin, purelin
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seq2conPurpose Converts sequential vectors to concurrent vectors

Syntax b = seq2con(s)

Description The neural network toolbox represents batches of vectors with a matrix, and 
sequences of vectors with multiple columns of a cell array.

seq2con and con2seq allow concurrent vectors to be converted to sequential 
vectors, and back again.

seq2con(S) takes one input,

S - N x TS cell array of matrices with M columns.

and returns,

B - N x 1 cell array of matrices with M*TS columns.

Examples Here three sequential values are converted to concurrent values.

p1 = {1 4 2}
p2 = seq2con(p1)

Here two sequences of vectors over three time steps are converted to concurrent 
vectors.

p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
p2 = seq2con(p1)

See Also con2seq, concur
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simPurpose Simulate a neural network

Syntax [Y,Pf,Af] = sim(net,P,Pi,Ai)

[Y,Pf,Af] = sim(net,{Q TS},Pi,Ai)

[Y,Pf,Af] = sim(net,Q,Pi,Ai)

To Get Help Type help network/sim

Description sim simulates neural networks.

[Y,Pf,Af] = sim(net,P,Pi,Ai) takes,

net - Network.

P   - Network inputs.

Pi  - Initial input delay conditions, default = zeros.

Ai  - Initial layer delay conditions, default = zeros.

and returns,

Y   - Network outputs.

Pf  - Final input delay conditions.

Af  - Final layer delay conditions.

Note that arguments Pi, Ai, Pf, and Af are optional and need only be used for 
networks that have input or layer delays.

sim's signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for networks 
with multiple inputs and outputs, and allows sequences of inputs to be 
presented:

P  - Ni x TS cell array, each element P{i,ts} is an Ri x Q matrix.

Pi - Ni x ID cell array, each element Pi{i,k} is an Ri x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

Y - NO x TS cell array, each element Y{i,ts} is a Ui x Q matrix.

Pf - Ni x ID cell array, each element Pf{i,k} is an Ri x Q matrix.

Af - Nl x LD cell array, each element Af{i,k} is an Si x Q matrix.
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where

Ni = net.numInputs

Nl = net.numLayers, 
No = net.numOutputs

D = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps

Q  = Batch size

Ri = net.inputs{i}.size
Si = net.layers{i}.size

Ui = net.outputs{i}.size

The columns of Pi, Ai, Pf, and Af are ordered from oldest delay condition to 
most recent:

Pi{i,k} = input i at time ts=k-ID.

Pf{i,k} = input i at time ts=TS+k-ID.

Ai{i,k} = layer output i at time ts=k-LD.

Af{i,k} = layer output i at time ts=TS+k-LD.

The matrix format can be used if only one time step is to be simulated (TS = 
1). It is convenient for networks with only one input and output, but can also 
be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding 
cell array argument into a single matrix:

P  - (sum of Ri) x Q matrix

Pi - (sum of Ri) x (ID*Q) matrix.

Ai - (sum of Si) x (LD*Q) matrix.

Y  - (sum of Ui) x Q matrix.

Pf - (sum of Ri) x (ID*Q) matrix.

Af - (sum of Si) x (LD*Q) matrix.
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[Y,Pf,Af] = sim(net,{Q TS},Pi,Ai) is used for networks which do not have 
an input, such as Hopfield networks, when cell array notation is used.

[Y,Pf,Af] = sim(net,Q,Pi,Ai) is used for networks which do not have an 
input, such as Hopfield networks, when matrix notation is used.

Examples Here newp is used to create a perceptron layer with a 2-element input (with 
ranges of [0 1]), and a single neuron.

net = newp([0 1;0 1],1);

Here the perceptron is simulated for an individual vector, a batch of 3 vectors, 
and a sequence of 3 vectors.

p1 = [.2; .9]; a1 = sim(net,p1)
p2 = [.2 .5 .1; .9 .3 .7]; a2 = sim(net,p2)
p3 = {[.2; .9] [.5; .3] [.1; .7]}; a3 = sim(net,p3)

Here newlind is used to create a linear layer with a 3-element input, 2 neurons.

net = newlin([0 2;0 2;0 2],2,[0 1]);

Here the linear layer is simulated with a sequence of 2 input vectors using the 
default initial input delay conditions (all zeros).

p1 = {[2; 0.5; 1] [1; 1.2; 0.1]};
[y1,pf] = sim(net,p1)

Here the layer is simulated for 3 more vectors using the previous final input 
delay conditions as the new initial delay conditions.

p2 = {[0.5; 0.6; 1.8] [1.3; 1.6; 1.1] [0.2; 0.1; 0]};
[y2,pf] = sim(net,p2,pf)

Here newelm is used to create an Elman network with a 1-element input, and 
a layer 1 with 3 tansig neurons followed by a layer 2 with 2 purelin neurons. 
Because it is an Elman network it has a tap delay line with a delay of 1 going 
from layer 1 to layer 1.

net = newelm([0 1],[3 2],{'tansig','purelin'});
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Here the Elman network is simulated for a sequence of 3 values using default 
initial delay conditions.

p1 = {0.2 0.7 0.1};
[y1,pf,af] = sim(net,p1)

Here the network is simulated for 4 more values, using the previous final delay 
conditions as the new initial delay conditions.

p2 = {0.1 0.9 0.8 0.4};
[y2,pf,af] = sim(net,p2,pf,af)

Algorithm sim uses these properties to simulate a network net.

net.numInputs, net.numLayers
net.outputConnect, net.biasConnect
net.inputConnect, net.layerConnect

These properties determine the network's weight and bias values, and the 
number of delays associated with each weight:

net.inputWeights{i,j}.value
net.layerWeights{i,j}.value
net.layers{i}.value
net.inputWeights{i,j}.delays
net.layerWeights{i,j}.delays

These function properties indicate how sim applies weight and bias values to 
inputs to get each layer's output:

net.inputWeights{i,j}.weightFcn
net.layerWeights{i,j}.weightFcn
net.layers{i}.netInputFcn
net.layers{i}.transferFcn

See Chapter 2 for more information on network simulation.

See Also init, adapt, train
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softmaxPurpose Soft max transfer function

Syntax A = softmax(N)

info = softmax(code)

Description softmax is a transfer function. Transfer functions calculate a layer's output 
from its net input.

softmax(N) takes one input argument,

N - S x Q matrix of net input (column) vectors.

and returns output vectors with elements between 0 and 1, but with their size 
relations intact.

softmax('code') returns information about this function.

These codes are defined:

'deriv'  - Name of derivative function.

'name'   - Full name.

'output' - Output range.

'active' - Active input range.

compet does not have a derivative function.

Examples Here we define a net input vector N, calculate the output, and plot both with 
bar graphs.

n = [0; 1; -0.5; 0.5];
a = softmax(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Network Use To change a network so that a layer uses softmax, set 
net.layers{i,j}.transferFcn to 'softmax'.

Call sim to simulate the network with softmax. See newc or newpnn for 
simulation examples.

See Also sim, compet
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srchbacPurpose One-dimensional minimization using backtracking

Syntax [a,gX,perf,retcode,delta,tol] = 
srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchbac is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
called backtracking.

srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf) 
takes these inputs,

net - Neural network.

X - Vector containing current values of weights and biases.

Pd - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q - Batch size.

TS - Time steps.

dX - Search direction vector.

gX - Gradient vector.

perf - Performance value at current X.

dperf - Slope of performance value at current X in direction of dX.

delta - Initial step size.

tol - Tolerance on search.

ch_perf - Change in performance on previous step.

and returns,

A - Step size which minimizes performance.

gX - Gradient at new minimum point.

perf - Performance value at new minimum point.

retcode - Return code which has three elements. The first two elements 
correspond to the number of function evaluations in the two stages of the 
search. The third element is a return code. These will have different 
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meanings for different search algorithms. Some may not be used in this 
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta - New initial step size. Based on the current step size.

tol - New tolerance on search.

Parameters used for the backstepping algorithm are:

alpha - Scale factor which determines sufficient reduction in perf.

beta - Scale factor which determines sufficiently large step size.

low_lim - Lower limit on change in step size.

up_lim - Upper limit on change in step size.

maxstep - Maximum step length.

minstep - Minimum step length.

scale_tol - Parameter which relates the tolerance tol to the initial step 
size delta. Usually set to 20.

The defaults for these parameters are set in the training function which calls 
it. See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)
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Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function and the 
srchbac search function are to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchbac';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchbac with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line 
search function srchbac:

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf's 
default parameters.

2 Set net.trainParam.searchFcn to 'srchbac'. 

The srchbac function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.
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Algorithm srchbac locates the minimum of the performance function in the search 
direction dX, using the backtracking algorithm described on page 126 and 328 
of Dennis and Schnabel. (Numerical Methods for Unconstrained Optimization 
and Nonlinear Equations 1983).

See Also srchbrc, srchcha, srchgol, srchhyb

References Dennis, J. E., and R. B. Schnabel, Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall, 
1983.
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srchbrePurpose One-dimensional interval location using Brent's method

Syntax [a,gX,perf,retcode,delta,tol] = 
srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchbre is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
called Brent’s technique.

srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

net - Neural network.

X - Vector containing current values of weights and biases.

Pd - Delayed input vectors.

Tl - Layer target vectors.

Ai - Initial input delay conditions.

Q - Batch size.

TS - Time steps.

dX - Search direction vector.

gX - Gradient vector.

perf - Performance value at current X.

dperf - Slope of performance value at current X in direction of dX.

delta - Initial step size.

tol - Tolerance on search.

ch_perf - Change in performance on previous step.

and returns,

A - Step size which minimizes performance.

gX - Gradient at new minimum point.

perf - Performance value at new minimum point.

retcode - Return code, which has three elements. The first two elements 
correspond to the number of function evaluations in the two stages of the 
search. The third element is a return code. These will have different 
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meanings for different search algorithms. Some may not be used in this 
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta - New initial step size. Based on the current step size.

tol - New tolerance on search.

Parameters used for the brent algorithm are:

alpha - Scale factor which determines sufficient reduction in perf.

beta - Scale factor which determines sufficiently large step size.

bmax  - Largest step size.

scale_tol - Parameter which relates the tolerance tol to the initial step 
size delta. Usually set to 20.

The defaults for these parameters are set in the training function which calls 
it. See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];
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Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function and the 
srchbac search function are to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchbre';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchbre with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line 
search function srchbre:

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf's 
default parameters.

2 Set net.trainParam.searchFcn to 'srchbre'. 

The srchbre function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchbre brackets the minimum of the performance function in the search 
direction dX, using Brent's algorithm described on page 46 of Scales 
(Introduction to Non-Linear Estimation 1985). It is a hybrid algorithm based 
on the golden section search and the quadratic approximation.

See Also srchbac, srchcha, srchgol, srchhyb

References Scales, L. E., Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.
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srchchaPurpose One-dimensional minimization using the method of Charalambous

Syntax [a,gX,perf,retcode,delta,tol] = 
srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchcha is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
based on the method of Charalambous.

srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

net - Neural network.

X - Vector containing current values of weights and biases.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q - Batch size.

TS  - Time steps.

dX - Search direction vector.

gX - Gradient vector.

perf - Performance value at current X.

dperf - Slope of performance value at current X in direction of dX.

delta - Initial step size.

tol - Tolerance on search.

ch_perf - Change in performance on previous step.

and returns,

A - Step size which minimizes performance.

gX - Gradient at new minimum point.

perf - Performance value at new minimum point.

retcode - Return code, which has three elements. The first two elements 
correspond to the number of function evaluations in the two stages of the 
search. The third element is a return code. These will have different 
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meanings for different search algorithms. Some may not be used in this 
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta - New initial step size. Based on the current step size.

TOL - New tolerance on search.

Parameters used for the Charalambous algorithm are:

alpha - Scale factor which determines sufficient reduction in perf.

beta - Scale factor which determines sufficiently large step size.

gama - Parameter to avoid small reductions in performance. Usually set to 0.1.

scale_tol - Parameter which relates the tolerance tol to the initial step 
size delta. Usually set to 20.

The defaults for these parameters are set in the training function which calls 
it. See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];
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Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function and the 
srchcha search function are to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchcha';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchcha with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line search 
function srchcha:

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf's 
default parameters.

2 Set net.trainParam.searchFcn to 'srchcha'. 

The srchcha function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchcha locates the minimum of the performance function in the search 
direction dX, using an algorithm based on the method described in 
Charalambous (IEEE Proc. vol. 139, no. 3, June 1992).

See Also srchbac, srchbre, srchgol, srchhyb

References Charalambous, C.,“Conjugate gradient algorithm for efficient training of 
artificial neural networks,” IEEE Proceedings, vol. 139, no. 3, pp. 301–310, 
1992.
13-209



srchgol
srchgolPurpose One-dimensional minimization using golden section search

Syntax [a,gX,perf,retcode,delta,tol] = 
srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchgol is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
called the golden section search.

srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

net - Neural network.

X - Vector containing current values of weights and biases.

Pd - Delayed input vectors.

Tl - Layer target vectors.

Ai - Initial input delay conditions.

Q  - Batch size.

TS  - Time steps.

dX  - Search direction vector.

gX - Gradient vector.

perf - Performance value at current X.

dperf - Slope of performance value at current X in direction of dX.

delta - Initial step size.

tol - Tolerance on search.

ch_perf - Change in performance on previous step.

and returns,

A - Step size which minimizes performance.

gX - Gradient at new minimum point.

perf - Performance value at new minimum point.

retcode - Return code, which has three elements. The first two elements 
correspond to the number of function evaluations in the two stages of the 
search. The third element is a return code. These will have different 
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meanings for different search algorithms. Some may not be used in this 
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta - New initial step size. Based on the current step size.

tol - New tolerance on search.

Parameters used for the golden section algorithm are:

alpha - Scale factor which determines sufficient reduction in perf.

bmax - Largest step size.

scale_tol - Parameter which relates the tolerance tol to the initial step 
size delta. Usually set to 20.

The defaults for these parameters are set in the training function which calls 
it. See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];
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Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function and the 
srchgol search function are to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchgol';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchgol with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line search 
function srchgol:

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf's 
default parameters.

2 Set net.trainParam.searchFcn to 'srchgol'. 

The srchgol function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchgol locates the minimum of the performance function in the search 
direction dX, using the golden section search. It is based on the algorithm as 
described on page 33 of Scales (Introduction to Non-Linear Estimation 1985).

See Also srchbac, srchbre, srchcha, srchhyb

References Scales, L. E.,Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.
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srchhybPurpose One-dimensional minimization using a hybrid bisection-cubic search

Syntax [a,gX,perf,retcode,delta,tol] = 
srchhyb(net,X,P,T,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchhyb is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
that is a combination of a bisection and a cubic interpolation.

srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

net - Neural network.

X - Vector containing current values of weights and biases.

Pd  - Delayed input vectors.

Tl - Layer target vectors.

Ai - Initial input delay conditions.

Q - Batch size.

TS - Time steps.

dX - Search direction vector.

gX - Gradient vector.

perf - Performance value at current X.

dperf - Slope of performance value at current X in direction of dX.

delta - Initial step size.

tol - Tolerance on search.

ch_perf - Change in performance on previous step.

and returns,

A - Step size which minimizes performance.

gX - Gradient at new minimum point.

perf - Performance value at new minimum point.

retcode - Return code, which has three elements. The first two elements 
correspond to the number of function evaluations in the two stages of the 
search. The third element is a return code. These will have different 
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meanings for different search algorithms. Some may not be used in this 
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta - New initial step size. Based on the current step size.

tol - New tolerance on search.

Parameters used for the hybrid bisection-cubic algorithm are:

alpha - Scale factor which determines sufficient reduction in perf.

beta - Scale factor which determines sufficiently large step size.

bmax  - Largest step size.

scale_tol - Parameter which relates the tolerance tol to the initial step 
size delta. Usually set to 20.

The defaults for these parameters are set in the training function which calls 
it. See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];
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Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function and the 
srchhyb search function are to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.searchFcn = 'srchhyb';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchhyb with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line search 
function srchhyb:

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf's 
default parameters.

2 Set net.trainParam.searchFcn to 'srchhyb'. 

The srchhyb function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchhyb locates the minimum of the performance function in the search 
direction dX, using the hybrid bisection-cubic interpolation algorithm described 
on page 50 of Scales (Introduction to Non-Linear Estimation 1985).

See Also srchbac, srchbre, srchcha, srchgol

References Scales, L. E., Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.
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ssePurpose Sum squared error performance function

Syntax perf = sse(e,x,pp)

perf = sse(e,net,pp)

info = sse(code)

Description sse is a network performance function. It measures performance according to 
the sum of squared errors.

sse(E,X,PP) takes from one to three arguments,

E  - Matrix or cell array of error vector(s).

X  - Vector of all weight and bias values (ignored).

PP - Performance parameters (ignored).

and returns the sum squared error.

sse(E,net,PP) can take an alternate argument to X,

net - Neural network from which X can be obtained (ignored).

sse(code) returns useful information for each code string:

'deriv' - Name of derivative function.

'name' - Full name.

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here a two layer feed-forward is created with a 1-element input ranging from 
-10 to 10, four hidden tansig neurons, and one purelin output neuron.

net = newff([-10 10],[4 1],{'tansig','purelin'});

Here the network is given a batch of inputs P. The error is calculated by 
subtracting the output A from target T. Then the sum squared error is 
calculated.
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p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)
e = t-y
perf = sse(e)

Note that sse can be called with only one argument because the other 
arguments are ignored. sse supports those arguments to conform to the 
standard performance function argument list.

Network Use To prepare a custom network to be trained with sse set net.performFcn to 
'sse'. This will automatically set net.performParam to the empty matrix [], as 
sse has no performance parameters.

Calling train or adapt will result in sse being used to calculate performance.

See Also dsse
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sumsqrPurpose Sum squared elements of a matrix

Syntax sumsqr(m)

Description sumsqr(M) returns the sum of the squared elements in M.

Examples s = sumsqr([1 2;3 4])
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tansigPurpose Hyperbolic tangent sigmoid transfer function

Graph and 
Symbol 

Syntax A = tansig(N)
info = tansig(code)

Description tansig is a transfer function. Transfer functions calculate a layer's output from 
its net input.

tansig(N) takes one input,

N - S x Q matrix of net input (column) vectors.

and returns each element of N squashed between -1 and 1.

tansig(code) return useful information for each code string:

'deriv'  - Name of derivative function.

'name' - Full name.

'output' - Output range.

'active' - Active input range.

tansig is named after the hyperbolic tangent which has the same shape.  
However, tanh may be more accurate and is recommended for applications that 
require the hyperbolic tangent.

Examples Here is the code to create a plot of the tansig transfer function.

n = -5:0.1:5;
a = tansig(n);
plot(n,a)

Tan-Sigmoid Transfer Function

a = tansig(n)

n
0

-1

+1

a
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Network Use You can create a standard network that uses tansig by calling newff or newcf.

To change a network so a layer uses tansig set 
net.layers{i,j}.transferFcn to 'tansig'.

In either case, call sim to simulate the network with tansig. See newff or 
newcf for simulation examples.

Algorithm tansig(N) calculates its output according to:

n = 2/(1+exp(-2*n))-1

This is mathematically equivalent to tanh(N). It differs in that it runs faster 
than the MATLAB implementation of tanh, but the results can have very small 
numerical differences. This function is a good trade off for neural networks, 
where speed is important and the exact shape of the transfer function is not.

See Also sim, dtansig, logsig

References Vogl, T. P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, “Accelerating 
the convergence of the backpropagation method,” Biological Cybernetics, vol. 
59, pp. 257-263, 1988.
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trainPurpose Train a neural network

Syntax [net,tr] = train(NET,P,T,Pi,Ai)

[net,tr] = train(NET,P,T,Pi,Ai,VV,TV)

To Get Help Type help network/train

Description train trains a network net according to net.trainFcn and net.trainParam.

train(net,P,T,Pi,Ai) takes,

net - Network.

P   - Network inputs.

T   - Network targets, default = zeros.

Pi  - Initial input delay conditions, default = zeros.

Ai  - Initial layer delay conditions, default = zeros.

and returns,

net - New network.

TR  - Training record (epoch and perf).

Note that T is optional and need only be used for networks that require targets. 
Pi and Pf are also optional and need only be used for networks that have input 
or layer delays.

train's signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for networks 
with multiple inputs and outputs, and allows sequences of inputs to be 
presented:

P  - Ni x TS cell array, each element P{i,ts} is an Ri x Q matrix.

T  - Nt x TS cell array, each element P{i,ts} is an Vi x Q matrix.

Pi - Ni x ID cell array, each element Pi{i,k} is an Ri x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.
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where

Ni = net.numInputs

Nl = net.numLayers

Nt = net.numTargets

ID = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps

Q  = Batch size

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

The columns of Pi, Pf, Ai, and Af are ordered from the oldest delay condition 
to the most recent:

Pi{i,k} = input i at time ts=k-ID.

Pf{i,k} = input i at time ts=TS+k-ID.

Ai{i,k} = layer output i at time ts=k-LD.

Af{i,k} = layer output i at time ts=TS+k-LD.

The matrix format can be used if only one time step is to be simulated (TS = 1). 
It is convenient for network's with only one input and output, but can be used 
with networks that have more.

Each matrix argument is found by storing the elements of the corresponding 
cell array argument into a single matrix:

P  - (sum of Ri) x Q matrix

T  - (sum of Vi) x Q matrix

Pi - (sum of Ri) x (ID*Q) matrix.

Ai - (sum of Si) x (LD*Q) matrix.
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train(net,P,T,Pi,Ai,VV,TV) takes optional structures of validation and test 
vectors,

VV.P,  TV.P  - Validation/test inputs.

VV.T,  VV.T  - Validation/test targets, default = zeros.

VV.Pi, VV.Pi - Validation/test initial input delay conditions, default= zeros.

VV.Ai, VV.Ai - Validation/test layer delay conditions, default = zeros.

The validation vectors are used to stop training early if further training on the 
primary vectors will hurt generalization to the validation vectors. Test vector 
performance can be used to measure how well the network generalizes beyond 
primary and validation vectors. If VV.T, VV.Pi, or VV.Ai are set to an empty 
matrix or cell array, default values will be used. The same is true for VT.T, 
VT.Pi, VT.Ai.

Examples Here input P and targets T define a simple function which we can plot:

p = [0 1 2 3 4 5 6 7 8];
t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
plot(p,t,'o')

Here newff is used to create a two layer feed forward network. The network 
will have an input (ranging from 0 to 8), followed by a layer of 10 tansig 
neurons, followed by a layer with 1 purelin neuron. trainlm backpropagation 
is used. The network is also simulated.

net = newff([0 8],[10 1],{'tansig' 'purelin'},'trainlm');
y1 = sim(net,p)
plot(p,t,'o',p,y1,'x')

Here the network is trained for up to 50 epochs to a error goal of 0.01, and then 
resimulated.

net.trainParam.epochs = 50;
net.trainParam.goal = 0.01;
net = train(net,p,t);
y2 = sim(net,p)
plot(p,t,'o',p,y1,'x',p,y2,'*')

Algorithm train calls the function indicated by net.trainFcn, using the adaption 
parameter values indicated by net.trainParam.
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Typically one epoch of training is defined as a single presentation of all input 
vectors to the network. The network is then updated according to the results of 
all those presentations.

Training occurs until a maximum number of epochs occurs, the performance 
goal is met, or any other stopping condition of the function net.trainFcn 
occurs.

Some training functions depart from this norm by presenting only one input 
vector (or sequence) each epoch. An input vector (or sequence) is chosen 
randomly each epoch from concurrent input vectors (or sequences). newc and 
newsom return networks that use trainwb1, a training function that presents 
only one input vector.

See Also sim, init, adapt
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trainbfgPurpose BFGS quasi-Newton backpropagation

Syntax [net,tr] = trainbfg(net,Pd,Tl,Ai,Q,TS,VV)

info = trainbfg(code)

Description trainbfg is a network training function that updates weight and bias values 
according to the BFGS quasi-Newton method.

trainbfg(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

TV  - Either empty matrix [] or structure of test vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.
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Training occurs according to the trainbfg's training parameters, shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.searchFcn Name of line search routine to use.
'srchcha' 

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol         20  

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha         0.001  

Scale factor which determines sufficient reduction in perf.

net.trainParam.beta            0.1 

Scale factor which determines sufficiently large step size.

net.trainParam.delta          0.01  

Initial step size in interval location step.

net.trainParam.gama            0.1  

Parameter to avoid small reductions in performance. Usually set to 0.1. 
(See use in srch_cha.)

net.trainParam.low_lim         0.1  Lower limit on change in step size.

net.trainParam.up_lim          0.5  Upper limit on change in step size.

net.trainParam.maxstep         100  Maximum step length.

net.trainParam.minstep      1.0e-6  Minimum step length.

net.trainParam.bmax             26  Maximum step size.
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Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD - Validation delayed inputs.

TV.Tl - Validation layer targets.

TV.Ai - Validation initial input conditions.

TV.Q  - Validation batch size.

TV.TS - Validation time steps.

which is used to test the generalization capability of the trained network.
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trainbfg(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The trainbfg network training function is to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'trainbfg');
a = sim(net,p)

Train and Retest the Network

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples

Network Use You can create a standard network that uses trainbfg with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainbfg:

1 Set net.trainFcn to 'trainbfg'. This will set net.trainParam to trainbfg's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainbfg.
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Algorithm trainbfg can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed according to the following formula:

dX = -H\gX;

where gX is the gradient and H is an approximate Hessian matrix. See page 119 
of Gill, Murray & Wright (Practical Optimization 1981) for a more detailed 
discussion of the BFGS quasi-Newton method.

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp, 
traincgf, traincgb, trainscg, traincgp, trainoss.

References Gill, P. E.,W. Murray, and M. H. Wright, Practical Optimization, New York: 
Academic Press, 1981.
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trainbrPurpose Bayesian Regulation backpropagation

Syntax [net,tr] = trainbr(net,Pd,Tl,Ai,Q,TS,VV)

info = trainbr(code)

Description trainbr is a network training function that updates the weight and bias values 
according to Levenberg-Marquardt optimization. It minimizes a combination of 
squared errors and weights, and then determines the correct combination so as 
to produce a network which generalizes well. The process is called Bayesian 
regularization.

trainbr(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.

TR.mu - Adaptive mu value.
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Training occurs according to the trainlm's training parameters, shown here 
with their default values:

net.trainParam.epochs     100  Maximum number of epochs to train

net.trainParam.goal         0  Performance goal

net.trainParam.mu       0.005  Marquardt adjustment parameter

net.trainParam.mu_dec     0.1  Decrease factor for mu

net.trainParam.mu_inc      10  Increase factor for mu

net.trainParam.mu_max   1e-10  Maximum value for mu

net.trainParam.max_fail     5  Maximum validation failures

net.trainParam.mem_reduc 1  

Factor to use for memory/speed trade-off

net.trainParam.min_grad 1e-10  Minimum performance gradient

net.trainParam.show        25  Epochs between showing progress

net.trainParam.time       inf  Maximum time to train in seconds

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)
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If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which is normally used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row. This early stopping is not used for trainbr, but the validation 
performance is computed for analysis purposes if VV is not [].

trainbr(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.  It involves fitting a noisy sine wave.

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

Here a two-layer feed-forward network is created. The network's input ranges 
from [-1 to 1]. The first layer has 20 tansig neurons, the second layer has one 
purelin neuron. The trainbr network training function is to be used. The plot 
of the resulting network output should show a smooth response, without 
overfitting.

Create a Network

net=newff([-1 1],[20,1],{'tansig','purelin'},'trainbr');

Train and Test the Network

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net = train(net,p,t);
a = sim(net,p)
plot(p,a,p,t,'+')
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Network Use You can create a standard network that uses trainbr with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainbr:

1 Set net.trainFcn to 'trainlm'. This will set net.trainParam to trainbr's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainbr.

See newff, newcf, and newelm for examples.

Algorithm trainbr can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Bayesian regularization minimizes a linear combination of squared errors and 
weights. It also modifies the linear combination so that at the end of training 
the resulting network has good generalization qualities. See MacKay (Neural 
Computation, vol. 4, no. 3, 1992, pp. 415-447) and Foresee and Hagan 
(Proceedings of the International Joint Conference on Neural Networks, June, 
1997) for more detailed discussions of Bayesian regularization.

This Bayesian regularization takes place within the Levenberg-Marquardt 
algorithm. Backpropagation is used to calculate the Jacobian jX of 
performance perf with respect to the weight and bias variables X. Each 
variable is adjusted according to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change shown above 
results in a reduced performance value. The change is then made to the 
network and mu is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to calculate 
the Jacobian jX. If mem_reduc is 1, then trainlm runs the fastest, but can 
require a lot of memory. Increase mem_reduc to 2, cuts some of the memory 
required by a factor of two, but slows trainlm somewhat. Higher values 
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continue to decrease the amount of memory needed and increase the training 
times.

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 mu exceeds mu_max.

6 Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp, 
traincgf, traincgb, trainscg, traincgp, trainoss

References Foresee, F. D., and M. T. Hagan, “Gauss-Newton approximation to Bayesian 
regularization,” Proceedings of the 1997 International Joint Conference on 
Neural Networks, 1997.

MacKay, D. J. C., “Bayesian interpolation,” Neural Computation, vol. 4, no. 3, 
pp. 415-447, 1992.
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traincgbPurpose Conjugate gradient backpropagation with Powell-Beale restarts

Syntax [net,tr] = traincgb(net,Pd,Tl,Ai,Q,TS,VV)

info = traincgb(code)

Description traincgb is a network training function that updates weight and bias values 
according to the conjugate gradient backpropagation with Powell-Beale 
restarts.

traincgb(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

TV  - Either empty matrix [] or structure of test vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.
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Training occurs according to the traincgb's training parameters, shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.searchFcn  Name of line search routine to use.
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol         20  

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha         0.001  

Scale factor which determines sufficient reduction in perf.

net.trainParam.beta            0.1 

Scale factor which determines sufficiently large step size.

net.trainParam.delta          0.01  

Initial step size in interval location step.

net.trainParam.gama            0.1  

Parameter to avoid small reductions in performance. Usually set to 0.1. 
(See use in srch_cha.)

net.trainParam.low_lim         0.1  Lower limit on change in step size.

net.trainParam.up_lim          0.5  Upper limit on change in step size.

net.trainParam.maxstep         100  Maximum step length.

net.trainParam.minstep      1.0e-6  Minimum step length.

net.trainParam.bmax             26  Maximum step size.
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Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD - Validation delayed inputs.

TV.Tl - Validation layer targets.

TV.Ai - Validation initial input conditions.

TV.Q  - Validation batch size.

TV.TS - Validation time steps.

which is used to test the generalization capability of the trained network.
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traincgb(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgb network training function is to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgb');
a = sim(net,p)

Train and Retest the Network

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses traincgb with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgb:

1 Set net.trainFcn to 'traincgb'. This will set net.trainParam to traincgb's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traincgb.
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Algorithm traincgb can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous search direction according 
to the formula:

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different 
ways. The Powell-Beale variation of conjugate gradient is distinguished by two 
features. First, the algorithm uses a test to determine when to reset the search 
direction to the negative of the gradient. Second, the search direction is 
computed from the negative gradient, the previous search direction, and the 
last search direction before the previous reset. See Powell, Mathematical 
Programming, Vol. 12 (1977) pp. 241-254, for a more detailed discussion of the 
algorithm.

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, traincgp, 
traincgf, traincgb, trainscg, trainoss, trainbfg

References Powell, M. J. D.,“Restart procedures for the conjugate gradient method,” 
Mathematical Programming, vol. 12, pp. 241-254, 1977.
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traincgfPurpose Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax [net,tr] = traincgf(net,Pd,Tl,Ai,Q,TS,VV)

info = traincgf(code)

Description traincgf is a network training function that updates weight and bias values 
according to the conjugate gradient backpropagation with Fletcher-Reeves 
updates.

traincgf(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

TV  - Either empty matrix [] or structure of test vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.
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Training occurs according to the traincgf's training parameters, shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.searchFcn  Name of line search routine to use
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol         20  

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha         0.001  

Scale factor which determines sufficient reduction in perf.

net.trainParam.beta            0.1 

Scale factor which determines sufficiently large step size.

net.trainParam.delta          0.01  

Initial step size in interval location step.

net.trainParam.gama            0.1  

Parameter to avoid small reductions in performance. Usually set to 0.1. 
(See use in srch_cha.)

net.trainParam.low_lim         0.1  Lower limit on change in step size.

net.trainParam.up_lim          0.5  Upper limit on change in step size.

net.trainParam.maxstep         100  Maximum step length.

net.trainParam.minstep      1.0e-6  Minimum step length.

net.trainParam.bmax             26  Maximum step size.
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Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD - Validation delayed inputs.

TV.Tl - Validation layer targets.

TV.Ai - Validation initial input conditions.

TV.Q  - Validation batch size.

TV.TS - Validation time steps.

which is used to test the generalization capability of the trained network.
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traincgf(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function is to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses traincgf with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf:

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traincgf.
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Algorithm traincgf can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous search direction, according 
to the formula:

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different 
ways. For the Fletcher-Reeves variation of conjugate gradient it is computed 
according to

Z=normnew_sqr/norm_sqr;

where norm_sqr is the norm square of the previous gradient and normnew_sqr 
is the norm square of the current gradient. See page 78 of Scales (Introduction 
to Non-Linear Optimization 1985) for a more detailed discussion of the 
algorithm.

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).
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See Also newff, newcf, traingdm, traingda, traingdx, trainlm, traincgp, 
traincgb, trainscg, traincgp, trainoss, trainbfg

References Scales, L. E.,Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.
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traincgpPurpose Conjugate gradient backpropagation with Polak-Ribiere updates

Syntax [net,tr] = traincgp(net,Pd,Tl,Ai,Q,TS,VV)

info = traincgp(code)

Description traincgp is a network training function that updates weight and bias values 
according to the conjugate gradient backpropagation with Polak-Ribiere 
updates.

traincgp(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

TV  - Either empty matrix [] or structure of test vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.
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Training occurs according to the traincgp's training parameters shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.searchFcn Name of line search routine to use
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol         20  

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha         0.001  

Scale factor which determines sufficient reduction in perf.

net.trainParam.beta            0.1 

Scale factor which determines sufficiently large step size.

net.trainParam.delta          0.01  

Initial step size in interval location step.

net.trainParam.gama            0.1  

Parameter to avoid small reductions in performance. Usually set to 0.1. 
(See use in srch_cha.)

net.trainParam.low_lim         0.1  Lower limit on change in step size.

net.trainParam.up_lim          0.5  Upper limit on change in step size.

net.trainParam.maxstep         100  Maximum step length.

net.trainParam.minstep      1.0e-6  Minimum step length.

net.trainParam.bmax             26  Maximum step size.
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Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD - Validation delayed inputs.

TV.Tl - Validation layer targets.

TV.Ai - Validation initial input conditions.

TV.Q  - Validation batch size.

TV.TS - Validation time steps.

which is used to test the generalization capability of the trained network.
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traincgp(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgp network training function is to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'traincgp');
a = sim(net,p)

Train and Retest the Network

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses traincgp with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgp:

1 Set net.trainFcn to 'traincgp'. This will set net.trainParam to traincgp's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traincgp.
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Algorithm traincgp can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous search direction according 
to the formula:

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different 
ways. For the Polak-Ribiere variation of conjugate gradient it is computed 
according to:

Z = ((gX - gX_old)'*gX)/norm_sqr;

where norm_sqr is the norm square of the previous gradient and gX_old is the 
gradient on the previous iteration. See page 78 of Scales (Introduction to 
Non-Linear Optimization 1985) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).
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See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp, 
traincgf, traincgb, trainscg, trainoss, trainbfg

References Scales, L. E.,Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.
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traingdPurpose Gradient descent backpropagation

Syntax [net,tr] = traingd(net,Pd,Tl,Ai,Q,TS,VV)

info = traingd(code)

Description traingd is a network training function that updates weight and bias values 
according to gradient descent.

traingd(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either an empty matrix [] or a structure of validation vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf  - Test performance.

Training occurs according to the traingd's training parameters shown here 
with their default values:

net.trainParam.epochs      10  Maximum number of epochs to train

net.trainParam.goal         0  Performance goal

net.trainParam.lr        0.01  Learning rate

net.trainParam.max_fail     5  Maximum validation failures

net.trainParam.min_grad 1e-10  Minimum performance gradient

net.trainParam.show        25  Epochs between showing progress

net.trainParam.time       inf  Maximum time to train in seconds
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Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which are used to stop training early if the network performance on the 
validation vectors fails to improve or remain the same for max_fail epochs in 
a row.

traingd(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Network Use You can create a standard network that uses traingd with newff, newcf, or 
newelm.
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To prepare a custom network to be trained with traingd:

1 Set net.trainFcn to 'traingd'. This will set net.trainParam to traingd's 
default parameters.

2 Set net.trainParam properties to desired values. 

In either case, calling train with the resulting network will train the network 
with traingd.

See newff, newcf, and newelm for examples.

Algorithm traingd can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent:

dX = lr * dperf/dX

Training stops when any of these conditions occurs:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm
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traingdaPurpose Gradient descent with adaptive lr backpropagation

Syntax [net,tr] = traingda(net,Pd,Tl,Ai,Q,TS,VV)

info = traingda(code)

Description traingda is a network training function that updates weight and bias values 
according to gradient descent with adaptive learning rate.

traingda(NET,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.

TR.lr - Adaptive learning rate.
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Training occurs according to the traingda's training parameters, shown here 
with their default values:

net.trainParam.epochs         10  Maximum number of epochs to train

net.trainParam.goal            0  Performance goal

net.trainParam.lr           0.01  Learning rate

net.trainParam.lr_inc       1.05  Ratio to increase learning rate

net.trainParam.lr_dec        0.7  Ratio to decrease learning rate

net.trainParam.max_fail        5  Maximum validation failures

net.trainParam.max_perf_inc 1.04  Maximum performance increase

net.trainParam.min_grad    1e-10  Minimum performance gradient

net.trainParam.show           25  Epochs between showing progress

net.trainParam.time          inf  Maximum time to train in seconds

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.
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which are used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

traingda(code) return useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Network Use You can create a standard network that uses traingda with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traingda:

1 Set net.trainFcn to 'traingda'. This will set net.trainParam to traingda's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traingda.

See newff, newcf, and newelm for examples.

Algorithm traingda can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent:

dX = lr*dperf/dX

At each epoch, if performance decreases toward the goal, then the learning rate 
is increased by the factor lr_inc. If performance increases by more than the 
factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and the 
change, which increased the performance, is not made.
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Training stops when any of these conditions occurs:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingdm, traingdx, trainlm
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traingdmPurpose Gradient descent w/momentum backpropagation

Syntax [net,tr] = traingdm(net,Pd,Tl,Ai,Q,TS,VV)

info = traingdm(code)

Description traingdm is a network training function that updates weight and bias values 
according to gradient descent with adaptive learning rate.

traingdm(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.
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TR.lr - adaptive learning rate. Training occurs according to the traingdm's 
training parameters shown here with their default values:

net.trainParam.epochs         10  Maximum number of epochs to train

net.trainParam.goal            0  Performance goal

net.trainParam.lr           0.01  Learning rate

net.trainParam.max_fail        5  Maximum validation failures

net.trainParam.mc            0.9  Momentum constant.

net.trainParam.min_grad    1e-10  Minimum performance gradient

net.trainParam.show           25  Epochs between showing progress

net.trainParam.time          inf  Maximum time to train in seconds

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.
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traingdm(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Network Use You can create a standard network that uses traingdm with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traingdm:

1 Set net.trainFcn to 'traingdm'. This will set net.trainParam to traingdm's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traingdm.

See newff, newcf, and newelm for examples.

Algorithm traingdm can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent with momentum,

dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increase more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingda, traingdx, trainlm
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traingdxPurpose Gradient descent w/momentum & adaptive lr backpropagation

Syntax [net,tr] = traingdx(net,Pd,Tl,Ai,Q,TS,VV)

info = traingdx(code)

Description traingdx is a network training function that updates weight and bias values 
according to gradient descent momentum and an adaptive learning rate.

traingdx(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.

TR.lr  - Adaptive learning rate.
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Training occurs according to the traingdx's training parameters shown here 
with their default values:

net.trainParam.epochs         10  Maximum number of epochs to train

net.trainParam.goal            0  Performance goal

net.trainParam.lr           0.01  Learning rate

net.trainParam.lr_inc       1.05  Ratio to increase learning rate

net.trainParam.lr_dec        0.7  Ratio to decrease learning rate

net.trainParam.max_fail        5  Maximum validation failures

net.trainParam.max_perf_inc 1.04  Maximum performance increase

net.trainParam.mc            0.9  Momentum constant.

net.trainParam.min_grad    1e-10  Minimum performance gradient

net.trainParam.show           25  Epochs between showing progress

net.trainParam.time          inf  Maximum time to train in seconds

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)
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If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

traingdx(code) return useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Network Use You can create a standard network that uses traingdx with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traingdx:

1 Set net.trainFcn to 'traingdx'. This will set net.trainParam to traingdx's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traingdx.

See newff, newcf, and newelm for examples.

Algorithm traingdx can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent with momentum,

dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.
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For each epoch, if performance decreases toward the goal, then the learning 
rate is increased by the factor lr_inc. If performance increases by more than 
the factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and 
the change, which increased the performance, is not made.

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increase more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingdm, traingda, trainlm
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trainlmPurpose Levenberg-Marquardt backpropagation

Syntax [net,tr] = trainlm(net,Pd,Tl,Ai,Q,TS,VV)
info = trainlm(code)

Description trainlm is a network training function that updates weight and bias values 
according to Levenberg-Marquardt optimization.

trainlm(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.

TR.mu - Adaptive mu value.
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Training occurs according to the trainlm's training parameters shown here 
with their default values:

net.trainParam.epochs      10  Maximum number of epochs to train

net.trainParam.goal         0  Performance goal

net.trainParam.lr        0.01  Learning rate

net.trainParam.max_fail     5  Maximum validation failures

net.trainParam.mem_reduc 1 Factor to use for memory/speed 
trade off

net.trainParam.min_grad 1e-10  Minimum performance gradient

net.trainParam.show        25  Epochs between showing progress

net.trainParam.time       inf  Maximum time to train in seconds

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.
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which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

trainlm(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Network Use You can create a standard network that uses trainlm with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainlm:

1 Set net.trainFcn to 'trainlm'. This will set net.trainParam to trainlm's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainlm.

See newff, newcf, and newelm for examples.

Algorithm trainlm can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate the Jacobian jX of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change above results in 
a reduced performance value. The change is then made to the network and mu 
is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to calculate 
the Jacobian jX. If mem_reduc is 1, then trainlm runs the fastest, but can 
require a lot of memory. Increasing mem_reduc to 2, cuts some of the memory 
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required by a factor of two, but slows trainlm somewhat. Higher values 
continue to decrease the amount of memory needed and increase training 
times.

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 mu exceeds mu_max.

6 Validation performance has increase more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingdm, traingda, traingdx
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trainossPurpose One step secant backpropagation

Syntax [net,tr] = trainoss(net,Pd,Tl,Ai,Q,TS,VV)

info = trainoss(code)

Description trainoss is a network training function that updates weight and bias values 
according to the one step secant method.

trainoss(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

TV  - Either empty matrix [] or structure of test vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.
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Training occurs according to the trainoss's training parameters, shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures
net.trainParam.searchFcn Name of line search routine to use
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol         20  

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha         0.001  

Scale factor which determines sufficient reduction in perf.

net.trainParam.beta            0.1 

Scale factor which determines sufficiently large step size.

net.trainParam.delta          0.01  

Initial step size in interval location step.

net.trainParam.gama            0.1  

Parameter to avoid small reductions in performance. Usually set to 0.1. 
(See use in srch_cha.)

net.trainParam.low_lim         0.1  Lower limit on change in step size.

net.trainParam.up_lim          0.5  Upper limit on change in step size.

net.trainParam.maxstep         100  Maximum step length.

net.trainParam.minstep      1.0e-6  Minimum step length.

net.trainParam.bmax             26  Maximum step size.
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Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD - Validation delayed inputs.

TV.Tl - Validation layer targets.

TV.Ai - Validation initial input conditions.

TV.Q  - Validation batch size.

TV.TS - Validation time steps.

which is used to test the generalization capability of the trained network.
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trainoss(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The trainoss network training function is to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'trainoss');
a = sim(net,p)

Train and Retest the Network

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses trainoss with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainoss:

1 Set net.trainFcn to 'trainoss'. This will set net.trainParam to trainoss's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainoss.
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Algorithm trainoss can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous steps and gradients 
according to the following formula:

dX = -gX + Ac*X_step + Bc*dgX;

where gX is the gradient, X_step is the change in the weights on the previous 
iteration, and dgX is the change in the gradient from the last iteration. See 
Battiti (Neural Computation, vol. 4, 1992, pp. 141-166) for a more detailed 
discussion of the one step secant algorithm.

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp, 
traincgf, traincgb, trainscg, traincgp, trainbfg

References R. Battiti, “First and second order methods for learning: Between steepest 
descent and Newton’s method,” Neural Computation, vol. 4, no. 2, pp. 141–166, 
1992.
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trainrpPurpose RPROP backpropagation

Syntax [net,tr] = trainrp(net,Pd,Tl,Ai,Q,TS,VV)

info = trainrp(code)

Description trainrp is a network training function that updates weight and bias values 
according to the resilient backpropagation algorithm (RPROP).

trainrp(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

TV  - Either empty matrix [] or structure of test vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.
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Training occurs according to the trainrp's training parameters shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.lr        0.01 Learning rate

net.trainParam.delt_inc   1.2  Increment to weight change

net.trainParam.delt_dec   0.5 Decrement to weight change

net.trainParam.delta0    0.07  Initial weight change

net.trainParam.deltamax  50.0  Maximum weight change

Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)
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If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD - Validation delayed inputs.

TV.Tl - Validation layer targets.

TV.Ai - Validation initial input conditions.

TV.Q  - Validation batch size.

TV.TS - Validation time steps.

which is used to test the generalization capability of the trained network.

trainrp(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The trainrp network training function is to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'trainrp');
a = sim(net,p)
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Train and Retest the Network

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses trainrp with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainrp:

1 Set net.trainFcn to 'trainrp'. This will set net.trainParam to trainrp's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainrp.

Algorithm trainrp can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

dX = deltaX.*sign(gX);

where the elements of deltaX are all initialized to delta0 and gX is the 
gradient. At each iteration the elements of deltaX are modified. If an element 
of gX changes sign from one iteration to the next, then the corresponding 
element of deltaX is decreased by delta_dec. If an element of gX maintains the 
same sign from one iteration to the next, then the corresponding element of 
deltaX is increased by delta_inc. See Reidmiller and Braun, Proceedings of 
the IEEE International Conference on Neural Networks,, 1993, pp. 586-591.
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Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, traincgp, 
traincgf, traincgb, trainscg, trainoss, trainbfg

References Riedmiller, M., and H. Braun, “A direct adaptive method for faster 
backpropagation learning: The RPROP algorithm,” Proceedings of the IEEE 
International Conference on Neural Networks, San Francisco,1993.
13-279



trainscg
trainscgPurpose Scaled conjugate gradient backpropagation

Syntax [net,tr] = trainscg(net,Pd,Tl,Ai,Q,TS,VV)

info = trainscg(code)

Description trainscg is a network training function that updates weight and bias values 
according to the scaled conjugate gradient method.

trainscg(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

TV  - Either empty matrix [] or structure of test vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.
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Training occurs according to the trainscg's training parameters shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures
net.trainParam.sigma 5.0e-5 Determines change in weight for 

second derivative approximation.
net.trainParam.lambda 5.0e-7 Parameter for regulating the 

indefiniteness of the Hessian.
Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.
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which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD - Validation delayed inputs.

TV.Tl - Validation layer targets.

TV.Ai - Validation initial input conditions.

TV.Q  - Validation batch size.

TV.TS - Validation time steps.

which is used to test the generalization capability of the trained network.

trainscg(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network's input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The trainscg network training function is to be used.

Create and Test a Network

net = newff([0 5],[2 1],{'tansig','logsig'},'trainscg');
a = sim(net,p)

Train and Retest the Network

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.
13-282



trainscg
Network Use You can create a standard network that uses trainscg with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainscg:

1 Set net.trainFcn to 'trainscg'. This will set net.trainParam to trainscg's 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainscg.

Algorithm trainscg can train any network as long as its weight, net input, and transfer 
functions have derivative functions. Backpropagation is used to calculate 
derivatives of performance perf with respect to the weight and bias variables 
X. 

The scaled conjugate gradient algorithm is based on conjugate directions, as in 
traincgp, traincgf and traincgb, but this algorithm does not perform a line 
search at each iteration. See Moller (Neural Networks, vol. 6, 1993, 
pp.525-533) for a more detailed discussion of the scaled conjugate gradient 
algorithm.

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

3 Performance has been minimized to the goal.

4 The performance gradient falls below mingrad.

5 Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp, 
traincgf, traincgb, trainbfg, traincgp, trainoss

References Moller, M. F., “A scaled conjugate gradient algorithm for fast supervised 
learning,” Neural Networks, vol. 6, pp. 525-533, 1993.
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trainwbPurpose By-weight-&-bias 1-vector-at-a-time training function

Syntax [net,tr] = trainwb(net,Pd,Tl,Ai,Q,TS,VV)

info = trainwb(code)

Description trainwb is a network training function that updates weight and bias values 
according to Levenberg-Marquardt optimization.

trainwb(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.vperf - Validation performance.

TR.tperf - Test performance.

Training occurs according to the trainwb1's training parameters, shown here 
with their default values:

net.trainParam.epochs      100 Maximum number of epochs to train

net.trainParam.goal         0  Performance goal

net.trainParam.max_fail     5  Maximum validation failures

net.trainParam.show        25  Epochs between showing progress

net.trainParam.time       inf  Maximum time to train in seconds
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Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD - Validation delayed inputs.

VV.Tl - Validation layer targets.

VV.Ai - Validation initial input conditions.

VV.Q  - Validation batch size.

VV.TS - Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

trainwb(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Network Use You can create a standard network that uses trainwb with newp or newlin.
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To prepare a custom network to be trained with trainwb:

1 Set net.trainFcn to 'trainwb'. (This will set net.trainParam to trainwb's 
default parameters.)

2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each 
net.layerWeights{i,j}.learnFcn to a learning function. Set each 
net.biases{i}.learnFcn to a learning function. (Weight and bias learning 
parameters will automatically be set to default values for the given learning 
function.)

To train the network:

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newp and newlin for training examples.

Algorithm Each weight and bias updates according to its learning function after each 
epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions occur:

1 The maximum number of epochs (repetitions) is reached.

2 Performance has been minimized to the goal.

3 The maximum amount of time has been exceeded.

4 Validation performance has increase more than max_fail times since the 
last time it decreased (when using validation).

See Also newp, newlin, train
13-286



trainwb1
trainwb1Purpose By-weight-and-bias network training function

Syntax [net,tr] = trainwb1(net,Pd,Tl,Ai,Q,TS,VV)

info = trainwb1(code)

Description trainwb1 is a network training function which updates each weight and bias 
according to its learning function. At each epoch trainwb1 randomly chooses 
just one input vector (or sequence) to present to the network.

trainwb1(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net - Neural network.

Pd  - Delayed input vectors.

Tl  - Layer target vectors.

Ai  - Initial input delay conditions.

Q   - Batch size.

TS  - Time steps.

VV  - Either empty matrix [] or structure of validation vectors.

and returns,

net - Trained network.

TR  - Training record of various values over each epoch:

TR.epoch - Epoch number.

TR.perf - Training performance.

TR.index - Index of presented input vector (or sequence).

Training occurs according to the trainwb1's training parameters shown here 
with their default values:

net.trainParam.epochs      100 Maximum number of epochs to train

net.trainParam.show        25  Epochs between showing progress

net.trainParam.time       inf  Maximum time to train in seconds
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Dimensions for these variables are:

Pd - No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl - Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai - Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

trainwb1 does not implement validation or test vectors, so arguments VV and 
TV are ignored.

trainwb1(code) returns useful information for each code string:

'pnames' - Names of training parameters.

'pdefaults' - Default training parameters.

Network Use You can create a standard network that uses trainwb1 with newc or newsom.

To prepare a custom network to be trained with trainwb1:

1 Set net.trainFcn to 'trainwb1'. (This will set net.trainParam to 
trainwb1's default parameters.)

2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each 
net.layerWeights{i,j}.learnFcn to a learning function. Set each 
net.biases{i}.learnFcn to a learning function. (Weight and bias learning 
parameters will automatically be set to default values for the given learning 
function.)

To train the network:

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newc and newsom for training examples.
13-288



trainwb1
Algorithm For each epoch a vector (or sequence) is chosen randomly and presented to the 
network and then the weight and bias values are updated accordingly.

Training stops when any of these conditions are met:

1 The maximum number of epochs (repetitions) is reached.

2 The maximum amount of time has been exceeded.

See Also newp, newlin, train
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tramnmxPurpose Transform data using a precalculated min and max

Syntax [pn] = tramnmx(p,minp,maxp)

Description tramnmx transforms the network input set using minimum and maximum 
values that were previously computed by premnmx. This function needs to be 
used when a network has been trained using data normalized by premnmx. All 
subsequent inputs to the network need to be transformed using the same 
normalization.

tramnmx(P,minp, maxp)takes these inputs

P - R x Q matrix of input (column) vectors.

minp- R x 1 vector containing original minimums for each input.

maxp- R x 1 vector containing original maximums for each input.

and returns,

PN  - R x Q matrix of normalized input vectors

Examples Here is the code to normalize a given data set, so that the inputs and targets 
will fall in the range [-1,1], using premnmx, and also code to train a network 
with the normalized data.

p = [-10 -7.5 -5 -2.5 0 2.5 5 7.5 10];
t = [0 7.07 -10 -7.07 0 7.07 10 7.07 0];
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);

If we then receive new inputs to apply to the trained network, we will use 
tramnmx to transform them first. Then the transformed inputs can be used to 
simulate the previously trained network. The network output must also be 
unnormalized using postmnmx.

p2 = [4 -7];
[p2n] = tramnmx(p2,minp,maxp);
an = sim(net,pn);
[a] = postmnmx(an,mint,maxt);

Algorithm pn = 2*(p-minp)/(maxp-minp) - 1;

See Also premnmx, prestd, prepca, trastd, trapca
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trapcaPurpose Principal component transformation

Syntax [Ptrans] = trapca(P,TransMat)

Description trapca preprocesses the network input training set by applying the principal 
component transformation that was previously computed by prepca. This 
function needs to be used when a network has been trained using data 
normalized by prepca. All subsequent inputs to the network need to be 
transformed using the same normalization. 

trapca(P,TransMat) takes these inputs,

P - R x Q matrix of centered input (column) vectors.

TransMat - Transformation matrix.

and returns,

Ptrans - Transformed data set.

Examples Here is the code to perform a principal component analysis and retain only 
those components which contribute more than 2 percent to the variance in the 
data set. prestd is called first to create zero mean data, which are needed for 
prepca.

p = [-1.5 -0.58 0.21 -0.96 -0.79; -2.2 -0.87 0.31 -1.4  -1.2];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
[ptrans,transMat] = prepca(pn,0.02);
net = newff(minmax(ptrans),[5 1],{'tansig''purelin'},'trainlm');
net = train(net,ptrans,tn);

If we then receive new inputs to apply to the trained network, we will use 
trastd and trapca to transform them first. Then the transformed inputs can 
be used to simulate the previously trained network. The network output must 
also be unnormalized using poststd.

p2 = [1.5 -0.8;0.05 -0.3];
[p2n] = trastd(p2,meanp,stdp);
[p2trans] = trapca(p2n,TransMat)
an = sim(net,p2trans);
[a] = poststd(an,meant,stdt);
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Algorithm Ptrans = TransMat*P;

See Also prestd, premnmx, prepca, trastd, tramnmx
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trastdPurpose Preprocess data using a precalculated mean and standard deviation

Syntax [pn] = trastd(p,meanp,stdp)

Description trastd preprocesses the network training set using the mean and standard 
deviation that were previously computed by prestd. This function needs to be 
used when a network has been trained using data normalized by prestd. All 
subsequent inputs to the network need to be transformed using the same 
normalization.

trastd(P,T) takes these inputs,

P - R x Q matrix of input (column) vectors.

meanp - R x 1 vector containing the original means for each input.

stdp  - R x 1 vector containing the original standard deviations for each 
input.

and returns,

PN - R x Q matrix of normalized input vectors.

Examples Here is the code to normalize a given data set so that the inputs and targets 
will have means of zero and standard deviations of 1.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);

If we then receive new inputs to apply to the trained network, we will use 
trastd to transform them first. Then the transformed inputs can be used to 
simulate the previously trained network. The network output must also be 
unnormalized using poststd.

p2 = [1.5 -0.8;0.05 -0.3];
[p2n] = trastd(p2,meanp,stdp);
an = sim(net,pn);
[a] = poststd(an,meant,stdt);

Algorithm pn = (p-meanp)/stdp;

See Also premnmx, prepca, prestd, trapca, tramnmx
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tribasPurpose Triangular basis transfer function

Syntax A = tribas(N)

info = tribas(code)

Description tribas is a transfer function. Transfer functions calculate a layer's output from 
its net input.

tribas(N) takes one input,

N - S x Q matrix of net input (column) vectors.

and returns each element of N passed through a radial basis function.

tribas(code) returns useful information for each code string:

'deriv'  - Name of derivative function.

'name'   - Full name.

'output' - Output range.

'active' - Active input range.

Examples Here we create a plot of the tribas transfer function.

n = -5:0.1:5;
a = tribas(n);
plot(n,a)

Network Use To change a network so that a layer uses tribas, set 
net.layers{i}.transferFcn to 'tribas'.

Call sim to simulate the network with tribas.

Algorithm tribas(N) calculates its output with according to:

tribas(n) = 1-abs(n), if -1 <= n <= 1; = 0, otherwise.

See Also sim, radbas
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vec2indPurpose Convert vectors to indices

Syntax ind = vec2ind(vec)

Description ind2vec and vec2ind allow indices to be represented either by themselves or as 
vectors containing a 1 in the row of the index they represent.

vec2ind(vec) takes one argument,

vec - Matrix of vectors, each containing a single 1.

and returns the indices of the 1's.

Examples Here four vectors (containing only one 1 each) are defined and the indices of the 
1's are found.

vec = [1 0 0 0; 0 0 1 0; 0 1 0 1]
ind = vec2ind(vec)

See Also ind2vec
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A-2
ADALINE - an acronym for a linear neuron: ADAptive LINear Element.

adaption - a function that proceeds through the specified sequence of inputs, 
calculating the output, error and network adjustment for each input vector in 
the sequence as the inputs are presented.

adaptive learning rate - a learning rate that is adjusted according to an 
algorithm during training to minimize training time.

adaptive filter - a network that contains delays and whose weights are adjusted 
after each new input vector is presented. The network “adapts” to changes in the 
input signal properties if such occur. This kind of filter is used in long distance 
telephone lines to cancel echoes.

architecture - a description of the number of the layers in a neural network, 
each layer’s transfer function, the number of neurons per layer, and the 
connections between layers.

backpropagation learning rule -a learning rule in which weights and biases 
are adjusted by error derivative (delta) vectors backpropagated through the 
network. Backpropagation is commonly applied to feedforward multilayer 
networks. Sometimes this rule is called the generalized delta rule.

backtracking search - linear search routine which begins with a step 
multiplier of 1 and then backtracks until an acceptable reduction in the 
performance is obtained.

batch - a matrix of input (or target) vectors applied to the network 
“simultaneously”. Changes to the network weights and biases are made just 
once for the entire set of vectors in the input matrix.

batching - the process of presenting a matrix (batch) of input vectors for 
simultaneous calculation of a matrix of output vectors and/or new weights and 
biases.

Bayesian framework - assumes that the weights and biases of the network 
are random variables with specified distributions.

BFGS quasi-Newton algorithm - a variation of Newton’s optimization 
algorithm, in which an approximation of the Hessian matrix is obtained from 
gradients computed at each iteration of the algorithm.

bias - a neuron parameter that is summed with the neuron’s weighted inputs 
and passed through the neuron’s transfer function to generate the neuron’s 
output.



bias vector - a column vector of bias values for a layer of neurons.

Brent’s search - a linear search which is a hybrid combination of the golden 
section search and a quadratic interpolation.

Charalambous’ search - a hybrid line search that uses a cubic interpolation, 
together with a type of sectioning.

classification - an association of an input vector with a particular target vector.

competitive layer - a layer of neurons in which only the neuron with 
maximum net input has an output of 1 and all other neurons output 0. Neurons 
compete with each other for the right to respond to a given input vector.

competitive learning - the unsupervised training of a competitive layer with 
the instar rule or Kohonen rule. Individual neurons learn to become feature 
detectors. After training, the layer categorizes input vectors among its 
neurons.

competitive transfer function - accepts a net input vector for a layer and 
returns neuron outputs of 0 for all neurons except for the “winner,” the neuron 
associated with the most positive element of the net input n.

concurrent input vectors - name given to a matrix of input vectors that are to be 
presented to a network “simultaneously.” All the vectors in the matrix will be used 
in making just one set of changes in the weights and biases.

conjugate gradient algorithm -in the conjugate gradient algorithms a 
search is performed along conjugate directions, which produces generally 
faster convergence than a search along the steepest descent directions. 

connection - a one-way link between neurons in a network.

connection strength - the strength of a link between two neurons in a 
network. The strength, often called weight, determines the effect that one 
neuron has on another.

cycle - a single presentation of an input vector, calculation of output and new 
weights and biases.

dead neurons - a competitive layer neuron that never won any competition 
during training and so has not become a useful feature detector. Dead neurons 
do not respond to any of the training vectors.

decision boundary - a line, determined by the weight and bias vectors, for 
which the net input n is zero.
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delta rule - the Widrow-Hoff rule.

delta vector - the delta vector for a layer is the derivative of a network’s output 
error with respect to that layer’s net input vector.

distance - the distance between neurons, calculated from their positions with 
a distance function.

early stopping - a technique based on dividing the data into three subsets. The 
first subset is the training set used for computing the gradient and updating 
the network weights and biases. The second subset is the validation set. When 
the validation error increases for a specified number of iterations, the training 
is stopped, and the weights and biases at the minimum of the validation error 
are returned. The third set is the test set. It is used to verify the network 
design.

epoch - the presentation of the set of training (input and/or target) vectors to 
a network and the calculation of new weights and biases. Note that training 
vectors may be presented one at a time or all together in a batch.

error jumping -a sudden increase in a network’s sum-squared error during 
training. This is often due to too large a learning rate.

error ratio - a training parameter used with adaptive learning rate and 
momentum training of backpropagation networks.

error vector - the difference between a network’s output vector in response to 
an input vector and an associated target output vector.

feedback network - a network with connections from a layer’s output to that 
layer’s input. The feedback connection may be direct or pass through several 
layers.

feedforward network - a layered network in which each layer only receives 
inputs from previous layers.

Fletcher-Reeves update - a method developed by Fletcher and Reeves for 
computing a set of conjugate directions. These directions are used as search 
directions as part of a conjugate gradient optimization procedure.

function approximation - the task performed by a network trained to respond 
to inputs with an approximation of a desired function.

generalization - an attribute of a network whose output for a new input vector 
tends to be close to outputs for similar input vectors in its training set.



generalized regression network - approximates a continuous function to an 
arbitrary accuracy, given a sufficient number of hidden neurons.

global minimum - the lowest value of a function over the entire range of its 
input parameters. Gradient descent methods adjust weights and biases in 
order to find the global minimum of error for a network.

golden section search - a linear search which does not require the 
calculation of the slope. The interval containing the minimum of the 
performance is subdivided at each iteration of the search, and one subdivision 
is eliminated at each iteration.

gradient descent - the process of making changes to weights and biases, where 
the changes are proportional to the derivatives of network error with respect to 
those weights and biases. This is done to minimize network error.

hard limit transfer function - a transfer that maps inputs greater-than or 
equal-to 0 to 1, and all other values to 0.

Hebb learning rule - historically the first proposed learning rule for neurons. 
Weights are adjusted proportional to the product of the outputs of pre- and 
post-weight neurons.

hidden layer - a layer of a network that is not connected to the network output. 
(For instance, the first layer of a two layer feedforward network.)

home neuron - a neuron at the center of a neighborhood.

hybrid bisection-cubicsearch - a line search that combines bisection and 
cubic interpolation.

input layer - a layer of neurons receiving inputs directly from outside the 
network.

initialization - the process of setting the network weights and biases to their 
original values.

input space - the range of all possible input vectors.

input vector - a vector presented to the network.

input weights - the weights connecting network inputs to layers.

input weight vector - the row vector of weights going to a neuron.

Jacobian matrix - contains the first derivatives of the network errors with 
respect to the weights and biases.
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Kohonen learning rule - a learning rule that trains selected neuron’s weight 
vectors to take on the values of the current input vector.

layer - a group of neurons having connections to the same inputs and sending 
outputs to the same destinations.

layer diagram - a network architecture figure showing the layers and the 
weight matrices connecting them. Each layer’s transfer function is indicated 
with a symbol. Sizes of input, output, bias and weight matrices are shown. 
Individual neurons and connections are not shown. (See Chapter 2.)

layer weights - the weights connecting layers to other layers. Such weights 
need to have non-zero delays if they form a recurrent connection (i.e. a loop).

learning - the process by which weights and biases are adjusted to achieve 
some desired network behavior.

learning rate - a training parameter that controls the size of weight and bias 
changes during learning.

learning rules - methods of deriving the next changes that might be made in 
a network OR a procedure for modifying the weights and biases of a network.

Levenberg-Marquardt - an algorithm that trains a neural network 10 to 100 
faster than the usual gradient descent backpropagation method. It will always 
compute the approximate Hessian matrix, which has dimensions .

line search function - procedure for searching along a given search direction 
(line) to locate the minimum of the network performance.

linear transfer function - a transfer function that produces its input as its 
output.

link distance - the number of links, or steps, that must be taken to get to the 
neuron under consideration.

local minimum - the minimum of a function over a limited range of input 
values. A local minimum may not be the global minimum.

log-sigmoid transfer function - a squashing function of the form shown below 
that maps the input to the interval (0,1). (The toolbox function is logsig.) 

n n×

f n( ) 1
1 e n–+
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Manhattan distance - The Manhattan distance between two vectors x and y 
is calculated as: 

D = sum(abs(x-y))

maximum performance increase - the maximum amount by which the 
performance is allowed to increase in one iteration of the variable learning rate 
training algorithm.

maximum step size - the maximum step size allowed during a linear search. 
The magnitude of the weight vector is not allowed to increase by more than this 
maximum step size in one iteration of a training algorithm.

mean square error function - the performance function that calculates the 
average squared error between the network outputs a and the target outputs t.

momentum - a technique often used to make it less likely for a 
backpropagation networks to get caught in a shallow minima.

momentum constant - A training parameter that controls how much 
“momentum” is used.

mu parameter - the initial value for the scalar µ.

neighborhood - a group of neurons within a specified distance of a particular 
neuron. The neighborhood is specified by the indices for all of the neurons that 
lie within a radius  of the winning neuron :

net input vector - the combination, in a layer, of all the layer’s weighted input 
vectors with its bias.

neuron - the basic processing element of a neural network. Includes weights 
and bias, a summing junction and an output transfer function. Artificial 
neurons, such as those simulated and trained with this toolbox, are 
abstractions of biological neurons.

neuron diagram - a network architecture figure showing the neurons and the 
weights connecting them. Each neuron’s transfer function is indicated with a 
symbol.

ordering phase - period of training during which neuron weights are expected 
to order themselves in the input space consistent with the associated neuron 
positions.

d i∗

Ni d( ) j dij d≤,{ }=
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output layer - a layer whose output is passed to the world outside the network.

output vector - the output of a neural network. Each element of the output 
vector is the output of a neuron.

output weight vector - the column vector of weights coming from a neuron or 
input. (See outstar learning rule.)

outstar learning rule - a learning rule that trains an neuron’s (or input’s) 
output weight vector to take on the values of the current output vector of the 
post-weight layer. Changes in the weights are proportional to the neuron’s 
output.

overfitting - a case in which the error on the training set is driven to a very 
small value, but when new data is presented to the network, the error is large.

pass - each traverse through all of the training input and target vectors.

pattern - a vector.

pattern association - the task performed by a network trained to respond with 
the correct output vector for each presented input vector.

pattern recognition - the task performed by a network trained to respond 
when an input vector close to a learned vector is presented. The network 
“recognizes” the input as one of the original target vectors.

performance function - commonly the mean squared error of the network 
outputs. However, the toolbox also considers other performance functions. 
Type nnets and look under performance functions.

perceptron - a single-layer network with a hard limit transfer function. This 
network is often trained with the perceptron learning rule.

perceptron learning rule - a learning rule for training single-layer hard limit 
networks. It is guaranteed to result in a perfectly functioning network in finite 
time given that the network is capable of doing so.

Polak-Ribiére update - a method developed by Polak and Ribiére for 
computing a set of conjugate directions. These directions are used as search 
directions as part of a conjugate gradient optimization procedure.

positive linear transfer function - a transfer function that produces an output 
of zero for negative inputs and an output equal to the input for positive inputs.

postprocessing - converts normalized outputs back into the same units which 
were used for the original targets.



Powell-Beale restarts - a method developed by Powell and Beale for 
computing a set of conjugate directions. These directions are used as search 
directions as part of a conjugate gradient optimization procedure. This 
procedure also periodically resets the search direction to the negative of the 
gradient.

preprocessing - perform some transformation of the input or target data 
before it is presented to the neural network.

principal component analysis - orthogonalize the components of network 
input vectors. This procedure can also reduce the dimension of the input 
vectors by eliminating redundant components.

quasi-Newton algorithm - class of optimization algorithm based on 
Newton’s method. An approximate Hessian matrix is computed at each 
iteration of the algorithm based on the gradients.

radial basis networks - a neural network that can be designed directly by fitting 
special response elements where they will do the most good.

radial basis transfer function - the transfer function for a radial basis neuron 
is:

regularization - involves modifying the performance function, which is 
normally chosen to be the sum of squares of the network errors on the training 
set, by adding some fraction of the squares of the network weights.

resilient backpropagation - a training algorithm that eliminates the harmful 
effect of having a small slope at the extreme ends of the sigmoid “squashing” 
transfer functions.

saturating linear transfer function - a function that is linear in the interval 
(-1,+1) and saturates outside this interval to -1 or +1. (The toolbox function is 
satlin.)

scaled conjugate gradient algorithm - avoids the time consuming line 
search of the standard conjugate gradient algorithm.

sequential input vectors - a set of vectors that are to be presented to a 
network “one after the other.” The network weights and biases are adjusted on 
the presentation of each input vector.

radbas n( ) e n2–
=
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sigma parameter - determines the change in weight for the calculation of the 
approximate Hessian matrix in the scaled conjugate gradient algorithm.

sigmoid - monotonic S-shaped function mapping numbers in the interval 
(-∞,∞) to a finite interval such as (-1,+1) or (0,1).

simulation - takes the network input p, and the network object net, and 
returns the network outputs a.

spread constant - the distance an input vector must be from a neuron’s weight 
vector to produce an output of 0.5.

squashing function - a monotonic increasing function that takes input values 
between -∞ and +∞ and returns values in a finite interval.

star learning rule - a learning rule that trains a neuron’s weight vector to take 
on the values of the current input vector. Changes in the weights are 
proportional to the neuron’s output.

sum-squared error - The sum of squared differences between the network 
targets and actual outputs for a given input vector or set of vectors.

supervised learning - a learning process in which changes in a network’s 
weights and biases are due to the intervention of any external teacher. The 
teacher typically provides output targets.

symmetric hard limit transfer function - a transfer that maps inputs 
greater-than or equal-to 0 to +1, and all other values to -1.

symmetric saturating linear transfer function - produces the input as its 
output as long as the input i in the range -1 to 1. Outside that range the output is 
-1 and +1 respectively.

tan-sigmoid transfer function - a squashing function of the form shown below 
that maps the input to the interval (-1,1). (The toolbox function is tansig.) 

tapped delay line - a sequential set of delays with outputs available at each delay 
output.

target vector - the desired output vector for a given input vector.

topology functions - ways to arrange the neurons in a grid, box, hexagonal, or 
random topology.

f n( )
1

1 e n–+
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training - a procedure whereby a network is adjusted to do a particular job

training vector - an input and/or target vector used to train a network.

transfer function - the function that maps a neuron’s (or layer’s) net output n 
to its actual output.

tuning phase - period of SOFM training during which weights are expected to 
spread out relatively evenly over the input space while retaining their 
topological order found during the ordering phase.

underdetermined system - a system that has more variables than constraints.

unsupervised learning - a learning process in which changes in a network’s 
weights and biases are not due to the intervention of any external teacher. 
Commonly changes are a function of the current network input vectors, output 
vectors, and previous weights and biases.

update - make a change in weights and biases. The update can occur after 
presentation of a single input vector or after accumulating changes over 
several input vectors.

weighted input vector - the result of applying a weight to a layer's input, 
whether it is a network input or the output of another layer.

weight matrix - a matrix containing connection strengths from a layer’s inputs 
to its neurons. The element wi,j of a weight matrix W refers to the connection 
strength from input j to neuron i.

Widrow-Hoff learning rule - a learning rule used to trained single layer linear 
networks. This rule is the predecessor of the backpropagation rule and is 
sometimes referred to as the delta rule.
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Mathematical Notation for Equations and Figures

Basic Concepts
Scalars-small italic letters.....a,b,c

Vectors - small bold non-italic letters.....a,b,c

Matrices - capital BOLD non-italic letters.....A,B,C 

Language
Vector means a column of numbers.

Weight Matrices

Scalar Element 
 - row,  - column,  - time or iteration

Matrix 

Column Vector 

Row Vector  ...vector made of ith row of weight matrix W

Bias Vector

Scalar Element 

Vector 

Layer Notation
A single superscript will be used to identify elements of layer. For instance, the 
net input of layer 3 would be shown as n3. 

Superscripts will be used to identify the source (l) connection and the 
destination (k) connection of layer weight matrices ans input weight matrices. 
For instance, the layer weight matrix from layer 2 to layer 4 would be shown 
as LW 4,2.

wi j, t( )
i j t

W t( )

wj t( )

wi t( )

bi t( )

b t( )

k l,



Mathematical Notation for Equations and Figures
Input Weight Matrix 

Layer Weight Matrix 

Figure and Equation Examples
The following figure, taken from Chapter 11, “Advanced Topics,” illustrates 
notation used in such advanced figures.

IWk l,

LWk l,

p1(k)

a1(k)1

n1(k) 2 x 1

4 x 2

 4 x 1

 4 x 1

4 x 1

Inputs 

AA
AAIW1,1

AA
AA

b1

2 4

Layers 1 and 2 Layer 3

a1(k) = tansig (IW1,1p1(k) +b1)

A
A
A

5

3 x (2*2)AA
AA

IW2,1

3 x (1*5)AA
AAIW2,2

n2(k)

3 x 1

3A
A
A
A

A
A
TDL

p2(k)

 5 x 1

A
ATDL

1 x 4
AAIW3,1

1 x 3AA
AA

1 x (1*1)AA
AA

1
1 x 1AA
AAb3

AA
AA

TDL

3 x 1

a2(k)

a3(k)n3(k)
1 x 1 1 x 1

1AA
AA
AA

a2(k) = logsig (IW2,1 [p1(k);p1(k-1) ]+ IW2,2p2(k-1))

0,1

1

1

a3(k)=purelin(LW3,3a3(k-1)+IW3,1 a1 (k)+b3+LW3,2a2 (k))

LW3,2

LW3,3

y2(k)
1 x 1

y1(k)

3 x 1

Outputs
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Mathematics and Code Equivalents
The transition from mathematics to code or vice versa can be made with the aid 
of a few rules. They are listed here for future reference.

To change from Mathematics notation to MATLAB notation the user needs to:

• Change superscripts to cell array indices

For example, 

• Change subscripts to parentheses indices

For example, , and 

• Change parentheses indices to a second cell array index

For example, 

• Change mathematics operators to MATLAB operators and toolbox functions

For example, 

The following Equations illustrate the notation used in figures.

p1 p 1{ }→

p2 p 2( )→ p2
1 p 1{ } 2( )→

p1 k 1–( ) p 1 k 1–,{ }→

ab a*b→

n w1 1, p1 w1 2, p2 ... w1 R, pR b+ + + +=

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=
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Block Set
The Neural Network Toolbox provides a set of blocks you can use to build 
neural networks in Simulink or which can be used by the function gensim to 
generate the Simulink version of any network you have created in MATLAB.

Bring up the Neural Network Toolbox block set with this command:

neural

The result will be a window, which contains three blocks. Each of these block 
contains additional blocks.



Block Set
Transfer Function Blocks
Double click on the Transfer Functions block in the Neural window to bring 
up a window containing several transfer function blocks.

Each of these blocks takes a net input vector and generates a corresponding 
output vector whose dimensions are the same as the input vector.

Net Input Blocks
Double click on the Net Input Functions block in the Neural window to 
bring up a window containing two net input function blocks.

Each of these blocks takes any number of weighted input vectors, weight layer 
output vectors, and bias vectors, and returns a net input vector.
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Weight Blocks
Double click on the Weight Functions block in the Neural window to bring 
up a window containing three weight function blocks.

Each of these blocks takes a neuron’s weight vector and applies it to an input 
vector (or a layer output vector) to get a weighted input value for a neuron.

It is important to note that the blocks above expect the neuron’s weight vector 
to be defined as a column vector. This is because Simulink signals can be 
column vectors, but cannot be matrices or row vectors.

It is also important to note that because of this limitation you will have to 
create S weight function blocks, one for each row, to implement a weight matrix 
going to a layer with S neurons.

This contrasts with the other two kinds of blocks. Only one net input function 
and one transfer function block are required for each layer.



Block Generation
Block Generation
The function gensim generates block descriptions of networks so you can 
simulate them in Simulink.

gensim(net,st)

The second argument to gensim determines the sample time, which is normally 
chosen to be some positive real value.

If a network has no delays associated with its input weights or layer weights 
this value can be set to -1. A value of -1 tells gensim to generate a network with 
continuous sampling.

Example
Here is a simple problem defining a set of inputs p and corresponding targets t:

p = [1 2 3 4 5];
t = [1 3 5 7 9];

The code below designs a linear layer to solve this problem.

net = newlind(p,t)

We can test the network on our original inputs with sim.

y = sim(net,p)

The results returned show the network has solved the problem.

y =
1.0000    3.0000    5.0000    7.0000    9.0000

Call gensim as follows to generate a Simulink version of the network:

gensim(net,-1)

The second argument is -1 so the resulting network block will sample 
continuously.

The call to gensim results in the following screen appearing. It contains a 
Simulink system consisting of the linear network connected to a sample input 
and a scope.
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To test the network double click on the Input 1 block at left.

The input block is actually a standard Constant block. Change the constant 
value from the initial randomly generated value to 2, then select Close.

Select Start from the Simulation menu. Simulink will momentarily pause as 
it simulates the system.

When the simulation is over double click the scope at the right to see the 
following display of the network’s response.



Block Generation
Note that the output is 3, which is the correct output for an input of 2.

Exercises
Here are a couple of exercises you might try.

Changing Input Signal
Replace the constant input block with a signal generator from the standard 
Simulink block set Sources. Simulate the system and view the network’s 
response.

Discrete Sample Time
Recreate the network, but with a discrete sample time of 0.5, instead of 
continuous sampling.

gensim(net,0.5)

Again replace the constant input with a signal generator. Simulate the system 
and view the network’s response.
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