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Abstract

We present a cellular type oscillatory neural network for temporal segregation of stationary input patterns. The model comprises an array
of locally connected neural oscillators with connections limited to a 4-connected neighborhood. The architecture is reminiscent of the well-
known cellular neural network that consists of local connection for feature extraction. By means of a novel learning rule and an initialization
scheme, global synchronization can be accomplished without incurring any erroneous synchrony among uncorrelated objects. Each oscillator
comprises two mutually coupled neurons, and neurons share a piecewise-linear activation function characteristic. The dynamics of traditional
oscillatory models is simplified by using only one plastic synapse, and the overall complexity for hardware implementation is reduced. Based
on the connectedness of image segments, it is shown that global synchronization and desynchronization can be achieved by means of locally
connected synapses, and this opens up a tremendous application potential for the proposed architecture. Furthermore, by using special
grouping synapses it is demonstrated that temporal segregation of overlapping gray-level and color segments can also be achieved. Finally,
simulation results show that the learning rule proposed circumvents the problem of component mismatches, and hence facilitates a large-
scale integration.q 1999 Elsevier Science Ltd. All rights reserved.
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Nomenclature

T positive feedback synapse of oscillator
H(U) piecewise linear activation function of neurons
U1,U2 outputs for mutually coupled neurons
w12,w21 weight synapses
I1,I2 external inputs for mutually coupled neurons

U1 andU2, respectively
t1,t2 time constants
f learn,f target phase of learning and target neurons, respec-

tively
e1,e2 learning coefficients
T0

learn initial value of positive feedback synapse
ftar

ij target phase for neuronij
Oij oscillator at gridij
Olearn,Otarget learning and target oscillators
Wij,kl connectedness matrix for binary image
GWij ,kl connectedness matrix forgray-level image
CWij ,kl connectedness matrix forcolor image

1. Introduction

Human perception shows the capability of simulta-
neously combining various sensory fields from different
cortical areas to form a high level interpretation of an object.
Experimental results performed on the olfactory cortex of
rabbits (Skarda & Freeman, 1987) showed that synchroni-
zation among different cortical attractors emerging from a
chaotic substratum is an efficient way of storing and recall
of memory and of information processing. While phase
synchrony among different cortical attractors can be
perceived as a high level interpretation of the different char-
acteristics of an object including its smell, size, orientation,
color, etc., phase asynchrony among different cortical
attractors can be interpreted as the existence of multiple
objects in the scene. Temporal phase locking phenomenon
seems to exist between the striate cortices across two brain
hemispheres (Engel, Ko¨nig, Kreiter & Singer, 1991), and it
might constitute a feasible mechanism for solving the bind-
ing solution (Malsburg & Schneider, 1986). Malsburg and
Schneider showed that by temporal segregating spatially
isolated patterns into different phases, pattern segmentation
is realizable with locally coupled neural oscillators. Thus
when coherent objects share a common phase, they are
logically binded together.
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The capability of temporal segmentation of spatially
isolated binary patterns via oscillatory neural networks has
been discussed by Malsburg and Schneider (1986), Ko¨nig
and Schillen (1991), Schillen and Ko¨nig (1991), Wang
(1995), and Campbell and Wang (1996). Their learning
rules are based on the connectedness of adjacent oscillating
pixels while uncorrelated segments are separated by at least
one white pixel. Overlapping segments, however, collapsed
into one large segment even if the segments were not corre-
lated. The problem is mainly due to the limited binary repre-
sentation of image (pattern) pixels, i.e. the presence and
absence of objects. If an input image is presented ingray-
levelor in color domain, overlapping pixels could be readily
discerned in accordance with their gray intensity or their R,
G, B values. According to Wang (1995)uncorrelated
objects are discerned by assigning a different, butuncontrol-
lable phase to each oscillator group. Meanwhile, accidental
synchronization among non-overlapping objects cannot be
avoided. This problem of erroneous synchrony is alleviated
by Campbell and Wang (1996) by using aglobal separator
that accelerates the speed of the leading oscillator, and thus
safeguards thephase delay between non-overlapping
objects. Campbell et al. showed that theglobal separator
mechanism, which requires an immense number of inter-
connections between every neural oscillator and theglobal
separator, is able to desynchronize oscillator groups with
small phase shifts within one cycle. By adopting relaxation
oscillator, the architecture is further generalized (Terman &
Wang, 1995; Wang & Terman, 1997; Campbell & Wang,
1998) to handle realgray-level images. However due to a
limited phase resolution between different objects, their
dynamic systems can segregate only a limited number of
patterns with a fixed set of parameters. Add to that objects in
the image scene are randomly ‘popped out’ regardless of
their respective geometry relations.

Recent years have seen a growing interest in the applica-
tions of oscillatory neural networks for information proces-
sing. However, a large-scale implementation of the
aforementioned oscillatory network model, which consists
of immense global interconnections, seems to be difficult, if
not impossible. In practice, global connection among anL ×
M array of neural oscillators is a nightmare whenL andM
become large. To date, ultra-large-scale integration (ULSI)
technology allows a fan-in/fan-out of up to a few hundreds,
however, with much of the chip space being used for rout-
ing. A more realistic approach is the implementation with
connections limited to a cell’s direct neighborhood akin to
the structure of cellular neural networks (Chua & Yang,
1988). It has been shown that by using a network of locally
connected nonlinear elements, global features can be
extracted with connections confined to nearest neighbors.
This is in sharp contrast to the requirements of aglobal
separatorand global connections for global synchronization
and for the prevention of spurious desynchronization.

In contrast to the previous works that tried to model
human vision from a pure biological point of view, we

shall on the other hand, strive to find an efficient way of
implementing an artificial visual device that realized real
time image segregation. It is strongly believed that the
idea of global separatorcannot be readily accepted for
large-scale applications. In this article, we shall demonstrate
that the aforementioned problems of erroneous synchrony
and the need of aglobal separatorcan be circumvented by
using a cellular type oscillatory neural network. By synchro-
nizing stationary input objects into different common
phases, the model is capable of temporally segregating
objects in the sensory scene, and of maintaining the geo-
metry relations among different objects. Our proposed oscil-
latory cellular neural network (OCNN) architecture
comprises an array of simple neural oscillators with inter-
connections limited to the nearest neighborhood. This over-
comes a bottleneck that would be created by the immense
number of interconnections between aglobal separatorand
the oscillators in devices such as optical silicon retinas.

As is suggested by Campbell and Wang (1998), the maxi-
mum number of groups that can be segregated is related to
the maximum time difference within each group. Our model
has a better performance since the phase dispersion of each
converged oscillator group can be controlled within a very
high precision (less than 0.018). The problem of spurious
synchronization of overlapping but uncorrelated segments
in conventional oscillator model is solved by the introduc-
tion of a fast time-scaleconnectedness matrix(CM) that
signifies the grouping between adjacent oscillators. In
comparison with the global separator approach, these merits
will be, however, offset by a longer convergence time for
object segmentation. In essence we shall use an oscillatory
model that consists of one and only one plastic synapse in
order to reduce the complexity for hardware implementa-
tion, even if its analogy with biological counterpart is less
evident. The model is basically similar to the oscillator
proposed by Amari (1972) that comprises inhibitory and
excitatory synapses. However this simplified structure
enables a simpler learning rule that can easily control the
oscillating frequency and phase via a single positive feed-
back synapse. In contrast to our previous work (Kurokawa,
Ho & Mori, 1997), the learning rule proposed in this context
deploys the time-delayed phase error between the target and
learning oscillators. This alleviates the problem of unsteady
oscillations due to nonlinear phase error. In particular the
phase error between learning and target oscillators can be
entrained to be arbitrarily small with steady oscillations.
This time-delayed learning approach can be further general-
ized togray-level andcolor pattern segmentation whereas
spatially overlappinggray-level and color segments are
entrained to oscillate with the same prescribed frequency
except with a different phase shift.

In the following section, we shall describe the properties
of temporal segregation of binary images. The idea of
sequential image segregation that retains the geometry rela-
tions among different objects in the image scene is elabo-
rated. In Section 3, we shall briefly discuss the
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characteristics of the proposed oscillator model. Its dynamic
range and the oscillating criterion will also be addressed. A
time-delayed learning rule is then proposed to control the
phase (time) delay between two oscillators. In Section 4, we
shall present a cellular type oscillatory neural network
model that comprises local connections confined to a 4-
connected neighborhood. A wave-propagation-like phase
initialization scheme is conceived so as to eliminate any
erroneous synchrony during temporal segmentation and to
maintain the geometry relations among different objects. By
assigning the initial phase relationship of the oscillator array
into an ordered manner, it is demonstrated that sequential
object segmentation can be achieved when the time lag
between successive objects is made proportional to their
Euclidean distances. In Section 5, temporal segregation of
overlappinggray-levelandcolor patterns is investigated. It
is manifested that the problems of erroneous synchrony in
conventional oscillatory networks can be circumvented by
temporally segregating overlappinggray-level or color
segments with respect to theirconnectedness matrix(CM)
values. Further in Section 6, validity of the proposed oscil-
latory cellular neural network is examined via extensive
numerical simulations.

2. Sequential image segmentation

For sequential image segmentation, our objective here is
to temporally synchronize correlated objects from a left to
right (right to left, or top to bottom) manner where station-
ary objects are sequentially popped out with different
phases. In the previous studies (Malsburg & Schneider,
1986; Campbell & Wang, 1996; Wang & Terman, 1997),
correlated objects are successfully popped out in a random
manner regardless of their relative displacements. This
context introduces a special phase initialization scheme so
that subsequent pattern segregation can retain the geometry
relations among the objects in the sensory scene.

Generally speaking, scene segmentation can be divided
into two steps; namely grouping and segregation. Conven-
tional image segmentation techniques heavily rely on
special heuristics to perform grouping while pattern segre-
gation is based on their connectedness or on multiple

thresholding like pixel histogram (Kohler, 1981). In fact,
there exists no particular criterion if grouping should be
performed before or after segregation. A successful group-
ing eases subsequent segregation while a prior meaningful
segregation helps to identify object boundary for grouping.
In this article, we shall assume that all objects in the sensory
scene arestationaryand have uniform luminosity for the
sake of illustration, and thus (i) binary objectsgroupingcan
be realized according to their connectedness; (ii)gray-level
objectsgrouping can be realized according to their gray
intensity; and (iii)color objectsgroupingcan be achieved
according to their fuzzified color domain will be described
later.

Having the aforementioned assumptions for grouping, all
we needed to do is temporal segregation in accordance with
object connectedness. In order to maintain the geometry
information among different objects, one can arrange the
phases of coherent objects in an ordered phase relationship
so that the leftmost (rightmost) object should always be
leading. If aglobal target oscillator is present, this can be
realized by initializing the phase of theith column oscilla-
torsf i of anL × M oscillator array with

fi�t� � ftarget�t 2 kits�;
k is an integer constant; and i � 1;2;…;M

�1�

wheret s is the time-step, and thus the phases of successive
column oscillators differ byk time-step. Upon initialization,
the phase relation of the oscillatory array is similar to ripple
propagating from a left to right manner with end-around
shift. When an image is presented to the oscillatory array
with each image pixel being represented by an oscillator,
correlated object pixels will be most likely oscillating with
similar phase. If the correlated phases are averaged out, the
synchronized phases can be divided into different groups as
depicted in Fig. 1. Consider a 32× 32 binary image shown
in Fig. 1(a) with 3 polygons, namely a square, a circle and a
triangle. Depending on user’s practice, the temporal pop-out
sequence with proper thresholding could possibly beB !
P ! X, B ! X ! P, or P ! X ! B etc. Suppose the
desired temporal output sequence isB ! X ! P, output
oscillator responses of each correlated group will be similar
to that shown in Fig. 1(b). In the pattern each pixel is
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represented by an oscillator, and all correlated oscillators
are synchronized with no phase error while different oscil-
lator groups are desynchronized. The phase difference
between successive oscillator group determines the time
lap of the ‘pop-out’ sequence. In our model, however, the
maximum time lap is governed by the oscillator period.
Finally it should be noted that due to the cyclic effect of
the oscillators, the ‘pop-out’ sequence of the patterns isB!
X ! P ! B ! X…

3. Dynamics of neural oscillator model

Fig. 2(a) shows the basic neural oscillator model that
composed of 2 neurons. Dynamics of the neuronsN1 and
N2 is governed by

t1
dU1

dt
� 2U1 1 w12H�U2�1 TH�U1�1 I1; �2a�

t2
dU2

dt
� 2U2 1 w21H�U1�1 I2; and �2b�

H�Ui� �
1 if Ui $ 1:0

�1 1 Ui�=2 if uUi u , 1:0; i � 1;2;

0 if Ui # 21:0

:

8>><>>: �2c�

where U1 and U2 are the internal states of the neurons.
ParameterT is the positive feedback synapse forN1, H(U)
the piecewise linear function that limits the dynamic range
of the proposed model, andw12 andw21 the weight connec-
tions.t1 andt2 are the time constants, andI1 andI2 are the
external inputs of neuronsN1 andN2, respectively. Without
loss of generality, one can sett1 � t2 � 1.0. The model is
basically similar to that proposed by Amari (1972) with the
exception that one and only one plastic synapseT is needed
for frequency and phase learning, and the sigmoid function
being replaced by a piecewise linear function. The reason
that we adopt the oscillator structure depicted in Fig. 2 is
mainly due to its simplicity and feasibility for hardware
implementation. By imposing the constraints

�w12 1 T�=2 1 I1 � w21=2 1 I2 � 0; �3�
it can be shown that at least one of the equilibrium points
(U1,U2) is fixed at (0,0). In the special case whenI1� I2� 0,
(U1,U2) asymptotically converges to (0,0) (see Appendix A),
which is the only fixed point, and the oscillator is

non-oscillating. WhenI1� 2 I2 ± 0, the oscillator becomes
oscillating with its frequency and phase controlled byT. It
can be shown analytically (see Appendix B) that the oscil-
lator is oscillating if the positive synapseT . 2/H 0(0) when
I1 � 2I2 ± 0. In order to realize the oscillator model into
silicon, we have to pay attention to the dynamic ranges of
the outputsU1 and U2 since they are controlled by a
nonlinear integration function. One can show (see Appendix
C) that by imposing the constraints Eq. (3), the dynamic
ranges ofU1 andU2 are well within the typical power supply
voltage of common integrated circuits.

3.1. Time-delayed learning algorithm

In contrast to the studies (Malsburg & Schneider, 1986;
Wang, 1995; Campbell & Wang, 1996) that used the ampli-
tude difference between two oscillators as the learning para-
meter, we adopt the phase difference here since the control
on the phase of individual oscillator can be more precise.
Consider a coupled oscillator pair depicted in Fig. 2(b), the
objective is to synchronize the learning oscillatorOlearnwith
the target oscillatorOtarget. This is accomplished by varying
the positive plastic synapseTlearn with

Tlearn�t� � T0
learn 1 11

Zt

0
Df�t� dt 1 12Df�t�; �4a�

Df�t� � flearn�t�2 ftarget�t 2 t�; and �4b�

fx �
( cos21�U1;x=

��������������������
�U1;x�2 1 �U2;x�2

q
� if U2;x $ 0

2cos21�U1;x=

��������������������
�U1;x�2 1 �U2;x�2

q
� if U2;x , 0

;

x [ {learn; target}:

�4c�

The parametersf learn andf targetare, respectively, the phase
of the learning oscillator and that of the target oscillator.
T0

learn is the initial value of positive feedback forOlearn, andt
is the user defined time lag between the learning oscillator
and the target oscillator. Parameters11 and12 are constants
that control the learning behavior of the system. Upon
convergence,Df (t) � 0, and the learning oscillator will
be oscillating at the same frequency as that of the target
oscillator except with a time delay,t . In contrast to our
previous work (Kurokawa et al., 1997), the control para-
meter is substituted with Eq. (4b) due to the non-sinusoidal
oscillating trajectory of the model. The second term in Eq.
(4a) circumvents the problem of parametermismatchesin
T0

learn while the third one tackles the phase errors between
the learning and target oscillators.

Now suppose that the phase of the learning oscillator is
leading, the feedback synapseTlearn will be increased, and
this will effectively slow down the oscillation (Kurokawa et
al., 1997). SinceDf (t) in Eq. (4b) is positive,Tlearn will be
increased and the oscillation is retarded, and vice versa.
Thus by using the learning rule stated in Eq. (4), the
frequency and phase of an oscillator can always be
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synchronous with the target oscillator. Hereafter we shall
consider the characteristics of an extensively coupled oscil-
latory array for image segregation.

4. Oscillatory cellular neural networks with local
learning rule

The architecture of an oscillatory cellular neural network
(OCNN) is shown in Fig. 3. Each cell is basically an oscil-
lator depicted in Fig. 2(a). Without loss of generality, every
oscillator has connections confined to its 4-connected neigh-
boring cells. In essence every oscillator will refer to the
oscillator on its left or upper row as its target oscillator
for frequency learning. Thus the information needed for
each oscillator is necessarily local. Since all the oscillators
directly or indirectly refer to the leftmost oscillator in the
top row as its target oscillator, this oscillator should main-
tain uppermost oscillation stability.

4.1. Initialization of the phase of OCNN with local learning
rule

As described in Section 2, in order to retain the geometry
relations among different objects in the image scene, it is
indispensable to initialize the phase of the oscillatory array
as a ripple propagating from the left to right. Fig. 3 shows an
L × M oscillatory array. Assuming that the time-step of
oscillation is given byt s, each oscillator in the top row is
trained to differ ink time-step with respect to the oscillator
on its left-hand-side. Oscillators in the same column are,
however, trained to oscillate with the same phase. Upon
initialization the phase behavior of the oscillatory array
will then be similar to a ripple periodically propagating
from the left to right. The local learning rule takes on the
following form with

ftar
1j �t� � f1j21�t 2 kts� ;j � {2 ;…;M} ; and �5a�

ftar
ij �t� � fi21j�t� ;i � {2 ;…;M} : �5b�

The learning strategy is basically similar to that with a
global target Eq. (1). However, the global target for oscil-
latorOij (at theith row andjth column) is now replaced with
its neighboring oscillator, namelyOij21 or Oi21j, and a local
learning rule can then be deployed.

4.2. Temporal segregation of OCNN via connectedness
matrix

After initialization the oscillatory array is now ready for
sequential object segmentation. Based on the idea that
objects are usually segmented according to their connected-
ness, a special learning rule for pattern synchronization/
desynchronization is suggested. When an input image is
presented to the network, neighboring pixels with nonzero
input haveI1 � 2 I2 � 1.0 (oscillating) while those with
zero inputs will haveI1 � I2 � 0.0 (non-oscillating with
asymptotic fixed points at (0,0)). Connections among neigh-
boring pixels are limited to a 4-connected neighborhood
defined by theconnectedness matrix(CM) Wij ,kl with

Wij ;kl � Jij × Jkl ;k; l [ uk 2 iu 1 ul 2 ju # 1; �6a�

Wij ;kl � 1 if k; l � i; j; �6b�
whereJij � 1 if Oij is oscillating, i.e. with nonzero inputsI1

and I2. These synapses can be interpreted as the dynamic
weights discussed by Malsburg and Schneider (1986) and
Wang and Terman (1997) with fast time-scale. The local
neighborhood structure of the cellular array is indicated in
Fig. 3. Thus for binary images, the connectedness between
adjacent pixels is defined byWij ,kl. By the same token, one
can simply modify the CM so that the proposed OCNN
model can be applied togray-levelor color image segrega-
tion.

Here for binary image segregation, the target phase for
oscillatorOij is calculated after the rule

ftar
ij �

cos21�U1
ij =

������������������
�U1

ij �2 1 �U2
ij �2

q
� if U2

ij $ 0

2cos21�U1
ij =

������������������
�U1

ij �2 1 �U2
ij �2

q
� if U2

ij , 0
;

8><>: �7a�

where

U1
ij �t� �

X
k;l

Wij ;klU1;kl�t 2 1�X
k;l

Wij ;kl

; �7b�

U2
ij �t� �

X
k;l

Wij ;klU2;kl�t 2 1�X
k;l

Wij ;kl

;

;k; l [ uk 2 iu 1 ul 2 ju # 1; and

�7c�

Tlearn�t� � T0
learn 1 12Df�t�; �7d�

Eq. (7) aims at averaging the phases amonggrouped
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oscillating pixels, and hence upon convergence, ‘connected’
input pixels will be oscillating at the same phase. The
synchronized phase among correlated segments will be
approximately equal to the average of connected neighbor-
ing phases during initialization, and the time delay between
uncorrelated segments will then be proportional to their
Euclidean distance in the original input image. Eq. (4a) is
replaced by Eq. (7d) with which the integration term is
equated to zero. This forces all the converged objects to
have the same ‘T’ (i.e. same frequency), and their mutual
phase difference can be maintained over time. In contrast to
the previous approach (Kurokawa et al., 1997), which calcu-
lates the average of the sum of 5 phases in a 4-connected
neighborhood, Eq. (7) first estimates the resultant vectors of
summingU1 and U2 and then converts it into the proper
phase. This vector operating approach circumvents the
problem of misleading phase sum of two angles when
both are greater thanp /2, as is depicted in Fig. 4.

5. Overlapping image segregation

In conventional oscillatory neural networks, temporal
segregation is applicable only to spatially separated
segments while overlapping segments will be merged into
a single large segment. The problem is mainly due to the
representation of input image in a limited binary domain. By
using pixel classification, Wang and Terman (1997)
successfully applied their models to segregate realgray-
level images. In this article we shall extend the idea to
include bothgray-level images andcolor images with the
R, G, B values of each pixel presented.

5.1. Gray-level image segregation

The connectedness matrix (CM) introduced in Section 4.2
effectively groups correlated objects together for phase
averaging. As far as one can discern the boundary of two
objects, CM can then be used togroup overlappinggray-
level or color patterns in the image scene. To segregate
gray-level images, heuristic threshold techniques have
been used to classify different regions (Kohler, 1981).
Other approaches use a growing technique to categorize
similar pixels into a connected region if they satisfy

prescribed conditions. As we have mentioned in Section 4,
the connectedness matrix(CM) implicitly realizes region
classification where physically connected pixels are cate-
gorized as one object. Forgray-level image, we adopt a
thresholding technique for its simplicity and ease of imple-
mentation. Consider agray-level connectedness matrix
(GCM) GWij ,kl, the connection between neighboring oscilla-
tors is determined after pixel classification with simple
thresholding:

GWij ;kl � Jij × JklGij ;kl ;k; l [ uk 2 iu 1 ul 2 ju # 1;

�8a�

GWij ;kl � 1 if k; l � i; j; �8b�

Gij ;kl � 1 if Oij andOkl are of the same gray-level

and 0 otherwise

(8c)

The GCM effectivelygroups segments with roughly the
same gray intensity together if they are connected, and
subsequent phase averaging operation will be conducted
within isolated groups. Physically overlapped segments
will, however, be discerned provided that they are of differ-
ent gray intensity. This strategy helps to improve the archi-
tecture of OCNN, and the same learning rule Eq. (7) can be
applied to the segregation ofgray-level input images by
replacingWij ,kl with GWij ,kl.

5.2. Color image segregation

Color image segregation has a very different nature
compared togray-level image segregation. One of major
difficulties is the diversity of color range that can be
presented by the color components. Human vision perceives
electromagnetic light beams by 4 types of photochemical
transducers. These include 3 retinal cone cells for color and
one retinal rod cell for light at low levels. The 3 cone cells
contain different types visual pigment, namely ‘Red’, ‘Blue’
and ‘Green’ pigment. The cone cells detect 3 primary
colors, and the brain mixes these colors into a wide color
range that we perceive (Szaflarish, 1998). For a color
description, the luminosity is usually separately expressed,
and luminosity and chrominance can be described sepa-
rately. If the objects have a uniform luminosity, one can
fuzzy classifiy the chrominance of an object according to
the continuous varying color spectrum.

The idea of fuzzy color classification has been studied by
Benoit, Foulloy, Galichet and Mauris (1994). By using a
single 80C196 micro-controller, the author demonstrated
that it is possible to classify a colored surface into different
color membership functions. Throughout the article, we
shall assume that the image has a uniform luminosity, and
make use of a fuzzy approach to classify the image pixels
into different color clusters, and this is then followed by
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Fig. 4. Resultant of averaging two phases.



pattern segregation. Due to the limited color range of
machine vision, the fuzzy approach used in the article
assumes that the input color can be effectively classified
into 7 colors ‘Violet’, ‘Blue’, ‘Azure’, ‘Green’, ‘Yellow’,
‘Orange’ and ‘Red’. The RGB values for different color
spectrum is shown in Table 1 while the values are fuzzified
with the fuzzy rules summarized in Table 2. The RGB
values can be interpreted as ‘HIGH’, ‘MEDIUM’ or
‘LOW’. Input image is first categorized into different
color clusters after the fuzzy membership functions
described in Fig. 5. In this article, fuzzy clustering is imple-
mented by the fuzzy system toolbox described by Beale and
Demuth (1994). With the fuzzy rules state in Table 2, the
input color spectrum in Fig. 6(a) can be fuzzy classified to 7
color groups as shown in Fig. 6(b).

Similar to thegray-level connectedness matrixdescribed
in Section 5.1, connectedness between neighboring color
pixels can be defined by acolor connectedness matrix
(CCM) CWij ,kl with

CWij ;kl � Jij × Jkl·Cij ;kl ;k; l [ uk 2 iu 1 ul 2 ju # 1;

�9a�

CWij ;kl � 1 if k; l � i; j; �9b�

Cij ;kl � 1 if Oij andOkl are of the same color;

and 0 otherwise
�9c�

whereJij � 1 if Oij is oscillating, i.e. with nonzero inputsI1

and I2. While the input R, G, B values of a color pixel is
crisp, their combinations are fuzzy classified into a crisp
color group. This strategy simplifies the overall architecture
of the OCNN, and by replacingWij ,kl with CWij ,kl the learning
rule Eq. (7) can also be applied to the segregation of color
input images.

6. Numerical simulation results

In Section 3, we have shown that the phase of an oscil-
lator can be controlled via the positive feedbackT. It can be
analytically proven thatT should be larger than 2/H 0(0) in
order to fulfil the conditions for oscillating. In the article, all
the initial values ofTs of the oscillatory array are set to 4.0,
with other parameters take on the values ofe1 � 0.00001,
e2� 0.015,t1� t2� 1.0, andI1�2I2� 1.0. By substitut-
ing the values into Eq. (2), one immediately obtainsw12 �
26.0, andw21� 2.0.

6.1. Convergence of a coupled oscillator pair

In Fig. 2(b) two oscillators are coupled together where a
single oscillator is trained to synchronous with thetime lag
version of target oscillator. In the following experiments,Ts
of both the target and learning oscillators are set to 4.0. All
the differential equations are calculated by using 4th order
Runge–Kutta method. Table 3 shows the simulation results
of the convergence time for the learning oscillator with a
random initial phase delay of approximately {230,0,1 30}
time-step with respect to the target oscillator. With each
initial phase delay, the average convergence time for 10
random desired phase delays of [250, 150] time-step is
recorded. It is demonstrated that an extremely small value
of phase error of less than 0.018 can be achieved. If a much
larger phase error, say 58 can be tolerated, the convergence
time can be roughly halved. Noted that throughout the arti-
cle, the convergence time is measured in the unit of cycle.
The metric is a more favorable metric since the period of
OCNN depends on the circuit parameters. It is obvious that
the convergence time for multiple-point sampling is faster
than that for zero crossing (single-point) learning. In the
following simulations, multiple-point updating approach
for T is used in order to differentiate the advantages of
continuous time learning over zero crossing learning.

6.2. Convergence time of oscillator array with different sizes

Different sizes of oscillatory array are used to test the
convergence speed of initialization. In this experiment, all
the positive synapseTs are set to 4.0 withks being set to 3.
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Table 1
RGB settings for different color spectrums

R G B Color

0 0 0 Black
255 0 0 Red
0 128 0 Green
255 128 0 Orange
0 255 0 Green
255 255 0 Yellow
255 0 255 Violet
255 128 255 Pink
0 255 255 Azure
255 255 255 White

Table 2
Fuzzy rules for color segmentation

Black If none of Red, Green and
Blue is HIGH

Red If Red is HIGH, and Green
and Blue are LOW

Orange If Red is HIGH, Green is
MEDIUM and Blue is LOW

Yellow If Red and Green are HIGH,
and Blue is LOW

Green If Red and Blue are LOW,
and Green is HIGH

Azure If Red is LOW, and Green
and Blue are HIGH

Blue If Red and Green are LOW,
and Blue is HIGH

Violet If Red and Blue are HIGH,
and Green is LOW

White If none of Red, Green and
Blue is LOW



The criterion for convergence here is that the averageT of
the oscillators should have an error of less than 0.1% and the
initialization process with local learning rule described in
Section 4.1 is completed. As shown in Fig. 7, it is obvious
that it takes a longer time to propagate the ripple along the
column than along the row. This phenomenon can be easily
understood since the initialization process needs to control
the phase difference between adjacent columns tok time
steps while the oscillators are synchronized for each
column. In fact we have found that even when some of
the Ts are mismatched (up to a discrepancy of 20%), the
long convergence time in the initialization process can
absorb these discrepancies without further prolonging the
convergence time.

6.3. Binary pattern segregation via oscillatory array

A 6 × 13 oscillator array with phase initialization of the
4th column depicted in Fig. 8 is used to segment an input
binary image with characters ‘C’, ‘I’, ‘T’ and ‘Y’. All the
nonzero input pixels corresponding to the characters have
I1 � 2 I2 � 1.0, andI1 � I2 � 0.0 otherwise.T of every
oscillator andk takes on the value of 4.0 and 3, respectively.
Follow the initialization scheme described in Section 4.1,
the characters are temporally segmented and have maxi-
mum amplitudes att < 3, 11, 21, and 33, respectively.
And the phase (time) delay between successive characters
is proportional to their Euclidean distance. Convergence of
the oscillator array for initialization needs approximately
137 cycles, and an additional 44.2 cycles for pattern
segmentation. This is compared to the case with a dedicated
global target that uses 63.4 cycles for initialization and 44.2
cycles for pattern segregation. Note that the convergence
time for oscillatory cellular neural network without global
target is longer due to the ripple propagation property in the
initialization process. Meanwhile the convergence time for
pattern segmentation should be essential the same since the

same local learn rule is used. The convergence time for
subsequent pattern segregation, however, will be propor-
tional to the value ofk since it determines the phase disper-
sion of each ‘connected’ coherent object.

6.4. Gray-level pattern segregation

Similar to the segregation of binary image, overlapping
gray-level patterns can be temporally segregated by the
proposed OCNN. The process is basically the same as
binary image segregation with an initialization process,
and then follows by the segregation process. The only
exception is the replacement of CM bygray-level connec-
tionedness matrix(GCM). Here we assume that the input
image has a uniform luminosity, and the solution can be
reduced to the temporal segregation of overlapping patterns.

Fig. 9(a) shows a 25× 32 gray-level image of 3 over-
lapping polygons similar to that shown in Fig. 1(a). All
nonzero input pixels corresponding to the patterns have
I1 � 2 I2 � 1.0, andI1 � I2 � 0.0 otherwise.T of every
oscillator andk takes on the value of 4.0 and 1, respectively.
Initialization of the oscillatory array needs about 863 cycles,
and the convergence time forTs (nominal value 4.0) of
pattern ‘B’ segregation, which is shown in Fig. 9(b), takes
approximately 827 cycles. The number of cycles needed for
‘X’ and ‘P’ is 1173, and 940 respectively. Meanwhile, the
converged phase behavior of the 3 patterns is summarized in
Fig. 9(c). As far as convergence time is concerned, the over-
head for the calculation of thegray-level connectedness
matrix GWij ,kl is roughly equivalent to that forCW. Mean-
while, convergence time forgray-level pattern segregation
is essentially the same as for binary pattern segmentation.
Compared to the oscillatory model (Campbell & Wang,
1996) withglobal separator, our convergence speed is far
slower. The difference is mainly due to the implicit learning
activities during the long refractory period for those models
described by Malsburg and Schneider (1986), Wang (1995),
and Campbell and Wang (1996). In particular we have
discovered that the synchronization process proceeds even
during the refractory period (Campbell & Wang, 1996). One
of the possible solutions to remedy the long learning time in
our model is to use a faster time constantst1 andt2.

6.5. Color pattern segregation via oscillatory array

Similar to the segregation ofgray-level image, color
patterns can be temporally segmented by the proposed
OCNN. The process is basically the same asgray-level
image segregation with the only exception here is the substi-
tution of CM by color connectionedness matrix(CCM).
Since we have assumed a uniform luminosity and no more
than onecolor segment will be placed at the same physical
location, the solution can be reduced to the temporal segre-
gation of overlapping patterns. As far as the connectedness
of different color patterns can be discerned via the fuzzy
clustering approach described in Section 5.2, overlapping
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Fig. 5. Membership functions of RGB settings.

Fig. 6. (a) Input color spectrum. (b) Output color segmentation.
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color segments can be temporally segregated in accordance
with the CCM Eq. (9).

As far as convergence time is concerned, the overhead for
the calculation of thecolor connectedness matrix CWij ,kl is
roughly equivalent to that forCW. Meanwhile, convergence
time for color pattern segmentation is similar to that for
gray-level pattern segmentation.

7. Discussions and conclusion

In this article, we have developed an oscillatory cellular
neural network (OCNN) model for binary,gray-level and
color image segregation. Global synchronization and global
desynchronization of input images are accomplished by
means of local connections confined to a 4-connected neigh-
borhood. A novel time-delayed learning rule is conceived to
precisely control the phases of individual oscillating
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Fig. 7. Convergence speed of initialization for different sizes of oscillatory
array.

Fig. 8. (a) Initialization of OCNN (4th column) for sequential segregation. (b) Temporal segmentation of binary input image after initialization.



segment. Uncorrelated segments in the input image are
temporally segregated with phase difference in proportional
to their Euclidean distance. Most importantly, the geometry
relations among uncorrelated objects in the image scene are
transformed into a temporal ‘pop-out’ sequence that retains
the Euclidean distance information of the objects. In the
article, we have introduced the idea of connectedness matrix
for thegroupingof correlated segments. Subsequent segre-
gation process has shown to be much simplified, and the
architecture of the OCNN is generalized to cope with
binary, gray-level and color images. Simulation results
have demonstrated the performance and validity of the
proposed model even if some of the parameters are
unmatched. Although the convergence speed of the network
is quite slow compared to previous work, the simplicity and
robustness of the model facilitate a large-scale integration of
the network array. Currently we are investigating different
learning methods to speed up the convergence time of the
network.
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Appendix A. Stability behavior of neural oscillator

Fig. A1 depicts the solutions for the simultaneous equa-
tions dU1=dt � 0 and dU2=dt � 0: Interceptions of the two
curves correspond to the equilibrium points of the neural
oscillator. As shown in Fig. A1, there is only one

interception, namely, the origin (0,0), which is the only
stable state for non-oscillating.

Appendix B. Oscillating behavior of mutually coupled
neurons

Consider the macroscopic behavior of two mutually
coupled neurons shown in Fig. 2(a). The dynamics is
governed by

f1�U1;U2� � _U1 � 2U1 1 w12H�U2�1 TH�U1�1 I1; �10�

f2�U1;U2� � _U2 � 2U2 1 w21H�U1�1 I2: �11�
Due to the dynamic interactions of the two neurons, the
trajectories of the coupled neurons cannot be explicitly
estimated. However, thanks to the theory of differential
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Fig. 9. (a) 25× 32 gray-level image; (b) Convergence example of pattern ‘B’; (c) Converged phase patterns of 25× 32 gray-level image.

Fig. A1. Solutions for simultaneous equations dU1=dt � 0 and dU2=dt � 0:



equations, the behavior of the equilibrium state (U1,U2) can
be examined by imposing constraints on the Jacobian matrix
of (10) and (11) (Amari, 1972):

J �
2f1
2U1

2f1
2U2

2f2
2U1

2f2
2U2

26664
37775: �12�

If the trace TrJ of J is negative and the determinantDJ of J is
positive (the eigenvalues ofJ have negative real parts), then
the system is stable, and equilibrium state exists. On the
other hand, when any one of the aforementioned constraints
does not satisfy, the system becomes oscillatory:

CI : TrJ � 2f1
2U1

1
2f2
2U2

� 22 1 T·H0�0� , 0 �13�

CII : DJ � 2f1
2U1

2f2
2U2

2
2f1
2U2

2f2
2U1

� 1 2 T·H0�0�2 w12w21�H 0�0��2 . 0: �14�
Substituting the constraints imposed from Eq. (3), the condi-
tion for oscillatory behavior reduces toT . 2/H 0(0). As
H 0(0) � 0.5, the feedback synapseT should always be
greater than 4.0 for oscillatory.

Appendix C. Dynamic range of neural oscillator

In practice, one has to pay attention to the dynamic range
of the neurons for real-time applications so as not to saturate
the output of components. After Eq. (2), the dynamic ranges
of U1 andU2 can be estimated as

w12 1 I1 � U1umin: # U1 # U1umax� T 1 I1 �15�

I2 � U2umin: # U2 # U2umax: � w21 1 I2; �16�
wherew12 , 0, w21 . 0, andT . 0. By substituting the
constraints in Eq. (3), one obtains

2T1 2 I1 # U1 # T 1 I1; �17�

I2 # U2 # 2I2; �18�
where I2 , 0, I1 . 0. In case when values ofT � 4.0,
I1 � 2I2 � 1.0, the dynamic ranges ofU1 and U2 can be

calculated as

25 # U1 # 5; �19�

21 # U2 # 1: �20�
Obviously, the ranges ofU1 and U2 are well within the
typical supply voltage of common integrated circuits.
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