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Abstract

This article deals with the Learning Patterns (LPs)’ generation, a major aspect of Feed-Forward Artificial Neural Networks (FANNs)’
learning process. Currently, more work is done to understand the mechanisms and improve the speed, learning accuracy, and implementation
features of FANNs’ teaching algorithms, though little is done towards the development of enhanced techniques that would extract experts’
knowledge (from examples, rules, etc.) and obtain standardised LPs that would improve this learning process. A new approach in generating
LPs is thereby introduced, that is used to train a new Medical Decision Support System (MDSS) based on FANNs, and its performance is
analysed and compared with previous methods. It can handle incomplete data archives, individually boost any particular dataum’s special
characteristics, and its application induces the FANNs to show better convergent facets. The efficiency of the resulting MDSS was thoroughly
tested by pulmonologists and haematologists using medical data archives of a regional hospital.q 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

A Medical Decision Support System (MDSS) based on an
architecture of Feed-Forward Artificial Neural Networks
(FANNs) was developed recently and successfully applied
to the whole spectrum of pulmonary and haematological
diseases (PDs, HDs) (Chen, Ke & Chang, 1990; Economou
et al., 1994a; Economou, Mariatos, Economopoulos,
Lymberopoulos & Goutis, 1994b), in order to assist the
process of completing medical diagnoses. Physicians face
particular problems that introduce difficulties into the gath-
ering and evaluation of medical data that include dealing
with large number of patients who may be of various educa-
tional levels, thus augmenting the controversy of input
medical data; selecting through complicated and incomplete
data and assessing their value; working under time pressure;
having to constantly improve their skills; facing the hazards
of transmitted diseases, often being isolated from organised
medical centres. In order to cope with these, a number of
innovations were introduced to the MDSS: the integration of
features of classic Expert Systems and FANNs (Economou
et al., 1996); its explicit founding on the Clinical Differential

Diagnosis Methodology (CDDM); its VLSI design in
FPGA-based chips by approximating the FANNs’ sigmoid
function, implementing proper arithmetic operation
modules, and dynamically managing and storing node
weights (Economou et al., 1994b).

In addition, a new approach to extract and structure the
FANNs’ LPs using physicians’ experience was devised, in
order to better structure the system. It should be noted that
the difficulty in building LPs is mainly a good understanding
of the way this experience is conceived. More specifically,
physicians often put together rules and make associations of
interrelated data features involved in their particular field
(i.e. associating symptoms to their findings) that cannot be
described by largely accepted standards or through examples
(Mulsant, 1990). Moreover, they can judge upon intricate
cases without consciously perceiving and consequently
describing the existing correlation between all (medical)
data (Chen, Ke & Chang, 1990; Poli, Cagnoni, Livi, Coppini
& Valli, 1987).

There are also diseases that cannot be identified by
neither the cases related to the exhibited symptoms, nor
the outcome of thephysical examinations(PEs), but rather
by theclinical examinations(CEs) that are performed upon
a patient. Thus, the novel approach was utilised for the
integration of all symptoms, PE and CE data within the
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new MDSS. It supplies for enhanced components LP-
generation that were difficult to obtain using previous meth-
odologies, without causing eventual failures to the FANNs’
convergence.

2. Medical data and medical decision support system
structure

Physicians were asked to supply a typical procedure to
obtain, classify, and judge the medical data. They proposed
the CDDM (Economou et al., 1994a) as the commonly
accepted standard technique for examining patients and
gather data on diseases using his/her medical history, asking
particular questions, and performing PEs/CEs, to reach to a
diagnosis. According to the CDDM, each finding (either
answers, symptoms, or examinations) is considered inde-
pendently and no conclusion is reached before all procured
medical data are properly evaluated. The whole rational of
the CDDM should lead from the more general to the more

specific diagnosis, e.g. first the general classes of possible
diseases (i.e.Disorders of the Pulmonary Circulation), then
the disease(s) (i.e.Pulmonary Angiitis).

Standardised tables of historical findings, major symp-
toms, and physical examinations, against their effect on
the PDs/HDs were designed (e.g. ‘Cough’ symptom,
Table 1). As diagnoses are based on the presence and/or
absence of particular data and their significance for a disease
(i.e.Dependenceon Table 1), those tables represent a sound
mapping of physicians’ experience. Two different MDDSs,
dealing separately with the PDs or the HDs, were structured.
For the PD-MDSS, seven symptoms, four PEs, 15 CEs, and
30 (classification) levels regarding a patient’s history, along
with their data findings, are the external inputs of the system
(a total of 142 inputs) (Economou et al., 1994a). For the HD-
MDSS, the respective numbers are 12 symptoms, 4 PEs, 25
CEs, and 43 classification levels (a total of 172 external
inputs).

Table 1 shows medical data for theCough symptom
related to the 12 PD classes (Economou et al., 1994b).
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Table 1
Dependency of PD classes against ‘Cough’ symptom and its findingsa

PD classes Cough’s findings dependencies
Dep Rcn Chr Prd nPrd Prx Exr Day Mrn Evg Ssn Anx Swt Wg2 *Wg 1 Vmt Slp

COPD **** * * * * * * * * * * *
Tuberculosis **** * * * * * ** ** * *
Interstitial PDs **** * * * * * *
Abnormalities of the diaphragm
Cancer of the lungs **** *** *** * * * * * *
Disorders of the mediastinum ** * * * * * * * *
Infection diseases of the lungs **** * * * * * *
Disorders of pleura * * * * * * *
Bronchial asthma ** * * * * * *** * * ***
Disorders of the pulmonary
circulation

* * * * * * *

Occupational disorders of the
lungs

*** * * * *** * *** *

Non PDs

a COPD, Chronic Obstructive Pulmonary Disease; Dep, Dependence of PD class to Cough; Rcn, Recently exhibited Cough; Chr, Chronic Cough; (n)Prd,
(non-)Productive Cough; Prx, Paroxismic Cough; Exr, Cough exhibited after Physical Exertion; Day, Cough exhibited all Day Long; Mrn, Cough exhibited in
the Morning; Evg, Cough exhibited in the Evening; Ssn, Seasonary Cough; Anx, Cough followed by Anorexia; Swt, Cough followed by Sweating; Wg(^ ),
Cough followed by Weight Loss/Increase; Vmt, Cough followed by Vomit; Slp, Cough followed by Sleepiness.

Fig. 1. Structure of Layers 1 and 2 of the new MDSS; the number of FANN’s/level is given in brackets.



Column 1 of the table denotes theseClasses(plus a non-PD
one); column 2, theDependencefactor relating this symp-
tom to each PD class; the remaining columns, whether the
findings areRecent, Chronic, Productive, non-Productive,
or/andParoxismic; present afterExertion, all Day long, only
in the Morning, or/and in theEvening; being Seasonal;
followed by Anorexia, excessiveSweating, Weight Loss/
Increase, Vomiting, or/andSleepiness. The Dependence’s
weight is given by a series of ‘*’, according to the
approximate and qualitative manner of physicians’ reason-
ing; the more the number of ‘*’, the larger the dependency.
The absence of any findings implies the possibility of the
disease not being a PD one (last row of Table 1). It is
possible that two different PDs may have identical inputs
for a given FANN, thus forbidding it to differentiate
between them. However, the next FANNs in the MDDS
structure can do so, because of their inputs. Thus, several
pseudo-inputs are added to help the previous FANNs to
converge, as the latter ones shall inform the two PDs apart
(Section 4).

Medical data are fed into the two MDSS’s FANNs which
are connected by a three layered scheme that resembles the
Artificial Neurons’ feed-forward architecture (Rumelhart,
Hinton & Williams, 1986; Lippmann, 1987). The first two
layers of the system consist of four levels: Level 1 receives
all medical data, i.e. a patient’s partial symptoms, PEs,
and history data in distinct FANNs (Fig. 1). Their outputs
are classified lists of, and PDs/HDs (Layers 1 and 2,

respectively). In order to make symptom and history data
more objective (CDDM), in Level 2, PEs’ FANN outputs
are combined separately with the output data of the symp-
toms and history of FANNs. Their outputs are again as
stated before. The single FANN of Level 3 accepts the
lists of Level 2 and gives an output of the final classes of
PD/HD lists. The single FANN of Level 4 receives this list
(either of classes of, or diseases) and its output suggests the
proper CEs that need to be performed by the patient.

Two blocks of four levels compose Layer 3 of the two
MDSSs. Each block is identically structured as the FANNs
in Layer 2, with the difference that Block 1 combines the
results of the CEs in its Level 1 and Block 2 is input of new
medical data in its Level 1. The reason for this ‘re-input’ is
the elapsed time between the first visit to a physician and the
performance of CEs that necessitates a re-examination of a
patient when returning to the physician (thus new medical
data). The two blocks only deal with lists of PDs/HDs, as the
MDSSs already converge, and their final classification are
compared to consider more CEs or to suggest the proper
medical treatment (medications and their dosages).

A total of 200 PD and 150 HD actual cases were used for
learning/testing purposes in varied groups of 140/60 and
100/50 sets. As patient archives showed insufficient cover-
age of all PDs and HDs, physicians were asked to use their
expertise to create model cases that would well supply miss-
ing ones, adjudicating qualitatively 50 different cases per
disease for all PDs/HDs. On the other hand, according to the
principle adopted by the collaborating physicians in the
project, ‘there are no easy or hard to diagnose diseases but
there are patients’. Table 2 gives the number of physicians
created against actual cases for the PD patient cases. Similar
numbers stand true for the HD cases and their respective 11
classes.

It is clear that some PDs would be better ‘represented’
through actual cases should their data be taught to any
MDSS. However, as the pulmonologists and haematologists
involved in the systems’ development supplied valid physi-
cians-created cases to equal the teaching set, such a problem
did not occur. In contrast, it is a standard practice to teach
novice (internal) physicians both through theoretical exam-
ples and laboratory set experiments, and by having them
treating real-world patient cases in a hospital ward. As a
result, they learn by both studying books and by treating
patients, a practice repeated in the adopted learning cases
used for the new MDSS. In addition, physicians-created
cases are always the ones based on their valuable experience
on the PD/HD field.
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Table 2
Number of actual against physicians-created cases used to teach the PD
FANNs

Classes of PDs Actual cases Physicians-created cases

COPD 48 2
Tuberculosis 11 39
Interstitial PDs 12 38
Abnormalities of the diaphragm 11 39
Cancer of the lungs 11 39
Disorders of the mediastinum 9 41
Infection diseases of the lungs 27 23
Disorders of pleura 13 37
Bronchial asthma 45 5
Disorders of the pulmonary
circulation

13 37

Occupational disorders of the
lungs

7 43

Non PDs 3 47
Sum 210a 390

a As a result of few PDs interpolation.

Fig. 2. A pair of input and output LP vectors (previous methodology).



3. Previous methodology for the generation of learning
patterns

During a FANNs’ learning process, a one to one and on to
mapping of a vector of inputs and a vector of outputs is
performed. A literature-standard input vector (Rumelhart
et al., 1986; Lippmann, 1987), consists of series of logical
‘1’s and ‘0’s, denoting the presence or absence of a compo-
nent, while the output consists of one logical ‘1’ followed by
a series of logical ‘0’s that fill the rest of the vector, denoting
a matching of only this class of outputs to the input vector.
Thus, the interrelation of logical ‘1’s and ‘0’s (components)
and the input to the output LPs (vectors), is critical to the
teaching and the identification of patterns. As a result, a
slight diversity from an already existing input LP that
leads to a different output, is fed by using another pair of
LP; otherwise, the FANN could fail to classify them
correctly. Fig. 2 shows an LP pair, built according to Rumel-
hart et al. (1986) and Lippmann (1987).

Consequently, the input vectors that map one to one and
on to a particular output have to be structured very strictly.
Also, as this previous LP generation could also be used for a
particular finding, symptom, or disease mapping, a slight
variation of an input LP could result in a totally different
output as a result of the FANN’s operation, a fact that is not
acceptable by the medical point of view. In addition,
through using these LPs is not possible to boost a particular
LP component without altering their interrelation with the
other components. As a further step, three LPs built accord-
ing to Rumelhart et al. (1986) and Lippmann (1987) are
considered as an example (Fig. 3); these LPs are illustrative
sub-sets of the actually fed ones.

In Fig. 3, the first two input vectors differ only in the third
and fifth component; thus their Hamming distance is 2.
Consequently, should a FANN be taught with the two

input vectors and later tested by the insertion of the first
input vector, both its outputs would be set to a logical ‘1’,
the first to be 100% and the second to be 80% of its numer-
ical representation (experimental data; the FANN’s arithme-
tical convergence error is not taken into consideration). The
difference in the numerical representation of the two outputs
is not as large as it is perceived by physicians, given the
different learning input vectors, hence posing a problem.

Also, the medical archives are often not compiled to their
full extent as the personality of physicians is involved in the
classification and description of the patients’ symptoms and
findings (i.e. they ‘compress’ information in a personal
code-like manner) (Mulsant, 1990; Chen et al., 1990; Poli
et al., 1991; O’Kane, 1988). These need rendering, should
the appropriate physician(s) be out of duty or transferred
elsewhere. Nevertheless, the problem of using old medical
archives on which possible new-sprung symptoms are not
accounted, remains. The substitution of unknown data by
mapping them into logical ‘0’s (Chen et al., 1990), accord-
ing to a physician’s expertise (Poli et al., 1991), or with
statistically elaborated ones (Kampscho¨er et al., 1989),
was considered inappropriate for this project.

To solve this problem, several researchers propose the use
of the logical ‘0.5’ as adon’t care or don’t know term
(Mulsant, 1990) when new data is input (after the
FANNs’ teaching). If this be the case, the same FANN
fed by the test input vector of Fig. 3, would have its two
outputs set to logical ‘1’s up to the 65 and 80% of their
numerical representation (experimental data; convergence
errors are again not considered). Once again, physicians
considered this inadequate, as it alters the significance of
the input component.

The order of the output classification formed another
problem. In Table 1, theCoughsymptom uses 16 findings
for the correct classification of the 12 PD classes. Supposing
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Fig. 3. Similar input learning patterns—A test pattern.

Fig. 4. Three input/output vectors of the previous LP-generation approach.



there are at least two input LP vectors that have some logical
‘1’s and ‘0’s combined in a (partly) similar manner, what
ought to be the output of a FANN should a test pattern
consisting of only their common components’ combination
be fed into it? What about the similarity of outputs triggered
by input vectors with no components at all?

As for the first case, it is often encountered, i.e. some LPs
being ‘sub-sets’ of larger ones with respect to the number or
positions of their ‘1’s. According to the FANN learning
operation, all outputs corresponding to these ‘similar’ learn-
ing inputs, would be set to logical ‘1’. However, the taught
LP with the smaller number of different logical ‘1’s to those
of the test input, through a FANN’s generalising operation
(after their teaching procedure), willmake its attached
output to have a numerical representation of this logical
‘1’ greater than the numerical representation of the other
LPs’ one (Rumelhart et al., 1986; Lippmann, 1987). As for
identical input LPs (with the same number of ‘1’s or totally
devoid of them), will make the FANN(s) not to converge.

This performance had to be expected as the formation and
partition of the hyper-space defined by the use of the
previous LP building, is a matter of constructing distances
from a LP’s components. The more the logical ‘1’s in an LP,
the greater the Hamming distance of a test input vector from
it. However, this might lead to a faulty result as medical
teams diagnose a disease according to ‘the special charac-
teristic of its symptoms’ findings (attributes) and not the
number of them’.

4. Proposed methodology for generating learning
patterns

The new LP-generation methodology is specially made
to enhance theindependent input vectorcomponents’
features, contrary to the previous approach which promotes

a single-class output vector. It is described by a number of
rules, deduced from FANNs’ teaching- and the CDDM
application-experiments.

Rule 1: The size of input vectors is decided by enumerat-
ing each distinct symptom’s findings. All input vectors have
only one logical ‘1’ to mark the presence of only one
component (finding), setting all the other elements of the
input vector to logical ‘0.5’s. Hence,eachinput component
of the previous approach will generateone input LP. This
preserves the individual finding’s value in forwarding a
class of, or disease.

Rule 2: The number of the input LPs per given output
equals the maximum number of present findings of the
previous approach. Outputs that lack this norm are supplied
with a number ofpseudo-findings(via pseudo-inputs) that
will be set to the logical ‘1’, and augment the size of input
vectors. Pseudo-inputs enhance the data equilibrium
between LPs (aiding FANNs to converge), and, on the
contrary, they could be proven to be new medical data
that ought to be considered and utilised as medicine
progresses.

Rule 3: The output vectors are compiled by setting all
their components that correspond to the firing output
neurons (because of an input vector’s component) to the
logical ‘1’. Thus, every finding is mapped to aset of outputs,
and each disease is directly attached to a particular finding.

Rule 4: Logical ‘1’s of the proposed LPs can be replaced
by weighting factorsor attributes (if supplied) that induce
the significance of a sole finding to its output(s) and boost
specific LP mappings.

Rule 5: Logical ‘0’s are used only if theabsenceof some
findings needs to be pointed out, or else, they are implied by
the lack of logical ‘1’s. Moreover, even a small evidence of
a likely output (disease), due to the presence and not the
absence of a finding, is crucial in medical decision support
systems.
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Fig. 5. New representation of ‘a’ input vector (first intermediate format).

Fig. 6. New representation of ‘b’ input vector (first intermediate format).



Rule 6: An input vectorfull of logical ‘0.5’s is fed and
mapped one to one on to an output vector full of logical ‘1’s,
signifying that in case of doubt all possible classes of
diseases should be promoted.

The aforementioned rules are clarified later, considering
the input/output LPs of Fig. 4:

Each of the LP input vectors will span to a number of new
input vectors according to the number of their findings (Rule
1). Another input vector full of logical ‘0.5’s will be added
(Rule 6; Figs. 5–7):

As the maximum number of input logical ‘1’s (per input
LP) with regard to all LP’s is 2 and thec input vector has
only one logical ‘1’ (as shown in Fig. 4), one pseudo-input
has to be added to all the input vectors (Rule 2). Note that
this addition is made only to the input LPs and not to the
input patterns that are fed to the FANNs after their learning
process’ end. A more precise rationale behind the use of this
rule is that when the MDSSs generalise into unknown
inputs, the Hamming distances between learnt LPs and
these unknown vectors have to be calculated only between
existing components and not between the pseudo ones. The
pseudo-findings only help to create more Hamming
distances between given LPs, but not to actually differenti-
ate between them, especially in the case of ‘similar’ pairs of
input/output vectors which are the outcome of using the
previous LP-generation approach. These inputs that are
used for the MDSS testing or generalisation purposes, will
be structured according to the previous building of input
vectors. Figs. 8–10 display with detail the intervention
suggested by Rule 2:

As a result, all the initial input vectors were mappedone
to one and on to the new LPs and thus the output LPs’
components are triggered by the same number of logical
‘1s’ per input finding. In addition, all new input vectors
comprise a pseudo-input (in order to satisfy teaching
needs) and logical ‘0.5’s complete the vectors. The impor-
tant feature is the presence of only one logical ‘1’ per input

LP, the major characteristic that distinguishes the proposed
from the previous LP-generation methodology.

The final LPs are produced (Rule 4), by considering the
significance each finding has for each class of outputs (class
of diseases, diseases, etc.), shown in Table 1 (Economou et
al., 1996). This dependence is included as weighting factors
ranging from 1 to 4 (corresponding to the number of ‘*’)
while building the PD- and HD-MDSSs. Nevertheless, it
would be too detail to illustrate these factors here, particu-
larly as no attribute files are related to these exemplifieda, b,
andc LPs.

Fig. 11 shows the final input/output vectors for the new
LP generation, after Rule 3 has taken effect. The example
given here does not require the use of Rule 5.

5. Overall analysis and comparative results

A number of learning and testing experiments were
conducted in order to establish the efficiency of the rules
given in Section 4. As already discussed, the 200 PD and
150 HD cases were divided into varied batches of 140/60
and 100/50 learning/testing case sets. These cases were
randomly selected, except for the first experiment batch;
its cases were chosen by equally distributing diseases per
case, thus obtaining a more balanced learning space. A total
of 20 experiments were conducted using a combination of
the back-propagation algorithm and the Kalman filter error
prediction equations (selected after extensive trials) (Econ-
omou et al., 1994a). Their testing results are shown in Table
3 for PDs and in Table 4 for HDs.

The data on these tables show the percentages with which
the MDSSs correctly classified the PD/HD test cases;
column 1 illustrates the methodology implemented to gener-
ate the LPs. First the previous representation both with and
without the addition of ‘don’t care/don’t know’ terms, and
then the results of the proposed methodology are shown,
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Fig. 7. New representation of ‘c’ input vector (first intermediate format).

Fig. 8. New representation of ‘a’ input vector (second intermediate format).



again with and without the use of the pseudo-inputs and the
supply of an input LP formed of a series of ‘0.5’s. NC stands
for no convergence.

A convergence did not occur when one or more
diseases happened to have findings that were ‘similar’
(Section 3) to the findings of other diseases and
appeared in fewer cases in the specific batch; this was
resolved using the proposed methodology. Also, the
addition of the ‘don’t know/don’t care’ terms, certainly
improved the performance of the MDSSs taught with
the previous LP-generation approach. This fact along
with the addition of the other steps of the new method-
ology, greatly improved the testing results, which is attrib-
uted to a better partitioning of the learning space
(Economou et al., 1996). In addition, the experiments
proved that this methodology always led the FANNs to
converge to the requested learning error (1%), this error
appears to be smaller given the same number or epochs,
and to drastically reduce the learning time. LP generation
by means of the previous approach sometimes prevented the
convergence to a smaller error.

All experiments were conducted by writing software that
conforms to the ANSI-C specifics. Typical learning para-
meters included FANNs of 4–146 inputs (a total of 741
inputs), 12–35 outputs (a total of 792 outputs), 0–0.54
hidden artificial neurons (a total of 288 hidden neurons),
18–235 total neurons (a total of 2077 neurons), and 32–
9774 synapses (a total of 18165 synapses). Learning times
for a FANN varied between 1 and 5 min., i.e. 2000–3000
learning cycles. Still, when the MDSSs are left to generalise,
less than a second’s processing time for the (partial or final)
output is required per level.

6. Discussion

The new methodology for the LP generation emerged
from the necessity of structuring an MDSS applied in the
area of human diseases. The nature of medical data and the
model of reasoning from two different teams of physicians
led to the conclusion that enhancement of an independent
input vector components had to be adopted. With experi-
mentation, the previous LP generation was found inade-
quate to promote the actual classification of input and
output vectors both by not fully exploiting the experts’
specifications and by not always ensuring the FANNs’
convergence (Economou et al., 1996; Mulsant, 1990; Poli
et al., 1991).

Using the new LPs, each input component is made to
individually excite an appropriate output component,
providing a part of its arithmetic value. This value is a
function of the number of logical ‘1’s enumerated in the
new input vector, their Hamming distances from the already
taught LPs’ vectors, and the special attributes already given
to the new LPs’ components. The previous LP building
rather led an output to the logical ‘1’ or ‘0’ by relating the
Hamming distances of LP and input vectors as a whole.

Evenmore, the advantages provided by generating LPs
with the new methodology, reflect the physicians’ specifica-
tion that an ‘MDSS applied to medicine has to always reach
a possible (correct) diagnosis, up to a level, than to exclude
improbable diseases’ (Poli et al., 1991). In other words, a
similarity of an input finding to an already taught one has to
always excite an output, as the CDDM imposes. Further,
using the previous LP building, the separate component’s
weight in exciting an output could not be highlighted.
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Fig. 9. New representation of ‘b’ input vector (second intermediate format).

Fig. 10. New representation of ‘c’ input vector (second intermediate format).



The isolation of each logical ‘1’ or ‘0’ from the rest of the
components of an input vector, as the CDDM requires,
allows them to be treated as separate entities. The number
of separate ‘1’s can then be balanced, adding pseudo-inputs
to symmetrically form the sub-regions into which the learnt
hyper-space is divided. Additionally, interrelations between
components of a previous built LP input vector are not lost,
as their contribution to the final output is later on re-assessed
in the operating flow of the FANN’s structure, as each sepa-
rate component is made to promote a particular output’s
component.

An alternative solution for handling medical data would
be to divide the actual inputs into groups of more important/
frequent findings, thus forming an architecture consisting of

trees of linked primary- and secondary-FANNs. This solu-
tion would tackle the problem of having learning patterns
structured from unknown data (Section 3), as missing
findings would simply not be used to form branches of
secondary-FANNs when implementing the MDSS’s learn-
ing procedure. In contrast, these secondary-FANNs could
be used at a physician’s choice whenever decided as
appropriate.

This solution was considered unfeasible because of the
large number of connections it requires. Conversely,
synapses made by FANNs treating all learning data, grow
in lesser numbers as they do not follow a general but strict
architectural scheme, but an internal mapping mechanism.
Likewise, trees of primary/secondary-FANNs would not

G.-P.K. Economou et al. / Neural Networks 12 (1999) 767–775774

Fig. 11. Final input/output LP’s (proposed methodology).

Table 4
HD-MDSS diagnosis efficiency against various LP-generation methodologies

LP generated by Batches #
1 2 3 4 5 6 7 8 9 10

Previous representation NC 56 68 72 NC NC NC 58 NC 76
-“- with the addition of ‘0.5’ NC 64 68 76 68 NC NC 60 62 78
Proposed methodology 82 78 72 84 74 68 84 64 70 82
-“- with the addition of
pseudo-inputs

86 84 80 88 78 78 90 76 78 90

-“- with the addition of last
pattern composed of ‘0.5’s

88 88 88 90 88 88 95 88 88 94

Table 3
PD-MDSS diagnosis efficiency against various LP-generation methodologies

LP generated by Batches #
1 2 3 4 5 6 7 8 9 10

Previous representation 67 65 NC NC 70 55 NC 78 70 NC
-“- with the addition of ‘0.5’ 70 66 67 NC 73 66 NC 80 75 66
Proposed methodology 85 80 83 82 78 85 80 85 88 80
-“- with the addition of
pseudo-inputs

90 85 88 87 85 90 85 90 93 85

-“- with the addition of last
pattern composed of ‘0.5’s

93 88 90 88 88 92 88 92 95 88



correlate all important/frequent data, thus denying the full
exploitation of FANN’s operation, which can reach to
stretch out the unknown correlation of input data (Poli
et al., 1991).

7. Conclusions

A new methodology for generating learning patterns for
the teaching of FANNs is presented. This approach was
mainly developed in order to satisfy a number of problems
posed by using FANNs to build efficient decision support
systems in the field of human diseases. It proved to
efficiently overcome the major drawbacks the previous
LP-generation posed, while given better generalisation
performances.

Further, the new methodology can be applied wherever
expertise is not clearly stated, as it generates LPs that
provide for the response of the FANNs even when lacking
some input vector components, using an inner mechanism
for efficiently mapping the actual available data into sub-
regions of the hyper-space being formed by the teaching
procedure. Also, incomplete medical archives can be used
both for training and testing purposes, contributing to the
overall MDSS performance.

The new methodology promotes particular input vector
components, forcing each of them to specifically contribute
to a firing output. The experiments conducted using patient
cases from a regional hospital’s archives, in the fields of
pulmonary and haematological diseases, showed an overall
improvement in the FANN’s convergence characteristics,
while the MDSSs resulted in an efficiency of 88–95%,
when being tested and left to generalise into new symptoms’
findings they were not taught. Therefore, the novel metho-
dology better fits medical data taken from physicians’
expertise into LPs.
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