
Contributed article

Statistical estimation of the number of hidden units for feedforward
neural networks

Osamu Fujita*
NTT System Electronics Laboratories, Atsugi, Kanagawa 243-01, Japan

Received 15 August 1995; revised 26 March 1998; accepted 26 March 1998

Abstract

The number of required hidden units is statistically estimated for feedforward neural networks that are constructed by adding hidden units
one by one. The output error decreases with the number of hidden units by an almost constant rate, if each appropriate hidden unit is selected
out of a great number of candidate units. The expected value of the maximum decrease per hidden unit is estimated theoretically as a function
of the number of learning data sets in relation to the number of candidates that are obtained by random search. This relation can be expanded
to cover other searching methods. In such a case, the number of candidates implies how many steps might be required if random search were
used instead. Therefore the number of candidates can be regarded as a parameter that represents the efficiency of the search. Computer
simulation shows that estimating this parameter experimentally from the actual decrease in output error is useful for demonstrating the
efficiency of the gradient search. It also shows the influence, on the number of hidden units, of the hidden unit’s nonlinearity.q 1998 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The number of hidden units in a feedforward neural net-
work is significant in characterizing the performance of the
network. It greatly influences network capacity (Baum, 1988;
Akaho and Amari, 1990), generalization ability (Baum and
Haussler, 1989), learning speed and output response. For
capacity and universality in application to function approxi-
mation, it is apparently better for the number of hidden units to
be as large as possible. On the other hand, from the standpoint
of generalization, the number should not be too large for
heuristic learning systems in which the best network is a-priori
unknown and has to be determined stochastically. Using the
analogy of Akaike’s Information Criterion (Akaike, 1974;
Kurita, 1990; Moody, 1992), an optimum number of hidden
units ought to exist, which depends on the complexity of a
given learning task. But estimating the number before the
learning task is done is difficult. To meet such a requirement,
the actual number of hidden units should be flexible and
adjustable to the optimum number during learning. There
may be many such kinds of learning systems (for example,
Ash, 1989; Hagiwara, 1990; Hirose et al., 1989).

A simple one of flexible networks is the growth network
that is constructed by adding hidden units one by one so as
to reduce the output error of the network (for example,
Fahlman and Lebiere, 1990). For speed learning, the main
network is fixed during learning; only the added unit is made
to learn, so as to compensate for residual error. The output
error decreases with the number of hidden units added. The
larger the decrease per hidden unit, the smaller the network
that can be constructed. The decrease per hidden unit, that
is, the performance of the hidden unit, can be theoretically
evaluated for the network whose output units have a linear
function (Fujita, 1992). In this case, it is possible to clarify
the quantitative relation between the number of hidden units
and the network output error. The statistical evaluation of
this relation gives valuable information about the efficiency
of stochastic search for hidden units of good performance,
as will be mentioned later. This information is different from
such a kind of information as the lower or upper bound of the
capacity of the threshold logic network implementing an
arbitrary dichotomy as evaluated by Baum (1988).

This paper describes statistical estimation of the number
of hidden units for feedforward neural networks. We first
derive the decrease in output error per hidden unit based on
the least-squares approximation (restatement of the paper by
Fujita, 1992). Then we theoretically estimate the expected
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maximum value of the decrease as the largest value in the
great number of samples from an ideal distribution of the
hidden unit. In other words, the best hidden unit is selected
out of a finite number of candidate units that have the various
functions of hidden units. The expected largest value depends
on not only the number of candidate units but also the number
of learning data sets which represents the complexity and
difficulty of learning tasks. The expected largest decrease
per hidden unit is used to estimate the total number of hidden
units required to reduce the output error to a desired value.
Finally, based on the theoretical estimation, the results of
computer simulation for an actual learning task are discussed.
We show that the relationship between the decrease in output
error and the number of the candidate units represents the
efficiency of the search for good hidden units. We also
show that it has close relation with the nonlinearity of the
hidden unit that is an ability to produce various outputs.

2. Feedforward neural network model

In this section, a feedforward neural network model, con-
sisting of a linear output unit and nonlinear hidden units, is
described mathematically as a nonlinear transformation of
input matrix data into an output vector. Each unit is repre-
sented by a vector whose components are its output values for
all learning data. The vectors of nonlinear hidden units span a
vector space. This vector space should be as close to the
desired output vector of the output unit as possible. The output
error is defined by the minimum distance between the desired
output vector and the actual output vector in the vector space,
which is based on the least-squares approximation. The per-
formance of each hidden unit is evaluated as to its contribution
to the decrease in the output error (Fujita, 1992).

Let us consider ann-input–1-output feedforward neural
network that consists of a linear output unit andmnonlinear
hidden units. Suppose thatK data sets for both the inputs and
the desired output are given. The input data sets are repre-
sented byK 3 n matrix X, and the desired output data sets
are represented byK-dimensional column vectorz. The out-
puts of the hidden units are represented byK 3 mmatrixH,
which is generally a nonlinear function ofX, as follows:

H ¼ f (X), (1)

wheref denotes the mappingX → H. The column space of
H can be outside of the column space ofX because of the
nonlinearity off.

In conventional neural networks, there are two types of
interconnection between hidden units. Let us call the one a
layered network and the other a cascaded network in this
paper. For the layered network that has only one hidden
layer, there is no interconnection between hidden units,
and so the output vector of thejth hidden unit,h j (the jth
column vector ofH) is produced by
hj ¼ f (bX whj

), (2)

wheref is a nonlinear function for each component such as

sin or tanh function,whj
is ann-dimensional column vector

as a weight vector, andb is a coefficient that represents the
nonlinearity of the hidden unit used for discussion in Sec-
tion 4. (In general, it is not necessary to notateb explicitly
because it can be included inwhj

.) For the cascaded net-
work, h j is given by

hj ¼ f (b[XH j ¹ 1]whj
), (3)

where [XH j¹1] is the augmented matrix consisting ofX and
H j-1 ¼ [h1, h2, …, h j¹1], and whj

is the ðnþ j ¹ 1Þ-dimen-
sional weight vector. The output of the hidden unit in the
cascaded network depends on the output of the other hidden
units added previously.

Let y be an actual output vector produced by the linear
output unit of the network as a linear combination of the
column vectors ofH i.e.

y ¼ Hw, (4)

wherew is anm-dimensional weight vector. Thus,y satisfies
y [ L[H] where L[H] denotes the column space of the
matrix H. Let y0 be an optimum vector such that it mini-
mizes the sum of squared output errors,

kz¹ yk2 ¼
∑K
i ¼ 1

(zi ¹ yi)
2, (5)

where kyk is the Euclidean norm ofy. According to the
theory of the least squares approximation, the optimumy0

is given by

y0 ¼ Pz, (6)

whereP is the projection matrix ontoL[H]. If H consists of
linearly independent columns only, thenH TH is non-singu-
lar andP is expressed by

P¼ H (HTH)¹ 1 HT: (7)

Hence, the least sum of squared output errors is expressed
by

kz¹ Pzk2 ¼ kPczk
2
¼ zTPcz (8)

wherePc ¼ I ¹ P and I is the identity matrix.Pc is the
projection matrix ontoL'[H], which is the orthogonal com-
plement of L[H]. It has two basic properties,
P2

c ¼ Pc andPT
c ¼ Pc, in common with P. The optimum

weight vector is given by

w0 ¼ H†z (9)

whereH † ¼ (H TH)¹1H T, i.e. the pseudoinverse ofH.
Let us consider the case in which a new hidden unit is

added. Leth be the output vector of the added hidden
unit. The column space to whichy belongs is expanded
by one dimension fromL(H) to L([Hh]), where [Hh] is
an augmented matrix. Such a space expansion brings
about the decrease of the minimum value ofkz ¹ yk2

from zTPcz to zTPc9z wherePc9 is the projection matrix
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onto L'[Hh], i.e.

Pc9 ¼ I ¹ [Hh]([Hh]T[Hh]) ¹ 1[Hh]T

¼ Pc ¹ Pch(hTPch)¹ 1hTPc: ð10Þ

Let D be the decrease of the output error. Using Eq. (10),D

is expressed by

D ¼ zTpcz¹ zTPc9z¼ zTPch(hTPch)¹ 1hTPcz¼
(zTPch)2

(hTPch)
(11)

Theh that maximizes theD is the best one for reducing the
output error.

The network can be constructed as small as possible by
adding the besths one by one. The cascaded network can be
generally smaller than the three-layered network. The over-
all network size is satisfactory in either network, although it
is not necessarily minimum in comparison with the case in
which all hs are optimized simultaneously.

3. Statistical estimation of the number of hidden units

The number of required hidden units for reducing the
output error depends on how large theD of each unit can
be. In this section, the expected largest value ofD is esti-
mated statistically, based on a certain supposition that the
largest value ofD is obtained by random search forh.

For the convenience of theoretical treatment,D is rewrit-
ten as

D ¼
Pcz
kPczk

,
Pch
kPchk

� �2

kPczk
2, (12)

where the term within the parentheses denotes the inner
product. This inner product corresponds to the inner product
(u, v) of (K ¹ m)-dimensional unit vectorsu andv because
of the projectionPc. In order to estimate the expected largest
value ofD, let us consider the distribution ofr ¼ (u, v)2 in
the range of 0# r # 1. Suppose thatu is constant andv is
uniformly distributed on the surface of the (K ¹ m)-dimen-
sional hypersphere. In this case, the cumulative distribution
function F(r) can be expressed by the beta distribution as
follows:

F(r) ¼ cBr
1
2
,

K ¹ m¹ 1
2

� �
, (13)

whereBr is the incomplete beta function andc is the inverse
of the beta functionB(1/2, (K ¹ m¹ 1/2) (see Appendix A).
In this distribution, how large canr be, if candidate vectors
for v are obtained by random sampling of unit vectors? Lets
be the number of samples ofv, andr s be the largest value of
r in those samples. The distribution density functionws of r s

is given by (Gumbel, 1958),

ws(rs) ¼ sFs¹ 1(rs)f(rs), (14)

where f is the distribution density function ofF. The

expected value ofr s is

E(rs) ¼

∫1
0

rws(r) dr ¼ 1¹

∫1
0

Fs(r) dr, (15)

and it is expressed by the following inequality (see Appen-
dix B),

E(rs) . 1¹
K ¹ m¹ 1

2cs

� � 2
K ¹ m¹ 1G

K ¹ mþ 1
K ¹ m¹ 1

� �
,

(16)

whereG() is the gamma function. The right side gives a
close approximation toE(r s) for K ¹ mq 1 andsq 1 as
follows:

E(rs) < 1¹as
¹

2
K ¹ m¹ 1 (17)

wherea is the abbreviation of the coefficient given in Eq.
(16) and is close to 1 forK ¹ mq 1. The expected rate of
the squared output error decreasing by one hidden unit is
expressed by

E
kP9czk

2

kPczk
2

 !
¼ 1¹ E(rs) < as

¹
2

K ¹ m¹ 1: (18)

The squared output errorkP(m)
c zk2 for m hidden units added

one by one can thus be estimated as follows:

E
kP(m)

c zk2

kP(0)
c zk2

 !
< am

∏m

j ¼ 1
s

¹
2

K ¹ j ¹ 1 < s
¹

2m
K : (19)

Therefore, the number of required hidden units is estimated
approximately as

m<
Klog(kP(0)

c zk=C)
logs

, (20)

whereC is the criterion of the allowable output error.

4. Computer simulation and discussion

4.1. Largest value ofD

The actual value ofE(r s) can be examined experimentally
by obtaining the largest value of pseudo-random numbers
from the beta distribution, which can be generated by the
method given by Atkinson (1979). Fig. 1 shows the distri-
bution of 100 samples ofr s for each value ofK ¹ m ands.
This shows that the theoretical estimation, Eq. (17), can be
used as an approximation. The theoretical value is slightly
less than the experimental value; this outcome agrees with
the inequality in Eq. (16). (Based on an empirical correc-
tion, it was found that a better approximation can be
obtained by changinga to (a þ 2)/3. This correction, how-
ever, has no intrinsic meaning and serves only to provide a
better fit with the experimental data.)
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The theoretical estimation is no more than an approxima-
tion. The theory in Section 3 is developed on the basis of the
supposition thatPch/kPchk is uniformly distributed on the
hypersphere. In practice, however, the distribution ofh not
only depends on the distribution of input vectors and
weights, but also varies with the nonlinear functionf of
the hidden unit. Besides, the projection ofh onto L'[H]
makes the situation complex. Even if the distribution ofh
is determined exactly, the distribution ofPch/kPchk is loca-
lized in some cases, and dispersed in other cases, depending
on Pc. Since the distribution ofPch/kPchk cannot be deter-
mined exactly, it is natural for the first step of approximation
to assume thatPch/kPchk is, theoretically, uniformly distrib-
uted on the hyperspherical surface. However, it is important
to examine whether this supposition is good or not for more
practical conditions.

For most of neural network models, the output value is
restricted to a certain range, for example, [¹ 1, 1] or (0, 1),
and so the output vectorh, whoseK components have out-
put values such as these, is restricted in theK-dimensional
hypercube. Ifh is uniformly distributed in the hypercube,
the distribution ofPch/kPchk is probably non-uniform on the
(K ¹ m)-dimensional hypersphere inL'[H] and has an
anisotropy due to the projection of the hypercube. It is
worthwhile examining the largest values ofD by computer
simulation for such a non-uniform distribution ofPch/kPchk.
For example, suppose thatPch is uniformly distributed in
the (K ¹ m)-dimensional hypercube (although such a case
rarely occurs in practice). Fig. 2 shows the distribution of
100 samples ofr s for the non-uniform distribution ofPch/
kPchk in comparison with that for the uniform distribution of
Pch/kPchk shown in Fig. 1. Eachr s is obtained as the largest

value inssamples of (u, v)2 for one random sample ofu and
s random samples ofv. The (K ¹ m)-dimensional unit vec-
tors u andv are produced byy/kyk wherey is a (K ¹ m)-
dimensional vector whose componentsy i (i ¼ 1, …, K ¹ m)
are pseudo-random numbers uniformly distributed in the
range [ ¹ 1, 1]. In addition, Fig. 2 also shows the case
that u andv are random binary vectors such thaty i ¼ { ¹

1, 1}.
The results of the computer simulation show that the

distribution of r s for the non-uniform distribution of
Pch/kPchk is almost equal to that for the uniform distribu-
tion. The reason can be explained as follows. The distri-
bution density ofy/kyk is high in the direction of the
corners of the hypercube and very low in the direction
of the coordinate axes. There are 2K¹m highest-density
points that are symmetrically and uniformly distributed
on the hyperspherical surface. The frequency of conden-
sation and rarefaction is 2K¹m. When the number of sam-
ples is much less than 2K¹m, the distribution of the
samples is too sparse to reflect the anisotropy, and can
be regarded as approximately uniform on the
hyperspherical surface.

Using this fact, under such a condition ass! 2K¹m, there
is another approach to approximation of the largest value
of D based on the conventional theoretical statistics of
extremes in the normal distribution (Appendix C). The
distribution of (u, v) for random binary vectors can be
approximated by a kind of the binomial distribution and
by the normal distribution after all. According to the
conventional theory (Gumbel, 1958), the most probable
largest value (that is not the expected largest value) can be

Fig. 1. Estimation of the largest valuer s with respect tos andK ¹ m. The
experimental distribution of 100 values ofr s for each condition is obtained
by computer simulation in which the values ofr are generated as pseudo-
random numbers from the beta distribution. Theoretical estimation is based
on the approximation shown in Eq. (17).

Fig. 2. The distribution of the largest values ofr ¼ (u, v)2 in comparison
with r s shown in Fig. 1. The (K ¹ m)-dimensional unit vectorsu andv are
produced byy/kyk wherey is a (K ¹ m)-dimensional vector whose compo-
nents are pseudo-random numbers uniformly distributed in [-1, 1] for case
(A) and pseudo-random binary numbers of {¹ 1, 1} for case (B).
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approximated by

2log(s=
������
2p

p
)

K ¹ m
: (21)

This approximation also fits the experimental data well, but
it should not be used for an larger value. In an extreme case,
the approximate value of Eq. (21) can be more than 1, which
violates the upper limit such that (u, v)2 # 1.

4.2. Actual decrease of output error

According to Eq. (19), the output error decreases with the
number of hidden units by an almost constant rate, ifs is
constant. Such cases are often observed in practice, even if
the distribution ofPch/kPchk is not uniform and does not satisfy
the supposition used in the theory. For example, Fig. 3 displays
curves showing the decreasing values of the squared output
error obtained by computer simulation. The network is con-
structed by adding hidden units one by one. Each hidden unit is
the best selected out of 64 candidates. The vectorh of each
candidate unit is made to maximizeD by modifying its weight
vector w with a multi-start gradient ascent (hillclimbing)
method. Thus, eachh is the best selected out of 64 candidates
that each possess the local maximum ofD obtained through
100 steps of the gradient ascent method. The input and desired
output data are given as random values, which means the input
data space is irreducible. As shown in Eqs. (2) and (3), two
types of neural networks—layered networks and cascaded net-
works—are examined, and two types of hidden unit activation
functions—tanh and sin—are used.

The output error decreases exponentially under any con-
ditions. This means that the rate of decrease per hidden unit
is almost constant. Under detailed observation, however, the
rate of decrease in fact increases with the number of inputs
and the number of hidden units added, and varies with the
types of network and the nonlinear function. The rate of
decrease of the cascaded network is larger than that of the
layered network, and that of the sin-unit is larger than that of
the tanh-unit.

The actual rate of decrease of the output error is closely
related to the parameters. Based on Eq. (19), the value ofs
can be estimated inversely from the actual rate of decrease
per hidden unit obtained from the results of the computer
simulation, as follows:

s<
kP(0)

c zk
kP(m)

c zk

� �K
m
: (22)

In Eq. (22), the estimated value ofs represents how many
steps might be required for determiningh for one hidden
unit if random search were used instead. According to the
computer simulation shown in Fig. 3, for example,s is
estimated at about 107, which means that it might take 107

steps to search for eachh if the random search method were

Fig. 3. Decreasing curves of the squared output error with the number of
hidden units. Two types of networks—layered network and cascaded net-
work—and two types of hidden unit activation functions—tanh and sin—
are examined.

Fig. 4. Dependence of the average of max{D} uponsandm. The dimension
of the subspace ofPch is set constant asK ¹ m¼ 128. Two types of hidden
unit activation functions—tanh and sin—are compared with a random
function.
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used for determiningh in order to construct a similarly-
sized network. In the computer simulation using the gradi-
ent ascent method with multi-start, however, the total num-
ber of learning steps for determining one hidden unit is 6400
(64 trials of a 100-step search from various random starting
points). The cost of one step for the gradient ascent method
is only a few times greater than that for the random search.
This implies thath obtained by searching only 104 points by
gradient search is equivalent to that obtained by searching
107 points by random search. This result shows that the
gradient ascent method is much more efficient for searching
than a simple random search in this case. Thus, the evalua-
tion of sbased on Eq. (22) shows the efficiency of the search
in an actual learning process for determiningh for one
hidden unit.

The rate of decrease in output error depends on how
appropriately the vectorh is determined. Hence the rate
depends not only upon the efficiency of the search but
also upon the distribution ofh, i.e. the diversity ofh pro-
duced by the nonlinear functionf. To clarify in detail, Fig. 4
shows the actual dependence ofD onsandm, whereK ¹ m
is constant for variousm. Two types of nonlinear functions
for f—tanh and sin—are compared with a random function
as a standard of comparison, where the random function
produces a random vector forh. To investigate the perfor-
mance ofh ¼ f(bXw h) from a statistical standpoint,s ran-
dom vectors ofwh are given for each of 100 random
examples ofz and X. In this case, it is assumed that all
inputs are directly connected with the output unit, i.e.H
¼ X and m ¼ n. The plotted points indicate〈r s〉, that is,
〈max{D} 〉 for kPczk ¼ 1, where〈〉 denotes the average of
100 values of max{D}, and max{D} is the largest value of
D in thessamples ofD(h). The main characteristic is that,
max{D} . increases withmand saturates at the same level
as the random function. This implies that the diversity of the
nonlinear mappingf of X to h increases with the dimension
of the column space ofX (the input space), and so the
number of hidden units required depends indirectly on the
number of inputs to each hidden unit (althoughn is not
explicitly notated in Eq. (20)). This is the reason that the
rate of decrease of the output error gets larger with the
number of hidden units for the cascaded network, but the
diversity and nonlinearity of the random function must be
highest, and so〈max{D} 〉 saturates finally at the level of the
random function, as shown in Fig. 4. This effect can easily
be seen for the tanh units that have weak nonlinearity.

The dependence of the diversity ofh upon the nonlinear-
ity of f is also shown in Fig. 3. The rate of decrease of the sin
unit is larger than that of the tanh unit. This is because the
nonlinearity of the sin function is higher than that of the tanh
function. The effect of such a difference between sin and
tanh is clearly seen in Fig. 4(a) and (b). In this case, the
nonlinearity off is indicated by the coefficientb, which is
used as sin(byh) or tanh(byh) whereyh ¼ Xwh; becauseb has
a close relation with the number of folds (or bend) in the
curve of the nonlinear function in the unit range ofyh. For

the sin unit,〈max{D} 〉 for smallm increases withb up to the
level of the random function. By comparison, the tanh unit
saturates at a level much lower than that of the random
function. These facts can be explained as follows. Ifb is
small, both functions are approximately linear for smally.
As b becomes large, the number of folds of the sin function
increases infinitely, but that of the tanh function does not
increases by more than two. The higher the nonlinearity is,
the wider is the range of directions thath can cover in its
vector space, and therefore the better is theh that can be
selected. In that sense, the sin function is better than the tanh
function for constructing as small a network as possible. It
does have a drawback, however, in that it is less robust; this
results in high noise sensitivity.

The parameters obtained experimentally can be used for
evaluating the efficiency of learning, if the above-men-
tioned effect of the nonlinearity off is taken into account.
Onces is evaluated for various sets of conditions, the num-
ber of hidden units can be roughly estimated by usings for a
similar set of conditions. There are two points of basic
importance in the use ofs. One is that the optimization
problem is simply formulated by the maximization of the
inner product of unit vectors that have restrictions. The other
is that s means the number of steps required for random
search and it can be used as a standard of comparison
with respect to the efficiency of search. Although the non-
linearity of f exerts influence upon the distribution off(r),
this effect can be regarded as negligible in practice when
dimensions of vector spaces such asn, K and m are very
large in comparison with logs. Under such conditions, it is
supposed thats random points off(X) are projected on
L'[X] with sparse and approximately uniform distribution.
Conversely, it can be said that evaluation ofs under other
conditions shows the effect of the nonlinearity off on pro-
ducing various output vectors of the hidden unit.

5. Summary

The number of required hidden units is statistically esti-
mated for feedforward neural networks constructed by add-
ing hidden units one by one. This number is approximately
proportional to the number of learning data sets, the loga-
rithm of the decreasing rate of the output error, and the
inverse of logs. This parameters is introduced, for theore-
tical estimation, as the total number of candidates that are
randomly searched for the optimum hidden unit. This for-
mulation can be applied for evaluating an actual learning
method. In such a case,s can be considered as a parameter
that represents the efficiency of the search for better hidden
units and is equivalent to the number of steps required for
determining one hidden unit by random search. The com-
puter simulation shows that the output error decreases expo-
nentially with the number of hidden units; this agrees with
the theoretical results. Although the decrease in the output
error depends not only upon the number of inputs but also
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upon the nonlinearity of hidden units, these effects are
negligible when the dimension of the vector space is
very large.
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Appendix A The cumulative distribution function F(r)

F(r) is expressed by

F(r) ¼ P[r $ v(u,v)2] (A1)

where P[e] denotes the probability of evente. The vec-
tors u and v are supposed to be uniformly distributed on
the surface of the (K ¹ m)-dimensional hypersphere. On
this supposition, we may putu ¼ [1 0 … 0] only if v is
uniformly distributed on the hyperspherical surface,
which does not change the distribution ofr. Thus, F(r)
is represented by

F(r) ¼ P[r $ v2
1l

∑K ¹ m

i ¼ 1
v2

i ¼ 1] ¼ P[Îr $ v1 $ ¹ Îrl
∑K ¹ m

i ¼ 1
v2

i ¼ 1]:

(A2)

This probability can be estimated by using a functionx(v;
A), which is equal to 1 forv [ A and 0 for v Ó A, as
follows:

whereBr is the incomplete beta function andc is a normal-
ization constant equal to the inverse of the beta function
B(1/2, (K ¹ m ¹ 1)/2).

Appendix B The expected largest value ofE(r s)

E(r s) is expressed by

E(rs) ¼

∫1
0

rJs(r) dr ¼ 1¹

∫1
0

Fs(r) dr : (A4)

F(r) can be rewritten as

F(r) ¼ 1¹ c
∫1¹ r

0

(1¹ t)¹ 1=2tðk¹ m¹ 3Þ=2 dt: (A5)

For approximation, let us introduce the following function,

G(r) ¼ 1¹ c
∫1¹ r

0

tðk¹ m¹ 3Þ=2 dt

¼ 1¹
2c

k¹ m¹ 1
(1¹ r)ðk¹ m¹ 1Þ=2, ðA6Þ

which satisfiesF(r) , G(r) and thereforeFsðrÞ , GsðrÞ. Let

F(r) ¼ lim
«→0

∫Îr

¹ Îr

dv1

∫1
¹ 1

…
∫1
¹ 1

x({ vi}; {1 ¹ v2
1 $

∑K ¹ m

i ¼ 2
v2

i . 1¹ v2
1 ¹ «} ) dv2

…dvk

∫1
¹ 1

::

∫1
¹ 1

x({ vi}; {1 $
∑K ¹ m

i ¼ 1
v2

i . 1¹ «} ) dv1
…dvk

¼ lim
«→0

∫Îr

¹ Îr

b (1¹ v2
1)ðK ¹ m¹ 1Þ=2 ¹ (1¹ v2

1 ¹ «)ðK ¹ m¹ 1Þ=2� �
dv1

a 1¹ (1¹ «)ðK ¹ mÞ=2
� �

¼ lim
«→0

c
∫Îr

¹ Îr

(1¹ v2
1)ðK ¹ m¹ 3Þ=2 þ O(«)

� �
dv1

¼ c
∫Îr

¹ Îr

(1¹ v2
1)ðK ¹ m¹ 3Þ=2 dv1

¼ c
∫r
0

t ¹ 1=2(1¹ t)ðK ¹ m¹ 3Þ=2 dt

¼ cBr
1
2
,

K ¹ m¹ 1
2

� �
, ðA3Þ
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G¹ 1
s be the inverse ofq ¼ Gs(r) as follows:

r ¼ G¹ 1
s (q) ¼ 1

K ¹ m¹ 1
2c

1¹ q1=sÿ �� �2=ðK ¹ m¹ 1Þ

: (A7)

Puttingq0 ¼ Gs(0), E(r s) can be expressed by the following
inequality:

E(rs) ¼ 1¹

∫1
0

Fs(r) dr . 1¹

∫1
0

Gs(r) dr ¼

∫1
q0

G¹ 1
s (q) dq:

(A8)

Using an inequality 1¹ q1=s , ¹ ð1=sÞ ln q for q [ [q0, 1],
we have

E(rs) . 1¹
K ¹ m¹ 1

2c

� �2=ðK ¹ m¹ 1Þ

3
∫1

q0

¹
1
s
lnq

� �2=ðK ¹ m¹ 1Þ

dq¼ 1

¹
K ¹ m¹ 1

2cs

� �2=ðK ¹ m¹ 1Þ

3
∫0

¹ lnq0

¹ e¹ tt2=ðK ¹ m¹ 1Þ dt ¼ 1

¹
K ¹ m¹ 1

2cs

� �2=ðK ¹ m¹ 1Þ

3 g
K ¹ m¹ 1
K ¹ m¹ 1

, ¹ lnq0

� �
. 1

¹
K ¹ m¹ 1

2cs

� �2=ðK ¹ m¹ 1Þ

G
K ¹ m¹ 1
K ¹ m¹ 1

� �
¼ 1¹ as¹ 2=ðK ¹ m¹ 1Þ, ðA9Þ

whereg is the incomplete gamma function,G is the gamma
function, and

a ¼
K ¹ m¹ 1

2c

� �2=ðK ¹ m¹ 1Þ

G
K ¹ m¹ 1
K ¹ m¹ 1

� �
: (A10)

The coefficienta is approximately equal to 1 forK ¹ mq 1.
The right and left sides of the inequality Eq. (A9) are
asymptotically equal ass → `.

Appendix C The most probable largest value in the
normal distribution

Suppose thatu andv areK-dimensional random binary
vectors represented byy/kyk wherey i ¼ { ¹ 1, 1} (i ¼ 1, …,
K). The distribution of (u, v) is represented by a kind of the
binomial distribution. If K is large, the distribution is

approximated by the normal distributionN(0, 1/K). The
largest value of (u, v)2 is considered as the largest value
in the sample ofx2 distribution with 1 degree of freedom,
but it is too difficult to simply express the expected largest
value. For simple approximation, it is better to represent as
the square of the largest value (u, v) in the normal distribu-
tion. According to the conventional theory (Gumbel, 1958),
the characteristic largest valuexs in s samples is defined
by F(xs) ¼ 1 ¹ 1/s where F(x) is the distribution func-
tion. For the normal distributionN(0, 1/K), xs can be
approximated as��������������������������������������������������������������

2logs
K

1¹
(log4p þ loglogs)

2logs

� �s
: (A11)

As for the most probable largest value,us, it can be approxi-
mated as��������������������������

2log(s=
������
2p

p
)

K

s
: (A12)

Therefore, using the later approximation, the largest value
of (u, v)2 for K ¹ m dimensional vectorsu and v can be
approximated by

2log(s=
������
2p

p
)

K ¹ m
: (A13)
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