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Abstract

The backpropagation (BP) algorithm for training feedforward neural networks has proven robust even for difficult problems. However, its
high performance results are attained at the expense of a long training time to adjust the network parameters, which can be discouraging in
many real-world applications. Even on relatively simple problems, standard BP often requires a lengthy training process in which the
complete set of training examples is processed hundreds or thousands of times. In this paper, a universal acceleration technique for the BP
algorithm based on extrapolation of each individual interconnection weight is presented. This extrapolation procedure is easy to implement
and is activated only a few times in between iterations of the conventional BP algorithm. This procedure, unlike earlier acceleration
procedures, minimally alters the computational structure of the BP algorithm. The viability of this new approach is demonstrated on
three examples. The results suggest that it leads to significant savings in computation time of the standard BP algorithm. Moreover, the
solution computed by the proposed approach is always located in close proximity to the one obtained by the conventional BP procedure.
Hence, the proposed method provides a real acceleration of the BP algorithm without degrading the usefulness of its solutions. The
performance of the new method is also compared with that of the conjugate gradient algorithm, which is an improved and faster version
of the BP algorithm.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The capability of multilayer perceptrons for approximat-
ing continuous functions with arbitrary accuracy has been
demonstrated through several results (Chen, Chen & Liu,
1995; Mhaskar & Micchelli, 1992). The advent of the back-
propagation (BP) algorithm (Rumelhart & McClelland,
1986)—an adaptation of the steepest descent method
(Bazaraa, Sherali & Shetty, 1993)—opened avenues for
the application of multilayer neural networks for many
problems of practical interest (see, e.g. Salehi, Lacroix &
Wade, 1998; Sejnowski & Rosenberg, 1987). In this algo-
rithm, an initial weight (or parameter) vectorw0 of a feed-
forward neural network is iteratively adapted according to
the recursion

wk11 � wk 1 hdk �1�
to find an optimal weight vector. This adaptation is
performed by presenting to the network sequentially a set
pairs of input and target vectors. The positive constant ofh ,
which is selected by the user, is called thelearning rate. The

direction vectordk is the negative of the gradient of the
output error functionE

dk � 27E�wk�: �2�
The standard learning scheme for the BP algorithm in which
the weights of the network are updated immediately after
the presentation of each pair of input and target patterns is
called on-line learning. An alternative training method
treats all the pairs of patterns in the training set as a batch,
and it updates the weights only after all training pairs in the
batch have been processed, although this can result in slow
convergence if the set of training patterns is large. This
approach is referred to asbatch learning. In either case,
the vectorwk contains the weights computed during the
kth iteration, and the output error functionE is a multi-
variate function of the weights in the network

E�wk� �
Ep�wk� for on-line learning;X

p

Ep�wk� for batch learning;

8><>:
whereEp�wk� denotes the half-sum-of-squares error func-
tion of the network outputs for a certain input patternp.

The objective of supervised learning (or training) is to
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select the set of weights that minimizesE, the deviation
between the network outputs and the target patterns, over
the complete set of training pairs. Geometrically, the func-
tion E specifies an error surface defined over the weight
space. Every weight vectorwk is viewed as a point in the
weight space. In this sense, at each iteration the weight
update is performed in the direction that yields locally a
maximal error reduction. Every cycle in which each one

of the training patterns is presented once to the neural
network is called an epoch. The learning process continues
until E is less than a preset value at the end of an epoch.

The obvious risk of finding only a local minimum for the
weight vector or experiencing no convergence is often
concealed by the drawback that a large number of iterations
is required even for small sized networks. The rate of
convergence of the BP algorithm for a practical example
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Nomenclature

a, b, c the parameters of a model function
dk the direction vector for updating weights in the�k 1 1�th iteration
e Euler’s number
E the multivariate half-sum-of-squares error function (Ep is the error function associated with a single input patternp)
f a univariate model function
gk the gradient used in the�k 1 1�th iteration
H the relative entropy error measure
i, j variable indices in the range from 1 ton
I, J index sets
k a variable iteration or epoch number
K a fixed epoch number
l the index of an extrapolation
L an upper limit for the learning rate
log the natural logarithm
M a certain number of epochs, which is also written asMl to indicateM at thelth extrapolation
n the dimension of the weight space
N the number of epochs considered for a prediction, which is also written asNl

N the set of natural numbers
N0 the set of natural numbers together with 0
O a functionF : Rm! R is said to have the propertyF � O�G� asG! 0 for a functionG : Rm! R if there

exist positive constantsD ande such thatuF�x1; x2;…; xm�u # D·G�x1; x2;…; xm� wheneverG�x1; x2;…; xm� # e
pi a quadratic polynomial
p a single input pattern
R the set of real numbers
Rn the weight space of real-valued column vectors of lengthn
R1 the set of positive real numbers
sgn a function which returns 1 for positive arguments,21 for negative arguments and 0 for argument 0
ta an element of a special sequencet of real numbers
T the transposition symbol used for vectors
v, w, ~w vectors of the weight space; a weight vectorw at epochk is denoted aswk and the optimal weight vector bywp

wk an individual weight at epochk
wi , wi

k; ~wi
; wi

p the ith component of a vectorw, wk, ~w or wp, respectively
x an argument of a univariate function
ya an element of a special sequencey of real numbers
bk the momentum rate at iterationk 1 2
h the learning rate;hk denotes a dynamic learning rate at iterationk 1 1
j a real-valued variableP

the summation sign
xI the characteristic function of a setI
; the universal quantifier
2 the partial derivative symbol
i·i a commonly used norm of a vector such asi·i∞, which stands for the value of the maximum absolute value of all

vector components
7E the gradient of a functionE



can be expected to be asymptotically linear (Tesauro, He &
Ahmad, 1989). This slow rate of convergence is a detriment
especially in cases where a network has to continually adapt
its parameters in the face of perpetually changing conditions
in the application. Reducing the training time while main-
taining the framework of BP learning with its simplicity and
success as reported in the literature is the aim of the current
paper.

This work is structured as follows. In Section 2 earlier
techniques modifying the update rules (1) and (2) for accel-
erating the BP algorithm are reported, and weight extrapo-
lation methods for the same purpose are motivated. Section
3 describes a novel acceleration technique using weight
extrapolation. This method, abbreviated as BPWE (back-
propagation by weight extrapolation), is shown to reduce
the required number of iterations for several problems at
the expense of only a few extrapolation steps embedded in
the standard BP algorithm. We use a numerical function
fitting technique to determine the parameters of extrapola-
tion functions and then use these functions to project
weights into the future. In Section 4 the conjugate gradient
algorithm, a popular alternative training procedure for
multilayer perceptrons is analyzed. The performance of
BPWE is evaluated in Section 5 by applying the method
to three different examples. We compare these results with
those given by the standard BP as well as the conjugate
gradient algorithm. Although the paper focuses its applica-
tions on multilayer perceptrons and the BP algorithm, the
BPWE method can be readily applied to improve any
numerical (optimization) procedure, in which real numbers
or vectors of real numbers gradually approach a final solu-
tion—all it needs is the sequence (wk) of weight vectors.
One of the most famous examples of this kind is Newton’s
procedure for finding zeros of differentiable functions.
Accordingly, the robustness of BPWE has also been studied
in Section 5 by applying the algorithm to example problems
using a modified error function as well as different activa-
tion functions in both the hidden layer and the output node
of the neural networks. The conclusions are reported in
Section 6.

2. Possibilities for accelerating backpropagation

Several researchers have investigated different modifica-
tions to speed up the convergence of the BP algorithm:

1. Dynamical adaptation of the learning rate:
1. Line search in the gradient direction, i.e. at each itera-

tion k 1 1 choosingh � hk such that it gives the smal-
lest nonnegative local minimum of the function
E�wk 1 hdk� (Dahl, 1987; Hush & Salas, 1988;
Jones, Lustig & Kornhauser, 1990; Roy, 1993).

2. Dynamically adjusting the learning rate, either
commonly for all weights (Cater, 1987; Codrington
& Mohandes, 1994; Mohandes, Codrington &
Gelfand, 1994; Nachtsheim, 1994; Salomon & van

Hemmen, 1996; Weir, 1991) or separately for each
weight (Jacobs, 1988; Pirez & Sarkar, 1993; Silva &
Almeida, 1990).

2. Dynamical adaptation of the weight adjustments
expressed by the vectorsdk:
1. Determiningdk for k $ 1 by a relation of the form

dk � 27E�wk�1 bk21dk21; i.e. by adding a
“momentum term” of the formbk21dk21 to the current
weight adjustment vectordk (Rumelhart & McClel-
land, 1986; Yu, Loh & Miller, 1993). The nonnegative
parametersbk21 are calledmomentum rates, which
determine the effect of past weight changes on the
current direction of movement in the weight space.
This tends to magnify descent in steady downhill
directions, while having a “stabilizing” effect for
rapidly changing directions.

2. Other methods for the determination ofdk which
include only first partial derivatives of the error func-
tion E (Fahlman, 1989; Kanda, Fujita & Ae, 1994).

3. Alternating computation of several iterations of the BP
algorithm and the extrapolation of the computed
sequence (wk) of weight vectors (Cho & Kim, 1990;
Dewan & Sontag, 1990; Yamada, Pecharanin, Taguchi,
Iijima & Sone, 1997). The special feature of these addi-
tional iterations is that updates of a weight vectorwk are
computed without using information about the error
function E. This property holds true for the method
presented in the current paper also.

Many other dramatical alterations of the BP algo-
rithm, some of which are based on combinations of the
items listed above, have been proposed. However, some
of these approaches require complex and costly calcula-
tions at each iteration, which offset their faster rate of
convergence.

A widespread class of acceleration methods which are
considerably more complex are the second-order methods.
They are divided into the Newton method and the quasi-
Newton methods. The idea behind the Newton method is
that during each iteration the error functionE is approxi-
mated locally by a second-degree Taylor polynomial, which
is minimized subsequently. This minimization requires the
knowledge of a Hessian of the error functionE and the
solution of a system of linear equations, which is computa-
tionally prohibitive (Battiti, 1992; Bishop, 1995). To over-
come this situation, quasi-Newton methods (Dennis &
Schnabel, 1983; Robitaille, Marcos, Veillette & Payre,
1996) are preferred, which compute approximations of the
Hessian or its inverse in an iterative process. Both kinds of
second-order methods can lead to considerable storage
requirements.

Another disadvantage of most acceleration techniques is
that they must often be “tuned” to fit the particular
application. One of the most popular alternatives to the
BP scheme, the conjugate gradient algorithm, is based on
the items 1.1 and 2.1 and is discussed in Section 4. A
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systematic comparison of some of the acceleration methods
for BP was done by Pfister and Rojas (1993).

In this work, we use the idea described in item 3.
However, instead of calculating weight extrapolations
every now and then during the BP algorithm, our method
first watches if the weights change smoothly during a time
interval of the training process, and only then are the
proposed extrapolations computed. Furthermore, our
model function differs considerably from the existing
approaches.

3. Weight extrapolation strategy

In contrast to minimization techniques such as the conju-
gate gradient algorithm that rely on second-order partial
derivatives of the error functionE, the BP algorithm is
strikingly slow, particularly when approaching the final
optimum. The improvement of this slow behavior at an
advanced phase of training is the goal of this section.

Consider that in a given learning process a certain compo-
nent of the gradient7E is either positive and monotonically
decreasing or negative and monotonically increasing for
several iterations. This fact suggests that the error surface
has a smooth variation along the respective axis, and there-
fore extrapolations for those particular components should
be possible. For performing an extrapolation, the weights
are recorded at the end of each epoch. By examining in the
BP learning the convergence behavior of each network
weight w individually (see Dewan & Sontag, 1990), it
seems adequate to use extrapolation by a function of the
general form

f �x� � a 2 be2cx �3�
with b ± 0; c . 0 and an arbitrary constanta. The argu-
mentx represents an epoch number, i.e. for epoch numberk

f �k� � wk: �4�
We use this observation as the basis for the speed-up tech-
nique proposed in this paper. With this technique, the
network weights for a future epoch are predicted by weight
extrapolation. This prediction relies onM preceding epochs
during which every individual component behaves accord-
ing to the extrapolation functionf. This behavior, which
triggers our extrapolation procedure, is summarized by the
following definition.

Definition 1. Let M be a specified number of epochs. Then
a sequence (wk) of weight vectors is called quasi-exponen-
tially convergent for the precedingM epochs at a certain
epochK $ M if

1. the sequence �wK2M11;wK2M12;…;wK� of every
individual component ofwk is strictly monotonically
either increasing or decreasing, and

2. the distances between consecutive elements in every such

sequence are strictly monotonically decreasing, i.e.

uwk 2 wk11u . uwk11 2 wk12u

for k � K 2 M 1 1;K 2 M 1 2;…;K 2 2:

It is easy to show that a functionf as defined in Eq. (3)
leads, for all positive integersK and M with K $ M; to a
sequence�wK2M11;wK2M12;…;wK� that satisfies condi-
tions 1 and 2 of Definition 1. In fact, the stated sequence
is strictly monotonically increasing forb . 0 and strictly
monotonically decreasing forb , 0:

Condition 1 of Definition 1 seems to be very restrictive
since it demands that all individual weights have a mono-
tonic behavior simultaneously. However, one of the main
reasons for the slow convergence of the BP algorithm can be
attributed to the fact that in general the error surfaceE
contains an extremely flat “valley” in a vicinity (of small
radius) of the final weight vector (Balakrishnan & Honavar,
1992; Parekh, Balakrishnan & Honavar, 1993). In this
region, the decrease in the error function during any itera-
tion is very small compared to the learning rateh . It will
become clear from the proof of Proposition 2 that under
these circumstances all individual weight sequences are
monotonic. Nevertheless, an extension of the presented
BWPE algorithm for nonmonotonic weight behavior will
be addressed in Section 3.4.

3.1. Selection of values for M and N

At the beginning of a training process (whenK is small),
the convergence of a weight vectorwK can substantially be
improved with a coarse extrapolation using only a short
preceding sequence (i.e.M is small) of the form
�wK2M11;wK2M12;…;wK�. On the other hand, ifwk is posi-
tioned close to a local minimum at a more advanced phase
of training, a very accurate extrapolation of�wK� using a
lengthy sequence of previous weight vectors will be neces-
sary because of the danger of “overshooting” the goal.
Therefore, we decided to double the value ofM each time
an extrapolation has been performed. With the starting value
M1 � 8 for the first extrapolation, the sizeM at the lth
extrapolation is in fact given by

M � Ml � 2l12
: �5�

The weights are predicted from the pastM weight values
only every now and then during the iterative training
process.

At the lth extrapolation, the method predicts the result of
training for a specified number of future epochsNl by
processing the information of the weight vectors computed
during the precedingMl epochs. The extrapolated weights
are used to “jump” overNl epochs of the standard BP
algorithm, so that significant computational savings are
expected. The danger of overshooting a local minimum is
a reason that it is not favorable to predict the final optimal
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weight vectorw∞. Instead we fixedNl as

N � Nl � 70Ml � 35× 2l13
:

With this choice, where the factor 70 was determined
experimentally, the numberNl of future epochs considered
for the prediction is larger for largerMl , because more
accurate predictions are expected from the larger number
of previous weight vectors.

3.2. Extrapolation algorithm

Now we consider a sequence (wk) that is quasi-
exponentially convergent for the precedingM � M1

epochs at a certain epochK according to Definition 1.
We select an arbitrary component of the weight vector
and consider the corresponding sequence�wK2M11;

wK2M12;…;wK� for illustrating extrapolation calculations.
The extrapolation routine is the same for every other
component. By the properties 1 and 2 of Definition 1, the
sequence�wK2M11;wK2M12;…;wK� follows the exponen-
tial trend of the functionf in the sense of Eq. (4), which
means that

wk < a 2 be2ck �6�
for everyk � K 2 M 1 1;K 2 M 1 2;…;K with unknown
parametersa, b andc that have to be determined. It follows
that the successive differences of these weights satisfy the
relation

uwk 2 wk11u � ubu·ue2ck 2 e2c�k11�u � ubue2c�k11��ec 2 1�;
�7�

becausec is positive. Taking the logarithm of both sides
yields that

loguwk 2 wk11u � d 2 c�k 1 1� �8�
with the constant d U logubu 1 log�ec 2 1� for
k � K 2 M 1 1;K 2 M 1 2;…;K 2 1. The parametersc
and d can be fit via linear regression. Given these
parameters, we findb through

ubu � ed�ec 2 1�21
: �9�

According to the remark following Definition 1, the
constantb is positive for a strictly monotonically increasing
sequence�wK2M11;wK2M12;…;wK� and negative if this
sequence is strictly monotonically decreasing. Motivated
by the transformation

a < wk 1 be2ck

of relation (6) we can calculatea as the arithmetic mean

a� 1
M
�

XK
k�K 2 M 1 1

wk 1 b
XK

k�K 2 M 1 1

e2ck�

� 1
M

XK
k�K 2 M 1 1

wk 1 be2c�K2M11� 1 2 e2Mc

1 2 e2c

 !
: �10�

The completely specified functionf is used to predict a
future weight afterN � N1 additional epochs, and we set the
weight wK11 equal to this prediction,

wK11 � f �K 1 N�: �11�

After every single projected weight valuewK11 is calcu-
lated, the weight vectorwK11 is fed back into the BP algo-
rithm. The values ofM andN are updated toM � M2 and
N � N2. Thereupon, the standard BP iterations continue
until the next quasi-exponentially convergent sequence of
length M2 is found, and so on. The iterative BP training
process is interrupted for an extrapolation step very spora-
dically, namely when the conditions for extrapolation are
met. This method is referred to as BPWE during the rest of
this paper.

The main part of every extrapolation consists of the
approximate solution of theM 2 1 equations specified by
Eq. (8) for every single weight. Afterwards, the parameters
of the corresponding functions of the formf �x� � a 2 be2cx

are determined through Eqs. (9) and (10), and the extrapola-
tion of the weights is performed as defined in relation (11).

3.3. An alternative parameter estimation

It should be noted that a similar performance of the
proposed method BPWE is expected, if one uses the follow-
ing method instead of the linear regression approach in the
calculation of the parametersb andc. It follows from Eq. (7)
that

uwk 2 wk11u
uwk11 2 wk12u

� e2c�k11�

e2c�k12� � ec
;

for k � K 2 M 1 1;K 2 M 1 2;…;K 2 2; i.e. the
parametersb andc can be estimated with

c� 1
M 22

XK 2 2

k�K 2 M 1 1

�loguwk 2 wk11u 2 loguwk11 2 wk12u�;

ubu � 1
�M 2 1��ec 2 1�

XK 2 1

k�K 2 M 1 1

ec�k11�uwk 2 wk11u:

3.4. A simple theoretical example

The next proposition demonstrates the effect of our
proposed extrapolation scheme on the BP algorithm (for
batch learning) on the basis of a class of error functions,
which are so simple that they allow one to demonstrate the
behavior of the BP and BPWE algorithms near the final
weight vector only coarsely. These error functions can be
obtained by using the first three terms of the Taylor series
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approximation

E�w� � E� ~w�1 �7E� ~w��T�w 2 ~w�1
1
2
�w 2 ~w�TD�w 2 ~w�

1
1
2

Xn
i�1

Xn
j�1
j±i

22E
2wi2wj � ~w��wi 2 ~wi��wj 2 ~wj�1 …

�12�
of more general functionsE : Rn ! R at an arbitrary point
~w [ Rn

: In relation (12) we have w �
�w1

;w2
;…;wn�T; ~w � � ~w1

; ~w2
;…; ~wn�T and D � �dij � is an

n × n-diagonal matrix with diagonal elementsdii �
22E=2�wi�2:

Proposition 2. Assume that the function E: Rn ! R has
the form

E�w� � p1�w1�1 p2�w2�1 …1 pn�wn�1 C; �13�
where w � �w1

;w2
;…;wn�; C [ R; and every pi : R!

R �i � 1; 2;…;n� is a quadratic polynomial of the form

pi�x� � Aix
2 1 Bix 1 Ci

with Ai ; Bi ; Ci [ R: Then this function E has an isolated
local minimum if and only if every Ai is positive. In this case,
which is assumed during the rest of this proposition, there
exists in fact only one local minimumwp which is also the
global minimum of E.

The BP algorithm with batch learning started at a weight
vectorw0 ± wp converges if and only if the learning rateh
satisfies the inequality

h , L; �14�
where LU �maxi[I Ai�21. The set I is defined by IU { i [
{1 ;2;…; n} : wi

0 ± wi
p} ; where wi

0 and wi
p are the ith

components ofw0 and wp, respectively. This also holds
true for BPWE. Moreover, for the case whereinequality
(14) is satisfied, BP and BPWE have the following conver-
gence behavior:

1. The BP algorithm converges in an infinite learning
process to the global minimumwp of E with a linear
rate of convergence. The only exception is the case where

h � 1
2Ai

;i [ I : �15�

In this situation, the minimum is reached after one epoch.
2. The BPWE algorithm applies extrapolations if and only if

h , L=2 with L as defined above and

I � {1 ;2; …;n} �16�
Otherwise its behavior is identical to that of the BP
algorithm described in item 1. Ifh , L=2 and condition
(16) is valid, then BPWE converges faster than BP to the

global minimumwp with a speed-up factor between25
and71after8 �� M1� epochs, which only depends on the
number of epochs until termination.

It is easy to show that the form ofE in Eq. (13) of Proposi-
tion 2 is in fact equivalent to the form

E�w� � C0 1 vT�w 2 ~w�1
1
2
�w 2 ~w�T

�

A1 0

A2

]

0 An

0BBBBBB@

1CCCCCCA�w 2 ~w�

with arbitrary vectorsv; ~w [ Rn and arbitrary constants
A1;A2; …;An; C0 [ R: The proof of Proposition 2 is
presented in Appendix A.

By allowing also weight sequences that are alternately
nonincreasing and nondecreasing in item 1 of Definition
1, the BPWE method could be extended to model functions
of the more general form

f �x� � a 2 b�^e2c�x

with a;b [ R andc . 0: The formulas for parameter esti-
mation with this alternative BPWE method could be derived
similar to Section 3.2. Moreover, this alternative BPWE
procedure also speeds up the BP for a functionE of the
form stated in Proposition 2 by a factor between 25 and
71, where our version of BPWE behaves like the BP (the
only exception is the case where both methods compute the
minimum with one epoch).

3.5. Time and storage requirements

The essential storage requirement of the BP algorithm
consists of alln weights of the feedforward neural network.
According to the description in Section 3.2 and the formula for
linear regression (Ryan, 1997) an efficient implementation of
the BPWE method will update the following values during
each iterationK in which a quasi-exponentially convergent
weight sequence (starting at iterationk1) is encountered:XK
k�k1

loguwk 2 wk11u;
XK
k�k1

�k 1 1�loguwk 2 wk11u

for the linear regression (8),
PK

k�k1
wk for formula (10), and

wk 2 wk11 for the next comparisons according to Definition
1. Since no additional past weight values have to be stored,
the essential extra storage space required by BPWE amounts
to 4n units, which can be considered quite favorable.

For the determination of the computational complexity of
BPWE relative to the BP, three different cases have to be
distinguished. If the weight sequence is not quasi-exponen-
tially convergent for the iteration under consideration, the
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time complexity of the BP and BPWE can be considered as
the same. The computational complexity per iteration of the
BP is aroundn multiplications for the forward pass and
around 2n multiplications for the backward pass, andn
multiplications for multiplying the gradientdk with the
learning rateh (Hush & Salas, 1988). In summary, we get
four multiplications per iteration per weight.

If the weight sequence is quasi-exponentially convergent
but has not reached the lengthMl required by BPWE, the
extra computation of the BPWE algorithm is just that of one
multiplication and the computation of a logarithm per itera-
tion per weight. However, if the criteria of Definition 1 are
satisfied forMl iterations, the time complexity of an itera-
tion with BPWE is approximately eight times that of the
BP. However, the doubling of the valueM after each extra-
polation as defined in Eq. (5) keeps such costly iterations
rare.

After the description of this acceleration technique for the
BP algorithm, our aim is to illustrate its advantages from a
practical point of view. For this purpose, the conjugate
gradient method allows a good comparison since it highly
optimizes each individual step of the BP algorithm. This
principle is common for most existing acceleration methods,
but is different from the strategy used in the BPWE algo-
rithm where highly optimized steps are applied only rarely.
The principal structure and characteristics of the conjugate
gradient method are briefly described in the next section.

4. Conjugate gradient algorithm

One of the reasons for the slow convergence of the BP
algorithm is that an iteration that reduces the errorEp with
respect to one patternp will not, in general, result in an error
reduction with respect to all the patterns together. Such a
step may misdirect the optimization path and thus may
increase considerably the number of iterations required for
convergence. With the following conjugate gradient algo-
rithm for training feedforward neural networks, this
problem can be overcome. The existing empirical evidence
that it converges faster than BP training is strengthened in
this paper.

Conjugate gradient (CG) algorithm

Step 1. Initialize the weight vectorw0 with random
values.
Step 2. Compute the gradient7E�w0� and test it. If
i7E�w0�i is small enough then STOP and returnw0 as
the desired minimum; otherwise continue.
Step3. Setg0 U 7E�w0� and set the directiond0 U 2g0:

Step4. Initialize k � 0.
Step5. Calculate

hk � max{h $ 0 : E�wk 1 jdk�
is strictly monotonically decreasing forj [ �0;h�} :
Step6. Setwk11 � wk 1 hkdk:

Step7. Compute the gradient7E�wk11� and test it. If

i7E�wk11�i is small enough then STOP and returnwk11

as the desired minimum; otherwise continue.
Step 8. Set gk11 U 7E�wk11� and set the direction
dk11 U 2gk11 1 bkdk.
Step9. Increasek by 1 and go to step 5.

Similar to the BP method, the conjugate gradient algo-
rithm is iterative, but the error functionE is evaluated and
weights are modified only after the presentation of the
complete set of training patterns. This means that the
vectors2gk show the direction of steepest descent for the
sum-of-squares errorE over all the training patterns. This is
in contrast to the standard BP algorithm, where the vectors
dk indicate the direction of steepest descent only with
respect to the partial error functionsEp.

Note that the basic structure of the weight update rule in
step 6 of the CG procedure is the same as for the BP algo-
rithm in relation (1). Furthermore, the CG method can be
regarded as an extension of the BP training by automatically
selecting an appropriate learning rate in each epoch as well
as including a momentum term as described in Section 2.

4.1. Line search

It is obvious that the line search procedure in step 5
assures either a reduction in the error functionE or
constancy forhk � 0. Note that this latter situation can
occur, because in contrast to the BP algorithm with batch
learning, the obtained directionsdk are not necessarily local
descent directions. Therefore, this one-dimensional function
minimization prevents (in general) cycling on the error
surface and overshooting of a local minimum, two phenom-
ena, which are frequently observed in the BP. On the other
hand in the CG method, the sequence (wk) of weight vectors
may converge to a bad local minimum, because the CG
algorithm moves towards the bottom of whatever valley it
reaches. The reason is that “escaping” a local minimum
requires an increase in the overall error functionE, which
is excluded by the line search procedure. As will also be
demonstrated by the simulations in Section 5, the standard
BP algorithm allows this possibility for two reasons:

1. For the BP, a constant learning rateh regardless of the
shape of the error surface is used, which may lead to a
“jump” of (wk) over the local minimum.

2. The updating directiondk in relation (1), which uses
partial gradients7Ep rather than the total gradient7E;
is determined by a single training pattern. Such a rule
does not take into account that another pattern would
change the weight vector in a completely different direc-
tion. This may also lead to an increase in the error func-
tion E during the iterations.

However, it becomes clear from the theoretical derivation of
the CG method (Pittner, 1996; Polak, 1971) that step 5 is a
fundamental part of the underlying concept.

The difficulty and cost of finding the exact value of the
first minimum of E(w) along the directiondk starting at
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E�wk� resulted in the common inclusion of inexact line
searches in implementations of the traditional CG method.
Leonard and Kramer (1990) demonstrated that the CG algo-
rithm converges most quickly when the line search in step 5
is done only coarsely. Therefore, we performed this one-
dimensional minimization in our simulations based on an
iterative method of Brent (1973) that uses derivatives of the
function E�wk 1 jdk� and allowed a relatively large toler-
ance (Press, Teukolsky, Vetterling & Flannery, 1992).

4.2. Choice ofbk

The only parameters that remain to be defined for the CG
algorithm are the values of the sequence�bk�, which we
have taken as

bk � gT
k11�gk11 2 gk�

gT
k gk

:

This assignment is due to Polak and Ribie`re (1969) and is
generally considered to be one of the best choices from a
practical point of view (e.g., Fitch, Lehmann, Dowla, Lu,
Johansson & Goodman, 1991). A profound demonstration
of the fast convergence of the CG method for feedforward
neural networks with this choice was first provided by
Kramer and Sangiovanni-Vincentelli (1988) as well as

Charalambous (1992). Moreover, efforts have been under-
taken for improving these kind of methods in order that fast
convergence can also be assured theoretically (Gilbert &
Nocedal, 1992; Powell, 1977).

4.3. Quality of the conjugate gradient method

While the storage requirement for the CG algorithm is
about four times that for the BP, the computation time per
cycle is more significantly increased because of the line
search necessary for determining an appropriate step size.
Determining the learning rates with a line search involves
several evaluations of either the error functionE or its deri-
vative, both of which raise the computational complexity
per epoch, since evaluatingE includes the presentation of all
input patterns to the network.

It has been confirmed empirically that in general the local
minimum achieved with the BP algorithm will in fact be a
global minimum, or at least a solution that is good enough
for most purposes. In contrast, the CG algorithm will lead
the network to often settle down in a bad local minimum
from which it cannot escape and consequently it will impair
the generalization ability of the network (Towsey, Alpsan &
Sztriha, 1995). This is a serious limitation of the CG
method.

5. Simulation results

In this section the convergence behavior of the BPWE,
standard BP and CG algorithms are compared on three
example problems. The learning rate was fixed ath � 0:9
in BPWE and BP algorithms for all three example problems.
For all tests reported, a bipolar activation functionsh�x� �
�1 2 exp�2x��=�1 1 exp�2x�� was used for the hidden
nodes and a logistic activation functionso�x� �
�1 1 exp�2x��21 for the output nodes of a fully connected
feedforward neural network. The convergence of the learn-
ing process is measured by taking the half-sum-of-squared
errors as the objective function. We used sum-of-squared-
error less than or equal to 1024 as the stopping criterion, and
the same initial weights for all three methods. However, the
CG method was terminated once it was stranded in a local
minimum with no further error reduction possible. All three
networks were simulated in C on a Sun SPARC-4 Ultra 5
workstation.

5.1. Experimental details and results

XOR problem. The first test was performed with the
exclusive-or (XOR) problem, which is the most popular
benchmark for neural network training. The network archi-
tecture used for this problem consisted of two input units,
one hidden layer with three units and one output unit. The
network mapped each of the four pairs of input patterns into
the corresponding output target value.

Two spirals problem. For the second training task we
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Fig. 1. Spiral training points wherep denotes the spiral with target value 0
andW denotes the spiral with target value 1.

Fig. 2. Eight learning patterns used for the third simulation example.



selected the “two spirals separation problem” examined by
Lang and Witbrock (1989). The difficulty of this problem
has been demonstrated in many attempts to solve the
problem with backpropagation and several elaborated modi-
fications. The input pattern set consists of the pairs of coor-
dinates describing the points of two intertwined spirals in
thex–y-plane. The network is trained to discriminate points
lying on these two separate spirals. The membership of an
input point to one or the other spiral was indicated by the
target values 0 and 1, respectively. Our simulation tests use
only the original patterns within a radius of three units.
Since the BP algorithm is unable to locate more than
suboptimal solutions of the two spirals problem for
networks with one hidden layer (see Baum & Lang,
1991), a network with two hidden layers was used.
The network was built up of an input layer of two units,
each one representing a coordinate, a first hidden layer with
eight units, a second hidden layer with two units and an
output layer with one unit. A training set of 82 input–output
pairs was created by randomly merging the points of the
spirals depicted in Fig. 1.

L–T problem. The third experiment conducted a simple

L–T letter recognition task. The network had nine input
units, two hidden units and a single output unit, and was
trained to recognize the letters L and T. Each input pattern
was a 3× 3 pixel binary image of a letter. The training set
was formed by eight patterns, all four orientations for each
letter (see Fig. 2). The letters L and T were indicated by the
target values 0.05 and 0.95, respectively, for the output unit.
For this case, the original BP method required 1940 itera-
tions while the modified method BPWE required 1811 itera-
tions. Since the BP algorithm converged very fast for this
problem, the termination tolerance was decreased from 1024

to 1025.
We trained neural networks and studied the convergence

behavior in these three simulation experiments. The simula-
tion results are summarized in Table 1 for all three exam-
ples. The results demonstrate the effectiveness of the
proposed method, since the BPWE algorithm requires a
much smaller number of iterations than the standard BP
procedure. This is also reflected by a marked reduction of
CPU time with the exception of the third example. These
examples show that the proposed new approach spends
some additional time for storing computed weights and
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Table 1
Simulation results for three example problems

BP algorithm BP algorithm
with weight
extrapolations

Conjugate gradient method

XOR problem Epochs required 16 718 4886 14
Learning time (s) 2.6 1.0 0.1
Total error of solution 0.0001 0.00008 0.012
Number of extrapolations – 5 –

Two spirals problem Epochs required 11 188 3798 17
Learning time (s) 59.0 20.4 1.6
Total error of solution 0.0001 0.0001 18.16
Number of extrapolations – 4 –

L–T problem Epochs until solution 1940 1811 5
Learning time (s) 0.7 0.6 0.1
Total error of solution 0.00001 0.00001 0.011
Number of extrapolations – 1 –

Fig. 3. Evolution of error as a function of epoch number when network is being trained by backpropagation (BP), backpropagation with weight extrapolations
(BPWE), and conjugate gradient (CG) method.



gradient vectors and for computing accelerating weight
extrapolations, but saves time in an overcompensating
manner by reducing the number of epochs required to achieve
a desired error value. This means that the proposed improve-
ment of the BP algorithm can be achieved at the cost of an
insignificant increase in computational load per epoch.

In Fig. 3 the convergence behavior of the total errorE
during the training process is compared for three algorithms
on all three example problems. Both axes of the plots are
logarithmic. Since BP and BPWE update the weights after
each presentation of a training pattern, and the CG algo-
rithm only after the whole training set has been presented,
error updates were counted in terms of epochs. As can be
observed from the graphs, the proposed BPWE algorithm
leads to a sharp decrease in the total errorE compared with
that of standard BP after the activation of extrapolations. In
the BPWE algorithm the activations of extrapolations are
performed only afterE shows a steady tendency to approach
zero, i.e. when a smooth part of the error surface containing a
practically useful local minimum has been reached. It is clear
from Fig. 3 that in this phase of training there is a high potential
for performing weight extrapolations, since the BP algorithm
makes a very slow progress in getting closer to the minimum.

The CG algorithm had a completely different course of
learning. It was only able to train the networks to an error
value not smaller than 0.01, which means that it could not
reach an acceptable solution. This was accomplished within
a few seconds, but then the error remained constant such
that the stated convergence condition could never be
reached. This behavior means that the CG method has
settled down in a bad local minimum.

5.2. Repeated runs of the conjugate gradient method

As was already done by Fitch et al. (1991) we applied the
CG method several times with different random starting
points w0 for the weight vector for all three example
problems. The final weight vector, which gave the minimum
error level was taken as the result. To keep the computation
time of the CG method the smallest among the three training
algorithms, four different initial settings were used for each
problem, resulting in an average reduction of the final error
by a factor of six. Still, the convergence conditions have
never been reached.

5.3. Relative entropy error measure

Besides the standard half-sum-of-squares error function
E, several other error measures are occasionally used in
neural network training, especially for classification
problems. One of these error measures is called relative
entropyH and is based on the following lemma (Jelinek,
1968). In this lemma, and during the rest of this section we
assume that 0·log 0U 0 and 0=0 U 1:

Lemma 3. Let �q1; q2;…;qm� and �r1; r2;…; rm� be two

nonzero sequences of the same length m which satisfy the
properties qa $ 0; ra . 0 for a � 1;2;…;m andXm
a�1

qa �
Xm
a�1

ra:

Then the inequalityXm
a�1

qa log
qa
ra

$ 0

is satisfied, where equality holds if and only if qa � ra for
all a .

For a neural network with a single output node with target
values t�p� � ^1 and the actual network outputsy�p�
contained in the interval [21,1] the relative entropy error
measureH (Hertz, Krogh & Palmer, 1991) is formulated as

H � 1
2

X
p

�1 1 t�p��log
1 1 t�p�
1 1 y�p� 1 �1 2 t�p��log

1 2 t�p�
1 2 y�p�

� �
;

where the sum runs over all input patterns. For the hyper-
bolic tangent functionso�x� � tanhx the values ofH are
always finite and the gradient computation in the BP algo-
rithm gets the simplest possible form. In fact, this function is
the rescaled version tanhx� sh�2x� of the bipolar activa-
tion functionsh used in our previous neural network train-
ing.

The following lemma, whose proof is given in Appendix
A, is the foundation for comparing the values of the error
functionsE andH.

Lemma 4. Consider the half-sum-of-squares difference

E�t; y� � 1
2

XP
a�1

�ta 2 ya�2

and the relative entropy measure

H�t; y� � 1
2

XP
a�1

�1 1 ta�log
1 1 ta
1 1 ya

1 �1 2 ta�log
1 2 ta
1 2 ya

� �

for arbitrary sequences t � �t1; t2;…; tP� and y �
�y1; y2;…; yP� with utau � 1 and ya [ �21;1� for a �
1;2;…;P: The values of these error functions E and H
satisfy the relations

E � O�H2� for H ! 0 �17�
and

H � O� ��
E
p � for E! 0: �18�

It follows from the example

t � �1; 1�; y � �1;21�;
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whereE�t; y� � 2 andH�t; y� � ∞; together with the proof
of Lemma 4 that the error measuresH2 andE are “equiva-
lent” only for H [ �0;D� andE [ �0;2 2 e� if D, e . 0 are
fixed constants.

5.4. Training with alternative error and activation functions

In order to demonstrate the flexibility of BPWE, the
examples of Section 5.1 were solved by the BP and
BPWE algorithms with different training conditions.

Training of type A. First, the half-sum-of-squares error
functionE was replaced by the relative entropy error func-
tion H specified in Section 5.3. According to the discussion
in the previous section, the logistic activation function in the
output nodes of the respective networks was replaced by the
functionso�x� � tanhx and the target values were modified
to 1 and21. To achieve convergence of the BP training
algorithm to an acceptable solution, the learning rateh had
to be decreased from 0.9 to 0.1 for the XOR and the L–T
problem and to 0.01 for the two spirals problem. We call the
resulting training processes training of type A. Here, the
final error value 0.01 was used for the objective function
H of the XOR problem and the two spirals problem
according to Lemma 4. Accordingly, the training for the
LT problem was terminated as soon asH fell below 0.003.

Training of type B. During training of type B the activa-
tion function in the output layer has been removed comple-
tely. This has the effect that the BP algorithm again takes its
simplest form mentioned in Section 5.3. We used the same
learning rates as in the training of type A, only for the two
spirals problemh � 0:3 has been selected.

Training of type C. The only difference between type C

and type B consisted in the activation functionsh in the
hidden layer of the neural network, which was now chosen
as the hyperbolic tangent function used already in type A
training. This activation function is attractive from a prac-
tical point of view (Bishop, 1995). The learning rate was
chosen as 0.1 for all three examples.

The simulation results for all nine training situations are
given in Table 2 for both BP and BPWE algorithm.
Although the BP algorithm converges extremely fast with
these modified network structures and error functions for the
XOR and the L–T problem (only a few hundred epochs are
required to reach the stopping criteria), the BPWE proce-
dure still managed to decrease the number of iterations
considerably. In addition, a decrease in the CPU time and
in half of the cases also in the final error of the training
process could be achieved. This demonstrates the robustness
of the extrapolation idea at least for the BP algorithm used
with feedforward neural networks even with the results for
the two spirals problem not fully living up to the
expectations.

However, it is worth mentioning that during BPWE train-
ing of type B for the XOR problem the second extrapolation
resulted in an increase of the error function. This is in
contrast to what is expected of the BPWE algorithm, but
did not have any negative effect on this training example.

5.5. Discussion

It can be recognized from all these simulation results that
the improvement obtained with BPWE is more remarkable
on complex problems on which the BP scheme gives very
slow convergence than on simple problems. The reason
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Table 2
Simulation results for alternative error and activation functions with the backpropagation algorithm (BP) and backpropagation with weight extrapolations
(BPWE)

Training of type A Training of type B Training of type C

XOR problem with BP Epochs required 1135 447 137
Learning time (s) 0.34 0.21 0.17
Total error of solution 0.01 0.0001 0.00009

XOR problem with BPWE Epochs required 554 336 95
Learning time (s) 0.24 0.19 0.16
Total error of solution 0.01 0.00008 0.00009
Number of extrapolations 2 3 1

Two spirals problem with BP Epochs until solution 7671 503 077 431 742
Learning time (s) 56.99 2598.29 2206.25
Total error of solution 0.01 0.0001 0.0001

Two spirals problem with BPWE Epochs required 3854 432 015 227 162
Learning time (s) 21.06 2230.57 1178.30
Total error of solution 0.01 0.0001 0.00008
Number of extrapolations 3 7 9

L–T problem with BP Epochs until solution 970 220 186
Learning time (s) 0.43 0.19 0.18
Total error of solution 0.003 0.00001 0.00001

L–T problem with BPWE Epochs required 252 150 143
Learning time (s) 0.23 0.17 0.17
Total error of solution 0.002 0.00001 0.000002
Number of extrapolations 2 1 1



seems to be that when the training time is long there
are more possibilities for applying the weight extrapola-
tion procedure than when the training time is short. The
Euclidean distances between the final weight vectors
obtained by the BP algorithm and BPWE algorithm are
0.27, 0.03 and 0.08 for the three example problems in
Section 5.1. Similar values were obtained for the training
experiments in Section 5.4. Even for the example where the
error function increased through an extrapolation step, the
Euclidean distance between the final weight vectors of BP
and BPWE was just 0.77. These small values indicate that
with a few extrapolations between the iterations of the BP
algorithm, the convergence rate is increased without alter-
ing the convergence path. Other proposed improvements
such as the CG method differ significantly from the original
BP algorithm, and consequently the path, which the
sequence (wk) follows in the weight space usually also
differs significantly.

6. Conclusions

In this paper, we focused on improving the BP algorithm
for training feedforward neural networks. We introduced a
new speed-up method called BPWE for the standard BP
algorithm based on the concept of extrapolating computed
network weights. By extrapolating the weights, it is possible
to economize on the epochs required by BP learning before
an acceptable weight vector is reached. Furthermore, the
experimental results with the BPWE algorithm show that
this algorithm offers much higher speed of convergence than
the basic BP algorithm. Consequently, the improvement
presented in this paper can be considered as a valuable
and viable alternative to existing training methods. The
degree of improvement with BPWE for difficult problems
(for which the BP algorithm converges slowly) is greater
than that for simple problems (for which the BP algorithm
converges quickly). According to the simulation experi-
ments described in the preceding section, the CPU time as
well as the number of epochs required by the BP training
process can be reduced by a factor of 3 for complex
problems for which the BP algorithm converges slowly. In
Section 4 we introduced the CG algorithm as another alter-
native to BP learning, and demonstrated how it can be
employed for training feedforward neural networks by
appropriately selecting the learning and momentum rate
during each iteration. It turned out that modifying an
existing BP training procedure to get the CG method is
not a significant task. However, the line search involved
must be considered more sophisticated than the extensions
to BP arising from our extrapolation procedure based on the
well-known formulas for linear regression that do not need
additional evaluations of the error function or its derivative.
Moreover, concerning the quality of the solutions, the simu-
lation experiments described in Section 5 reveal tremendous
advantages of the BPWE method. The proposed extrapolation

method is very simple, effective, and contains no problem-
dependent parameters. Furthermore, it has the flexibility to
be used also for other iterative learning algorithms and/or
network architectures without modifications. Since our work is
complementary to other efforts, consideration of the proposed
improved BP algorithm with any other variant is possible.

Appendix A

Proof of Proposition 2. Step1. First we want to show that
the functionE has a single local minimum which is also its
global minimum ifAi . 0 for i � 1;2;…; n: It can be shown
using elementary calculus that every functionpi has a
unique global minimum atx� 2Bi =�2Ai�: Consequently,
the vector wp U �2B1=�2A1�;2B2=�2A2�;…;2Bn=�2An��
constitutes a unique global minimum forE.

Step2. The converse of the statement in step 1 can be
shown indirectly. Suppose thatE has an isolated local mini-
mum wp � �w1

p;w
2
p;…;wn

p� and Ai0 # 0 for some i0 with
1 # i0 # n: It follows that pi0 does not have an isolated
local minimum. Consequently, for everye . 0 there exists
a value wi0

e , different from wi0
p with uwi0

e 2 wi0
p u , e and

pi0�wi0
e � # pi0�wi0

p �; which leads to the contradiction

E�w1
p;w

2
p;…;wi021

p ;wi0
e ;w

i011
p ;…;wn

p� # E�wp�:
Step 3. The convergence behavior of BP and BPWE

learning is revealed through the consideration of every indi-
vidual componentwi of the weight vectorsw. By using the
more convenient representation

pi�wi� � Ai wi 1
Bi

2Ai

� �2

1Ci 2
B2

i

4Ai

of the corresponding polynomialpi and the relations (1) and
(2), it turns out that the development of the sequence�wi

k� is
determined by

wi
k11 2 wi

p � wi
k 2 2Aih�wi

k 2 wi
p�2 wi

p

� �wi
k 2 wi

p��1 2 2Aih�: �A1�
This recursion leads to

uwi
k 2 wi

pu � uwi
0 2 wi

pu·u1 2 2Aihuk;

so that every single weight sequence�wi
k� converges to the

optimumwi
p � 2Bi =2Ai if and only if wi

0 � wi
p; or wi

0 ± wi
p

and

u1 2 2Aihu , 1: �A2�
This is equivalent to

xI �i�h , A21
i

because ofAi . 0; wherexI �i� � 1 if i [ I and 0 otherwise.
Since the BP algorithm converges only if all its weights
converge, a necessary and sufficient convergence condition
for BP has the form

h , min
i[I

A21
i � �max

i[I
Ai�21 � L:
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For the rest of the proof, we assume thath satisfies this
convergence condition.

Step4. During this step of the proof, we want to derive the
rate of convergence and the number of epochs until the
minimum wp is reached by the BP algorithm. In the case
where condition (15) of Proposition 2 is satisfied, BP
reaches the minimum in one epoch, because we have with
Eq. (A1) that

wi
1 2 wi

p � �wi
0 2 wi

p��1 2 2Aih� � 0

for each indexi, where wi
0 2 wi

p � 0 for i Ó I and 12
2Aih � 0 for i [ I :

On the contrary, if condition (15) is not valid, we define
the nonempty setJ by J U { i [ I : 1=�2Ai� ± h} ; a positive
constant D1 U mini[J u1 2 2Aihu; and a constantD2 U

maxi[I u1 2 2Aihu with D2 , 1 according to inequality
(A2). The use of relation (A1) now yields

D1iwk 2 wpi∞ � D1·max
i[I

uwi
k 2 wi

pu

# max
i[I
�uwi

k 2 wi
pu·u1 2 2Aihu� � max

i[I
uwi

k11 2 wi
pu

� iwk11 2 wpi∞

and

D2iwk 2 wpi∞ � D2·max
i[I

uwi
k 2 wi

pu

$ max
i[I
�uwi

k 2 wi
pu·u1 2 2Aihu� � max

i[I
uwi

k11 2 wi
pu

� iwk11 2 wpi∞:

In summary

D1iwk 2 wpi∞ # iwk11 2 wpi∞ # D2iwk 2 wpi∞

for everyk [ N0 with constantsD1 andD2 that satisfy 0,
D1 # D2 , 1; which expresses the linear convergence of
the BP algorithm.

Step5. The statements of Proposition 2 concerning the
convergence of the BPWE method remain to be shown.
From step 3 we conclude that extrapolations are not acti-
vated if

1 2 2Aih , 0;

i.e. if h . 1=2Ai for some indexi. The reason is that the
values of the corresponding sequence�wi

k� oscillate around
the optimum wi

p. Therefore, the strict monotonicity
demanded in item 1 of Definition 1 is never valid for this
weight component. This means that forh . L=2 the BPWE
routine performs simply the BP algorithm. In the case when
property (16) of Proposition 2 is not satisfied orh � L=2; it
follows from step 3 that a weight sequence�wi

k� is constant.
For the remaining case we haveh , L=2 and

I � {1 ; 2;…;n} :

From step 3 we get

wi
k � wi

p 1 �wi
0 2 wi

p��1 2 2Aih�k

for every indexi, where the factorswi
0 2 wi

p and 12 2Aih
are nonzero and positive, respectively. The development of
wi

k is therefore described by the functionf with

f �k� U a 2 be2ck
; a U wi

p; b U wi
p 2 wi

0;

c U 2log�1 2 2Aih�:
According to Section 3, an extrapolation of the computed
weight vectors is activated afterM1;M1 1 M2;M1 1 M2 1
M3;… epochs. Every extrapolation predicts exactly the
weights in the BP algorithm after 71M1;71�M1 1
M2�;71�M1 1 M2 1 M3�;… epochs. This leads to a faster
convergence of the BPWE method compared with BP,
where it holds for the speed-up factors after eight epochs
that

71·
Xk
l�1

Ml 1 Mk11 2 1

Xk
l�1

Ml 1 Mk11 2 1

# s #

71·
Xk
l�1

Ml

Xk
l�1

Ml

�k [ N�:

With the relation
Pk

l�1 Ml � 8�2k 2 1� it follows that the
lower bound is equal to

568·�2k 2 1�1 2k13 2 1
8·�2k 2 1�1 2k13 2 1

.
576·�2k 2 1�

2k14 2 9
$

576
23

. 25:

Therefores is contained in the interval (25, 71], and depends
on the epoch after which BPWE is stopped.A

Proof of Lemma 4. Let t and y be two sequences as in
Lemma 4 and letE and H be the corresponding error
measures.

Step1. To prove relation (17) we consider an arbitrary
indexa from the interval [1,P], and consider the valueH to
be, e.g. less or equal to 1.

Let us first assume thatta � 1: Then it follows that

log
2

1 1 ya
# H;

or equivalently

ya $
2
eH 2 1

and

1
2
�ta 2 ya�2 # 2 12

1
eH

� �2

: �A3�

If converselyta � 21; then we get

log
2

1 2 ya
# H
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and inequality (A3) follows with an argumentation similar
to the one above.

Using the inequality

ex # 1 1 �e2 1�x for x [ �0; 1�;
which is an exercise in basic calculus, for relation (A3), it
turns out that

1
2
�ta 2 ya�2 # 2

�e2 1�H
1 1 �e2 1�H

� �2

# 2�e2 1�2H2

for every indexa , and in summary

E # 2P�e2 1�2H2
:

Step2. For the proof of relation (18) we assume, e.g. that
E # 1 and leta be an arbitrary index. Ifta � 1; then

1
2 �1 2 ya�2 # E;

which is equivalent to

ya $ 1 2
����
2E
p , log

2
1 1 ya

# log
2

2 2
����
2E
p :

The analogous inequality

log
2

1 2 ya
# log

2

2 2
����
2E
p

follows for ta � 21 and it implies with the well-known
inequality

log x # x 2 1 for x [ R1

that

log
2

1 1 sgn�ta�ya #

����
2E
p

2 2
����
2E
p #

1��
2
p

2 1

��
E
p

for a � 1;2;…;P. This leads to

H #
P��

2
p

2 1

��
E
p

;

which concludes the proof.A
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