
Lab Manual - OS5 Memory Management

1

Windows Operating System Internals Windows Operating System Internals -- by David A. Solomon and Mark E. Russinovich with Andreas Polzeby David A. Solomon and Mark E. Russinovich with Andreas Polze

Unit OS5: Memory ManagementUnit OS5: Memory Management
5.5.5.5. Lab ManualLab Manual

Lab Manual - OS5 Memory Management

2

2

Copyright NoticeCopyright Notice
©© 20002000--2005 David A. Solomon and Mark Russinovich2005 David A. Solomon and Mark Russinovich

These materials are part of the These materials are part of the Windows Operating Windows Operating
System Internals Curriculum Development Kit,System Internals Curriculum Development Kit,
developed by David A. Solomon and Mark E. developed by David A. Solomon and Mark E.
Russinovich with Andreas PolzeRussinovich with Andreas Polze

Microsoft has licensed these materials from David Microsoft has licensed these materials from David
Solomon Expert Seminars, Inc. for distribution to Solomon Expert Seminars, Inc. for distribution to
academic organizations solely for use in academic academic organizations solely for use in academic
environments (and not for commercial use)environments (and not for commercial use)

Lab Manual - OS5 Memory Management

3

3

Roadmap for Section 5.5.Roadmap for Section 5.5.

Dynamic Link Library (DLL) UsageDynamic Link Library (DLL) Usage

Viewing the Working SetViewing the Working Set

Inspecting the Page Frame Number DatabaseInspecting the Page Frame Number Database

PerfmonPerfmon and memoryand memory--related countersrelated counters

Monitoring page file consumptionMonitoring page file consumption

This LabManual includes experiments investigating the algorithms for memory
management implemented inside the Windows operating system. Students are
expected to carry out Labs in addition to studying the learning materials in Unit OS5.

A thorough understanding of the concepts presented in Unit OS5: Memory
Management is a prerequisite for these Labs.

Lab Manual - OS5 Memory Management

4

4

Viewing DLLs and Memory Mapped Viewing DLLs and Memory Mapped
FilesFiles

Experiment: Viewing DLLs and Memory Mapped Files
Click on View->DLL View

• Shows more than just loaded DLLs
• Includes .EXE and any “memory mapped files”

Uses:
• Detect DLL versioning problems

• Compare the output from a working process with that of a failing one
(use File->Save As)

• Find which processes are using a specific DLL (search for it)
Show Relocated DLLs option

• Highlights relocated DLLs in yellow

Process Explorer DLL Lab1: Run Word and Excel
1. In ProcExp, switch to DLL view
2. Look at the DLL list for both Word and Excel and find a common Office DLL

loaded in both processes
• Hint: sort by path

3. Try and delete that DLL with Explorer
• Should get access denied error (not file locked)

4. In ProcExp, use search to confirm who has this DLL loaded
• Should show up in both processes

Lab Manual - OS5 Memory Management

5

5

PrefetchPrefetch LabLab

LabLab
Run Run FilemonFilemon –– set filter as Notepad.exeset filter as Notepad.exe

Make a temporary directory somewhere (e.g. Make a temporary directory somewhere (e.g. \\temp)temp)

Run Run ““Notepad Notepad \\temptemp\\x.yx.y””

Exit NotepadExit Notepad

Run Notepad againRun Notepad again

In In FilemonFilemon log, find creation of .PF file after first run, then use log, find creation of .PF file after first run, then use
of new .PF in 2of new .PF in 2ndnd runrun

Lab objective: Watching Prefetch File Reads and Writes
If you capture a trace of application startup with Filemon from www.sysinternals.com
in Windows XP, you can see the prefetcher check for and read the application’s
prefetch file (if it exists), and roughly ten seconds after the application started, see
the prefetcher write out a new copy of the file. Below is a capture of Notepad startup
with an Include filter set to “prefetch” so that Filemon shows only accesses to the
\Windows\Prefetch directory.

Lab Manual - OS5 Memory Management

6

6

Memory Management Memory Management
InformationInformation
Task ManagerTask Manager
Performance tabPerformance tab

““AvailableAvailable”” = sum of free, = sum of free,
standby, and zero page lists standby, and zero page lists
(physical)(physical)
Majority are likely standby Majority are likely standby
pagespages
Windows 2000/XP/Server 2003: Windows 2000/XP/Server 2003:
count of shareable pages on count of shareable pages on
standby, modified, and modified standby, modified, and modified
nowritenowrite list are included in what list are included in what
was was ““File CacheFile Cache”” in NT4in NT4

New name is New name is ““System System
CacheCache””

Screen snapshot from:
Task Manager | Performance tab

6

6

Lab objective: Viewing System Memory Information
The Performance tab in the Windows Task Manager displays basic system memory

information. This information is a subset of the detailed memory information available
through the performance counters.
Both Pmon.exe and Pstat.exe (in the Windows Support Tools) display system and
process memory information.
Finally, the !vm command in the kernel debugger shows the basic memory
management information available through the memory-related performance
counters. This command can be useful if you’re looking at a crash dump or hung
system. Here’s an example of its output:
kd> !vm

*** VirtualMemory Usage ***
PhysicalMemory: 32620 (130480Kb)
PageFile: \??\C:\pagefile.sys

Current: 204800Kb Free Space: 101052Kb
Minimum: 204800Kb Maximum: 204800Kb

Available Pages: 3604 (14416Kb)
ResAvailPages: 24004 (96016Kb)
ModifiedPages: 768 (3072Kb)
NonPagedPoolUsage: 1436 (5744Kb)
NonPagedPoolMax: 12940 (51760Kb)
PagedPool 0Usage: 6817 (27268Kb)
PagedPool 1Usage: 982 (3928Kb)
PagedPool 2Usage: 984 (3936Kb)
PagedPool Usage: 8783 (35132Kb)
PagedPool Maximum: 26624 (106496Kb)

…..

Lab Manual - OS5 Memory Management

7

7

PFN DatabasePFN Database
PFN = Page Frame Number PFN = Page Frame Number

= Physical Page Number= Physical Page Number
PFN Database keeps track of the state of each physical pagePFN Database keeps track of the state of each physical page

An array of structures, one element per physical pageAn array of structures, one element per physical page
Maintains reference and share counts for pages in working setsMaintains reference and share counts for pages in working sets
Structure elements implement forward and backward links for freeStructure elements implement forward and backward links for free, modified, standby, , modified, standby,
zero, and bad page listszero, and bad page lists
Does not reflect memory not managed by NT (e.g. adapter ram)Does not reflect memory not managed by NT (e.g. adapter ram)

kd> !pte ff709348
!pte ff709348
FF709348 - PDE at C0300FF4 PTE at C03FDC24

contains 00410063 contains 0049E063
pfn 00410 DA--KWV pfn 0049E DA--KWV

kd> !pfn 410
!pfn 410

PFN address FFBCC180
flink 00000000 blink / share count 000000B0 pteaddress C0300FF4
reference count 0001 color 0
restore pte 00000000 containing page 00030 Active

Screen snapshot from: kernel debugger !pte command
use resulting displayed PFN on !pfn command

Lab objective: Viewing PFN Entries
You can examine individual PFN entries with the kernel debugger !pfn command.

You first need to supply the PFN as an argument. (For example, !pfn 0 shows the
first entry, !pfn 1 shows the second, and so on.) In the following example, the PTE
for virtual address 0x50000 is displayed, followed by the PFN that contains the page
directory, and then the actual page:
kd> !pte 50000
00050000 - PDE at C0300000 PTE at C0000140

contains 00700067 contains 00DAA047
pfn00700 --DA--UWV pfn00DAA--D---UWV

kd> !pfn700
PFN00000700 at address 827CD800
flink 00000004 blink/ share count00000010 pteaddress C0300000
reference count 0001 color 0
restore pte 00000080 containing page 00030 Active M
Modified

kd> !pfn daa
PFN00000DAA at address 827D77F0

Lab Manual - OS5 Memory Management

8

8

PFN DatabasePFN Database
Only way to get actual size of physical memory lists is to use Only way to get actual size of physical memory lists is to use
!!memusagememusage in Kernel Debuggerin Kernel Debugger

lkdlkd> !> !memusagememusage

loading PFN databaseloading PFN database

Zeroed: 0 (0 kb)Zeroed: 0 (0 kb)

Free: 0 (0 kb)Free: 0 (0 kb)

Standby: 139069 (556276 kb)Standby: 139069 (556276 kb)

Modified: 161 (644 kb)Modified: 161 (644 kb)

ModifiedNoWriteModifiedNoWrite: 0 (0 kb): 0 (0 kb)

Active/Valid: 122759 (491036 kb)Active/Valid: 122759 (491036 kb)

Transition: 8 (32 kb)Transition: 8 (32 kb)

Unknown: 0 (0 kb)Unknown: 0 (0 kb)

TOTAL: 261997 (1047988 kb)TOTAL: 261997 (1047988 kb)

Screen snapshot from:kernel debugger
!memusage command

EXPERIMENT: Viewing the PFN Database
Using the kernel debugger !memusage command, you can dump the size of the
various
paging lists. The following is example output from this command:
lkd> !memusage
loading PFN database
loading (100% complete)
Compiling memory usage data (99% Complete).
Zeroed: 8474 (33896 kb)
Free: 256 (1024 kb)
Standby: 50790 (203160 kb)
Modified: 496 (1984 kb)
ModifiedNoWrite: 0 (0 kb)
Active/Valid: 201980 (807920 kb)
Transition: 1 (4 kb)
Unknown: 0 (0 kb)
TOTAL: 261997 (1047988 kb)

Lab Manual - OS5 Memory Management

9

9

Lab: Memory LeaksLab: Memory Leaks

Run Run Leakyapp.exeLeakyapp.exe (Resource Kit)(Resource Kit)

In Task Manager Process tab, watch In Task Manager Process tab, watch MemMem
Usage & VM Size grow (also look at Usage & VM Size grow (also look at
Performance tab Commit limit/peak)Performance tab Commit limit/peak)

MemMem Usage will eventually reach an upper limitUsage will eventually reach an upper limit

VM Size will grow until no more page file spaceVM Size will grow until no more page file space

Experiment: Creating a Memory Leak
To observe the impact of a memory leak, run the Leakyapp.exe tool and press Start

Leaking (run several copies to fill virtual memory more quickly). Observe the
commit charge total rising (either using Task Manager or Performance Monitor).
Notice the error displayed when the system runs out of virtual memory.

Finally, kill the Leakapp process(es) and notice the commit charge total return to the
previous size.

Detailed instructions:
Click on Start, Run and type Leakyapp
Click the “Start Leaking” button.
Bring up Task Manager and click on the Processes tab.
Make sure you have the Mem Usage and VM Size columns configured to be

displayed.
Sort by the VM Size column from highest to lowest – if not right away, shortly, you

should see Leakyapp.exe as the process with the largest VM Size.
Notice that the Mem Usage column and the VM Size column are growing together.

This is because the operating system is permitting the process working set size to
grow physically as the process virtual size grows. At some point, the working set
size will be capped, but the virtual size will continue to grow until there is no more
system virtual memory.

While Leakyapp is running, click on the Performance tab and notice the page file
hi i h hi ll Thi li di l h l f h “MEM

Lab Manual - OS5 Memory Management

10

10

Page Fault Monitor (Page Fault Monitor (pfmonpfmon))

Screen snapshot from: C:> pfmon notepad.exe

Lab objective: Viewing Page Fault Behavior
With the Pfmon tool (in the Windows 2000 and 2003 resource kits, as well as in the
Windows XP Support Tools), you can watch page fault behavior as it occurs. A soft
fault refers to a page fault satisfied from one of the transition lists. Hard faults refer to
a diskread. The following example is a portion of output you’ll see if you start Notepad
with Pfmon and then exit. Be sure to notice the summary of page fault activity at the
end.
C:\>pfmon notepad
SOFT:KiUserApcDispatcher :KiUserApcDispatcher
SOFT:LdrInitializeThunk :LdrInitializeThunk SOFT:0x77f61016: : 0x77f61016
SOFT:0x77f6105b: : fltused+0xe00 HARD:0x77f6105b: : fltused+0xe00
SOFT:LdrQueryImageFileExecutionOptions : LdrQueryImageFileExecutionOptions
SOFT:RtlAppendUnicodeToString: RtlAppendUnicodeToString
SOFT:RtlInitUnicodeString: RtlInitUnicodeString

notepad Caused 8faultshad 9 Soft 5 Hardfaulted VA’s
ntdll Caused 94faultshad 42 Soft 8 Hardfaulted VA’s
comdlg32 Caused 3faultshad 0 Soft 3 Hardfaulted VA’s
shlwapi Caused 2faultshad 2 Soft 2 Hardfaulted VA’s
gdi32 Caused 18faultshad 10 Soft 2 Hardfaulted VA’s
kernel32 Caused 48faultshad 36 Soft 3 Hardfaulted VA’s
user32 Caused 38faultshad 26 Soft 6 Hardfaulted VA’s
advapi32 Caused 7faultshad 6 Soft 3 Hardfaulted VA’s
rpcrt4 Caused 6faultshad 4 Soft 2 Hardfaulted VA’s
comctl32 Caused 6faultshad 5 Soft 2 Hardfaulted VA’s
shell32 Caused 6faultshad 5 Soft 2 Hardfaulted VA’s

Caused 10faultshad 9 Soft 5 Hardfaulted VA’s
winspool Caused 4faultshad 2 Soft 2 Hardfaulted VA’s
PFMON: Total Faults250 (KM 74 UM250Soft 204,Hard 46, Code121, Data129)

