
Redirection and Pipes∗

Boris Veytsman

July 26, 2001

∗This document contains lecture notes for informal Unix seminar for ITT AES employees

(Reston, VA). No information in this document is either endorsed by or attributable to

ITT. This document contains no ITT Privileged/Proprietary Information.

JJ J I II

Unix Filters

A plumbing system is very much like your

electrical system, except that instead of

electricity, it has water, and instead of wires,

it has pipes, and instead of radios and waffle

irons, it has faucets and toilets. So the truth

is that your plumbing systems is nothing at

all like your electrical system, which is good,

because electricity can kill you. Dave Barry,

“The Taming of the Screw”

JJ J I II 1

A Unix system activity is mostly processing large streams of texts.

Examples:

• Send a stream of HTML-encoded text to a client (Web server)

• Take a log of HTTP server and find all clients from .gov computers
(Web analysis)

• Substitute all instances of Mr. Bean to Dr. Bean in the text (text
processing)

You have input and change it into output.

JJ J I II 2

Filter Filter

1. A text stream

2. Programs take it from stdin, do something and put it into stdout (filters).

| connection

< input valve

> and >> output valve

JJ J I II 3

Suppose I want to know what does the user Steve Helfand do on my
machine.

Step 1: Obtain the list of all processes:

boris@reston-0491:~$ ps au
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 256 0.0 0.0 1004 0 tty2 SW Jul04 0:00 [getty]
root 257 0.0 0.0 1004 0 tty3 SW Jul04 0:00 [getty]
root 258 0.0 0.0 1004 0 tty4 SW Jul04 0:00 [getty]
root 259 0.0 0.0 1004 0 tty5 SW Jul04 0:00 [getty]
root 260 0.0 0.0 1004 0 tty6 SW Jul04 0:00 [getty]
root 30255 0.0 0.0 1004 0 tty1 SW Jul05 0:00 [getty]
shelfand 27111 0.0 0.2 2020 736 pts/2 S Jul13 0:01 -bash
shelfand 27113 0.0 0.0 2224 0 pts/2 TW Jul13 0:00 [equal.pl]
...

JJ J I II 4

Step 2: Take only the ones belonging to shelfand: grep ’ˆshelfand’:

boris@reston-0491:~$ ps au | grep ’^shelfand’
shelfand 27111 0.0 0.2 2020 736 pts/2 S Jul13 0:01 -bash
shelfand 27113 0.0 0.0 2224 0 pts/2 TW Jul13 0:00 [equal.pl]
shelfand 27114 0.0 0.0 3184 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 27324 0.0 0.0 3180 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 28009 0.0 0.0 2224 0 pts/2 TW Jul13 0:00 [equal.pl]
shelfand 28404 0.0 0.0 3120 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 28408 0.0 0.0 3116 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 28410 0.0 0.0 2224 0 pts/2 TW Jul13 0:00 [equal.pl]
shelfand 28699 0.0 0.0 3128 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 28720 0.0 0.0 3124 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 28723 0.0 0.0 2224 0 pts/2 TW Jul13 0:00 [equal.pl]
shelfand 29832 0.0 0.0 3148 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 29920 0.0 0.0 3144 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 29922 0.0 0.0 2220 0 pts/2 TW Jul13 0:00 [equal.pl]
...

JJ J I II 5

Step 3: Print only the name of the process (field 11): awk ’{print $11}’

boris@reston-0491:~$ ps au | grep ’^shelfand’ | awk ’{print $11}’
-bash
[equal.pl]
[trial.pl]
[trial.pl]
[equal.pl]
[trial.pl]
[trial.pl]
[equal.pl]
[trial.pl]
[trial.pl]
[equal.pl]
[trial.pl]
[trial.pl]
[equal.pl]
[trial.pl]
[trial.pl]
[trial.pl]
...

JJ J I II 6

Step 4: Find the unique names: sort -u

boris@reston-0491:~$ ps au | grep ’^shelfand’ | awk ’{print $11}’ |sort -u
[a.out]
-bash
[equal.pl]
[trial.pl]

Step 5: Save everything in a file

boris@reston-0491:~$ ps au | grep ’^shelfand’ | awk ’{print $11}’ \
|sort -u > results

JJ J I II 7

ps au grep ’^shelfand’ awk ’{print $11}’

sort −u results

JJ J I II 8

Argument List and Backtics

He draweth out the thread of his verbosity

finer than the staple of his argument. William

Shakespeare, “Love’s Labour’s Lost”

JJ J I II 9

Two ways to supply information to the program:

1. Through standard input: ls *.c | more shows the list of files screen by
screen

2. Through argument list: more *.c shows each file contents screen by
screen

Additional valve in the filters!

Filter Filter

argarg

JJ J I II 10

A creative use of argument list:

Filter Filter

Filter

We can process the argument list through its own filters. The tool:
backtics.

JJ J I II 11

Suppose I want to kill all Steve Helfand’s processes on my machine. I
can use kill number number. . . , but how can I obtain the numbers?

Step 1: Get the list of processes:

boris@reston-0491:~$ ps au | grep ’^shelfand’
shelfand 27111 0.0 0.2 2020 736 pts/2 S Jul13 0:01 -bash
shelfand 27113 0.0 0.0 2224 0 pts/2 TW Jul13 0:00 [equal.pl]
shelfand 27114 0.0 0.0 3184 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 27324 0.0 0.0 3180 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 28009 0.0 0.0 2224 0 pts/2 TW Jul13 0:00 [equal.pl]
shelfand 28404 0.0 0.0 3120 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 28408 0.0 0.0 3116 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 28410 0.0 0.0 2224 0 pts/2 TW Jul13 0:00 [equal.pl]
shelfand 28699 0.0 0.0 3128 0 pts/2 TW Jul13 0:00 [trial.pl]
shelfand 28720 0.0 0.0 3124 0 pts/2 TW Jul13 0:00 [trial.pl]
...

JJ J I II 12

Step 2: Get the numbers of processes: awk ’{print $2}’:

boris@reston-0491:~$ ps au | grep ’^shelfand’ | awk ’{print $2}’
27111
27113
27114
27324
28009
28404
28408
28410
28699
28720
28723
29832
29920
29922
29923
29964
...

JJ J I II 13

Step 3: Send this to kill :

boris@reston-0491:~$ kill ‘ps au | grep ’^shelfand’ | awk ’{print $2}’‘
bash: kill: (27111) - Not owner
bash: kill: (27113) - Not owner
bash: kill: (27114) - Not owner
bash: kill: (27324) - Not owner
bash: kill: (28009) - Not owner
bash: kill: (28404) - Not owner
bash: kill: (28408) - Not owner
bash: kill: (28410) - Not owner
bash: kill: (28699) - Not owner
bash: kill: (28720) - Not owner
bash: kill: (28723) - Not owner
bash: kill: (29832) - Not owner
bash: kill: (29920) - Not owner
bash: kill: (29922) - Not owner
bash: kill: (29923) - Not owner
bash: kill: (29964) - Not owner
...

JJ J I II 14

ps au grep ’^shelfand’ awk ’{print $2}’

kill

JJ J I II 15

Standard Error

A man of genius makes no mistakes. His

errors are volitional and are the portals of

discovery. James Joyce, “Ulysses”

Besides standard output, a Unix program usually has a standard error.
Another output valve:

Filter Filter

stderrstderr

JJ J I II 16

Example:

kill ‘ps au | grep ’^shelfand’ | awk ’{print $2}’‘ > results

The file results is empty

You can use >&:

boris@reston-0491:~$ kill ‘ps au | grep ’^shelfand’ | \
awk ’{print $2}’‘ >& results

boris@reston-0491:~$ cat results
bash: kill: (27111) - Not owner
bash: kill: (27113) - Not owner
...

JJ J I II 17

Advanced Redirection in /bin/sh

Any sufficiently advanced technology is

indistinguishable from magic. Arthur C.

Clarke

Unfortunately /bin/csh has nothing beyond >& (see http://
www.perl.com/pub/language/versus/csh.html). Use /bin/sh and
derivatives.

JJ J I II 18

http://www.perl.com/pub/language/versus/csh.html
http://www.perl.com/pub/language/versus/csh.html

File descriptors: streams associated with I/O (like in C, Fortran, Perl. . .)

Standard descriptors:

0: standard input
1: standard output
2: standard error

User-made descriptors: 3, 4,. . .

Redirection of descriptors: m>&n means “send m to the place n is
going”

JJ J I II 19

Sending error to file and processing input.

calculate 2>error.log | analyze

Sending output to file and processing error. Here we must be careful.
The obvious solution is wrong:

calculate 1>results 2>&1 | analyze

1. Standard output goes to the file results
2. Standard error goes to the same place, i.e. to the file results

JJ J I II 20

Right solution:

calculate 2>&1 1>results | analyze

1. Standard error goes to where standard output is going
2. Standard output goes to the file results, leaving standard error

untouched

resultscalculate

analyze

JJ J I II 21

Switching error and output: Again the obvious solution is wrong:

calculate 2>&1 1>&2

What does it do?

To switch two variable you need the third one!

calculate 3>&2 2>&1 1>&3

The pipe | connects only standard output to standard input, but due to
redirection we can make whatever we want!

JJ J I II 22

Duplicating Streams: tee

clone, n: 1. An exact duplicate, as in “our

product is a clone of their product.” 2. A

shoddy, spurious copy, as in “their product is

a clone of our product.”

JJ J I II 23

Suppose we want to both save the output and analyze it? In plumbing
we have T-connectors. In Unix we have tee.

Filter

file

tee

JJ J I II 24

Example:

calculate |tee results | analyze > processed_results

GNU tee can write to several files, append (-a), etc.

JJ J I II 25

Concatenating Files: cat

A commune is where people join together to

share their lack of wealth. R. Stallman

Besides forking we need joining. . .

cat (from concatenate) takes several files and joins them together:

Filter

file file file

cat

JJ J I II 26

cat can even use standard input:

Filter

file file file

cat

JJ J I II 27

Example:

cat file1 file2 - file3

cat will dump file1, then file2, then its input, then file3.

JJ J I II 28

	Unix Filters
	Argument List and Backtics
	Standard Error
	Advanced Redirection in /bin/sh
	Duplicating Streams: tee
	Concatenating Files: cat

